1 /* $NetBSD: subr_kcpuset.c,v 1.15 2023/04/09 09:18:09 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel CPU set implementation.
34 *
35 * Interface can be used by kernel subsystems as a unified dynamic CPU
36 * bitset implementation handling many CPUs. Facility also supports early
37 * use by MD code on boot, as it fixups bitsets on further boot.
38 *
39 * TODO:
40 * - Handle "reverse" bitset on fixup/grow.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.15 2023/04/09 09:18:09 riastradh Exp $");
45
46 #include <sys/param.h>
47 #include <sys/types.h>
48
49 #include <sys/atomic.h>
50 #include <sys/sched.h>
51 #include <sys/kcpuset.h>
52 #include <sys/pool.h>
53
54 /* Number of CPUs to support. */
55 #define KC_MAXCPUS roundup2(MAXCPUS, 32)
56
57 /*
58 * Structure of dynamic CPU set in the kernel.
59 */
60 struct kcpuset {
61 uint32_t bits[0];
62 };
63
64 typedef struct kcpuset_impl {
65 /* Reference count. */
66 u_int kc_refcnt;
67 /* Next to free, if non-NULL (used when multiple references). */
68 struct kcpuset * kc_next;
69 /* Actual variable-sized field of bits. */
70 struct kcpuset kc_field;
71 } kcpuset_impl_t;
72
73 #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
74 #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75 #define KC_GETCSTRUCT(b) ((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
76
77 /* Sizes of a single bitset. */
78 #define KC_SHIFT 5
79 #define KC_MASK 31
80
81 /* An array of noted early kcpuset creations and data. */
82 #define KC_SAVE_NITEMS 8
83
84 /* Structures for early boot mechanism (must be statically initialised). */
85 static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
86 static uint32_t kc_bits_early[KC_SAVE_NITEMS];
87 static int kc_last_idx = 0;
88 static bool kc_initialised = false;
89
90 #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
91 #define KC_NFIELDS_EARLY 1
92
93 /*
94 * The size of whole bitset fields and amount of fields.
95 * The whole size must statically initialise for early case.
96 */
97 static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
98 static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
99
100 static pool_cache_t kc_cache __read_mostly;
101
102 static kcpuset_t * kcpuset_create_raw(bool);
103
104 /*
105 * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
106 * to dynamically allocated sets.
107 */
108 void
kcpuset_sysinit(void)109 kcpuset_sysinit(void)
110 {
111 kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
112 int i, s;
113
114 /* Set a kcpuset_t sizes. */
115 kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
116 kc_bitsize = sizeof(uint32_t) * kc_nfields;
117 KASSERT(kc_nfields != 0);
118 KASSERT(kc_bitsize != 0);
119
120 kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
121 coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
122
123 /* First, pre-allocate kcpuset entries. */
124 for (i = 0; i < kc_last_idx; i++) {
125 kcp = kcpuset_create_raw(true);
126 kc_dynamic[i] = kcp;
127 }
128
129 /*
130 * Prepare to convert all early noted kcpuset uses to dynamic sets.
131 * All processors, except the one we are currently running (primary),
132 * must not be spinned yet. Since MD facilities can use kcpuset,
133 * raise the IPL to high.
134 */
135 KASSERT(mp_online == false);
136
137 s = splhigh();
138 for (i = 0; i < kc_last_idx; i++) {
139 /*
140 * Transfer the bits from early static storage to the kcpuset.
141 */
142 KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
143 memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
144
145 /*
146 * Store the new pointer, pointing to the allocated kcpuset.
147 * Note: we are not in an interrupt context and it is the only
148 * CPU running - thus store is safe (e.g. no need for pointer
149 * variable to be volatile).
150 */
151 *kc_noted_early[i] = kc_dynamic[i];
152 }
153 kc_initialised = true;
154 kc_last_idx = 0;
155 splx(s);
156 }
157
158 /*
159 * kcpuset_early_ptr: note an early boot use by saving the pointer and
160 * returning a pointer to a static, temporary bit field.
161 */
162 static kcpuset_t *
kcpuset_early_ptr(kcpuset_t ** kcptr)163 kcpuset_early_ptr(kcpuset_t **kcptr)
164 {
165 kcpuset_t *kcp;
166 int s;
167
168 s = splhigh();
169 if (kc_last_idx < KC_SAVE_NITEMS) {
170 /*
171 * Save the pointer, return pointer to static early field.
172 * Need to zero it out.
173 */
174 kc_noted_early[kc_last_idx] = kcptr;
175 kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
176 kc_last_idx++;
177 memset(kcp, 0, KC_BITSIZE_EARLY);
178 KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
179 } else {
180 panic("kcpuset(9): all early-use entries exhausted; "
181 "increase KC_SAVE_NITEMS\n");
182 }
183 splx(s);
184
185 return kcp;
186 }
187
188 /*
189 * Routines to create or destroy the CPU set.
190 * Early boot case is handled.
