1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ8XXX series switch driver
4 *
5 * It supports the following switches:
6 * - KSZ8863, KSZ8873 aka KSZ88X3
7 * - KSZ8895, KSZ8864 aka KSZ8895 family
8 * - KSZ8794, KSZ8795, KSZ8765 aka KSZ87XX
9 * Note that it does NOT support:
10 * - KSZ8563, KSZ8567 - see KSZ9477 driver
11 *
12 * Copyright (C) 2017 Microchip Technology Inc.
13 * Tristram Ha <Tristram.Ha@microchip.com>
14 */
15
16 #include <linux/bitfield.h>
17 #include <linux/delay.h>
18 #include <linux/export.h>
19 #include <linux/gpio.h>
20 #include <linux/if_vlan.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/platform_data/microchip-ksz.h>
24 #include <linux/phy.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_bridge.h>
27 #include <linux/micrel_phy.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30 #include <linux/phylink.h>
31
32 #include "ksz_common.h"
33 #include "ksz8_reg.h"
34 #include "ksz8.h"
35
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)36 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
37 {
38 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
39 }
40
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)41 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
42 bool set)
43 {
44 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
45 bits, set ? bits : 0);
46 }
47
48 /**
49 * ksz8_ind_write8 - EEE/ACL/PME indirect register write
50 * @dev: The device structure.
51 * @table: Function & table select, register 110.
52 * @addr: Indirect access control, register 111.
53 * @data: The data to be written.
54 *
55 * This function performs an indirect register write for EEE, ACL or
56 * PME switch functionalities. Both 8-bit registers 110 and 111 are
57 * written at once with ksz_write16, using the serial multiple write
58 * functionality.
59 *
60 * Return: 0 on success, or an error code on failure.
61 */
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)62 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
63 {
64 const u16 *regs;
65 u16 ctrl_addr;
66 int ret = 0;
67
68 regs = dev->info->regs;
69
70 mutex_lock(&dev->alu_mutex);
71
72 ctrl_addr = IND_ACC_TABLE(table) | addr;
73 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
74 if (!ret)
75 ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
76
77 mutex_unlock(&dev->alu_mutex);
78
79 return ret;
80 }
81
82 /**
83 * ksz8_ind_read8 - EEE/ACL/PME indirect register read
84 * @dev: The device structure.
85 * @table: Function & table select, register 110.
86 * @addr: Indirect access control, register 111.
87 * @val: The value read.
88 *
89 * This function performs an indirect register read for EEE, ACL or
90 * PME switch functionalities. Both 8-bit registers 110 and 111 are
91 * written at once with ksz_write16, using the serial multiple write
92 * functionality.
93 *
94 * Return: 0 on success, or an error code on failure.
95 */
ksz8_ind_read8(struct ksz_device * dev,u8 table,u16 addr,u8 * val)96 static int ksz8_ind_read8(struct ksz_device *dev, u8 table, u16 addr, u8 *val)
97 {
98 const u16 *regs;
99 u16 ctrl_addr;
100 int ret = 0;
101
102 regs = dev->info->regs;
103
104 mutex_lock(&dev->alu_mutex);
105
106 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
107 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
108 if (!ret)
109 ret = ksz_read8(dev, regs[REG_IND_BYTE], val);
110
111 mutex_unlock(&dev->alu_mutex);
112
113 return ret;
114 }
115
ksz8_pme_write8(struct ksz_device * dev,u32 reg,u8 value)116 int ksz8_pme_write8(struct ksz_device *dev, u32 reg, u8 value)
117 {
118 return ksz8_ind_write8(dev, (u8)(reg >> 8), (u8)(reg), value);
119 }
120
ksz8_pme_pread8(struct ksz_device * dev,int port,int offset,u8 * data)121 int ksz8_pme_pread8(struct ksz_device *dev, int port, int offset, u8 *data)
122 {
123 u8 table = (u8)(offset >> 8 | (port + 1));
124
125 return ksz8_ind_read8(dev, table, (u8)(offset), data);
126 }
127
ksz8_pme_pwrite8(struct ksz_device * dev,int port,int offset,u8 data)128 int ksz8_pme_pwrite8(struct ksz_device *dev, int port, int offset, u8 data)
129 {
130 u8 table = (u8)(offset >> 8 | (port + 1));
131
132 return ksz8_ind_write8(dev, table, (u8)(offset), data);
133 }
134
ksz8_reset_switch(struct ksz_device * dev)135 int ksz8_reset_switch(struct ksz_device *dev)
136 {
137 if (ksz_is_ksz88x3(dev)) {
138 /* reset switch */
139 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
140 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
141 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
142 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
143 } else {
144 /* reset switch */
145 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
146 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
147 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
148 }
149
150 return 0;
151 }
152
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)153 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
154 {
155 u8 ctrl2 = 0;
156
157 if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
158 ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
159 else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
160 ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
161
162 return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
163 KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
164 }
165
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)166 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
167 {
168 u8 ctrl1 = 0, ctrl2 = 0;
169 int ret;
170
171 if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
172 ctrl2 |= SW_LEGAL_PACKET_DISABLE;
173 if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
174 ctrl1 |= SW_HUGE_PACKET;
175
176 ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
177 if (ret)
178 return ret;
179
180 return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
181 }
182
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)183 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
184 {
185 u16 frame_size;
186
187 if (!dsa_is_cpu_port(dev->ds, port))
188 return 0;
189
190 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
191
192 switch (dev->chip_id) {
193 case KSZ8795_CHIP_ID:
194 case KSZ8794_CHIP_ID:
195 case KSZ8765_CHIP_ID:
196 return ksz8795_change_mtu(dev, frame_size);
197 case KSZ88X3_CHIP_ID:
198 case KSZ8864_CHIP_ID:
199 case KSZ8895_CHIP_ID:
200 return ksz8863_change_mtu(dev, frame_size);
201 }
202
203 return -EOPNOTSUPP;
204 }
205
ksz8_port_queue_split(struct ksz_device * dev,int port,int queues)206 static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues)
207 {
208 u8 mask_4q, mask_2q;
209 u8 reg_4q, reg_2q;
210 u8 data_4q = 0;
211 u8 data_2q = 0;
212 int ret;
213
214 if (ksz_is_ksz88x3(dev)) {
215 mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
216 mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
217 reg_4q = REG_PORT_CTRL_0;
218 reg_2q = REG_PORT_CTRL_2;
219
220 /* KSZ8795 family switches have Weighted Fair Queueing (WFQ)
221 * enabled by default. Enable it for KSZ8873 family switches
222 * too. Default value for KSZ8873 family is strict priority,
223 * which should be enabled by using TC_SETUP_QDISC_ETS, not
224 * by default.
