1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48
49 #include "internal.h"
50
51 /*
52 * Lock order:
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
58 *
59 * slab_mutex
60 *
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
69 *
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
77 *
78 * Frozen slabs
79 *
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
86 * slab's freelist.
87 *
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
102 * list_lock
103 *
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
115 *
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
179 *
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
183 */
184
185 /*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
193 #else
194 #define slub_get_cpu_ptr(var) \
195 ({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198 })
199 #define slub_put_cpu_ptr(var) \
200 do { \
201 (void)(var); \
202 migrate_enable(); \
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH() (false)
205 #endif
206
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif /* CONFIG_SLUB_DEBUG */
220
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 gfp_t flags;
224 unsigned int orig_size;
225 void *object;
226 };
227
kmem_cache_debug(struct kmem_cache * s)228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232
slub_debug_orig_size(struct kmem_cache * s)233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237 }
238
fixup_red_left(struct kmem_cache * s,void * p)239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
243
244 return p;
245 }
246
kmem_cache_has_cpu_partial(struct kmem_cache * s)247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251 #else
252 return false;
253 #endif
254 }
255
256 /*
257 * Issues still to be resolved:
258 *
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
261 * - Variable sizing of the per node arrays
262 */
263
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266
267 #ifndef CONFIG_SLUB_TINY
268 /*
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
272 #define MIN_PARTIAL 5
273
274 /*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
278 */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
287
288 /*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
296 /*
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
299 * metadata.
300 */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302
303 #define OO_SHIFT 16
304 #define OO_MASK ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
306
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
316 #endif
317
318 /*
319 * Tracking user of a slab.
320 */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 unsigned long addr; /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
326 #endif
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330 };
331
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
sysfs_slab_add(struct kmem_cache * s)338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
341 #endif
342
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
debugfs_slab_add(struct kmem_cache * s)346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348
349 enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377 };
378
379 #ifndef CONFIG_SLUB_TINY
380 /*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384 struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
395 #endif
396 local_lock_t lock; /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402
stat(const struct kmem_cache * s,enum stat_item si)403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413
414 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421
422 /*
423 * The slab lists for all objects.
424 */
425 struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433 #endif
434 };
435
get_node(struct kmem_cache * s,int node)436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 return s->node[node];
439 }
440
441 /*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
449 /*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455 static nodemask_t slab_nodes;
456
457 #ifndef CONFIG_SLUB_TINY
458 /*
459 * Workqueue used for flush_cpu_slab().
460 */
461 static struct workqueue_struct *flushwq;
462 #endif
463
464 /********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
468 /*
469 * Returns freelist pointer (ptr). With hardening, this is obfuscated
470 * with an XOR of the address where the pointer is held and a per-cache
471 * random number.
472 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
474 void *ptr, unsigned long ptr_addr)
475 {
476 unsigned long encoded;
477
478 #ifdef CONFIG_SLAB_FREELIST_HARDENED
479 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
480 #else
481 encoded = (unsigned long)ptr;
482 #endif
483 return (freeptr_t){.v = encoded};
484 }
485
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)486 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
487 freeptr_t ptr, unsigned long ptr_addr)
488 {
489 void *decoded;
490
491 #ifdef CONFIG_SLAB_FREELIST_HARDENED
492 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
493 #else
494 decoded = (void *)ptr.v;
495 #endif
496 return decoded;
497 }
498
get_freepointer(struct kmem_cache * s,void * object)499 static inline void *get_freepointer(struct kmem_cache *s, void *object)
500 {
501 unsigned long ptr_addr;
502 freeptr_t p;
503
504 object = kasan_reset_tag(object);
505 ptr_addr = (unsigned long)object + s->offset;
506 p = *(freeptr_t *)(ptr_addr);
507 return freelist_ptr_decode(s, p, ptr_addr);
508 }
509
510 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)511 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
512 {
513 prefetchw(object + s->offset);
514 }
515 #endif
516
517 /*
518 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
519 * pointer value in the case the current thread loses the race for the next
520 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
521 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
522 * KMSAN will still check all arguments of cmpxchg because of imperfect
523 * handling of inline assembly.
524 * To work around this problem, we apply __no_kmsan_checks to ensure that
525 * get_freepointer_safe() returns initialized memory.
526 */
527 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
529 {
530 unsigned long freepointer_addr;
531 freeptr_t p;
532
533 if (!debug_pagealloc_enabled_static())
534 return get_freepointer(s, object);
535
536 object = kasan_reset_tag(object);
537 freepointer_addr = (unsigned long)object + s->offset;
538 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
539 return freelist_ptr_decode(s, p, freepointer_addr);
540 }
541
set_freepointer(struct kmem_cache * s,void * object,void * fp)542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
543 {
544 unsigned long freeptr_addr = (unsigned long)object + s->offset;
545
546 #ifdef CONFIG_SLAB_FREELIST_HARDENED
547 BUG_ON(object == fp); /* naive detection of double free or corruption */
548 #endif
549
550 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
551 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
552 }
553
554 /*
555 * See comment in calculate_sizes().
556 */
freeptr_outside_object(struct kmem_cache * s)557 static inline bool freeptr_outside_object(struct kmem_cache *s)
558 {
559 return s->offset >= s->inuse;
560 }
561
562 /*
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
565 */
get_info_end(struct kmem_cache * s)566 static inline unsigned int get_info_end(struct kmem_cache *s)
567 {
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
570 else
571 return s->inuse;
572 }
573
574 /* Loop over all objects in a slab */
575 #define for_each_object(__p, __s, __addr, __objects) \
576 for (__p = fixup_red_left(__s, __addr); \
577 __p < (__addr) + (__objects) * (__s)->size; \
578 __p += (__s)->size)
579
order_objects(unsigned int order,unsigned int size)580 static inline unsigned int order_objects(unsigned int order, unsigned int size)
581 {
582 return ((unsigned int)PAGE_SIZE << order) / size;
583 }
584
oo_make(unsigned int order,unsigned int size)585 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
586 unsigned int size)
587 {
588 struct kmem_cache_order_objects x = {
589 (order << OO_SHIFT) + order_objects(order, size)
590 };
591
592 return x;
593 }
594
oo_order(struct kmem_cache_order_objects x)595 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
596 {
597 return x.x >> OO_SHIFT;
598 }
599
oo_objects(struct kmem_cache_order_objects x)600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
601 {
602 return x.x & OO_MASK;
603 }
604
605 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
607 {
608 unsigned int nr_slabs;
609
610 s->cpu_partial = nr_objects;
611
612 /*
613 * We take the number of objects but actually limit the number of
614 * slabs on the per cpu partial list, in order to limit excessive
615 * growth of the list. For simplicity we assume that the slabs will
616 * be half-full.
617 */
618 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
619 s->cpu_partial_slabs = nr_slabs;
620 }
621
slub_get_cpu_partial(struct kmem_cache * s)622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
623 {
624 return s->cpu_partial_slabs;
625 }
626 #else
627 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
629 {
630 }
631
slub_get_cpu_partial(struct kmem_cache * s)632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
633 {
634 return 0;
635 }
636 #endif /* CONFIG_SLUB_CPU_PARTIAL */
637
638 /*
639 * Per slab locking using the pagelock
640 */
slab_lock(struct slab * slab)641 static __always_inline void slab_lock(struct slab *slab)
642 {
643 bit_spin_lock(PG_locked, &slab->__page_flags);
644 }
645
slab_unlock(struct slab * slab)646 static __always_inline void slab_unlock(struct slab *slab)
647 {
648 bit_spin_unlock(PG_locked, &slab->__page_flags);
649 }
650
651 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)652 __update_freelist_fast(struct slab *slab,
653 void *freelist_old, unsigned long counters_old,
654 void *freelist_new, unsigned long counters_new)
655 {
656 #ifdef system_has_freelist_aba
657 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
658 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
659
660 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
661 #else
662 return false;
663 #endif
664 }
665
666 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)667 __update_freelist_slow(struct slab *slab,
668 void *freelist_old, unsigned long counters_old,
669 void *freelist_new, unsigned long counters_new)
670 {
671 bool ret = false;
672
673 slab_lock(slab);
674 if (slab->freelist == freelist_old &&
675 slab->counters == counters_old) {
676 slab->freelist = freelist_new;
677 slab->counters = counters_new;
678 ret = true;
679 }
680 slab_unlock(slab);
681
682 return ret;
683 }
684
685 /*
686 * Interrupts must be disabled (for the fallback code to work right), typically
687 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
688 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
689 * allocation/ free operation in hardirq context. Therefore nothing can
690 * interrupt the operation.
691 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
693 void *freelist_old, unsigned long counters_old,
694 void *freelist_new, unsigned long counters_new,
695 const char *n)
696 {
697 bool ret;
698
699 if (USE_LOCKLESS_FAST_PATH())
700 lockdep_assert_irqs_disabled();
701
702 if (s->flags & __CMPXCHG_DOUBLE) {
703 ret = __update_freelist_fast(slab, freelist_old, counters_old,
704 freelist_new, counters_new);
705 } else {
706 ret = __update_freelist_slow(slab, freelist_old, counters_old,
707 freelist_new, counters_new);
708 }
709 if (likely(ret))
710 return true;
711
712 cpu_relax();
713 stat(s, CMPXCHG_DOUBLE_FAIL);
714
715 #ifdef SLUB_DEBUG_CMPXCHG
716 pr_info("%s %s: cmpxchg double redo ", n, s->name);
717 #endif
718
719 return false;
720 }
721
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
723 void *freelist_old, unsigned long counters_old,
724 void *freelist_new, unsigned long counters_new,
725 const char *n)
726 {
727 bool ret;
728
729 if (s->flags & __CMPXCHG_DOUBLE) {
730 ret = __update_freelist_fast(slab, freelist_old, counters_old,
731 freelist_new, counters_new);
732 } else {
733 unsigned long flags;
734
735 local_irq_save(flags);
736 ret = __update_freelist_slow(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 local_irq_restore(flags);
739 }
740 if (likely(ret))
741 return true;
742
743 cpu_relax();
744 stat(s, CMPXCHG_DOUBLE_FAIL);
745
746 #ifdef SLUB_DEBUG_CMPXCHG
747 pr_info("%s %s: cmpxchg double redo ", n, s->name);
748 #endif
749
750 return false;
751 }
752
753 /*
754 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
755 * family will round up the real request size to these fixed ones, so
756 * there could be an extra area than what is requested. Save the original
757 * request size in the meta data area, for better debug and sanity check.
758 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)759 static inline void set_orig_size(struct kmem_cache *s,
760 void *object, unsigned int orig_size)
761 {
762 void *p = kasan_reset_tag(object);
763 unsigned int kasan_meta_size;
764
765 if (!slub_debug_orig_size(s))
766 return;
767
768 /*
769 * KASAN can save its free meta data inside of the object at offset 0.
770 * If this meta data size is larger than 'orig_size', it will overlap
771 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
772 * 'orig_size' to be as at least as big as KASAN's meta data.
773 */
774 kasan_meta_size = kasan_metadata_size(s, true);
775 if (kasan_meta_size > orig_size)
776 orig_size = kasan_meta_size;
777
778 p += get_info_end(s);
779 p += sizeof(struct track) * 2;
780
781 *(unsigned int *)p = orig_size;
782 }
783
get_orig_size(struct kmem_cache * s,void * object)784 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
785 {
786 void *p = kasan_reset_tag(object);
787
788 if (!slub_debug_orig_size(s))
789 return s->object_size;
790
791 p += get_info_end(s);
792 p += sizeof(struct track) * 2;
793
794 return *(unsigned int *)p;
795 }
796
797 #ifdef CONFIG_SLUB_DEBUG
798 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
799 static DEFINE_SPINLOCK(object_map_lock);
800
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)801 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
802 struct slab *slab)
803 {
804 void *addr = slab_address(slab);
805 void *p;
806
807 bitmap_zero(obj_map, slab->objects);
808
809 for (p = slab->freelist; p; p = get_freepointer(s, p))
810 set_bit(__obj_to_index(s, addr, p), obj_map);
811 }
812
813 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)814 static bool slab_add_kunit_errors(void)
815 {
816 struct kunit_resource *resource;
817
818 if (!kunit_get_current_test())
819 return false;
820
821 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
822 if (!resource)
823 return false;
824
825 (*(int *)resource->data)++;
826 kunit_put_resource(resource);
827 return true;
828 }
829
slab_in_kunit_test(void)830 bool slab_in_kunit_test(void)
831 {
832 struct kunit_resource *resource;
833
834 if (!kunit_get_current_test())
835 return false;
836
837 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
838 if (!resource)
839 return false;
840
841 kunit_put_resource(resource);
842 return true;
843 }
844 #else
slab_add_kunit_errors(void)845 static inline bool slab_add_kunit_errors(void) { return false; }
846 #endif
847
size_from_object(struct kmem_cache * s)848 static inline unsigned int size_from_object(struct kmem_cache *s)
849 {
850 if (s->flags & SLAB_RED_ZONE)
851 return s->size - s->red_left_pad;
852
853 return s->size;
854 }
855
restore_red_left(struct kmem_cache * s,void * p)856 static inline void *restore_red_left(struct kmem_cache *s, void *p)
857 {
858 if (s->flags & SLAB_RED_ZONE)
859 p -= s->red_left_pad;
860
861 return p;
862 }
863
864 /*
865 * Debug settings:
866 */
867 #if defined(CONFIG_SLUB_DEBUG_ON)
868 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
869 #else
870 static slab_flags_t slub_debug;
871 #endif
872
873 static char *slub_debug_string;
874 static int disable_higher_order_debug;
875
876 /*
877 * slub is about to manipulate internal object metadata. This memory lies
878 * outside the range of the allocated object, so accessing it would normally
879 * be reported by kasan as a bounds error. metadata_access_enable() is used
880 * to tell kasan that these accesses are OK.
881 */
metadata_access_enable(void)882 static inline void metadata_access_enable(void)
883 {
884 kasan_disable_current();
885 kmsan_disable_current();
886 }
887
metadata_access_disable(void)888 static inline void metadata_access_disable(void)
889 {
890 kmsan_enable_current();
891 kasan_enable_current();
892 }
893
894 /*
895 * Object debugging
896 */
897
898 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)899 static inline int check_valid_pointer(struct kmem_cache *s,
900 struct slab *slab, void *object)
901 {
902 void *base;
903
904 if (!object)
905 return 1;
906
907 base = slab_address(slab);
908 object = kasan_reset_tag(object);
909 object = restore_red_left(s, object);
910 if (object < base || object >= base + slab->objects * s->size ||
911 (object - base) % s->size) {
912 return 0;
913 }
914
915 return 1;
916 }
917
print_section(char * level,char * text,u8 * addr,unsigned int length)918 static void print_section(char *level, char *text, u8 *addr,
919 unsigned int length)
920 {
921 metadata_access_enable();
922 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
923 16, 1, kasan_reset_tag((void *)addr), length, 1);
924 metadata_access_disable();
925 }
926
get_track(struct kmem_cache * s,void * object,enum track_item alloc)927 static struct track *get_track(struct kmem_cache *s, void *object,
928 enum track_item alloc)
929 {
930 struct track *p;
931
932 p = object + get_info_end(s);
933
934 return kasan_reset_tag(p + alloc);
935 }
936
937 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)938 static noinline depot_stack_handle_t set_track_prepare(void)
939 {
940 depot_stack_handle_t handle;
941 unsigned long entries[TRACK_ADDRS_COUNT];
942 unsigned int nr_entries;
943
944 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
945 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
946
947 return handle;
948 }
949 #else
set_track_prepare(void)950 static inline depot_stack_handle_t set_track_prepare(void)
951 {
952 return 0;
953 }
954 #endif
955
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)956 static void set_track_update(struct kmem_cache *s, void *object,
957 enum track_item alloc, unsigned long addr,
958 depot_stack_handle_t handle)
959 {
960 struct track *p = get_track(s, object, alloc);
961
962 #ifdef CONFIG_STACKDEPOT
963 p->handle = handle;
964 #endif
965 p->addr = addr;
966 p->cpu = smp_processor_id();
967 p->pid = current->pid;
968 p->when = jiffies;
969 }
970
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)971 static __always_inline void set_track(struct kmem_cache *s, void *object,
972 enum track_item alloc, unsigned long addr)
973 {
974 depot_stack_handle_t handle = set_track_prepare();
975
976 set_track_update(s, object, alloc, addr, handle);
977 }
978
init_tracking(struct kmem_cache * s,void * object)979 static void init_tracking(struct kmem_cache *s, void *object)
980 {
981 struct track *p;
982
983 if (!(s->flags & SLAB_STORE_USER))
984 return;
985
986 p = get_track(s, object, TRACK_ALLOC);
987 memset(p, 0, 2*sizeof(struct track));
988 }
989
print_track(const char * s,struct track * t,unsigned long pr_time)990 static void print_track(const char *s, struct track *t, unsigned long pr_time)
991 {
992 depot_stack_handle_t handle __maybe_unused;
993
994 if (!t->addr)
995 return;
996
997 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
998 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
999 #ifdef CONFIG_STACKDEPOT
1000 handle = READ_ONCE(t->handle);
1001 if (handle)
1002 stack_depot_print(handle);
1003 else
1004 pr_err("object allocation/free stack trace missing\n");
1005 #endif
1006 }
1007
print_tracking(struct kmem_cache * s,void * object)1008 void print_tracking(struct kmem_cache *s, void *object)
1009 {
1010 unsigned long pr_time = jiffies;
1011 if (!(s->flags & SLAB_STORE_USER))
1012 return;
1013
1014 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1015 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1016 }
1017
print_slab_info(const struct slab * slab)1018 static void print_slab_info(const struct slab *slab)
1019 {
1020 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1021 slab, slab->objects, slab->inuse, slab->freelist,
1022 &slab->__page_flags);
1023 }
1024
skip_orig_size_check(struct kmem_cache * s,const void * object)1025 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1026 {
1027 set_orig_size(s, (void *)object, s->object_size);
1028 }
1029
slab_bug(struct kmem_cache * s,char * fmt,...)1030 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1031 {
1032 struct va_format vaf;
1033 va_list args;
1034
1035 va_start(args, fmt);
1036 vaf.fmt = fmt;
1037 vaf.va = &args;
1038 pr_err("=============================================================================\n");
1039 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1040 pr_err("-----------------------------------------------------------------------------\n\n");
1041 va_end(args);
1042 }
1043
1044 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)1045 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1046 {
1047 struct va_format vaf;
1048 va_list args;
1049
1050 if (slab_add_kunit_errors())
1051 return;
1052
1053 va_start(args, fmt);
1054 vaf.fmt = fmt;
1055 vaf.va = &args;
1056 pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 va_end(args);
1058 }
1059
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 unsigned int off; /* Offset of last byte */
1063 u8 *addr = slab_address(slab);
1064
1065 print_tracking(s, p);
1066
1067 print_slab_info(slab);
1068
1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 p, p - addr, get_freepointer(s, p));
1071
1072 if (s->flags & SLAB_RED_ZONE)
1073 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1074 s->red_left_pad);
1075 else if (p > addr + 16)
1076 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077
1078 print_section(KERN_ERR, "Object ", p,
1079 min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 if (s->flags & SLAB_RED_ZONE)
1081 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1082 s->inuse - s->object_size);
1083
1084 off = get_info_end(s);
1085
1086 if (s->flags & SLAB_STORE_USER)
1087 off += 2 * sizeof(struct track);
1088
1089 if (slub_debug_orig_size(s))
1090 off += sizeof(unsigned int);
1091
1092 off += kasan_metadata_size(s, false);
1093
1094 if (off != size_from_object(s))
1095 /* Beginning of the filler is the free pointer */
1096 print_section(KERN_ERR, "Padding ", p + off,
1097 size_from_object(s) - off);
1098
1099 dump_stack();
1100 }
1101
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)1102 static void object_err(struct kmem_cache *s, struct slab *slab,
1103 u8 *object, char *reason)
1104 {
1105 if (slab_add_kunit_errors())
1106 return;
1107
1108 slab_bug(s, "%s", reason);
1109 print_trailer(s, slab, object);
1110 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1111 }
1112
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 void **freelist, void *nextfree)
1115 {
1116 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 object_err(s, slab, *freelist, "Freechain corrupt");
1119 *freelist = NULL;
1120 slab_fix(s, "Isolate corrupted freechain");
1121 return true;
1122 }
1123
1124 return false;
1125 }
1126
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1127 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1128 const char *fmt, ...)
1129 {
1130 va_list args;
1131 char buf[100];
1132
1133 if (slab_add_kunit_errors())
1134 return;
1135
1136 va_start(args, fmt);
1137 vsnprintf(buf, sizeof(buf), fmt, args);
1138 va_end(args);
1139 slab_bug(s, "%s", buf);
1140 print_slab_info(slab);
1141 dump_stack();
1142 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1143 }
1144
init_object(struct kmem_cache * s,void * object,u8 val)1145 static void init_object(struct kmem_cache *s, void *object, u8 val)
1146 {
1147 u8 *p = kasan_reset_tag(object);
1148 unsigned int poison_size = s->object_size;
1149
1150 if (s->flags & SLAB_RED_ZONE) {
1151 /*
1152 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1153 * the shadow makes it possible to distinguish uninit-value
1154 * from use-after-free.
1155 */
1156 memset_no_sanitize_memory(p - s->red_left_pad, val,
1157 s->red_left_pad);
1158
1159 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1160 /*
1161 * Redzone the extra allocated space by kmalloc than
1162 * requested, and the poison size will be limited to
1163 * the original request size accordingly.
1164 */
1165 poison_size = get_orig_size(s, object);
1166 }
1167 }
1168
1169 if (s->flags & __OBJECT_POISON) {
1170 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1171 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1172 }
1173
1174 if (s->flags & SLAB_RED_ZONE)
1175 memset_no_sanitize_memory(p + poison_size, val,
1176 s->inuse - poison_size);
1177 }
1178
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)1179 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1180 void *from, void *to)
1181 {
1182 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1183 memset(from, data, to - from);
1184 }
1185
1186 #ifdef CONFIG_KMSAN
1187 #define pad_check_attributes noinline __no_kmsan_checks
1188 #else
1189 #define pad_check_attributes
1190 #endif
1191
1192 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)1193 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1194 u8 *object, char *what,
1195 u8 *start, unsigned int value, unsigned int bytes)
1196 {
1197 u8 *fault;
1198 u8 *end;
1199 u8 *addr = slab_address(slab);
1200
1201 metadata_access_enable();
1202 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1203 metadata_access_disable();
1204 if (!fault)
1205 return 1;
1206
1207 end = start + bytes;
1208 while (end > fault && end[-1] == value)
1209 end--;
1210
1211 if (slab_add_kunit_errors())
1212 goto skip_bug_print;
1213
1214 slab_bug(s, "%s overwritten", what);
1215 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1216 fault, end - 1, fault - addr,
1217 fault[0], value);
1218
1219 skip_bug_print:
1220 restore_bytes(s, what, value, fault, end);
1221 return 0;
1222 }
1223
1224 /*
1225 * Object layout:
1226 *
1227 * object address
1228 * Bytes of the object to be managed.
1229 * If the freepointer may overlay the object then the free
1230 * pointer is at the middle of the object.
1231 *
1232 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1233 * 0xa5 (POISON_END)
1234 *
1235 * object + s->object_size
1236 * Padding to reach word boundary. This is also used for Redzoning.
1237 * Padding is extended by another word if Redzoning is enabled and
1238 * object_size == inuse.
1239 *
1240 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1241 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1242 *
1243 * object + s->inuse
1244 * Meta data starts here.
1245 *
1246 * A. Free pointer (if we cannot overwrite object on free)
1247 * B. Tracking data for SLAB_STORE_USER
1248 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1249 * D. Padding to reach required alignment boundary or at minimum
1250 * one word if debugging is on to be able to detect writes
1251 * before the word boundary.
1252 *
1253 * Padding is done using 0x5a (POISON_INUSE)
1254 *
1255 * object + s->size
1256 * Nothing is used beyond s->size.
1257 *
1258 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1259 * ignored. And therefore no slab options that rely on these boundaries
1260 * may be used with merged slabcaches.
1261 */
1262
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1263 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1264 {
1265 unsigned long off = get_info_end(s); /* The end of info */
1266
1267 if (s->flags & SLAB_STORE_USER) {
1268 /* We also have user information there */
1269 off += 2 * sizeof(struct track);
1270
1271 if (s->flags & SLAB_KMALLOC)
1272 off += sizeof(unsigned int);
1273 }
1274
1275 off += kasan_metadata_size(s, false);
1276
1277 if (size_from_object(s) == off)
1278 return 1;
1279
1280 return check_bytes_and_report(s, slab, p, "Object padding",
1281 p + off, POISON_INUSE, size_from_object(s) - off);
1282 }
1283
1284 /* Check the pad bytes at the end of a slab page */
1285 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1286 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1287 {
1288 u8 *start;
1289 u8 *fault;
1290 u8 *end;
1291 u8 *pad;
1292 int length;
1293 int remainder;
1294
1295 if (!(s->flags & SLAB_POISON))
1296 return;
1297
1298 start = slab_address(slab);
1299 length = slab_size(slab);
1300 end = start + length;
1301 remainder = length % s->size;
1302 if (!remainder)
1303 return;
1304
1305 pad = end - remainder;
1306 metadata_access_enable();
1307 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1308 metadata_access_disable();
1309 if (!fault)
1310 return;
1311 while (end > fault && end[-1] == POISON_INUSE)
1312 end--;
1313
1314 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1315 fault, end - 1, fault - start);
1316 print_section(KERN_ERR, "Padding ", pad, remainder);
1317
1318 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1319 }
1320
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1321 static int check_object(struct kmem_cache *s, struct slab *slab,
1322 void *object, u8 val)
1323 {
1324 u8 *p = object;
1325 u8 *endobject = object + s->object_size;
1326 unsigned int orig_size, kasan_meta_size;
1327 int ret = 1;
1328
1329 if (s->flags & SLAB_RED_ZONE) {
1330 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1331 object - s->red_left_pad, val, s->red_left_pad))
1332 ret = 0;
1333
1334 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1335 endobject, val, s->inuse - s->object_size))
1336 ret = 0;
1337
1338 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1339 orig_size = get_orig_size(s, object);
1340
1341 if (s->object_size > orig_size &&
1342 !check_bytes_and_report(s, slab, object,
1343 "kmalloc Redzone", p + orig_size,
1344 val, s->object_size - orig_size)) {
1345 ret = 0;
1346 }
1347 }
1348 } else {
1349 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1350 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1351 endobject, POISON_INUSE,
1352 s->inuse - s->object_size))
1353 ret = 0;
1354 }
1355 }
1356
1357 if (s->flags & SLAB_POISON) {
1358 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1359 /*
1360 * KASAN can save its free meta data inside of the
1361 * object at offset 0. Thus, skip checking the part of
1362 * the redzone that overlaps with the meta data.
