1 /*
2 * Copyright (c) 2004-2006 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34 /*
35 * The journaling protocol is intended to evolve into a two-way stream
36 * whereby transaction IDs can be acknowledged by the journaling target
37 * when the data has been committed to hard storage. Both implicit and
38 * explicit acknowledgement schemes will be supported, depending on the
39 * sophistication of the journaling stream, plus resynchronization and
40 * restart when a journaling stream is interrupted. This information will
41 * also be made available to journaling-aware filesystems to allow better
42 * management of their own physical storage synchronization mechanisms as
43 * well as to allow such filesystems to take direct advantage of the kernel's
44 * journaling layer so they don't have to roll their own.
45 *
46 * In addition, the worker thread will have access to much larger
47 * spooling areas then the memory buffer is able to provide by e.g.
48 * reserving swap space, in order to absorb potentially long interruptions
49 * of off-site journaling streams, and to prevent 'slow' off-site linkages
50 * from radically slowing down local filesystem operations.
51 *
52 * Because of the non-trivial algorithms the journaling system will be
53 * required to support, use of a worker thread is mandatory. Efficiencies
54 * are maintained by utilitizing the memory FIFO to batch transactions when
55 * possible, reducing the number of gratuitous thread switches and taking
56 * advantage of cpu caches through the use of shorter batched code paths
57 * rather then trying to do everything in the context of the process
58 * originating the filesystem op. In the future the memory FIFO can be
59 * made per-cpu to remove BGL or other locking requirements.
60 */
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/buf.h>
64 #include <sys/conf.h>
65 #include <sys/kernel.h>
66 #include <sys/queue.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mount.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #include <sys/poll.h>
73 #include <sys/mountctl.h>
74 #include <sys/journal.h>
75 #include <sys/file.h>
76 #include <sys/proc.h>
77 #include <sys/xio.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80
81 #include <machine/limits.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vnode_pager.h>
88
89 #include <sys/file2.h>
90 #include <sys/mplock2.h>
91 #include <sys/spinlock2.h>
92
93 static void journal_wthread(void *info);
94 static void journal_rthread(void *info);
95
96 static void *journal_reserve(struct journal *jo,
97 struct journal_rawrecbeg **rawpp,
98 int16_t streamid, int bytes);
99 static void *journal_extend(struct journal *jo,
100 struct journal_rawrecbeg **rawpp,
101 int truncbytes, int bytes, int *newstreamrecp);
102 static void journal_abort(struct journal *jo,
103 struct journal_rawrecbeg **rawpp);
104 static void journal_commit(struct journal *jo,
105 struct journal_rawrecbeg **rawpp,
106 int bytes, int closeout);
107 static void jrecord_data(struct jrecord *jrec,
108 void *buf, int bytes, int dtype);
109
110
111 MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
112 MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
113
114 void
journal_create_threads(struct journal * jo)115 journal_create_threads(struct journal *jo)
116 {
117 jo->flags &= ~(MC_JOURNAL_STOP_REQ | MC_JOURNAL_STOP_IMM);
118 jo->flags |= MC_JOURNAL_WACTIVE;
119 lwkt_create(journal_wthread, jo, NULL, &jo->wthread,
120 TDF_NOSTART, -1,
121 "journal w:%.*s", JIDMAX, jo->id);
122 lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON);
123 lwkt_schedule(&jo->wthread);
124
125 if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) {
126 jo->flags |= MC_JOURNAL_RACTIVE;
127 lwkt_create(journal_rthread, jo, NULL, &jo->rthread,
128 TDF_NOSTART, -1,
129 "journal r:%.*s", JIDMAX, jo->id);
130 lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON);
131 lwkt_schedule(&jo->rthread);
132 }
133 }
134
135 void
journal_destroy_threads(struct journal * jo,int flags)136 journal_destroy_threads(struct journal *jo, int flags)
137 {
138 int wcount;
139
140 jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM);
141 wakeup(&jo->fifo);
142 wcount = 0;
143 while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) {
144 tsleep(jo, 0, "jwait", hz);
145 if (++wcount % 10 == 0) {
146 kprintf("Warning: journal %s waiting for descriptors to close\n",
147 jo->id);
148 }
149 }
150
151 /*
152 * XXX SMP - threads should move to cpu requesting the restart or
153 * termination before finishing up to properly interlock.
154 */
155 tsleep(jo, 0, "jwait", hz);
156 lwkt_free_thread(&jo->wthread);
157 if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX)
158 lwkt_free_thread(&jo->rthread);
159 }
160
161 /*
162 * The per-journal worker thread is responsible for writing out the
163 * journal's FIFO to the target stream.
164 */
165 static void
journal_wthread(void * info)166 journal_wthread(void *info)
167 {
168 struct journal *jo = info;
169 struct journal_rawrecbeg *rawp;
170 int error;
171 size_t avail;
172 size_t bytes;
173 size_t res;
174
175 /* not MPSAFE yet */
176 get_mplock();
177
178 for (;;) {
179 /*
180 * Calculate the number of bytes available to write. This buffer
181 * area may contain reserved records so we can't just write it out
182 * without further checks.
183 */
184 bytes = jo->fifo.windex - jo->fifo.rindex;
185
186 /*
187 * sleep if no bytes are available or if an incomplete record is
188 * encountered (it needs to be filled in before we can write it
189 * out), and skip any pad records that we encounter.
190 */
191 if (bytes == 0) {
192 if (jo->flags & MC_JOURNAL_STOP_REQ)
193 break;
194 tsleep(&jo->fifo, 0, "jfifo", hz);
195 continue;
196 }
197
198 /*
199 * Sleep if we can not go any further due to hitting an incomplete
200 * record. This case should occur rarely but may have to be better
201 * optimized XXX.
202 */
203 rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
204 if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
205 tsleep(&jo->fifo, 0, "jpad", hz);
206 continue;
207 }
208
209 /*
210 * Skip any pad records. We do not write out pad records if we can
211 * help it.
212 */
213 if (rawp->streamid == JREC_STREAMID_PAD) {
214 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
215 if (jo->fifo.rindex == jo->fifo.xindex) {
216 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
217 jo->total_acked += (rawp->recsize + 15) & ~15;
218 }
219 }
220 jo->fifo.rindex += (rawp->recsize + 15) & ~15;
221 jo->total_acked += bytes;
222 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
223 continue;
224 }
225
226 /*
227 * 'bytes' is the amount of data that can potentially be written out.