225 */
226 ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE,
227 WEIGHTED_FAIR_QUEUE_ENABLE);
228 if (ret)
229 return ret;
230 } else {
231 mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN;
232 mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN;
233 reg_4q = REG_PORT_CTRL_13;
234 reg_2q = REG_PORT_CTRL_0;
235
236 /* TODO: this is legacy from initial KSZ8795 driver, should be
237 * moved to appropriate place in the future.
238 */
239 ret = ksz_rmw8(dev, REG_SW_CTRL_19,
240 SW_OUT_RATE_LIMIT_QUEUE_BASED,
241 SW_OUT_RATE_LIMIT_QUEUE_BASED);
242 if (ret)
243 return ret;
244 }
245
246 if (queues == 4)
247 data_4q = mask_4q;
248 else if (queues == 2)
249 data_2q = mask_2q;
250
251 ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q);
252 if (ret)
253 return ret;
254
255 return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q);
256 }
257
ksz8_all_queues_split(struct ksz_device * dev,int queues)258 int ksz8_all_queues_split(struct ksz_device *dev, int queues)
259 {
260 struct dsa_switch *ds = dev->ds;
261 const struct dsa_port *dp;
262
263 dsa_switch_for_each_port(dp, ds) {
264 int ret = ksz8_port_queue_split(dev, dp->index, queues);
265
266 if (ret)
267 return ret;
268 }
269
270 return 0;
271 }
272
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)273 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
274 {
275 const u32 *masks;
276 const u16 *regs;
277 u16 ctrl_addr;
278 u32 data;
279 u8 check;
280 int loop;
281
282 masks = dev->info->masks;
283 regs = dev->info->regs;
284
285 ctrl_addr = addr + dev->info->reg_mib_cnt * port;
286 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
287
288 mutex_lock(&dev->alu_mutex);
289 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
290
291 /* It is almost guaranteed to always read the valid bit because of
292 * slow SPI speed.
293 */
294 for (loop = 2; loop > 0; loop--) {
295 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
296
297 if (check & masks[MIB_COUNTER_VALID]) {
298 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
299 if (check & masks[MIB_COUNTER_OVERFLOW])
300 *cnt += MIB_COUNTER_VALUE + 1;
301 *cnt += data & MIB_COUNTER_VALUE;
302 break;
303 }
304 }
305 mutex_unlock(&dev->alu_mutex);
306 }
307
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)308 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
309 u64 *dropped, u64 *cnt)
310 {
311 const u32 *masks;
312 const u16 *regs;
313 u16 ctrl_addr;
314 u32 data;
315 u8 check;
316 int loop;
317
318 masks = dev->info->masks;
319 regs = dev->info->regs;
320
321 addr -= dev->info->reg_mib_cnt;
322 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
323 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
324 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
325
326 mutex_lock(&dev->alu_mutex);
327 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
328
329 /* It is almost guaranteed to always read the valid bit because of
330 * slow SPI speed.
331 */
332 for (loop = 2; loop > 0; loop--) {
333 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
334
335 if (check & masks[MIB_COUNTER_VALID]) {
336 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
337 if (addr < 2) {
338 u64 total;
339
340 total = check & MIB_TOTAL_BYTES_H;
341 total <<= 32;
342 *cnt += total;
343 *cnt += data;
344 if (check & masks[MIB_COUNTER_OVERFLOW]) {
345 total = MIB_TOTAL_BYTES_H + 1;
346 total <<= 32;
347 *cnt += total;
348 }
349 } else {
350 if (check & masks[MIB_COUNTER_OVERFLOW])
351 *cnt += MIB_PACKET_DROPPED + 1;
352 *cnt += data & MIB_PACKET_DROPPED;
353 }
354 break;
355 }
356 }
357 mutex_unlock(&dev->alu_mutex);
358 }
359
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)360 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
361 u64 *dropped, u64 *cnt)
362 {
363 u32 *last = (u32 *)dropped;
364 const u16 *regs;
365 u16 ctrl_addr;
366 u32 data;
367 u32 cur;
368
369 regs = dev->info->regs;
370
371 addr -= dev->info->reg_mib_cnt;
372 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
373 KSZ8863_MIB_PACKET_DROPPED_RX_0;
374 ctrl_addr += port;
375 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
376
377 mutex_lock(&dev->alu_mutex);
378 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
379 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
380 mutex_unlock(&dev->alu_mutex);
381
382 data &= MIB_PACKET_DROPPED;
383 cur = last[addr];
384 if (data != cur) {
385 last[addr] = data;
386 if (data < cur)
387 data += MIB_PACKET_DROPPED + 1;
388 data -= cur;
389 *cnt += data;
390 }
391 }
392
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)393 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
394 u64 *dropped, u64 *cnt)
395 {
396 if (is_ksz88xx(dev))
397 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
398 else
399 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
400 }
401
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)402 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
403 {
404 if (is_ksz88xx(dev))
405 return;
406
407 /* enable the port for flush/freeze function */
408 if (freeze)
409 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
410 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
411
412 /* disable the port after freeze is done */
413 if (!freeze)
414 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
415 }
416
ksz8_port_init_cnt(struct ksz_device * dev,int port)417 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
418 {
419 struct ksz_port_mib *mib = &dev->ports[port].mib;
420 u64 *dropped;
421
422 /* For KSZ8795 family. */
423 if (ksz_is_ksz87xx(dev)) {
424 /* flush all enabled port MIB counters */
425 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
426 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
427 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
428 }
429
430 mib->cnt_ptr = 0;
431
432 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
433 while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
434 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
435 &mib->counters[mib->cnt_ptr]);
436 ++mib->cnt_ptr;
437 }
438
439 /* last one in storage */
440 dropped = &mib->counters[dev->info->mib_cnt];
441
442 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
443 while (mib->cnt_ptr < dev->info->mib_cnt) {
444 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
445 dropped, &mib->counters[mib->cnt_ptr]);
446 ++mib->cnt_ptr;
447 }
448 }
449
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)450 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
451 {
452 const u16 *regs;
453 u16 ctrl_addr;
454 int ret;
455
456 regs = dev->info->regs;
457
458 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
459
460 mutex_lock(&dev->alu_mutex);
461 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
462 if (ret)
463 goto unlock_alu;
464
465 ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
466 unlock_alu:
467 mutex_unlock(&dev->alu_mutex);
468
469 return ret;
470 }
471
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)472 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
473 {
474 const u16 *regs;
475 u16 ctrl_addr;
476 int ret;
477
478 regs = dev->info->regs;
479
480 ctrl_addr = IND_ACC_TABLE(table) | addr;
481
482 mutex_lock(&dev->alu_mutex);
483 ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
484 if (ret)
485 goto unlock_alu;
486
487 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
488 unlock_alu:
489 mutex_unlock(&dev->alu_mutex);