1363 */
1364 kasan_meta_size = kasan_metadata_size(s, true);
1365 if (kasan_meta_size < s->object_size - 1 &&
1366 !check_bytes_and_report(s, slab, p, "Poison",
1367 p + kasan_meta_size, POISON_FREE,
1368 s->object_size - kasan_meta_size - 1))
1369 ret = 0;
1370 if (kasan_meta_size < s->object_size &&
1371 !check_bytes_and_report(s, slab, p, "End Poison",
1372 p + s->object_size - 1, POISON_END, 1))
1373 ret = 0;
1374 }
1375 /*
1376 * check_pad_bytes cleans up on its own.
1377 */
1378 if (!check_pad_bytes(s, slab, p))
1379 ret = 0;
1380 }
1381
1382 /*
1383 * Cannot check freepointer while object is allocated if
1384 * object and freepointer overlap.
1385 */
1386 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1387 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1388 object_err(s, slab, p, "Freepointer corrupt");
1389 /*
1390 * No choice but to zap it and thus lose the remainder
1391 * of the free objects in this slab. May cause
1392 * another error because the object count is now wrong.
1393 */
1394 set_freepointer(s, p, NULL);
1395 ret = 0;
1396 }
1397
1398 if (!ret && !slab_in_kunit_test()) {
1399 print_trailer(s, slab, object);
1400 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1401 }
1402
1403 return ret;
1404 }
1405
check_slab(struct kmem_cache * s,struct slab * slab)1406 static int check_slab(struct kmem_cache *s, struct slab *slab)
1407 {
1408 int maxobj;
1409
1410 if (!folio_test_slab(slab_folio(slab))) {
1411 slab_err(s, slab, "Not a valid slab page");
1412 return 0;
1413 }
1414
1415 maxobj = order_objects(slab_order(slab), s->size);
1416 if (slab->objects > maxobj) {
1417 slab_err(s, slab, "objects %u > max %u",
1418 slab->objects, maxobj);
1419 return 0;
1420 }
1421 if (slab->inuse > slab->objects) {
1422 slab_err(s, slab, "inuse %u > max %u",
1423 slab->inuse, slab->objects);
1424 return 0;
1425 }
1426 /* Slab_pad_check fixes things up after itself */
1427 slab_pad_check(s, slab);
1428 return 1;
1429 }
1430
1431 /*
1432 * Determine if a certain object in a slab is on the freelist. Must hold the
1433 * slab lock to guarantee that the chains are in a consistent state.
1434 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1435 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1436 {
1437 int nr = 0;
1438 void *fp;
1439 void *object = NULL;
1440 int max_objects;
1441
1442 fp = slab->freelist;
1443 while (fp && nr <= slab->objects) {
1444 if (fp == search)
1445 return 1;
1446 if (!check_valid_pointer(s, slab, fp)) {
1447 if (object) {
1448 object_err(s, slab, object,
1449 "Freechain corrupt");
1450 set_freepointer(s, object, NULL);
1451 } else {
1452 slab_err(s, slab, "Freepointer corrupt");
1453 slab->freelist = NULL;
1454 slab->inuse = slab->objects;
1455 slab_fix(s, "Freelist cleared");
1456 return 0;
1457 }
1458 break;
1459 }
1460 object = fp;
1461 fp = get_freepointer(s, object);
1462 nr++;
1463 }
1464
1465 max_objects = order_objects(slab_order(slab), s->size);
1466 if (max_objects > MAX_OBJS_PER_PAGE)
1467 max_objects = MAX_OBJS_PER_PAGE;
1468
1469 if (slab->objects != max_objects) {
1470 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1471 slab->objects, max_objects);
1472 slab->objects = max_objects;
1473 slab_fix(s, "Number of objects adjusted");
1474 }
1475 if (slab->inuse != slab->objects - nr) {
1476 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1477 slab->inuse, slab->objects - nr);
1478 slab->inuse = slab->objects - nr;
1479 slab_fix(s, "Object count adjusted");
1480 }
1481 return search == NULL;
1482 }
1483
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1484 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1485 int alloc)
1486 {
1487 if (s->flags & SLAB_TRACE) {
1488 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1489 s->name,
1490 alloc ? "alloc" : "free",
1491 object, slab->inuse,
1492 slab->freelist);
1493
1494 if (!alloc)
1495 print_section(KERN_INFO, "Object ", (void *)object,
1496 s->object_size);
1497
1498 dump_stack();
1499 }
1500 }
1501
1502 /*
1503 * Tracking of fully allocated slabs for debugging purposes.
1504 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1505 static void add_full(struct kmem_cache *s,
1506 struct kmem_cache_node *n, struct slab *slab)
1507 {
1508 if (!(s->flags & SLAB_STORE_USER))
1509 return;
1510
1511 lockdep_assert_held(&n->list_lock);
1512 list_add(&slab->slab_list, &n->full);
1513 }
1514
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1515 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1516 {
1517 if (!(s->flags & SLAB_STORE_USER))
1518 return;
1519
1520 lockdep_assert_held(&n->list_lock);
1521 list_del(&slab->slab_list);
1522 }
1523
node_nr_slabs(struct kmem_cache_node * n)1524 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1525 {
1526 return atomic_long_read(&n->nr_slabs);
1527 }
1528
inc_slabs_node(struct kmem_cache * s,int node,int objects)1529 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1530 {
1531 struct kmem_cache_node *n = get_node(s, node);
1532
1533 atomic_long_inc(&n->nr_slabs);
1534 atomic_long_add(objects, &n->total_objects);
1535 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1536 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1537 {
1538 struct kmem_cache_node *n = get_node(s, node);
1539
1540 atomic_long_dec(&n->nr_slabs);
1541 atomic_long_sub(objects, &n->total_objects);
1542 }
1543
1544 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1545 static void setup_object_debug(struct kmem_cache *s, void *object)
1546 {
1547 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1548 return;
1549
1550 init_object(s, object, SLUB_RED_INACTIVE);
1551 init_tracking(s, object);
1552 }
1553
1554 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1555 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1556 {
1557 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1558 return;
1559
1560 metadata_access_enable();
1561 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1562 metadata_access_disable();
1563 }
1564
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1565 static inline int alloc_consistency_checks(struct kmem_cache *s,
1566 struct slab *slab, void *object)
1567 {
1568 if (!check_slab(s, slab))
1569 return 0;
1570
1571 if (!check_valid_pointer(s, slab, object)) {
1572 object_err(s, slab, object, "Freelist Pointer check fails");
1573 return 0;
1574 }
1575
1576 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1577 return 0;
1578
1579 return 1;
1580 }
1581
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1582 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1583 struct slab *slab, void *object, int orig_size)
1584 {
1585 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1586 if (!alloc_consistency_checks(s, slab, object))
1587 goto bad;
1588 }
1589
1590 /* Success. Perform special debug activities for allocs */
1591 trace(s, slab, object, 1);
1592 set_orig_size(s, object, orig_size);
1593 init_object(s, object, SLUB_RED_ACTIVE);
1594 return true;
1595
1596 bad:
1597 if (folio_test_slab(slab_folio(slab))) {
1598 /*
1599 * If this is a slab page then lets do the best we can
1600 * to avoid issues in the future. Marking all objects
1601 * as used avoids touching the remaining objects.
1602 */
1603 slab_fix(s, "Marking all objects used");
1604 slab->inuse = slab->objects;
1605 slab->freelist = NULL;
1606 }
1607 return false;
1608 }
1609
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1610 static inline int free_consistency_checks(struct kmem_cache *s,
1611 struct slab *slab, void *object, unsigned long addr)
1612 {
1613 if (!check_valid_pointer(s, slab, object)) {
1614 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1615 return 0;
1616 }
1617
1618 if (on_freelist(s, slab, object)) {
1619 object_err(s, slab, object, "Object already free");
1620 return 0;
1621 }
1622
1623 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1624 return 0;
1625
1626 if (unlikely(s != slab->slab_cache)) {
1627 if (!folio_test_slab(slab_folio(slab))) {
1628 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1629 object);
1630 } else if (!slab->slab_cache) {
1631 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1632 object);
1633 dump_stack();
1634 } else
1635 object_err(s, slab, object,
1636 "page slab pointer corrupt.");
1637 return 0;
1638 }
1639 return 1;
1640 }
1641
1642 /*
1643 * Parse a block of slab_debug options. Blocks are delimited by ';'
1644 *
1645 * @str: start of block
1646 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1647 * @slabs: return start of list of slabs, or NULL when there's no list
1648 * @init: assume this is initial parsing and not per-kmem-create parsing
1649 *
1650 * returns the start of next block if there's any, or NULL
1651 */
1652 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1653 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1654 {
1655 bool higher_order_disable = false;
1656
1657 /* Skip any completely empty blocks */
1658 while (*str && *str == ';')
1659 str++;
1660
1661 if (*str == ',') {
1662 /*
1663 * No options but restriction on slabs. This means full
1664 * debugging for slabs matching a pattern.
1665 */
1666 *flags = DEBUG_DEFAULT_FLAGS;
1667 goto check_slabs;
1668 }
1669 *flags = 0;
1670
1671 /* Determine which debug features should be switched on */
1672 for (; *str && *str != ',' && *str != ';'; str++) {
1673 switch (tolower(*str)) {
1674 case '-':
1675 *flags = 0;
1676 break;
1677 case 'f':
1678 *flags |= SLAB_CONSISTENCY_CHECKS;
1679 break;
1680 case 'z':
1681 *flags |= SLAB_RED_ZONE;
1682 break;
1683 case 'p':
1684 *flags |= SLAB_POISON;
1685 break;
1686 case 'u':
1687 *flags |= SLAB_STORE_USER;
1688 break;
1689 case 't':
1690 *flags |= SLAB_TRACE;
1691 break;
1692 case 'a':
1693 *flags |= SLAB_FAILSLAB;
1694 break;
1695 case 'o':
1696 /*
1697 * Avoid enabling debugging on caches if its minimum
1698 * order would increase as a result.
1699 */
1700 higher_order_disable = true;
1701 break;
1702 default:
1703 if (init)
1704 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1705 }
1706 }
1707 check_slabs:
1708 if (*str == ',')
1709 *slabs = ++str;
1710 else
1711 *slabs = NULL;
1712
1713 /* Skip over the slab list */
1714 while (*str && *str != ';')
1715 str++;
1716
1717 /* Skip any completely empty blocks */
1718 while (*str && *str == ';')
1719 str++;
1720
1721 if (init && higher_order_disable)
1722 disable_higher_order_debug = 1;
1723
1724 if (*str)
1725 return str;
1726 else
1727 return NULL;
1728 }
1729
setup_slub_debug(char * str)1730 static int __init setup_slub_debug(char *str)
1731 {
1732 slab_flags_t flags;
1733 slab_flags_t global_flags;
1734 char *saved_str;
1735 char *slab_list;
1736 bool global_slub_debug_changed = false;
1737 bool slab_list_specified = false;
1738
1739 global_flags = DEBUG_DEFAULT_FLAGS;
1740 if (*str++ != '=' || !*str)
1741 /*
1742 * No options specified. Switch on full debugging.
1743 */
1744 goto out;
1745
1746 saved_str = str;
1747 while (str) {
1748 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1749
1750 if (!slab_list) {
1751 global_flags = flags;
1752 global_slub_debug_changed = true;
1753 } else {
1754 slab_list_specified = true;
1755 if (flags & SLAB_STORE_USER)
1756 stack_depot_request_early_init();
1757 }
1758 }
1759
1760 /*
1761 * For backwards compatibility, a single list of flags with list of
1762 * slabs means debugging is only changed for those slabs, so the global
1763 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1764 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1765 * long as there is no option specifying flags without a slab list.
1766 */
1767 if (slab_list_specified) {
1768 if (!global_slub_debug_changed)
1769 global_flags = slub_debug;
1770 slub_debug_string = saved_str;
1771 }
1772 out:
1773 slub_debug = global_flags;
1774 if (slub_debug & SLAB_STORE_USER)
1775 stack_depot_request_early_init();
1776 if (slub_debug != 0 || slub_debug_string)
1777 static_branch_enable(&slub_debug_enabled);
1778 else
1779 static_branch_disable(&slub_debug_enabled);
1780 if ((static_branch_unlikely(&init_on_alloc) ||
1781 static_branch_unlikely(&init_on_free)) &&
1782 (slub_debug & SLAB_POISON))
1783 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1784 return 1;
1785 }
1786
1787 __setup("slab_debug", setup_slub_debug);
1788 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1789
1790 /*
1791 * kmem_cache_flags - apply debugging options to the cache
1792 * @flags: flags to set
1793 * @name: name of the cache
1794 *
1795 * Debug option(s) are applied to @flags. In addition to the debug
1796 * option(s), if a slab name (or multiple) is specified i.e.
1797 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1798 * then only the select slabs will receive the debug option(s).
1799 */
kmem_cache_flags(slab_flags_t flags,const char * name)1800 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1801 {
1802 char *iter;
1803 size_t len;
1804 char *next_block;
1805 slab_flags_t block_flags;
1806 slab_flags_t slub_debug_local = slub_debug;
1807
1808 if (flags & SLAB_NO_USER_FLAGS)
1809 return flags;
1810
1811 /*
1812 * If the slab cache is for debugging (e.g. kmemleak) then
1813 * don't store user (stack trace) information by default,
1814 * but let the user enable it via the command line below.
1815 */
1816 if (flags & SLAB_NOLEAKTRACE)
1817 slub_debug_local &= ~SLAB_STORE_USER;
1818
1819 len = strlen(name);
1820 next_block = slub_debug_string;
1821 /* Go through all blocks of debug options, see if any matches our slab's name */
1822 while (next_block) {
1823 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1824 if (!iter)
1825 continue;
1826 /* Found a block that has a slab list, search it */
1827 while (*iter) {
1828 char *end, *glob;
1829 size_t cmplen;
1830
1831 end = strchrnul(iter, ',');
1832 if (next_block && next_block < end)
1833 end = next_block - 1;
1834
1835 glob = strnchr(iter, end - iter, '*');
1836 if (glob)
1837 cmplen = glob - iter;
1838 else
1839 cmplen = max_t(size_t, len, (end - iter));
1840
1841 if (!strncmp(name, iter, cmplen)) {
1842 flags |= block_flags;
1843 return flags;
1844 }
1845
1846 if (!*end || *end == ';')
1847 break;
1848 iter = end + 1;
1849 }
1850 }
1851
1852 return flags | slub_debug_local;
1853 }
1854 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1855 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1856 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1857 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1858
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1859 static inline bool alloc_debug_processing(struct kmem_cache *s,
1860 struct slab *slab, void *object, int orig_size) { return true; }
1861
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1862 static inline bool free_debug_processing(struct kmem_cache *s,
1863 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1864 unsigned long addr, depot_stack_handle_t handle) { return true; }
1865
slab_pad_check(struct kmem_cache * s,struct slab * slab)1866 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1867 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1868 void *object, u8 val) { return 1; }
set_track_prepare(void)1869 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1870 static inline void set_track(struct kmem_cache *s, void *object,
1871 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1872 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1873 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1874 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1875 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1876 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1877 {
1878 return flags;
1879 }
1880 #define slub_debug 0
1881
1882 #define disable_higher_order_debug 0
1883
node_nr_slabs(struct kmem_cache_node * n)1884 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1885 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1886 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1887 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1888 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1889 int objects) {}
1890 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1891 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1892 void **freelist, void *nextfree)
1893 {
1894 return false;
1895 }
1896 #endif
1897 #endif /* CONFIG_SLUB_DEBUG */
1898
1899 #ifdef CONFIG_SLAB_OBJ_EXT
1900
1901 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1902
mark_objexts_empty(struct slabobj_ext * obj_exts)1903 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1904 {
1905 struct slabobj_ext *slab_exts;
1906 struct slab *obj_exts_slab;
1907
1908 obj_exts_slab = virt_to_slab(obj_exts);
1909 slab_exts = slab_obj_exts(obj_exts_slab);
1910 if (slab_exts) {
1911 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1912 obj_exts_slab, obj_exts);
1913 /* codetag should be NULL */
1914 WARN_ON(slab_exts[offs].ref.ct);
1915 set_codetag_empty(&slab_exts[offs].ref);
1916 }
1917 }
1918
mark_failed_objexts_alloc(struct slab * slab)1919 static inline void mark_failed_objexts_alloc(struct slab *slab)
1920 {
1921 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1922 }
1923
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1924 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1925 struct slabobj_ext *vec, unsigned int objects)
1926 {
1927 /*
1928 * If vector previously failed to allocate then we have live
1929 * objects with no tag reference. Mark all references in this
1930 * vector as empty to avoid warnings later on.
1931 */
1932 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1933 unsigned int i;
1934
1935 for (i = 0; i < objects; i++)
1936 set_codetag_empty(&vec[i].ref);
1937 }
1938 }
1939
1940 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1941
mark_objexts_empty(struct slabobj_ext * obj_exts)1942 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1943 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1944 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1945 struct slabobj_ext *vec, unsigned int objects) {}
1946
1947 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1948
1949 /*
1950 * The allocated objcg pointers array is not accounted directly.
1951 * Moreover, it should not come from DMA buffer and is not readily
1952 * reclaimable. So those GFP bits should be masked off.
1953 */
1954 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1955 __GFP_ACCOUNT | __GFP_NOFAIL)
1956
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)1957 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1958 gfp_t gfp, bool new_slab)
1959 {
1960 unsigned int objects = objs_per_slab(s, slab);
1961 unsigned long new_exts;
1962 unsigned long old_exts;
1963 struct slabobj_ext *vec;
1964
1965 gfp &= ~OBJCGS_CLEAR_MASK;
1966 /* Prevent recursive extension vector allocation */
1967 gfp |= __GFP_NO_OBJ_EXT;
1968 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1969 slab_nid(slab));
1970 if (!vec) {
1971 /* Mark vectors which failed to allocate */
1972 if (new_slab)
1973 mark_failed_objexts_alloc(slab);
1974
1975 return -ENOMEM;
1976 }
1977
1978 new_exts = (unsigned long)vec;
1979 #ifdef CONFIG_MEMCG
1980 new_exts |= MEMCG_DATA_OBJEXTS;
1981 #endif
1982 old_exts = READ_ONCE(slab->obj_exts);
1983 handle_failed_objexts_alloc(old_exts, vec, objects);
1984 if (new_slab) {
1985 /*
1986 * If the slab is brand new and nobody can yet access its
1987 * obj_exts, no synchronization is required and obj_exts can
1988 * be simply assigned.
1989 */
1990 slab->obj_exts = new_exts;
1991 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1992 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1993 /*
1994 * If the slab is already in use, somebody can allocate and
1995 * assign slabobj_exts in parallel. In this case the existing
1996 * objcg vector should be reused.
1997 */
1998 mark_objexts_empty(vec);
1999 kfree(vec);
2000 return 0;
2001 }
2002
2003 kmemleak_not_leak(vec);
2004 return 0;
2005 }
2006
free_slab_obj_exts(struct slab * slab)2007 static inline void free_slab_obj_exts(struct slab *slab)
2008 {
2009 struct slabobj_ext *obj_exts;
2010
2011 obj_exts = slab_obj_exts(slab);
2012 if (!obj_exts)
2013 return;
2014
2015 /*
2016 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2017 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2018 * warning if slab has extensions but the extension of an object is
2019 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2020 * the extension for obj_exts is expected to be NULL.
2021 */
2022 mark_objexts_empty(obj_exts);
2023 kfree(obj_exts);
2024 slab->obj_exts = 0;
2025 }
2026
need_slab_obj_ext(void)2027 static inline bool need_slab_obj_ext(void)
2028 {
2029 if (mem_alloc_profiling_enabled())
2030 return true;
2031
2032 /*
2033 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2034 * inside memcg_slab_post_alloc_hook. No other users for now.
2035 */
2036 return false;
2037 }
2038
2039 #else /* CONFIG_SLAB_OBJ_EXT */
2040
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2041 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2042 gfp_t gfp, bool new_slab)
2043 {
2044 return 0;
2045 }
2046
free_slab_obj_exts(struct slab * slab)2047 static inline void free_slab_obj_exts(struct slab *slab)
2048 {
2049 }
2050
need_slab_obj_ext(void)2051 static inline bool need_slab_obj_ext(void)
2052 {
2053 return false;
2054 }
2055
2056 #endif /* CONFIG_SLAB_OBJ_EXT */
2057
2058 #ifdef CONFIG_MEM_ALLOC_PROFILING
2059
2060 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2061 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2062 {
2063 struct slab *slab;
2064
2065 if (!p)
2066 return NULL;
2067
2068 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2069 return NULL;
2070
2071 if (flags & __GFP_NO_OBJ_EXT)
2072 return NULL;
2073
2074 slab = virt_to_slab(p);
2075 if (!slab_obj_exts(slab) &&
2076 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2077 "%s, %s: Failed to create slab extension vector!\n",
2078 __func__, s->name))
2079 return NULL;
2080
2081 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2082 }
2083
2084 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2085 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2086 {
2087 if (need_slab_obj_ext()) {
2088 struct slabobj_ext *obj_exts;
2089
2090 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2091 /*
2092 * Currently obj_exts is used only for allocation profiling.
2093 * If other users appear then mem_alloc_profiling_enabled()
2094 * check should be added before alloc_tag_add().
2095 */
2096 if (likely(obj_exts))
2097 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2098 }
2099 }
2100
2101 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2102 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2103 int objects)
2104 {
2105 struct slabobj_ext *obj_exts;
2106 int i;
2107
2108 if (!mem_alloc_profiling_enabled())
2109 return;
2110
2111 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2112 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2113 return;
2114
2115 obj_exts = slab_obj_exts(slab);
2116 if (!obj_exts)
2117 return;
2118
2119 for (i = 0; i < objects; i++) {
2120 unsigned int off = obj_to_index(s, slab, p[i]);
2121
2122 alloc_tag_sub(&obj_exts[off].ref, s->size);
2123 }
2124 }
2125
2126 #else /* CONFIG_MEM_ALLOC_PROFILING */
2127
2128 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2129 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2130 {
2131 }
2132
2133 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2134 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2135 int objects)
2136 {
2137 }
2138
2139 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2140
2141
2142 #ifdef CONFIG_MEMCG
2143
2144 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2145
2146 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2147 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2148 gfp_t flags, size_t size, void **p)
2149 {
2150 if (likely(!memcg_kmem_online()))
2151 return true;
2152
2153 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2154 return true;
2155
2156 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2157 return true;
2158
2159 if (likely(size == 1)) {
2160 memcg_alloc_abort_single(s, *p);
2161 *p = NULL;
2162 } else {
2163 kmem_cache_free_bulk(s, size, p);
2164 }
2165
2166 return false;
2167 }
2168
2169 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2170 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2171 int objects)
2172 {
2173 struct slabobj_ext *obj_exts;
2174
2175 if (!memcg_kmem_online())
2176 return;
2177
2178 obj_exts = slab_obj_exts(slab);
2179 if (likely(!obj_exts))
2180 return;
2181
2182 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2183 }
2184
2185 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2186 bool memcg_slab_post_charge(void *p, gfp_t flags)
2187 {
2188 struct slabobj_ext *slab_exts;
2189 struct kmem_cache *s;
2190 struct folio *folio;
2191 struct slab *slab;
2192 unsigned long off;
2193
2194 folio = virt_to_folio(p);
2195 if (!folio_test_slab(folio)) {
2196 return folio_memcg_kmem(folio) ||
2197 (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2198 folio_order(folio)) == 0);
2199 }
2200
2201 slab = folio_slab(folio);
2202 s = slab->slab_cache;
2203
2204 /*
2205 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2206 * of slab_obj_exts being allocated from the same slab and thus the slab
2207 * becoming effectively unfreeable.
2208 */
2209 if (is_kmalloc_normal(s))
2210 return true;
2211
2212 /* Ignore already charged objects. */
2213 slab_exts = slab_obj_exts(slab);
2214 if (slab_exts) {
2215 off = obj_to_index(s, slab, p);
2216 if (unlikely(slab_exts[off].objcg))
2217 return true;
2218 }
2219
2220 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2221 }
2222
2223 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2224 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2225 struct list_lru *lru,
2226 gfp_t flags, size_t size,
2227 void **p)
2228 {
2229 return true;
2230 }
2231
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2232 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2233 void **p, int objects)
2234 {
2235 }
2236
memcg_slab_post_charge(void * p,gfp_t flags)2237 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2238 {
2239 return true;
2240 }
2241 #endif /* CONFIG_MEMCG */
2242
2243 #ifdef CONFIG_SLUB_RCU_DEBUG
2244 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2245
2246 struct rcu_delayed_free {
2247 struct rcu_head head;
2248 void *object;
2249 };
2250 #endif
2251
2252 /*
2253 * Hooks for other subsystems that check memory allocations. In a typical
2254 * production configuration these hooks all should produce no code at all.