228 * Calculate 'res', the amount of data that can actually be written
229 * out. res is bounded either by hitting the end of the physical
230 * memory buffer or by hitting an incomplete record. Incomplete
231 * records often occur due to the way the space reservation model
232 * works.
233 */
234 res = 0;
235 avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
236 while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
237 res += (rawp->recsize + 15) & ~15;
238 if (res >= avail) {
239 KKASSERT(res == avail);
240 break;
241 }
242 rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
243 }
244
245 /*
246 * Issue the write and deal with any errors or other conditions.
247 * For now assume blocking I/O. Since we are record-aware the
248 * code cannot yet handle partial writes.
249 *
250 * We bump rindex prior to issuing the write to avoid racing
251 * the acknowledgement coming back (which could prevent the ack
252 * from bumping xindex). Restarts are always based on xindex so
253 * we do not try to undo the rindex if an error occurs.
254 *
255 * XXX EWOULDBLOCK/NBIO
256 * XXX notification on failure
257 * XXX permanent verses temporary failures
258 * XXX two-way acknowledgement stream in the return direction / xindex
259 */
260 bytes = res;
261 jo->fifo.rindex += bytes;
262 error = fp_write(jo->fp,
263 jo->fifo.membase +
264 ((jo->fifo.rindex - bytes) & jo->fifo.mask),
265 bytes, &res, UIO_SYSSPACE);
266 if (error) {
267 kprintf("journal_thread(%s) write, error %d\n", jo->id, error);
268 /* XXX */
269 } else {
270 KKASSERT(res == bytes);
271 }
272
273 /*
274 * Advance rindex. If the journal stream is not full duplex we also
275 * advance xindex, otherwise the rjournal thread is responsible for
276 * advancing xindex.
277 */
278 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
279 jo->fifo.xindex += bytes;
280 jo->total_acked += bytes;
281 }
282 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
283 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
284 if (jo->flags & MC_JOURNAL_WWAIT) {
285 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
286 wakeup(&jo->fifo.windex);
287 }
288 }
289 }
290 fp_shutdown(jo->fp, SHUT_WR);
291 jo->flags &= ~MC_JOURNAL_WACTIVE;
292 wakeup(jo);
293 wakeup(&jo->fifo.windex);
294 rel_mplock();
295 }
296
297 /*
298 * A second per-journal worker thread is created for two-way journaling
299 * streams to deal with the return acknowledgement stream.
300 */
301 static void
journal_rthread(void * info)302 journal_rthread(void *info)
303 {
304 struct journal_rawrecbeg *rawp;
305 struct journal_ackrecord ack;
306 struct journal *jo = info;
307 int64_t transid;
308 int error;
309 size_t count;
310 size_t bytes;
311
312 transid = 0;
313 error = 0;
314
315 /* not MPSAFE yet */
316 get_mplock();
317
318 for (;;) {
319 /*
320 * We have been asked to stop
321 */
322 if (jo->flags & MC_JOURNAL_STOP_REQ)
323 break;
324
325 /*
326 * If we have no active transaction id, get one from the return
327 * stream.
328 */
329 if (transid == 0) {
330 error = fp_read(jo->fp, &ack, sizeof(ack), &count,
331 1, UIO_SYSSPACE);
332 #if 0
333 kprintf("fp_read ack error %d count %d\n", error, count);
334 #endif
335 if (error || count != sizeof(ack))
336 break;
337 if (error) {
338 kprintf("read error %d on receive stream\n", error);
339 break;
340 }
341 if (ack.rbeg.begmagic != JREC_BEGMAGIC ||
342 ack.rend.endmagic != JREC_ENDMAGIC
343 ) {
344 kprintf("bad begmagic or endmagic on receive stream\n");
345 break;
346 }
347 transid = ack.rbeg.transid;
348 }
349
350 /*
351 * Calculate the number of unacknowledged bytes. If there are no
352 * unacknowledged bytes then unsent data was acknowledged, report,
353 * sleep a bit, and loop in that case. This should not happen
354 * normally. The ack record is thrown away.
355 */
356 bytes = jo->fifo.rindex - jo->fifo.xindex;
357
358 if (bytes == 0) {
359 kprintf("warning: unsent data acknowledged transid %08llx\n",
360 (long long)transid);
361 tsleep(&jo->fifo.xindex, 0, "jrseq", hz);
362 transid = 0;
363 continue;
364 }
365
366 /*
367 * Since rindex has advanced, the record pointed to by xindex
368 * must be a valid record.
369 */
370 rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask));
371 KKASSERT(rawp->begmagic == JREC_BEGMAGIC);
372 KKASSERT(rawp->recsize <= bytes);
373
374 /*
375 * The target can acknowledge several records at once.
376 */
377 if (rawp->transid < transid) {
378 #if 1
379 kprintf("ackskip %08llx/%08llx\n",
380 (long long)rawp->transid,
381 (long long)transid);
382 #endif
383 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
384 jo->total_acked += (rawp->recsize + 15) & ~15;
385 if (jo->flags & MC_JOURNAL_WWAIT) {
386 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
387 wakeup(&jo->fifo.windex);
388 }
389 continue;
390 }
391 if (rawp->transid == transid) {
392 #if 1
393 kprintf("ackskip %08llx/%08llx\n",
394 (long long)rawp->transid,
395 (long long)transid);
396 #endif
397 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
398 jo->total_acked += (rawp->recsize + 15) & ~15;
399 if (jo->flags & MC_JOURNAL_WWAIT) {
400 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
401 wakeup(&jo->fifo.windex);
402 }
403 transid = 0;
404 continue;
405 }
406 kprintf("warning: unsent data(2) acknowledged transid %08llx\n",
407 (long long)transid);
408 transid = 0;
409 }
410 jo->flags &= ~MC_JOURNAL_RACTIVE;
411 wakeup(jo);
412 wakeup(&jo->fifo.windex);
413 rel_mplock();
414 }
415
416 /*
417 * This builds a pad record which the journaling thread will skip over. Pad
418 * records are required when we are unable to reserve sufficient stream space
419 * due to insufficient space at the end of the physical memory fifo.
420 *
421 * Even though the record is not transmitted, a normal transid must be
422 * assigned to it so link recovery operations after a failure work properly.