490
491 return ret;
492 }
493
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)494 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
495 {
496 int timeout = 100;
497 const u32 *masks;
498 const u16 *regs;
499 int ret;
500
501 masks = dev->info->masks;
502 regs = dev->info->regs;
503
504 do {
505 ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
506 if (ret)
507 return ret;
508
509 timeout--;
510 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
511
512 /* Entry is not ready for accessing. */
513 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY])
514 return -ETIMEDOUT;
515
516 /* Entry is ready for accessing. */
517 return ksz_read8(dev, regs[REG_IND_DATA_8], data);
518 }
519
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u16 * entries)520 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
521 u8 *fid, u8 *src_port, u16 *entries)
522 {
523 u32 data_hi, data_lo;
524 const u8 *shifts;
525 const u32 *masks;
526 const u16 *regs;
527 u16 ctrl_addr;
528 u64 buf = 0;
529 u8 data;
530 int cnt;
531 int ret;
532
533 shifts = dev->info->shifts;
534 masks = dev->info->masks;
535 regs = dev->info->regs;
536
537 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
538
539 mutex_lock(&dev->alu_mutex);
540 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
541 if (ret)
542 goto unlock_alu;
543
544 ret = ksz8_valid_dyn_entry(dev, &data);
545 if (ret)
546 goto unlock_alu;
547
548 if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) {
549 *entries = 0;
550 goto unlock_alu;
551 }
552
553 ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
554 if (ret)
555 goto unlock_alu;
556
557 data_hi = (u32)(buf >> 32);
558 data_lo = (u32)buf;
559
560 /* Check out how many valid entry in the table. */
561 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
562 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
563 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
564 shifts[DYNAMIC_MAC_ENTRIES];
565 *entries = cnt + 1;
566
567 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
568 shifts[DYNAMIC_MAC_FID];
569 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
570 shifts[DYNAMIC_MAC_SRC_PORT];
571
572 mac_addr[5] = (u8)data_lo;
573 mac_addr[4] = (u8)(data_lo >> 8);
574 mac_addr[3] = (u8)(data_lo >> 16);
575 mac_addr[2] = (u8)(data_lo >> 24);
576
577 mac_addr[1] = (u8)data_hi;
578 mac_addr[0] = (u8)(data_hi >> 8);
579
580 unlock_alu:
581 mutex_unlock(&dev->alu_mutex);
582
583 return ret;
584 }
585
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)586 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
587 struct alu_struct *alu, bool *valid)
588 {
589 u32 data_hi, data_lo;
590 const u8 *shifts;
591 const u32 *masks;
592 u64 data;
593 int ret;
594
595 shifts = dev->info->shifts;
596 masks = dev->info->masks;
597
598 ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
599 if (ret)
600 return ret;
601
602 data_hi = data >> 32;
603 data_lo = (u32)data;
604
605 if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
606 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
607 *valid = false;
608 return 0;
609 }
610
611 alu->mac[5] = (u8)data_lo;
612 alu->mac[4] = (u8)(data_lo >> 8);
613 alu->mac[3] = (u8)(data_lo >> 16);
614 alu->mac[2] = (u8)(data_lo >> 24);
615 alu->mac[1] = (u8)data_hi;
616 alu->mac[0] = (u8)(data_hi >> 8);
617 alu->port_forward =
618 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
619 shifts[STATIC_MAC_FWD_PORTS];
620 alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
621
622 /* KSZ8795/KSZ8895 family switches have STATIC_MAC_TABLE_USE_FID and
623 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
624 * static MAC table compared to doing write.
625 */
626 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
627 data_hi >>= 1;
628 alu->is_static = true;
629 alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
630 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
631 shifts[STATIC_MAC_FID];
632
633 *valid = true;
634
635 return 0;
636 }
637
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)638 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
639 struct alu_struct *alu)
640 {
641 u32 data_hi, data_lo;
642 const u8 *shifts;
643 const u32 *masks;
644 u64 data;
645
646 shifts = dev->info->shifts;
647 masks = dev->info->masks;
648
649 data_lo = ((u32)alu->mac[2] << 24) |
650 ((u32)alu->mac[3] << 16) |
651 ((u32)alu->mac[4] << 8) | alu->mac[5];
652 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
653 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
654
655 if (alu->is_override)
656 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
657 if (alu->is_use_fid) {
658 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
659 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
660 }
661 if (alu->is_static)
662 data_hi |= masks[STATIC_MAC_TABLE_VALID];
663 else
664 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
665
666 data = (u64)data_hi << 32 | data_lo;
667
668 return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
669 }
670
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)671 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
672 u8 *member, u8 *valid)
673 {
674 const u8 *shifts;
675 const u32 *masks;
676
677 shifts = dev->info->shifts;
678 masks = dev->info->masks;
679
680 *fid = vlan & masks[VLAN_TABLE_FID];
681 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
682 shifts[VLAN_TABLE_MEMBERSHIP_S];
683 *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
684 }
685
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)686 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
687 u16 *vlan)
688 {
689 const u8 *shifts;
690 const u32 *masks;
691
692 shifts = dev->info->shifts;
693 masks = dev->info->masks;
694
695 *vlan = fid;
696 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
697 if (valid)
698 *vlan |= masks[VLAN_TABLE_VALID];
699 }
700
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)701 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
702 {
703 const u8 *shifts;
704 u64 data;
705 int i;
706
707 shifts = dev->info->shifts;
708
709 ksz8_r_table(dev, TABLE_VLAN, addr, &data);
710 addr *= 4;
711 for (i = 0; i < 4; i++) {
712 dev->vlan_cache[addr + i].table[0] = (u16)data;
713 data >>= shifts[VLAN_TABLE];
714 }
715 }
716
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)717 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
718 {
719 int index;
720 u16 *data;
721 u16 addr;
722 u64 buf;
723
724 data = (u16 *)&buf;
725 addr = vid / 4;
726 index = vid & 3;
727 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
728 *vlan = data[index];
729 }
730
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)731 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
732 {
733 int index;
734 u16 *data;
735 u16 addr;
736 u64 buf;
737
738 data = (u16 *)&buf;
739 addr = vid / 4;
740 index = vid & 3;
741 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
742 data[index] = vlan;
743 dev->vlan_cache[vid].table[0] = vlan;
744 ksz8_w_table(dev, TABLE_VLAN, addr, buf);
745 }
746
747 /**
748 * ksz879x_get_loopback - KSZ879x specific function to get loopback
749 * configuration status for a specific port
750 * @dev: Pointer to the device structure
751 * @port: Port number to query
752 * @val: Pointer to store the result
753 *
754 * This function reads the SMI registers to determine whether loopback mode
755 * is enabled for a specific port.
