1 /*! \file */
2 /*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef KMP_H
15 #define KMP_H
16
17 #include "kmp_config.h"
18
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 #define KMP_WEIGHTED_ITERATIONS_SUPPORTED \
31 (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED && \
32 (KMP_ARCH_X86 || KMP_ARCH_X86_64))
33
34 #define TASK_CURRENT_NOT_QUEUED 0
35 #define TASK_CURRENT_QUEUED 1
36
37 #ifdef BUILD_TIED_TASK_STACK
38 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
39 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
40 // Number of entries in each task stack array
41 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
42 // Mask for determining index into stack block
43 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
44 #endif // BUILD_TIED_TASK_STACK
45
46 #define TASK_NOT_PUSHED 1
47 #define TASK_SUCCESSFULLY_PUSHED 0
48 #define TASK_TIED 1
49 #define TASK_UNTIED 0
50 #define TASK_EXPLICIT 1
51 #define TASK_IMPLICIT 0
52 #define TASK_PROXY 1
53 #define TASK_FULL 0
54 #define TASK_DETACHABLE 1
55 #define TASK_UNDETACHABLE 0
56
57 #define KMP_CANCEL_THREADS
58 #define KMP_THREAD_ATTR
59
60 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
61 // built on Android
62 #if defined(__ANDROID__)
63 #undef KMP_CANCEL_THREADS
64 #endif
65
66 // Some WASI targets (e.g., wasm32-wasi-threads) do not support thread
67 // cancellation.
68 #if KMP_OS_WASI
69 #undef KMP_CANCEL_THREADS
70 #endif
71
72 #if !KMP_OS_WASI
73 #include <signal.h>
74 #endif
75 #include <stdarg.h>
76 #include <stddef.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <string.h>
80 #include <limits>
81 #include <type_traits>
82 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
83 Microsoft library. Some macros provided below to replace these functions */
84 #ifndef __ABSOFT_WIN
85 #include <sys/types.h>
86 #endif
87 #include <limits.h>
88 #include <time.h>
89
90 #include <errno.h>
91
92 #include "kmp_os.h"
93
94 #include "kmp_safe_c_api.h"
95
96 #if KMP_STATS_ENABLED
97 class kmp_stats_list;
98 #endif
99
100 #if KMP_USE_HIER_SCHED
101 // Only include hierarchical scheduling if affinity is supported
102 #undef KMP_USE_HIER_SCHED
103 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
104 #endif
105
106 // OMPD_SKIP_HWLOC used in libompd/omp-icv.cpp to avoid OMPD depending on hwloc
107 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED && !defined(OMPD_SKIP_HWLOC)
108 #include "hwloc.h"
109 #ifndef HWLOC_OBJ_NUMANODE
110 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
111 #endif
112 #ifndef HWLOC_OBJ_PACKAGE
113 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
114 #endif
115 #endif
116
117 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
118 #include <xmmintrin.h>
119 #endif
120
121 // The below has to be defined before including "kmp_barrier.h".
122 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
123 #define KMP_INTERNAL_FREE(p) free(p)
124 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
125 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
126
127 #include "kmp_debug.h"
128 #include "kmp_lock.h"
129 #include "kmp_version.h"
130 #include "kmp_barrier.h"
131 #if USE_DEBUGGER
132 #include "kmp_debugger.h"
133 #endif
134 #include "kmp_i18n.h"
135
136 #define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS)
137
138 #include "kmp_wrapper_malloc.h"
139 #if KMP_OS_UNIX
140 #include <unistd.h>
141 #if !defined NSIG && defined _NSIG
142 #define NSIG _NSIG
143 #endif
144 #endif
145
146 #if KMP_OS_LINUX
147 #pragma weak clock_gettime
148 #endif
149
150 #if OMPT_SUPPORT
151 #include "ompt-internal.h"
152 #endif
153
154 #if OMPD_SUPPORT
155 #include "ompd-specific.h"
156 #endif
157
158 #ifndef UNLIKELY
159 #define UNLIKELY(x) (x)
160 #endif
161
162 // Affinity format function
163 #include "kmp_str.h"
164
165 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
166 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
167 // free lists of limited size.
168 #ifndef USE_FAST_MEMORY
169 #define USE_FAST_MEMORY 3
170 #endif
171
172 #ifndef KMP_NESTED_HOT_TEAMS
173 #define KMP_NESTED_HOT_TEAMS 0
174 #define USE_NESTED_HOT_ARG(x)
175 #else
176 #if KMP_NESTED_HOT_TEAMS
177 #define USE_NESTED_HOT_ARG(x) , x
178 #else
179 #define USE_NESTED_HOT_ARG(x)
180 #endif
181 #endif
182
183 // Assume using BGET compare_exchange instruction instead of lock by default.
184 #ifndef USE_CMP_XCHG_FOR_BGET
185 #define USE_CMP_XCHG_FOR_BGET 1
186 #endif
187
188 // Test to see if queuing lock is better than bootstrap lock for bget
189 // #ifndef USE_QUEUING_LOCK_FOR_BGET
190 // #define USE_QUEUING_LOCK_FOR_BGET
191 // #endif
192
193 #define KMP_NSEC_PER_SEC 1000000000L
194 #define KMP_USEC_PER_SEC 1000000L
195 #define KMP_NSEC_PER_USEC 1000L
196
197 /*!
198 @ingroup BASIC_TYPES
199 @{
200 */
201
202 /*!
203 Values for bit flags used in the ident_t to describe the fields.
204 */
205 enum {
206 /*! Use trampoline for internal microtasks */
207 KMP_IDENT_IMB = 0x01,
208 /*! Use c-style ident structure */
209 KMP_IDENT_KMPC = 0x02,
210 /* 0x04 is no longer used */
211 /*! Entry point generated by auto-parallelization */
212 KMP_IDENT_AUTOPAR = 0x08,
213 /*! Compiler generates atomic reduction option for kmpc_reduce* */
214 KMP_IDENT_ATOMIC_REDUCE = 0x10,
215 /*! To mark a 'barrier' directive in user code */
216 KMP_IDENT_BARRIER_EXPL = 0x20,
217 /*! To Mark implicit barriers. */
218 KMP_IDENT_BARRIER_IMPL = 0x0040,
219 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
220 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
221 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
222
223 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
224 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
225
226 /*! To mark a static loop in OMPT callbacks */
227 KMP_IDENT_WORK_LOOP = 0x200,
228 /*! To mark a sections directive in OMPT callbacks */
229 KMP_IDENT_WORK_SECTIONS = 0x400,
230 /*! To mark a distribute construct in OMPT callbacks */
231 KMP_IDENT_WORK_DISTRIBUTE = 0x800,
232 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
233 not currently used. If one day we need more bits, then we can use
234 an invalid combination of hints to mean that another, larger field
235 should be used in a different flag. */
236 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
237 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
238 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
239 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
240 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
241 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
242 };
243
244 /*!
245 * The ident structure that describes a source location.
246 */
247 typedef struct ident {
248 kmp_int32 reserved_1; /**< might be used in Fortran; see above */
249 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
250 identifies this union member */
251 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */
252 #if USE_ITT_BUILD
253 /* but currently used for storing region-specific ITT */
254 /* contextual information. */
255 #endif /* USE_ITT_BUILD */
256 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */
257 char const *psource; /**< String describing the source location.
258 The string is composed of semi-colon separated fields
259 which describe the source file, the function and a pair
260 of line numbers that delimit the construct. */
261 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
get_openmp_versionident262 kmp_int32 get_openmp_version() {
263 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
264 }
265 } ident_t;
266 /*!
267 @}
268 */
269
270 // Some forward declarations.
271 typedef union kmp_team kmp_team_t;
272 typedef struct kmp_taskdata kmp_taskdata_t;
273 typedef union kmp_task_team kmp_task_team_t;
274 typedef union kmp_team kmp_team_p;
275 typedef union kmp_info kmp_info_p;
276 typedef union kmp_root kmp_root_p;
277
278 template <bool C = false, bool S = true> class kmp_flag_32;
279 template <bool C = false, bool S = true> class kmp_flag_64;
280 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
281 class kmp_flag_oncore;
282
283 #ifdef __cplusplus
284 extern "C" {
285 #endif
286
287 /* ------------------------------------------------------------------------ */
288
289 /* Pack two 32-bit signed integers into a 64-bit signed integer */
290 /* ToDo: Fix word ordering for big-endian machines. */
291 #define KMP_PACK_64(HIGH_32, LOW_32) \
292 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
293
294 // Generic string manipulation macros. Assume that _x is of type char *
295 #define SKIP_WS(_x) \
296 { \
297 while (*(_x) == ' ' || *(_x) == '\t') \
298 (_x)++; \
299 }
300 #define SKIP_DIGITS(_x) \
301 { \
302 while (*(_x) >= '0' && *(_x) <= '9') \
303 (_x)++; \
304 }
305 #define SKIP_TOKEN(_x) \
306 { \
307 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
308 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
309 (_x)++; \
310 }
311 #define SKIP_TO(_x, _c) \
312 { \
313 while (*(_x) != '\0' && *(_x) != (_c)) \
314 (_x)++; \
315 }
316
317 /* ------------------------------------------------------------------------ */
318
319 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
320 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
321
322 /* ------------------------------------------------------------------------ */
323 /* Enumeration types */
324
325 enum kmp_state_timer {
326 ts_stop,
327 ts_start,
328 ts_pause,
329
330 ts_last_state
331 };
332
333 enum dynamic_mode {
334 dynamic_default,
335 #ifdef USE_LOAD_BALANCE
336 dynamic_load_balance,
337 #endif /* USE_LOAD_BALANCE */
338 dynamic_random,
339 dynamic_thread_limit,
340 dynamic_max
341 };
342
343 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
344 * not include it here */
345 #ifndef KMP_SCHED_TYPE_DEFINED
346 #define KMP_SCHED_TYPE_DEFINED
347 typedef enum kmp_sched {
348 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
349 // Note: need to adjust __kmp_sch_map global array in case enum is changed
350 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
351 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
352 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
353 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
354 kmp_sched_upper_std = 5, // upper bound for standard schedules
355 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
356 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
357 #if KMP_STATIC_STEAL_ENABLED
358 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
359 #endif
360 kmp_sched_upper,
361 kmp_sched_default = kmp_sched_static, // default scheduling
362 kmp_sched_monotonic = 0x80000000
363 } kmp_sched_t;
364 #endif
365
366 /*!
367 @ingroup WORK_SHARING
368 * Describes the loop schedule to be used for a parallel for loop.
369 */
370 enum sched_type : kmp_int32 {
371 kmp_sch_lower = 32, /**< lower bound for unordered values */
372 kmp_sch_static_chunked = 33,
373 kmp_sch_static = 34, /**< static unspecialized */
374 kmp_sch_dynamic_chunked = 35,
375 kmp_sch_guided_chunked = 36, /**< guided unspecialized */
376 kmp_sch_runtime = 37,
377 kmp_sch_auto = 38, /**< auto */
378 kmp_sch_trapezoidal = 39,
379
380 /* accessible only through KMP_SCHEDULE environment variable */
381 kmp_sch_static_greedy = 40,
382 kmp_sch_static_balanced = 41,
383 /* accessible only through KMP_SCHEDULE environment variable */
384 kmp_sch_guided_iterative_chunked = 42,
385 kmp_sch_guided_analytical_chunked = 43,
386 /* accessible only through KMP_SCHEDULE environment variable */
387 kmp_sch_static_steal = 44,
388
389 /* static with chunk adjustment (e.g., simd) */
390 kmp_sch_static_balanced_chunked = 45,
391 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
392 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
393
394 /* accessible only through KMP_SCHEDULE environment variable */
395 kmp_sch_upper, /**< upper bound for unordered values */
396
397 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
398 kmp_ord_static_chunked = 65,
399 kmp_ord_static = 66, /**< ordered static unspecialized */
400 kmp_ord_dynamic_chunked = 67,
401 kmp_ord_guided_chunked = 68,
402 kmp_ord_runtime = 69,
403 kmp_ord_auto = 70, /**< ordered auto */
404 kmp_ord_trapezoidal = 71,
405 kmp_ord_upper, /**< upper bound for ordered values */
406
407 /* Schedules for Distribute construct */
408 kmp_distribute_static_chunked = 91, /**< distribute static chunked */
409 kmp_distribute_static = 92, /**< distribute static unspecialized */
410
411 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
412 single iteration/chunk, even if the loop is serialized. For the schedule
413 types listed above, the entire iteration vector is returned if the loop is
414 serialized. This doesn't work for gcc/gcomp sections. */
415 kmp_nm_lower = 160, /**< lower bound for nomerge values */
416
417 kmp_nm_static_chunked =
418 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
419 kmp_nm_static = 162, /**< static unspecialized */
420 kmp_nm_dynamic_chunked = 163,
421 kmp_nm_guided_chunked = 164, /**< guided unspecialized */
422 kmp_nm_runtime = 165,
423 kmp_nm_auto = 166, /**< auto */
424 kmp_nm_trapezoidal = 167,
425
426 /* accessible only through KMP_SCHEDULE environment variable */
427 kmp_nm_static_greedy = 168,
428 kmp_nm_static_balanced = 169,
429 /* accessible only through KMP_SCHEDULE environment variable */
430 kmp_nm_guided_iterative_chunked = 170,
431 kmp_nm_guided_analytical_chunked = 171,
432 kmp_nm_static_steal =
433 172, /* accessible only through OMP_SCHEDULE environment variable */
434
435 kmp_nm_ord_static_chunked = 193,
436 kmp_nm_ord_static = 194, /**< ordered static unspecialized */
437 kmp_nm_ord_dynamic_chunked = 195,
438 kmp_nm_ord_guided_chunked = 196,
439 kmp_nm_ord_runtime = 197,
440 kmp_nm_ord_auto = 198, /**< auto */
441 kmp_nm_ord_trapezoidal = 199,
442 kmp_nm_upper, /**< upper bound for nomerge values */
443
444 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
445 we need to distinguish the three possible cases (no modifier, monotonic
446 modifier, nonmonotonic modifier), we need separate bits for each modifier.
447 The absence of monotonic does not imply nonmonotonic, especially since 4.5
448 says that the behaviour of the "no modifier" case is implementation defined
449 in 4.5, but will become "nonmonotonic" in 5.0.
450
451 Since we're passing a full 32 bit value, we can use a couple of high bits
452 for these flags; out of paranoia we avoid the sign bit.
453
454 These modifiers can be or-ed into non-static schedules by the compiler to
455 pass the additional information. They will be stripped early in the
456 processing in __kmp_dispatch_init when setting up schedules, so most of the
457 code won't ever see schedules with these bits set. */
458 kmp_sch_modifier_monotonic =
459 (1 << 29), /**< Set if the monotonic schedule modifier was present */
460 kmp_sch_modifier_nonmonotonic =
461 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
462
463 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
464 (enum sched_type)( \
465 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
466 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
467 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
468 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
469 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
470 #define SCHEDULE_GET_MODIFIERS(s) \
471 ((enum sched_type)( \
472 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
473 #define SCHEDULE_SET_MODIFIERS(s, m) \
474 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
475 #define SCHEDULE_NONMONOTONIC 0
476 #define SCHEDULE_MONOTONIC 1
477
478 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
479 };
480
481 // Apply modifiers on internal kind to standard kind
482 static inline void
__kmp_sched_apply_mods_stdkind(kmp_sched_t * kind,enum sched_type internal_kind)483 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
484 enum sched_type internal_kind) {
485 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
486 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
487 }
488 }
489
490 // Apply modifiers on standard kind to internal kind
491 static inline void
__kmp_sched_apply_mods_intkind(kmp_sched_t kind,enum sched_type * internal_kind)492 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
493 enum sched_type *internal_kind) {
494 if ((int)kind & (int)kmp_sched_monotonic) {
495 *internal_kind = (enum sched_type)((int)*internal_kind |
496 (int)kmp_sch_modifier_monotonic);
497 }
498 }
499
500 // Get standard schedule without modifiers
__kmp_sched_without_mods(kmp_sched_t kind)501 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
502 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
503 }
504
505 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
506 typedef union kmp_r_sched {
507 struct {
508 enum sched_type r_sched_type;
509 int chunk;
510 };
511 kmp_int64 sched;
512 } kmp_r_sched_t;
513
514 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
515 // internal schedule types
516
517 enum library_type {
518 library_none,
519 library_serial,
520 library_turnaround,
521 library_throughput
522 };
523
524 #if KMP_OS_LINUX
525 enum clock_function_type {
526 clock_function_gettimeofday,
527 clock_function_clock_gettime
528 };
529 #endif /* KMP_OS_LINUX */
530
531 #if KMP_MIC_SUPPORTED
532 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
533 #endif
534
535 // OpenMP 3.1 - Nested num threads array
536 typedef struct kmp_nested_nthreads_t {
537 int *nth;
538 int size;
539 int used;
540 } kmp_nested_nthreads_t;
541
542 extern kmp_nested_nthreads_t __kmp_nested_nth;
543
544 /* -- fast reduction stuff ------------------------------------------------ */
545
546 #undef KMP_FAST_REDUCTION_BARRIER
547 #define KMP_FAST_REDUCTION_BARRIER 1
548
549 #undef KMP_FAST_REDUCTION_CORE_DUO
550 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
551 #define KMP_FAST_REDUCTION_CORE_DUO 1
552 #endif
553
554 enum _reduction_method {
555 reduction_method_not_defined = 0,
556 critical_reduce_block = (1 << 8),
557 atomic_reduce_block = (2 << 8),
558 tree_reduce_block = (3 << 8),
559 empty_reduce_block = (4 << 8)
560 };
561
562 // Description of the packed_reduction_method variable:
563 // The packed_reduction_method variable consists of two enum types variables
564 // that are packed together into 0-th byte and 1-st byte:
565 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
566 // barrier that will be used in fast reduction: bs_plain_barrier or
567 // bs_reduction_barrier
568 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
569 // be used in fast reduction;
570 // Reduction method is of 'enum _reduction_method' type and it's defined the way
571 // so that the bits of 0-th byte are empty, so no need to execute a shift
572 // instruction while packing/unpacking
573
574 #if KMP_FAST_REDUCTION_BARRIER
575 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
576 ((reduction_method) | (barrier_type))
577
578 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
579 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
580
581 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
582 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
583 #else
584 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
585 (reduction_method)
586
587 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
588 (packed_reduction_method)
589
590 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
591 #endif
592
593 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
594 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
595 (which_reduction_block))
596
597 #if KMP_FAST_REDUCTION_BARRIER
598 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
599 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
600
601 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
602 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
603 #endif
604
605 typedef int PACKED_REDUCTION_METHOD_T;
606
607 /* -- end of fast reduction stuff ----------------------------------------- */
608
609 #if KMP_OS_WINDOWS
610 #define USE_CBLKDATA
611 #if KMP_MSVC_COMPAT
612 #pragma warning(push)
613 #pragma warning(disable : 271 310)
614 #endif
615 #include <windows.h>
616 #if KMP_MSVC_COMPAT
617 #pragma warning(pop)
618 #endif
619 #endif
620
621 #if KMP_OS_UNIX
622 #if !KMP_OS_WASI
623 #include <dlfcn.h>
624 #endif
625 #include <pthread.h>
626 #endif
627
628 enum kmp_hw_t : int {
629 KMP_HW_UNKNOWN = -1,
630 KMP_HW_SOCKET = 0,
631 KMP_HW_PROC_GROUP,
632 KMP_HW_NUMA,
633 KMP_HW_DIE,
634 KMP_HW_LLC,
635 KMP_HW_L3,
636 KMP_HW_TILE,
637 KMP_HW_MODULE,
638 KMP_HW_L2,
639 KMP_HW_L1,
640 KMP_HW_CORE,
641 KMP_HW_THREAD,
642 KMP_HW_LAST
643 };
644
645 typedef enum kmp_hw_core_type_t {
646 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
647 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
648 KMP_HW_CORE_TYPE_ATOM = 0x20,
649 KMP_HW_CORE_TYPE_CORE = 0x40,
650 KMP_HW_MAX_NUM_CORE_TYPES = 3,
651 #else
652 KMP_HW_MAX_NUM_CORE_TYPES = 1,
653 #endif
654 } kmp_hw_core_type_t;
655
656 #define KMP_HW_MAX_NUM_CORE_EFFS 8
657
658 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
659 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
660 #define KMP_ASSERT_VALID_HW_TYPE(type) \
661 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
662
663 #define KMP_FOREACH_HW_TYPE(type) \
664 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
665 type = (kmp_hw_t)((int)type + 1))
666
667 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
668 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
669 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
670
671 /* Only Linux* OS and Windows* OS support thread affinity. */
672 #if KMP_AFFINITY_SUPPORTED
673
674 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
675 #if KMP_OS_WINDOWS
676 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
677 typedef struct GROUP_AFFINITY {
678 KAFFINITY Mask;
679 WORD Group;
680 WORD Reserved[3];
681 } GROUP_AFFINITY;
682 #endif /* _MSC_VER < 1600 */
683 #if KMP_GROUP_AFFINITY
684 extern int __kmp_num_proc_groups;
685 #else
686 static const int __kmp_num_proc_groups = 1;
687 #endif /* KMP_GROUP_AFFINITY */
688 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
689 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
690
691 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
692 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
693
694 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
695 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
696
697 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
698 GROUP_AFFINITY *);
699 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
700 #endif /* KMP_OS_WINDOWS */
701
702 #if KMP_USE_HWLOC && !defined(OMPD_SKIP_HWLOC)
703 extern hwloc_topology_t __kmp_hwloc_topology;
704 extern int __kmp_hwloc_error;
705 #endif
706
707 extern size_t __kmp_affin_mask_size;
708 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
709 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
710 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
711 #define KMP_CPU_SET_ITERATE(i, mask) \
712 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
713 #define KMP_CPU_SET(i, mask) (mask)->set(i)
714 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
715 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
716 #define KMP_CPU_ZERO(mask) (mask)->zero()
717 #define KMP_CPU_ISEMPTY(mask) (mask)->empty()
718 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
719 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
720 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
721 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
722 #define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
723 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
724 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
725 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
726 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
727 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
728 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
729 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
730 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
731 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
732 #define KMP_CPU_FREE_ARRAY(arr, n) \
733 __kmp_affinity_dispatch->deallocate_mask_array(arr)
734 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
735 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
736 #define __kmp_get_system_affinity(mask, abort_bool) \
737 (mask)->get_system_affinity(abort_bool)
738 #define __kmp_set_system_affinity(mask, abort_bool) \
739 (mask)->set_system_affinity(abort_bool)
740 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
741
742 class KMPAffinity {
743 public:
744 class Mask {
745 public:
746 void *operator new(size_t n);
747 void operator delete(void *p);
748 void *operator new[](size_t n);
749 void operator delete[](void *p);
~Mask()750 virtual ~Mask() {}
751 // Set bit i to 1
set(int i)752 virtual void set(int i) {}
753 // Return bit i
is_set(int i)754 virtual bool is_set(int i) const { return false; }
755 // Set bit i to 0
clear(int i)756 virtual void clear(int i) {}
757 // Zero out entire mask
zero()758 virtual void zero() {}
759 // Check whether mask is empty
empty()760 virtual bool empty() const { return true; }
761 // Copy src into this mask
copy(const Mask * src)762 virtual void copy(const Mask *src) {}
763 // this &= rhs
bitwise_and(const Mask * rhs)764 virtual void bitwise_and(const Mask *rhs) {}
765 // this |= rhs
bitwise_or(const Mask * rhs)766 virtual void bitwise_or(const Mask *rhs) {}
767 // this = ~this
bitwise_not()768 virtual void bitwise_not() {}
769 // this == rhs
is_equal(const Mask * rhs)770 virtual bool is_equal(const Mask *rhs) const { return false; }
771 // API for iterating over an affinity mask
772 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
begin()773 virtual int begin() const { return 0; }
end()774 virtual int end() const { return 0; }
next(int previous)775 virtual int next(int previous) const { return 0; }
776 #if KMP_OS_WINDOWS
set_process_affinity(bool abort_on_error)777 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
778 #endif
779 // Set the system's affinity to this affinity mask's value
set_system_affinity(bool abort_on_error)780 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
781 // Set this affinity mask to the current system affinity
get_system_affinity(bool abort_on_error)782 virtual int get_system_affinity(bool abort_on_error) { return -1; }
783 // Only 1 DWORD in the mask should have any procs set.
