1 /*	$NetBSD: subr_kcpuset.c,v 1.11 2014/05/19 20:39:23 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel CPU set implementation.
34  *
35  * Interface can be used by kernel subsystems as a unified dynamic CPU
36  * bitset implementation handling many CPUs.  Facility also supports early
37  * use by MD code on boot, as it fixups bitsets on further boot.
38  *
39  * TODO:
40  * - Handle "reverse" bitset on fixup/grow.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.11 2014/05/19 20:39:23 rmind Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/types.h>
48 
49 #include <sys/atomic.h>
50 #include <sys/sched.h>
51 #include <sys/kcpuset.h>
52 #include <sys/pool.h>
53 
54 /* Number of CPUs to support. */
55 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
56 
57 /*
58  * Structure of dynamic CPU set in the kernel.
59  */
60 struct kcpuset {
61 	uint32_t		bits[0];
62 };
63 
64 typedef struct kcpuset_impl {
65 	/* Reference count. */
66 	u_int			kc_refcnt;
67 	/* Next to free, if non-NULL (used when multiple references). */
68 	struct kcpuset *	kc_next;
69 	/* Actual variable-sized field of bits. */
70 	struct kcpuset		kc_field;
71 } kcpuset_impl_t;
72 
73 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
74 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
76 
77 /* Sizes of a single bitset. */
78 #define	KC_SHIFT		5
79 #define	KC_MASK			31
80 
81 /* An array of noted early kcpuset creations and data. */
82 #define	KC_SAVE_NITEMS		8
83 
84 /* Structures for early boot mechanism (must be statically initialised). */
85 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
86 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
87 static int			kc_last_idx = 0;
88 static bool			kc_initialised = false;
89 
90 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
91 #define	KC_NFIELDS_EARLY	1
92 
93 /*
94  * The size of whole bitset fields and amount of fields.
95  * The whole size must statically initialise for early case.
96  */
97 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
98 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
99 
100 static pool_cache_t		kc_cache __read_mostly;
101 
102 static kcpuset_t *		kcpuset_create_raw(bool);
103 
104 /*
105  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
106  * to dynamically allocated sets.
107  */
108 void
kcpuset_sysinit(void)109 kcpuset_sysinit(void)
110 {
111 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
112 	int i, s;
113 
114 	/* Set a kcpuset_t sizes. */
115 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
116 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
117 	KASSERT(kc_nfields != 0 && kc_bitsize != 0);
118 
119 	kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
120 	    coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
121 
122 	/* First, pre-allocate kcpuset entries. */
123 	for (i = 0; i < kc_last_idx; i++) {
124 		kcp = kcpuset_create_raw(true);
125 		kc_dynamic[i] = kcp;
126 	}
127 
128 	/*
129 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
130 	 * All processors, except the one we are currently running (primary),
131 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
132 	 * raise the IPL to high.
133 	 */
134 	KASSERT(mp_online == false);
135 
136 	s = splhigh();
137 	for (i = 0; i < kc_last_idx; i++) {
138 		/*
139 		 * Transfer the bits from early static storage to the kcpuset.
140 		 */
141 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
142 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
143 
144 		/*
145 		 * Store the new pointer, pointing to the allocated kcpuset.
146 		 * Note: we are not in an interrupt context and it is the only
147 		 * CPU running - thus store is safe (e.g. no need for pointer
148 		 * variable to be volatile).
149 		 */
150 		*kc_noted_early[i] = kc_dynamic[i];
151 	}
152 	kc_initialised = true;
153 	kc_last_idx = 0;
154 	splx(s);
155 }
156 
157 /*
158  * kcpuset_early_ptr: note an early boot use by saving the pointer and
159  * returning a pointer to a static, temporary bit field.
160  */
161 static kcpuset_t *
kcpuset_early_ptr(kcpuset_t ** kcptr)162 kcpuset_early_ptr(kcpuset_t **kcptr)
163 {
164 	kcpuset_t *kcp;
165 	int s;
166 
167 	s = splhigh();
168 	if (kc_last_idx < KC_SAVE_NITEMS) {
169 		/*
170 		 * Save the pointer, return pointer to static early field.
171 		 * Need to zero it out.
172 		 */
173 		kc_noted_early[kc_last_idx] = kcptr;
174 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
175 		kc_last_idx++;
176 		memset(kcp, 0, KC_BITSIZE_EARLY);
177 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
178 	} else {
179 		panic("kcpuset(9): all early-use entries exhausted; "
180 		    "increase KC_SAVE_NITEMS\n");
181 	}
182 	splx(s);
183 
184 	return kcp;
185 }
186 
187 /*
188  * Routines to create or destroy the CPU set.
189  * Early boot case is handled.