756 *
757 * Return: 0 on success, error code on failure.
758 */
ksz879x_get_loopback(struct ksz_device * dev,u16 port,u16 * val)759 static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
760 u16 *val)
761 {
762 u8 stat3;
763 int ret;
764
765 ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
766 if (ret)
767 return ret;
768
769 if (stat3 & PORT_PHY_LOOPBACK)
770 *val |= BMCR_LOOPBACK;
771
772 return 0;
773 }
774
775 /**
776 * ksz879x_set_loopback - KSZ879x specific function to set loopback mode for
777 * a specific port
778 * @dev: Pointer to the device structure.
779 * @port: Port number to modify.
780 * @val: Value indicating whether to enable or disable loopback mode.
781 *
782 * This function translates loopback bit of the BMCR register into the
783 * corresponding hardware register bit value and writes it to the SMI interface.
784 *
785 * Return: 0 on success, error code on failure.
786 */
ksz879x_set_loopback(struct ksz_device * dev,u16 port,u16 val)787 static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
788 {
789 u8 stat3 = 0;
790
791 if (val & BMCR_LOOPBACK)
792 stat3 |= PORT_PHY_LOOPBACK;
793
794 return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
795 stat3);
796 }
797
798 /**
799 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
800 * Control register (Reg. 31).
801 * @dev: The KSZ device instance.
802 * @port: The port number to be read.
803 * @val: The value read from the SMI interface.
804 *
805 * This function reads the SMI interface and translates the hardware register
806 * bit values into their corresponding control settings for a MIIM PHY Control
807 * register.
808 *
809 * Return: 0 on success, error code on failure.
810 */
ksz8_r_phy_ctrl(struct ksz_device * dev,int port,u16 * val)811 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
812 {
813 const u16 *regs = dev->info->regs;
814 u8 reg_val;
815 int ret;
816
817 *val = 0;
818
819 ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], ®_val);
820 if (ret < 0)
821 return ret;
822
823 if (reg_val & PORT_MDIX_STATUS)
824 *val |= KSZ886X_CTRL_MDIX_STAT;
825
826 ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, ®_val);
827 if (ret < 0)
828 return ret;
829
830 if (reg_val & PORT_FORCE_LINK)
831 *val |= KSZ886X_CTRL_FORCE_LINK;
832
833 if (reg_val & PORT_POWER_SAVING)
834 *val |= KSZ886X_CTRL_PWRSAVE;
835
836 if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
837 *val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
838
839 return 0;
840 }
841
842 /**
843 * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
844 * Basic mode control register (Reg. 0).
845 * @dev: The KSZ device instance.
846 * @port: The port number to be read.
847 * @val: The value read from the SMI interface.
848 *
849 * This function reads the SMI interface and translates the hardware register
850 * bit values into their corresponding control settings for a MIIM PHY Basic
851 * mode control register.
852 *
853 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
854 * -------------------------------------------------------------------
855 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
856 * ----------------------------+-----------------------------+----------------
857 * Bit 15 - Soft Reset | 0xF/4 | Not supported
858 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
859 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
860 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
861 * Bit 11 - Power Down | 0xD/3 = 0xD/3
862 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
863 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
864 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
865 * Bit 7 - Collision Test/Res. | Not supported | Not supported
866 * Bit 6 - Reserved | Not supported | Not supported
867 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
868 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
869 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
870 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
871 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
872 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
873 * -------------------------------------------------------------------
874 *
875 * Return: 0 on success, error code on failure.
876 */
ksz8_r_phy_bmcr(struct ksz_device * dev,u16 port,u16 * val)877 static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
878 {
879 const u16 *regs = dev->info->regs;
880 u8 restart, speed, ctrl;
881 int ret;
882
883 *val = 0;
884
885 ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
886 if (ret)
887 return ret;
888
889 ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
890 if (ret)
891 return ret;
892
893 ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
894 if (ret)
895 return ret;
896
897 if (ctrl & PORT_FORCE_100_MBIT)
898 *val |= BMCR_SPEED100;
899
900 if (ksz_is_ksz88x3(dev)) {
901 if (restart & KSZ8873_PORT_PHY_LOOPBACK)
902 *val |= BMCR_LOOPBACK;
903
904 if ((ctrl & PORT_AUTO_NEG_ENABLE))
905 *val |= BMCR_ANENABLE;
906 } else {
907 ret = ksz879x_get_loopback(dev, port, val);
908 if (ret)
909 return ret;
910
911 if (!(ctrl & PORT_AUTO_NEG_DISABLE))
912 *val |= BMCR_ANENABLE;
913 }
914
915 if (restart & PORT_POWER_DOWN)
916 *val |= BMCR_PDOWN;
917
918 if (restart & PORT_AUTO_NEG_RESTART)
919 *val |= BMCR_ANRESTART;
920
921 if (ctrl & PORT_FORCE_FULL_DUPLEX)
922 *val |= BMCR_FULLDPLX;
923
924 if (speed & PORT_HP_MDIX)
925 *val |= KSZ886X_BMCR_HP_MDIX;
926
927 if (restart & PORT_FORCE_MDIX)
928 *val |= KSZ886X_BMCR_FORCE_MDI;
929
930 if (restart & PORT_AUTO_MDIX_DISABLE)
931 *val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
932
933 if (restart & PORT_TX_DISABLE)
934 *val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
935
936 if (restart & PORT_LED_OFF)