784 // Return the appropriate index, or -1 for an invalid mask.
get_proc_group()785 virtual int get_proc_group() const { return -1; }
get_max_cpu()786 int get_max_cpu() const {
787 int cpu;
788 int max_cpu = -1;
789 KMP_CPU_SET_ITERATE(cpu, this) {
790 if (cpu > max_cpu)
791 max_cpu = cpu;
792 }
793 return max_cpu;
794 }
795 };
796 void *operator new(size_t n);
797 void operator delete(void *p);
798 // Need virtual destructor
799 virtual ~KMPAffinity() = default;
800 // Determine if affinity is capable
determine_capable(const char * env_var)801 virtual void determine_capable(const char *env_var) {}
802 // Bind the current thread to os proc
bind_thread(int proc)803 virtual void bind_thread(int proc) {}
804 // Factory functions to allocate/deallocate a mask
allocate_mask()805 virtual Mask *allocate_mask() { return nullptr; }
deallocate_mask(Mask * m)806 virtual void deallocate_mask(Mask *m) {}
allocate_mask_array(int num)807 virtual Mask *allocate_mask_array(int num) { return nullptr; }
deallocate_mask_array(Mask * m)808 virtual void deallocate_mask_array(Mask *m) {}
index_mask_array(Mask * m,int index)809 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
810 static void pick_api();
811 static void destroy_api();
812 enum api_type {
813 NATIVE_OS
814 #if KMP_USE_HWLOC
815 ,
816 HWLOC
817 #endif
818 };
get_api_type()819 virtual api_type get_api_type() const {
820 KMP_ASSERT(0);
821 return NATIVE_OS;
822 }
823
824 private:
825 static bool picked_api;
826 };
827
828 typedef KMPAffinity::Mask kmp_affin_mask_t;
829 extern KMPAffinity *__kmp_affinity_dispatch;
830
831 #ifndef KMP_OS_AIX
832 class kmp_affinity_raii_t {
833 kmp_affin_mask_t *mask;
834 bool restored;
835
836 public:
837 kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
mask(nullptr)838 : mask(nullptr), restored(false) {
839 if (KMP_AFFINITY_CAPABLE()) {
840 KMP_CPU_ALLOC(mask);
841 KMP_ASSERT(mask != NULL);
842 __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
843 if (new_mask)
844 __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
845 }
846 }
restore()847 void restore() {
848 if (mask && KMP_AFFINITY_CAPABLE() && !restored) {
849 __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
850 KMP_CPU_FREE(mask);
851 }
852 restored = true;
853 }
~kmp_affinity_raii_t()854 ~kmp_affinity_raii_t() { restore(); }
855 };
856 #endif // !KMP_OS_AIX
857
858 // Declare local char buffers with this size for printing debug and info
859 // messages, using __kmp_affinity_print_mask().
860 #define KMP_AFFIN_MASK_PRINT_LEN 1024
861
862 enum affinity_type {
863 affinity_none = 0,
864 affinity_physical,
865 affinity_logical,
866 affinity_compact,
867 affinity_scatter,
868 affinity_explicit,
869 affinity_balanced,
870 affinity_disabled, // not used outsize the env var parser
871 affinity_default
872 };
873
874 enum affinity_top_method {
875 affinity_top_method_all = 0, // try all (supported) methods, in order
876 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
877 affinity_top_method_apicid,
878 affinity_top_method_x2apicid,
879 affinity_top_method_x2apicid_1f,
880 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
881 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
882 #if KMP_GROUP_AFFINITY
883 affinity_top_method_group,
884 #endif /* KMP_GROUP_AFFINITY */
885 affinity_top_method_flat,
886 #if KMP_USE_HWLOC
887 affinity_top_method_hwloc,
888 #endif
889 affinity_top_method_default
890 };
891
892 #define affinity_respect_mask_default (2)
893
894 typedef struct kmp_affinity_flags_t {
895 unsigned dups : 1;
896 unsigned verbose : 1;
897 unsigned warnings : 1;
898 unsigned respect : 2;
899 unsigned reset : 1;
900 unsigned initialized : 1;
901 unsigned core_types_gran : 1;
902 unsigned core_effs_gran : 1;
903 unsigned omp_places : 1;
904 unsigned reserved : 22;
905 } kmp_affinity_flags_t;
906 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
907
908 typedef struct kmp_affinity_ids_t {
909 int os_id;
910 int ids[KMP_HW_LAST];
911 } kmp_affinity_ids_t;
912
913 typedef struct kmp_affinity_attrs_t {
914 int core_type : 8;
915 int core_eff : 8;
916 unsigned valid : 1;
917 unsigned reserved : 15;
918 } kmp_affinity_attrs_t;
919 #define KMP_AFFINITY_ATTRS_UNKNOWN \
920 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
921
922 typedef struct kmp_affinity_t {
923 char *proclist;
924 enum affinity_type type;
925 kmp_hw_t gran;
926 int gran_levels;
927 kmp_affinity_attrs_t core_attr_gran;
928 int compact;
929 int offset;
930 kmp_affinity_flags_t flags;
931 unsigned num_masks;
932 kmp_affin_mask_t *masks;
933 kmp_affinity_ids_t *ids;
934 kmp_affinity_attrs_t *attrs;
935 unsigned num_os_id_masks;
936 kmp_affin_mask_t *os_id_masks;
937 const char *env_var;
938 } kmp_affinity_t;
939
940 #define KMP_AFFINITY_INIT(env) \
941 { \
942 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
943 0, 0, \
944 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
945 FALSE, FALSE, FALSE}, \
946 0, nullptr, nullptr, nullptr, 0, nullptr, env \
947 }
948
949 extern enum affinity_top_method __kmp_affinity_top_method;
950 extern kmp_affinity_t __kmp_affinity;
951 extern kmp_affinity_t __kmp_hh_affinity;
952 extern kmp_affinity_t *__kmp_affinities[2];
953
954 extern void __kmp_affinity_bind_thread(int which);
955
956 extern kmp_affin_mask_t *__kmp_affin_fullMask;
957 extern kmp_affin_mask_t *__kmp_affin_origMask;
958 extern char *__kmp_cpuinfo_file;
959
960 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
961 extern int __kmp_first_osid_with_ecore;
962 #endif
963
964 #endif /* KMP_AFFINITY_SUPPORTED */
965
966 // This needs to be kept in sync with the values in omp.h !!!
967 typedef enum kmp_proc_bind_t {
968 proc_bind_false = 0,
969 proc_bind_true,
970 proc_bind_primary,
971 proc_bind_close,
972 proc_bind_spread,
973 proc_bind_intel, // use KMP_AFFINITY interface
974 proc_bind_default
975 } kmp_proc_bind_t;
976
977 typedef struct kmp_nested_proc_bind_t {
978 kmp_proc_bind_t *bind_types;
979 int size;
980 int used;
981 } kmp_nested_proc_bind_t;
982
983 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
984 extern kmp_proc_bind_t __kmp_teams_proc_bind;
985
986 extern int __kmp_display_affinity;
987 extern char *__kmp_affinity_format;
988 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
989 #if OMPT_SUPPORT
990 extern int __kmp_tool;
991 extern char *__kmp_tool_libraries;
992 #endif // OMPT_SUPPORT
993
994 #if KMP_AFFINITY_SUPPORTED
995 #define KMP_PLACE_ALL (-1)
996 #define KMP_PLACE_UNDEFINED (-2)
997 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
998 #define KMP_AFFINITY_NON_PROC_BIND \
999 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
1000 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
1001 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
1002 #endif /* KMP_AFFINITY_SUPPORTED */
1003
1004 extern int __kmp_affinity_num_places;
1005
1006 typedef enum kmp_cancel_kind_t {
1007 cancel_noreq = 0,
1008 cancel_parallel = 1,
1009 cancel_loop = 2,
1010 cancel_sections = 3,
1011 cancel_taskgroup = 4
1012 } kmp_cancel_kind_t;
1013
1014 // KMP_HW_SUBSET support:
1015 typedef struct kmp_hws_item {
1016 int num;
1017 int offset;
1018 } kmp_hws_item_t;
1019
1020 extern kmp_hws_item_t __kmp_hws_socket;
1021 extern kmp_hws_item_t __kmp_hws_die;
1022 extern kmp_hws_item_t __kmp_hws_node;
1023 extern kmp_hws_item_t __kmp_hws_tile;
1024 extern kmp_hws_item_t __kmp_hws_core;
1025 extern kmp_hws_item_t __kmp_hws_proc;
1026 extern int __kmp_hws_requested;
1027 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1028
1029 /* ------------------------------------------------------------------------ */
1030
1031 #define KMP_PAD(type, sz) \
1032 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1033
1034 // We need to avoid using -1 as a GTID as +1 is added to the gtid
1035 // when storing it in a lock, and the value 0 is reserved.
1036 #define KMP_GTID_DNE (-2) /* Does not exist */
1037 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1038 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1039 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
1040 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1041
1042 /* OpenMP 5.0 Memory Management support */
1043
1044 #ifndef __OMP_H
1045 // Duplicate type definitions from omp.h
1046 typedef uintptr_t omp_uintptr_t;
1047
1048 typedef enum {
1049 omp_atk_sync_hint = 1,
1050 omp_atk_alignment = 2,
1051 omp_atk_access = 3,
1052 omp_atk_pool_size = 4,
1053 omp_atk_fallback = 5,
1054 omp_atk_fb_data = 6,
1055 omp_atk_pinned = 7,
1056 omp_atk_partition = 8
1057 } omp_alloctrait_key_t;
1058
1059 typedef enum {
1060 omp_atv_false = 0,
1061 omp_atv_true = 1,
1062 omp_atv_contended = 3,
1063 omp_atv_uncontended = 4,
1064 omp_atv_serialized = 5,
1065 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1066 omp_atv_private = 6,
1067 omp_atv_all = 7,
1068 omp_atv_thread = 8,
1069 omp_atv_pteam = 9,
1070 omp_atv_cgroup = 10,
1071 omp_atv_default_mem_fb = 11,
1072 omp_atv_null_fb = 12,
1073 omp_atv_abort_fb = 13,
1074 omp_atv_allocator_fb = 14,
1075 omp_atv_environment = 15,
1076 omp_atv_nearest = 16,
1077 omp_atv_blocked = 17,
1078 omp_atv_interleaved = 18
1079 } omp_alloctrait_value_t;
1080 #define omp_atv_default ((omp_uintptr_t)-1)
1081
1082 typedef void *omp_memspace_handle_t;
1083 extern omp_memspace_handle_t const omp_default_mem_space;
1084 extern omp_memspace_handle_t const omp_large_cap_mem_space;
1085 extern omp_memspace_handle_t const omp_const_mem_space;
1086 extern omp_memspace_handle_t const omp_high_bw_mem_space;
1087 extern omp_memspace_handle_t const omp_low_lat_mem_space;
1088 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1089 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1090 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1091
1092 typedef struct {
1093 omp_alloctrait_key_t key;
1094 omp_uintptr_t value;
1095 } omp_alloctrait_t;
1096
1097 typedef void *omp_allocator_handle_t;
1098 extern omp_allocator_handle_t const omp_null_allocator;
1099 extern omp_allocator_handle_t const omp_default_mem_alloc;
1100 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1101 extern omp_allocator_handle_t const omp_const_mem_alloc;
1102 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1103 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1104 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1105 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1106 extern omp_allocator_handle_t const omp_thread_mem_alloc;
1107 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1108 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1109 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1110 extern omp_allocator_handle_t const kmp_max_mem_alloc;
1111 extern omp_allocator_handle_t __kmp_def_allocator;
1112
1113 // end of duplicate type definitions from omp.h
1114 #endif
1115
1116 extern int __kmp_memkind_available;
1117
1118 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1119
1120 typedef struct kmp_allocator_t {
1121 omp_memspace_handle_t memspace;
1122 void **memkind; // pointer to memkind
1123 size_t alignment;
1124 omp_alloctrait_value_t fb;
1125 kmp_allocator_t *fb_data;
1126 kmp_uint64 pool_size;
1127 kmp_uint64 pool_used;
1128 bool pinned;
1129 } kmp_allocator_t;
1130
1131 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1132 omp_memspace_handle_t,
1133 int ntraits,
1134 omp_alloctrait_t traits[]);
1135 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1136 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1137 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1138 // external interfaces, may be used by compiler
1139 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1140 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1141 omp_allocator_handle_t al);
1142 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1143 omp_allocator_handle_t al);
1144 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1145 omp_allocator_handle_t al,
1146 omp_allocator_handle_t free_al);
1147 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1148 // internal interfaces, contain real implementation
1149 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1150 omp_allocator_handle_t al);
1151 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1152 omp_allocator_handle_t al);
1153 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1154 omp_allocator_handle_t al,
1155 omp_allocator_handle_t free_al);
1156 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1157
1158 extern void __kmp_init_memkind();
1159 extern void __kmp_fini_memkind();
1160 extern void __kmp_init_target_mem();
1161
1162 /* ------------------------------------------------------------------------ */
1163
1164 #if ENABLE_LIBOMPTARGET
1165 extern void __kmp_init_target_task();
1166 #endif
1167
1168 /* ------------------------------------------------------------------------ */
1169
1170 #define KMP_UINT64_MAX \
1171 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1172
1173 #define KMP_MIN_NTH 1
1174
1175 #ifndef KMP_MAX_NTH
1176 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1177 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1178 #else
1179 #ifdef __ve__
1180 // VE's pthread supports only up to 64 threads per a VE process.
1181 // Please check p. 14 of following documentation for more details.
1182 // https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1183 #define KMP_MAX_NTH 64
1184 #else
1185 #define KMP_MAX_NTH INT_MAX
1186 #endif
1187 #endif
1188 #endif /* KMP_MAX_NTH */
1189
1190 #ifdef PTHREAD_STACK_MIN
1191 #define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1192 #else
1193 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1194 #endif
1195
1196 #if KMP_OS_AIX && KMP_ARCH_PPC
1197 #define KMP_MAX_STKSIZE 0x10000000 /* 256Mb max size on 32-bit AIX */
1198 #else
1199 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1200 #endif
1201
1202 #if KMP_ARCH_X86
1203 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1204 #elif KMP_ARCH_X86_64
1205 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1206 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1207 #elif KMP_ARCH_VE
1208 // Minimum stack size for pthread for VE is 4MB.
1209 // https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1210 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1211 #elif KMP_OS_AIX
1212 // The default stack size for worker threads on AIX is 4MB.
1213 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1214 #else
1215 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1216 #endif
1217
1218 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1219 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1220 #define KMP_MAX_MALLOC_POOL_INCR \
1221 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1222
1223 #define KMP_MIN_STKOFFSET (0)
1224 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1225 #if KMP_OS_DARWIN
1226 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1227 #else
1228 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1229 #endif
1230
1231 #define KMP_MIN_STKPADDING (0)
1232 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1233
1234 #define KMP_BLOCKTIME_MULTIPLIER \
1235 (1000000) /* number of blocktime units per second */
1236 #define KMP_MIN_BLOCKTIME (0)
1237 #define KMP_MAX_BLOCKTIME \
1238 (INT_MAX) /* Must be this for "infinite" setting the work */
1239
1240 /* __kmp_blocktime is in microseconds */
1241 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1242
1243 #if KMP_USE_MONITOR
1244 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1245 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1246 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1247
1248 /* Calculate new number of monitor wakeups for a specific block time based on
1249 previous monitor_wakeups. Only allow increasing number of wakeups */
1250 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1251 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1252 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1253 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1254 ? (monitor_wakeups) \
1255 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1256
1257 /* Calculate number of intervals for a specific block time based on
1258 monitor_wakeups */
1259 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1260 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1261 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1262 #else
1263 #define KMP_BLOCKTIME(team, tid) \
1264 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1265 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1266 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1267 extern kmp_uint64 __kmp_ticks_per_msec;
1268 extern kmp_uint64 __kmp_ticks_per_usec;
1269 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1270 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1271 #else
1272 #define KMP_NOW() __kmp_hardware_timestamp()
1273 #endif
1274 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1275 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1276 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1277 #else
1278 // System time is retrieved sporadically while blocking.