423 */
424 static
425 void
journal_build_pad(struct journal_rawrecbeg * rawp,int recsize,int64_t transid)426 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid)
427 {
428 struct journal_rawrecend *rendp;
429
430 KKASSERT((recsize & 15) == 0 && recsize >= 16);
431
432 rawp->streamid = JREC_STREAMID_PAD;
433 rawp->recsize = recsize; /* must be 16-byte aligned */
434 rawp->transid = transid;
435 /*
436 * WARNING, rendp may overlap rawp->transid. This is necessary to
437 * allow PAD records to fit in 16 bytes. Use cpu_ccfence() to
438 * hopefully cause the compiler to not make any assumptions.
439 */
440 rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
441 rendp->endmagic = JREC_ENDMAGIC;
442 rendp->check = 0;
443 rendp->recsize = rawp->recsize;
444
445 /*
446 * Set the begin magic last. This is what will allow the journal
447 * thread to write the record out. Use a store fence to prevent
448 * compiler and cpu reordering of the writes.
449 */
450 cpu_sfence();
451 rawp->begmagic = JREC_BEGMAGIC;
452 }
453
454 /*
455 * Wake up the worker thread if the FIFO is more then half full or if
456 * someone is waiting for space to be freed up. Otherwise let the
457 * heartbeat deal with it. Being able to avoid waking up the worker
458 * is the key to the journal's cpu performance.
459 */
460 static __inline
461 void
journal_commit_wakeup(struct journal * jo)462 journal_commit_wakeup(struct journal *jo)
463 {
464 int avail;
465
466 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
467 KKASSERT(avail >= 0);
468 if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
469 wakeup(&jo->fifo);
470 }
471
472 /*
473 * Create a new BEGIN stream record with the specified streamid and the
474 * specified amount of payload space. *rawpp will be set to point to the
475 * base of the new stream record and a pointer to the base of the payload
476 * space will be returned. *rawpp does not need to be pre-NULLd prior to
477 * making this call. The raw record header will be partially initialized.
478 *
479 * A stream can be extended, aborted, or committed by other API calls
480 * below. This may result in a sequence of potentially disconnected
481 * stream records to be output to the journaling target. The first record
482 * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
483 * while the last record on commit or abort will be marked JREC_STREAMCTL_END
484 * (and possibly also JREC_STREAMCTL_ABORTED). The last record could wind
485 * up being the same as the first, in which case the bits are all set in
486 * the first record.
487 *
488 * The stream record is created in an incomplete state by setting the begin
489 * magic to JREC_INCOMPLETEMAGIC. This prevents the worker thread from
490 * flushing the fifo past our record until we have finished populating it.
491 * Other threads can reserve and operate on their own space without stalling
492 * but the stream output will stall until we have completed operations. The
493 * memory FIFO is intended to be large enough to absorb such situations
494 * without stalling out other threads.
495 */
496 static
497 void *
journal_reserve(struct journal * jo,struct journal_rawrecbeg ** rawpp,int16_t streamid,int bytes)498 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
499 int16_t streamid, int bytes)
500 {
501 struct journal_rawrecbeg *rawp;
502 int avail;
503 int availtoend;
504 int req;
505
506 /*
507 * Add header and trailer overheads to the passed payload. Note that
508 * the passed payload size need not be aligned in any way.
509 */
510 bytes += sizeof(struct journal_rawrecbeg);
511 bytes += sizeof(struct journal_rawrecend);
512
513 for (;;) {
514 /*
515 * First, check boundary conditions. If the request would wrap around
516 * we have to skip past the ending block and return to the beginning
517 * of the FIFO's buffer. Calculate 'req' which is the actual number
518 * of bytes being reserved, including wrap-around dead space.
519 *
520 * Neither 'bytes' or 'req' are aligned.
521 *
522 * Note that availtoend is not truncated to avail and so cannot be
523 * used to determine whether the reservation is possible by itself.
524 * Also, since all fifo ops are 16-byte aligned, we can check
525 * the size before calculating the aligned size.
526 */
527 availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
528 KKASSERT((availtoend & 15) == 0);
529 if (bytes > availtoend)
530 req = bytes + availtoend; /* add pad to end */
531 else
532 req = bytes;
533
534 /*
535 * Next calculate the total available space and see if it is
536 * sufficient. We cannot overwrite previously buffered data
537 * past xindex because otherwise we would not be able to restart
538 * a broken link at the target's last point of commit.
539 */
540 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
541 KKASSERT(avail >= 0 && (avail & 15) == 0);
542
543 if (avail < req) {
544 /* XXX MC_JOURNAL_STOP_IMM */
545 jo->flags |= MC_JOURNAL_WWAIT;
546 ++jo->fifostalls;
547 tsleep(&jo->fifo.windex, 0, "jwrite", 0);
548 continue;
549 }
550
551 /*
552 * Create a pad record for any dead space and create an incomplete
553 * record for the live space, then return a pointer to the
554 * contiguous buffer space that was requested.
555 *
556 * NOTE: The worker thread will not flush past an incomplete
557 * record, so the reserved space can be filled in at-will. The
558 * journaling code must also be aware the reserved sections occuring
559 * after this one will also not be written out even if completed
560 * until this one is completed.
561 *
562 * The transaction id must accomodate real and potential pad creation.
563 */
564 rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
565 if (req != bytes) {
566 journal_build_pad(rawp, availtoend, jo->transid);
567 ++jo->transid;
568 rawp = (void *)jo->fifo.membase;
569 }
570 rawp->begmagic = JREC_INCOMPLETEMAGIC; /* updated by abort/commit */
571 rawp->recsize = bytes; /* (unaligned size) */
572 rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
573 rawp->transid = jo->transid;
574 jo->transid += 2;
575
576 /*
577 * Issue a memory barrier to guarentee that the record data has been
578 * properly initialized before we advance the write index and return
579 * a pointer to the reserved record. Otherwise the worker thread
580 * could accidently run past us.
581 *
582 * Note that stream records are always 16-byte aligned.
583 */
584 cpu_sfence();
585 jo->fifo.windex += (req + 15) & ~15;
586 *rawpp = rawp;
587 return(rawp + 1);
588 }
589 /* not reached */
590 *rawpp = NULL;
591 return(NULL);
592 }
593
594 /*
595 * Attempt to extend the stream record by <bytes> worth of payload space.
596 *
597 * If it is possible to extend the existing stream record no truncation
598 * occurs and the record is extended as specified. A pointer to the
599 * truncation offset within the payload space is returned.