937 *val |= KSZ886X_BMCR_DISABLE_LED;
938
939 return 0;
940 }
941
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)942 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
943 {
944 u8 ctrl, link, val1, val2;
945 int processed = true;
946 const u16 *regs;
947 u16 data = 0;
948 u16 p = phy;
949 int ret;
950
951 regs = dev->info->regs;
952
953 switch (reg) {
954 case MII_BMCR:
955 ret = ksz8_r_phy_bmcr(dev, p, &data);
956 if (ret)
957 return ret;
958 break;
959 case MII_BMSR:
960 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
961 if (ret)
962 return ret;
963
964 data = BMSR_100FULL |
965 BMSR_100HALF |
966 BMSR_10FULL |
967 BMSR_10HALF |
968 BMSR_ANEGCAPABLE;
969 if (link & PORT_AUTO_NEG_COMPLETE)
970 data |= BMSR_ANEGCOMPLETE;
971 if (link & PORT_STAT_LINK_GOOD)
972 data |= BMSR_LSTATUS;
973 break;
974 case MII_PHYSID1:
975 data = KSZ8795_ID_HI;
976 break;
977 case MII_PHYSID2:
978 if (ksz_is_ksz88x3(dev))
979 data = KSZ8863_ID_LO;
980 else
981 data = KSZ8795_ID_LO;
982 break;
983 case MII_ADVERTISE:
984 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
985 if (ret)
986 return ret;
987
988 data = ADVERTISE_CSMA;
989 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
990 data |= ADVERTISE_PAUSE_CAP;
991 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
992 data |= ADVERTISE_100FULL;
993 if (ctrl & PORT_AUTO_NEG_100BTX)
994 data |= ADVERTISE_100HALF;
995 if (ctrl & PORT_AUTO_NEG_10BT_FD)
996 data |= ADVERTISE_10FULL;
997 if (ctrl & PORT_AUTO_NEG_10BT)
998 data |= ADVERTISE_10HALF;
999 break;
1000 case MII_LPA:
1001 ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
1002 if (ret)
1003 return ret;
1004
1005 data = LPA_SLCT;
1006 if (link & PORT_REMOTE_SYM_PAUSE)
1007 data |= LPA_PAUSE_CAP;
1008 if (link & PORT_REMOTE_100BTX_FD)
1009 data |= LPA_100FULL;
1010 if (link & PORT_REMOTE_100BTX)
1011 data |= LPA_100HALF;
1012 if (link & PORT_REMOTE_10BT_FD)
1013 data |= LPA_10FULL;
1014 if (link & PORT_REMOTE_10BT)
1015 data |= LPA_10HALF;
1016 if (data & ~LPA_SLCT)
1017 data |= LPA_LPACK;
1018 break;
1019 case PHY_REG_LINK_MD:
1020 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
1021 if (ret)
1022 return ret;
1023
1024 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
1025 if (ret)
1026 return ret;
1027
1028 if (val1 & PORT_START_CABLE_DIAG)
1029 data |= PHY_START_CABLE_DIAG;
1030
1031 if (val1 & PORT_CABLE_10M_SHORT)
1032 data |= PHY_CABLE_10M_SHORT;
1033
1034 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
1035 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
1036
1037 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
1038 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
1039 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
1040 break;
1041 case PHY_REG_PHY_CTRL:
1042 ret = ksz8_r_phy_ctrl(dev, p, &data);
1043 if (ret)
1044 return ret;
1045
1046 break;
1047 default:
1048 processed = false;
1049 break;
1050 }
1051 if (processed)
1052 *val = data;
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
1059 * Control register (Reg. 31).
1060 * @dev: The KSZ device instance.
1061 * @port: The port number to be configured.
1062 * @val: The register value to be written.
1063 *
1064 * This function translates control settings from a MIIM PHY Control register
1065 * into their corresponding hardware register bit values for the SMI
1066 * interface.
1067 *
1068 * Return: 0 on success, error code on failure.
1069 */
ksz8_w_phy_ctrl(struct ksz_device * dev,int port,u16 val)1070 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
1071 {
1072 u8 reg_val = 0;
1073 int ret;
1074
1075 if (val & KSZ886X_CTRL_FORCE_LINK)
1076 reg_val |= PORT_FORCE_LINK;
1077
1078 if (val & KSZ886X_CTRL_PWRSAVE)
1079 reg_val |= PORT_POWER_SAVING;
1080
1081 if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
1082 reg_val |= PORT_PHY_REMOTE_LOOPBACK;
1083
1084 ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
1085 PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
1086 return ret;
1087 }
1088
1089 /**
1090 * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
1091 * Basic mode control register (Reg. 0).
1092 * @dev: The KSZ device instance.
1093 * @port: The port number to be configured.
1094 * @val: The register value to be written.
1095 *
1096 * This function translates control settings from a MIIM PHY Basic mode control
1097 * register into their corresponding hardware register bit values for the SMI
1098 * interface.
1099 *
1100 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
1101 * -------------------------------------------------------------------
1102 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
1103 * ----------------------------+-----------------------------+----------------
1104 * Bit 15 - Soft Reset | 0xF/4 | Not supported
1105 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
1106 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
1107 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
1108 * Bit 11 - Power Down | 0xD/3 = 0xD/3
1109 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
1110 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
1111 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
1112 * Bit 7 - Collision Test/Res. | Not supported | Not supported
1113 * Bit 6 - Reserved | Not supported | Not supported
1114 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
1115 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
1116 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
1117 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
1118 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
1119 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
1120 * -------------------------------------------------------------------
1121 *
1122 * Return: 0 on success, error code on failure.