1279 extern kmp_uint64 __kmp_now_nsec();
1280 #define KMP_NOW() __kmp_now_nsec()
1281 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1282 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1283 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1284 #endif
1285 #endif // KMP_USE_MONITOR
1286
1287 #define KMP_MIN_STATSCOLS 40
1288 #define KMP_MAX_STATSCOLS 4096
1289 #define KMP_DEFAULT_STATSCOLS 80
1290
1291 #define KMP_MIN_INTERVAL 0
1292 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1293 #define KMP_DEFAULT_INTERVAL 0
1294
1295 #define KMP_MIN_CHUNK 1
1296 #define KMP_MAX_CHUNK (INT_MAX - 1)
1297 #define KMP_DEFAULT_CHUNK 1
1298
1299 #define KMP_MIN_DISP_NUM_BUFF 1
1300 #define KMP_DFLT_DISP_NUM_BUFF 7
1301 #define KMP_MAX_DISP_NUM_BUFF 4096
1302
1303 #define KMP_MAX_ORDERED 8
1304
1305 #define KMP_MAX_FIELDS 32
1306
1307 #define KMP_MAX_BRANCH_BITS 31
1308
1309 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1310
1311 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1312
1313 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1314
1315 /* Minimum number of threads before switch to TLS gtid (experimentally
1316 determined) */
1317 /* josh TODO: what about OS X* tuning? */
1318 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1319 #define KMP_TLS_GTID_MIN 5
1320 #else
1321 #define KMP_TLS_GTID_MIN INT_MAX
1322 #endif
1323
1324 #define KMP_MASTER_TID(tid) (0 == (tid))
1325 #define KMP_WORKER_TID(tid) (0 != (tid))
1326
1327 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1328 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1329 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1330
1331 #ifndef TRUE
1332 #define FALSE 0
1333 #define TRUE (!FALSE)
1334 #endif
1335
1336 /* NOTE: all of the following constants must be even */
1337
1338 #if KMP_OS_WINDOWS
1339 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1340 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1341 #elif KMP_OS_LINUX
1342 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1343 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1344 #elif KMP_OS_DARWIN
1345 /* TODO: tune for KMP_OS_DARWIN */
1346 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1347 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1348 #elif KMP_OS_DRAGONFLY
1349 /* TODO: tune for KMP_OS_DRAGONFLY */
1350 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1351 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1352 #elif KMP_OS_FREEBSD
1353 /* TODO: tune for KMP_OS_FREEBSD */
1354 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1355 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1356 #elif KMP_OS_NETBSD
1357 /* TODO: tune for KMP_OS_NETBSD */
1358 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1359 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1360 #elif KMP_OS_OPENBSD
1361 /* TODO: tune for KMP_OS_OPENBSD */
1362 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1363 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1364 #elif KMP_OS_HURD
1365 /* TODO: tune for KMP_OS_HURD */
1366 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1367 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1368 #elif KMP_OS_SOLARIS
1369 /* TODO: tune for KMP_OS_SOLARIS */
1370 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1371 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1372 #elif KMP_OS_WASI
1373 /* TODO: tune for KMP_OS_WASI */
1374 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1375 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1376 #elif KMP_OS_AIX
1377 /* TODO: tune for KMP_OS_AIX */
1378 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1379 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1380 #endif
1381
1382 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1383 typedef struct kmp_cpuid {
1384 kmp_uint32 eax;
1385 kmp_uint32 ebx;
1386 kmp_uint32 ecx;
1387 kmp_uint32 edx;
1388 } kmp_cpuid_t;
1389
1390 typedef struct kmp_cpuinfo_flags_t {
1391 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1392 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1393 unsigned hybrid : 1;
1394 unsigned reserved : 29; // Ensure size of 32 bits
1395 } kmp_cpuinfo_flags_t;
1396
1397 typedef struct kmp_cpuinfo {
1398 int initialized; // If 0, other fields are not initialized.
1399 int signature; // CPUID(1).EAX
1400 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1401 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1402 // Model << 4 ) + Model)
1403 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1404 kmp_cpuinfo_flags_t flags;
1405 int apic_id;
1406 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1407 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1408 } kmp_cpuinfo_t;
1409
1410 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1411
1412 #if KMP_OS_UNIX
1413 // subleaf is only needed for cache and topology discovery and can be set to
1414 // zero in most cases
__kmp_x86_cpuid(int leaf,int subleaf,struct kmp_cpuid * p)1415 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1416 __asm__ __volatile__("cpuid"
1417 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1418 : "a"(leaf), "c"(subleaf));
1419 }
1420 // Load p into FPU control word
__kmp_load_x87_fpu_control_word(const kmp_int16 * p)1421 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1422 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1423 }
1424 // Store FPU control word into p
__kmp_store_x87_fpu_control_word(kmp_int16 * p)1425 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1426 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1427 }
__kmp_clear_x87_fpu_status_word()1428 static inline void __kmp_clear_x87_fpu_status_word() {
1429 #if KMP_MIC
1430 // 32-bit protected mode x87 FPU state
1431 struct x87_fpu_state {
1432 unsigned cw;
1433 unsigned sw;
1434 unsigned tw;
1435 unsigned fip;
1436 unsigned fips;
1437 unsigned fdp;
1438 unsigned fds;
1439 };
1440 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1441 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1442 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1443 "fldenv %0\n\t" // load FP env back
1444 : "+m"(fpu_state), "+m"(fpu_state.sw));
1445 #else
1446 __asm__ __volatile__("fnclex");
1447 #endif // KMP_MIC
1448 }
1449 #if __SSE__
__kmp_load_mxcsr(const kmp_uint32 * p)1450 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
__kmp_store_mxcsr(kmp_uint32 * p)1451 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1452 #else
__kmp_load_mxcsr(const kmp_uint32 * p)1453 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
__kmp_store_mxcsr(kmp_uint32 * p)1454 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1455 #endif
1456 #else
1457 // Windows still has these as external functions in assembly file
1458 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1459 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1460 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1461 extern void __kmp_clear_x87_fpu_status_word();
__kmp_load_mxcsr(const kmp_uint32 * p)1462 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
__kmp_store_mxcsr(kmp_uint32 * p)1463 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1464 #endif // KMP_OS_UNIX
1465
1466 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1467
1468 // User-level Monitor/Mwait
1469 #if KMP_HAVE_UMWAIT
1470 // We always try for UMWAIT first
1471 #if KMP_HAVE_WAITPKG_INTRINSICS
1472 #if KMP_HAVE_IMMINTRIN_H
1473 #include <immintrin.h>
1474 #elif KMP_HAVE_INTRIN_H
1475 #include <intrin.h>
1476 #endif
1477 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1478
1479 KMP_ATTRIBUTE_TARGET_WAITPKG
__kmp_tpause(uint32_t hint,uint64_t counter)1480 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1481 #if !KMP_HAVE_WAITPKG_INTRINSICS
1482 uint32_t timeHi = uint32_t(counter >> 32);
1483 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1484 char flag;
1485 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1486 "setb %0"
1487 // The "=q" restraint means any register accessible as rl
1488 // in 32-bit mode: a, b, c, and d;
1489 // in 64-bit mode: any integer register
1490 : "=q"(flag)
1491 : "a"(timeLo), "d"(timeHi), "c"(hint)
1492 :);
1493 return flag;
1494 #else
1495 return _tpause(hint, counter);
1496 #endif
1497 }
1498 KMP_ATTRIBUTE_TARGET_WAITPKG
__kmp_umonitor(void * cacheline)1499 static inline void __kmp_umonitor(void *cacheline) {
1500 #if !KMP_HAVE_WAITPKG_INTRINSICS
1501 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1502 :
1503 : "a"(cacheline)
1504 :);
1505 #else
1506 _umonitor(cacheline);
1507 #endif
1508 }
1509 KMP_ATTRIBUTE_TARGET_WAITPKG
__kmp_umwait(uint32_t hint,uint64_t counter)1510 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1511 #if !KMP_HAVE_WAITPKG_INTRINSICS
1512 uint32_t timeHi = uint32_t(counter >> 32);
1513 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1514 char flag;
1515 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1516 "setb %0"
1517 // The "=q" restraint means any register accessible as rl
1518 // in 32-bit mode: a, b, c, and d;
1519 // in 64-bit mode: any integer register
1520 : "=q"(flag)
1521 : "a"(timeLo), "d"(timeHi), "c"(hint)
1522 :);
1523 return flag;
1524 #else
1525 return _umwait(hint, counter);
1526 #endif
1527 }
1528 #elif KMP_HAVE_MWAIT
1529 #if KMP_OS_UNIX
1530 #include <pmmintrin.h>
1531 #else
1532 #include <intrin.h>
1533 #endif
1534 #if KMP_OS_UNIX
1535 __attribute__((target("sse3")))
1536 #endif
1537 static inline void
__kmp_mm_monitor(void * cacheline,unsigned extensions,unsigned hints)1538 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1539 _mm_monitor(cacheline, extensions, hints);
1540 }
1541 #if KMP_OS_UNIX
1542 __attribute__((target("sse3")))
1543 #endif
1544 static inline void
__kmp_mm_mwait(unsigned extensions,unsigned hints)1545 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1546 _mm_mwait(extensions, hints);
1547 }
1548 #endif // KMP_HAVE_UMWAIT
1549
1550 #if KMP_ARCH_X86
1551 extern void __kmp_x86_pause(void);
1552 #elif KMP_MIC
1553 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1554 // regression after removal of extra PAUSE from spin loops. Changing
1555 // the delay from 100 to 300 showed even better performance than double PAUSE
1556 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
__kmp_x86_pause(void)1557 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1558 #else
__kmp_x86_pause(void)1559 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1560 #endif
1561 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1562 #elif KMP_ARCH_PPC64
1563 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1564 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1565 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1566 #define KMP_CPU_PAUSE() \
1567 do { \
1568 KMP_PPC64_PRI_LOW(); \
1569 KMP_PPC64_PRI_MED(); \
1570 KMP_PPC64_PRI_LOC_MB(); \
1571 } while (0)
1572 #else
1573 #define KMP_CPU_PAUSE() /* nothing to do */
1574 #endif
1575
1576 #define KMP_INIT_YIELD(count) \
1577 { (count) = __kmp_yield_init; }
1578
1579 #define KMP_INIT_BACKOFF(time) \
1580 { (time) = __kmp_pause_init; }
1581
1582 #define KMP_OVERSUBSCRIBED \
1583 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1584
1585 #define KMP_TRY_YIELD \
1586 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1587
1588 #define KMP_TRY_YIELD_OVERSUB \
1589 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1590
1591 #define KMP_YIELD(cond) \
1592 { \
1593 KMP_CPU_PAUSE(); \
1594 if ((cond) && (KMP_TRY_YIELD)) \
1595 __kmp_yield(); \
1596 }
1597
1598 #define KMP_YIELD_OVERSUB() \
1599 { \
1600 KMP_CPU_PAUSE(); \
1601 if ((KMP_TRY_YIELD_OVERSUB)) \
1602 __kmp_yield(); \
1603 }
1604
1605 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1606 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1607 #define KMP_YIELD_SPIN(count) \
1608 { \
1609 KMP_CPU_PAUSE(); \
1610 if (KMP_TRY_YIELD) { \
1611 (count) -= 2; \
1612 if (!(count)) { \
1613 __kmp_yield(); \
1614 (count) = __kmp_yield_next; \
1615 } \
1616 } \
1617 }
1618
1619 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1620 // (C0.2) state, which improves performance of other SMT threads on the same
1621 // core, otherwise, use the fast (C0.1) default state, or whatever the user has
1622 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1623 // available, fall back to the regular CPU pause and yield combination.
1624 #if KMP_HAVE_UMWAIT
1625 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1626 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1627 { \
1628 if (__kmp_tpause_enabled) { \
1629 if (KMP_OVERSUBSCRIBED) { \
1630 __kmp_tpause(0, (time)); \
1631 } else { \
1632 __kmp_tpause(__kmp_tpause_hint, (time)); \
1633 } \
1634 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1635 } else { \
1636 KMP_CPU_PAUSE(); \
1637 if ((KMP_TRY_YIELD_OVERSUB)) { \
1638 __kmp_yield(); \
1639 } else if (__kmp_use_yield == 1) { \
1640 (count) -= 2; \
1641 if (!(count)) { \
1642 __kmp_yield(); \
1643 (count) = __kmp_yield_next; \
1644 } \
1645 } \
1646 } \
1647 }
1648 #else
1649 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1650 { \
1651 KMP_CPU_PAUSE(); \
1652 if ((KMP_TRY_YIELD_OVERSUB)) \
1653 __kmp_yield(); \
1654 else if (__kmp_use_yield == 1) { \
1655 (count) -= 2; \
1656 if (!(count)) { \
1657 __kmp_yield(); \
1658 (count) = __kmp_yield_next; \
1659 } \
1660 } \
1661 }
1662 #endif // KMP_HAVE_UMWAIT
1663
1664 /* ------------------------------------------------------------------------ */
1665 /* Support datatypes for the orphaned construct nesting checks. */
1666 /* ------------------------------------------------------------------------ */
1667
1668 /* When adding to this enum, add its corresponding string in cons_text_c[]
1669 * array in kmp_error.cpp */
1670 enum cons_type {
1671 ct_none,
1672 ct_parallel,
1673 ct_pdo,
1674 ct_pdo_ordered,
1675 ct_psections,
1676 ct_psingle,
1677 ct_critical,
1678 ct_ordered_in_parallel,
1679 ct_ordered_in_pdo,
1680 ct_master,
1681 ct_reduce,
1682 ct_barrier,
1683 ct_masked
1684 };
1685
1686 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1687
1688 struct cons_data {
1689 ident_t const *ident;
1690 enum cons_type type;
1691 int prev;
1692 kmp_user_lock_p
1693 name; /* address exclusively for critical section name comparison */
1694 };
1695
1696 struct cons_header {
1697 int p_top, w_top, s_top;
1698 int stack_size, stack_top;
1699 struct cons_data *stack_data;
1700 };
1701
1702 struct kmp_region_info {
1703 char *text;
1704 int offset[KMP_MAX_FIELDS];
1705 int length[KMP_MAX_FIELDS];
1706 };
1707
1708 /* ---------------------------------------------------------------------- */
1709 /* ---------------------------------------------------------------------- */
1710
1711 #if KMP_OS_WINDOWS
1712 typedef HANDLE kmp_thread_t;
1713 typedef DWORD kmp_key_t;
1714 #endif /* KMP_OS_WINDOWS */
1715
1716 #if KMP_OS_UNIX
1717 typedef pthread_t kmp_thread_t;
1718 typedef pthread_key_t kmp_key_t;
1719 #endif
1720
1721 extern kmp_key_t __kmp_gtid_threadprivate_key;
1722
1723 typedef struct kmp_sys_info {
1724 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1725 long minflt; /* the number of page faults serviced without any I/O */
1726 long majflt; /* the number of page faults serviced that required I/O */
1727 long nswap; /* the number of times a process was "swapped" out of memory */
1728 long inblock; /* the number of times the file system had to perform input */
1729 long oublock; /* the number of times the file system had to perform output */
1730 long nvcsw; /* the number of times a context switch was voluntarily */
1731 long nivcsw; /* the number of times a context switch was forced */
1732 } kmp_sys_info_t;
1733
1734 #if USE_ITT_BUILD
1735 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1736 // required type here. Later we will check the type meets requirements.
1737 typedef int kmp_itt_mark_t;
1738 #define KMP_ITT_DEBUG 0
1739 #endif /* USE_ITT_BUILD */
1740
1741 typedef kmp_int32 kmp_critical_name[8];
1742
1743 /*!
1744 @ingroup PARALLEL
1745 The type for a microtask which gets passed to @ref __kmpc_fork_call().
1746 The arguments to the outlined function are
1747 @param global_tid the global thread identity of the thread executing the
1748 function.
1749 @param bound_tid the local identity of the thread executing the function
1750 @param ... pointers to shared variables accessed by the function.
1751 */
1752 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1753 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1754 ...);
1755
1756 /*!
1757 @ingroup THREADPRIVATE
1758 @{
1759 */
1760 /* ---------------------------------------------------------------------------
1761 */
1762 /* Threadprivate initialization/finalization function declarations */
1763
1764 /* for non-array objects: __kmpc_threadprivate_register() */
1765
1766 /*!
1767 Pointer to the constructor function.
1768 The first argument is the <tt>this</tt> pointer
1769 */
1770 typedef void *(*kmpc_ctor)(void *);
1771
1772 /*!
1773 Pointer to the destructor function.
1774 The first argument is the <tt>this</tt> pointer
1775 */
1776 typedef void (*kmpc_dtor)(
1777 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1778 compiler */
1779 /*!
1780 Pointer to an alternate constructor.
1781 The first argument is the <tt>this</tt> pointer.
1782 */
1783 typedef void *(*kmpc_cctor)(void *, void *);
1784
1785 /* for array objects: __kmpc_threadprivate_register_vec() */
1786 /* First arg: "this" pointer */
1787 /* Last arg: number of array elements */
1788 /*!
1789 Array constructor.
1790 First argument is the <tt>this</tt> pointer
1791 Second argument the number of array elements.
1792 */
1793 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1794 /*!
1795 Pointer to the array destructor function.
1796 The first argument is the <tt>this</tt> pointer
1797 Second argument the number of array elements.
1798 */
1799 typedef void (*kmpc_dtor_vec)(void *, size_t);
1800 /*!
1801 Array constructor.
1802 First argument is the <tt>this</tt> pointer
1803 Third argument the number of array elements.
1804 */
1805 typedef void *(*kmpc_cctor_vec)(void *, void *,
1806 size_t); /* function unused by compiler */
1807
1808 /*!
1809 @}
1810 */
1811
1812 /* keeps tracked of threadprivate cache allocations for cleanup later */
1813 typedef struct kmp_cached_addr {
1814 void **addr; /* address of allocated cache */
1815 void ***compiler_cache; /* pointer to compiler's cache */
1816 void *data; /* pointer to global data */
1817 struct kmp_cached_addr *next; /* pointer to next cached address */
1818 } kmp_cached_addr_t;
1819
1820 struct private_data {
1821 struct private_data *next; /* The next descriptor in the list */
1822 void *data; /* The data buffer for this descriptor */
1823 int more; /* The repeat count for this descriptor */
1824 size_t size; /* The data size for this descriptor */
1825 };
1826
1827 struct private_common {
1828 struct private_common *next;
1829 struct private_common *link;
1830 void *gbl_addr;
1831 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1832 size_t cmn_size;
1833 };
1834
1835 struct shared_common {
1836 struct shared_common *next;
1837 struct private_data *pod_init;
1838 void *obj_init;
1839 void *gbl_addr;
1840 union {
1841 kmpc_ctor ctor;
1842 kmpc_ctor_vec ctorv;
1843 } ct;
1844 union {
1845 kmpc_cctor cctor;
1846 kmpc_cctor_vec cctorv;
1847 } cct;
1848 union {
1849 kmpc_dtor dtor;
1850 kmpc_dtor_vec dtorv;
1851 } dt;
1852 size_t vec_len;
1853 int is_vec;
1854 size_t cmn_size;
1855 };
1856
1857 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1858 #define KMP_HASH_TABLE_SIZE \
1859 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1860 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1861 #define KMP_HASH(x) \
1862 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1863
1864 struct common_table {
1865 struct private_common *data[KMP_HASH_TABLE_SIZE];
1866 };
1867
1868 struct shared_table {
1869 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1870 };
1871
1872 /* ------------------------------------------------------------------------ */
1873
1874 #if KMP_USE_HIER_SCHED
1875 // Shared barrier data that exists inside a single unit of the scheduling
1876 // hierarchy
1877 typedef struct kmp_hier_private_bdata_t {
1878 kmp_int32 num_active;
1879 kmp_uint64 index;
1880 kmp_uint64 wait_val[2];
1881 } kmp_hier_private_bdata_t;
1882 #endif
1883
1884 typedef struct kmp_sched_flags {
1885 unsigned ordered : 1;
1886 unsigned nomerge : 1;
1887 unsigned contains_last : 1;
1888 unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code
1889 unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code
1890 unsigned unused : 27;
1891 } kmp_sched_flags_t;
1892
1893 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1894
1895 #if KMP_STATIC_STEAL_ENABLED
1896 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1897 kmp_int32 count;
1898 kmp_int32 ub;
1899 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1900 kmp_int32 lb;
1901 kmp_int32 st;
1902 kmp_int32 tc;
1903 kmp_lock_t *steal_lock; // lock used for chunk stealing
1904
1905 kmp_uint32 ordered_lower;
1906 kmp_uint32 ordered_upper;
1907
1908 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1909 // a) parm3 is properly aligned and
1910 // b) all parm1-4 are on the same cache line.