191 */
192
193 static kcpuset_t *
kcpuset_create_raw(bool zero)194 kcpuset_create_raw(bool zero)
195 {
196 kcpuset_impl_t *kc;
197
198 kc = pool_cache_get(kc_cache, PR_WAITOK);
199 kc->kc_refcnt = 1;
200 kc->kc_next = NULL;
201
202 if (zero) {
203 memset(&kc->kc_field, 0, kc_bitsize);
204 }
205
206 /* Note: return pointer to the actual field of bits. */
207 KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
208 return &kc->kc_field;
209 }
210
211 void
kcpuset_create(kcpuset_t ** retkcp,bool zero)212 kcpuset_create(kcpuset_t **retkcp, bool zero)
213 {
214 if (__predict_false(!kc_initialised)) {
215 /* Early boot use - special case. */
216 *retkcp = kcpuset_early_ptr(retkcp);
217 return;
218 }
219 *retkcp = kcpuset_create_raw(zero);
220 }
221
222 void
kcpuset_clone(kcpuset_t ** retkcp,const kcpuset_t * kcp)223 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
224 {
225 kcpuset_create(retkcp, false);
226 memcpy(*retkcp, kcp, kc_bitsize);
227 }
228
229 void
kcpuset_destroy(kcpuset_t * kcp)230 kcpuset_destroy(kcpuset_t *kcp)
231 {
232 kcpuset_impl_t *kc;
233
234 KASSERT(kc_initialised);
235 KASSERT(kcp != NULL);
236
237 do {
238 kc = KC_GETSTRUCT(kcp);
239 kcp = kc->kc_next;
240 pool_cache_put(kc_cache, kc);
241 } while (kcp);
242 }
243
244 /*
245 * Routines to reference/unreference the CPU set.
246 * Note: early boot case is not supported by these routines.
247 */
248
249 void
kcpuset_use(kcpuset_t * kcp)250 kcpuset_use(kcpuset_t *kcp)
251 {
252 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
253
254 KASSERT(kc_initialised);
255 atomic_inc_uint(&kc->kc_refcnt);
256 }
257
258 void
kcpuset_unuse(kcpuset_t * kcp,kcpuset_t ** lst)259 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
260 {
261 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
262
263 KASSERT(kc_initialised);
264 KASSERT(kc->kc_refcnt > 0);
265
266 membar_release();
267 if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
268 return;
269 }
270 membar_acquire();
271 KASSERT(kc->kc_next == NULL);
272 if (lst == NULL) {
273 kcpuset_destroy(kcp);
274 return;
275 }
276 kc->kc_next = *lst;
277 *lst = kcp;
278 }
279
280 /*
281 * Routines to transfer the CPU set from / to userspace.
282 * Note: early boot case is not supported by these routines.
283 */
284
285 int
kcpuset_copyin(const cpuset_t * ucp,kcpuset_t * kcp,size_t len)286 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
287 {
288 kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
289
290 KASSERT(kc_initialised);
291 KASSERT(kc->kc_refcnt > 0);
292 KASSERT(kc->kc_next == NULL);
293
294 if (len > kc_bitsize) { /* XXX */
295 return EINVAL;
296 }
297 return copyin(ucp, kcp, len);
298 }
299
300 int
kcpuset_copyout(kcpuset_t * kcp,cpuset_t * ucp,size_t len)301 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
302 {
303 kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
304
305 KASSERT(kc_initialised);
306 KASSERT(kc->kc_refcnt > 0);
307 KASSERT(kc->kc_next == NULL);
308
309 if (len > kc_bitsize) { /* XXX */
310 return EINVAL;
311 }
312 return copyout(kcp, ucp, len);
313 }
314
315 void
kcpuset_export_u32(const kcpuset_t * kcp,uint32_t * bitfield,size_t len)316 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
317 {
318 size_t rlen = MIN(kc_bitsize, len);
319
320 KASSERT(kcp != NULL);
321 memcpy(bitfield, kcp->bits, rlen);
322 }
323
324 /*
325 * Routines to change bit field - zero, fill, copy, set, unset, etc.