600 *
601 * If it is not possible to do this the existing stream record is truncated
602 * and committed, and a new stream record of size <bytes> is created. A
603 * pointer to the base of the new stream record's payload space is returned.
604 *
605 * *rawpp is set to the new reservation in the case of a new record but
606 * the caller cannot depend on a comparison with the old rawp to determine if
607 * this case occurs because we could end up using the same memory FIFO
608 * offset for the new stream record. Use *newstreamrecp instead.
609 */
610 static void *
journal_extend(struct journal * jo,struct journal_rawrecbeg ** rawpp,int truncbytes,int bytes,int * newstreamrecp)611 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
612 int truncbytes, int bytes, int *newstreamrecp)
613 {
614 struct journal_rawrecbeg *rawp;
615 int16_t streamid;
616 int availtoend;
617 int avail;
618 int osize;
619 int nsize;
620 int wbase;
621 void *rptr;
622
623 *newstreamrecp = 0;
624 rawp = *rawpp;
625 osize = (rawp->recsize + 15) & ~15;
626 nsize = (rawp->recsize + bytes + 15) & ~15;
627 wbase = (char *)rawp - jo->fifo.membase;
628
629 /*
630 * If the aligned record size does not change we can trivially adjust
631 * the record size.
632 */
633 if (nsize == osize) {
634 rawp->recsize += bytes;
635 return((char *)(rawp + 1) + truncbytes);
636 }
637
638 /*
639 * If the fifo's write index hasn't been modified since we made the
640 * reservation and we do not hit any boundary conditions, we can
641 * trivially make the record smaller or larger.
642 */
643 if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
644 availtoend = jo->fifo.size - wbase;
645 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
646 KKASSERT((availtoend & 15) == 0);
647 KKASSERT((avail & 15) == 0);
648 if (nsize <= avail && nsize <= availtoend) {
649 jo->fifo.windex += nsize - osize;
650 rawp->recsize += bytes;
651 return((char *)(rawp + 1) + truncbytes);
652 }
653 }
654
655 /*
656 * It was not possible to extend the buffer. Commit the current
657 * buffer and create a new one. We manually clear the BEGIN mark that
658 * journal_reserve() creates (because this is a continuing record, not
659 * the start of a new stream).
660 */
661 streamid = rawp->streamid & JREC_STREAMID_MASK;
662 journal_commit(jo, rawpp, truncbytes, 0);
663 rptr = journal_reserve(jo, rawpp, streamid, bytes);
664 rawp = *rawpp;
665 rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
666 *newstreamrecp = 1;
667 return(rptr);
668 }
669
670 /*
671 * Abort a journal record. If the transaction record represents a stream
672 * BEGIN and we can reverse the fifo's write index we can simply reverse
673 * index the entire record, as if it were never reserved in the first place.
674 *
675 * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
676 * with the payload truncated to 0 bytes.
677 */
678 static void
journal_abort(struct journal * jo,struct journal_rawrecbeg ** rawpp)679 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
680 {
681 struct journal_rawrecbeg *rawp;
682 int osize;
683
684 rawp = *rawpp;
685 osize = (rawp->recsize + 15) & ~15;
686
687 if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
688 (jo->fifo.windex & jo->fifo.mask) ==
689 (char *)rawp - jo->fifo.membase + osize)
690 {
691 jo->fifo.windex -= osize;
692 *rawpp = NULL;
693 } else {
694 rawp->streamid |= JREC_STREAMCTL_ABORTED;
695 journal_commit(jo, rawpp, 0, 1);
696 }
697 }
698
699 /*
700 * Commit a journal record and potentially truncate it to the specified
701 * number of payload bytes. If you do not want to truncate the record,
702 * simply pass -1 for the bytes parameter. Do not pass rawp->recsize, that
703 * field includes header and trailer and will not be correct. Note that
704 * passing 0 will truncate the entire data payload of the record.
705 *
706 * The logical stream is terminated by this function.
707 *
708 * If truncation occurs, and it is not possible to physically optimize the
709 * memory FIFO due to other threads having reserved space after ours,
710 * the remaining reserved space will be covered by a pad record.
711 */
712 static void
journal_commit(struct journal * jo,struct journal_rawrecbeg ** rawpp,int bytes,int closeout)713 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
714 int bytes, int closeout)
715 {
716 struct journal_rawrecbeg *rawp;
717 struct journal_rawrecend *rendp;
718 int osize;
719 int nsize;
720
721 rawp = *rawpp;
722 *rawpp = NULL;
723
724 KKASSERT((char *)rawp >= jo->fifo.membase &&
725 (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
726 KKASSERT(((intptr_t)rawp & 15) == 0);
727
728 /*
729 * Truncate the record if necessary. If the FIFO write index as still
730 * at the end of our record we can optimally backindex it. Otherwise
731 * we have to insert a pad record to cover the dead space.
732 *
733 * We calculate osize which is the 16-byte-aligned original recsize.
734 * We calculate nsize which is the 16-byte-aligned new recsize.
735 *
736 * Due to alignment issues or in case the passed truncation bytes is
737 * the same as the original payload, nsize may be equal to osize even
738 * if the committed bytes is less then the originally reserved bytes.
739 */
740 if (bytes >= 0) {
741 KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
742 osize = (rawp->recsize + 15) & ~15;
743 rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
744 sizeof(struct journal_rawrecend);
745 nsize = (rawp->recsize + 15) & ~15;
746 KKASSERT(nsize <= osize);
747 if (osize == nsize) {
748 /* do nothing */
749 } else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
750 /* we are able to backindex the fifo */
751 jo->fifo.windex -= osize - nsize;
752 } else {
753 /* we cannot backindex the fifo, emplace a pad in the dead space */
754 journal_build_pad((void *)((char *)rawp + nsize), osize - nsize,
755 rawp->transid + 1);
756 }
757 }
758
759 /*
760 * Fill in the trailer. Note that unlike pad records, the trailer will
761 * never overlap the header.
762 */
763 rendp = (void *)((char *)rawp +
764 ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
765 rendp->endmagic = JREC_ENDMAGIC;
766 rendp->recsize = rawp->recsize;
767 rendp->check = 0; /* XXX check word, disabled for now */
768
769 /*
770 * Fill in begmagic last. This will allow the worker thread to proceed.
771 * Use a memory barrier to guarentee write ordering. Mark the stream
772 * as terminated if closeout is set. This is the typical case.