1911 // Because of parm1-4 are used together, performance seems to be better
1912 // if they are on the same cache line (not measured though).
1913
1914 struct KMP_ALIGN(32) {
1915 kmp_int32 parm1;
1916 kmp_int32 parm2;
1917 kmp_int32 parm3;
1918 kmp_int32 parm4;
1919 };
1920
1921 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1922 kmp_uint32 pchunks;
1923 kmp_uint32 num_procs_with_pcore;
1924 kmp_int32 first_thread_with_ecore;
1925 #endif
1926 #if KMP_OS_WINDOWS
1927 kmp_int32 last_upper;
1928 #endif /* KMP_OS_WINDOWS */
1929 } dispatch_private_info32_t;
1930
1931 #if CACHE_LINE <= 128
1932 KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128);
1933 #endif
1934
1935 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1936 kmp_int64 count; // current chunk number for static & static-steal scheduling
1937 kmp_int64 ub; /* upper-bound */
1938 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1939 kmp_int64 lb; /* lower-bound */
1940 kmp_int64 st; /* stride */
1941 kmp_int64 tc; /* trip count (number of iterations) */
1942 kmp_lock_t *steal_lock; // lock used for chunk stealing
1943
1944 kmp_uint64 ordered_lower;
1945 kmp_uint64 ordered_upper;
1946 /* parm[1-4] are used in different ways by different scheduling algorithms */
1947
1948 // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on )
1949 // a) parm3 is properly aligned and
1950 // b) all parm1-4 are in the same cache line.
1951 // Because of parm1-4 are used together, performance seems to be better
1952 // if they are in the same line (not measured though).
1953 struct KMP_ALIGN(32) {
1954 kmp_int64 parm1;
1955 kmp_int64 parm2;
1956 kmp_int64 parm3;
1957 kmp_int64 parm4;
1958 };
1959
1960 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1961 kmp_uint64 pchunks;
1962 kmp_uint64 num_procs_with_pcore;
1963 kmp_int64 first_thread_with_ecore;
1964 #endif
1965
1966 #if KMP_OS_WINDOWS
1967 kmp_int64 last_upper;
1968 #endif /* KMP_OS_WINDOWS */
1969 } dispatch_private_info64_t;
1970
1971 #if CACHE_LINE <= 128
1972 KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128);
1973 #endif
1974
1975 #else /* KMP_STATIC_STEAL_ENABLED */
1976 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1977 kmp_int32 lb;
1978 kmp_int32 ub;
1979 kmp_int32 st;
1980 kmp_int32 tc;
1981
1982 kmp_int32 parm1;
1983 kmp_int32 parm2;
1984 kmp_int32 parm3;
1985 kmp_int32 parm4;
1986
1987 kmp_int32 count;
1988
1989 kmp_uint32 ordered_lower;
1990 kmp_uint32 ordered_upper;
1991 #if KMP_OS_WINDOWS
1992 kmp_int32 last_upper;
1993 #endif /* KMP_OS_WINDOWS */
1994 } dispatch_private_info32_t;
1995
1996 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1997 kmp_int64 lb; /* lower-bound */
1998 kmp_int64 ub; /* upper-bound */
1999 kmp_int64 st; /* stride */
2000 kmp_int64 tc; /* trip count (number of iterations) */
2001
2002 /* parm[1-4] are used in different ways by different scheduling algorithms */
2003 kmp_int64 parm1;
2004 kmp_int64 parm2;
2005 kmp_int64 parm3;
2006 kmp_int64 parm4;
2007
2008 kmp_int64 count; /* current chunk number for static scheduling */
2009
2010 kmp_uint64 ordered_lower;
2011 kmp_uint64 ordered_upper;
2012 #if KMP_OS_WINDOWS
2013 kmp_int64 last_upper;
2014 #endif /* KMP_OS_WINDOWS */
2015 } dispatch_private_info64_t;
2016 #endif /* KMP_STATIC_STEAL_ENABLED */
2017
2018 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
2019 union private_info {
2020 dispatch_private_info32_t p32;
2021 dispatch_private_info64_t p64;
2022 } u;
2023 enum sched_type schedule; /* scheduling algorithm */
2024 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
2025 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
2026 kmp_int32 ordered_bumped;
2027 // Stack of buffers for nest of serial regions
2028 struct dispatch_private_info *next;
2029 kmp_int32 type_size; /* the size of types in private_info */
2030 #if KMP_USE_HIER_SCHED
2031 kmp_int32 hier_id;
2032 void *parent; /* hierarchical scheduling parent pointer */
2033 #endif
2034 enum cons_type pushed_ws;
2035 } dispatch_private_info_t;
2036
2037 typedef struct dispatch_shared_info32 {
2038 /* chunk index under dynamic, number of idle threads under static-steal;
2039 iteration index otherwise */
2040 volatile kmp_uint32 iteration;
2041 volatile kmp_int32 num_done;
2042 volatile kmp_uint32 ordered_iteration;
2043 // Dummy to retain the structure size after making ordered_iteration scalar
2044 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
2045 } dispatch_shared_info32_t;
2046
2047 typedef struct dispatch_shared_info64 {
2048 /* chunk index under dynamic, number of idle threads under static-steal;
2049 iteration index otherwise */
2050 volatile kmp_uint64 iteration;
2051 volatile kmp_int64 num_done;
2052 volatile kmp_uint64 ordered_iteration;
2053 // Dummy to retain the structure size after making ordered_iteration scalar
2054 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
2055 } dispatch_shared_info64_t;
2056
2057 typedef struct dispatch_shared_info {
2058 union shared_info {
2059 dispatch_shared_info32_t s32;
2060 dispatch_shared_info64_t s64;
2061 } u;
2062 volatile kmp_uint32 buffer_index;
2063 volatile kmp_int32 doacross_buf_idx; // teamwise index
2064 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2065 kmp_int32 doacross_num_done; // count finished threads
2066 #if KMP_USE_HIER_SCHED
2067 void *hier;
2068 #endif
2069 #if KMP_USE_HWLOC
2070 // When linking with libhwloc, the ORDERED EPCC test slows down on big
2071 // machines (> 48 cores). Performance analysis showed that a cache thrash
2072 // was occurring and this padding helps alleviate the problem.
2073 char padding[64];
2074 #endif
2075 } dispatch_shared_info_t;
2076
2077 typedef struct kmp_disp {
2078 /* Vector for ORDERED SECTION */
2079 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2080 /* Vector for END ORDERED SECTION */
2081 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2082
2083 dispatch_shared_info_t *th_dispatch_sh_current;
2084 dispatch_private_info_t *th_dispatch_pr_current;
2085
2086 dispatch_private_info_t *th_disp_buffer;
2087 kmp_uint32 th_disp_index;
2088 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2089 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2090 kmp_int64 *th_doacross_info; // info on loop bounds
2091 #if KMP_USE_INTERNODE_ALIGNMENT
2092 char more_padding[INTERNODE_CACHE_LINE];
2093 #endif
2094 } kmp_disp_t;
2095
2096 /* ------------------------------------------------------------------------ */
2097 /* Barrier stuff */
2098
2099 /* constants for barrier state update */
2100 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2101 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2102 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2103 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2104
2105 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2106 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2107 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2108
2109 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2110 #error "Barrier sleep bit must be smaller than barrier bump bit"
2111 #endif
2112 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2113 #error "Barrier unused bit must be smaller than barrier bump bit"
2114 #endif
2115
2116 // Constants for release barrier wait state: currently, hierarchical only
2117 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2118 #define KMP_BARRIER_OWN_FLAG \
2119 1 // Normal state; worker waiting on own b_go flag in release
2120 #define KMP_BARRIER_PARENT_FLAG \
2121 2 // Special state; worker waiting on parent's b_go flag in release
2122 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2123 3 // Special state; tells worker to shift from parent to own b_go
2124 #define KMP_BARRIER_SWITCHING \
2125 4 // Special state; worker resets appropriate flag on wake-up
2126
2127 #define KMP_NOT_SAFE_TO_REAP \
2128 0 // Thread th_reap_state: not safe to reap (tasking)
2129 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2130
2131 // The flag_type describes the storage used for the flag.
2132 enum flag_type {
2133 flag32, /**< atomic 32 bit flags */
2134 flag64, /**< 64 bit flags */
2135 atomic_flag64, /**< atomic 64 bit flags */
2136 flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */
2137 flag_unset
2138 };
2139
2140 enum barrier_type {
2141 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2142 barriers if enabled) */
2143 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2144 #if KMP_FAST_REDUCTION_BARRIER
2145 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2146 #endif // KMP_FAST_REDUCTION_BARRIER
2147 bs_last_barrier /* Just a placeholder to mark the end */
2148 };
2149
2150 // to work with reduction barriers just like with plain barriers
2151 #if !KMP_FAST_REDUCTION_BARRIER
2152 #define bs_reduction_barrier bs_plain_barrier
2153 #endif // KMP_FAST_REDUCTION_BARRIER
2154
2155 typedef enum kmp_bar_pat { /* Barrier communication patterns */
2156 bp_linear_bar =
2157 0, /* Single level (degenerate) tree */
2158 bp_tree_bar =
2159 1, /* Balanced tree with branching factor 2^n */
2160 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2161 branching factor 2^n */
2162 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2163 bp_dist_bar = 4, /* Distributed barrier */
2164 bp_last_bar /* Placeholder to mark the end */
2165 } kmp_bar_pat_e;
2166
2167 #define KMP_BARRIER_ICV_PUSH 1
2168
2169 /* Record for holding the values of the internal controls stack records */
2170 typedef struct kmp_internal_control {
2171 int serial_nesting_level; /* corresponds to the value of the
2172 th_team_serialized field */
2173 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2174 thread) */
2175 kmp_int8
2176 bt_set; /* internal control for whether blocktime is explicitly set */
2177 int blocktime; /* internal control for blocktime */
2178 #if KMP_USE_MONITOR
2179 int bt_intervals; /* internal control for blocktime intervals */
2180 #endif
2181 int nproc; /* internal control for #threads for next parallel region (per
2182 thread) */
2183 int thread_limit; /* internal control for thread-limit-var */
2184 int task_thread_limit; /* internal control for thread-limit-var of a task*/
2185 int max_active_levels; /* internal control for max_active_levels */
2186 kmp_r_sched_t
2187 sched; /* internal control for runtime schedule {sched,chunk} pair */
2188 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2189 kmp_int32 default_device; /* internal control for default device */
2190 struct kmp_internal_control *next;
2191 } kmp_internal_control_t;
2192
copy_icvs(kmp_internal_control_t * dst,kmp_internal_control_t * src)2193 static inline void copy_icvs(kmp_internal_control_t *dst,
2194 kmp_internal_control_t *src) {
2195 *dst = *src;
2196 }
2197
2198 /* Thread barrier needs volatile barrier fields */
2199 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2200 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2201 // uses of it). It is not explicitly aligned below, because we *don't* want
2202 // it to be padded -- instead, we fit b_go into the same cache line with
2203 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2204 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2205 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2206 // same NGO store
2207 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2208 KMP_ALIGN_CACHE volatile kmp_uint64
2209 b_arrived; // STATE => task reached synch point.
2210 kmp_uint32 *skip_per_level;
2211 kmp_uint32 my_level;
2212 kmp_int32 parent_tid;
2213 kmp_int32 old_tid;
2214 kmp_uint32 depth;
2215 struct kmp_bstate *parent_bar;
2216 kmp_team_t *team;
2217 kmp_uint64 leaf_state;
2218 kmp_uint32 nproc;
2219 kmp_uint8 base_leaf_kids;
2220 kmp_uint8 leaf_kids;
2221 kmp_uint8 offset;
2222 kmp_uint8 wait_flag;
2223 kmp_uint8 use_oncore_barrier;
2224 #if USE_DEBUGGER
2225 // The following field is intended for the debugger solely. Only the worker
2226 // thread itself accesses this field: the worker increases it by 1 when it
2227 // arrives to a barrier.
2228 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2229 #endif /* USE_DEBUGGER */
2230 } kmp_bstate_t;
2231
2232 union KMP_ALIGN_CACHE kmp_barrier_union {
2233 double b_align; /* use worst case alignment */
2234 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2235 kmp_bstate_t bb;
2236 };
2237
2238 typedef union kmp_barrier_union kmp_balign_t;
2239
2240 /* Team barrier needs only non-volatile arrived counter */
2241 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2242 double b_align; /* use worst case alignment */
2243 char b_pad[CACHE_LINE];
2244 struct {
2245 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2246 #if USE_DEBUGGER
2247 // The following two fields are indended for the debugger solely. Only
2248 // primary thread of the team accesses these fields: the first one is
2249 // increased by 1 when the primary thread arrives to a barrier, the second
2250 // one is increased by one when all the threads arrived.
2251 kmp_uint b_master_arrived;
2252 kmp_uint b_team_arrived;
2253 #endif
2254 };
2255 };
2256
2257 typedef union kmp_barrier_team_union kmp_balign_team_t;
2258
2259 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2260 threads when a condition changes. This is to workaround an NPTL bug where
2261 padding was added to pthread_cond_t which caused the initialization routine
2262 to write outside of the structure if compiled on pre-NPTL threads. */
2263 #if KMP_OS_WINDOWS
2264 typedef struct kmp_win32_mutex {
2265 /* The Lock */
2266 CRITICAL_SECTION cs;
2267 } kmp_win32_mutex_t;
2268
2269 typedef struct kmp_win32_cond {
2270 /* Count of the number of waiters. */
2271 int waiters_count_;
2272
2273 /* Serialize access to <waiters_count_> */
2274 kmp_win32_mutex_t waiters_count_lock_;
2275
2276 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2277 int release_count_;
2278
2279 /* Keeps track of the current "generation" so that we don't allow */
2280 /* one thread to steal all the "releases" from the broadcast. */
2281 int wait_generation_count_;
2282
2283 /* A manual-reset event that's used to block and release waiting threads. */
2284 HANDLE event_;
2285 } kmp_win32_cond_t;
2286 #endif
2287
2288 #if KMP_OS_UNIX
2289
2290 union KMP_ALIGN_CACHE kmp_cond_union {
2291 double c_align;
2292 char c_pad[CACHE_LINE];
2293 pthread_cond_t c_cond;
2294 };
2295
2296 typedef union kmp_cond_union kmp_cond_align_t;
2297
2298 union KMP_ALIGN_CACHE kmp_mutex_union {
2299 double m_align;
2300 char m_pad[CACHE_LINE];
2301 pthread_mutex_t m_mutex;
2302 };
2303
2304 typedef union kmp_mutex_union kmp_mutex_align_t;
2305
2306 #endif /* KMP_OS_UNIX */
2307
2308 typedef struct kmp_desc_base {
2309 void *ds_stackbase;
2310 size_t ds_stacksize;
2311 int ds_stackgrow;
2312 kmp_thread_t ds_thread;
2313 volatile int ds_tid;
2314 int ds_gtid;
2315 #if KMP_OS_WINDOWS
2316 volatile int ds_alive;
2317 DWORD ds_thread_id;
2318 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2319 However, debugger support (libomp_db) cannot work with handles, because they
2320 uncomparable. For example, debugger requests info about thread with handle h.
2321 h is valid within debugger process, and meaningless within debugee process.
2322 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2323 within debugee process, but it is a *new* handle which does *not* equal to
2324 any other handle in debugee... The only way to compare handles is convert
2325 them to system-wide ids. GetThreadId() function is available only in
2326 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2327 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2328 thread id by call to GetCurrentThreadId() from within the thread and save it
2329 to let libomp_db identify threads. */
2330 #endif /* KMP_OS_WINDOWS */
2331 } kmp_desc_base_t;
2332
2333 typedef union KMP_ALIGN_CACHE kmp_desc {
2334 double ds_align; /* use worst case alignment */
2335 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2336 kmp_desc_base_t ds;
2337 } kmp_desc_t;
2338
2339 typedef struct kmp_local {
2340 volatile int this_construct; /* count of single's encountered by thread */
2341 void *reduce_data;
2342 #if KMP_USE_BGET
2343 void *bget_data;
2344 void *bget_list;
2345 #if !USE_CMP_XCHG_FOR_BGET
2346 #ifdef USE_QUEUING_LOCK_FOR_BGET
2347 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2348 #else
2349 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2350 // bootstrap lock so we can use it at library
2351 // shutdown.
2352 #endif /* USE_LOCK_FOR_BGET */
2353 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2354 #endif /* KMP_USE_BGET */
2355
2356 PACKED_REDUCTION_METHOD_T
2357 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2358 __kmpc_end_reduce*() */
2359
2360 } kmp_local_t;
2361
2362 #define KMP_CHECK_UPDATE(a, b) \
2363 if ((a) != (b)) \
2364 (a) = (b)
2365 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2366 if ((a) != (b)) \
2367 TCW_SYNC_PTR((a), (b))
2368
2369 #define get__blocktime(xteam, xtid) \
2370 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2371 #define get__bt_set(xteam, xtid) \
2372 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2373 #if KMP_USE_MONITOR
2374 #define get__bt_intervals(xteam, xtid) \
2375 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2376 #endif
2377
2378 #define get__dynamic_2(xteam, xtid) \
2379 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2380 #define get__nproc_2(xteam, xtid) \
2381 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2382 #define get__sched_2(xteam, xtid) \
2383 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2384
2385 #define set__blocktime_team(xteam, xtid, xval) \
2386 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2387 (xval))
2388
2389 #if KMP_USE_MONITOR
2390 #define set__bt_intervals_team(xteam, xtid, xval) \
2391 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2392 (xval))
2393 #endif
2394
2395 #define set__bt_set_team(xteam, xtid, xval) \
2396 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2397
2398 #define set__dynamic(xthread, xval) \
2399 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2400 #define get__dynamic(xthread) \
2401 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2402
2403 #define set__nproc(xthread, xval) \
2404 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2405
2406 #define set__thread_limit(xthread, xval) \
2407 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2408
2409 #define set__max_active_levels(xthread, xval) \
2410 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2411
2412 #define get__max_active_levels(xthread) \
2413 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2414
2415 #define set__sched(xthread, xval) \
2416 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2417
2418 #define set__proc_bind(xthread, xval) \
2419 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2420 #define get__proc_bind(xthread) \
2421 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2422
2423 // OpenMP tasking data structures
2424
2425 typedef enum kmp_tasking_mode {
2426 tskm_immediate_exec = 0,
2427 tskm_extra_barrier = 1,
2428 tskm_task_teams = 2,
2429 tskm_max = 2
2430 } kmp_tasking_mode_t;
2431
2432 extern kmp_tasking_mode_t
2433 __kmp_tasking_mode; /* determines how/when to execute tasks */
2434 extern int __kmp_task_stealing_constraint;
2435 extern int __kmp_enable_task_throttling;
2436 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2437 // specified, defaults to 0 otherwise
2438 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2439 extern kmp_int32 __kmp_max_task_priority;
2440 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2441 extern kmp_uint64 __kmp_taskloop_min_tasks;
2442
2443 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2444 taskdata first */
2445 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2446 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2447
2448 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2449 // were spawned and queued since the previous barrier release.
2450 #define KMP_TASKING_ENABLED(task_team) \
2451 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2452 /*!
2453 @ingroup BASIC_TYPES
2454 @{
2455 */
2456
2457 /*!