326 */
327
328 void
kcpuset_zero(kcpuset_t * kcp)329 kcpuset_zero(kcpuset_t *kcp)
330 {
331
332 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
333 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
334 memset(kcp, 0, kc_bitsize);
335 }
336
337 void
kcpuset_fill(kcpuset_t * kcp)338 kcpuset_fill(kcpuset_t *kcp)
339 {
340
341 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
342 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
343 memset(kcp, ~0, kc_bitsize);
344 }
345
346 void
kcpuset_copy(kcpuset_t * dkcp,const kcpuset_t * skcp)347 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
348 {
349
350 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
351 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
352 memcpy(dkcp, skcp, kc_bitsize);
353 }
354
355 void
kcpuset_set(kcpuset_t * kcp,cpuid_t i)356 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
357 {
358 const size_t j = i >> KC_SHIFT;
359
360 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
361 KASSERT(j < kc_nfields);
362
363 kcp->bits[j] |= __BIT(i & KC_MASK);
364 }
365
366 void
kcpuset_clear(kcpuset_t * kcp,cpuid_t i)367 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
368 {
369 const size_t j = i >> KC_SHIFT;
370
371 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
372 KASSERT(j < kc_nfields);
373
374 kcp->bits[j] &= ~(__BIT(i & KC_MASK));
375 }
376
377 bool
kcpuset_isset(const kcpuset_t * kcp,cpuid_t i)378 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
379 {
380 const size_t j = i >> KC_SHIFT;
381
382 KASSERT(kcp != NULL);
383 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
384 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
385 KASSERT(j < kc_nfields);
386
387 return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
388 }
389
390 bool
kcpuset_isotherset(const kcpuset_t * kcp,cpuid_t i)391 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
392 {
393 const size_t j2 = i >> KC_SHIFT;
394 const uint32_t mask = ~(__BIT(i & KC_MASK));
395
396 for (size_t j = 0; j < kc_nfields; j++) {
397 const uint32_t bits = kcp->bits[j];
398 if (bits && (j != j2 || (bits & mask) != 0)) {
399 return true;
400 }
401 }
402 return false;
403 }
404
405 bool
kcpuset_iszero(const kcpuset_t * kcp)406 kcpuset_iszero(const kcpuset_t *kcp)
407 {
408
409 for (size_t j = 0; j < kc_nfields; j++) {
410 if (kcp->bits[j] != 0) {
411 return false;
412 }
413 }
414 return true;
415 }
416
417 bool
kcpuset_match(const kcpuset_t * kcp1,const kcpuset_t * kcp2)418 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
419 {
420
421 return memcmp(kcp1, kcp2, kc_bitsize) == 0;
422 }
423
424 bool
kcpuset_intersecting_p(const kcpuset_t * kcp1,const kcpuset_t * kcp2)425 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
426 {
427
428 for (size_t j = 0; j < kc_nfields; j++) {
429 if (kcp1->bits[j] & kcp2->bits[j])
430 return true;
431 }
432 return false;
433 }
434
435 cpuid_t
kcpuset_ffs(const kcpuset_t * kcp)436 kcpuset_ffs(const kcpuset_t *kcp)
437 {
438
439 for (size_t j = 0; j < kc_nfields; j++) {
440 if (kcp->bits[j])
441 return 32 * j + ffs(kcp->bits[j]);
442 }
443 return 0;
444 }
445
446 cpuid_t
kcpuset_ffs_intersecting(const kcpuset_t * kcp1,const kcpuset_t * kcp2)447 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
448 {
449
450 for (size_t j = 0; j < kc_nfields; j++) {
451 uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
452 if (bits)
453 return 32 * j + ffs(bits);
454 }
455 return 0;
456 }
457
458 void
kcpuset_merge(kcpuset_t * kcp1,const kcpuset_t * kcp2)459 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
460 {
461
462 for (size_t j = 0; j < kc_nfields; j++) {
463 kcp1->bits[j] |= kcp2->bits[j];
464 }
465 }
466
467 void
kcpuset_intersect(kcpuset_t * kcp1,const kcpuset_t * kcp2)468 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
469 {
470
471 for (size_t j = 0; j < kc_nfields; j++) {
472 kcp1->bits[j] &= kcp2->bits[j];
473 }
474 }
475
476 void
kcpuset_remove(kcpuset_t * kcp1,const kcpuset_t * kcp2)477 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
478 {
479
480 for (size_t j = 0; j < kc_nfields; j++) {
481 kcp1->bits[j] &= ~kcp2->bits[j];
482 }
483 }
484
485 int
kcpuset_countset(const kcpuset_t * kcp)486 kcpuset_countset(const kcpuset_t *kcp)
487 {
488 int count = 0;
489
490 for (size_t j = 0; j < kc_nfields; j++) {
491 count += popcount32(kcp->bits[j]);
492 }
493 return count;
494 }
495
496 /*
497 * Routines to set/clear the flags atomically.
498 */
499
500 void
kcpuset_atomic_set(kcpuset_t * kcp,cpuid_t i)501 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
502 {
503 const size_t j = i >> KC_SHIFT;
504
505 KASSERT(j < kc_nfields);
506 atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
507 }
508
509 void
kcpuset_atomic_clear(kcpuset_t * kcp,cpuid_t i)510 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
511 {
512 const size_t j = i >> KC_SHIFT;
513
514 KASSERT(j < kc_nfields);
515 atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
516 }
517
518 void
kcpuset_atomicly_intersect(kcpuset_t * kcp1,const kcpuset_t * kcp2)519 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
520 {
521
522 for (size_t j = 0; j < kc_nfields; j++) {
523 if (kcp2->bits[j])
524 atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
525 }
526 }
527
528 void
kcpuset_atomicly_merge(kcpuset_t * kcp1,const kcpuset_t * kcp2)529 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
530 {
531
532 for (size_t j = 0; j < kc_nfields; j++) {
533 if (kcp2->bits[j])
534 atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
535 }
536 }
537
538 void
kcpuset_atomicly_remove(kcpuset_t * kcp1,const kcpuset_t * kcp2)539 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
540 {
541
542 for (size_t j = 0; j < kc_nfields; j++) {
543 if (kcp2->bits[j])
544 atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
545 }
546 }
547