2255 *
2256 * Returns true if freeing of the object can proceed, false if its reuse
2257 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2258 * to KFENCE.
2259 */
2260 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2261 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2262 bool after_rcu_delay)
2263 {
2264 /* Are the object contents still accessible? */
2265 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2266
2267 kmemleak_free_recursive(x, s->flags);
2268 kmsan_slab_free(s, x);
2269
2270 debug_check_no_locks_freed(x, s->object_size);
2271
2272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2273 debug_check_no_obj_freed(x, s->object_size);
2274
2275 /* Use KCSAN to help debug racy use-after-free. */
2276 if (!still_accessible)
2277 __kcsan_check_access(x, s->object_size,
2278 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2279
2280 if (kfence_free(x))
2281 return false;
2282
2283 /*
2284 * Give KASAN a chance to notice an invalid free operation before we
2285 * modify the object.
2286 */
2287 if (kasan_slab_pre_free(s, x))
2288 return false;
2289
2290 #ifdef CONFIG_SLUB_RCU_DEBUG
2291 if (still_accessible) {
2292 struct rcu_delayed_free *delayed_free;
2293
2294 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2295 if (delayed_free) {
2296 /*
2297 * Let KASAN track our call stack as a "related work
2298 * creation", just like if the object had been freed
2299 * normally via kfree_rcu().
2300 * We have to do this manually because the rcu_head is
2301 * not located inside the object.
2302 */
2303 kasan_record_aux_stack_noalloc(x);
2304
2305 delayed_free->object = x;
2306 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2307 return false;
2308 }
2309 }
2310 #endif /* CONFIG_SLUB_RCU_DEBUG */
2311
2312 /*
2313 * As memory initialization might be integrated into KASAN,
2314 * kasan_slab_free and initialization memset's must be
2315 * kept together to avoid discrepancies in behavior.
2316 *
2317 * The initialization memset's clear the object and the metadata,
2318 * but don't touch the SLAB redzone.
2319 *
2320 * The object's freepointer is also avoided if stored outside the
2321 * object.
2322 */
2323 if (unlikely(init)) {
2324 int rsize;
2325 unsigned int inuse, orig_size;
2326
2327 inuse = get_info_end(s);
2328 orig_size = get_orig_size(s, x);
2329 if (!kasan_has_integrated_init())
2330 memset(kasan_reset_tag(x), 0, orig_size);
2331 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2332 memset((char *)kasan_reset_tag(x) + inuse, 0,
2333 s->size - inuse - rsize);
2334 /*
2335 * Restore orig_size, otherwize kmalloc redzone overwritten
2336 * would be reported
2337 */
2338 set_orig_size(s, x, orig_size);
2339
2340 }
2341 /* KASAN might put x into memory quarantine, delaying its reuse. */
2342 return !kasan_slab_free(s, x, init, still_accessible);
2343 }
2344
2345 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2346 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2347 int *cnt)
2348 {
2349
2350 void *object;
2351 void *next = *head;
2352 void *old_tail = *tail;
2353 bool init;
2354
2355 if (is_kfence_address(next)) {
2356 slab_free_hook(s, next, false, false);
2357 return false;
2358 }
2359
2360 /* Head and tail of the reconstructed freelist */
2361 *head = NULL;
2362 *tail = NULL;
2363
2364 init = slab_want_init_on_free(s);
2365
2366 do {
2367 object = next;
2368 next = get_freepointer(s, object);
2369
2370 /* If object's reuse doesn't have to be delayed */
2371 if (likely(slab_free_hook(s, object, init, false))) {
2372 /* Move object to the new freelist */
2373 set_freepointer(s, object, *head);
2374 *head = object;
2375 if (!*tail)
2376 *tail = object;
2377 } else {
2378 /*
2379 * Adjust the reconstructed freelist depth
2380 * accordingly if object's reuse is delayed.
2381 */
2382 --(*cnt);
2383 }
2384 } while (object != old_tail);
2385
2386 return *head != NULL;
2387 }
2388
setup_object(struct kmem_cache * s,void * object)2389 static void *setup_object(struct kmem_cache *s, void *object)
2390 {
2391 setup_object_debug(s, object);
2392 object = kasan_init_slab_obj(s, object);
2393 if (unlikely(s->ctor)) {
2394 kasan_unpoison_new_object(s, object);
2395 s->ctor(object);
2396 kasan_poison_new_object(s, object);
2397 }
2398 return object;
2399 }
2400
2401 /*
2402 * Slab allocation and freeing
2403 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2404 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2405 struct kmem_cache_order_objects oo)
2406 {
2407 struct folio *folio;
2408 struct slab *slab;
2409 unsigned int order = oo_order(oo);
2410
2411 if (node == NUMA_NO_NODE)
2412 folio = (struct folio *)alloc_pages(flags, order);
2413 else
2414 folio = (struct folio *)__alloc_pages_node(node, flags, order);
2415
2416 if (!folio)
2417 return NULL;
2418
2419 slab = folio_slab(folio);
2420 __folio_set_slab(folio);
2421 /* Make the flag visible before any changes to folio->mapping */
2422 smp_wmb();
2423 if (folio_is_pfmemalloc(folio))
2424 slab_set_pfmemalloc(slab);
2425
2426 return slab;
2427 }
2428
2429 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2430 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2431 static int init_cache_random_seq(struct kmem_cache *s)
2432 {
2433 unsigned int count = oo_objects(s->oo);
2434 int err;
2435
2436 /* Bailout if already initialised */
2437 if (s->random_seq)
2438 return 0;
2439
2440 err = cache_random_seq_create(s, count, GFP_KERNEL);
2441 if (err) {
2442 pr_err("SLUB: Unable to initialize free list for %s\n",
2443 s->name);
2444 return err;
2445 }
2446
2447 /* Transform to an offset on the set of pages */
2448 if (s->random_seq) {
2449 unsigned int i;
2450
2451 for (i = 0; i < count; i++)
2452 s->random_seq[i] *= s->size;
2453 }
2454 return 0;
2455 }
2456
2457 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2458 static void __init init_freelist_randomization(void)
2459 {
2460 struct kmem_cache *s;
2461
2462 mutex_lock(&slab_mutex);
2463
2464 list_for_each_entry(s, &slab_caches, list)
2465 init_cache_random_seq(s);
2466
2467 mutex_unlock(&slab_mutex);
2468 }
2469
2470 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2471 static void *next_freelist_entry(struct kmem_cache *s,
2472 unsigned long *pos, void *start,
2473 unsigned long page_limit,
2474 unsigned long freelist_count)
2475 {
2476 unsigned int idx;
2477
2478 /*
2479 * If the target page allocation failed, the number of objects on the
2480 * page might be smaller than the usual size defined by the cache.
2481 */
2482 do {
2483 idx = s->random_seq[*pos];
2484 *pos += 1;
2485 if (*pos >= freelist_count)
2486 *pos = 0;
2487 } while (unlikely(idx >= page_limit));
2488
2489 return (char *)start + idx;
2490 }
2491
2492 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2493 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2494 {
2495 void *start;
2496 void *cur;
2497 void *next;
2498 unsigned long idx, pos, page_limit, freelist_count;
2499
2500 if (slab->objects < 2 || !s->random_seq)
2501 return false;
2502
2503 freelist_count = oo_objects(s->oo);
2504 pos = get_random_u32_below(freelist_count);
2505
2506 page_limit = slab->objects * s->size;
2507 start = fixup_red_left(s, slab_address(slab));
2508
2509 /* First entry is used as the base of the freelist */
2510 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2511 cur = setup_object(s, cur);
2512 slab->freelist = cur;
2513
2514 for (idx = 1; idx < slab->objects; idx++) {
2515 next = next_freelist_entry(s, &pos, start, page_limit,
2516 freelist_count);
2517 next = setup_object(s, next);
2518 set_freepointer(s, cur, next);
2519 cur = next;
2520 }
2521 set_freepointer(s, cur, NULL);
2522
2523 return true;
2524 }
2525 #else
init_cache_random_seq(struct kmem_cache * s)2526 static inline int init_cache_random_seq(struct kmem_cache *s)
2527 {
2528 return 0;
2529 }
init_freelist_randomization(void)2530 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2531 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2532 {
2533 return false;
2534 }
2535 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2536
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2537 static __always_inline void account_slab(struct slab *slab, int order,
2538 struct kmem_cache *s, gfp_t gfp)
2539 {
2540 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2541 alloc_slab_obj_exts(slab, s, gfp, true);
2542
2543 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2544 PAGE_SIZE << order);
2545 }
2546
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2547 static __always_inline void unaccount_slab(struct slab *slab, int order,
2548 struct kmem_cache *s)
2549 {
2550 if (memcg_kmem_online() || need_slab_obj_ext())
2551 free_slab_obj_exts(slab);
2552
2553 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2554 -(PAGE_SIZE << order));
2555 }
2556
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2557 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2558 {
2559 struct slab *slab;
2560 struct kmem_cache_order_objects oo = s->oo;
2561 gfp_t alloc_gfp;
2562 void *start, *p, *next;
2563 int idx;
2564 bool shuffle;
2565
2566 flags &= gfp_allowed_mask;
2567
2568 flags |= s->allocflags;
2569
2570 /*
2571 * Let the initial higher-order allocation fail under memory pressure
2572 * so we fall-back to the minimum order allocation.
2573 */
2574 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2575 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2576 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2577
2578 slab = alloc_slab_page(alloc_gfp, node, oo);
2579 if (unlikely(!slab)) {
2580 oo = s->min;
2581 alloc_gfp = flags;
2582 /*
2583 * Allocation may have failed due to fragmentation.
2584 * Try a lower order alloc if possible
2585 */
2586 slab = alloc_slab_page(alloc_gfp, node, oo);
2587 if (unlikely(!slab))
2588 return NULL;
2589 stat(s, ORDER_FALLBACK);
2590 }
2591
2592 slab->objects = oo_objects(oo);
2593 slab->inuse = 0;
2594 slab->frozen = 0;
2595
2596 account_slab(slab, oo_order(oo), s, flags);
2597
2598 slab->slab_cache = s;
2599
2600 kasan_poison_slab(slab);
2601
2602 start = slab_address(slab);
2603
2604 setup_slab_debug(s, slab, start);
2605
2606 shuffle = shuffle_freelist(s, slab);
2607
2608 if (!shuffle) {
2609 start = fixup_red_left(s, start);
2610 start = setup_object(s, start);
2611 slab->freelist = start;
2612 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2613 next = p + s->size;
2614 next = setup_object(s, next);
2615 set_freepointer(s, p, next);
2616 p = next;
2617 }
2618 set_freepointer(s, p, NULL);
2619 }
2620
2621 return slab;
2622 }
2623
new_slab(struct kmem_cache * s,gfp_t flags,int node)2624 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2625 {
2626 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2627 flags = kmalloc_fix_flags(flags);
2628
2629 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2630
2631 return allocate_slab(s,
2632 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2633 }
2634
__free_slab(struct kmem_cache * s,struct slab * slab)2635 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2636 {
2637 struct folio *folio = slab_folio(slab);
2638 int order = folio_order(folio);
2639 int pages = 1 << order;
2640
2641 __slab_clear_pfmemalloc(slab);
2642 folio->mapping = NULL;
2643 /* Make the mapping reset visible before clearing the flag */
2644 smp_wmb();
2645 __folio_clear_slab(folio);
2646 mm_account_reclaimed_pages(pages);
2647 unaccount_slab(slab, order, s);
2648 __free_pages(&folio->page, order);
2649 }
2650
rcu_free_slab(struct rcu_head * h)2651 static void rcu_free_slab(struct rcu_head *h)
2652 {
2653 struct slab *slab = container_of(h, struct slab, rcu_head);
2654
2655 __free_slab(slab->slab_cache, slab);
2656 }
2657
free_slab(struct kmem_cache * s,struct slab * slab)2658 static void free_slab(struct kmem_cache *s, struct slab *slab)
2659 {
2660 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2661 void *p;
2662
2663 slab_pad_check(s, slab);
2664 for_each_object(p, s, slab_address(slab), slab->objects)
2665 check_object(s, slab, p, SLUB_RED_INACTIVE);
2666 }
2667
2668 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2669 call_rcu(&slab->rcu_head, rcu_free_slab);
2670 else
2671 __free_slab(s, slab);
2672 }
2673
discard_slab(struct kmem_cache * s,struct slab * slab)2674 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2675 {
2676 dec_slabs_node(s, slab_nid(slab), slab->objects);
2677 free_slab(s, slab);
2678 }
2679
2680 /*
2681 * SLUB reuses PG_workingset bit to keep track of whether it's on
2682 * the per-node partial list.
2683 */
slab_test_node_partial(const struct slab * slab)2684 static inline bool slab_test_node_partial(const struct slab *slab)
2685 {
2686 return folio_test_workingset(slab_folio(slab));
2687 }
2688
slab_set_node_partial(struct slab * slab)2689 static inline void slab_set_node_partial(struct slab *slab)
2690 {
2691 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2692 }
2693
slab_clear_node_partial(struct slab * slab)2694 static inline void slab_clear_node_partial(struct slab *slab)
2695 {
2696 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2697 }
2698
2699 /*
2700 * Management of partially allocated slabs.
2701 */
2702 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2703 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2704 {
2705 n->nr_partial++;
2706 if (tail == DEACTIVATE_TO_TAIL)
2707 list_add_tail(&slab->slab_list, &n->partial);
2708 else
2709 list_add(&slab->slab_list, &n->partial);
2710 slab_set_node_partial(slab);
2711 }
2712
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2713 static inline void add_partial(struct kmem_cache_node *n,
2714 struct slab *slab, int tail)
2715 {
2716 lockdep_assert_held(&n->list_lock);
2717 __add_partial(n, slab, tail);
2718 }
2719
remove_partial(struct kmem_cache_node * n,struct slab * slab)2720 static inline void remove_partial(struct kmem_cache_node *n,
2721 struct slab *slab)
2722 {
2723 lockdep_assert_held(&n->list_lock);
2724 list_del(&slab->slab_list);
2725 slab_clear_node_partial(slab);
2726 n->nr_partial--;
2727 }
2728
2729 /*
2730 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2731 * slab from the n->partial list. Remove only a single object from the slab, do
2732 * the alloc_debug_processing() checks and leave the slab on the list, or move
2733 * it to full list if it was the last free object.
2734 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2735 static void *alloc_single_from_partial(struct kmem_cache *s,
2736 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2737 {
2738 void *object;
2739
2740 lockdep_assert_held(&n->list_lock);
2741
2742 object = slab->freelist;
2743 slab->freelist = get_freepointer(s, object);
2744 slab->inuse++;
2745
2746 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2747 remove_partial(n, slab);
2748 return NULL;
2749 }
2750
2751 if (slab->inuse == slab->objects) {
2752 remove_partial(n, slab);
2753 add_full(s, n, slab);
2754 }
2755
2756 return object;
2757 }
2758
2759 /*
2760 * Called only for kmem_cache_debug() caches to allocate from a freshly
2761 * allocated slab. Allocate a single object instead of whole freelist
2762 * and put the slab to the partial (or full) list.
2763 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2764 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2765 struct slab *slab, int orig_size)
2766 {
2767 int nid = slab_nid(slab);
2768 struct kmem_cache_node *n = get_node(s, nid);
2769 unsigned long flags;
2770 void *object;
2771
2772
2773 object = slab->freelist;
2774 slab->freelist = get_freepointer(s, object);
2775 slab->inuse = 1;
2776
2777 if (!alloc_debug_processing(s, slab, object, orig_size))
2778 /*
2779 * It's not really expected that this would fail on a
2780 * freshly allocated slab, but a concurrent memory
2781 * corruption in theory could cause that.
2782 */
2783 return NULL;
2784
2785 spin_lock_irqsave(&n->list_lock, flags);
2786
2787 if (slab->inuse == slab->objects)
2788 add_full(s, n, slab);
2789 else
2790 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2791
2792 inc_slabs_node(s, nid, slab->objects);
2793 spin_unlock_irqrestore(&n->list_lock, flags);
2794
2795 return object;
2796 }
2797
2798 #ifdef CONFIG_SLUB_CPU_PARTIAL
2799 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2800 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2801 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2802 int drain) { }
2803 #endif
2804 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2805
2806 /*
2807 * Try to allocate a partial slab from a specific node.
2808 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2809 static struct slab *get_partial_node(struct kmem_cache *s,
2810 struct kmem_cache_node *n,
2811 struct partial_context *pc)
2812 {
2813 struct slab *slab, *slab2, *partial = NULL;
2814 unsigned long flags;
2815 unsigned int partial_slabs = 0;
2816
2817 /*
2818 * Racy check. If we mistakenly see no partial slabs then we
2819 * just allocate an empty slab. If we mistakenly try to get a
2820 * partial slab and there is none available then get_partial()
2821 * will return NULL.
2822 */
2823 if (!n || !n->nr_partial)
2824 return NULL;
2825
2826 spin_lock_irqsave(&n->list_lock, flags);
2827 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2828 if (!pfmemalloc_match(slab, pc->flags))
2829 continue;
2830
2831 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2832 void *object = alloc_single_from_partial(s, n, slab,
2833 pc->orig_size);
2834 if (object) {
2835 partial = slab;
2836 pc->object = object;
2837 break;
2838 }
2839 continue;
2840 }
2841
2842 remove_partial(n, slab);
2843
2844 if (!partial) {
2845 partial = slab;
2846 stat(s, ALLOC_FROM_PARTIAL);
2847
2848 if ((slub_get_cpu_partial(s) == 0)) {
2849 break;
2850 }
2851 } else {
2852 put_cpu_partial(s, slab, 0);
2853 stat(s, CPU_PARTIAL_NODE);
2854
2855 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2856 break;
2857 }
2858 }
2859 }
2860 spin_unlock_irqrestore(&n->list_lock, flags);
2861 return partial;
2862 }
2863
2864 /*
2865 * Get a slab from somewhere. Search in increasing NUMA distances.
2866 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2867 static struct slab *get_any_partial(struct kmem_cache *s,
2868 struct partial_context *pc)
2869 {
2870 #ifdef CONFIG_NUMA
2871 struct zonelist *zonelist;
2872 struct zoneref *z;
2873 struct zone *zone;
2874 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2875 struct slab *slab;
2876 unsigned int cpuset_mems_cookie;
2877
2878 /*
2879 * The defrag ratio allows a configuration of the tradeoffs between
2880 * inter node defragmentation and node local allocations. A lower
2881 * defrag_ratio increases the tendency to do local allocations
2882 * instead of attempting to obtain partial slabs from other nodes.
2883 *
2884 * If the defrag_ratio is set to 0 then kmalloc() always
2885 * returns node local objects. If the ratio is higher then kmalloc()
2886 * may return off node objects because partial slabs are obtained
2887 * from other nodes and filled up.
2888 *
2889 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2890 * (which makes defrag_ratio = 1000) then every (well almost)
2891 * allocation will first attempt to defrag slab caches on other nodes.
2892 * This means scanning over all nodes to look for partial slabs which
2893 * may be expensive if we do it every time we are trying to find a slab
2894 * with available objects.
2895 */
2896 if (!s->remote_node_defrag_ratio ||
2897 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2898 return NULL;
2899
2900 do {
2901 cpuset_mems_cookie = read_mems_allowed_begin();
2902 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2903 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2904 struct kmem_cache_node *n;
2905
2906 n = get_node(s, zone_to_nid(zone));
2907
2908 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2909 n->nr_partial > s->min_partial) {
2910 slab = get_partial_node(s, n, pc);
2911 if (slab) {
2912 /*
2913 * Don't check read_mems_allowed_retry()
2914 * here - if mems_allowed was updated in
2915 * parallel, that was a harmless race
2916 * between allocation and the cpuset
2917 * update
2918 */
2919 return slab;
2920 }
2921 }
2922 }
2923 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2924 #endif /* CONFIG_NUMA */
2925 return NULL;
2926 }
2927
2928 /*
2929 * Get a partial slab, lock it and return it.
2930 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2931 static struct slab *get_partial(struct kmem_cache *s, int node,
2932 struct partial_context *pc)
2933 {
2934 struct slab *slab;
2935 int searchnode = node;
2936
2937 if (node == NUMA_NO_NODE)
2938 searchnode = numa_mem_id();
2939
2940 slab = get_partial_node(s, get_node(s, searchnode), pc);
2941 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2942 return slab;
2943
2944 return get_any_partial(s, pc);
2945 }
2946
2947 #ifndef CONFIG_SLUB_TINY
2948
2949 #ifdef CONFIG_PREEMPTION
2950 /*
2951 * Calculate the next globally unique transaction for disambiguation
2952 * during cmpxchg. The transactions start with the cpu number and are then
2953 * incremented by CONFIG_NR_CPUS.
2954 */
2955 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2956 #else
2957 /*
2958 * No preemption supported therefore also no need to check for
2959 * different cpus.
2960 */
2961 #define TID_STEP 1
2962 #endif /* CONFIG_PREEMPTION */
2963
next_tid(unsigned long tid)2964 static inline unsigned long next_tid(unsigned long tid)
2965 {
2966 return tid + TID_STEP;
2967 }
2968
2969 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2970 static inline unsigned int tid_to_cpu(unsigned long tid)
2971 {
2972 return tid % TID_STEP;
2973 }
2974
tid_to_event(unsigned long tid)2975 static inline unsigned long tid_to_event(unsigned long tid)
2976 {
2977 return tid / TID_STEP;
2978 }
2979 #endif
2980
init_tid(int cpu)2981 static inline unsigned int init_tid(int cpu)
2982 {
2983 return cpu;
2984 }
2985
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2986 static inline void note_cmpxchg_failure(const char *n,
2987 const struct kmem_cache *s, unsigned long tid)
2988 {
2989 #ifdef SLUB_DEBUG_CMPXCHG
2990 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2991
2992 pr_info("%s %s: cmpxchg redo ", n, s->name);
2993
2994 #ifdef CONFIG_PREEMPTION
2995 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2996 pr_warn("due to cpu change %d -> %d\n",
2997 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2998 else
2999 #endif
3000 if (tid_to_event(tid) != tid_to_event(actual_tid))
3001 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3002 tid_to_event(tid), tid_to_event(actual_tid));
3003 else
3004 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3005 actual_tid, tid, next_tid(tid));
3006 #endif
3007 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3008 }
3009
init_kmem_cache_cpus(struct kmem_cache * s)3010 static void init_kmem_cache_cpus(struct kmem_cache *s)
3011 {
3012 int cpu;
3013 struct kmem_cache_cpu *c;
3014
3015 for_each_possible_cpu(cpu) {
3016 c = per_cpu_ptr(s->cpu_slab, cpu);
3017 local_lock_init(&c->lock);
3018 c->tid = init_tid(cpu);
3019 }
3020 }
3021
3022 /*
3023 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3024 * unfreezes the slabs and puts it on the proper list.
3025 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3026 * by the caller.
3027 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3028 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3029 void *freelist)
3030 {
3031 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3032 int free_delta = 0;
3033 void *nextfree, *freelist_iter, *freelist_tail;
3034 int tail = DEACTIVATE_TO_HEAD;
3035 unsigned long flags = 0;
3036 struct slab new;
3037 struct slab old;
3038
3039 if (READ_ONCE(slab->freelist)) {
3040 stat(s, DEACTIVATE_REMOTE_FREES);
3041 tail = DEACTIVATE_TO_TAIL;
3042 }
3043
3044 /*
3045 * Stage one: Count the objects on cpu's freelist as free_delta and
3046 * remember the last object in freelist_tail for later splicing.
3047 */
3048 freelist_tail = NULL;
3049 freelist_iter = freelist;
3050 while (freelist_iter) {
3051 nextfree = get_freepointer(s, freelist_iter);
3052
3053 /*
3054 * If 'nextfree' is invalid, it is possible that the object at
3055 * 'freelist_iter' is already corrupted. So isolate all objects
3056 * starting at 'freelist_iter' by skipping them.
3057 */
3058 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3059 break;
3060
3061 freelist_tail = freelist_iter;
3062 free_delta++;
3063
3064 freelist_iter = nextfree;
3065 }
3066
3067 /*
3068 * Stage two: Unfreeze the slab while splicing the per-cpu
3069 * freelist to the head of slab's freelist.
3070 */
3071 do {
3072 old.freelist = READ_ONCE(slab->freelist);
3073 old.counters = READ_ONCE(slab->counters);
3074 VM_BUG_ON(!old.frozen);
3075
3076 /* Determine target state of the slab */
3077 new.counters = old.counters;
3078 new.frozen = 0;
3079 if (freelist_tail) {
3080 new.inuse -= free_delta;
3081 set_freepointer(s, freelist_tail, old.freelist);
3082 new.freelist = freelist;
3083 } else {
3084 new.freelist = old.freelist;
3085 }
3086 } while (!slab_update_freelist(s, slab,
3087 old.freelist, old.counters,
3088 new.freelist, new.counters,
3089 "unfreezing slab"));
3090
3091 /*
3092 * Stage three: Manipulate the slab list based on the updated state.