2458 */
2459 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2460
2461 typedef union kmp_cmplrdata {
2462 kmp_int32 priority; /**< priority specified by user for the task */
2463 kmp_routine_entry_t
2464 destructors; /* pointer to function to invoke deconstructors of
2465 firstprivate C++ objects */
2466 /* future data */
2467 } kmp_cmplrdata_t;
2468
2469 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2470 /*!
2471 */
2472 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2473 void *shareds; /**< pointer to block of pointers to shared vars */
2474 kmp_routine_entry_t
2475 routine; /**< pointer to routine to call for executing task */
2476 kmp_int32 part_id; /**< part id for the task */
2477 kmp_cmplrdata_t
2478 data1; /* Two known optional additions: destructors and priority */
2479 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2480 /* future data */
2481 /* private vars */
2482 } kmp_task_t;
2483
2484 /*!
2485 @}
2486 */
2487
2488 typedef struct kmp_taskgroup {
2489 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2490 std::atomic<kmp_int32>
2491 cancel_request; // request for cancellation of this taskgroup
2492 struct kmp_taskgroup *parent; // parent taskgroup
2493 // Block of data to perform task reduction
2494 void *reduce_data; // reduction related info
2495 kmp_int32 reduce_num_data; // number of data items to reduce
2496 uintptr_t *gomp_data; // gomp reduction data
2497 } kmp_taskgroup_t;
2498
2499 // forward declarations
2500 typedef union kmp_depnode kmp_depnode_t;
2501 typedef struct kmp_depnode_list kmp_depnode_list_t;
2502 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2503
2504 // macros for checking dep flag as an integer
2505 #define KMP_DEP_IN 0x1
2506 #define KMP_DEP_OUT 0x2
2507 #define KMP_DEP_INOUT 0x3
2508 #define KMP_DEP_MTX 0x4
2509 #define KMP_DEP_SET 0x8
2510 #define KMP_DEP_ALL 0x80
2511 // Compiler sends us this info. Note: some test cases contain an explicit copy
2512 // of this struct and should be in sync with any changes here.
2513 typedef struct kmp_depend_info {
2514 kmp_intptr_t base_addr;
2515 size_t len;
2516 union {
2517 kmp_uint8 flag; // flag as an unsigned char
2518 struct { // flag as a set of 8 bits
2519 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2520 /* Same fields as in the #else branch, but in reverse order */
2521 unsigned all : 1;
2522 unsigned unused : 3;
2523 unsigned set : 1;
2524 unsigned mtx : 1;
2525 unsigned out : 1;
2526 unsigned in : 1;
2527 #else
2528 unsigned in : 1;
2529 unsigned out : 1;
2530 unsigned mtx : 1;
2531 unsigned set : 1;
2532 unsigned unused : 3;
2533 unsigned all : 1;
2534 #endif
2535 } flags;
2536 };
2537 } kmp_depend_info_t;
2538
2539 // Internal structures to work with task dependencies:
2540 struct kmp_depnode_list {
2541 kmp_depnode_t *node;
2542 kmp_depnode_list_t *next;
2543 };
2544
2545 // Max number of mutexinoutset dependencies per node
2546 #define MAX_MTX_DEPS 4
2547
2548 typedef struct kmp_base_depnode {
2549 kmp_depnode_list_t *successors; /* used under lock */
2550 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2551 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2552 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2553 kmp_lock_t lock; /* guards shared fields: task, successors */
2554 #if KMP_SUPPORT_GRAPH_OUTPUT
2555 kmp_uint32 id;
2556 #endif
2557 std::atomic<kmp_int32> npredecessors;
2558 std::atomic<kmp_int32> nrefs;
2559 } kmp_base_depnode_t;
2560
2561 union KMP_ALIGN_CACHE kmp_depnode {
2562 double dn_align; /* use worst case alignment */
2563 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2564 kmp_base_depnode_t dn;
2565 };
2566
2567 struct kmp_dephash_entry {
2568 kmp_intptr_t addr;
2569 kmp_depnode_t *last_out;
2570 kmp_depnode_list_t *last_set;
2571 kmp_depnode_list_t *prev_set;
2572 kmp_uint8 last_flag;
2573 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2574 kmp_dephash_entry_t *next_in_bucket;
2575 };
2576
2577 typedef struct kmp_dephash {
2578 kmp_dephash_entry_t **buckets;
2579 size_t size;
2580 kmp_depnode_t *last_all;
2581 size_t generation;
2582 kmp_uint32 nelements;
2583 kmp_uint32 nconflicts;
2584 } kmp_dephash_t;
2585
2586 typedef struct kmp_task_affinity_info {
2587 kmp_intptr_t base_addr;
2588 size_t len;
2589 struct {
2590 bool flag1 : 1;
2591 bool flag2 : 1;
2592 kmp_int32 reserved : 30;
2593 } flags;
2594 } kmp_task_affinity_info_t;
2595
2596 typedef enum kmp_event_type_t {
2597 KMP_EVENT_UNINITIALIZED = 0,
2598 KMP_EVENT_ALLOW_COMPLETION = 1
2599 } kmp_event_type_t;
2600
2601 typedef struct {
2602 kmp_event_type_t type;
2603 kmp_tas_lock_t lock;
2604 union {
2605 kmp_task_t *task;
2606 } ed;
2607 } kmp_event_t;
2608
2609 #if OMPX_TASKGRAPH
2610 // Initial number of allocated nodes while recording
2611 #define INIT_MAPSIZE 50
2612
2613 typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2614 unsigned nowait : 1;
2615 unsigned re_record : 1;
2616 unsigned reserved : 30;
2617 } kmp_taskgraph_flags_t;
2618
2619 /// Represents a TDG node
2620 typedef struct kmp_node_info {
2621 kmp_task_t *task; // Pointer to the actual task
2622 kmp_int32 *successors; // Array of the succesors ids
2623 kmp_int32 nsuccessors; // Number of succesors of the node
2624 std::atomic<kmp_int32>
2625 npredecessors_counter; // Number of predessors on the fly
2626 kmp_int32 npredecessors; // Total number of predecessors
2627 kmp_int32 successors_size; // Number of allocated succesors ids
2628 kmp_taskdata_t *parent_task; // Parent implicit task
2629 } kmp_node_info_t;
2630
2631 /// Represent a TDG's current status
2632 typedef enum kmp_tdg_status {
2633 KMP_TDG_NONE = 0,
2634 KMP_TDG_RECORDING = 1,
2635 KMP_TDG_READY = 2
2636 } kmp_tdg_status_t;
2637
2638 /// Structure that contains a TDG
2639 typedef struct kmp_tdg_info {
2640 kmp_int32 tdg_id; // Unique idenfifier of the TDG
2641 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2642 kmp_int32 map_size; // Number of allocated TDG nodes
2643 kmp_int32 num_roots; // Number of roots tasks int the TDG
2644 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2645 kmp_node_info_t *record_map; // Array of TDG nodes
2646 kmp_tdg_status_t tdg_status =
2647 KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2648 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2649 kmp_bootstrap_lock_t
2650 graph_lock; // Protect graph attributes when updated via taskloop_recur
2651 // Taskloop reduction related
2652 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2653 // __kmpc_taskred_init
2654 kmp_int32 rec_num_taskred;
2655 } kmp_tdg_info_t;
2656
2657 extern int __kmp_tdg_dot;
2658 extern kmp_int32 __kmp_max_tdgs;
2659 extern kmp_tdg_info_t **__kmp_global_tdgs;
2660 extern kmp_int32 __kmp_curr_tdg_idx;
2661 extern kmp_int32 __kmp_successors_size;
2662 extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2663 extern kmp_int32 __kmp_num_tdg;
2664 #endif
2665
2666 #ifdef BUILD_TIED_TASK_STACK
2667
2668 /* Tied Task stack definitions */
2669 typedef struct kmp_stack_block {
2670 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2671 struct kmp_stack_block *sb_next;
2672 struct kmp_stack_block *sb_prev;
2673 } kmp_stack_block_t;
2674
2675 typedef struct kmp_task_stack {
2676 kmp_stack_block_t ts_first_block; // first block of stack entries
2677 kmp_taskdata_t **ts_top; // pointer to the top of stack
2678 kmp_int32 ts_entries; // number of entries on the stack
2679 } kmp_task_stack_t;
2680
2681 #endif // BUILD_TIED_TASK_STACK
2682
2683 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2684 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2685 /* Same fields as in the #else branch, but in reverse order */
2686 #if OMPX_TASKGRAPH
2687 unsigned reserved31 : 5;
2688 unsigned onced : 1;
2689 #else
2690 unsigned reserved31 : 6;
2691 #endif
2692 unsigned target : 1;
2693 unsigned native : 1;
2694 unsigned freed : 1;
2695 unsigned complete : 1;
2696 unsigned executing : 1;
2697 unsigned started : 1;
2698 unsigned team_serial : 1;
2699 unsigned tasking_ser : 1;
2700 unsigned task_serial : 1;
2701 unsigned tasktype : 1;
2702 unsigned reserved : 8;
2703 unsigned hidden_helper : 1;
2704 unsigned detachable : 1;
2705 unsigned priority_specified : 1;
2706 unsigned proxy : 1;
2707 unsigned destructors_thunk : 1;
2708 unsigned merged_if0 : 1;
2709 unsigned final : 1;
2710 unsigned tiedness : 1;
2711 #else
2712 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2713 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2714 unsigned final : 1; /* task is final(1) so execute immediately */
2715 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2716 code path */
2717 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2718 invoke destructors from the runtime */
2719 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2720 context of the RTL) */
2721 unsigned priority_specified : 1; /* set if the compiler provides priority
2722 setting for the task */
2723 unsigned detachable : 1; /* 1 == can detach */
2724 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2725 unsigned reserved : 8; /* reserved for compiler use */
2726
2727 /* Library flags */ /* Total library flags must be 16 bits */
2728 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2729 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2730 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2731 // (1) or may be deferred (0)
2732 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2733 // (0) [>= 2 threads]
2734 /* If either team_serial or tasking_ser is set, task team may be NULL */
2735 /* Task State Flags: */
2736 unsigned started : 1; /* 1==started, 0==not started */
2737 unsigned executing : 1; /* 1==executing, 0==not executing */
2738 unsigned complete : 1; /* 1==complete, 0==not complete */
2739 unsigned freed : 1; /* 1==freed, 0==allocated */
2740 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2741 unsigned target : 1;
2742 #if OMPX_TASKGRAPH
2743 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2744 unsigned reserved31 : 5; /* reserved for library use */
2745 #else
2746 unsigned reserved31 : 6; /* reserved for library use */
2747 #endif
2748 #endif
2749 } kmp_tasking_flags_t;
2750
2751 typedef struct kmp_target_data {
2752 void *async_handle; // libomptarget async handle for task completion query
2753 } kmp_target_data_t;
2754
2755 struct kmp_taskdata { /* aligned during dynamic allocation */
2756 kmp_int32 td_task_id; /* id, assigned by debugger */
2757 kmp_tasking_flags_t td_flags; /* task flags */
2758 kmp_team_t *td_team; /* team for this task */
2759 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2760 /* Currently not used except for perhaps IDB */
2761 kmp_taskdata_t *td_parent; /* parent task */
2762 kmp_int32 td_level; /* task nesting level */
2763 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2764 ident_t *td_ident; /* task identifier */
2765 // Taskwait data.
2766 ident_t *td_taskwait_ident;
2767 kmp_uint32 td_taskwait_counter;
2768 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2769 KMP_ALIGN_CACHE kmp_internal_control_t
2770 td_icvs; /* Internal control variables for the task */
2771 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2772 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2773 deallocated */
2774 std::atomic<kmp_int32>
2775 td_incomplete_child_tasks; /* Child tasks not yet complete */
2776 kmp_taskgroup_t
2777 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2778 kmp_dephash_t
2779 *td_dephash; // Dependencies for children tasks are tracked from here
2780 kmp_depnode_t
2781 *td_depnode; // Pointer to graph node if this task has dependencies
2782 kmp_task_team_t *td_task_team;
2783 size_t td_size_alloc; // Size of task structure, including shareds etc.
2784 #if defined(KMP_GOMP_COMPAT)
2785 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2786 kmp_int32 td_size_loop_bounds;
2787 #endif
2788 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2789 #if defined(KMP_GOMP_COMPAT)
2790 // GOMP sends in a copy function for copy constructors
2791 void (*td_copy_func)(void *, void *);
2792 #endif
2793 kmp_event_t td_allow_completion_event;
2794 #if OMPT_SUPPORT
2795 ompt_task_info_t ompt_task_info;
2796 #endif
2797 #if OMPX_TASKGRAPH
2798 bool is_taskgraph = 0; // whether the task is within a TDG
2799 kmp_tdg_info_t *tdg; // used to associate task with a TDG
2800 #endif
2801 kmp_target_data_t td_target_data;
2802 }; // struct kmp_taskdata
2803
2804 // Make sure padding above worked
2805 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2806
2807 // Data for task team but per thread
2808 typedef struct kmp_base_thread_data {
2809 kmp_info_p *td_thr; // Pointer back to thread info
2810 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2811 // queued?
2812 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2813 kmp_taskdata_t *
2814 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2815 kmp_int32 td_deque_size; // Size of deck
2816 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2817 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2818 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2819 // GEH: shouldn't this be volatile since used in while-spin?
2820 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2821 #ifdef BUILD_TIED_TASK_STACK
2822 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2823 // scheduling constraint
2824 #endif // BUILD_TIED_TASK_STACK
2825 } kmp_base_thread_data_t;
2826
2827 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2828 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2829
2830 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2831 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2832
2833 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2834 kmp_base_thread_data_t td;
2835 double td_align; /* use worst case alignment */
2836 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2837 } kmp_thread_data_t;
2838
2839 typedef struct kmp_task_pri {
2840 kmp_thread_data_t td;
2841 kmp_int32 priority;
2842 kmp_task_pri *next;
2843 } kmp_task_pri_t;
2844
2845 // Data for task teams which are used when tasking is enabled for the team
2846 typedef struct kmp_base_task_team {
2847 kmp_bootstrap_lock_t
2848 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2849 /* must be bootstrap lock since used at library shutdown*/
2850
2851 // TODO: check performance vs kmp_tas_lock_t
2852 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2853 kmp_task_pri_t *tt_task_pri_list;
2854
2855 kmp_task_team_t *tt_next; /* For linking the task team free list */
2856 kmp_thread_data_t
2857 *tt_threads_data; /* Array of per-thread structures for task team */
2858 /* Data survives task team deallocation */
2859 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2860 executing this team? */
2861 /* TRUE means tt_threads_data is set up and initialized */
2862 kmp_int32 tt_nproc; /* #threads in team */
2863 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2864 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2865 kmp_int32 tt_untied_task_encountered;
2866 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2867 // There is hidden helper thread encountered in this task team so that we must
2868 // wait when waiting on task team
2869 kmp_int32 tt_hidden_helper_task_encountered;
2870
2871 KMP_ALIGN_CACHE
2872 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2873
2874 KMP_ALIGN_CACHE
2875 volatile kmp_uint32
2876 tt_active; /* is the team still actively executing tasks */
2877 } kmp_base_task_team_t;
2878
2879 union KMP_ALIGN_CACHE kmp_task_team {
2880 kmp_base_task_team_t tt;
2881 double tt_align; /* use worst case alignment */
2882 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2883 };
2884
2885 typedef struct kmp_task_team_list_t {
2886 kmp_task_team_t *task_team;
2887 kmp_task_team_list_t *next;
2888 } kmp_task_team_list_t;
2889
2890 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2891 // Free lists keep same-size free memory slots for fast memory allocation
2892 // routines
2893 typedef struct kmp_free_list {
2894 void *th_free_list_self; // Self-allocated tasks free list
2895 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2896 // threads
2897 void *th_free_list_other; // Non-self free list (to be returned to owner's
2898 // sync list)
2899 } kmp_free_list_t;
2900 #endif
2901 #if KMP_NESTED_HOT_TEAMS
2902 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2903 // are not put in teams pool, and they don't put threads in threads pool.
2904 typedef struct kmp_hot_team_ptr {
2905 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2906 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2907 } kmp_hot_team_ptr_t;
2908 #endif
2909 typedef struct kmp_teams_size {
2910 kmp_int32 nteams; // number of teams in a league
2911 kmp_int32 nth; // number of threads in each team of the league
2912 } kmp_teams_size_t;
2913
2914 // This struct stores a thread that acts as a "root" for a contention
2915 // group. Contention groups are rooted at kmp_root threads, but also at
2916 // each primary thread of each team created in the teams construct.
2917 // This struct therefore also stores a thread_limit associated with
2918 // that contention group, and a counter to track the number of threads
2919 // active in that contention group. Each thread has a list of these: CG
2920 // root threads have an entry in their list in which cg_root refers to
2921 // the thread itself, whereas other workers in the CG will have a
2922 // single entry where cg_root is same as the entry containing their CG
2923 // root. When a thread encounters a teams construct, it will add a new
2924 // entry to the front of its list, because it now roots a new CG.
2925 typedef struct kmp_cg_root {
2926 kmp_info_p *cg_root; // "root" thread for a contention group
2927 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2928 // thread_limit clause for teams primary threads
2929 kmp_int32 cg_thread_limit;
2930 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2931 struct kmp_cg_root *up; // pointer to higher level CG root in list
2932 } kmp_cg_root_t;
2933
2934 // OpenMP thread data structures
2935
2936 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2937 /* Start with the readonly data which is cache aligned and padded. This is
2938 written before the thread starts working by the primary thread. Uber
2939 masters may update themselves later. Usage does not consider serialized
2940 regions. */
2941 kmp_desc_t th_info;
2942 kmp_team_p *th_team; /* team we belong to */
2943 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2944 kmp_info_p *th_next_pool; /* next available thread in the pool */
2945 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2946 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2947
2948 /* The following are cached from the team info structure */
2949 /* TODO use these in more places as determined to be needed via profiling */
2950 int th_team_nproc; /* number of threads in a team */
2951 kmp_info_p *th_team_master; /* the team's primary thread */
2952 int th_team_serialized; /* team is serialized */
2953 microtask_t th_teams_microtask; /* save entry address for teams construct */
2954 int th_teams_level; /* save initial level of teams construct */
2955 /* it is 0 on device but may be any on host */
2956
2957 /* The blocktime info is copied from the team struct to the thread struct */
2958 /* at the start of a barrier, and the values stored in the team are used */
2959 /* at points in the code where the team struct is no longer guaranteed */
2960 /* to exist (from the POV of worker threads). */
2961 #if KMP_USE_MONITOR
2962 int th_team_bt_intervals;
2963 int th_team_bt_set;
2964 #else
2965 kmp_uint64 th_team_bt_intervals;
2966 #endif
2967
2968 #if KMP_AFFINITY_SUPPORTED
2969 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2970 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2971 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2972 #endif
2973 omp_allocator_handle_t th_def_allocator; /* default allocator */
2974 /* The data set by the primary thread at reinit, then R/W by the worker */
2975 KMP_ALIGN_CACHE int
2976 th_set_nproc; /* if > 0, then only use this request for the next fork */
2977 int *th_set_nested_nth;
2978 bool th_nt_strict; // num_threads clause has strict modifier
2979 ident_t *th_nt_loc; // loc for strict modifier
2980 int th_nt_sev; // error severity for strict modifier
2981 const char *th_nt_msg; // error message for strict modifier
2982 int th_set_nested_nth_sz;
2983 #if KMP_NESTED_HOT_TEAMS
2984 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2985 #endif
2986 kmp_proc_bind_t
2987 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2988 kmp_teams_size_t
2989 th_teams_size; /* number of teams/threads in teams construct */
2990 #if KMP_AFFINITY_SUPPORTED
2991 int th_current_place; /* place currently bound to */
2992 int th_new_place; /* place to bind to in par reg */
2993 int th_first_place; /* first place in partition */
2994 int th_last_place; /* last place in partition */
2995 #endif
2996 int th_prev_level; /* previous level for affinity format */
2997 int th_prev_num_threads; /* previous num_threads for affinity format */
2998 #if USE_ITT_BUILD
2999 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
3000 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
3001 kmp_uint64 th_frame_time; /* frame timestamp */
3002 #endif /* USE_ITT_BUILD */
3003 kmp_local_t th_local;
3004 struct private_common *th_pri_head;
3005
3006 /* Now the data only used by the worker (after initial allocation) */
3007 /* TODO the first serial team should actually be stored in the info_t
3008 structure. this will help reduce initial allocation overhead */
3009 KMP_ALIGN_CACHE kmp_team_p
3010 *th_serial_team; /*serialized team held in reserve*/
3011
3012 #if OMPT_SUPPORT
3013 ompt_thread_info_t ompt_thread_info;
3014 #endif
3015
3016 /* The following are also read by the primary thread during reinit */
3017 struct common_table *th_pri_common;
3018
3019 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
3020 /* while awaiting queuing lock acquire */
3021
3022 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
3023 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
3024
3025 ident_t *th_ident;
3026 unsigned th_x; // Random number generator data
3027 unsigned th_a; // Random number generator data
3028
3029 /* Tasking-related data for the thread */
3030 kmp_task_team_t *th_task_team; // Task team struct
3031 kmp_taskdata_t *th_current_task; // Innermost Task being executed
3032 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
3033 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
3034 // tasking, thus safe to reap
3035
3036 /* More stuff for keeping track of active/sleeping threads (this part is
3037 written by the worker thread) */
3038 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
3039 int th_active; // ! sleeping; 32 bits for TCR/TCW
3040 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
3041 // 0 = not used in team; 1 = used in team;
3042 // 2 = transitioning to not used in team; 3 = transitioning to used in team
3043 struct cons_header *th_cons; // used for consistency check
3044 #if KMP_USE_HIER_SCHED
3045 // used for hierarchical scheduling
3046 kmp_hier_private_bdata_t *th_hier_bar_data;
3047 #endif
3048
3049 /* Add the syncronizing data which is cache aligned and padded. */
3050 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
3051
3052 KMP_ALIGN_CACHE volatile kmp_int32
3053 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
3054
3055 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
3056 #define NUM_LISTS 4
3057 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
3058 // allocation routines
3059 #endif
3060
3061 #if KMP_OS_WINDOWS
3062 kmp_win32_cond_t th_suspend_cv;
3063 kmp_win32_mutex_t th_suspend_mx;
3064 std::atomic<int> th_suspend_init;
3065 #endif
3066 #if KMP_OS_UNIX
3067 kmp_cond_align_t th_suspend_cv;
3068 kmp_mutex_align_t th_suspend_mx;
3069 std::atomic<int> th_suspend_init_count;
3070 #endif
3071
3072 #if USE_ITT_BUILD
3073 kmp_itt_mark_t th_itt_mark_single;
3074 // alignment ???