1123 */
ksz8_w_phy_bmcr(struct ksz_device * dev,u16 port,u16 val)1124 static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1125 {
1126 u8 restart, speed, ctrl, restart_mask;
1127 const u16 *regs = dev->info->regs;
1128 int ret;
1129
1130 /* Do not support PHY reset function. */
1131 if (val & BMCR_RESET)
1132 return 0;
1133
1134 speed = 0;
1135 if (val & KSZ886X_BMCR_HP_MDIX)
1136 speed |= PORT_HP_MDIX;
1137
1138 ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1139 if (ret)
1140 return ret;
1141
1142 ctrl = 0;
1143 if (ksz_is_ksz88x3(dev)) {
1144 if ((val & BMCR_ANENABLE))
1145 ctrl |= PORT_AUTO_NEG_ENABLE;
1146 } else {
1147 if (!(val & BMCR_ANENABLE))
1148 ctrl |= PORT_AUTO_NEG_DISABLE;
1149
1150 /* Fiber port does not support auto-negotiation. */
1151 if (dev->ports[port].fiber)
1152 ctrl |= PORT_AUTO_NEG_DISABLE;
1153 }
1154
1155 if (val & BMCR_SPEED100)
1156 ctrl |= PORT_FORCE_100_MBIT;
1157
1158 if (val & BMCR_FULLDPLX)
1159 ctrl |= PORT_FORCE_FULL_DUPLEX;
1160
1161 ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1162 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1163 * bits
1164 */
1165 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1166 if (ret)
1167 return ret;
1168
1169 restart = 0;
1170 restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1171 PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1172
1173 if (val & KSZ886X_BMCR_DISABLE_LED)
1174 restart |= PORT_LED_OFF;
1175
1176 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1177 restart |= PORT_TX_DISABLE;
1178
1179 if (val & BMCR_ANRESTART)
1180 restart |= PORT_AUTO_NEG_RESTART;
1181
1182 if (val & BMCR_PDOWN)
1183 restart |= PORT_POWER_DOWN;
1184
1185 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1186 restart |= PORT_AUTO_MDIX_DISABLE;
1187
1188 if (val & KSZ886X_BMCR_FORCE_MDI)
1189 restart |= PORT_FORCE_MDIX;
1190
1191 if (ksz_is_ksz88x3(dev)) {
1192 restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1193
1194 if (val & BMCR_LOOPBACK)
1195 restart |= KSZ8873_PORT_PHY_LOOPBACK;
1196 } else {
1197 ret = ksz879x_set_loopback(dev, port, val);
1198 if (ret)
1199 return ret;
1200 }
1201
1202 return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1203 restart);
1204 }
1205
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)1206 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1207 {
1208 const u16 *regs;
1209 u8 ctrl, data;
1210 u16 p = phy;
1211 int ret;
1212
1213 regs = dev->info->regs;
1214
1215 switch (reg) {
1216 case MII_BMCR:
1217 ret = ksz8_w_phy_bmcr(dev, p, val);
1218 if (ret)
1219 return ret;
1220 break;
1221 case MII_ADVERTISE:
1222 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1223 if (ret)
1224 return ret;
1225
1226 data = ctrl;
1227 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1228 PORT_AUTO_NEG_100BTX_FD |
1229 PORT_AUTO_NEG_100BTX |
1230 PORT_AUTO_NEG_10BT_FD |
1231 PORT_AUTO_NEG_10BT);
1232 if (val & ADVERTISE_PAUSE_CAP)
1233 data |= PORT_AUTO_NEG_SYM_PAUSE;
1234 if (val & ADVERTISE_100FULL)
1235 data |= PORT_AUTO_NEG_100BTX_FD;
1236 if (val & ADVERTISE_100HALF)
1237 data |= PORT_AUTO_NEG_100BTX;
1238 if (val & ADVERTISE_10FULL)
1239 data |= PORT_AUTO_NEG_10BT_FD;
1240 if (val & ADVERTISE_10HALF)
1241 data |= PORT_AUTO_NEG_10BT;
1242
1243 if (data != ctrl) {
1244 ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1245 if (ret)
1246 return ret;
1247 }
1248 break;
1249 case PHY_REG_LINK_MD:
1250 if (val & PHY_START_CABLE_DIAG)
1251 ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1252 break;
1253
1254 case PHY_REG_PHY_CTRL:
1255 ret = ksz8_w_phy_ctrl(dev, p, val);
1256 if (ret)
1257 return ret;
1258 break;
1259 default:
1260 break;
1261 }
1262
1263 return 0;
1264 }
1265
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)1266 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1267 {
1268 u8 data;
1269
1270 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1271 data &= ~PORT_VLAN_MEMBERSHIP;
1272 data |= (member & dev->port_mask);
1273 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1274 }
1275
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1276 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1277 {
1278 u8 learn[DSA_MAX_PORTS];
1279 int first, index, cnt;
1280 const u16 *regs;
1281
1282 regs = dev->info->regs;
1283
1284 if ((uint)port < dev->info->port_cnt) {
1285 first = port;
1286 cnt = port + 1;
1287 } else {
1288 /* Flush all ports. */
1289 first = 0;
1290 cnt = dev->info->port_cnt;
1291 }
1292 for (index = first; index < cnt; index++) {
1293 ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1294 if (!(learn[index] & PORT_LEARN_DISABLE))
1295 ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1296 learn[index] | PORT_LEARN_DISABLE);
1297 }
1298 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1299 for (index = first; index < cnt; index++) {
1300 if (!(learn[index] & PORT_LEARN_DISABLE))
1301 ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1302 }
1303 }
1304
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)1305 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1306 dsa_fdb_dump_cb_t *cb, void *data)
1307 {
1308 u8 mac[ETH_ALEN];
1309 u8 src_port, fid;
1310 u16 entries = 0;
1311 int ret, i;
1312
1313 for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1314 ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1315 &entries);
1316 if (ret)
1317 return ret;
1318
1319 if (i >= entries)
1320 return 0;
1321
1322 if (port == src_port) {
1323 ret = cb(mac, fid, false, data);
1324 if (ret)
1325 return ret;
1326 }
1327 }
1328
1329 return 0;
1330 }
1331
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1332 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1333 const unsigned char *addr, u16 vid)
1334 {
1335 struct alu_struct alu;
1336 int index, ret;
1337 int empty = 0;
1338
1339 alu.port_forward = 0;
1340 for (index = 0; index < dev->info->num_statics; index++) {
1341 bool valid;
1342
1343 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1344 if (ret)
1345 return ret;
1346 if (!valid) {
1347 /* Remember the first empty entry. */
1348 if (!empty)
1349 empty = index + 1;
1350 continue;
1351 }
1352
1353 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1354 break;
1355 }
1356
1357 /* no available entry */
1358 if (index == dev->info->num_statics && !empty)
1359 return -ENOSPC;
1360
1361 /* add entry */
1362 if (index == dev->info->num_statics) {
1363 index = empty - 1;
1364 memset(&alu, 0, sizeof(alu));
1365 memcpy(alu.mac, addr, ETH_ALEN);
1366 alu.is_static = true;
1367 }
1368 alu.port_forward |= BIT(port);
1369 if (vid) {
1370 alu.is_use_fid = true;
1371
1372 /* Need a way to map VID to FID. */
1373 alu.fid = vid;
1374 }
1375
1376 return ksz8_w_sta_mac_table(dev, index, &alu);
1377 }
1378
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1379 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1380 const unsigned char *addr, u16 vid)
1381 {
1382 struct alu_struct alu;
1383 int index, ret;
1384
1385 for (index = 0; index < dev->info->num_statics; index++) {
1386 bool valid;
1387
1388 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1389 if (ret)
1390 return ret;
1391 if (!valid)
1392 continue;
1393
1394 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1395 break;
1396 }
1397
1398 /* no available entry */
1399 if (index == dev->info->num_statics)
1400 return 0;
1401