3093 */
3094 if (!new.inuse && n->nr_partial >= s->min_partial) {
3095 stat(s, DEACTIVATE_EMPTY);
3096 discard_slab(s, slab);
3097 stat(s, FREE_SLAB);
3098 } else if (new.freelist) {
3099 spin_lock_irqsave(&n->list_lock, flags);
3100 add_partial(n, slab, tail);
3101 spin_unlock_irqrestore(&n->list_lock, flags);
3102 stat(s, tail);
3103 } else {
3104 stat(s, DEACTIVATE_FULL);
3105 }
3106 }
3107
3108 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3109 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3110 {
3111 struct kmem_cache_node *n = NULL, *n2 = NULL;
3112 struct slab *slab, *slab_to_discard = NULL;
3113 unsigned long flags = 0;
3114
3115 while (partial_slab) {
3116 slab = partial_slab;
3117 partial_slab = slab->next;
3118
3119 n2 = get_node(s, slab_nid(slab));
3120 if (n != n2) {
3121 if (n)
3122 spin_unlock_irqrestore(&n->list_lock, flags);
3123
3124 n = n2;
3125 spin_lock_irqsave(&n->list_lock, flags);
3126 }
3127
3128 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3129 slab->next = slab_to_discard;
3130 slab_to_discard = slab;
3131 } else {
3132 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3133 stat(s, FREE_ADD_PARTIAL);
3134 }
3135 }
3136
3137 if (n)
3138 spin_unlock_irqrestore(&n->list_lock, flags);
3139
3140 while (slab_to_discard) {
3141 slab = slab_to_discard;
3142 slab_to_discard = slab_to_discard->next;
3143
3144 stat(s, DEACTIVATE_EMPTY);
3145 discard_slab(s, slab);
3146 stat(s, FREE_SLAB);
3147 }
3148 }
3149
3150 /*
3151 * Put all the cpu partial slabs to the node partial list.
3152 */
put_partials(struct kmem_cache * s)3153 static void put_partials(struct kmem_cache *s)
3154 {
3155 struct slab *partial_slab;
3156 unsigned long flags;
3157
3158 local_lock_irqsave(&s->cpu_slab->lock, flags);
3159 partial_slab = this_cpu_read(s->cpu_slab->partial);
3160 this_cpu_write(s->cpu_slab->partial, NULL);
3161 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3162
3163 if (partial_slab)
3164 __put_partials(s, partial_slab);
3165 }
3166
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3167 static void put_partials_cpu(struct kmem_cache *s,
3168 struct kmem_cache_cpu *c)
3169 {
3170 struct slab *partial_slab;
3171
3172 partial_slab = slub_percpu_partial(c);
3173 c->partial = NULL;
3174
3175 if (partial_slab)
3176 __put_partials(s, partial_slab);
3177 }
3178
3179 /*
3180 * Put a slab into a partial slab slot if available.
3181 *
3182 * If we did not find a slot then simply move all the partials to the
3183 * per node partial list.
3184 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3185 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3186 {
3187 struct slab *oldslab;
3188 struct slab *slab_to_put = NULL;
3189 unsigned long flags;
3190 int slabs = 0;
3191
3192 local_lock_irqsave(&s->cpu_slab->lock, flags);
3193
3194 oldslab = this_cpu_read(s->cpu_slab->partial);
3195
3196 if (oldslab) {
3197 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3198 /*
3199 * Partial array is full. Move the existing set to the
3200 * per node partial list. Postpone the actual unfreezing
3201 * outside of the critical section.
3202 */
3203 slab_to_put = oldslab;
3204 oldslab = NULL;
3205 } else {
3206 slabs = oldslab->slabs;
3207 }
3208 }
3209
3210 slabs++;
3211
3212 slab->slabs = slabs;
3213 slab->next = oldslab;
3214
3215 this_cpu_write(s->cpu_slab->partial, slab);
3216
3217 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3218
3219 if (slab_to_put) {
3220 __put_partials(s, slab_to_put);
3221 stat(s, CPU_PARTIAL_DRAIN);
3222 }
3223 }
3224
3225 #else /* CONFIG_SLUB_CPU_PARTIAL */
3226
put_partials(struct kmem_cache * s)3227 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3228 static inline void put_partials_cpu(struct kmem_cache *s,
3229 struct kmem_cache_cpu *c) { }
3230
3231 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3232
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3233 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3234 {
3235 unsigned long flags;
3236 struct slab *slab;
3237 void *freelist;
3238
3239 local_lock_irqsave(&s->cpu_slab->lock, flags);
3240
3241 slab = c->slab;
3242 freelist = c->freelist;
3243
3244 c->slab = NULL;
3245 c->freelist = NULL;
3246 c->tid = next_tid(c->tid);
3247
3248 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3249
3250 if (slab) {
3251 deactivate_slab(s, slab, freelist);
3252 stat(s, CPUSLAB_FLUSH);
3253 }
3254 }
3255
__flush_cpu_slab(struct kmem_cache * s,int cpu)3256 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3257 {
3258 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3259 void *freelist = c->freelist;
3260 struct slab *slab = c->slab;
3261
3262 c->slab = NULL;
3263 c->freelist = NULL;
3264 c->tid = next_tid(c->tid);
3265
3266 if (slab) {
3267 deactivate_slab(s, slab, freelist);
3268 stat(s, CPUSLAB_FLUSH);
3269 }
3270
3271 put_partials_cpu(s, c);
3272 }
3273
3274 struct slub_flush_work {
3275 struct work_struct work;
3276 struct kmem_cache *s;
3277 bool skip;
3278 };
3279
3280 /*
3281 * Flush cpu slab.
3282 *
3283 * Called from CPU work handler with migration disabled.
3284 */
flush_cpu_slab(struct work_struct * w)3285 static void flush_cpu_slab(struct work_struct *w)
3286 {
3287 struct kmem_cache *s;
3288 struct kmem_cache_cpu *c;
3289 struct slub_flush_work *sfw;
3290
3291 sfw = container_of(w, struct slub_flush_work, work);
3292
3293 s = sfw->s;
3294 c = this_cpu_ptr(s->cpu_slab);
3295
3296 if (c->slab)
3297 flush_slab(s, c);
3298
3299 put_partials(s);
3300 }
3301
has_cpu_slab(int cpu,struct kmem_cache * s)3302 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3303 {
3304 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3305
3306 return c->slab || slub_percpu_partial(c);
3307 }
3308
3309 static DEFINE_MUTEX(flush_lock);
3310 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3311
flush_all_cpus_locked(struct kmem_cache * s)3312 static void flush_all_cpus_locked(struct kmem_cache *s)
3313 {
3314 struct slub_flush_work *sfw;
3315 unsigned int cpu;
3316
3317 lockdep_assert_cpus_held();
3318 mutex_lock(&flush_lock);
3319
3320 for_each_online_cpu(cpu) {
3321 sfw = &per_cpu(slub_flush, cpu);
3322 if (!has_cpu_slab(cpu, s)) {
3323 sfw->skip = true;
3324 continue;
3325 }
3326 INIT_WORK(&sfw->work, flush_cpu_slab);
3327 sfw->skip = false;
3328 sfw->s = s;
3329 queue_work_on(cpu, flushwq, &sfw->work);
3330 }
3331
3332 for_each_online_cpu(cpu) {
3333 sfw = &per_cpu(slub_flush, cpu);
3334 if (sfw->skip)
3335 continue;
3336 flush_work(&sfw->work);
3337 }
3338
3339 mutex_unlock(&flush_lock);
3340 }
3341
flush_all(struct kmem_cache * s)3342 static void flush_all(struct kmem_cache *s)
3343 {
3344 cpus_read_lock();
3345 flush_all_cpus_locked(s);
3346 cpus_read_unlock();
3347 }
3348
3349 /*
3350 * Use the cpu notifier to insure that the cpu slabs are flushed when
3351 * necessary.
3352 */
slub_cpu_dead(unsigned int cpu)3353 static int slub_cpu_dead(unsigned int cpu)
3354 {
3355 struct kmem_cache *s;
3356
3357 mutex_lock(&slab_mutex);
3358 list_for_each_entry(s, &slab_caches, list)
3359 __flush_cpu_slab(s, cpu);
3360 mutex_unlock(&slab_mutex);
3361 return 0;
3362 }
3363
3364 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3365 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3366 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3367 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3368 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3369 #endif /* CONFIG_SLUB_TINY */
3370
3371 /*
3372 * Check if the objects in a per cpu structure fit numa
3373 * locality expectations.
3374 */
node_match(struct slab * slab,int node)3375 static inline int node_match(struct slab *slab, int node)
3376 {
3377 #ifdef CONFIG_NUMA
3378 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3379 return 0;
3380 #endif
3381 return 1;
3382 }
3383
3384 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3385 static int count_free(struct slab *slab)
3386 {
3387 return slab->objects - slab->inuse;
3388 }
3389
node_nr_objs(struct kmem_cache_node * n)3390 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3391 {
3392 return atomic_long_read(&n->total_objects);
3393 }
3394
3395 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3396 static inline bool free_debug_processing(struct kmem_cache *s,
3397 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3398 unsigned long addr, depot_stack_handle_t handle)
3399 {
3400 bool checks_ok = false;
3401 void *object = head;
3402 int cnt = 0;
3403
3404 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3405 if (!check_slab(s, slab))
3406 goto out;
3407 }
3408
3409 if (slab->inuse < *bulk_cnt) {
3410 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3411 slab->inuse, *bulk_cnt);
3412 goto out;
3413 }
3414
3415 next_object:
3416
3417 if (++cnt > *bulk_cnt)
3418 goto out_cnt;
3419
3420 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3421 if (!free_consistency_checks(s, slab, object, addr))
3422 goto out;
3423 }
3424
3425 if (s->flags & SLAB_STORE_USER)
3426 set_track_update(s, object, TRACK_FREE, addr, handle);
3427 trace(s, slab, object, 0);
3428 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3429 init_object(s, object, SLUB_RED_INACTIVE);
3430
3431 /* Reached end of constructed freelist yet? */
3432 if (object != tail) {
3433 object = get_freepointer(s, object);
3434 goto next_object;
3435 }
3436 checks_ok = true;
3437
3438 out_cnt:
3439 if (cnt != *bulk_cnt) {
3440 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3441 *bulk_cnt, cnt);
3442 *bulk_cnt = cnt;
3443 }
3444
3445 out:
3446
3447 if (!checks_ok)
3448 slab_fix(s, "Object at 0x%p not freed", object);
3449
3450 return checks_ok;
3451 }
3452 #endif /* CONFIG_SLUB_DEBUG */
3453
3454 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3455 static unsigned long count_partial(struct kmem_cache_node *n,
3456 int (*get_count)(struct slab *))
3457 {
3458 unsigned long flags;
3459 unsigned long x = 0;
3460 struct slab *slab;
3461
3462 spin_lock_irqsave(&n->list_lock, flags);
3463 list_for_each_entry(slab, &n->partial, slab_list)
3464 x += get_count(slab);
3465 spin_unlock_irqrestore(&n->list_lock, flags);
3466 return x;
3467 }
3468 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3469
3470 #ifdef CONFIG_SLUB_DEBUG
3471 #define MAX_PARTIAL_TO_SCAN 10000
3472
count_partial_free_approx(struct kmem_cache_node * n)3473 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3474 {
3475 unsigned long flags;
3476 unsigned long x = 0;
3477 struct slab *slab;
3478
3479 spin_lock_irqsave(&n->list_lock, flags);
3480 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3481 list_for_each_entry(slab, &n->partial, slab_list)
3482 x += slab->objects - slab->inuse;
3483 } else {
3484 /*
3485 * For a long list, approximate the total count of objects in
3486 * it to meet the limit on the number of slabs to scan.
3487 * Scan from both the list's head and tail for better accuracy.
3488 */
3489 unsigned long scanned = 0;
3490
3491 list_for_each_entry(slab, &n->partial, slab_list) {
3492 x += slab->objects - slab->inuse;
3493 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3494 break;
3495 }
3496 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3497 x += slab->objects - slab->inuse;
3498 if (++scanned == MAX_PARTIAL_TO_SCAN)
3499 break;
3500 }
3501 x = mult_frac(x, n->nr_partial, scanned);
3502 x = min(x, node_nr_objs(n));
3503 }
3504 spin_unlock_irqrestore(&n->list_lock, flags);
3505 return x;
3506 }
3507
3508 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3509 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3510 {
3511 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3512 DEFAULT_RATELIMIT_BURST);
3513 int cpu = raw_smp_processor_id();
3514 int node;
3515 struct kmem_cache_node *n;
3516
3517 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3518 return;
3519
3520 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3521 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3522 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3523 s->name, s->object_size, s->size, oo_order(s->oo),
3524 oo_order(s->min));
3525
3526 if (oo_order(s->min) > get_order(s->object_size))
3527 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3528 s->name);
3529
3530 for_each_kmem_cache_node(s, node, n) {
3531 unsigned long nr_slabs;
3532 unsigned long nr_objs;
3533 unsigned long nr_free;
3534
3535 nr_free = count_partial_free_approx(n);
3536 nr_slabs = node_nr_slabs(n);
3537 nr_objs = node_nr_objs(n);
3538
3539 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3540 node, nr_slabs, nr_objs, nr_free);
3541 }
3542 }
3543 #else /* CONFIG_SLUB_DEBUG */
3544 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3545 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3546 #endif
3547
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3548 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3549 {
3550 if (unlikely(slab_test_pfmemalloc(slab)))
3551 return gfp_pfmemalloc_allowed(gfpflags);
3552
3553 return true;
3554 }
3555
3556 #ifndef CONFIG_SLUB_TINY
3557 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3558 __update_cpu_freelist_fast(struct kmem_cache *s,
3559 void *freelist_old, void *freelist_new,
3560 unsigned long tid)
3561 {
3562 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3563 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3564
3565 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3566 &old.full, new.full);
3567 }
3568
3569 /*
3570 * Check the slab->freelist and either transfer the freelist to the
3571 * per cpu freelist or deactivate the slab.
3572 *
3573 * The slab is still frozen if the return value is not NULL.
3574 *
3575 * If this function returns NULL then the slab has been unfrozen.
3576 */
get_freelist(struct kmem_cache * s,struct slab * slab)3577 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3578 {
3579 struct slab new;
3580 unsigned long counters;
3581 void *freelist;
3582
3583 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3584
3585 do {
3586 freelist = slab->freelist;
3587 counters = slab->counters;
3588
3589 new.counters = counters;
3590
3591 new.inuse = slab->objects;
3592 new.frozen = freelist != NULL;
3593
3594 } while (!__slab_update_freelist(s, slab,
3595 freelist, counters,
3596 NULL, new.counters,
3597 "get_freelist"));
3598
3599 return freelist;
3600 }
3601
3602 /*
3603 * Freeze the partial slab and return the pointer to the freelist.
3604 */
freeze_slab(struct kmem_cache * s,struct slab * slab)3605 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3606 {
3607 struct slab new;
3608 unsigned long counters;
3609 void *freelist;
3610
3611 do {
3612 freelist = slab->freelist;
3613 counters = slab->counters;
3614
3615 new.counters = counters;
3616 VM_BUG_ON(new.frozen);
3617
3618 new.inuse = slab->objects;
3619 new.frozen = 1;
3620
3621 } while (!slab_update_freelist(s, slab,
3622 freelist, counters,
3623 NULL, new.counters,
3624 "freeze_slab"));
3625
3626 return freelist;
3627 }
3628
3629 /*
3630 * Slow path. The lockless freelist is empty or we need to perform
3631 * debugging duties.
3632 *
3633 * Processing is still very fast if new objects have been freed to the
3634 * regular freelist. In that case we simply take over the regular freelist
3635 * as the lockless freelist and zap the regular freelist.
3636 *
3637 * If that is not working then we fall back to the partial lists. We take the
3638 * first element of the freelist as the object to allocate now and move the
3639 * rest of the freelist to the lockless freelist.
3640 *
3641 * And if we were unable to get a new slab from the partial slab lists then
3642 * we need to allocate a new slab. This is the slowest path since it involves
3643 * a call to the page allocator and the setup of a new slab.
3644 *
3645 * Version of __slab_alloc to use when we know that preemption is
3646 * already disabled (which is the case for bulk allocation).
3647 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3648 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3649 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3650 {
3651 void *freelist;
3652 struct slab *slab;
3653 unsigned long flags;
3654 struct partial_context pc;
3655 bool try_thisnode = true;
3656
3657 stat(s, ALLOC_SLOWPATH);
3658
3659 reread_slab:
3660
3661 slab = READ_ONCE(c->slab);
3662 if (!slab) {
3663 /*
3664 * if the node is not online or has no normal memory, just
3665 * ignore the node constraint
3666 */
3667 if (unlikely(node != NUMA_NO_NODE &&
3668 !node_isset(node, slab_nodes)))
3669 node = NUMA_NO_NODE;
3670 goto new_slab;
3671 }
3672
3673 if (unlikely(!node_match(slab, node))) {
3674 /*
3675 * same as above but node_match() being false already
3676 * implies node != NUMA_NO_NODE
3677 */
3678 if (!node_isset(node, slab_nodes)) {
3679 node = NUMA_NO_NODE;
3680 } else {
3681 stat(s, ALLOC_NODE_MISMATCH);
3682 goto deactivate_slab;
3683 }
3684 }
3685
3686 /*
3687 * By rights, we should be searching for a slab page that was
3688 * PFMEMALLOC but right now, we are losing the pfmemalloc
3689 * information when the page leaves the per-cpu allocator
3690 */
3691 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3692 goto deactivate_slab;
3693
3694 /* must check again c->slab in case we got preempted and it changed */
3695 local_lock_irqsave(&s->cpu_slab->lock, flags);
3696 if (unlikely(slab != c->slab)) {
3697 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3698 goto reread_slab;
3699 }
3700 freelist = c->freelist;
3701 if (freelist)
3702 goto load_freelist;
3703
3704 freelist = get_freelist(s, slab);
3705
3706 if (!freelist) {
3707 c->slab = NULL;
3708 c->tid = next_tid(c->tid);
3709 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3710 stat(s, DEACTIVATE_BYPASS);
3711 goto new_slab;
3712 }
3713
3714 stat(s, ALLOC_REFILL);
3715
3716 load_freelist:
3717
3718 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3719
3720 /*
3721 * freelist is pointing to the list of objects to be used.
3722 * slab is pointing to the slab from which the objects are obtained.
3723 * That slab must be frozen for per cpu allocations to work.
3724 */
3725 VM_BUG_ON(!c->slab->frozen);
3726 c->freelist = get_freepointer(s, freelist);
3727 c->tid = next_tid(c->tid);
3728 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3729 return freelist;
3730
3731 deactivate_slab:
3732
3733 local_lock_irqsave(&s->cpu_slab->lock, flags);
3734 if (slab != c->slab) {
3735 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3736 goto reread_slab;
3737 }
3738 freelist = c->freelist;
3739 c->slab = NULL;
3740 c->freelist = NULL;
3741 c->tid = next_tid(c->tid);
3742 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3743 deactivate_slab(s, slab, freelist);
3744
3745 new_slab:
3746
3747 #ifdef CONFIG_SLUB_CPU_PARTIAL
3748 while (slub_percpu_partial(c)) {
3749 local_lock_irqsave(&s->cpu_slab->lock, flags);
3750 if (unlikely(c->slab)) {
3751 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3752 goto reread_slab;
3753 }
3754 if (unlikely(!slub_percpu_partial(c))) {
3755 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3756 /* we were preempted and partial list got empty */
3757 goto new_objects;
3758 }
3759
3760 slab = slub_percpu_partial(c);
3761 slub_set_percpu_partial(c, slab);
3762
3763 if (likely(node_match(slab, node) &&
3764 pfmemalloc_match(slab, gfpflags))) {
3765 c->slab = slab;
3766 freelist = get_freelist(s, slab);
3767 VM_BUG_ON(!freelist);
3768 stat(s, CPU_PARTIAL_ALLOC);
3769 goto load_freelist;
3770 }
3771
3772 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3773
3774 slab->next = NULL;
3775 __put_partials(s, slab);
3776 }
3777 #endif
3778
3779 new_objects:
3780
3781 pc.flags = gfpflags;
3782 /*
3783 * When a preferred node is indicated but no __GFP_THISNODE
3784 *
3785 * 1) try to get a partial slab from target node only by having
3786 * __GFP_THISNODE in pc.flags for get_partial()
3787 * 2) if 1) failed, try to allocate a new slab from target node with
3788 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3789 * 3) if 2) failed, retry with original gfpflags which will allow
3790 * get_partial() try partial lists of other nodes before potentially
3791 * allocating new page from other nodes
3792 */
3793 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3794 && try_thisnode))
3795 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3796
3797 pc.orig_size = orig_size;
3798 slab = get_partial(s, node, &pc);
3799 if (slab) {
3800 if (kmem_cache_debug(s)) {
3801 freelist = pc.object;
3802 /*
3803 * For debug caches here we had to go through
3804 * alloc_single_from_partial() so just store the
3805 * tracking info and return the object.
3806 */
3807 if (s->flags & SLAB_STORE_USER)
3808 set_track(s, freelist, TRACK_ALLOC, addr);
3809
3810 return freelist;
3811 }
3812
3813 freelist = freeze_slab(s, slab);
3814 goto retry_load_slab;
3815 }
3816
3817 slub_put_cpu_ptr(s->cpu_slab);
3818 slab = new_slab(s, pc.flags, node);
3819 c = slub_get_cpu_ptr(s->cpu_slab);
3820
3821 if (unlikely(!slab)) {
3822 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3823 && try_thisnode) {
3824 try_thisnode = false;
3825 goto new_objects;
3826 }
3827 slab_out_of_memory(s, gfpflags, node);
3828 return NULL;
3829 }
3830
3831 stat(s, ALLOC_SLAB);
3832
3833 if (kmem_cache_debug(s)) {
3834 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3835
3836 if (unlikely(!freelist))
3837 goto new_objects;
3838
3839 if (s->flags & SLAB_STORE_USER)
3840 set_track(s, freelist, TRACK_ALLOC, addr);
3841
3842 return freelist;
3843 }
3844
3845 /*
3846 * No other reference to the slab yet so we can
3847 * muck around with it freely without cmpxchg
3848 */
3849 freelist = slab->freelist;
3850 slab->freelist = NULL;
3851 slab->inuse = slab->objects;
3852 slab->frozen = 1;
3853
3854 inc_slabs_node(s, slab_nid(slab), slab->objects);
3855
3856 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3857 /*
3858 * For !pfmemalloc_match() case we don't load freelist so that
3859 * we don't make further mismatched allocations easier.
3860 */
3861 deactivate_slab(s, slab, get_freepointer(s, freelist));
3862 return freelist;
3863 }
3864
3865 retry_load_slab:
3866
3867 local_lock_irqsave(&s->cpu_slab->lock, flags);
3868 if (unlikely(c->slab)) {
3869 void *flush_freelist = c->freelist;
3870 struct slab *flush_slab = c->slab;
3871
3872 c->slab = NULL;
3873 c->freelist = NULL;
3874 c->tid = next_tid(c->tid);
3875
3876 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3877
3878 deactivate_slab(s, flush_slab, flush_freelist);
3879
3880 stat(s, CPUSLAB_FLUSH);
3881
3882 goto retry_load_slab;
3883 }
3884 c->slab = slab;
3885
3886 goto load_freelist;
3887 }
3888
3889 /*
3890 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3891 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3892 * pointer.
3893 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3894 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3895 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3896 {
3897 void *p;
3898
3899 #ifdef CONFIG_PREEMPT_COUNT
3900 /*
3901 * We may have been preempted and rescheduled on a different
3902 * cpu before disabling preemption. Need to reload cpu area
3903 * pointer.
3904 */
3905 c = slub_get_cpu_ptr(s->cpu_slab);
3906 #endif
3907
3908 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3909 #ifdef CONFIG_PREEMPT_COUNT
3910 slub_put_cpu_ptr(s->cpu_slab);
3911 #endif
3912 return p;
3913 }
3914
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3915 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3916 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3917 {
3918 struct kmem_cache_cpu *c;
3919 struct slab *slab;
3920 unsigned long tid;
3921 void *object;
3922
3923 redo:
3924 /*
3925 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3926 * enabled. We may switch back and forth between cpus while
3927 * reading from one cpu area. That does not matter as long
3928 * as we end up on the original cpu again when doing the cmpxchg.
3929 *
3930 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3931 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3932 * the tid. If we are preempted and switched to another cpu between the
3933 * two reads, it's OK as the two are still associated with the same cpu
3934 * and cmpxchg later will validate the cpu.
3935 */
3936 c = raw_cpu_ptr(s->cpu_slab);
3937 tid = READ_ONCE(c->tid);
3938
3939 /*
3940 * Irqless object alloc/free algorithm used here depends on sequence
3941 * of fetching cpu_slab's data. tid should be fetched before anything
3942 * on c to guarantee that object and slab associated with previous tid
3943 * won't be used with current tid. If we fetch tid first, object and
3944 * slab could be one associated with next tid and our alloc/free
3945 * request will be failed. In this case, we will retry. So, no problem.
3946 */
3947 barrier();
3948
3949 /*
3950 * The transaction ids are globally unique per cpu and per operation on
3951 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3952 * occurs on the right processor and that there was no operation on the
3953 * linked list in between.
3954 */
3955
3956 object = c->freelist;
3957 slab = c->slab;
3958
3959 if (!USE_LOCKLESS_FAST_PATH() ||
3960 unlikely(!object || !slab || !node_match(slab, node))) {
3961 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3962 } else {
3963 void *next_object = get_freepointer_safe(s, object);
3964
3965 /*
3966 * The cmpxchg will only match if there was no additional
3967 * operation and if we are on the right processor.
3968 *
3969 * The cmpxchg does the following atomically (without lock
3970 * semantics!)
3971 * 1. Relocate first pointer to the current per cpu area.