3075 #endif /* USE_ITT_BUILD */
3076 #if KMP_STATS_ENABLED
3077 kmp_stats_list *th_stats;
3078 #endif
3079 #if KMP_OS_UNIX
3080 std::atomic<bool> th_blocking;
3081 #endif
3082 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
3083 } kmp_base_info_t;
3084
3085 typedef union KMP_ALIGN_CACHE kmp_info {
3086 double th_align; /* use worst case alignment */
3087 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
3088 kmp_base_info_t th;
3089 } kmp_info_t;
3090
3091 // OpenMP thread team data structures
3092
3093 typedef struct kmp_base_data {
3094 volatile kmp_uint32 t_value;
3095 } kmp_base_data_t;
3096
3097 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
3098 double dt_align; /* use worst case alignment */
3099 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3100 kmp_base_data_t dt;
3101 } kmp_sleep_team_t;
3102
3103 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
3104 double dt_align; /* use worst case alignment */
3105 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3106 kmp_base_data_t dt;
3107 } kmp_ordered_team_t;
3108
3109 typedef int (*launch_t)(int gtid);
3110
3111 /* Minimum number of ARGV entries to malloc if necessary */
3112 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3113
3114 // Set up how many argv pointers will fit in cache lines containing
3115 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3116 // larger value for more space between the primary write/worker read section and
3117 // read/write by all section seems to buy more performance on EPCC PARALLEL.
3118 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3119 #define KMP_INLINE_ARGV_BYTES \
3120 (4 * CACHE_LINE - \
3121 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3122 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3123 CACHE_LINE))
3124 #else
3125 #define KMP_INLINE_ARGV_BYTES \
3126 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3127 #endif
3128 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3129
3130 typedef struct KMP_ALIGN_CACHE kmp_base_team {
3131 // Synchronization Data
3132 // ---------------------------------------------------------------------------
3133 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3134 kmp_balign_team_t t_bar[bs_last_barrier];
3135 std::atomic<int> t_construct; // count of single directive encountered by team
3136 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3137
3138 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3139 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3140 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3141
3142 // Primary thread only
3143 // ---------------------------------------------------------------------------
3144 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3145 int t_master_this_cons; // "this_construct" single counter of primary thread
3146 // in parent team
3147 ident_t *t_ident; // if volatile, have to change too much other crud to
3148 // volatile too
3149 kmp_team_p *t_parent; // parent team
3150 kmp_team_p *t_next_pool; // next free team in the team pool
3151 kmp_disp_t *t_dispatch; // thread's dispatch data
3152 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3153 kmp_proc_bind_t t_proc_bind; // bind type for par region
3154 int t_primary_task_state; // primary thread's task state saved
3155 #if USE_ITT_BUILD
3156 kmp_uint64 t_region_time; // region begin timestamp
3157 #endif /* USE_ITT_BUILD */
3158
3159 // Primary thread write, workers read
3160 // --------------------------------------------------------------------------
3161 KMP_ALIGN_CACHE void **t_argv;
3162 int t_argc;
3163 int t_nproc; // number of threads in team
3164 microtask_t t_pkfn;
3165 launch_t t_invoke; // procedure to launch the microtask
3166
3167 #if OMPT_SUPPORT
3168 ompt_team_info_t ompt_team_info;
3169 ompt_lw_taskteam_t *ompt_serialized_team_info;
3170 #endif
3171
3172 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3173 kmp_int8 t_fp_control_saved;
3174 kmp_int8 t_pad2b;
3175 kmp_int16 t_x87_fpu_control_word; // FP control regs
3176 kmp_uint32 t_mxcsr;
3177 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3178
3179 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3180
3181 KMP_ALIGN_CACHE kmp_info_t **t_threads;
3182 kmp_taskdata_t
3183 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3184 int t_level; // nested parallel level
3185
3186 KMP_ALIGN_CACHE int t_max_argc;
3187 int t_max_nproc; // max threads this team can handle (dynamically expandable)
3188 int t_serialized; // levels deep of serialized teams
3189 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3190 int t_id; // team's id, assigned by debugger.
3191 int t_active_level; // nested active parallel level
3192 kmp_r_sched_t t_sched; // run-time schedule for the team
3193 #if KMP_AFFINITY_SUPPORTED
3194 int t_first_place; // first & last place in parent thread's partition.
3195 int t_last_place; // Restore these values to primary thread after par region.
3196 #endif // KMP_AFFINITY_SUPPORTED
3197 int t_display_affinity;
3198 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3199 // omp_set_num_threads() call
3200 omp_allocator_handle_t t_def_allocator; /* default allocator */
3201
3202 // Read/write by workers as well
3203 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3204 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3205 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3206 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3207 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3208 char dummy_padding[1024];
3209 #endif
3210 // Internal control stack for additional nested teams.
3211 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3212 // for SERIALIZED teams nested 2 or more levels deep
3213 // typed flag to store request state of cancellation
3214 std::atomic<kmp_int32> t_cancel_request;
3215 int t_master_active; // save on fork, restore on join
3216 void *t_copypriv_data; // team specific pointer to copyprivate data array
3217 #if KMP_OS_WINDOWS
3218 std::atomic<kmp_uint32> t_copyin_counter;
3219 #endif
3220 #if USE_ITT_BUILD
3221 void *t_stack_id; // team specific stack stitching id (for ittnotify)
3222 #endif /* USE_ITT_BUILD */
3223 distributedBarrier *b; // Distributed barrier data associated with team
3224 kmp_nested_nthreads_t *t_nested_nth;
3225 } kmp_base_team_t;
3226
3227 // Assert that the list structure fits and aligns within
3228 // the double task team pointer
3229 KMP_BUILD_ASSERT(sizeof(kmp_task_team_t *[2]) == sizeof(kmp_task_team_list_t));
3230 KMP_BUILD_ASSERT(alignof(kmp_task_team_t *[2]) ==
3231 alignof(kmp_task_team_list_t));
3232
3233 union KMP_ALIGN_CACHE kmp_team {
3234 kmp_base_team_t t;
3235 double t_align; /* use worst case alignment */
3236 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3237 };
3238
3239 typedef union KMP_ALIGN_CACHE kmp_time_global {
3240 double dt_align; /* use worst case alignment */
3241 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3242 kmp_base_data_t dt;
3243 } kmp_time_global_t;
3244
3245 typedef struct kmp_base_global {
3246 /* cache-aligned */
3247 kmp_time_global_t g_time;
3248
3249 /* non cache-aligned */
3250 volatile int g_abort;
3251 volatile int g_done;
3252
3253 int g_dynamic;
3254 enum dynamic_mode g_dynamic_mode;
3255 } kmp_base_global_t;
3256
3257 typedef union KMP_ALIGN_CACHE kmp_global {
3258 kmp_base_global_t g;
3259 double g_align; /* use worst case alignment */
3260 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3261 } kmp_global_t;
3262
3263 typedef struct kmp_base_root {
3264 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3265 // (r_in_parallel>= 0)
3266 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3267 // the synch overhead or keeping r_active
3268 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3269 // keeps a count of active parallel regions per root
3270 std::atomic<int> r_in_parallel;
3271 // GEH: This is misnamed, should be r_active_levels
3272 kmp_team_t *r_root_team;
3273 kmp_team_t *r_hot_team;
3274 kmp_info_t *r_uber_thread;
3275 kmp_lock_t r_begin_lock;
3276 volatile int r_begin;
3277 int r_blocktime; /* blocktime for this root and descendants */
3278 #if KMP_AFFINITY_SUPPORTED
3279 int r_affinity_assigned;
3280 #endif // KMP_AFFINITY_SUPPORTED
3281 } kmp_base_root_t;
3282
3283 typedef union KMP_ALIGN_CACHE kmp_root {
3284 kmp_base_root_t r;
3285 double r_align; /* use worst case alignment */
3286 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3287 } kmp_root_t;
3288
3289 struct fortran_inx_info {
3290 kmp_int32 data;
3291 };
3292
3293 // This list type exists to hold old __kmp_threads arrays so that
3294 // old references to them may complete while reallocation takes place when
3295 // expanding the array. The items in this list are kept alive until library
3296 // shutdown.
3297 typedef struct kmp_old_threads_list_t {
3298 kmp_info_t **threads;
3299 struct kmp_old_threads_list_t *next;
3300 } kmp_old_threads_list_t;
3301
3302 /* ------------------------------------------------------------------------ */
3303
3304 extern int __kmp_settings;
3305 extern int __kmp_duplicate_library_ok;
3306 #if USE_ITT_BUILD
3307 extern int __kmp_forkjoin_frames;
3308 extern int __kmp_forkjoin_frames_mode;
3309 #endif
3310 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3311 extern int __kmp_determ_red;
3312
3313 #ifdef KMP_DEBUG
3314 extern int kmp_a_debug;
3315 extern int kmp_b_debug;
3316 extern int kmp_c_debug;
3317 extern int kmp_d_debug;
3318 extern int kmp_e_debug;
3319 extern int kmp_f_debug;
3320 #endif /* KMP_DEBUG */
3321
3322 /* For debug information logging using rotating buffer */
3323 #define KMP_DEBUG_BUF_LINES_INIT 512
3324 #define KMP_DEBUG_BUF_LINES_MIN 1
3325
3326 #define KMP_DEBUG_BUF_CHARS_INIT 128
3327 #define KMP_DEBUG_BUF_CHARS_MIN 2
3328
3329 extern int
3330 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3331 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3332 extern int
3333 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3334 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3335 entry pointer */
3336
3337 extern char *__kmp_debug_buffer; /* Debug buffer itself */
3338 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3339 printed in buffer so far */
3340 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3341 recommended in warnings */
3342 /* end rotating debug buffer */
3343
3344 #ifdef KMP_DEBUG
3345 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3346
3347 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
3348 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3349 #define KMP_PAR_RANGE_FILENAME_LEN 1024
3350 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3351 extern int __kmp_par_range_lb;
3352 extern int __kmp_par_range_ub;
3353 #endif
3354
3355 /* For printing out dynamic storage map for threads and teams */
3356 extern int
3357 __kmp_storage_map; /* True means print storage map for threads and teams */
3358 extern int __kmp_storage_map_verbose; /* True means storage map includes
3359 placement info */
3360 extern int __kmp_storage_map_verbose_specified;
3361
3362 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3363 extern kmp_cpuinfo_t __kmp_cpuinfo;
__kmp_is_hybrid_cpu()3364 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3365 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
__kmp_is_hybrid_cpu()3366 static inline bool __kmp_is_hybrid_cpu() { return true; }
3367 #else
__kmp_is_hybrid_cpu()3368 static inline bool __kmp_is_hybrid_cpu() { return false; }
3369 #endif
3370
3371 extern volatile int __kmp_init_serial;
3372 extern volatile int __kmp_init_gtid;
3373 extern volatile int __kmp_init_common;
3374 extern volatile int __kmp_need_register_serial;
3375 extern volatile int __kmp_init_middle;
3376 extern volatile int __kmp_init_parallel;
3377 #if KMP_USE_MONITOR
3378 extern volatile int __kmp_init_monitor;
3379 #endif
3380 extern volatile int __kmp_init_user_locks;
3381 extern volatile int __kmp_init_hidden_helper_threads;
3382 extern int __kmp_init_counter;
3383 extern int __kmp_root_counter;
3384 extern int __kmp_version;
3385
3386 /* list of address of allocated caches for commons */
3387 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3388
3389 /* Barrier algorithm types and options */
3390 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3391 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3392 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3393 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3394 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3395 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3396 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3397 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3398 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3399 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3400 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3401 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3402
3403 /* Global Locks */
3404 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3405 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3406 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3407 extern kmp_bootstrap_lock_t
3408 __kmp_exit_lock; /* exit() is not always thread-safe */
3409 #if KMP_USE_MONITOR
3410 extern kmp_bootstrap_lock_t
3411 __kmp_monitor_lock; /* control monitor thread creation */
3412 #endif
3413 extern kmp_bootstrap_lock_t
3414 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3415 __kmp_threads expansion to co-exist */
3416
3417 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3418 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3419 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3420
3421 extern enum library_type __kmp_library;
3422
3423 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3424 extern enum sched_type __kmp_static; /* default static scheduling method */
3425 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3426 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3427 extern int __kmp_chunk; /* default runtime chunk size */
3428 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3429
3430 extern size_t __kmp_stksize; /* stack size per thread */
3431 #if KMP_USE_MONITOR
3432 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3433 #endif
3434 extern size_t __kmp_stkoffset; /* stack offset per thread */
3435 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3436
3437 extern size_t
3438 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3439 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3440 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3441 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3442 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3443 extern int __kmp_generate_warnings; /* should we issue warnings? */
3444 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3445
3446 #ifdef DEBUG_SUSPEND
3447 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3448 #endif
3449
3450 extern kmp_int32 __kmp_use_yield;
3451 extern kmp_int32 __kmp_use_yield_exp_set;
3452 extern kmp_uint32 __kmp_yield_init;
3453 extern kmp_uint32 __kmp_yield_next;
3454 extern kmp_uint64 __kmp_pause_init;
3455
3456 /* ------------------------------------------------------------------------- */
3457 extern int __kmp_allThreadsSpecified;
3458
3459 extern size_t __kmp_align_alloc;
3460 /* following data protected by initialization routines */
3461 extern int __kmp_xproc; /* number of processors in the system */
3462 extern int __kmp_avail_proc; /* number of processors available to the process */
3463 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3464 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3465 // maximum total number of concurrently-existing threads on device
3466 extern int __kmp_max_nth;
3467 // maximum total number of concurrently-existing threads in a contention group
3468 extern int __kmp_cg_max_nth;
3469 extern int __kmp_task_max_nth; // max threads used in a task
3470 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3471 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3472 __kmp_root */
3473 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3474 region a la OMP_NUM_THREADS */
3475 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3476 initialization */
3477 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3478 used (fixed) */
3479 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3480 (__kmpc_threadprivate_cached()) */
3481 extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3482 blocking (env setting) */
3483 extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3484 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3485
3486 // Convert raw blocktime from ms to us if needed.
__kmp_aux_convert_blocktime(int * bt)3487 static inline void __kmp_aux_convert_blocktime(int *bt) {
3488 if (__kmp_blocktime_units == 'm') {
3489 if (*bt > INT_MAX / 1000) {
3490 *bt = INT_MAX / 1000;
3491 KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3492 }
3493 *bt = *bt * 1000;
3494 }
3495 }
3496
3497 #if KMP_USE_MONITOR
3498 extern int
3499 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3500 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3501 blocking */
3502 #endif
3503 #ifdef KMP_ADJUST_BLOCKTIME
3504 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3505 #endif /* KMP_ADJUST_BLOCKTIME */
3506 #ifdef KMP_DFLT_NTH_CORES
3507 extern int __kmp_ncores; /* Total number of cores for threads placement */
3508 #endif
3509 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3510 extern int __kmp_abort_delay;
3511
3512 extern int __kmp_need_register_atfork_specified;
3513 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3514 to install fork handler */
3515 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3516 0 - not set, will be set at runtime
3517 1 - using stack search
3518 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3519 X*) or TlsGetValue(Windows* OS))
3520 3 - static TLS (__declspec(thread) __kmp_gtid),
3521 Linux* OS .so only. */
3522 extern int
3523 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3524 #ifdef KMP_TDATA_GTID
3525 extern KMP_THREAD_LOCAL int __kmp_gtid;
3526 #endif
3527 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3528 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3529 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3530 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3531 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3532 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3533 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3534
3535 // max_active_levels for nested parallelism enabled by default via
3536 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3537 extern int __kmp_dflt_max_active_levels;
3538 // Indicates whether value of __kmp_dflt_max_active_levels was already
3539 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3540 extern bool __kmp_dflt_max_active_levels_set;
3541 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3542 concurrent execution per team */
3543 #if KMP_NESTED_HOT_TEAMS
3544 extern int __kmp_hot_teams_mode;
3545 extern int __kmp_hot_teams_max_level;
3546 #endif
3547
3548 #if KMP_OS_LINUX
3549 extern enum clock_function_type __kmp_clock_function;
3550 extern int __kmp_clock_function_param;
3551 #endif /* KMP_OS_LINUX */
3552
3553 #if KMP_MIC_SUPPORTED
3554 extern enum mic_type __kmp_mic_type;
3555 #endif
3556
3557 #ifdef USE_LOAD_BALANCE
3558 extern double __kmp_load_balance_interval; // load balance algorithm interval
3559 #endif /* USE_LOAD_BALANCE */
3560
3561 #if KMP_USE_ADAPTIVE_LOCKS
3562
3563 // Parameters for the speculative lock backoff system.
3564 struct kmp_adaptive_backoff_params_t {
3565 // Number of soft retries before it counts as a hard retry.
3566 kmp_uint32 max_soft_retries;
3567 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3568 // the right
3569 kmp_uint32 max_badness;
3570 };
3571
3572 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3573
3574 #if KMP_DEBUG_ADAPTIVE_LOCKS
3575 extern const char *__kmp_speculative_statsfile;
3576 #endif
3577
3578 #endif // KMP_USE_ADAPTIVE_LOCKS
3579
3580 extern int __kmp_display_env; /* TRUE or FALSE */
3581 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3582 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3583 extern int __kmp_nteams;
3584 extern int __kmp_teams_thread_limit;
3585
3586 /* ------------------------------------------------------------------------- */
3587
3588 /* the following are protected by the fork/join lock */
3589 /* write: lock read: anytime */
3590 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3591 /* Holds old arrays of __kmp_threads until library shutdown */
3592 extern kmp_old_threads_list_t *__kmp_old_threads_list;
3593 /* read/write: lock */
3594 extern volatile kmp_team_t *__kmp_team_pool;
3595 extern volatile kmp_info_t *__kmp_thread_pool;
3596 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3597
3598 // total num threads reachable from some root thread including all root threads
3599 extern volatile int __kmp_nth;
3600 /* total number of threads reachable from some root thread including all root
3601 threads, and those in the thread pool */
3602 extern volatile int __kmp_all_nth;
3603 extern std::atomic<int> __kmp_thread_pool_active_nth;
3604
3605 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3606 /* end data protected by fork/join lock */
3607 /* ------------------------------------------------------------------------- */
3608
3609 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3610 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3611 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3612 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3613 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3614
3615 // AT: Which way is correct?