773 */
774 if (closeout)
775 rawp->streamid |= JREC_STREAMCTL_END;
776 cpu_sfence(); /* memory and compiler barrier */
777 rawp->begmagic = JREC_BEGMAGIC;
778
779 journal_commit_wakeup(jo);
780 }
781
782 /************************************************************************
783 * TRANSACTION SUPPORT ROUTINES *
784 ************************************************************************
785 *
786 * JRECORD_*() - routines to create subrecord transactions and embed them
787 * in the logical streams managed by the journal_*() routines.
788 */
789
790 /*
791 * Initialize the passed jrecord structure and start a new stream transaction
792 * by reserving an initial build space in the journal's memory FIFO.
793 */
794 void
jrecord_init(struct journal * jo,struct jrecord * jrec,int16_t streamid)795 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
796 {
797 bzero(jrec, sizeof(*jrec));
798 jrec->jo = jo;
799 jrec->streamid = streamid;
800 jrec->stream_residual = JREC_DEFAULTSIZE;
801 jrec->stream_reserved = jrec->stream_residual;
802 jrec->stream_ptr =
803 journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
804 }
805
806 /*
807 * Push a recursive record type. All pushes should have matching pops.
808 * The old parent is returned and the newly pushed record becomes the
809 * new parent. Note that the old parent's pointer may already be invalid
810 * or may become invalid if jrecord_write() had to build a new stream
811 * record, so the caller should not mess with the returned pointer in
812 * any way other then to save it.
813 */
814 struct journal_subrecord *
jrecord_push(struct jrecord * jrec,int16_t rectype)815 jrecord_push(struct jrecord *jrec, int16_t rectype)
816 {
817 struct journal_subrecord *save;
818
819 save = jrec->parent;
820 jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
821 jrec->last = NULL;
822 KKASSERT(jrec->parent != NULL);
823 ++jrec->pushcount;
824 ++jrec->pushptrgood; /* cleared on flush */
825 return(save);
826 }
827
828 /*
829 * Pop a previously pushed sub-transaction. We must set JMASK_LAST
830 * on the last record written within the subtransaction. If the last
831 * record written is not accessible or if the subtransaction is empty,
832 * we must write out a pad record with JMASK_LAST set before popping.
833 *
834 * When popping a subtransaction the parent record's recsize field
835 * will be properly set. If the parent pointer is no longer valid
836 * (which can occur if the data has already been flushed out to the
837 * stream), the protocol spec allows us to leave it 0.
838 *
839 * The saved parent pointer which we restore may or may not be valid,
840 * and if not valid may or may not be NULL, depending on the value
841 * of pushptrgood.
842 */
843 void
jrecord_pop(struct jrecord * jrec,struct journal_subrecord * save)844 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
845 {
846 struct journal_subrecord *last;
847
848 KKASSERT(jrec->pushcount > 0);
849 KKASSERT(jrec->residual == 0);
850
851 /*
852 * Set JMASK_LAST on the last record we wrote at the current
853 * level. If last is NULL we either no longer have access to the
854 * record or the subtransaction was empty and we must write out a pad
855 * record.
856 */
857 if ((last = jrec->last) == NULL) {
858 jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
859 last = jrec->last; /* reload after possible flush */
860 } else {
861 last->rectype |= JMASK_LAST;
862 }
863
864 /*
865 * pushptrgood tells us how many levels of parent record pointers
866 * are valid. The jrec only stores the current parent record pointer
867 * (and it is only valid if pushptrgood != 0). The higher level parent
868 * record pointers are saved by the routines calling jrecord_push() and
869 * jrecord_pop(). These pointers may become stale and we determine
870 * that fact by tracking the count of valid parent pointers with
871 * pushptrgood. Pointers become invalid when their related stream
872 * record gets pushed out.
873 *
874 * If no pointer is available (the data has already been pushed out),
875 * then no fixup of e.g. the length field is possible for non-leaf
876 * nodes. The protocol allows for this situation by placing a larger
877 * burden on the program scanning the stream on the other end.
878 *
879 * [parentA]
880 * [node X]
881 * [parentB]
882 * [node Y]
883 * [node Z]
884 * (pop B) see NOTE B
885 * (pop A) see NOTE A
886 *
887 * NOTE B: This pop sets LAST in node Z if the node is still accessible,
888 * else a PAD record is appended and LAST is set in that.
889 *
890 * This pop sets the record size in parentB if parentB is still
891 * accessible, else the record size is left 0 (the scanner must
892 * deal with that).
893 *
894 * This pop sets the new 'last' record to parentB, the pointer
895 * to which may or may not still be accessible.
896 *
897 * NOTE A: This pop sets LAST in parentB if the node is still accessible,
898 * else a PAD record is appended and LAST is set in that.
899 *
900 * This pop sets the record size in parentA if parentA is still
901 * accessible, else the record size is left 0 (the scanner must
902 * deal with that).
903 *
904 * This pop sets the new 'last' record to parentA, the pointer
905 * to which may or may not still be accessible.
906 *
907 * Also note that the last record in the stream transaction, which in
908 * the above example is parentA, does not currently have the LAST bit
909 * set.
910 *
911 * The current parent becomes the last record relative to the
912 * saved parent passed into us. It's validity is based on
913 * whether pushptrgood is non-zero prior to decrementing. The saved
914 * parent becomes the new parent, and its validity is based on whether
915 * pushptrgood is non-zero after decrementing.
916 *
917 * The old jrec->parent may be NULL if it is no longer accessible.
918 * If pushptrgood is non-zero, however, it is guarenteed to not
919 * be NULL (since no flush occured).
920 */
921 jrec->last = jrec->parent;
922 --jrec->pushcount;
923 if (jrec->pushptrgood) {
924 KKASSERT(jrec->last != NULL && last != NULL);
925 if (--jrec->pushptrgood == 0) {
926 jrec->parent = NULL; /* 'save' contains garbage or NULL */
927 } else {
928 KKASSERT(save != NULL);
929 jrec->parent = save; /* 'save' must not be NULL */
930 }
931
932 /*
933 * Set the record size in the old parent. 'last' still points to
934 * the original last record in the subtransaction being popped,
935 * jrec->last points to the old parent (which became the last
936 * record relative to the new parent being popped into).
937 */
938 jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
939 } else {
940 jrec->parent = NULL;
941 KKASSERT(jrec->last == NULL);
942 }
943 }
944
945 /*
946 * Write out a leaf record, including associated data.