3972 * 2. Verify that tid and freelist have not been changed
3973 * 3. If they were not changed replace tid and freelist
3974 *
3975 * Since this is without lock semantics the protection is only
3976 * against code executing on this cpu *not* from access by
3977 * other cpus.
3978 */
3979 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3980 note_cmpxchg_failure("slab_alloc", s, tid);
3981 goto redo;
3982 }
3983 prefetch_freepointer(s, next_object);
3984 stat(s, ALLOC_FASTPATH);
3985 }
3986
3987 return object;
3988 }
3989 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3990 static void *__slab_alloc_node(struct kmem_cache *s,
3991 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3992 {
3993 struct partial_context pc;
3994 struct slab *slab;
3995 void *object;
3996
3997 pc.flags = gfpflags;
3998 pc.orig_size = orig_size;
3999 slab = get_partial(s, node, &pc);
4000
4001 if (slab)
4002 return pc.object;
4003
4004 slab = new_slab(s, gfpflags, node);
4005 if (unlikely(!slab)) {
4006 slab_out_of_memory(s, gfpflags, node);
4007 return NULL;
4008 }
4009
4010 object = alloc_single_from_new_slab(s, slab, orig_size);
4011
4012 return object;
4013 }
4014 #endif /* CONFIG_SLUB_TINY */
4015
4016 /*
4017 * If the object has been wiped upon free, make sure it's fully initialized by
4018 * zeroing out freelist pointer.
4019 *
4020 * Note that we also wipe custom freelist pointers.
4021 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4022 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4023 void *obj)
4024 {
4025 if (unlikely(slab_want_init_on_free(s)) && obj &&
4026 !freeptr_outside_object(s))
4027 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4028 0, sizeof(void *));
4029 }
4030
4031 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4032 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4033 {
4034 flags &= gfp_allowed_mask;
4035
4036 might_alloc(flags);
4037
4038 if (unlikely(should_failslab(s, flags)))
4039 return NULL;
4040
4041 return s;
4042 }
4043
4044 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4045 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4046 gfp_t flags, size_t size, void **p, bool init,
4047 unsigned int orig_size)
4048 {
4049 unsigned int zero_size = s->object_size;
4050 bool kasan_init = init;
4051 size_t i;
4052 gfp_t init_flags = flags & gfp_allowed_mask;
4053
4054 /*
4055 * For kmalloc object, the allocated memory size(object_size) is likely
4056 * larger than the requested size(orig_size). If redzone check is
4057 * enabled for the extra space, don't zero it, as it will be redzoned
4058 * soon. The redzone operation for this extra space could be seen as a
4059 * replacement of current poisoning under certain debug option, and
4060 * won't break other sanity checks.
4061 */
4062 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4063 (s->flags & SLAB_KMALLOC))
4064 zero_size = orig_size;
4065
4066 /*
4067 * When slab_debug is enabled, avoid memory initialization integrated
4068 * into KASAN and instead zero out the memory via the memset below with
4069 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4070 * cause false-positive reports. This does not lead to a performance
4071 * penalty on production builds, as slab_debug is not intended to be
4072 * enabled there.
4073 */
4074 if (__slub_debug_enabled())
4075 kasan_init = false;
4076
4077 /*
4078 * As memory initialization might be integrated into KASAN,
4079 * kasan_slab_alloc and initialization memset must be
4080 * kept together to avoid discrepancies in behavior.
4081 *
4082 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4083 */
4084 for (i = 0; i < size; i++) {
4085 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4086 if (p[i] && init && (!kasan_init ||
4087 !kasan_has_integrated_init()))
4088 memset(p[i], 0, zero_size);
4089 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4090 s->flags, init_flags);
4091 kmsan_slab_alloc(s, p[i], init_flags);
4092 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4093 }
4094
4095 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4096 }
4097
4098 /*
4099 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4100 * have the fastpath folded into their functions. So no function call
4101 * overhead for requests that can be satisfied on the fastpath.
4102 *
4103 * The fastpath works by first checking if the lockless freelist can be used.
4104 * If not then __slab_alloc is called for slow processing.
4105 *
4106 * Otherwise we can simply pick the next object from the lockless free list.
4107 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4108 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4109 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4110 {
4111 void *object;
4112 bool init = false;
4113
4114 s = slab_pre_alloc_hook(s, gfpflags);
4115 if (unlikely(!s))
4116 return NULL;
4117
4118 object = kfence_alloc(s, orig_size, gfpflags);
4119 if (unlikely(object))
4120 goto out;
4121
4122 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4123
4124 maybe_wipe_obj_freeptr(s, object);
4125 init = slab_want_init_on_alloc(gfpflags, s);
4126
4127 out:
4128 /*
4129 * When init equals 'true', like for kzalloc() family, only
4130 * @orig_size bytes might be zeroed instead of s->object_size
4131 * In case this fails due to memcg_slab_post_alloc_hook(),
4132 * object is set to NULL
4133 */
4134 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4135
4136 return object;
4137 }
4138
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4139 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4140 {
4141 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4142 s->object_size);
4143
4144 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4145
4146 return ret;
4147 }
4148 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4149
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4150 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4151 gfp_t gfpflags)
4152 {
4153 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4154 s->object_size);
4155
4156 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4157
4158 return ret;
4159 }
4160 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4161
kmem_cache_charge(void * objp,gfp_t gfpflags)4162 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4163 {
4164 if (!memcg_kmem_online())
4165 return true;
4166
4167 return memcg_slab_post_charge(objp, gfpflags);
4168 }
4169 EXPORT_SYMBOL(kmem_cache_charge);
4170
4171 /**
4172 * kmem_cache_alloc_node - Allocate an object on the specified node
4173 * @s: The cache to allocate from.
4174 * @gfpflags: See kmalloc().
4175 * @node: node number of the target node.
4176 *
4177 * Identical to kmem_cache_alloc but it will allocate memory on the given
4178 * node, which can improve the performance for cpu bound structures.
4179 *
4180 * Fallback to other node is possible if __GFP_THISNODE is not set.
4181 *
4182 * Return: pointer to the new object or %NULL in case of error
4183 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4184 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4185 {
4186 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4187
4188 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4189
4190 return ret;
4191 }
4192 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4193
4194 /*
4195 * To avoid unnecessary overhead, we pass through large allocation requests
4196 * directly to the page allocator. We use __GFP_COMP, because we will need to
4197 * know the allocation order to free the pages properly in kfree.
4198 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4199 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4200 {
4201 struct folio *folio;
4202 void *ptr = NULL;
4203 unsigned int order = get_order(size);
4204
4205 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4206 flags = kmalloc_fix_flags(flags);
4207
4208 flags |= __GFP_COMP;
4209 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4210 if (folio) {
4211 ptr = folio_address(folio);
4212 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4213 PAGE_SIZE << order);
4214 }
4215
4216 ptr = kasan_kmalloc_large(ptr, size, flags);
4217 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4218 kmemleak_alloc(ptr, size, 1, flags);
4219 kmsan_kmalloc_large(ptr, size, flags);
4220
4221 return ptr;
4222 }
4223
__kmalloc_large_noprof(size_t size,gfp_t flags)4224 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4225 {
4226 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4227
4228 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4229 flags, NUMA_NO_NODE);
4230 return ret;
4231 }
4232 EXPORT_SYMBOL(__kmalloc_large_noprof);
4233
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4234 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4235 {
4236 void *ret = ___kmalloc_large_node(size, flags, node);
4237
4238 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4239 flags, node);
4240 return ret;
4241 }
4242 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4243
4244 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4245 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4246 unsigned long caller)
4247 {
4248 struct kmem_cache *s;
4249 void *ret;
4250
4251 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4252 ret = __kmalloc_large_node_noprof(size, flags, node);
4253 trace_kmalloc(caller, ret, size,
4254 PAGE_SIZE << get_order(size), flags, node);
4255 return ret;
4256 }
4257
4258 if (unlikely(!size))
4259 return ZERO_SIZE_PTR;
4260
4261 s = kmalloc_slab(size, b, flags, caller);
4262
4263 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4264 ret = kasan_kmalloc(s, ret, size, flags);
4265 trace_kmalloc(caller, ret, size, s->size, flags, node);
4266 return ret;
4267 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4268 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4269 {
4270 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4271 }
4272 EXPORT_SYMBOL(__kmalloc_node_noprof);
4273
__kmalloc_noprof(size_t size,gfp_t flags)4274 void *__kmalloc_noprof(size_t size, gfp_t flags)
4275 {
4276 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4277 }
4278 EXPORT_SYMBOL(__kmalloc_noprof);
4279
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4280 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4281 int node, unsigned long caller)
4282 {
4283 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4284
4285 }
4286 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4287
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4288 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4289 {
4290 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4291 _RET_IP_, size);
4292
4293 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4294
4295 ret = kasan_kmalloc(s, ret, size, gfpflags);
4296 return ret;
4297 }
4298 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4299
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4300 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4301 int node, size_t size)
4302 {
4303 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4304
4305 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4306
4307 ret = kasan_kmalloc(s, ret, size, gfpflags);
4308 return ret;
4309 }
4310 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4311
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4312 static noinline void free_to_partial_list(
4313 struct kmem_cache *s, struct slab *slab,
4314 void *head, void *tail, int bulk_cnt,
4315 unsigned long addr)
4316 {
4317 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4318 struct slab *slab_free = NULL;
4319 int cnt = bulk_cnt;
4320 unsigned long flags;
4321 depot_stack_handle_t handle = 0;
4322
4323 if (s->flags & SLAB_STORE_USER)
4324 handle = set_track_prepare();
4325
4326 spin_lock_irqsave(&n->list_lock, flags);
4327
4328 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4329 void *prior = slab->freelist;
4330
4331 /* Perform the actual freeing while we still hold the locks */
4332 slab->inuse -= cnt;
4333 set_freepointer(s, tail, prior);
4334 slab->freelist = head;
4335
4336 /*
4337 * If the slab is empty, and node's partial list is full,
4338 * it should be discarded anyway no matter it's on full or
4339 * partial list.
4340 */
4341 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4342 slab_free = slab;
4343
4344 if (!prior) {
4345 /* was on full list */
4346 remove_full(s, n, slab);
4347 if (!slab_free) {
4348 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4349 stat(s, FREE_ADD_PARTIAL);
4350 }
4351 } else if (slab_free) {
4352 remove_partial(n, slab);
4353 stat(s, FREE_REMOVE_PARTIAL);
4354 }
4355 }
4356
4357 if (slab_free) {
4358 /*
4359 * Update the counters while still holding n->list_lock to
4360 * prevent spurious validation warnings
4361 */
4362 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4363 }
4364
4365 spin_unlock_irqrestore(&n->list_lock, flags);
4366
4367 if (slab_free) {
4368 stat(s, FREE_SLAB);
4369 free_slab(s, slab_free);
4370 }
4371 }
4372
4373 /*
4374 * Slow path handling. This may still be called frequently since objects
4375 * have a longer lifetime than the cpu slabs in most processing loads.
4376 *
4377 * So we still attempt to reduce cache line usage. Just take the slab
4378 * lock and free the item. If there is no additional partial slab
4379 * handling required then we can return immediately.
4380 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4381 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4382 void *head, void *tail, int cnt,
4383 unsigned long addr)
4384
4385 {
4386 void *prior;
4387 int was_frozen;
4388 struct slab new;
4389 unsigned long counters;
4390 struct kmem_cache_node *n = NULL;
4391 unsigned long flags;
4392 bool on_node_partial;
4393
4394 stat(s, FREE_SLOWPATH);
4395
4396 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4397 free_to_partial_list(s, slab, head, tail, cnt, addr);
4398 return;
4399 }
4400
4401 do {
4402 if (unlikely(n)) {
4403 spin_unlock_irqrestore(&n->list_lock, flags);
4404 n = NULL;
4405 }
4406 prior = slab->freelist;
4407 counters = slab->counters;
4408 set_freepointer(s, tail, prior);
4409 new.counters = counters;
4410 was_frozen = new.frozen;
4411 new.inuse -= cnt;
4412 if ((!new.inuse || !prior) && !was_frozen) {
4413 /* Needs to be taken off a list */
4414 if (!kmem_cache_has_cpu_partial(s) || prior) {
4415
4416 n = get_node(s, slab_nid(slab));
4417 /*
4418 * Speculatively acquire the list_lock.
4419 * If the cmpxchg does not succeed then we may
4420 * drop the list_lock without any processing.
4421 *
4422 * Otherwise the list_lock will synchronize with
4423 * other processors updating the list of slabs.
4424 */
4425 spin_lock_irqsave(&n->list_lock, flags);
4426
4427 on_node_partial = slab_test_node_partial(slab);
4428 }
4429 }
4430
4431 } while (!slab_update_freelist(s, slab,
4432 prior, counters,
4433 head, new.counters,
4434 "__slab_free"));
4435
4436 if (likely(!n)) {
4437
4438 if (likely(was_frozen)) {
4439 /*
4440 * The list lock was not taken therefore no list
4441 * activity can be necessary.
4442 */
4443 stat(s, FREE_FROZEN);
4444 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4445 /*
4446 * If we started with a full slab then put it onto the
4447 * per cpu partial list.
4448 */
4449 put_cpu_partial(s, slab, 1);
4450 stat(s, CPU_PARTIAL_FREE);
4451 }
4452
4453 return;
4454 }
4455
4456 /*
4457 * This slab was partially empty but not on the per-node partial list,
4458 * in which case we shouldn't manipulate its list, just return.
4459 */
4460 if (prior && !on_node_partial) {
4461 spin_unlock_irqrestore(&n->list_lock, flags);
4462 return;
4463 }
4464
4465 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4466 goto slab_empty;
4467
4468 /*
4469 * Objects left in the slab. If it was not on the partial list before
4470 * then add it.
4471 */
4472 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4473 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4474 stat(s, FREE_ADD_PARTIAL);
4475 }
4476 spin_unlock_irqrestore(&n->list_lock, flags);
4477 return;
4478
4479 slab_empty:
4480 if (prior) {
4481 /*
4482 * Slab on the partial list.
4483 */
4484 remove_partial(n, slab);
4485 stat(s, FREE_REMOVE_PARTIAL);
4486 }
4487
4488 spin_unlock_irqrestore(&n->list_lock, flags);
4489 stat(s, FREE_SLAB);
4490 discard_slab(s, slab);
4491 }
4492
4493 #ifndef CONFIG_SLUB_TINY
4494 /*
4495 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4496 * can perform fastpath freeing without additional function calls.
4497 *
4498 * The fastpath is only possible if we are freeing to the current cpu slab
4499 * of this processor. This typically the case if we have just allocated
4500 * the item before.
4501 *
4502 * If fastpath is not possible then fall back to __slab_free where we deal
4503 * with all sorts of special processing.
4504 *
4505 * Bulk free of a freelist with several objects (all pointing to the
4506 * same slab) possible by specifying head and tail ptr, plus objects
4507 * count (cnt). Bulk free indicated by tail pointer being set.
4508 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4509 static __always_inline void do_slab_free(struct kmem_cache *s,
4510 struct slab *slab, void *head, void *tail,
4511 int cnt, unsigned long addr)
4512 {
4513 struct kmem_cache_cpu *c;
4514 unsigned long tid;
4515 void **freelist;
4516
4517 redo:
4518 /*
4519 * Determine the currently cpus per cpu slab.
4520 * The cpu may change afterward. However that does not matter since
4521 * data is retrieved via this pointer. If we are on the same cpu
4522 * during the cmpxchg then the free will succeed.
4523 */
4524 c = raw_cpu_ptr(s->cpu_slab);
4525 tid = READ_ONCE(c->tid);
4526
4527 /* Same with comment on barrier() in __slab_alloc_node() */
4528 barrier();
4529
4530 if (unlikely(slab != c->slab)) {
4531 __slab_free(s, slab, head, tail, cnt, addr);
4532 return;
4533 }
4534
4535 if (USE_LOCKLESS_FAST_PATH()) {
4536 freelist = READ_ONCE(c->freelist);
4537
4538 set_freepointer(s, tail, freelist);
4539
4540 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4541 note_cmpxchg_failure("slab_free", s, tid);
4542 goto redo;
4543 }
4544 } else {
4545 /* Update the free list under the local lock */
4546 local_lock(&s->cpu_slab->lock);
4547 c = this_cpu_ptr(s->cpu_slab);
4548 if (unlikely(slab != c->slab)) {
4549 local_unlock(&s->cpu_slab->lock);
4550 goto redo;
4551 }
4552 tid = c->tid;
4553 freelist = c->freelist;
4554
4555 set_freepointer(s, tail, freelist);
4556 c->freelist = head;
4557 c->tid = next_tid(tid);
4558
4559 local_unlock(&s->cpu_slab->lock);
4560 }
4561 stat_add(s, FREE_FASTPATH, cnt);
4562 }
4563 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4564 static void do_slab_free(struct kmem_cache *s,
4565 struct slab *slab, void *head, void *tail,
4566 int cnt, unsigned long addr)
4567 {
4568 __slab_free(s, slab, head, tail, cnt, addr);
4569 }
4570 #endif /* CONFIG_SLUB_TINY */
4571
4572 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4573 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4574 unsigned long addr)
4575 {
4576 memcg_slab_free_hook(s, slab, &object, 1);
4577 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4578
4579 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4580 do_slab_free(s, slab, object, object, 1, addr);
4581 }
4582
4583 #ifdef CONFIG_MEMCG
4584 /* Do not inline the rare memcg charging failed path into the allocation path */
4585 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4586 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4587 {
4588 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4589 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4590 }
4591 #endif
4592
4593 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4594 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4595 void *tail, void **p, int cnt, unsigned long addr)
4596 {
4597 memcg_slab_free_hook(s, slab, p, cnt);
4598 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4599 /*
4600 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4601 * to remove objects, whose reuse must be delayed.
4602 */
4603 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4604 do_slab_free(s, slab, head, tail, cnt, addr);
4605 }
4606
4607 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4608 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4609 {
4610 struct rcu_delayed_free *delayed_free =
4611 container_of(rcu_head, struct rcu_delayed_free, head);
4612 void *object = delayed_free->object;
4613 struct slab *slab = virt_to_slab(object);
4614 struct kmem_cache *s;
4615
4616 kfree(delayed_free);
4617
4618 if (WARN_ON(is_kfence_address(object)))
4619 return;
4620
4621 /* find the object and the cache again */
4622 if (WARN_ON(!slab))
4623 return;
4624 s = slab->slab_cache;
4625 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4626 return;
4627
4628 /* resume freeing */
4629 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4630 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4631 }
4632 #endif /* CONFIG_SLUB_RCU_DEBUG */
4633
4634 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4635 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4636 {
4637 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4638 }
4639 #endif
4640
virt_to_cache(const void * obj)4641 static inline struct kmem_cache *virt_to_cache(const void *obj)
4642 {
4643 struct slab *slab;
4644
4645 slab = virt_to_slab(obj);
4646 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4647 return NULL;
4648 return slab->slab_cache;
4649 }
4650
cache_from_obj(struct kmem_cache * s,void * x)4651 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4652 {
4653 struct kmem_cache *cachep;
4654
4655 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4656 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4657 return s;
4658
4659 cachep = virt_to_cache(x);
4660 if (WARN(cachep && cachep != s,
4661 "%s: Wrong slab cache. %s but object is from %s\n",
4662 __func__, s->name, cachep->name))
4663 print_tracking(cachep, x);
4664 return cachep;
4665 }
4666
4667 /**
4668 * kmem_cache_free - Deallocate an object
4669 * @s: The cache the allocation was from.
4670 * @x: The previously allocated object.
4671 *
4672 * Free an object which was previously allocated from this
4673 * cache.
4674 */
kmem_cache_free(struct kmem_cache * s,void * x)4675 void kmem_cache_free(struct kmem_cache *s, void *x)
4676 {
4677 s = cache_from_obj(s, x);
4678 if (!s)
4679 return;
4680 trace_kmem_cache_free(_RET_IP_, x, s);
4681 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4682 }
4683 EXPORT_SYMBOL(kmem_cache_free);
4684
free_large_kmalloc(struct folio * folio,void * object)4685 static void free_large_kmalloc(struct folio *folio, void *object)
4686 {
4687 unsigned int order = folio_order(folio);
4688
4689 if (WARN_ON_ONCE(order == 0))
4690 pr_warn_once("object pointer: 0x%p\n", object);
4691
4692 kmemleak_free(object);
4693 kasan_kfree_large(object);
4694 kmsan_kfree_large(object);
4695
4696 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4697 -(PAGE_SIZE << order));
4698 folio_put(folio);
4699 }
4700
4701 /**
4702 * kfree - free previously allocated memory
4703 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4704 *
4705 * If @object is NULL, no operation is performed.
4706 */
kfree(const void * object)4707 void kfree(const void *object)
4708 {
4709 struct folio *folio;
4710 struct slab *slab;
4711 struct kmem_cache *s;
4712 void *x = (void *)object;
4713
4714 trace_kfree(_RET_IP_, object);
4715
4716 if (unlikely(ZERO_OR_NULL_PTR(object)))
4717 return;
4718
4719 folio = virt_to_folio(object);
4720 if (unlikely(!folio_test_slab(folio))) {
4721 free_large_kmalloc(folio, (void *)object);
4722 return;
4723 }
4724
4725 slab = folio_slab(folio);
4726 s = slab->slab_cache;
4727 slab_free(s, slab, x, _RET_IP_);
4728 }
4729 EXPORT_SYMBOL(kfree);
4730
4731 struct detached_freelist {
4732 struct slab *slab;
4733 void *tail;
4734 void *freelist;
4735 int cnt;
4736 struct kmem_cache *s;
4737 };
4738
4739 /*
4740 * This function progressively scans the array with free objects (with
4741 * a limited look ahead) and extract objects belonging to the same
4742 * slab. It builds a detached freelist directly within the given
4743 * slab/objects. This can happen without any need for
4744 * synchronization, because the objects are owned by running process.
4745 * The freelist is build up as a single linked list in the objects.
4746 * The idea is, that this detached freelist can then be bulk
4747 * transferred to the real freelist(s), but only requiring a single
4748 * synchronization primitive. Look ahead in the array is limited due
4749 * to performance reasons.
4750 */
4751 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)4752 int build_detached_freelist(struct kmem_cache *s, size_t size,
4753 void **p, struct detached_freelist *df)
4754 {
4755 int lookahead = 3;
4756 void *object;
4757 struct folio *folio;
4758 size_t same;
4759
4760 object = p[--size];
4761 folio = virt_to_folio(object);
4762 if (!s) {
4763 /* Handle kalloc'ed objects */
4764 if (unlikely(!folio_test_slab(folio))) {
4765 free_large_kmalloc(folio, object);
4766 df->slab = NULL;
4767 return size;
4768 }
4769 /* Derive kmem_cache from object */
4770 df->slab = folio_slab(folio);
4771 df->s = df->slab->slab_cache;
4772 } else {
4773 df->slab = folio_slab(folio);
4774 df->s = cache_from_obj(s, object); /* Support for memcg */
4775 }
4776
4777 /* Start new detached freelist */
4778 df->tail = object;
4779 df->freelist = object;
4780 df->cnt = 1;
4781
4782 if (is_kfence_address(object))
4783 return size;
4784
4785 set_freepointer(df->s, object, NULL);
4786
4787 same = size;
4788 while (size) {
4789 object = p[--size];
4790 /* df->slab is always set at this point */
4791 if (df->slab == virt_to_slab(object)) {
4792 /* Opportunity build freelist */
4793 set_freepointer(df->s, object, df->freelist);
4794 df->freelist = object;
4795 df->cnt++;
4796 same--;
4797 if (size != same)
4798 swap(p[size], p[same]);
4799 continue;
4800 }
4801
4802 /* Limit look ahead search */
4803 if (!--lookahead)
4804 break;
4805 }
4806
4807 return same;
4808 }
4809
4810 /*
4811 * Internal bulk free of objects that were not initialised by the post alloc
4812 * hooks and thus should not be processed by the free hooks
4813 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4814 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4815 {
4816 if (!size)
4817 return;
4818
4819 do {
4820 struct detached_freelist df;
4821
4822 size = build_detached_freelist(s, size, p, &df);
4823 if (!df.slab)
4824 continue;
4825
4826 if (kfence_free(df.freelist))
4827 continue;
4828
4829 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4830 _RET_IP_);
4831 } while (likely(size));
4832 }
4833
4834 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4835 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4836 {
4837 if (!size)
4838 return;
4839
4840 do {
4841 struct detached_freelist df;
4842
4843 size = build_detached_freelist(s, size, p, &df);
4844 if (!df.slab)
4845 continue;
4846
4847 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4848 df.cnt, _RET_IP_);
4849 } while (likely(size));
4850 }
4851 EXPORT_SYMBOL(kmem_cache_free_bulk);
4852
4853 #ifndef CONFIG_SLUB_TINY
4854 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4855 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4856 void **p)
4857 {
4858 struct kmem_cache_cpu *c;
4859 unsigned long irqflags;
4860 int i;
4861
4862 /*
4863 * Drain objects in the per cpu slab, while disabling local
4864 * IRQs, which protects against PREEMPT and interrupts
4865 * handlers invoking normal fastpath.
4866 */
4867 c = slub_get_cpu_ptr(s->cpu_slab);
4868 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4869
4870 for (i = 0; i < size; i++) {
4871 void *object = kfence_alloc(s, s->object_size, flags);
4872
4873 if (unlikely(object)) {
4874 p[i] = object;
4875 continue;
4876 }
4877
4878 object = c->freelist;
4879 if (unlikely(!object)) {
4880 /*
4881 * We may have removed an object from c->freelist using
4882 * the fastpath in the previous iteration; in that case,
4883 * c->tid has not been bumped yet.