1402 /* clear port */
1403 alu.port_forward &= ~BIT(port);
1404 if (!alu.port_forward)
1405 alu.is_static = false;
1406
1407 return ksz8_w_sta_mac_table(dev, index, &alu);
1408 }
1409
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1410 int ksz8_mdb_add(struct ksz_device *dev, int port,
1411 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1412 {
1413 return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1414 }
1415
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1416 int ksz8_mdb_del(struct ksz_device *dev, int port,
1417 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1418 {
1419 return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1420 }
1421
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1422 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1423 u16 vid, struct dsa_db db)
1424 {
1425 return ksz8_add_sta_mac(dev, port, addr, vid);
1426 }
1427
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1428 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1429 u16 vid, struct dsa_db db)
1430 {
1431 return ksz8_del_sta_mac(dev, port, addr, vid);
1432 }
1433
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1434 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1435 struct netlink_ext_ack *extack)
1436 {
1437 if (ksz_is_ksz88x3(dev))
1438 return -ENOTSUPP;
1439
1440 /* Discard packets with VID not enabled on the switch */
1441 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1442
1443 /* Discard packets with VID not enabled on the ingress port */
1444 for (port = 0; port < dev->phy_port_cnt; ++port)
1445 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1446 flag);
1447
1448 return 0;
1449 }
1450
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1451 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1452 {
1453 if (ksz_is_ksz88x3(dev)) {
1454 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1455 0x03 << (4 - 2 * port), state);
1456 } else {
1457 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1458 }
1459 }
1460
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1461 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1462 const struct switchdev_obj_port_vlan *vlan,
1463 struct netlink_ext_ack *extack)
1464 {
1465 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1466 struct ksz_port *p = &dev->ports[port];
1467 u16 data, new_pvid = 0;
1468 u8 fid, member, valid;
1469
1470 if (ksz_is_ksz88x3(dev))
1471 return -ENOTSUPP;
1472
1473 /* If a VLAN is added with untagged flag different from the
1474 * port's Remove Tag flag, we need to change the latter.
1475 * Ignore VID 0, which is always untagged.
1476 * Ignore CPU port, which will always be tagged.
1477 */
1478 if (untagged != p->remove_tag && vlan->vid != 0 &&
1479 port != dev->cpu_port) {
1480 unsigned int vid;
1481
1482 /* Reject attempts to add a VLAN that requires the
1483 * Remove Tag flag to be changed, unless there are no
1484 * other VLANs currently configured.
1485 */
1486 for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1487 /* Skip the VID we are going to add or reconfigure */
1488 if (vid == vlan->vid)
1489 continue;
1490
1491 ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1492 &fid, &member, &valid);
1493 if (valid && (member & BIT(port)))
1494 return -EINVAL;
1495 }
1496
1497 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1498 p->remove_tag = untagged;
1499 }
1500
1501 ksz8_r_vlan_table(dev, vlan->vid, &data);
1502 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1503
1504 /* First time to setup the VLAN entry. */
1505 if (!valid) {
1506 /* Need to find a way to map VID to FID. */
1507 fid = 1;
1508 valid = 1;
1509 }
1510 member |= BIT(port);
1511
1512 ksz8_to_vlan(dev, fid, member, valid, &data);
1513 ksz8_w_vlan_table(dev, vlan->vid, data);
1514
1515 /* change PVID */
1516 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1517 new_pvid = vlan->vid;
1518
1519 if (new_pvid) {
1520 u16 vid;
1521
1522 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1523 vid &= ~VLAN_VID_MASK;
1524 vid |= new_pvid;
1525 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1526
1527 ksz8_port_enable_pvid(dev, port, true);
1528 }
1529
1530 return 0;
1531 }
1532
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1533 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1534 const struct switchdev_obj_port_vlan *vlan)
1535 {
1536 u16 data, pvid;
1537 u8 fid, member, valid;
1538
1539 if (ksz_is_ksz88x3(dev))
1540 return -ENOTSUPP;
1541
1542 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1543 pvid = pvid & 0xFFF;
1544
1545 ksz8_r_vlan_table(dev, vlan->vid, &data);
1546 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1547
1548 member &= ~BIT(port);
1549
1550 /* Invalidate the entry if no more member. */
1551 if (!member) {
1552 fid = 0;
1553 valid = 0;
1554 }
1555
1556 ksz8_to_vlan(dev, fid, member, valid, &data);
1557 ksz8_w_vlan_table(dev, vlan->vid, data);
1558
1559 if (pvid == vlan->vid)
1560 ksz8_port_enable_pvid(dev, port, false);
1561
1562 return 0;
1563 }
1564
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1565 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1566 struct dsa_mall_mirror_tc_entry *mirror,
1567 bool ingress, struct netlink_ext_ack *extack)
1568 {
1569 if (ingress) {
1570 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1571 dev->mirror_rx |= BIT(port);
1572 } else {
1573 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1574 dev->mirror_tx |= BIT(port);
1575 }
1576
1577 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1578
1579 /* configure mirror port */
1580 if (dev->mirror_rx || dev->mirror_tx)
1581 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1582 PORT_MIRROR_SNIFFER, true);
1583
1584 return 0;
1585 }
1586
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1587 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1588 struct dsa_mall_mirror_tc_entry *mirror)
1589 {
1590 u8 data;
1591
1592 if (mirror->ingress) {
1593 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1594 dev->mirror_rx &= ~BIT(port);
1595 } else {
1596 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1597 dev->mirror_tx &= ~BIT(port);
1598 }
1599
1600 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1601
1602 if (!dev->mirror_rx && !dev->mirror_tx)
1603 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1604 PORT_MIRROR_SNIFFER, false);
1605 }
1606
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1607 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1608 {
1609 struct ksz_port *p = &dev->ports[port];
1610
1611 if (!ksz_is_ksz87xx(dev))
1612 return;
1613
1614 if (!p->interface && dev->compat_interface) {
1615 dev_warn(dev->dev,
1616 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1617 "Please update your device tree.\n",
1618 port);
1619 p->interface = dev->compat_interface;
1620 }
1621 }
1622
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1623 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1624 {
1625 const u16 *regs = dev->info->regs;
1626 struct dsa_switch *ds = dev->ds;
1627 const u32 *masks;
1628 int queues;
1629 u8 member;
1630
1631 masks = dev->info->masks;
1632
1633 /* enable broadcast storm limit */
1634 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1635
1636 /* For KSZ88x3 enable only one queue by default, otherwise we won't
1637 * be able to get rid of PCP prios on Port 2.