947 */
948 void
jrecord_leaf(struct jrecord * jrec,int16_t rectype,void * ptr,int bytes)949 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
950 {
951 jrecord_write(jrec, rectype, bytes);
952 jrecord_data(jrec, ptr, bytes, JDATA_KERN);
953 }
954
955 void
jrecord_leaf_uio(struct jrecord * jrec,int16_t rectype,struct uio * uio)956 jrecord_leaf_uio(struct jrecord *jrec, int16_t rectype,
957 struct uio *uio)
958 {
959 struct iovec *iov;
960 int i;
961
962 for (i = 0; i < uio->uio_iovcnt; ++i) {
963 iov = &uio->uio_iov[i];
964 if (iov->iov_len == 0)
965 continue;
966 if (uio->uio_segflg == UIO_SYSSPACE) {
967 jrecord_write(jrec, rectype, iov->iov_len);
968 jrecord_data(jrec, iov->iov_base, iov->iov_len, JDATA_KERN);
969 } else { /* UIO_USERSPACE */
970 jrecord_write(jrec, rectype, iov->iov_len);
971 jrecord_data(jrec, iov->iov_base, iov->iov_len, JDATA_USER);
972 }
973 }
974 }
975
976 void
jrecord_leaf_xio(struct jrecord * jrec,int16_t rectype,xio_t xio)977 jrecord_leaf_xio(struct jrecord *jrec, int16_t rectype, xio_t xio)
978 {
979 int bytes = xio->xio_npages * PAGE_SIZE;
980
981 jrecord_write(jrec, rectype, bytes);
982 jrecord_data(jrec, xio, bytes, JDATA_XIO);
983 }
984
985 /*
986 * Write a leaf record out and return a pointer to its base. The leaf
987 * record may contain potentially megabytes of data which is supplied
988 * in jrecord_data() calls. The exact amount must be specified in this
989 * call.
990 *
991 * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
992 * CALL AND MAY BECOME INVALID AT ANY TIME. ONLY THE PUSH/POP CODE SHOULD
993 * USE THE RETURN VALUE.
994 */
995 struct journal_subrecord *
jrecord_write(struct jrecord * jrec,int16_t rectype,int bytes)996 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
997 {
998 struct journal_subrecord *last;
999 int pusheditout;
1000
1001 /*
1002 * Try to catch some obvious errors. Nesting records must specify a
1003 * size of 0, and there should be no left-overs from previous operations
1004 * (such as incomplete data writeouts).
1005 */
1006 KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
1007 KKASSERT(jrec->residual == 0);
1008
1009 /*
1010 * Check to see if the current stream record has enough room for
1011 * the new subrecord header. If it doesn't we extend the current
1012 * stream record.
1013 *
1014 * This may have the side effect of pushing out the current stream record
1015 * and creating a new one. We must adjust our stream tracking fields
1016 * accordingly.
1017 */
1018 if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
1019 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1020 jrec->stream_reserved - jrec->stream_residual,
1021 JREC_DEFAULTSIZE, &pusheditout);
1022 if (pusheditout) {
1023 /*
1024 * If a pushout occured, the pushed out stream record was
1025 * truncated as specified and the new record is exactly the
1026 * extension size specified.
1027 */
1028 jrec->stream_reserved = JREC_DEFAULTSIZE;
1029 jrec->stream_residual = JREC_DEFAULTSIZE;
1030 jrec->parent = NULL; /* no longer accessible */
1031 jrec->pushptrgood = 0; /* restored parents in pops no good */
1032 } else {
1033 /*
1034 * If no pushout occured the stream record is NOT truncated and
1035 * IS extended.
1036 */
1037 jrec->stream_reserved += JREC_DEFAULTSIZE;
1038 jrec->stream_residual += JREC_DEFAULTSIZE;
1039 }
1040 }
1041 last = (void *)jrec->stream_ptr;
1042 last->rectype = rectype;
1043 last->reserved = 0;
1044
1045 /*
1046 * We may not know the record size for recursive records and the
1047 * header may become unavailable due to limited FIFO space. Write
1048 * -1 to indicate this special case.
1049 */
1050 if ((rectype & JMASK_NESTED) && bytes == 0)
1051 last->recsize = -1;
1052 else
1053 last->recsize = sizeof(struct journal_subrecord) + bytes;
1054 jrec->last = last;
1055 jrec->residual = bytes; /* remaining data to be posted */
1056 jrec->residual_align = -bytes & 7; /* post-data alignment required */
1057 jrec->stream_ptr += sizeof(*last); /* current write pointer */
1058 jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1059 return(last);
1060 }
1061
1062 /*
1063 * Write out the data associated with a leaf record. Any number of calls
1064 * to this routine may be made as long as the byte count adds up to the
1065 * amount originally specified in jrecord_write().
1066 *
1067 * The act of writing out the leaf data may result in numerous stream records
1068 * being pushed out. Callers should be aware that even the associated
1069 * subrecord header may become inaccessible due to stream record pushouts.
1070 */
1071 static void
jrecord_data(struct jrecord * jrec,void * buf,int bytes,int dtype)1072 jrecord_data(struct jrecord *jrec, void *buf, int bytes, int dtype)
1073 {
1074 int pusheditout;
1075 int extsize;
1076 int xio_offset = 0;
1077
1078 KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1079
1080 /*
1081 * Push out stream records as long as there is insufficient room to hold
1082 * the remaining data.
1083 */
1084 while (jrec->stream_residual < bytes) {
1085 /*
1086 * Fill in any remaining space in the current stream record.
1087 */
1088 switch (dtype) {
1089 case JDATA_KERN:
1090 bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1091 break;
1092 case JDATA_USER:
1093 copyin(buf, jrec->stream_ptr, jrec->stream_residual);
1094 break;
1095 case JDATA_XIO:
1096 xio_copy_xtok((xio_t)buf, xio_offset, jrec->stream_ptr,
1097 jrec->stream_residual);
1098 xio_offset += jrec->stream_residual;
1099 break;
1100 }
1101 if (dtype != JDATA_XIO)
1102 buf = (char *)buf + jrec->stream_residual;
1103 bytes -= jrec->stream_residual;
1104 /*jrec->stream_ptr += jrec->stream_residual;*/
1105 jrec->residual -= jrec->stream_residual;
1106 jrec->stream_residual = 0;
1107
1108 /*
1109 * Try to extend the current stream record, but no more then 1/4
1110 * the size of the FIFO.