4884 * Since ___slab_alloc() may reenable interrupts while
4885 * allocating memory, we should bump c->tid now.
4886 */
4887 c->tid = next_tid(c->tid);
4888
4889 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4890
4891 /*
4892 * Invoking slow path likely have side-effect
4893 * of re-populating per CPU c->freelist
4894 */
4895 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4896 _RET_IP_, c, s->object_size);
4897 if (unlikely(!p[i]))
4898 goto error;
4899
4900 c = this_cpu_ptr(s->cpu_slab);
4901 maybe_wipe_obj_freeptr(s, p[i]);
4902
4903 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4904
4905 continue; /* goto for-loop */
4906 }
4907 c->freelist = get_freepointer(s, object);
4908 p[i] = object;
4909 maybe_wipe_obj_freeptr(s, p[i]);
4910 stat(s, ALLOC_FASTPATH);
4911 }
4912 c->tid = next_tid(c->tid);
4913 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4914 slub_put_cpu_ptr(s->cpu_slab);
4915
4916 return i;
4917
4918 error:
4919 slub_put_cpu_ptr(s->cpu_slab);
4920 __kmem_cache_free_bulk(s, i, p);
4921 return 0;
4922
4923 }
4924 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4925 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4926 size_t size, void **p)
4927 {
4928 int i;
4929
4930 for (i = 0; i < size; i++) {
4931 void *object = kfence_alloc(s, s->object_size, flags);
4932
4933 if (unlikely(object)) {
4934 p[i] = object;
4935 continue;
4936 }
4937
4938 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4939 _RET_IP_, s->object_size);
4940 if (unlikely(!p[i]))
4941 goto error;
4942
4943 maybe_wipe_obj_freeptr(s, p[i]);
4944 }
4945
4946 return i;
4947
4948 error:
4949 __kmem_cache_free_bulk(s, i, p);
4950 return 0;
4951 }
4952 #endif /* CONFIG_SLUB_TINY */
4953
4954 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4955 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4956 void **p)
4957 {
4958 int i;
4959
4960 if (!size)
4961 return 0;
4962
4963 s = slab_pre_alloc_hook(s, flags);
4964 if (unlikely(!s))
4965 return 0;
4966
4967 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4968 if (unlikely(i == 0))
4969 return 0;
4970
4971 /*
4972 * memcg and kmem_cache debug support and memory initialization.
4973 * Done outside of the IRQ disabled fastpath loop.
4974 */
4975 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4976 slab_want_init_on_alloc(flags, s), s->object_size))) {
4977 return 0;
4978 }
4979 return i;
4980 }
4981 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4982
4983
4984 /*
4985 * Object placement in a slab is made very easy because we always start at
4986 * offset 0. If we tune the size of the object to the alignment then we can
4987 * get the required alignment by putting one properly sized object after
4988 * another.
4989 *
4990 * Notice that the allocation order determines the sizes of the per cpu
4991 * caches. Each processor has always one slab available for allocations.
4992 * Increasing the allocation order reduces the number of times that slabs
4993 * must be moved on and off the partial lists and is therefore a factor in
4994 * locking overhead.
4995 */
4996
4997 /*
4998 * Minimum / Maximum order of slab pages. This influences locking overhead
4999 * and slab fragmentation. A higher order reduces the number of partial slabs
5000 * and increases the number of allocations possible without having to
5001 * take the list_lock.
5002 */
5003 static unsigned int slub_min_order;
5004 static unsigned int slub_max_order =
5005 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5006 static unsigned int slub_min_objects;
5007
5008 /*
5009 * Calculate the order of allocation given an slab object size.
5010 *
5011 * The order of allocation has significant impact on performance and other
5012 * system components. Generally order 0 allocations should be preferred since
5013 * order 0 does not cause fragmentation in the page allocator. Larger objects
5014 * be problematic to put into order 0 slabs because there may be too much
5015 * unused space left. We go to a higher order if more than 1/16th of the slab
5016 * would be wasted.
5017 *
5018 * In order to reach satisfactory performance we must ensure that a minimum
5019 * number of objects is in one slab. Otherwise we may generate too much
5020 * activity on the partial lists which requires taking the list_lock. This is
5021 * less a concern for large slabs though which are rarely used.
5022 *
5023 * slab_max_order specifies the order where we begin to stop considering the
5024 * number of objects in a slab as critical. If we reach slab_max_order then
5025 * we try to keep the page order as low as possible. So we accept more waste
5026 * of space in favor of a small page order.
5027 *
5028 * Higher order allocations also allow the placement of more objects in a
5029 * slab and thereby reduce object handling overhead. If the user has
5030 * requested a higher minimum order then we start with that one instead of
5031 * the smallest order which will fit the object.
5032 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5033 static inline unsigned int calc_slab_order(unsigned int size,
5034 unsigned int min_order, unsigned int max_order,
5035 unsigned int fract_leftover)
5036 {
5037 unsigned int order;
5038
5039 for (order = min_order; order <= max_order; order++) {
5040
5041 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5042 unsigned int rem;
5043
5044 rem = slab_size % size;
5045
5046 if (rem <= slab_size / fract_leftover)
5047 break;
5048 }
5049
5050 return order;
5051 }
5052
calculate_order(unsigned int size)5053 static inline int calculate_order(unsigned int size)
5054 {
5055 unsigned int order;
5056 unsigned int min_objects;
5057 unsigned int max_objects;
5058 unsigned int min_order;
5059
5060 min_objects = slub_min_objects;
5061 if (!min_objects) {
5062 /*
5063 * Some architectures will only update present cpus when
5064 * onlining them, so don't trust the number if it's just 1. But
5065 * we also don't want to use nr_cpu_ids always, as on some other
5066 * architectures, there can be many possible cpus, but never
5067 * onlined. Here we compromise between trying to avoid too high
5068 * order on systems that appear larger than they are, and too
5069 * low order on systems that appear smaller than they are.
5070 */
5071 unsigned int nr_cpus = num_present_cpus();
5072 if (nr_cpus <= 1)
5073 nr_cpus = nr_cpu_ids;
5074 min_objects = 4 * (fls(nr_cpus) + 1);
5075 }
5076 /* min_objects can't be 0 because get_order(0) is undefined */
5077 max_objects = max(order_objects(slub_max_order, size), 1U);
5078 min_objects = min(min_objects, max_objects);
5079
5080 min_order = max_t(unsigned int, slub_min_order,
5081 get_order(min_objects * size));
5082 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5083 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5084
5085 /*
5086 * Attempt to find best configuration for a slab. This works by first
5087 * attempting to generate a layout with the best possible configuration
5088 * and backing off gradually.
5089 *
5090 * We start with accepting at most 1/16 waste and try to find the
5091 * smallest order from min_objects-derived/slab_min_order up to
5092 * slab_max_order that will satisfy the constraint. Note that increasing
5093 * the order can only result in same or less fractional waste, not more.
5094 *
5095 * If that fails, we increase the acceptable fraction of waste and try
5096 * again. The last iteration with fraction of 1/2 would effectively
5097 * accept any waste and give us the order determined by min_objects, as
5098 * long as at least single object fits within slab_max_order.
5099 */
5100 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5101 order = calc_slab_order(size, min_order, slub_max_order,
5102 fraction);
5103 if (order <= slub_max_order)
5104 return order;
5105 }
5106
5107 /*
5108 * Doh this slab cannot be placed using slab_max_order.
5109 */
5110 order = get_order(size);
5111 if (order <= MAX_PAGE_ORDER)
5112 return order;
5113 return -ENOSYS;
5114 }
5115
5116 static void
init_kmem_cache_node(struct kmem_cache_node * n)5117 init_kmem_cache_node(struct kmem_cache_node *n)
5118 {
5119 n->nr_partial = 0;
5120 spin_lock_init(&n->list_lock);
5121 INIT_LIST_HEAD(&n->partial);
5122 #ifdef CONFIG_SLUB_DEBUG
5123 atomic_long_set(&n->nr_slabs, 0);
5124 atomic_long_set(&n->total_objects, 0);
5125 INIT_LIST_HEAD(&n->full);
5126 #endif
5127 }
5128
5129 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5130 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5131 {
5132 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5133 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5134 sizeof(struct kmem_cache_cpu));
5135
5136 /*
5137 * Must align to double word boundary for the double cmpxchg
5138 * instructions to work; see __pcpu_double_call_return_bool().
5139 */
5140 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5141 2 * sizeof(void *));
5142
5143 if (!s->cpu_slab)
5144 return 0;
5145
5146 init_kmem_cache_cpus(s);
5147
5148 return 1;
5149 }
5150 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5151 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5152 {
5153 return 1;
5154 }
5155 #endif /* CONFIG_SLUB_TINY */
5156
5157 static struct kmem_cache *kmem_cache_node;
5158
5159 /*
5160 * No kmalloc_node yet so do it by hand. We know that this is the first
5161 * slab on the node for this slabcache. There are no concurrent accesses
5162 * possible.
5163 *
5164 * Note that this function only works on the kmem_cache_node
5165 * when allocating for the kmem_cache_node. This is used for bootstrapping
5166 * memory on a fresh node that has no slab structures yet.
5167 */
early_kmem_cache_node_alloc(int node)5168 static void early_kmem_cache_node_alloc(int node)
5169 {
5170 struct slab *slab;
5171 struct kmem_cache_node *n;
5172
5173 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5174
5175 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5176
5177 BUG_ON(!slab);
5178 if (slab_nid(slab) != node) {
5179 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5180 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5181 }
5182
5183 n = slab->freelist;
5184 BUG_ON(!n);
5185 #ifdef CONFIG_SLUB_DEBUG
5186 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5187 #endif
5188 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5189 slab->freelist = get_freepointer(kmem_cache_node, n);
5190 slab->inuse = 1;
5191 kmem_cache_node->node[node] = n;
5192 init_kmem_cache_node(n);
5193 inc_slabs_node(kmem_cache_node, node, slab->objects);
5194
5195 /*
5196 * No locks need to be taken here as it has just been
5197 * initialized and there is no concurrent access.
5198 */
5199 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5200 }
5201
free_kmem_cache_nodes(struct kmem_cache * s)5202 static void free_kmem_cache_nodes(struct kmem_cache *s)
5203 {
5204 int node;
5205 struct kmem_cache_node *n;
5206
5207 for_each_kmem_cache_node(s, node, n) {
5208 s->node[node] = NULL;
5209 kmem_cache_free(kmem_cache_node, n);
5210 }
5211 }
5212
__kmem_cache_release(struct kmem_cache * s)5213 void __kmem_cache_release(struct kmem_cache *s)
5214 {
5215 cache_random_seq_destroy(s);
5216 #ifndef CONFIG_SLUB_TINY
5217 free_percpu(s->cpu_slab);
5218 #endif
5219 free_kmem_cache_nodes(s);
5220 }
5221
init_kmem_cache_nodes(struct kmem_cache * s)5222 static int init_kmem_cache_nodes(struct kmem_cache *s)
5223 {
5224 int node;
5225
5226 for_each_node_mask(node, slab_nodes) {
5227 struct kmem_cache_node *n;
5228
5229 if (slab_state == DOWN) {
5230 early_kmem_cache_node_alloc(node);
5231 continue;
5232 }
5233 n = kmem_cache_alloc_node(kmem_cache_node,
5234 GFP_KERNEL, node);
5235
5236 if (!n) {
5237 free_kmem_cache_nodes(s);
5238 return 0;
5239 }
5240
5241 init_kmem_cache_node(n);
5242 s->node[node] = n;
5243 }
5244 return 1;
5245 }
5246
set_cpu_partial(struct kmem_cache * s)5247 static void set_cpu_partial(struct kmem_cache *s)
5248 {
5249 #ifdef CONFIG_SLUB_CPU_PARTIAL
5250 unsigned int nr_objects;
5251
5252 /*
5253 * cpu_partial determined the maximum number of objects kept in the
5254 * per cpu partial lists of a processor.
5255 *
5256 * Per cpu partial lists mainly contain slabs that just have one
5257 * object freed. If they are used for allocation then they can be
5258 * filled up again with minimal effort. The slab will never hit the
5259 * per node partial lists and therefore no locking will be required.
5260 *
5261 * For backwards compatibility reasons, this is determined as number
5262 * of objects, even though we now limit maximum number of pages, see
5263 * slub_set_cpu_partial()
5264 */
5265 if (!kmem_cache_has_cpu_partial(s))
5266 nr_objects = 0;
5267 else if (s->size >= PAGE_SIZE)
5268 nr_objects = 6;
5269 else if (s->size >= 1024)
5270 nr_objects = 24;
5271 else if (s->size >= 256)
5272 nr_objects = 52;
5273 else
5274 nr_objects = 120;
5275
5276 slub_set_cpu_partial(s, nr_objects);
5277 #endif
5278 }
5279
5280 /*
5281 * calculate_sizes() determines the order and the distribution of data within
5282 * a slab object.
5283 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5284 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5285 {
5286 slab_flags_t flags = s->flags;
5287 unsigned int size = s->object_size;
5288 unsigned int order;
5289
5290 /*
5291 * Round up object size to the next word boundary. We can only
5292 * place the free pointer at word boundaries and this determines
5293 * the possible location of the free pointer.
5294 */
5295 size = ALIGN(size, sizeof(void *));
5296
5297 #ifdef CONFIG_SLUB_DEBUG
5298 /*
5299 * Determine if we can poison the object itself. If the user of
5300 * the slab may touch the object after free or before allocation
5301 * then we should never poison the object itself.
5302 */
5303 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5304 !s->ctor)
5305 s->flags |= __OBJECT_POISON;
5306 else
5307 s->flags &= ~__OBJECT_POISON;
5308
5309
5310 /*
5311 * If we are Redzoning then check if there is some space between the
5312 * end of the object and the free pointer. If not then add an
5313 * additional word to have some bytes to store Redzone information.
5314 */
5315 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5316 size += sizeof(void *);
5317 #endif
5318
5319 /*
5320 * With that we have determined the number of bytes in actual use
5321 * by the object and redzoning.
5322 */
5323 s->inuse = size;
5324
5325 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5326 (flags & SLAB_POISON) || s->ctor ||
5327 ((flags & SLAB_RED_ZONE) &&
5328 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5329 /*
5330 * Relocate free pointer after the object if it is not
5331 * permitted to overwrite the first word of the object on
5332 * kmem_cache_free.
5333 *
5334 * This is the case if we do RCU, have a constructor or
5335 * destructor, are poisoning the objects, or are
5336 * redzoning an object smaller than sizeof(void *) or are
5337 * redzoning an object with slub_debug_orig_size() enabled,
5338 * in which case the right redzone may be extended.
5339 *
5340 * The assumption that s->offset >= s->inuse means free
5341 * pointer is outside of the object is used in the
5342 * freeptr_outside_object() function. If that is no
5343 * longer true, the function needs to be modified.
5344 */
5345 s->offset = size;
5346 size += sizeof(void *);
5347 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5348 s->offset = args->freeptr_offset;
5349 } else {
5350 /*
5351 * Store freelist pointer near middle of object to keep
5352 * it away from the edges of the object to avoid small
5353 * sized over/underflows from neighboring allocations.
5354 */
5355 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5356 }
5357
5358 #ifdef CONFIG_SLUB_DEBUG
5359 if (flags & SLAB_STORE_USER) {
5360 /*
5361 * Need to store information about allocs and frees after
5362 * the object.
5363 */
5364 size += 2 * sizeof(struct track);
5365
5366 /* Save the original kmalloc request size */
5367 if (flags & SLAB_KMALLOC)
5368 size += sizeof(unsigned int);
5369 }
5370 #endif
5371
5372 kasan_cache_create(s, &size, &s->flags);
5373 #ifdef CONFIG_SLUB_DEBUG
5374 if (flags & SLAB_RED_ZONE) {
5375 /*
5376 * Add some empty padding so that we can catch
5377 * overwrites from earlier objects rather than let
5378 * tracking information or the free pointer be
5379 * corrupted if a user writes before the start
5380 * of the object.
5381 */
5382 size += sizeof(void *);
5383
5384 s->red_left_pad = sizeof(void *);
5385 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5386 size += s->red_left_pad;
5387 }
5388 #endif
5389
5390 /*
5391 * SLUB stores one object immediately after another beginning from
5392 * offset 0. In order to align the objects we have to simply size
5393 * each object to conform to the alignment.
5394 */
5395 size = ALIGN(size, s->align);
5396 s->size = size;
5397 s->reciprocal_size = reciprocal_value(size);
5398 order = calculate_order(size);
5399
5400 if ((int)order < 0)
5401 return 0;
5402
5403 s->allocflags = __GFP_COMP;
5404
5405 if (s->flags & SLAB_CACHE_DMA)
5406 s->allocflags |= GFP_DMA;
5407
5408 if (s->flags & SLAB_CACHE_DMA32)
5409 s->allocflags |= GFP_DMA32;
5410
5411 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5412 s->allocflags |= __GFP_RECLAIMABLE;
5413
5414 /*
5415 * Determine the number of objects per slab
5416 */
5417 s->oo = oo_make(order, size);
5418 s->min = oo_make(get_order(size), size);
5419
5420 return !!oo_objects(s->oo);
5421 }
5422
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)5423 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5424 const char *text)
5425 {
5426 #ifdef CONFIG_SLUB_DEBUG
5427 void *addr = slab_address(slab);
5428 void *p;
5429
5430 slab_err(s, slab, text, s->name);
5431
5432 spin_lock(&object_map_lock);
5433 __fill_map(object_map, s, slab);
5434
5435 for_each_object(p, s, addr, slab->objects) {
5436
5437 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5438 if (slab_add_kunit_errors())
5439 continue;
5440 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5441 print_tracking(s, p);
5442 }
5443 }
5444 spin_unlock(&object_map_lock);
5445 #endif
5446 }
5447
5448 /*
5449 * Attempt to free all partial slabs on a node.
5450 * This is called from __kmem_cache_shutdown(). We must take list_lock
5451 * because sysfs file might still access partial list after the shutdowning.
5452 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5453 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5454 {
5455 LIST_HEAD(discard);
5456 struct slab *slab, *h;
5457
5458 BUG_ON(irqs_disabled());
5459 spin_lock_irq(&n->list_lock);
5460 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5461 if (!slab->inuse) {
5462 remove_partial(n, slab);
5463 list_add(&slab->slab_list, &discard);
5464 } else {
5465 list_slab_objects(s, slab,
5466 "Objects remaining in %s on __kmem_cache_shutdown()");
5467 }
5468 }
5469 spin_unlock_irq(&n->list_lock);
5470
5471 list_for_each_entry_safe(slab, h, &discard, slab_list)
5472 discard_slab(s, slab);
5473 }
5474
__kmem_cache_empty(struct kmem_cache * s)5475 bool __kmem_cache_empty(struct kmem_cache *s)
5476 {
5477 int node;
5478 struct kmem_cache_node *n;
5479
5480 for_each_kmem_cache_node(s, node, n)
5481 if (n->nr_partial || node_nr_slabs(n))
5482 return false;
5483 return true;
5484 }
5485
5486 /*
5487 * Release all resources used by a slab cache.
5488 */
__kmem_cache_shutdown(struct kmem_cache * s)5489 int __kmem_cache_shutdown(struct kmem_cache *s)
5490 {
5491 int node;
5492 struct kmem_cache_node *n;
5493
5494 flush_all_cpus_locked(s);
5495 /* Attempt to free all objects */
5496 for_each_kmem_cache_node(s, node, n) {
5497 free_partial(s, n);
5498 if (n->nr_partial || node_nr_slabs(n))
5499 return 1;
5500 }
5501 return 0;
5502 }
5503
5504 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5505 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5506 {
5507 void *base;
5508 int __maybe_unused i;
5509 unsigned int objnr;
5510 void *objp;
5511 void *objp0;
5512 struct kmem_cache *s = slab->slab_cache;
5513 struct track __maybe_unused *trackp;
5514
5515 kpp->kp_ptr = object;
5516 kpp->kp_slab = slab;
5517 kpp->kp_slab_cache = s;
5518 base = slab_address(slab);
5519 objp0 = kasan_reset_tag(object);
5520 #ifdef CONFIG_SLUB_DEBUG
5521 objp = restore_red_left(s, objp0);
5522 #else
5523 objp = objp0;
5524 #endif
5525 objnr = obj_to_index(s, slab, objp);
5526 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5527 objp = base + s->size * objnr;
5528 kpp->kp_objp = objp;
5529 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5530 || (objp - base) % s->size) ||
5531 !(s->flags & SLAB_STORE_USER))
5532 return;
5533 #ifdef CONFIG_SLUB_DEBUG
5534 objp = fixup_red_left(s, objp);
5535 trackp = get_track(s, objp, TRACK_ALLOC);
5536 kpp->kp_ret = (void *)trackp->addr;
5537 #ifdef CONFIG_STACKDEPOT
5538 {
5539 depot_stack_handle_t handle;
5540 unsigned long *entries;
5541 unsigned int nr_entries;
5542
5543 handle = READ_ONCE(trackp->handle);
5544 if (handle) {
5545 nr_entries = stack_depot_fetch(handle, &entries);
5546 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5547 kpp->kp_stack[i] = (void *)entries[i];
5548 }
5549
5550 trackp = get_track(s, objp, TRACK_FREE);
5551 handle = READ_ONCE(trackp->handle);
5552 if (handle) {
5553 nr_entries = stack_depot_fetch(handle, &entries);
5554 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5555 kpp->kp_free_stack[i] = (void *)entries[i];
5556 }
5557 }
5558 #endif
5559 #endif
5560 }
5561 #endif
5562
5563 /********************************************************************
5564 * Kmalloc subsystem
5565 *******************************************************************/
5566
setup_slub_min_order(char * str)5567 static int __init setup_slub_min_order(char *str)
5568 {
5569 get_option(&str, (int *)&slub_min_order);
5570
5571 if (slub_min_order > slub_max_order)
5572 slub_max_order = slub_min_order;
5573
5574 return 1;
5575 }
5576
5577 __setup("slab_min_order=", setup_slub_min_order);
5578 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5579
5580
setup_slub_max_order(char * str)5581 static int __init setup_slub_max_order(char *str)
5582 {
5583 get_option(&str, (int *)&slub_max_order);
5584 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5585
5586 if (slub_min_order > slub_max_order)
5587 slub_min_order = slub_max_order;
5588
5589 return 1;
5590 }
5591
5592 __setup("slab_max_order=", setup_slub_max_order);
5593 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5594
setup_slub_min_objects(char * str)5595 static int __init setup_slub_min_objects(char *str)
5596 {
5597 get_option(&str, (int *)&slub_min_objects);
5598
5599 return 1;
5600 }
5601
5602 __setup("slab_min_objects=", setup_slub_min_objects);
5603 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5604
5605 #ifdef CONFIG_HARDENED_USERCOPY
5606 /*
5607 * Rejects incorrectly sized objects and objects that are to be copied
5608 * to/from userspace but do not fall entirely within the containing slab
5609 * cache's usercopy region.
5610 *
5611 * Returns NULL if check passes, otherwise const char * to name of cache
5612 * to indicate an error.
5613 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)5614 void __check_heap_object(const void *ptr, unsigned long n,
5615 const struct slab *slab, bool to_user)
5616 {
5617 struct kmem_cache *s;
5618 unsigned int offset;
5619 bool is_kfence = is_kfence_address(ptr);
5620
5621 ptr = kasan_reset_tag(ptr);
5622
5623 /* Find object and usable object size. */
5624 s = slab->slab_cache;
5625
5626 /* Reject impossible pointers. */
5627 if (ptr < slab_address(slab))
5628 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5629 to_user, 0, n);
5630
5631 /* Find offset within object. */
5632 if (is_kfence)
5633 offset = ptr - kfence_object_start(ptr);
5634 else
5635 offset = (ptr - slab_address(slab)) % s->size;
5636
5637 /* Adjust for redzone and reject if within the redzone. */
5638 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5639 if (offset < s->red_left_pad)
5640 usercopy_abort("SLUB object in left red zone",
5641 s->name, to_user, offset, n);
5642 offset -= s->red_left_pad;
5643 }
5644
5645 /* Allow address range falling entirely within usercopy region. */
5646 if (offset >= s->useroffset &&
5647 offset - s->useroffset <= s->usersize &&
5648 n <= s->useroffset - offset + s->usersize)
5649 return;
5650
5651 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5652 }
5653 #endif /* CONFIG_HARDENED_USERCOPY */
5654
5655 #define SHRINK_PROMOTE_MAX 32
5656
5657 /*
5658 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5659 * up most to the head of the partial lists. New allocations will then
5660 * fill those up and thus they can be removed from the partial lists.
5661 *
5662 * The slabs with the least items are placed last. This results in them
5663 * being allocated from last increasing the chance that the last objects
5664 * are freed in them.
5665 */
__kmem_cache_do_shrink(struct kmem_cache * s)5666 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5667 {
5668 int node;
5669 int i;
5670 struct kmem_cache_node *n;
5671 struct slab *slab;
5672 struct slab *t;
5673 struct list_head discard;
5674 struct list_head promote[SHRINK_PROMOTE_MAX];
5675 unsigned long flags;
5676 int ret = 0;
5677
5678 for_each_kmem_cache_node(s, node, n) {
5679 INIT_LIST_HEAD(&discard);
5680 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5681 INIT_LIST_HEAD(promote + i);
5682
5683 spin_lock_irqsave(&n->list_lock, flags);
5684
5685 /*
5686 * Build lists of slabs to discard or promote.
5687 *
5688 * Note that concurrent frees may occur while we hold the
5689 * list_lock. slab->inuse here is the upper limit.