3616 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3617 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3618 #define __kmp_get_team_num_threads(gtid) \
3619 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3620
KMP_UBER_GTID(int gtid)3621 static inline bool KMP_UBER_GTID(int gtid) {
3622 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3623 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3624 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3625 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3626 }
3627
__kmp_tid_from_gtid(int gtid)3628 static inline int __kmp_tid_from_gtid(int gtid) {
3629 KMP_DEBUG_ASSERT(gtid >= 0);
3630 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3631 }
3632
__kmp_gtid_from_tid(int tid,const kmp_team_t * team)3633 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3634 KMP_DEBUG_ASSERT(tid >= 0 && team);
3635 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3636 }
3637
__kmp_gtid_from_thread(const kmp_info_t * thr)3638 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3639 KMP_DEBUG_ASSERT(thr);
3640 return thr->th.th_info.ds.ds_gtid;
3641 }
3642
__kmp_thread_from_gtid(int gtid)3643 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3644 KMP_DEBUG_ASSERT(gtid >= 0);
3645 return __kmp_threads[gtid];
3646 }
3647
__kmp_team_from_gtid(int gtid)3648 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3649 KMP_DEBUG_ASSERT(gtid >= 0);
3650 return __kmp_threads[gtid]->th.th_team;
3651 }
3652
__kmp_assert_valid_gtid(kmp_int32 gtid)3653 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3654 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3655 KMP_FATAL(ThreadIdentInvalid);
3656 }
3657
3658 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3659 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3660 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3661 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3662 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3663 #endif
3664
3665 #if KMP_HAVE_UMWAIT
3666 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3667 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3668 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3669 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3670 #endif
3671
3672 /* ------------------------------------------------------------------------- */
3673
3674 extern kmp_global_t __kmp_global; /* global status */
3675
3676 extern kmp_info_t __kmp_monitor;
3677 // For Debugging Support Library
3678 extern std::atomic<kmp_int32> __kmp_team_counter;
3679 // For Debugging Support Library
3680 extern std::atomic<kmp_int32> __kmp_task_counter;
3681
3682 #if USE_DEBUGGER
3683 #define _KMP_GEN_ID(counter) \
3684 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3685 #else
3686 #define _KMP_GEN_ID(counter) (~0)
3687 #endif /* USE_DEBUGGER */
3688
3689 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3690 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3691
3692 /* ------------------------------------------------------------------------ */
3693
3694 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3695 size_t size, char const *format, ...);
3696
3697 extern void __kmp_serial_initialize(void);
3698 extern void __kmp_middle_initialize(void);
3699 extern void __kmp_parallel_initialize(void);
3700
3701 extern void __kmp_internal_begin(void);
3702 extern void __kmp_internal_end_library(int gtid);
3703 extern void __kmp_internal_end_thread(int gtid);
3704 extern void __kmp_internal_end_atexit(void);
3705 extern void __kmp_internal_end_dtor(void);
3706 extern void __kmp_internal_end_dest(void *);
3707
3708 extern int __kmp_register_root(int initial_thread);
3709 extern void __kmp_unregister_root(int gtid);
3710 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3711
3712 extern int __kmp_ignore_mppbeg(void);
3713 extern int __kmp_ignore_mppend(void);
3714
3715 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3716 extern void __kmp_exit_single(int gtid);
3717
3718 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3719 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3720
3721 #ifdef USE_LOAD_BALANCE
3722 extern int __kmp_get_load_balance(int);
3723 #endif
3724
3725 extern int __kmp_get_global_thread_id(void);
3726 extern int __kmp_get_global_thread_id_reg(void);
3727 extern void __kmp_exit_thread(int exit_status);
3728 extern void __kmp_abort(char const *format, ...);
3729 extern void __kmp_abort_thread(void);
3730 KMP_NORETURN extern void __kmp_abort_process(void);
3731 extern void __kmp_warn(char const *format, ...);
3732
3733 extern void __kmp_set_num_threads(int new_nth, int gtid);
3734
3735 extern bool __kmp_detect_shm();
3736 extern bool __kmp_detect_tmp();
3737
3738 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3739 // registered.
__kmp_entry_thread()3740 static inline kmp_info_t *__kmp_entry_thread() {
3741 int gtid = __kmp_entry_gtid();
3742
3743 return __kmp_threads[gtid];
3744 }
3745
3746 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3747 extern int __kmp_get_max_active_levels(int gtid);
3748 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3749 extern int __kmp_get_team_size(int gtid, int level);
3750 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3751 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3752
3753 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3754 extern void __kmp_init_random(kmp_info_t *thread);
3755
3756 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3757 extern void __kmp_adjust_num_threads(int new_nproc);
3758 extern void __kmp_check_stksize(size_t *val);
3759
3760 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3761 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3762 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3763 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3764 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3765 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3766
3767 #if USE_FAST_MEMORY
3768 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3769 size_t size KMP_SRC_LOC_DECL);
3770 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3771 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3772 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3773 #define __kmp_fast_allocate(this_thr, size) \
3774 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3775 #define __kmp_fast_free(this_thr, ptr) \
3776 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3777 #endif
3778
3779 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3780 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3781 size_t elsize KMP_SRC_LOC_DECL);
3782 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3783 size_t size KMP_SRC_LOC_DECL);
3784 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3785 #define __kmp_thread_malloc(th, size) \
3786 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3787 #define __kmp_thread_calloc(th, nelem, elsize) \
3788 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3789 #define __kmp_thread_realloc(th, ptr, size) \
3790 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3791 #define __kmp_thread_free(th, ptr) \
3792 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3793
3794 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3795 extern void __kmp_push_num_threads_list(ident_t *loc, int gtid,
3796 kmp_uint32 list_length,
3797 int *num_threads_list);
3798 extern void __kmp_set_strict_num_threads(ident_t *loc, int gtid, int sev,
3799 const char *msg);
3800
3801 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3802 kmp_proc_bind_t proc_bind);
3803 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3804 int num_threads);
3805 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3806 int num_teams_ub, int num_threads);
3807
3808 extern void __kmp_yield();
3809
3810 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3811 enum sched_type schedule, kmp_int32 lb,
3812 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3813 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3814 enum sched_type schedule, kmp_uint32 lb,
3815 kmp_uint32 ub, kmp_int32 st,
3816 kmp_int32 chunk);
3817 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3818 enum sched_type schedule, kmp_int64 lb,
3819 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3820 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3821 enum sched_type schedule, kmp_uint64 lb,
3822 kmp_uint64 ub, kmp_int64 st,
3823 kmp_int64 chunk);
3824
3825 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3826 kmp_int32 *p_last, kmp_int32 *p_lb,
3827 kmp_int32 *p_ub, kmp_int32 *p_st);
3828 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3829 kmp_int32 *p_last, kmp_uint32 *p_lb,
3830 kmp_uint32 *p_ub, kmp_int32 *p_st);
3831 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3832 kmp_int32 *p_last, kmp_int64 *p_lb,
3833 kmp_int64 *p_ub, kmp_int64 *p_st);
3834 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3835 kmp_int32 *p_last, kmp_uint64 *p_lb,
3836 kmp_uint64 *p_ub, kmp_int64 *p_st);
3837
3838 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3839 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3840 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3841 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3842
3843 extern void __kmpc_dispatch_deinit(ident_t *loc, kmp_int32 gtid);
3844
3845 #ifdef KMP_GOMP_COMPAT
3846
3847 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3848 enum sched_type schedule, kmp_int32 lb,
3849 kmp_int32 ub, kmp_int32 st,
3850 kmp_int32 chunk, int push_ws);
3851 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3852 enum sched_type schedule, kmp_uint32 lb,
3853 kmp_uint32 ub, kmp_int32 st,
3854 kmp_int32 chunk, int push_ws);
3855 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3856 enum sched_type schedule, kmp_int64 lb,
3857 kmp_int64 ub, kmp_int64 st,
3858 kmp_int64 chunk, int push_ws);
3859 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3860 enum sched_type schedule, kmp_uint64 lb,
3861 kmp_uint64 ub, kmp_int64 st,
3862 kmp_int64 chunk, int push_ws);
3863 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3864 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3865 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3866 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3867
3868 #endif /* KMP_GOMP_COMPAT */
3869
3870 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3871 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3872 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3873 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3874 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3875 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3876 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3877 void *obj);
3878 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3879 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3880
3881 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3882 int final_spin
3883 #if USE_ITT_BUILD
3884 ,
3885 void *itt_sync_obj
3886 #endif
3887 );
3888 extern void __kmp_release_64(kmp_flag_64<> *flag);
3889
3890 extern void __kmp_infinite_loop(void);
3891
3892 extern void __kmp_cleanup(void);
3893
3894 #if KMP_HANDLE_SIGNALS
3895 extern int __kmp_handle_signals;
3896 extern void __kmp_install_signals(int parallel_init);
3897 extern void __kmp_remove_signals(void);
3898 #endif
3899
3900 extern void __kmp_clear_system_time(void);
3901 extern void __kmp_read_system_time(double *delta);
3902
3903 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3904
3905 extern void __kmp_expand_host_name(char *buffer, size_t size);
3906 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3907
3908 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3909 extern void
3910 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3911 #endif
3912
3913 extern void
3914 __kmp_runtime_initialize(void); /* machine specific initialization */
3915 extern void __kmp_runtime_destroy(void);
3916
3917 #if KMP_AFFINITY_SUPPORTED
3918 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3919 kmp_affin_mask_t *mask);
3920 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3921 kmp_affin_mask_t *mask);
3922 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3923 extern void __kmp_affinity_uninitialize(void);
3924 extern void __kmp_affinity_set_init_mask(
3925 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3926 void __kmp_affinity_bind_init_mask(int gtid);
3927 extern void __kmp_affinity_bind_place(int gtid);
3928 extern void __kmp_affinity_determine_capable(const char *env_var);
3929 extern int __kmp_aux_set_affinity(void **mask);
3930 extern int __kmp_aux_get_affinity(void **mask);
3931 extern int __kmp_aux_get_affinity_max_proc();
3932 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3933 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3934 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3935 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3936 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
3937 extern int __kmp_get_first_osid_with_ecore(void);
3938 #endif
3939 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3940 KMP_OS_AIX
3941 extern int kmp_set_thread_affinity_mask_initial(void);
3942 #endif
__kmp_assign_root_init_mask()3943 static inline void __kmp_assign_root_init_mask() {
3944 int gtid = __kmp_entry_gtid();
3945 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3946 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3947 __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3948 __kmp_affinity_bind_init_mask(gtid);
3949 r->r.r_affinity_assigned = TRUE;
3950 }
3951 }
__kmp_reset_root_init_mask(int gtid)3952 static inline void __kmp_reset_root_init_mask(int gtid) {
3953 if (!KMP_AFFINITY_CAPABLE())
3954 return;
3955 kmp_info_t *th = __kmp_threads[gtid];
3956 kmp_root_t *r = th->th.th_root;
3957 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3958 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3959 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3960 r->r.r_affinity_assigned = FALSE;
3961 }
3962 }
3963 #else /* KMP_AFFINITY_SUPPORTED */
3964 #define __kmp_assign_root_init_mask() /* Nothing */
__kmp_reset_root_init_mask(int gtid)3965 static inline void __kmp_reset_root_init_mask(int gtid) {}
3966 #endif /* KMP_AFFINITY_SUPPORTED */
3967 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3968 // format string is for affinity, so platforms that do not support
3969 // affinity can still use the other fields, e.g., %n for num_threads
3970 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3971 kmp_str_buf_t *buffer);
3972 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3973
3974 extern void __kmp_cleanup_hierarchy();
3975 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3976
3977 #if KMP_USE_FUTEX
3978
3979 extern int __kmp_futex_determine_capable(void);
3980
3981 #endif // KMP_USE_FUTEX
3982
3983 extern void __kmp_gtid_set_specific(int gtid);
3984 extern int __kmp_gtid_get_specific(void);
3985
3986 extern double __kmp_read_cpu_time(void);
3987
3988 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3989
3990 #if KMP_USE_MONITOR
3991 extern void __kmp_create_monitor(kmp_info_t *th);
3992 #endif
3993
3994 extern void *__kmp_launch_thread(kmp_info_t *thr);
3995
3996 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3997
3998 #if KMP_OS_WINDOWS
3999 extern int __kmp_still_running(kmp_info_t *th);
4000 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
4001 extern void __kmp_free_handle(kmp_thread_t tHandle);
4002 #endif
4003
4004 #if KMP_USE_MONITOR
4005 extern void __kmp_reap_monitor(kmp_info_t *th);
4006 #endif
4007 extern void __kmp_reap_worker(kmp_info_t *th);
4008 extern void __kmp_terminate_thread(int gtid);
4009
4010 extern int __kmp_try_suspend_mx(kmp_info_t *th);
4011 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
4012 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
4013
4014 extern void __kmp_elapsed(double *);
4015 extern void __kmp_elapsed_tick(double *);
4016
4017 extern void __kmp_enable(int old_state);
4018 extern void __kmp_disable(int *old_state);
4019
4020 extern void __kmp_thread_sleep(int millis);
4021
4022 extern void __kmp_common_initialize(void);
4023 extern void __kmp_common_destroy(void);
4024 extern void __kmp_common_destroy_gtid(int gtid);
4025
4026 #if KMP_OS_UNIX
4027 extern void __kmp_register_atfork(void);
4028 #endif
4029 extern void __kmp_suspend_initialize(void);
4030 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
4031 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
4032
4033 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4034 int tid);
4035 extern kmp_team_t *
4036 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4037 #if OMPT_SUPPORT
4038 ompt_data_t ompt_parallel_data,
4039 #endif
4040 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
4041 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
4042 extern void __kmp_free_thread(kmp_info_t *);
4043 extern void __kmp_free_team(kmp_root_t *,
4044 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
4045 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
4046
4047 /* ------------------------------------------------------------------------ */
4048
4049 extern void __kmp_initialize_bget(kmp_info_t *th);
4050 extern void __kmp_finalize_bget(kmp_info_t *th);
4051
4052 KMP_EXPORT void *kmpc_malloc(size_t size);
4053 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
4054 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
4055 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
4056 KMP_EXPORT void kmpc_free(void *ptr);
4057
4058 /* declarations for internal use */
4059
4060 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
4061 size_t reduce_size, void *reduce_data,
4062 void (*reduce)(void *, void *));
4063 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
4064 extern int __kmp_barrier_gomp_cancel(int gtid);
4065
4066 /*!
4067 * Tell the fork call which compiler generated the fork call, and therefore how
4068 * to deal with the call.