1111 */
1112 extsize = jrec->jo->fifo.size >> 2;
1113 if (extsize > bytes)
1114 extsize = (bytes + 15) & ~15;
1115
1116 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1117 jrec->stream_reserved - jrec->stream_residual,
1118 extsize, &pusheditout);
1119 if (pusheditout) {
1120 jrec->stream_reserved = extsize;
1121 jrec->stream_residual = extsize;
1122 jrec->parent = NULL; /* no longer accessible */
1123 jrec->last = NULL; /* no longer accessible */
1124 jrec->pushptrgood = 0; /* restored parents in pops no good */
1125 } else {
1126 jrec->stream_reserved += extsize;
1127 jrec->stream_residual += extsize;
1128 }
1129 }
1130
1131 /*
1132 * Push out any remaining bytes into the current stream record.
1133 */
1134 if (bytes) {
1135 switch (dtype) {
1136 case JDATA_KERN:
1137 bcopy(buf, jrec->stream_ptr, bytes);
1138 break;
1139 case JDATA_USER:
1140 copyin(buf, jrec->stream_ptr, bytes);
1141 break;
1142 case JDATA_XIO:
1143 xio_copy_xtok((xio_t)buf, xio_offset, jrec->stream_ptr, bytes);
1144 break;
1145 }
1146 jrec->stream_ptr += bytes;
1147 jrec->stream_residual -= bytes;
1148 jrec->residual -= bytes;
1149 }
1150
1151 /*
1152 * Handle data alignment requirements for the subrecord. Because the
1153 * stream record's data space is more strictly aligned, it must already
1154 * have sufficient space to hold any subrecord alignment slop.
1155 */
1156 if (jrec->residual == 0 && jrec->residual_align) {
1157 KKASSERT(jrec->residual_align <= jrec->stream_residual);
1158 bzero(jrec->stream_ptr, jrec->residual_align);
1159 jrec->stream_ptr += jrec->residual_align;
1160 jrec->stream_residual -= jrec->residual_align;
1161 jrec->residual_align = 0;
1162 }
1163 }
1164
1165 /*
1166 * We are finished with the transaction. This closes the transaction created
1167 * by jrecord_init().
1168 *
1169 * NOTE: If abortit is not set then we must be at the top level with no
1170 * residual subrecord data left to output.
1171 *
1172 * If abortit is set then we can be in any state, all pushes will be
1173 * popped and it is ok for there to be residual data. This works
1174 * because the virtual stream itself is truncated. Scanners must deal
1175 * with this situation.
1176 *
1177 * The stream record will be committed or aborted as specified and jrecord
1178 * resources will be cleaned up.
1179 */
1180 void
jrecord_done(struct jrecord * jrec,int abortit)1181 jrecord_done(struct jrecord *jrec, int abortit)
1182 {
1183 KKASSERT(jrec->rawp != NULL);
1184
1185 if (abortit) {
1186 journal_abort(jrec->jo, &jrec->rawp);
1187 } else {
1188 KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1189 journal_commit(jrec->jo, &jrec->rawp,
1190 jrec->stream_reserved - jrec->stream_residual, 1);
1191 }
1192
1193 /*
1194 * jrec should not be used beyond this point without another init,
1195 * but clean up some fields to ensure that we panic if it is.
1196 *
1197 * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1198 */
1199 jrec->jo = NULL;
1200 jrec->stream_ptr = NULL;
1201 }
1202
1203 /************************************************************************
1204 * LOW LEVEL RECORD SUPPORT ROUTINES *
1205 ************************************************************************
1206 *
1207 * These routine create low level recursive and leaf subrecords representing
1208 * common filesystem structures.
1209 */
1210
1211 /*
1212 * Write out a filename path relative to the base of the mount point.
1213 * rectype is typically JLEAF_PATH{1,2,3,4}.
1214 */
1215 void
jrecord_write_path(struct jrecord * jrec,int16_t rectype,struct namecache * ncp)1216 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1217 {
1218 char buf[64]; /* local buffer if it fits, else malloced */
1219 char *base;
1220 int pathlen;
1221 int index;
1222 struct namecache *scan;
1223
1224 /*
1225 * Pass 1 - figure out the number of bytes required. Include terminating
1226 * \0 on last element and '/' separator on other elements.
1227 *
1228 * The namecache topology terminates at the root of the filesystem
1229 * (the normal lookup code would then continue by using the mount
1230 * structure to figure out what it was mounted on).
1231 */
1232 again:
1233 pathlen = 0;
1234 for (scan = ncp; scan; scan = scan->nc_parent) {
1235 if (scan->nc_nlen > 0)
1236 pathlen += scan->nc_nlen + 1;
1237 }
1238
1239 if (pathlen <= sizeof(buf))
1240 base = buf;
1241 else
1242 base = kmalloc(pathlen, M_TEMP, M_INTWAIT);
1243
1244 /*
1245 * Pass 2 - generate the path buffer
1246 */
1247 index = pathlen;
1248 for (scan = ncp; scan; scan = scan->nc_parent) {
1249 if (scan->nc_nlen == 0)
1250 continue;
1251 if (scan->nc_nlen >= index) {
1252 if (base != buf)
1253 kfree(base, M_TEMP);
1254 goto again;
1255 }
1256 if (index == pathlen)
1257 base[--index] = 0;
1258 else
1259 base[--index] = '/';
1260 index -= scan->nc_nlen;
1261 bcopy(scan->nc_name, base + index, scan->nc_nlen);
1262 }
1263 jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1264 if (base != buf)
1265 kfree(base, M_TEMP);
1266 }
1267
1268 /*
1269 * Write out a file attribute structure. While somewhat inefficient, using
1270 * a recursive data structure is the most portable and extensible way.