5690 */
5691 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5692 int free = slab->objects - slab->inuse;
5693
5694 /* Do not reread slab->inuse */
5695 barrier();
5696
5697 /* We do not keep full slabs on the list */
5698 BUG_ON(free <= 0);
5699
5700 if (free == slab->objects) {
5701 list_move(&slab->slab_list, &discard);
5702 slab_clear_node_partial(slab);
5703 n->nr_partial--;
5704 dec_slabs_node(s, node, slab->objects);
5705 } else if (free <= SHRINK_PROMOTE_MAX)
5706 list_move(&slab->slab_list, promote + free - 1);
5707 }
5708
5709 /*
5710 * Promote the slabs filled up most to the head of the
5711 * partial list.
5712 */
5713 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5714 list_splice(promote + i, &n->partial);
5715
5716 spin_unlock_irqrestore(&n->list_lock, flags);
5717
5718 /* Release empty slabs */
5719 list_for_each_entry_safe(slab, t, &discard, slab_list)
5720 free_slab(s, slab);
5721
5722 if (node_nr_slabs(n))
5723 ret = 1;
5724 }
5725
5726 return ret;
5727 }
5728
__kmem_cache_shrink(struct kmem_cache * s)5729 int __kmem_cache_shrink(struct kmem_cache *s)
5730 {
5731 flush_all(s);
5732 return __kmem_cache_do_shrink(s);
5733 }
5734
slab_mem_going_offline_callback(void * arg)5735 static int slab_mem_going_offline_callback(void *arg)
5736 {
5737 struct kmem_cache *s;
5738
5739 mutex_lock(&slab_mutex);
5740 list_for_each_entry(s, &slab_caches, list) {
5741 flush_all_cpus_locked(s);
5742 __kmem_cache_do_shrink(s);
5743 }
5744 mutex_unlock(&slab_mutex);
5745
5746 return 0;
5747 }
5748
slab_mem_offline_callback(void * arg)5749 static void slab_mem_offline_callback(void *arg)
5750 {
5751 struct memory_notify *marg = arg;
5752 int offline_node;
5753
5754 offline_node = marg->status_change_nid_normal;
5755
5756 /*
5757 * If the node still has available memory. we need kmem_cache_node
5758 * for it yet.
5759 */
5760 if (offline_node < 0)
5761 return;
5762
5763 mutex_lock(&slab_mutex);
5764 node_clear(offline_node, slab_nodes);
5765 /*
5766 * We no longer free kmem_cache_node structures here, as it would be
5767 * racy with all get_node() users, and infeasible to protect them with
5768 * slab_mutex.
5769 */
5770 mutex_unlock(&slab_mutex);
5771 }
5772
slab_mem_going_online_callback(void * arg)5773 static int slab_mem_going_online_callback(void *arg)
5774 {
5775 struct kmem_cache_node *n;
5776 struct kmem_cache *s;
5777 struct memory_notify *marg = arg;
5778 int nid = marg->status_change_nid_normal;
5779 int ret = 0;
5780
5781 /*
5782 * If the node's memory is already available, then kmem_cache_node is
5783 * already created. Nothing to do.
5784 */
5785 if (nid < 0)
5786 return 0;
5787
5788 /*
5789 * We are bringing a node online. No memory is available yet. We must
5790 * allocate a kmem_cache_node structure in order to bring the node
5791 * online.
5792 */
5793 mutex_lock(&slab_mutex);
5794 list_for_each_entry(s, &slab_caches, list) {
5795 /*
5796 * The structure may already exist if the node was previously
5797 * onlined and offlined.
5798 */
5799 if (get_node(s, nid))
5800 continue;
5801 /*
5802 * XXX: kmem_cache_alloc_node will fallback to other nodes
5803 * since memory is not yet available from the node that
5804 * is brought up.
5805 */
5806 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5807 if (!n) {
5808 ret = -ENOMEM;
5809 goto out;
5810 }
5811 init_kmem_cache_node(n);
5812 s->node[nid] = n;
5813 }
5814 /*
5815 * Any cache created after this point will also have kmem_cache_node
5816 * initialized for the new node.
5817 */
5818 node_set(nid, slab_nodes);
5819 out:
5820 mutex_unlock(&slab_mutex);
5821 return ret;
5822 }
5823
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)5824 static int slab_memory_callback(struct notifier_block *self,
5825 unsigned long action, void *arg)
5826 {
5827 int ret = 0;
5828
5829 switch (action) {
5830 case MEM_GOING_ONLINE:
5831 ret = slab_mem_going_online_callback(arg);
5832 break;
5833 case MEM_GOING_OFFLINE:
5834 ret = slab_mem_going_offline_callback(arg);
5835 break;
5836 case MEM_OFFLINE:
5837 case MEM_CANCEL_ONLINE:
5838 slab_mem_offline_callback(arg);
5839 break;
5840 case MEM_ONLINE:
5841 case MEM_CANCEL_OFFLINE:
5842 break;
5843 }
5844 if (ret)
5845 ret = notifier_from_errno(ret);
5846 else
5847 ret = NOTIFY_OK;
5848 return ret;
5849 }
5850
5851 /********************************************************************
5852 * Basic setup of slabs
5853 *******************************************************************/
5854
5855 /*
5856 * Used for early kmem_cache structures that were allocated using
5857 * the page allocator. Allocate them properly then fix up the pointers
5858 * that may be pointing to the wrong kmem_cache structure.
5859 */
5860
bootstrap(struct kmem_cache * static_cache)5861 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5862 {
5863 int node;
5864 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5865 struct kmem_cache_node *n;
5866
5867 memcpy(s, static_cache, kmem_cache->object_size);
5868
5869 /*
5870 * This runs very early, and only the boot processor is supposed to be
5871 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5872 * IPIs around.
5873 */
5874 __flush_cpu_slab(s, smp_processor_id());
5875 for_each_kmem_cache_node(s, node, n) {
5876 struct slab *p;
5877
5878 list_for_each_entry(p, &n->partial, slab_list)
5879 p->slab_cache = s;
5880
5881 #ifdef CONFIG_SLUB_DEBUG
5882 list_for_each_entry(p, &n->full, slab_list)
5883 p->slab_cache = s;
5884 #endif
5885 }
5886 list_add(&s->list, &slab_caches);
5887 return s;
5888 }
5889
kmem_cache_init(void)5890 void __init kmem_cache_init(void)
5891 {
5892 static __initdata struct kmem_cache boot_kmem_cache,
5893 boot_kmem_cache_node;
5894 int node;
5895
5896 if (debug_guardpage_minorder())
5897 slub_max_order = 0;
5898
5899 /* Print slub debugging pointers without hashing */
5900 if (__slub_debug_enabled())
5901 no_hash_pointers_enable(NULL);
5902
5903 kmem_cache_node = &boot_kmem_cache_node;
5904 kmem_cache = &boot_kmem_cache;
5905
5906 /*
5907 * Initialize the nodemask for which we will allocate per node
5908 * structures. Here we don't need taking slab_mutex yet.
5909 */
5910 for_each_node_state(node, N_NORMAL_MEMORY)
5911 node_set(node, slab_nodes);
5912
5913 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5914 sizeof(struct kmem_cache_node),
5915 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5916
5917 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5918
5919 /* Able to allocate the per node structures */
5920 slab_state = PARTIAL;
5921
5922 create_boot_cache(kmem_cache, "kmem_cache",
5923 offsetof(struct kmem_cache, node) +
5924 nr_node_ids * sizeof(struct kmem_cache_node *),
5925 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5926
5927 kmem_cache = bootstrap(&boot_kmem_cache);
5928 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5929
5930 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5931 setup_kmalloc_cache_index_table();
5932 create_kmalloc_caches();
5933
5934 /* Setup random freelists for each cache */
5935 init_freelist_randomization();
5936
5937 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5938 slub_cpu_dead);
5939
5940 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5941 cache_line_size(),
5942 slub_min_order, slub_max_order, slub_min_objects,
5943 nr_cpu_ids, nr_node_ids);
5944 }
5945
kmem_cache_init_late(void)5946 void __init kmem_cache_init_late(void)
5947 {
5948 #ifndef CONFIG_SLUB_TINY
5949 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5950 WARN_ON(!flushwq);
5951 #endif
5952 }
5953
5954 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))5955 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5956 slab_flags_t flags, void (*ctor)(void *))
5957 {
5958 struct kmem_cache *s;
5959
5960 s = find_mergeable(size, align, flags, name, ctor);
5961 if (s) {
5962 if (sysfs_slab_alias(s, name))
5963 return NULL;
5964
5965 s->refcount++;
5966
5967 /*
5968 * Adjust the object sizes so that we clear
5969 * the complete object on kzalloc.
5970 */
5971 s->object_size = max(s->object_size, size);
5972 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5973 }
5974
5975 return s;
5976 }
5977
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)5978 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
5979 unsigned int size, struct kmem_cache_args *args,
5980 slab_flags_t flags)
5981 {
5982 int err = -EINVAL;
5983
5984 s->name = name;
5985 s->size = s->object_size = size;
5986
5987 s->flags = kmem_cache_flags(flags, s->name);
5988 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5989 s->random = get_random_long();
5990 #endif
5991 s->align = args->align;
5992 s->ctor = args->ctor;
5993 #ifdef CONFIG_HARDENED_USERCOPY
5994 s->useroffset = args->useroffset;
5995 s->usersize = args->usersize;
5996 #endif
5997
5998 if (!calculate_sizes(args, s))
5999 goto out;
6000 if (disable_higher_order_debug) {
6001 /*
6002 * Disable debugging flags that store metadata if the min slab
6003 * order increased.
6004 */
6005 if (get_order(s->size) > get_order(s->object_size)) {
6006 s->flags &= ~DEBUG_METADATA_FLAGS;
6007 s->offset = 0;
6008 if (!calculate_sizes(args, s))
6009 goto out;
6010 }
6011 }
6012
6013 #ifdef system_has_freelist_aba
6014 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6015 /* Enable fast mode */
6016 s->flags |= __CMPXCHG_DOUBLE;
6017 }
6018 #endif
6019
6020 /*
6021 * The larger the object size is, the more slabs we want on the partial
6022 * list to avoid pounding the page allocator excessively.
6023 */
6024 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6025 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6026
6027 set_cpu_partial(s);
6028
6029 #ifdef CONFIG_NUMA
6030 s->remote_node_defrag_ratio = 1000;
6031 #endif
6032
6033 /* Initialize the pre-computed randomized freelist if slab is up */
6034 if (slab_state >= UP) {
6035 if (init_cache_random_seq(s))
6036 goto out;
6037 }
6038
6039 if (!init_kmem_cache_nodes(s))
6040 goto out;
6041
6042 if (!alloc_kmem_cache_cpus(s))
6043 goto out;
6044
6045 /* Mutex is not taken during early boot */
6046 if (slab_state <= UP) {
6047 err = 0;
6048 goto out;
6049 }
6050
6051 err = sysfs_slab_add(s);
6052 if (err)
6053 goto out;
6054
6055 if (s->flags & SLAB_STORE_USER)
6056 debugfs_slab_add(s);
6057
6058 out:
6059 if (err)
6060 __kmem_cache_release(s);
6061 return err;
6062 }
6063
6064 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6065 static int count_inuse(struct slab *slab)
6066 {
6067 return slab->inuse;
6068 }
6069
count_total(struct slab * slab)6070 static int count_total(struct slab *slab)
6071 {
6072 return slab->objects;
6073 }
6074 #endif
6075
6076 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6077 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6078 unsigned long *obj_map)
6079 {
6080 void *p;
6081 void *addr = slab_address(slab);
6082
6083 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6084 return;
6085
6086 /* Now we know that a valid freelist exists */
6087 __fill_map(obj_map, s, slab);
6088 for_each_object(p, s, addr, slab->objects) {
6089 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6090 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6091
6092 if (!check_object(s, slab, p, val))
6093 break;
6094 }
6095 }
6096
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6097 static int validate_slab_node(struct kmem_cache *s,
6098 struct kmem_cache_node *n, unsigned long *obj_map)
6099 {
6100 unsigned long count = 0;
6101 struct slab *slab;
6102 unsigned long flags;
6103
6104 spin_lock_irqsave(&n->list_lock, flags);
6105
6106 list_for_each_entry(slab, &n->partial, slab_list) {
6107 validate_slab(s, slab, obj_map);
6108 count++;
6109 }
6110 if (count != n->nr_partial) {
6111 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6112 s->name, count, n->nr_partial);
6113 slab_add_kunit_errors();
6114 }
6115
6116 if (!(s->flags & SLAB_STORE_USER))
6117 goto out;
6118
6119 list_for_each_entry(slab, &n->full, slab_list) {
6120 validate_slab(s, slab, obj_map);
6121 count++;
6122 }
6123 if (count != node_nr_slabs(n)) {
6124 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6125 s->name, count, node_nr_slabs(n));
6126 slab_add_kunit_errors();
6127 }
6128
6129 out:
6130 spin_unlock_irqrestore(&n->list_lock, flags);
6131 return count;
6132 }
6133
validate_slab_cache(struct kmem_cache * s)6134 long validate_slab_cache(struct kmem_cache *s)
6135 {
6136 int node;
6137 unsigned long count = 0;
6138 struct kmem_cache_node *n;
6139 unsigned long *obj_map;
6140
6141 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6142 if (!obj_map)
6143 return -ENOMEM;
6144
6145 flush_all(s);
6146 for_each_kmem_cache_node(s, node, n)
6147 count += validate_slab_node(s, n, obj_map);
6148
6149 bitmap_free(obj_map);
6150
6151 return count;
6152 }
6153 EXPORT_SYMBOL(validate_slab_cache);
6154
6155 #ifdef CONFIG_DEBUG_FS
6156 /*
6157 * Generate lists of code addresses where slabcache objects are allocated
6158 * and freed.
6159 */
6160
6161 struct location {
6162 depot_stack_handle_t handle;
6163 unsigned long count;
6164 unsigned long addr;
6165 unsigned long waste;
6166 long long sum_time;
6167 long min_time;
6168 long max_time;
6169 long min_pid;
6170 long max_pid;
6171 DECLARE_BITMAP(cpus, NR_CPUS);
6172 nodemask_t nodes;
6173 };
6174
6175 struct loc_track {
6176 unsigned long max;
6177 unsigned long count;
6178 struct location *loc;
6179 loff_t idx;
6180 };
6181
6182 static struct dentry *slab_debugfs_root;
6183
free_loc_track(struct loc_track * t)6184 static void free_loc_track(struct loc_track *t)
6185 {
6186 if (t->max)
6187 free_pages((unsigned long)t->loc,
6188 get_order(sizeof(struct location) * t->max));
6189 }
6190
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6191 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6192 {
6193 struct location *l;
6194 int order;
6195
6196 order = get_order(sizeof(struct location) * max);
6197
6198 l = (void *)__get_free_pages(flags, order);
6199 if (!l)
6200 return 0;
6201
6202 if (t->count) {
6203 memcpy(l, t->loc, sizeof(struct location) * t->count);
6204 free_loc_track(t);
6205 }
6206 t->max = max;
6207 t->loc = l;
6208 return 1;
6209 }
6210
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6211 static int add_location(struct loc_track *t, struct kmem_cache *s,
6212 const struct track *track,
6213 unsigned int orig_size)
6214 {
6215 long start, end, pos;
6216 struct location *l;
6217 unsigned long caddr, chandle, cwaste;
6218 unsigned long age = jiffies - track->when;
6219 depot_stack_handle_t handle = 0;
6220 unsigned int waste = s->object_size - orig_size;
6221
6222 #ifdef CONFIG_STACKDEPOT
6223 handle = READ_ONCE(track->handle);
6224 #endif
6225 start = -1;
6226 end = t->count;
6227
6228 for ( ; ; ) {
6229 pos = start + (end - start + 1) / 2;
6230
6231 /*
6232 * There is nothing at "end". If we end up there
6233 * we need to add something to before end.
6234 */
6235 if (pos == end)
6236 break;
6237
6238 l = &t->loc[pos];
6239 caddr = l->addr;
6240 chandle = l->handle;
6241 cwaste = l->waste;
6242 if ((track->addr == caddr) && (handle == chandle) &&
6243 (waste == cwaste)) {
6244
6245 l->count++;
6246 if (track->when) {
6247 l->sum_time += age;
6248 if (age < l->min_time)
6249 l->min_time = age;
6250 if (age > l->max_time)
6251 l->max_time = age;
6252
6253 if (track->pid < l->min_pid)
6254 l->min_pid = track->pid;
6255 if (track->pid > l->max_pid)
6256 l->max_pid = track->pid;
6257
6258 cpumask_set_cpu(track->cpu,
6259 to_cpumask(l->cpus));
6260 }
6261 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6262 return 1;
6263 }
6264
6265 if (track->addr < caddr)
6266 end = pos;
6267 else if (track->addr == caddr && handle < chandle)
6268 end = pos;
6269 else if (track->addr == caddr && handle == chandle &&
6270 waste < cwaste)
6271 end = pos;
6272 else
6273 start = pos;
6274 }
6275
6276 /*
6277 * Not found. Insert new tracking element.
6278 */
6279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6280 return 0;
6281
6282 l = t->loc + pos;
6283 if (pos < t->count)
6284 memmove(l + 1, l,
6285 (t->count - pos) * sizeof(struct location));
6286 t->count++;
6287 l->count = 1;
6288 l->addr = track->addr;
6289 l->sum_time = age;
6290 l->min_time = age;
6291 l->max_time = age;
6292 l->min_pid = track->pid;
6293 l->max_pid = track->pid;
6294 l->handle = handle;
6295 l->waste = waste;
6296 cpumask_clear(to_cpumask(l->cpus));
6297 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6298 nodes_clear(l->nodes);
6299 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6300 return 1;
6301 }
6302
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6303 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6304 struct slab *slab, enum track_item alloc,
6305 unsigned long *obj_map)
6306 {
6307 void *addr = slab_address(slab);
6308 bool is_alloc = (alloc == TRACK_ALLOC);
6309 void *p;
6310
6311 __fill_map(obj_map, s, slab);
6312
6313 for_each_object(p, s, addr, slab->objects)
6314 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6315 add_location(t, s, get_track(s, p, alloc),
6316 is_alloc ? get_orig_size(s, p) :
6317 s->object_size);
6318 }
6319 #endif /* CONFIG_DEBUG_FS */
6320 #endif /* CONFIG_SLUB_DEBUG */
6321
6322 #ifdef SLAB_SUPPORTS_SYSFS
6323 enum slab_stat_type {
6324 SL_ALL, /* All slabs */
6325 SL_PARTIAL, /* Only partially allocated slabs */
6326 SL_CPU, /* Only slabs used for cpu caches */
6327 SL_OBJECTS, /* Determine allocated objects not slabs */
6328 SL_TOTAL /* Determine object capacity not slabs */
6329 };
6330
6331 #define SO_ALL (1 << SL_ALL)
6332 #define SO_PARTIAL (1 << SL_PARTIAL)
6333 #define SO_CPU (1 << SL_CPU)
6334 #define SO_OBJECTS (1 << SL_OBJECTS)
6335 #define SO_TOTAL (1 << SL_TOTAL)
6336
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6337 static ssize_t show_slab_objects(struct kmem_cache *s,
6338 char *buf, unsigned long flags)
6339 {
6340 unsigned long total = 0;
6341 int node;
6342 int x;
6343 unsigned long *nodes;
6344 int len = 0;
6345
6346 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6347 if (!nodes)
6348 return -ENOMEM;
6349
6350 if (flags & SO_CPU) {
6351 int cpu;
6352
6353 for_each_possible_cpu(cpu) {
6354 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6355 cpu);
6356 int node;
6357 struct slab *slab;
6358
6359 slab = READ_ONCE(c->slab);
6360 if (!slab)
6361 continue;
6362
6363 node = slab_nid(slab);
6364 if (flags & SO_TOTAL)
6365 x = slab->objects;
6366 else if (flags & SO_OBJECTS)
6367 x = slab->inuse;
6368 else
6369 x = 1;
6370
6371 total += x;
6372 nodes[node] += x;
6373
6374 #ifdef CONFIG_SLUB_CPU_PARTIAL
6375 slab = slub_percpu_partial_read_once(c);
6376 if (slab) {
6377 node = slab_nid(slab);
6378 if (flags & SO_TOTAL)
6379 WARN_ON_ONCE(1);
6380 else if (flags & SO_OBJECTS)
6381 WARN_ON_ONCE(1);
6382 else
6383 x = data_race(slab->slabs);
6384 total += x;
6385 nodes[node] += x;
6386 }
6387 #endif
6388 }
6389 }
6390
6391 /*
6392 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6393 * already held which will conflict with an existing lock order:
6394 *
6395 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6396 *
6397 * We don't really need mem_hotplug_lock (to hold off
6398 * slab_mem_going_offline_callback) here because slab's memory hot
6399 * unplug code doesn't destroy the kmem_cache->node[] data.