190  */
191 
192 static kcpuset_t *
kcpuset_create_raw(bool zero)193 kcpuset_create_raw(bool zero)
194 {
195 	kcpuset_impl_t *kc;
196 
197 	kc = pool_cache_get(kc_cache, PR_WAITOK);
198 	kc->kc_refcnt = 1;
199 	kc->kc_next = NULL;
200 
201 	if (zero) {
202 		memset(&kc->kc_field, 0, kc_bitsize);
203 	}
204 
205 	/* Note: return pointer to the actual field of bits. */
206 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
207 	return &kc->kc_field;
208 }
209 
210 void
kcpuset_create(kcpuset_t ** retkcp,bool zero)211 kcpuset_create(kcpuset_t **retkcp, bool zero)
212 {
213 	if (__predict_false(!kc_initialised)) {
214 		/* Early boot use - special case. */
215 		*retkcp = kcpuset_early_ptr(retkcp);
216 		return;
217 	}
218 	*retkcp = kcpuset_create_raw(zero);
219 }
220 
221 void
kcpuset_clone(kcpuset_t ** retkcp,const kcpuset_t * kcp)222 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
223 {
224 	kcpuset_create(retkcp, false);
225 	memcpy(*retkcp, kcp, kc_bitsize);
226 }
227 
228 void
kcpuset_destroy(kcpuset_t * kcp)229 kcpuset_destroy(kcpuset_t *kcp)
230 {
231 	kcpuset_impl_t *kc;
232 
233 	KASSERT(kc_initialised);
234 	KASSERT(kcp != NULL);
235 
236 	do {
237 		kc = KC_GETSTRUCT(kcp);
238 		kcp = kc->kc_next;
239 		pool_cache_put(kc_cache, kc);
240 	} while (kcp);
241 }
242 
243 /*
244  * Routines to reference/unreference the CPU set.
245  * Note: early boot case is not supported by these routines.
246  */
247 
248 void
kcpuset_use(kcpuset_t * kcp)249 kcpuset_use(kcpuset_t *kcp)
250 {
251 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
252 
253 	KASSERT(kc_initialised);
254 	atomic_inc_uint(&kc->kc_refcnt);
255 }
256 
257 void
kcpuset_unuse(kcpuset_t * kcp,kcpuset_t ** lst)258 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
259 {
260 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
261 
262 	KASSERT(kc_initialised);
263 	KASSERT(kc->kc_refcnt > 0);
264 
265 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
266 		return;
267 	}
268 	KASSERT(kc->kc_next == NULL);
269 	if (lst == NULL) {
270 		kcpuset_destroy(kcp);
271 		return;
272 	}
273 	kc->kc_next = *lst;
274 	*lst = kcp;
275 }
276 
277 /*
278  * Routines to transfer the CPU set from / to userspace.
279  * Note: early boot case is not supported by these routines.
280  */
281 
282 int
kcpuset_copyin(const cpuset_t * ucp,kcpuset_t * kcp,size_t len)283 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
284 {
285 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
286 
287 	KASSERT(kc_initialised);
288 	KASSERT(kc->kc_refcnt > 0);
289 	KASSERT(kc->kc_next == NULL);
290 
291 	if (len > kc_bitsize) { /* XXX */
292 		return EINVAL;
293 	}
294 	return copyin(ucp, kcp, len);
295 }
296 
297 int
kcpuset_copyout(kcpuset_t * kcp,cpuset_t * ucp,size_t len)298 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
299 {
300 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
301 
302 	KASSERT(kc_initialised);
303 	KASSERT(kc->kc_refcnt > 0);
304 	KASSERT(kc->kc_next == NULL);
305 
306 	if (len > kc_bitsize) { /* XXX */
307 		return EINVAL;
308 	}
309 	return copyout(kcp, ucp, len);
310 }
311 
312 void
kcpuset_export_u32(const kcpuset_t * kcp,uint32_t * bitfield,size_t len)313 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
314 {
315 	size_t rlen = MIN(kc_bitsize, len);
316 
317 	KASSERT(kcp != NULL);
318 	memcpy(bitfield, kcp->bits, rlen);
319 }
320 
321 /*
322  * Routines to change bit field - zero, fill, copy, set, unset, etc.