1271 */
1272 void
jrecord_write_vattr(struct jrecord * jrec,struct vattr * vat)1273 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1274 {
1275 void *save;
1276
1277 save = jrecord_push(jrec, JTYPE_VATTR);
1278 if (vat->va_type != VNON)
1279 jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type));
1280 if (vat->va_mode != (mode_t)VNOVAL)
1281 jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode));
1282 if (vat->va_nlink != VNOVAL)
1283 jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1284 if (vat->va_uid != VNOVAL)
1285 jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1286 if (vat->va_gid != VNOVAL)
1287 jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1288 if (vat->va_fsid != VNOVAL)
1289 jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1290 if (vat->va_fileid != VNOVAL)
1291 jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1292 if (vat->va_size != VNOVAL)
1293 jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1294 if (vat->va_atime.tv_sec != VNOVAL)
1295 jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1296 if (vat->va_mtime.tv_sec != VNOVAL)
1297 jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1298 if (vat->va_ctime.tv_sec != VNOVAL)
1299 jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1300 if (vat->va_gen != VNOVAL)
1301 jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1302 if (vat->va_flags != VNOVAL)
1303 jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1304 if (vat->va_rmajor != VNOVAL) {
1305 dev_t rdev = makeudev(vat->va_rmajor, vat->va_rminor);
1306 jrecord_leaf(jrec, JLEAF_UDEV, &rdev, sizeof(rdev));
1307 jrecord_leaf(jrec, JLEAF_UMAJOR, &vat->va_rmajor, sizeof(vat->va_rmajor));
1308 jrecord_leaf(jrec, JLEAF_UMINOR, &vat->va_rminor, sizeof(vat->va_rminor));
1309 }
1310 #if 0
1311 if (vat->va_filerev != VNOVAL)
1312 jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1313 #endif
1314 jrecord_pop(jrec, save);
1315 }
1316
1317 /*
1318 * Write out the creds used to issue a file operation. If a process is
1319 * available write out additional tracking information related to the
1320 * process.
1321 *
1322 * XXX additional tracking info
1323 * XXX tty line info
1324 */
1325 void
jrecord_write_cred(struct jrecord * jrec,struct thread * td,struct ucred * cred)1326 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1327 {
1328 void *save;
1329 struct proc *p;
1330
1331 save = jrecord_push(jrec, JTYPE_CRED);
1332 jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1333 jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1334 if (td && (p = td->td_proc) != NULL) {
1335 jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1336 jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1337 }
1338 jrecord_pop(jrec, save);
1339 }
1340
1341 /*
1342 * Write out information required to identify a vnode
1343 *
1344 * XXX this needs work. We should write out the inode number as well,
1345 * and in fact avoid writing out the file path for seqential writes
1346 * occuring within e.g. a certain period of time.
1347 */
1348 void
jrecord_write_vnode_ref(struct jrecord * jrec,struct vnode * vp)1349 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1350 {
1351 struct nchandle nch;
1352
1353 nch.mount = vp->v_mount;
1354 spin_lock(&vp->v_spin);
1355 TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1356 if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1357 break;
1358 }
1359 if (nch.ncp) {
1360 cache_hold(&nch);
1361 spin_unlock(&vp->v_spin);
1362 jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1363 cache_drop(&nch);
1364 } else {
1365 spin_unlock(&vp->v_spin);
1366 }
1367 }
1368
1369 void
jrecord_write_vnode_link(struct jrecord * jrec,struct vnode * vp,struct namecache * notncp)1370 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp,
1371 struct namecache *notncp)
1372 {
1373 struct nchandle nch;
1374
1375 nch.mount = vp->v_mount;
1376 spin_lock(&vp->v_spin);
1377 TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1378 if (nch.ncp == notncp)
1379 continue;
1380 if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1381 break;
1382 }
1383 if (nch.ncp) {
1384 cache_hold(&nch);
1385 spin_unlock(&vp->v_spin);
1386 jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1387 cache_drop(&nch);
1388 } else {
1389 spin_unlock(&vp->v_spin);
1390 }
1391 }
1392
1393 /*
1394 * Write out the data represented by a pagelist
1395 */
1396 void
jrecord_write_pagelist(struct jrecord * jrec,int16_t rectype,struct vm_page ** pglist,int * rtvals,int pgcount,off_t offset)1397 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1398 struct vm_page **pglist, int *rtvals, int pgcount,
1399 off_t offset)
1400 {
1401 struct xio xio;
1402 int error;
1403 int b;
1404 int i;
1405
1406 i = 0;
1407 xio_init(&xio);
1408 while (i < pgcount) {
1409 /*
1410 * Find the next valid section. Skip any invalid elements
1411 */
1412 if (rtvals[i] != VM_PAGER_OK) {
1413 ++i;
1414 offset += PAGE_SIZE;
1415 continue;
1416 }
1417
1418 /*
1419 * Figure out how big the valid section is, capping I/O at what the
1420 * MSFBUF can represent.
1421 */
1422 b = i;
1423 while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1424 rtvals[i] == VM_PAGER_OK
1425 ) {
1426 ++i;
1427 }
1428
1429 /*
1430 * And write it out.
1431 */
1432 if (i - b) {
1433 error = xio_init_pages(&xio, pglist + b, i - b, XIOF_READ);
1434 if (error == 0) {
1435 jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1436 jrecord_leaf_xio(jrec, rectype, &xio);
1437 } else {
1438 kprintf("jrecord_write_pagelist: xio init failure\n");
1439 }
1440 xio_release(&xio);
1441 offset += (off_t)(i - b) << PAGE_SHIFT;
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Write out the data represented by a UIO.
1448 */
1449 void
jrecord_write_uio(struct jrecord * jrec,int16_t rectype,struct uio * uio)1450 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1451 {
1452 if (uio->uio_segflg != UIO_NOCOPY) {
1453 jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1454 sizeof(uio->uio_offset));
1455 jrecord_leaf_uio(jrec, rectype, uio);
1456 }
1457 }
1458
1459 void
jrecord_file_data(struct jrecord * jrec,struct vnode * vp,off_t off,off_t bytes)1460 jrecord_file_data(struct jrecord *jrec, struct vnode *vp,
1461 off_t off, off_t bytes)
1462 {
1463 const int bufsize = 8192;
1464 char *buf;
1465 int error;
1466 int n;
1467
1468 buf = kmalloc(bufsize, M_JOURNAL, M_WAITOK);
1469 jrecord_leaf(jrec, JLEAF_SEEKPOS, &off, sizeof(off));
1470 while (bytes) {
1471 n = (bytes > bufsize) ? bufsize : (int)bytes;
1472 error = vn_rdwr(UIO_READ, vp, buf, n, off, UIO_SYSSPACE, IO_NODELOCKED,
1473 proc0.p_ucred, NULL);
1474 if (error) {
1475 jrecord_leaf(jrec, JLEAF_ERROR, &error, sizeof(error));
1476 break;
1477 }
1478 jrecord_leaf(jrec, JLEAF_FILEDATA, buf, n);
1479 bytes -= n;
1480 off += n;
1481 }
1482 kfree(buf, M_JOURNAL);
1483 }
1484
1485