6400 */
6401
6402 #ifdef CONFIG_SLUB_DEBUG
6403 if (flags & SO_ALL) {
6404 struct kmem_cache_node *n;
6405
6406 for_each_kmem_cache_node(s, node, n) {
6407
6408 if (flags & SO_TOTAL)
6409 x = node_nr_objs(n);
6410 else if (flags & SO_OBJECTS)
6411 x = node_nr_objs(n) - count_partial(n, count_free);
6412 else
6413 x = node_nr_slabs(n);
6414 total += x;
6415 nodes[node] += x;
6416 }
6417
6418 } else
6419 #endif
6420 if (flags & SO_PARTIAL) {
6421 struct kmem_cache_node *n;
6422
6423 for_each_kmem_cache_node(s, node, n) {
6424 if (flags & SO_TOTAL)
6425 x = count_partial(n, count_total);
6426 else if (flags & SO_OBJECTS)
6427 x = count_partial(n, count_inuse);
6428 else
6429 x = n->nr_partial;
6430 total += x;
6431 nodes[node] += x;
6432 }
6433 }
6434
6435 len += sysfs_emit_at(buf, len, "%lu", total);
6436 #ifdef CONFIG_NUMA
6437 for (node = 0; node < nr_node_ids; node++) {
6438 if (nodes[node])
6439 len += sysfs_emit_at(buf, len, " N%d=%lu",
6440 node, nodes[node]);
6441 }
6442 #endif
6443 len += sysfs_emit_at(buf, len, "\n");
6444 kfree(nodes);
6445
6446 return len;
6447 }
6448
6449 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6450 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6451
6452 struct slab_attribute {
6453 struct attribute attr;
6454 ssize_t (*show)(struct kmem_cache *s, char *buf);
6455 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6456 };
6457
6458 #define SLAB_ATTR_RO(_name) \
6459 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6460
6461 #define SLAB_ATTR(_name) \
6462 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6463
slab_size_show(struct kmem_cache * s,char * buf)6464 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6465 {
6466 return sysfs_emit(buf, "%u\n", s->size);
6467 }
6468 SLAB_ATTR_RO(slab_size);
6469
align_show(struct kmem_cache * s,char * buf)6470 static ssize_t align_show(struct kmem_cache *s, char *buf)
6471 {
6472 return sysfs_emit(buf, "%u\n", s->align);
6473 }
6474 SLAB_ATTR_RO(align);
6475
object_size_show(struct kmem_cache * s,char * buf)6476 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6477 {
6478 return sysfs_emit(buf, "%u\n", s->object_size);
6479 }
6480 SLAB_ATTR_RO(object_size);
6481
objs_per_slab_show(struct kmem_cache * s,char * buf)6482 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6483 {
6484 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6485 }
6486 SLAB_ATTR_RO(objs_per_slab);
6487
order_show(struct kmem_cache * s,char * buf)6488 static ssize_t order_show(struct kmem_cache *s, char *buf)
6489 {
6490 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6491 }
6492 SLAB_ATTR_RO(order);
6493
min_partial_show(struct kmem_cache * s,char * buf)6494 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6495 {
6496 return sysfs_emit(buf, "%lu\n", s->min_partial);
6497 }
6498
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6499 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6500 size_t length)
6501 {
6502 unsigned long min;
6503 int err;
6504
6505 err = kstrtoul(buf, 10, &min);
6506 if (err)
6507 return err;
6508
6509 s->min_partial = min;
6510 return length;
6511 }
6512 SLAB_ATTR(min_partial);
6513
cpu_partial_show(struct kmem_cache * s,char * buf)6514 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6515 {
6516 unsigned int nr_partial = 0;
6517 #ifdef CONFIG_SLUB_CPU_PARTIAL
6518 nr_partial = s->cpu_partial;
6519 #endif
6520
6521 return sysfs_emit(buf, "%u\n", nr_partial);
6522 }
6523
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6524 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6525 size_t length)
6526 {
6527 unsigned int objects;
6528 int err;
6529
6530 err = kstrtouint(buf, 10, &objects);
6531 if (err)
6532 return err;
6533 if (objects && !kmem_cache_has_cpu_partial(s))
6534 return -EINVAL;
6535
6536 slub_set_cpu_partial(s, objects);
6537 flush_all(s);
6538 return length;
6539 }
6540 SLAB_ATTR(cpu_partial);
6541
ctor_show(struct kmem_cache * s,char * buf)6542 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6543 {
6544 if (!s->ctor)
6545 return 0;
6546 return sysfs_emit(buf, "%pS\n", s->ctor);
6547 }
6548 SLAB_ATTR_RO(ctor);
6549
aliases_show(struct kmem_cache * s,char * buf)6550 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6551 {
6552 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6553 }
6554 SLAB_ATTR_RO(aliases);
6555
partial_show(struct kmem_cache * s,char * buf)6556 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6557 {
6558 return show_slab_objects(s, buf, SO_PARTIAL);
6559 }
6560 SLAB_ATTR_RO(partial);
6561
cpu_slabs_show(struct kmem_cache * s,char * buf)6562 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6563 {
6564 return show_slab_objects(s, buf, SO_CPU);
6565 }
6566 SLAB_ATTR_RO(cpu_slabs);
6567
objects_partial_show(struct kmem_cache * s,char * buf)6568 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6569 {
6570 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6571 }
6572 SLAB_ATTR_RO(objects_partial);
6573
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6574 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6575 {
6576 int objects = 0;
6577 int slabs = 0;
6578 int cpu __maybe_unused;
6579 int len = 0;
6580
6581 #ifdef CONFIG_SLUB_CPU_PARTIAL
6582 for_each_online_cpu(cpu) {
6583 struct slab *slab;
6584
6585 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6586
6587 if (slab)
6588 slabs += data_race(slab->slabs);
6589 }
6590 #endif
6591
6592 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6593 objects = (slabs * oo_objects(s->oo)) / 2;
6594 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6595
6596 #ifdef CONFIG_SLUB_CPU_PARTIAL
6597 for_each_online_cpu(cpu) {
6598 struct slab *slab;
6599
6600 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6601 if (slab) {
6602 slabs = data_race(slab->slabs);
6603 objects = (slabs * oo_objects(s->oo)) / 2;
6604 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6605 cpu, objects, slabs);
6606 }
6607 }
6608 #endif
6609 len += sysfs_emit_at(buf, len, "\n");
6610
6611 return len;
6612 }
6613 SLAB_ATTR_RO(slabs_cpu_partial);
6614
reclaim_account_show(struct kmem_cache * s,char * buf)6615 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6616 {
6617 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6618 }
6619 SLAB_ATTR_RO(reclaim_account);
6620
hwcache_align_show(struct kmem_cache * s,char * buf)6621 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6622 {
6623 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6624 }
6625 SLAB_ATTR_RO(hwcache_align);
6626
6627 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)6628 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6629 {
6630 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6631 }
6632 SLAB_ATTR_RO(cache_dma);
6633 #endif
6634
6635 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)6636 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6637 {
6638 return sysfs_emit(buf, "%u\n", s->usersize);
6639 }
6640 SLAB_ATTR_RO(usersize);
6641 #endif
6642
destroy_by_rcu_show(struct kmem_cache * s,char * buf)6643 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6644 {
6645 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6646 }
6647 SLAB_ATTR_RO(destroy_by_rcu);
6648
6649 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)6650 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6651 {
6652 return show_slab_objects(s, buf, SO_ALL);
6653 }
6654 SLAB_ATTR_RO(slabs);
6655
total_objects_show(struct kmem_cache * s,char * buf)6656 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6657 {
6658 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6659 }
6660 SLAB_ATTR_RO(total_objects);
6661
objects_show(struct kmem_cache * s,char * buf)6662 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6663 {
6664 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6665 }
6666 SLAB_ATTR_RO(objects);
6667
sanity_checks_show(struct kmem_cache * s,char * buf)6668 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6669 {
6670 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6671 }
6672 SLAB_ATTR_RO(sanity_checks);
6673
trace_show(struct kmem_cache * s,char * buf)6674 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6675 {
6676 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6677 }
6678 SLAB_ATTR_RO(trace);
6679
red_zone_show(struct kmem_cache * s,char * buf)6680 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6681 {
6682 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6683 }
6684
6685 SLAB_ATTR_RO(red_zone);
6686
poison_show(struct kmem_cache * s,char * buf)6687 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6688 {
6689 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6690 }
6691
6692 SLAB_ATTR_RO(poison);
6693
store_user_show(struct kmem_cache * s,char * buf)6694 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6695 {
6696 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6697 }
6698
6699 SLAB_ATTR_RO(store_user);
6700
validate_show(struct kmem_cache * s,char * buf)6701 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6702 {
6703 return 0;
6704 }
6705
validate_store(struct kmem_cache * s,const char * buf,size_t length)6706 static ssize_t validate_store(struct kmem_cache *s,
6707 const char *buf, size_t length)
6708 {
6709 int ret = -EINVAL;
6710
6711 if (buf[0] == '1' && kmem_cache_debug(s)) {
6712 ret = validate_slab_cache(s);
6713 if (ret >= 0)
6714 ret = length;
6715 }
6716 return ret;
6717 }
6718 SLAB_ATTR(validate);
6719
6720 #endif /* CONFIG_SLUB_DEBUG */
6721
6722 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)6723 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6724 {
6725 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6726 }
6727
failslab_store(struct kmem_cache * s,const char * buf,size_t length)6728 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6729 size_t length)
6730 {
6731 if (s->refcount > 1)
6732 return -EINVAL;
6733
6734 if (buf[0] == '1')
6735 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6736 else
6737 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6738
6739 return length;
6740 }
6741 SLAB_ATTR(failslab);
6742 #endif
6743
shrink_show(struct kmem_cache * s,char * buf)6744 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6745 {
6746 return 0;
6747 }
6748
shrink_store(struct kmem_cache * s,const char * buf,size_t length)6749 static ssize_t shrink_store(struct kmem_cache *s,
6750 const char *buf, size_t length)
6751 {
6752 if (buf[0] == '1')
6753 kmem_cache_shrink(s);
6754 else
6755 return -EINVAL;
6756 return length;
6757 }
6758 SLAB_ATTR(shrink);
6759
6760 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)6761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6762 {
6763 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6764 }
6765
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)6766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6767 const char *buf, size_t length)
6768 {
6769 unsigned int ratio;
6770 int err;
6771
6772 err = kstrtouint(buf, 10, &ratio);
6773 if (err)
6774 return err;
6775 if (ratio > 100)
6776 return -ERANGE;
6777
6778 s->remote_node_defrag_ratio = ratio * 10;
6779
6780 return length;
6781 }
6782 SLAB_ATTR(remote_node_defrag_ratio);
6783 #endif
6784
6785 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)6786 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6787 {
6788 unsigned long sum = 0;
6789 int cpu;
6790 int len = 0;
6791 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6792
6793 if (!data)
6794 return -ENOMEM;
6795
6796 for_each_online_cpu(cpu) {
6797 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6798
6799 data[cpu] = x;
6800 sum += x;
6801 }
6802
6803 len += sysfs_emit_at(buf, len, "%lu", sum);
6804
6805 #ifdef CONFIG_SMP
6806 for_each_online_cpu(cpu) {
6807 if (data[cpu])
6808 len += sysfs_emit_at(buf, len, " C%d=%u",
6809 cpu, data[cpu]);
6810 }
6811 #endif
6812 kfree(data);
6813 len += sysfs_emit_at(buf, len, "\n");
6814
6815 return len;
6816 }
6817
clear_stat(struct kmem_cache * s,enum stat_item si)6818 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6819 {
6820 int cpu;
6821
6822 for_each_online_cpu(cpu)
6823 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6824 }
6825
6826 #define STAT_ATTR(si, text) \
6827 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6828 { \
6829 return show_stat(s, buf, si); \
6830 } \
6831 static ssize_t text##_store(struct kmem_cache *s, \
6832 const char *buf, size_t length) \
6833 { \
6834 if (buf[0] != '0') \
6835 return -EINVAL; \
6836 clear_stat(s, si); \
6837 return length; \
6838 } \
6839 SLAB_ATTR(text); \
6840
6841 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6842 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6843 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6844 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6845 STAT_ATTR(FREE_FROZEN, free_frozen);
6846 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6847 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6848 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6849 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6850 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6851 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6852 STAT_ATTR(FREE_SLAB, free_slab);
6853 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6854 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6855 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6856 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6857 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6858 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6859 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6860 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6861 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6862 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6863 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6864 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6865 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6866 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6867 #endif /* CONFIG_SLUB_STATS */
6868
6869 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)6870 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6871 {
6872 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6873 }
6874
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)6875 static ssize_t skip_kfence_store(struct kmem_cache *s,
6876 const char *buf, size_t length)
6877 {
6878 int ret = length;
6879
6880 if (buf[0] == '0')
6881 s->flags &= ~SLAB_SKIP_KFENCE;
6882 else if (buf[0] == '1')
6883 s->flags |= SLAB_SKIP_KFENCE;
6884 else
6885 ret = -EINVAL;
6886
6887 return ret;
6888 }
6889 SLAB_ATTR(skip_kfence);
6890 #endif
6891
6892 static struct attribute *slab_attrs[] = {
6893 &slab_size_attr.attr,
6894 &object_size_attr.attr,
6895 &objs_per_slab_attr.attr,
6896 &order_attr.attr,
6897 &min_partial_attr.attr,
6898 &cpu_partial_attr.attr,
6899 &objects_partial_attr.attr,
6900 &partial_attr.attr,
6901 &cpu_slabs_attr.attr,
6902 &ctor_attr.attr,
6903 &aliases_attr.attr,
6904 &align_attr.attr,
6905 &hwcache_align_attr.attr,
6906 &reclaim_account_attr.attr,
6907 &destroy_by_rcu_attr.attr,
6908 &shrink_attr.attr,
6909 &slabs_cpu_partial_attr.attr,
6910 #ifdef CONFIG_SLUB_DEBUG
6911 &total_objects_attr.attr,
6912 &objects_attr.attr,
6913 &slabs_attr.attr,
6914 &sanity_checks_attr.attr,
6915 &trace_attr.attr,
6916 &red_zone_attr.attr,
6917 &poison_attr.attr,
6918 &store_user_attr.attr,
6919 &validate_attr.attr,
6920 #endif
6921 #ifdef CONFIG_ZONE_DMA
6922 &cache_dma_attr.attr,
6923 #endif
6924 #ifdef CONFIG_NUMA
6925 &remote_node_defrag_ratio_attr.attr,
6926 #endif
6927 #ifdef CONFIG_SLUB_STATS
6928 &alloc_fastpath_attr.attr,
6929 &alloc_slowpath_attr.attr,
6930 &free_fastpath_attr.attr,
6931 &free_slowpath_attr.attr,
6932 &free_frozen_attr.attr,
6933 &free_add_partial_attr.attr,
6934 &free_remove_partial_attr.attr,
6935 &alloc_from_partial_attr.attr,
6936 &alloc_slab_attr.attr,
6937 &alloc_refill_attr.attr,
6938 &alloc_node_mismatch_attr.attr,
6939 &free_slab_attr.attr,
6940 &cpuslab_flush_attr.attr,
6941 &deactivate_full_attr.attr,
6942 &deactivate_empty_attr.attr,
6943 &deactivate_to_head_attr.attr,
6944 &deactivate_to_tail_attr.attr,
6945 &deactivate_remote_frees_attr.attr,
6946 &deactivate_bypass_attr.attr,
6947 &order_fallback_attr.attr,
6948 &cmpxchg_double_fail_attr.attr,
6949 &cmpxchg_double_cpu_fail_attr.attr,
6950 &cpu_partial_alloc_attr.attr,
6951 &cpu_partial_free_attr.attr,
6952 &cpu_partial_node_attr.attr,
6953 &cpu_partial_drain_attr.attr,
6954 #endif
6955 #ifdef CONFIG_FAILSLAB
6956 &failslab_attr.attr,
6957 #endif
6958 #ifdef CONFIG_HARDENED_USERCOPY
6959 &usersize_attr.attr,
6960 #endif
6961 #ifdef CONFIG_KFENCE
6962 &skip_kfence_attr.attr,
6963 #endif
6964
6965 NULL
6966 };
6967
6968 static const struct attribute_group slab_attr_group = {
6969 .attrs = slab_attrs,
6970 };
6971
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)6972 static ssize_t slab_attr_show(struct kobject *kobj,
6973 struct attribute *attr,
6974 char *buf)
6975 {
6976 struct slab_attribute *attribute;
6977 struct kmem_cache *s;
6978
6979 attribute = to_slab_attr(attr);
6980 s = to_slab(kobj);
6981
6982 if (!attribute->show)
6983 return -EIO;
6984
6985 return attribute->show(s, buf);
6986 }
6987
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)6988 static ssize_t slab_attr_store(struct kobject *kobj,
6989 struct attribute *attr,
6990 const char *buf, size_t len)
6991 {
6992 struct slab_attribute *attribute;
6993 struct kmem_cache *s;
6994
6995 attribute = to_slab_attr(attr);
6996 s = to_slab(kobj);
6997
6998 if (!attribute->store)
6999 return -EIO;
7000
7001 return attribute->store(s, buf, len);
7002 }
7003
kmem_cache_release(struct kobject * k)7004 static void kmem_cache_release(struct kobject *k)
7005 {
7006 slab_kmem_cache_release(to_slab(k));
7007 }
7008
7009 static const struct sysfs_ops slab_sysfs_ops = {
7010 .show = slab_attr_show,
7011 .store = slab_attr_store,
7012 };
7013
7014 static const struct kobj_type slab_ktype = {
7015 .sysfs_ops = &slab_sysfs_ops,
7016 .release = kmem_cache_release,
7017 };
7018
7019 static struct kset *slab_kset;
7020
cache_kset(struct kmem_cache * s)7021 static inline struct kset *cache_kset(struct kmem_cache *s)
7022 {
7023 return slab_kset;
7024 }
7025
7026 #define ID_STR_LENGTH 32
7027
7028 /* Create a unique string id for a slab cache:
7029 *
7030 * Format :[flags-]size
7031 */
create_unique_id(struct kmem_cache * s)7032 static char *create_unique_id(struct kmem_cache *s)
7033 {
7034 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7035 char *p = name;
7036
7037 if (!name)
7038 return ERR_PTR(-ENOMEM);
7039
7040 *p++ = ':';
7041 /*
7042 * First flags affecting slabcache operations. We will only
7043 * get here for aliasable slabs so we do not need to support
7044 * too many flags. The flags here must cover all flags that
7045 * are matched during merging to guarantee that the id is
7046 * unique.
7047 */
7048 if (s->flags & SLAB_CACHE_DMA)
7049 *p++ = 'd';
7050 if (s->flags & SLAB_CACHE_DMA32)
7051 *p++ = 'D';
7052 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7053 *p++ = 'a';
7054 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7055 *p++ = 'F';
7056 if (s->flags & SLAB_ACCOUNT)
7057 *p++ = 'A';
7058 if (p != name + 1)
7059 *p++ = '-';
7060 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7061
7062 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7063 kfree(name);
7064 return ERR_PTR(-EINVAL);
7065 }
7066 kmsan_unpoison_memory(name, p - name);
7067 return name;
7068 }
7069
sysfs_slab_add(struct kmem_cache * s)7070 static int sysfs_slab_add(struct kmem_cache *s)
7071 {
7072 int err;
7073 const char *name;
7074 struct kset *kset = cache_kset(s);
7075 int unmergeable = slab_unmergeable(s);
7076
7077 if (!unmergeable && disable_higher_order_debug &&
7078 (slub_debug & DEBUG_METADATA_FLAGS))
7079 unmergeable = 1;
7080
7081 if (unmergeable) {
7082 /*
7083 * Slabcache can never be merged so we can use the name proper.
7084 * This is typically the case for debug situations. In that
7085 * case we can catch duplicate names easily.
7086 */
7087 sysfs_remove_link(&slab_kset->kobj, s->name);
7088 name = s->name;
7089 } else {
7090 /*
7091 * Create a unique name for the slab as a target
7092 * for the symlinks.
7093 */
7094 name = create_unique_id(s);
7095 if (IS_ERR(name))
7096 return PTR_ERR(name);
7097 }
7098
7099 s->kobj.kset = kset;
7100 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7101 if (err)
7102 goto out;
7103
7104 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7105 if (err)
7106 goto out_del_kobj;
7107
7108 if (!unmergeable) {
7109 /* Setup first alias */
7110 sysfs_slab_alias(s, s->name);
7111 }
7112 out:
7113 if (!unmergeable)
7114 kfree(name);
7115 return err;
7116 out_del_kobj:
7117 kobject_del(&s->kobj);
7118 goto out;
7119 }
7120
sysfs_slab_unlink(struct kmem_cache * s)7121 void sysfs_slab_unlink(struct kmem_cache *s)
7122 {
7123 kobject_del(&s->kobj);
7124 }
7125
sysfs_slab_release(struct kmem_cache * s)7126 void sysfs_slab_release(struct kmem_cache *s)
7127 {
7128 kobject_put(&s->kobj);
7129 }
7130
7131 /*
7132 * Need to buffer aliases during bootup until sysfs becomes
7133 * available lest we lose that information.
7134 */
7135 struct saved_alias {
7136 struct kmem_cache *s;
7137 const char *name;
7138 struct saved_alias *next;
7139 };
7140
7141 static struct saved_alias *alias_list;
7142
sysfs_slab_alias(struct kmem_cache * s,const char * name)7143 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7144 {
7145 struct saved_alias *al;
7146
7147 if (slab_state == FULL) {
7148 /*
7149 * If we have a leftover link then remove it.
7150 */
7151 sysfs_remove_link(&slab_kset->kobj, name);
7152 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7153 }
7154
7155 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7156 if (!al)
7157 return -ENOMEM;
7158
7159 al->s = s;
7160 al->name = name;
7161 al->next = alias_list;
7162 alias_list = al;
7163 kmsan_unpoison_memory(al, sizeof(*al));
7164 return 0;
7165 }
7166
slab_sysfs_init(void)7167 static int __init slab_sysfs_init(void)
7168 {
7169 struct kmem_cache *s;
7170 int err;
7171
7172 mutex_lock(&slab_mutex);
7173
7174 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7175 if (!slab_kset) {
7176 mutex_unlock(&slab_mutex);
7177 pr_err("Cannot register slab subsystem.\n");
7178 return -ENOMEM;
7179 }
7180
7181 slab_state = FULL;
7182
7183 list_for_each_entry(s, &slab_caches, list) {
7184 err = sysfs_slab_add(s);
7185 if (err)
7186 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7187 s->name);
7188 }
7189
7190 while (alias_list) {
7191 struct saved_alias *al = alias_list;
7192
7193 alias_list = alias_list->next;
7194 err = sysfs_slab_alias(al->s, al->name);
7195 if (err)
7196 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7197 al->name);
7198 kfree(al);
7199 }
7200
7201 mutex_unlock(&slab_mutex);
7202 return 0;
7203 }
7204 late_initcall(slab_sysfs_init);
7205 #endif /* SLAB_SUPPORTS_SYSFS */
7206
7207 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7208 static int slab_debugfs_show(struct seq_file *seq, void *v)
7209 {
7210 struct loc_track *t = seq->private;
7211 struct location *l;
7212 unsigned long idx;
7213
7214 idx = (unsigned long) t->idx;
7215 if (idx < t->count) {
7216 l = &t->loc[idx];
7217
7218 seq_printf(seq, "%7ld ", l->count);
7219
7220 if (l->addr)
7221 seq_printf(seq, "%pS", (void *)l->addr);
7222 else
7223 seq_puts(seq, "<not-available>");
7224
7225 if (l->waste)
7226 seq_printf(seq, " waste=%lu/%lu",
7227 l->count * l->waste, l->waste);
7228
7229 if (l->sum_time != l->min_time) {
7230 seq_printf(seq, " age=%ld/%llu/%ld",
7231 l->min_time, div_u64(l->sum_time, l->count),
7232 l->max_time);
7233 } else
7234 seq_printf(seq, " age=%ld", l->min_time);
7235
7236 if (l->min_pid != l->max_pid)
7237 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7238 else
7239 seq_printf(seq, " pid=%ld",
7240 l->min_pid);
7241
7242 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7243 seq_printf(seq, " cpus=%*pbl",
7244 cpumask_pr_args(to_cpumask(l->cpus)));
7245
7246 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7247 seq_printf(seq, " nodes=%*pbl",
7248 nodemask_pr_args(&l->nodes));
7249
7250 #ifdef CONFIG_STACKDEPOT
7251 {
7252 depot_stack_handle_t handle;
7253 unsigned long *entries;
7254 unsigned int nr_entries, j;
7255
7256 handle = READ_ONCE(l->handle);
7257 if (handle) {
7258 nr_entries = stack_depot_fetch(handle, &entries);
7259 seq_puts(seq, "\n");
7260 for (j = 0; j < nr_entries; j++)
7261 seq_printf(seq, " %pS\n", (void *)entries[j]);
7262 }
7263 }
7264 #endif
7265 seq_puts(seq, "\n");
7266 }
7267
7268 if (!idx && !t->count)
7269 seq_puts(seq, "No data\n");
7270
7271 return 0;
7272 }
7273
slab_debugfs_stop(struct seq_file * seq,void * v)7274 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7275 {
7276 }
7277
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7278 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7279 {
7280 struct loc_track *t = seq->private;
7281
7282 t->idx = ++(*ppos);
7283 if (*ppos <= t->count)
7284 return ppos;
7285
7286 return NULL;
7287 }
7288
cmp_loc_by_count(const void * a,const void * b,const void * data)7289 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7290 {
7291 struct location *loc1 = (struct location *)a;
7292 struct location *loc2 = (struct location *)b;
7293
7294 if (loc1->count > loc2->count)
7295 return -1;
7296 else
7297 return 1;
7298 }
7299
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7300 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7301 {
7302 struct loc_track *t = seq->private;
7303
7304 t->idx = *ppos;
7305 return ppos;
7306 }
7307
7308 static const struct seq_operations slab_debugfs_sops = {
7309 .start = slab_debugfs_start,
7310 .next = slab_debugfs_next,
7311 .stop = slab_debugfs_stop,
7312 .show = slab_debugfs_show,
7313 };
7314
slab_debug_trace_open(struct inode * inode,struct file * filep)7315 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7316 {
7317
7318 struct kmem_cache_node *n;
7319 enum track_item alloc;
7320 int node;
7321 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7322 sizeof(struct loc_track));
7323 struct kmem_cache *s = file_inode(filep)->i_private;
7324 unsigned long *obj_map;
7325
7326 if (!t)
7327 return -ENOMEM;
7328
7329 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7330 if (!obj_map) {
7331 seq_release_private(inode, filep);
7332 return -ENOMEM;
7333 }
7334
7335 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7336 alloc = TRACK_ALLOC;
7337 else
7338 alloc = TRACK_FREE;
7339
7340 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7341 bitmap_free(obj_map);
7342 seq_release_private(inode, filep);
7343 return -ENOMEM;
7344 }
7345
7346 for_each_kmem_cache_node(s, node, n) {
7347 unsigned long flags;
7348 struct slab *slab;
7349
7350 if (!node_nr_slabs(n))
7351 continue;
7352
7353 spin_lock_irqsave(&n->list_lock, flags);
7354 list_for_each_entry(slab, &n->partial, slab_list)
7355 process_slab(t, s, slab, alloc, obj_map);
7356 list_for_each_entry(slab, &n->full, slab_list)
7357 process_slab(t, s, slab, alloc, obj_map);
7358 spin_unlock_irqrestore(&n->list_lock, flags);
7359 }
7360
7361 /* Sort locations by count */
7362 sort_r(t->loc, t->count, sizeof(struct location),
7363 cmp_loc_by_count, NULL, NULL);
7364
7365 bitmap_free(obj_map);
7366 return 0;
7367 }
7368
slab_debug_trace_release(struct inode * inode,struct file * file)7369 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7370 {
7371 struct seq_file *seq = file->private_data;
7372 struct loc_track *t = seq->private;
7373
7374 free_loc_track(t);
7375 return seq_release_private(inode, file);
7376 }
7377
7378 static const struct file_operations slab_debugfs_fops = {
7379 .open = slab_debug_trace_open,
7380 .read = seq_read,
7381 .llseek = seq_lseek,
7382 .release = slab_debug_trace_release,
7383 };
7384
debugfs_slab_add(struct kmem_cache * s)7385 static void debugfs_slab_add(struct kmem_cache *s)
7386 {
7387 struct dentry *slab_cache_dir;
7388
7389 if (unlikely(!slab_debugfs_root))
7390 return;
7391
7392 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7393
7394 debugfs_create_file("alloc_traces", 0400,
7395 slab_cache_dir, s, &slab_debugfs_fops);
7396
7397 debugfs_create_file("free_traces", 0400,
7398 slab_cache_dir, s, &slab_debugfs_fops);
7399 }
7400
debugfs_slab_release(struct kmem_cache * s)7401 void debugfs_slab_release(struct kmem_cache *s)
7402 {
7403 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7404 }
7405
slab_debugfs_init(void)7406 static int __init slab_debugfs_init(void)
7407 {
7408 struct kmem_cache *s;
7409
7410 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7411
7412 list_for_each_entry(s, &slab_caches, list)
7413 if (s->flags & SLAB_STORE_USER)
7414 debugfs_slab_add(s);
7415
7416 return 0;
7417
7418 }
7419 __initcall(slab_debugfs_init);
7420 #endif
7421 /*
7422 * The /proc/slabinfo ABI
7423 */
7424 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7425 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7426 {
7427 unsigned long nr_slabs = 0;
7428 unsigned long nr_objs = 0;
7429 unsigned long nr_free = 0;
7430 int node;
7431 struct kmem_cache_node *n;
7432
7433 for_each_kmem_cache_node(s, node, n) {
7434 nr_slabs += node_nr_slabs(n);
7435 nr_objs += node_nr_objs(n);
7436 nr_free += count_partial_free_approx(n);
7437 }
7438
7439 sinfo->active_objs = nr_objs - nr_free;
7440 sinfo->num_objs = nr_objs;
7441 sinfo->active_slabs = nr_slabs;
7442 sinfo->num_slabs = nr_slabs;
7443 sinfo->objects_per_slab = oo_objects(s->oo);
7444 sinfo->cache_order = oo_order(s->oo);
7445 }
7446 #endif /* CONFIG_SLUB_DEBUG */
7447