4069 */
4070 enum fork_context_e {
4071 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
4072 microtask internally. */
4073 fork_context_intel, /**< Called from Intel generated code. */
4074 fork_context_last
4075 };
4076 extern int __kmp_fork_call(ident_t *loc, int gtid,
4077 enum fork_context_e fork_context, kmp_int32 argc,
4078 microtask_t microtask, launch_t invoker,
4079 kmp_va_list ap);
4080
4081 extern void __kmp_join_call(ident_t *loc, int gtid
4082 #if OMPT_SUPPORT
4083 ,
4084 enum fork_context_e fork_context
4085 #endif
4086 ,
4087 int exit_teams = 0);
4088
4089 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
4090 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
4091 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
4092 extern int __kmp_invoke_task_func(int gtid);
4093 extern void __kmp_run_before_invoked_task(int gtid, int tid,
4094 kmp_info_t *this_thr,
4095 kmp_team_t *team);
4096 extern void __kmp_run_after_invoked_task(int gtid, int tid,
4097 kmp_info_t *this_thr,
4098 kmp_team_t *team);
4099
4100 // should never have been exported
4101 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
4102 extern int __kmp_invoke_teams_master(int gtid);
4103 extern void __kmp_teams_master(int gtid);
4104 extern int __kmp_aux_get_team_num();
4105 extern int __kmp_aux_get_num_teams();
4106 extern void __kmp_save_internal_controls(kmp_info_t *thread);
4107 extern void __kmp_user_set_library(enum library_type arg);
4108 extern void __kmp_aux_set_library(enum library_type arg);
4109 extern void __kmp_aux_set_stacksize(size_t arg);
4110 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
4111 extern void __kmp_aux_set_defaults(char const *str, size_t len);
4112
4113 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
4114 void kmpc_set_blocktime(int arg);
4115 void ompc_set_nested(int flag);
4116 void ompc_set_dynamic(int flag);
4117 void ompc_set_num_threads(int arg);
4118
4119 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4120 kmp_team_t *team, int tid);
4121 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4122 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4123 kmp_tasking_flags_t *flags,
4124 size_t sizeof_kmp_task_t,
4125 size_t sizeof_shareds,
4126 kmp_routine_entry_t task_entry);
4127 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4128 kmp_team_t *team, int tid,
4129 int set_curr_task);
4130 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4131 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4132
4133 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4134 int gtid,
4135 kmp_task_t *task);
4136 extern void __kmp_fulfill_event(kmp_event_t *event);
4137
4138 extern void __kmp_free_task_team(kmp_info_t *thread,
4139 kmp_task_team_t *task_team);
4140 extern void __kmp_reap_task_teams(void);
4141 extern void __kmp_push_task_team_node(kmp_info_t *thread, kmp_team_t *team);
4142 extern void __kmp_pop_task_team_node(kmp_info_t *thread, kmp_team_t *team);
4143 extern void __kmp_wait_to_unref_task_teams(void);
4144 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team);
4145 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4146 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4147 #if USE_ITT_BUILD
4148 ,
4149 void *itt_sync_obj
4150 #endif /* USE_ITT_BUILD */
4151 ,
4152 int wait = 1);
4153 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4154 int gtid);
4155 #if KMP_DEBUG
4156 #define KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(team, thr) \
4157 KMP_DEBUG_ASSERT( \
4158 __kmp_tasking_mode != tskm_task_teams || team->t.t_nproc == 1 || \
4159 thr->th.th_task_team == team->t.t_task_team[thr->th.th_task_state])
4160 #else
4161 #define KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(team, thr) /* Nothing */
4162 #endif
4163
4164 extern int __kmp_is_address_mapped(void *addr);
4165 extern kmp_uint64 __kmp_hardware_timestamp(void);
4166
4167 #if KMP_OS_UNIX
4168 extern int __kmp_read_from_file(char const *path, char const *format, ...);
4169 #endif
4170
4171 /* ------------------------------------------------------------------------ */
4172 //
4173 // Assembly routines that have no compiler intrinsic replacement
4174 //
4175
4176 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4177 void *argv[]
4178 #if OMPT_SUPPORT
4179 ,
4180 void **exit_frame_ptr
4181 #endif
4182 );
4183
4184 /* ------------------------------------------------------------------------ */
4185
4186 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4187 KMP_EXPORT void __kmpc_end(ident_t *);
4188
4189 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4190 kmpc_ctor_vec ctor,
4191 kmpc_cctor_vec cctor,
4192 kmpc_dtor_vec dtor,
4193 size_t vector_length);
4194 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4195 kmpc_ctor ctor, kmpc_cctor cctor,
4196 kmpc_dtor dtor);
4197 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4198 void *data, size_t size);
4199
4200 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4201 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4202 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4203 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4204
4205 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4206 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4207 kmpc_micro microtask, ...);
4208 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4209 kmpc_micro microtask, kmp_int32 cond,
4210 void *args);
4211
4212 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4213 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4214
4215 KMP_EXPORT void __kmpc_flush(ident_t *);
4216 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4217 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4218 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4219 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4220 kmp_int32 filter);
4221 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4222 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4223 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4224 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4225 kmp_critical_name *);
4226 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4227 kmp_critical_name *);
4228 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4229 kmp_critical_name *, uint32_t hint);
4230
4231 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4232 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4233
4234 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4235 kmp_int32 global_tid);
4236
4237 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4238 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4239
4240 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4241 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4242 kmp_int32 numberOfSections);
4243 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4244
4245 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4246 kmp_int32 schedtype, kmp_int32 *plastiter,
4247 kmp_int *plower, kmp_int *pupper,
4248 kmp_int *pstride, kmp_int incr,
4249 kmp_int chunk);
4250
4251 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4252
4253 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4254 size_t cpy_size, void *cpy_data,
4255 void (*cpy_func)(void *, void *),
4256 kmp_int32 didit);
4257
4258 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4259 void *cpy_data);
4260
4261 extern void KMPC_SET_NUM_THREADS(int arg);
4262 extern void KMPC_SET_DYNAMIC(int flag);
4263 extern void KMPC_SET_NESTED(int flag);
4264
4265 /* OMP 3.0 tasking interface routines */
4266 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4267 kmp_task_t *new_task);
4268 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4269 kmp_int32 flags,
4270 size_t sizeof_kmp_task_t,
4271 size_t sizeof_shareds,
4272 kmp_routine_entry_t task_entry);
4273 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4274 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4275 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4276 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4277 kmp_task_t *task);
4278 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4279 kmp_task_t *task);
4280 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4281 kmp_task_t *new_task);
4282 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4283 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4284 int end_part);
4285
4286 #if TASK_UNUSED
4287 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4288 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4289 kmp_task_t *task);
4290 #endif // TASK_UNUSED
4291
4292 /* ------------------------------------------------------------------------ */
4293
4294 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4295 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4296
4297 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4298 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4299 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4300 kmp_depend_info_t *noalias_dep_list);
4301
4302 KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task);
4303
4304 KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task);
4305
4306 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4307 kmp_int32 ndeps,
4308 kmp_depend_info_t *dep_list,
4309 kmp_int32 ndeps_noalias,
4310 kmp_depend_info_t *noalias_dep_list);
4311 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4312 * Placeholder for taskwait with nowait clause.*/
4313 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4314 kmp_int32 ndeps,
4315 kmp_depend_info_t *dep_list,
4316 kmp_int32 ndeps_noalias,
4317 kmp_depend_info_t *noalias_dep_list,
4318 kmp_int32 has_no_wait);
4319
4320 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4321 bool serialize_immediate);
4322
4323 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4324 kmp_int32 cncl_kind);
4325 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4326 kmp_int32 cncl_kind);
4327 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4328 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4329
4330 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4331 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4332 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4333 kmp_int32 if_val, kmp_uint64 *lb,
4334 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4335 kmp_int32 sched, kmp_uint64 grainsize,
4336 void *task_dup);
4337 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4338 kmp_task_t *task, kmp_int32 if_val,
4339 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4340 kmp_int32 nogroup, kmp_int32 sched,
4341 kmp_uint64 grainsize, kmp_int32 modifier,
4342 void *task_dup);
4343 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4344 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4345 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4346 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4347 int is_ws, int num,
4348 void *data);
4349 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4350 int num, void *data);
4351 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4352 int is_ws);
4353 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4354 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4355 kmp_task_affinity_info_t *affin_list);
4356 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4357 KMP_EXPORT int __kmp_get_max_teams(void);
4358 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4359 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4360
4361 /* Interface target task integration */
4362 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4363 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4364
4365 /* Lock interface routines (fast versions with gtid passed in) */
4366 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4367 void **user_lock);
4368 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4369 void **user_lock);
4370 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4371 void **user_lock);
4372 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4373 void **user_lock);
4374 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4375 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4376 void **user_lock);
4377 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4378 void **user_lock);
4379 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4380 void **user_lock);
4381 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4382 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4383 void **user_lock);
4384
4385 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4386 void **user_lock, uintptr_t hint);
4387 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4388 void **user_lock,
4389 uintptr_t hint);
4390
4391 #if OMPX_TASKGRAPH
4392 // Taskgraph's Record & Replay mechanism
4393 // __kmp_tdg_is_recording: check whether a given TDG is recording
4394 // status: the tdg's current status
__kmp_tdg_is_recording(kmp_tdg_status_t status)4395 static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4396 return status == KMP_TDG_RECORDING;
4397 }
4398
4399 KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4400 kmp_int32 input_flags,
4401 kmp_int32 tdg_id);
4402 KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4403 kmp_int32 input_flags, kmp_int32 tdg_id);
4404 #endif
4405 /* Interface to fast scalable reduce methods routines */
4406
4407 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4408 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4409 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4410 kmp_critical_name *lck);
4411 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4412 kmp_critical_name *lck);
4413 KMP_EXPORT kmp_int32 __kmpc_reduce(
4414 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4415 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4416 kmp_critical_name *lck);
4417 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4418 kmp_critical_name *lck);
4419
4420 /* Internal fast reduction routines */
4421
4422 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4423 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4424 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4425 kmp_critical_name *lck);
4426
4427 // this function is for testing set/get/determine reduce method
4428 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4429
4430 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4431 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4432
4433 // C++ port
4434 // missing 'extern "C"' declarations
4435
4436 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4437 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4438 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4439 kmp_int32 num_threads);
4440 KMP_EXPORT void __kmpc_push_num_threads_strict(ident_t *loc,
4441 kmp_int32 global_tid,
4442 kmp_int32 num_threads,
4443 int severity,
4444 const char *message);
4445
4446 KMP_EXPORT void __kmpc_push_num_threads_list(ident_t *loc, kmp_int32 global_tid,
4447 kmp_uint32 list_length,
4448 kmp_int32 *num_threads_list);
4449 KMP_EXPORT void __kmpc_push_num_threads_list_strict(
4450 ident_t *loc, kmp_int32 global_tid, kmp_uint32 list_length,
4451 kmp_int32 *num_threads_list, int severity, const char *message);
4452
4453 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4454 int proc_bind);
4455 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4456 kmp_int32 num_teams,
4457 kmp_int32 num_threads);
4458 KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4459 kmp_int32 thread_limit);
4460 /* Function for OpenMP 5.1 num_teams clause */
4461 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4462 kmp_int32 num_teams_lb,
4463 kmp_int32 num_teams_ub,
4464 kmp_int32 num_threads);
4465 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4466 kmpc_micro microtask, ...);
4467 struct kmp_dim { // loop bounds info casted to kmp_int64
4468 kmp_int64 lo; // lower
4469 kmp_int64 up; // upper
4470 kmp_int64 st; // stride
4471 };
4472 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4473 kmp_int32 num_dims,
4474 const struct kmp_dim *dims);
4475 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4476 const kmp_int64 *vec);
4477 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4478 const kmp_int64 *vec);
4479 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4480
4481 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4482 void *data, size_t size,
4483 void ***cache);
4484
4485 // The routines below are not exported.
4486 // Consider making them 'static' in corresponding source files.
4487 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4488 void *data_addr, size_t pc_size);
4489 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4490 void *data_addr,
4491 size_t pc_size);
4492 void __kmp_threadprivate_resize_cache(int newCapacity);
4493 void __kmp_cleanup_threadprivate_caches();
4494
4495 // ompc_, kmpc_ entries moved from omp.h.
4496 #if KMP_OS_WINDOWS
4497 #define KMPC_CONVENTION __cdecl
4498 #else
4499 #define KMPC_CONVENTION
4500 #endif
4501
4502 #ifndef __OMP_H
4503 typedef enum omp_sched_t {
4504 omp_sched_static = 1,
4505 omp_sched_dynamic = 2,
4506 omp_sched_guided = 3,
4507 omp_sched_auto = 4
4508 } omp_sched_t;
4509 typedef void *kmp_affinity_mask_t;
4510 #endif
4511
4512 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4513 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4514 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4515 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4516 KMP_EXPORT int KMPC_CONVENTION
4517 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4518 KMP_EXPORT int KMPC_CONVENTION
4519 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4520 KMP_EXPORT int KMPC_CONVENTION
4521 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4522
4523 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4524 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4525 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4526 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4527 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4528 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4529 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4530 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4531 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4532 char const *format);
4533
4534 enum kmp_target_offload_kind {
4535 tgt_disabled = 0,
4536 tgt_default = 1,
4537 tgt_mandatory = 2
4538 };
4539 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4540 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4541 extern kmp_target_offload_kind_t __kmp_target_offload;
4542 extern int __kmpc_get_target_offload();
4543
4544 // Constants used in libomptarget
4545 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4546 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4547
4548 // OMP Pause Resource
4549
4550 // The following enum is used both to set the status in __kmp_pause_status, and
4551 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4552 typedef enum kmp_pause_status_t {
4553 kmp_not_paused = 0, // status is not paused, or, requesting resume
4554 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4555 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4556 } kmp_pause_status_t;
4557
4558 // This stores the pause state of the runtime
4559 extern kmp_pause_status_t __kmp_pause_status;
4560 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4561 extern int __kmp_pause_resource(kmp_pause_status_t level);
4562 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4563 extern void __kmp_resume_if_soft_paused();
4564 // Hard resume simply resets the status to not paused. Library will appear to
4565 // be uninitialized after hard pause. Let OMP constructs trigger required
4566 // initializations.
__kmp_resume_if_hard_paused()4567 static inline void __kmp_resume_if_hard_paused() {
4568 if (__kmp_pause_status == kmp_hard_paused) {
4569 __kmp_pause_status = kmp_not_paused;
4570 }
4571 }
4572
4573 extern void __kmp_omp_display_env(int verbose);
4574
4575 // 1: it is initializing hidden helper team
4576 extern volatile int __kmp_init_hidden_helper;
4577 // 1: the hidden helper team is done
4578 extern volatile int __kmp_hidden_helper_team_done;
4579 // 1: enable hidden helper task
4580 extern kmp_int32 __kmp_enable_hidden_helper;
4581 // Main thread of hidden helper team
4582 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4583 // Descriptors for the hidden helper threads
4584 extern kmp_info_t **__kmp_hidden_helper_threads;
4585 // Number of hidden helper threads
4586 extern kmp_int32 __kmp_hidden_helper_threads_num;
4587 // Number of hidden helper tasks that have not been executed yet
4588 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4589
4590 extern void __kmp_hidden_helper_initialize();
4591 extern void __kmp_hidden_helper_threads_initz_routine();
4592 extern void __kmp_do_initialize_hidden_helper_threads();
4593 extern void __kmp_hidden_helper_threads_initz_wait();
4594 extern void __kmp_hidden_helper_initz_release();
4595 extern void __kmp_hidden_helper_threads_deinitz_wait();
4596 extern void __kmp_hidden_helper_threads_deinitz_release();
4597 extern void __kmp_hidden_helper_main_thread_wait();
4598 extern void __kmp_hidden_helper_worker_thread_wait();
4599 extern void __kmp_hidden_helper_worker_thread_signal();
4600 extern void __kmp_hidden_helper_main_thread_release();
4601
4602 // Check whether a given thread is a hidden helper thread
4603 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4604 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4605
4606 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4607 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4608
4609 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4610 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4611
4612 #define KMP_HIDDEN_HELPER_TEAM(team) \
4613 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4614
4615 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4616 // main thread, is skipped.
4617 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4618 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4619
4620 // Return the adjusted gtid value by subtracting from gtid the number
4621 // of hidden helper threads. This adjusted value is the gtid the thread would
4622 // have received if there were no hidden helper threads.
__kmp_adjust_gtid_for_hidden_helpers(int gtid)4623 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4624 int adjusted_gtid = gtid;
4625 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4626 gtid - __kmp_hidden_helper_threads_num >= 0) {
4627 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4628 }
4629 return adjusted_gtid;
4630 }
4631
4632 // Support for error directive
4633 typedef enum kmp_severity_t {
4634 severity_warning = 1,
4635 severity_fatal = 2
4636 } kmp_severity_t;
4637 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4638
4639 // Support for scope directive
4640 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4641 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4642
4643 #ifdef __cplusplus
4644 }
4645 #endif
4646
4647 template <bool C, bool S>
4648 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4649 template <bool C, bool S>
4650 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4651 template <bool C, bool S>
4652 extern void __kmp_atomic_suspend_64(int th_gtid,
4653 kmp_atomic_flag_64<C, S> *flag);
4654 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4655 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4656 template <bool C, bool S>
4657 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4658 template <bool C, bool S>
4659 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4660 template <bool C, bool S>
4661 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4662 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4663 #endif
4664 template <bool C, bool S>
4665 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4666 template <bool C, bool S>
4667 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4668 template <bool C, bool S>
4669 extern void __kmp_atomic_resume_64(int target_gtid,
4670 kmp_atomic_flag_64<C, S> *flag);
4671 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4672
4673 template <bool C, bool S>
4674 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4675 kmp_flag_32<C, S> *flag, int final_spin,
4676 int *thread_finished,
4677 #if USE_ITT_BUILD
4678 void *itt_sync_obj,
4679 #endif /* USE_ITT_BUILD */
4680 kmp_int32 is_constrained);
4681 template <bool C, bool S>
4682 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4683 kmp_flag_64<C, S> *flag, int final_spin,
4684 int *thread_finished,
4685 #if USE_ITT_BUILD
4686 void *itt_sync_obj,
4687 #endif /* USE_ITT_BUILD */
4688 kmp_int32 is_constrained);
4689 template <bool C, bool S>
4690 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4691 kmp_atomic_flag_64<C, S> *flag,
4692 int final_spin, int *thread_finished,
4693 #if USE_ITT_BUILD
4694 void *itt_sync_obj,
4695 #endif /* USE_ITT_BUILD */
4696 kmp_int32 is_constrained);
4697 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4698 kmp_flag_oncore *flag, int final_spin,
4699 int *thread_finished,
4700 #if USE_ITT_BUILD
4701 void *itt_sync_obj,
4702 #endif /* USE_ITT_BUILD */
4703 kmp_int32 is_constrained);
4704
4705 extern int __kmp_nesting_mode;
4706 extern int __kmp_nesting_mode_nlevels;
4707 extern int *__kmp_nesting_nth_level;
4708 extern void __kmp_init_nesting_mode();
4709 extern void __kmp_set_nesting_mode_threads();
4710
4711 /// This class safely opens and closes a C-style FILE* object using RAII
4712 /// semantics. There are also methods which allow using stdout or stderr as
4713 /// the underlying FILE* object. With the implicit conversion operator to
4714 /// FILE*, an object with this type can be used in any function which takes
4715 /// a FILE* object e.g., fprintf().
4716 /// No close method is needed at use sites.
4717 class kmp_safe_raii_file_t {
4718 FILE *f;
4719
close()4720 void close() {
4721 if (f && f != stdout && f != stderr) {
4722 fclose(f);
4723 f = nullptr;
4724 }
4725 }
4726
4727 public:
kmp_safe_raii_file_t()4728 kmp_safe_raii_file_t() : f(nullptr) {}
4729 kmp_safe_raii_file_t(const char *filename, const char *mode,
4730 const char *env_var = nullptr)
f(nullptr)4731 : f(nullptr) {
4732 open(filename, mode, env_var);
4733 }
~kmp_safe_raii_file_t()4734 ~kmp_safe_raii_file_t() { close(); }
4735
4736 /// Open filename using mode. This is automatically closed in the destructor.
4737 /// The env_var parameter indicates the environment variable the filename
4738 /// came from if != nullptr.
4739 void open(const char *filename, const char *mode,
4740 const char *env_var = nullptr) {
4741 KMP_ASSERT(!f);
4742 f = fopen(filename, mode);
4743 if (!f) {
4744 int code = errno;
4745 if (env_var) {
4746 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4747 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4748 } else {
4749 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4750 __kmp_msg_null);
4751 }
4752 }
4753 }
4754 /// Instead of erroring out, return non-zero when
4755 /// unsuccessful fopen() for any reason
try_open(const char * filename,const char * mode)4756 int try_open(const char *filename, const char *mode) {
4757 KMP_ASSERT(!f);
4758 f = fopen(filename, mode);
4759 if (!f)
4760 return errno;
4761 return 0;
4762 }
4763 /// Set the FILE* object to stdout and output there
4764 /// No open call should happen before this call.
set_stdout()4765 void set_stdout() {
4766 KMP_ASSERT(!f);
4767 f = stdout;
4768 }
4769 /// Set the FILE* object to stderr and output there
4770 /// No open call should happen before this call.
set_stderr()4771 void set_stderr() {
4772 KMP_ASSERT(!f);
4773 f = stderr;
4774 }
4775 operator bool() { return bool(f); }
4776 operator FILE *() { return f; }
4777 };
4778
4779 template <typename SourceType, typename TargetType,
4780 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4781 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4782 bool isSourceSigned = std::is_signed<SourceType>::value,
4783 bool isTargetSigned = std::is_signed<TargetType>::value>
4784 struct kmp_convert {};
4785
4786 // Both types are signed; Source smaller
4787 template <typename SourceType, typename TargetType>
4788 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4789 static TargetType to(SourceType src) { return (TargetType)src; }
4790 };
4791 // Source equal
4792 template <typename SourceType, typename TargetType>
4793 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4794 static TargetType to(SourceType src) { return src; }
4795 };
4796 // Source bigger
4797 template <typename SourceType, typename TargetType>
4798 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4799 static TargetType to(SourceType src) {
4800 KMP_ASSERT(src <= static_cast<SourceType>(
4801 (std::numeric_limits<TargetType>::max)()));
4802 KMP_ASSERT(src >= static_cast<SourceType>(
4803 (std::numeric_limits<TargetType>::min)()));
4804 return (TargetType)src;
4805 }
4806 };
4807
4808 // Source signed, Target unsigned
4809 // Source smaller
4810 template <typename SourceType, typename TargetType>
4811 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4812 static TargetType to(SourceType src) {
4813 KMP_ASSERT(src >= 0);
4814 return (TargetType)src;
4815 }
4816 };
4817 // Source equal
4818 template <typename SourceType, typename TargetType>
4819 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4820 static TargetType to(SourceType src) {
4821 KMP_ASSERT(src >= 0);
4822 return (TargetType)src;
4823 }
4824 };
4825 // Source bigger
4826 template <typename SourceType, typename TargetType>
4827 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4828 static TargetType to(SourceType src) {
4829 KMP_ASSERT(src >= 0);
4830 KMP_ASSERT(src <= static_cast<SourceType>(
4831 (std::numeric_limits<TargetType>::max)()));
4832 return (TargetType)src;
4833 }
4834 };
4835
4836 // Source unsigned, Target signed
4837 // Source smaller
4838 template <typename SourceType, typename TargetType>
4839 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4840 static TargetType to(SourceType src) { return (TargetType)src; }
4841 };
4842 // Source equal
4843 template <typename SourceType, typename TargetType>
4844 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4845 static TargetType to(SourceType src) {
4846 KMP_ASSERT(src <= static_cast<SourceType>(
4847 (std::numeric_limits<TargetType>::max)()));
4848 return (TargetType)src;
4849 }
4850 };
4851 // Source bigger
4852 template <typename SourceType, typename TargetType>
4853 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4854 static TargetType to(SourceType src) {
4855 KMP_ASSERT(src <= static_cast<SourceType>(
4856 (std::numeric_limits<TargetType>::max)()));
4857 return (TargetType)src;
4858 }
4859 };
4860
4861 // Source unsigned, Target unsigned
4862 // Source smaller
4863 template <typename SourceType, typename TargetType>
4864 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4865 static TargetType to(SourceType src) { return (TargetType)src; }
4866 };
4867 // Source equal
4868 template <typename SourceType, typename TargetType>
4869 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4870 static TargetType to(SourceType src) { return src; }
4871 };
4872 // Source bigger
4873 template <typename SourceType, typename TargetType>
4874 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4875 static TargetType to(SourceType src) {
4876 KMP_ASSERT(src <= static_cast<SourceType>(
4877 (std::numeric_limits<TargetType>::max)()));
4878 return (TargetType)src;
4879 }
4880 };
4881
4882 template <typename T1, typename T2>
4883 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4884 *dest = kmp_convert<T1, T2>::to(src);
4885 }
4886
4887 #endif /* KMP_H */
4888