323  */
324 
325 void
kcpuset_zero(kcpuset_t * kcp)326 kcpuset_zero(kcpuset_t *kcp)
327 {
328 
329 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
330 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
331 	memset(kcp, 0, kc_bitsize);
332 }
333 
334 void
kcpuset_fill(kcpuset_t * kcp)335 kcpuset_fill(kcpuset_t *kcp)
336 {
337 
338 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
339 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
340 	memset(kcp, ~0, kc_bitsize);
341 }
342 
343 void
kcpuset_copy(kcpuset_t * dkcp,const kcpuset_t * skcp)344 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
345 {
346 
347 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
348 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
349 	memcpy(dkcp, skcp, kc_bitsize);
350 }
351 
352 void
kcpuset_set(kcpuset_t * kcp,cpuid_t i)353 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
354 {
355 	const size_t j = i >> KC_SHIFT;
356 
357 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
358 	KASSERT(j < kc_nfields);
359 
360 	kcp->bits[j] |= 1 << (i & KC_MASK);
361 }
362 
363 void
kcpuset_clear(kcpuset_t * kcp,cpuid_t i)364 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
365 {
366 	const size_t j = i >> KC_SHIFT;
367 
368 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
369 	KASSERT(j < kc_nfields);
370 
371 	kcp->bits[j] &= ~(1 << (i & KC_MASK));
372 }
373 
374 bool
kcpuset_isset(const kcpuset_t * kcp,cpuid_t i)375 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
376 {
377 	const size_t j = i >> KC_SHIFT;
378 
379 	KASSERT(kcp != NULL);
380 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
381 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
382 	KASSERT(j < kc_nfields);
383 
384 	return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
385 }
386 
387 bool
kcpuset_isotherset(const kcpuset_t * kcp,cpuid_t i)388 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
389 {
390 	const size_t j2 = i >> KC_SHIFT;
391 	const uint32_t mask = ~(1 << (i & KC_MASK));
392 
393 	for (size_t j = 0; j < kc_nfields; j++) {
394 		const uint32_t bits = kcp->bits[j];
395 		if (bits && (j != j2 || (bits & mask) != 0)) {
396 			return true;
397 		}
398 	}
399 	return false;
400 }
401 
402 bool
kcpuset_iszero(const kcpuset_t * kcp)403 kcpuset_iszero(const kcpuset_t *kcp)
404 {
405 
406 	for (size_t j = 0; j < kc_nfields; j++) {
407 		if (kcp->bits[j] != 0) {
408 			return false;
409 		}
410 	}
411 	return true;
412 }
413 
414 bool
kcpuset_match(const kcpuset_t * kcp1,const kcpuset_t * kcp2)415 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
416 {
417 
418 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
419 }
420 
421 bool
kcpuset_intersecting_p(const kcpuset_t * kcp1,const kcpuset_t * kcp2)422 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
423 {
424 
425 	for (size_t j = 0; j < kc_nfields; j++) {
426 		if (kcp1->bits[j] & kcp2->bits[j])
427 			return true;
428 	}
429 	return false;
430 }
431 
432 cpuid_t
kcpuset_ffs(const kcpuset_t * kcp)433 kcpuset_ffs(const kcpuset_t *kcp)
434 {
435 
436 	for (size_t j = 0; j < kc_nfields; j++) {
437 		if (kcp->bits[j])
438 			return 32 * j + ffs(kcp->bits[j]);
439 	}
440 	return 0;
441 }
442 
443 cpuid_t
kcpuset_ffs_intersecting(const kcpuset_t * kcp1,const kcpuset_t * kcp2)444 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
445 {
446 
447 	for (size_t j = 0; j < kc_nfields; j++) {
448 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
449 		if (bits)
450 			return 32 * j + ffs(bits);
451 	}
452 	return 0;
453 }
454 
455 void
kcpuset_merge(kcpuset_t * kcp1,const kcpuset_t * kcp2)456 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
457 {
458 
459 	for (size_t j = 0; j < kc_nfields; j++) {
460 		kcp1->bits[j] |= kcp2->bits[j];
461 	}
462 }
463 
464 void
kcpuset_intersect(kcpuset_t * kcp1,const kcpuset_t * kcp2)465 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
466 {
467 
468 	for (size_t j = 0; j < kc_nfields; j++) {
469 		kcp1->bits[j] &= kcp2->bits[j];
470 	}
471 }
472 
473 void
kcpuset_remove(kcpuset_t * kcp1,const kcpuset_t * kcp2)474 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
475 {
476 
477 	for (size_t j = 0; j < kc_nfields; j++) {
478 		kcp1->bits[j] &= ~kcp2->bits[j];
479 	}
480 }
481 
482 int
kcpuset_countset(const kcpuset_t * kcp)483 kcpuset_countset(const kcpuset_t *kcp)
484 {
485 	int count = 0;
486 
487 	for (size_t j = 0; j < kc_nfields; j++) {
488 		count += popcount32(kcp->bits[j]);
489 	}
490 	return count;
491 }
492 
493 /*
494  * Routines to set/clear the flags atomically.
495  */
496 
497 void
kcpuset_atomic_set(kcpuset_t * kcp,cpuid_t i)498 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
499 {
500 	const size_t j = i >> KC_SHIFT;
501 
502 	KASSERT(j < kc_nfields);
503 	atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
504 }
505 
506 void
kcpuset_atomic_clear(kcpuset_t * kcp,cpuid_t i)507 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
508 {
509 	const size_t j = i >> KC_SHIFT;
510 
511 	KASSERT(j < kc_nfields);
512 	atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
513 }
514 
515 void
kcpuset_atomicly_intersect(kcpuset_t * kcp1,const kcpuset_t * kcp2)516 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
517 {
518 
519 	for (size_t j = 0; j < kc_nfields; j++) {
520 		if (kcp2->bits[j])
521 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
522 	}
523 }
524 
525 void
kcpuset_atomicly_merge(kcpuset_t * kcp1,const kcpuset_t * kcp2)526 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
527 {
528 
529 	for (size_t j = 0; j < kc_nfields; j++) {
530 		if (kcp2->bits[j])
531 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
532 	}
533 }
534 
535 void
kcpuset_atomicly_remove(kcpuset_t * kcp1,const kcpuset_t * kcp2)536 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
537 {
538 
539 	for (size_t j = 0; j < kc_nfields; j++) {
540 		if (kcp2->bits[j])
541 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
542 	}
543 }
544