1638 */
1639 if (ksz_is_ksz88x3(dev))
1640 queues = 1;
1641 else
1642 queues = dev->info->num_tx_queues;
1643
1644 ksz8_port_queue_split(dev, port, queues);
1645
1646 /* replace priority */
1647 ksz_port_cfg(dev, port, P_802_1P_CTRL,
1648 masks[PORT_802_1P_REMAPPING], false);
1649
1650 if (cpu_port)
1651 member = dsa_user_ports(ds);
1652 else
1653 member = BIT(dsa_upstream_port(ds, port));
1654
1655 ksz8_cfg_port_member(dev, port, member);
1656
1657 /* Disable all WoL options by default. Otherwise
1658 * ksz_switch_macaddr_get/put logic will not work properly.
1659 * CPU port 4 has no WoL functionality.
1660 */
1661 if (ksz_is_ksz87xx(dev) && !cpu_port)
1662 ksz8_pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1663 }
1664
ksz88x3_config_rmii_clk(struct ksz_device * dev)1665 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1666 {
1667 struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1668 bool rmii_clk_internal;
1669
1670 if (!ksz_is_ksz88x3(dev))
1671 return;
1672
1673 rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1674 "microchip,rmii-clk-internal");
1675
1676 ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1677 KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1678 }
1679
ksz8_config_cpu_port(struct dsa_switch * ds)1680 void ksz8_config_cpu_port(struct dsa_switch *ds)
1681 {
1682 struct ksz_device *dev = ds->priv;
1683 struct ksz_port *p;
1684 const u32 *masks;
1685 const u16 *regs;
1686 u8 remote;
1687 int i;
1688
1689 masks = dev->info->masks;
1690 regs = dev->info->regs;
1691
1692 ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1693
1694 ksz8_port_setup(dev, dev->cpu_port, true);
1695
1696 ksz8795_cpu_interface_select(dev, dev->cpu_port);
1697 ksz88x3_config_rmii_clk(dev);
1698
1699 for (i = 0; i < dev->phy_port_cnt; i++) {
1700 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1701 }
1702 for (i = 0; i < dev->phy_port_cnt; i++) {
1703 p = &dev->ports[i];
1704
1705 /* For KSZ8795 family. */
1706 if (ksz_is_ksz87xx(dev)) {
1707 ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1708 if (remote & KSZ8_PORT_FIBER_MODE)
1709 p->fiber = 1;
1710 }
1711 if (p->fiber)
1712 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1713 PORT_FORCE_FLOW_CTRL, true);
1714 else
1715 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1716 PORT_FORCE_FLOW_CTRL, false);
1717 }
1718 }
1719
1720 /**
1721 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1722 * @dev: The KSZ device instance.
1723 * @port: The port number to configure.
1724 * @duplex: The desired duplex mode.
1725 * @tx_pause: If true, enables transmit pause.
1726 * @rx_pause: If true, enables receive pause.
1727 *
1728 * Description:
1729 * The function configures flow control settings for a given port based on the
1730 * desired settings and current duplex mode.
1731 *
1732 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1733 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1734 * determines how flow control is handled on the port:
1735 * "1 = will always enable full-duplex flow control on the port, regardless
1736 * of AN result.
1737 * 0 = full-duplex flow control is enabled based on AN result."
1738 *
1739 * This means that the flow control behavior depends on the state of this bit:
1740 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1741 * force flow control on the port.
1742 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1743 * flow control based on the AN results.
1744 *
1745 * However, there is a potential limitation in this configuration. It is
1746 * currently not possible to force disable flow control on a port if we still
1747 * advertise pause support. While such a configuration is not currently
1748 * supported by Linux, and may not make practical sense, it's important to be
1749 * aware of this limitation when working with the KSZ8873 and similar devices.
1750 */
ksz8_phy_port_link_up(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)1751 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1752 bool tx_pause, bool rx_pause)
1753 {
1754 const u16 *regs = dev->info->regs;
1755 u8 sctrl = 0;
1756
1757 /* The KSZ8795 switch differs from the KSZ8873 by supporting
1758 * asymmetric pause control. However, since a single bit is used to
1759 * control both RX and TX pause, we can't enforce asymmetric pause
1760 * control - both TX and RX pause will be either enabled or disabled
1761 * together.
1762 *
1763 * If auto-negotiation is enabled, we usually allow the flow control to
1764 * be determined by the auto-negotiation process based on the
1765 * capabilities of both link partners. However, for KSZ8873, the
1766 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1767 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1768 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1769 * properly cleared.
1770 *
1771 * In the absence of pause auto-negotiation, we will enforce symmetric
1772 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1773 *
1774 * Autoneg Pause Autoneg rx,tx PORT_FORCE_FLOW_CTRL
1775 * 1 1 x 0
1776 * 0 1 x 0 (flow control probably disabled)
1777 * x 0 1 1 (flow control force enabled)
1778 * 1 0 0 0 (flow control still depends on
1779 * aneg result due to hardware)
1780 * 0 0 0 0 (flow control probably disabled)
1781 */
1782 if (dev->ports[port].manual_flow && tx_pause)
1783 sctrl |= PORT_FORCE_FLOW_CTRL;
1784
1785 ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1786 }
1787
1788 /**
1789 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1790 * @dev: The KSZ device instance.
1791 * @speed: The desired link speed.
1792 * @duplex: The desired duplex mode.
1793 * @tx_pause: If true, enables transmit pause.
1794 * @rx_pause: If true, enables receive pause.
1795 *
1796 * Description:
1797 * The function configures flow control and speed settings for the CPU
1798 * port of the switch based on the desired settings, current duplex mode, and
1799 * speed.
1800 */
ksz8_cpu_port_link_up(struct ksz_device * dev,int speed,int duplex,bool tx_pause,bool rx_pause)1801 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1802 bool tx_pause, bool rx_pause)
1803 {
1804 const u16 *regs = dev->info->regs;
1805 u8 ctrl = 0;
1806
1807 /* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1808 * at least on KSZ8873. They can have different values depending on your
1809 * board setup.
1810 */
1811 if (tx_pause || rx_pause)
1812 ctrl |= SW_FLOW_CTRL;
1813
1814 if (duplex == DUPLEX_HALF)
1815 ctrl |= SW_HALF_DUPLEX;
1816
1817 /* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1818 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1819 */
1820 if (speed == SPEED_10)
1821 ctrl |= SW_10_MBIT;
1822
1823 ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1824 SW_10_MBIT, ctrl);
1825 }
1826
ksz8_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1827 void ksz8_phylink_mac_link_up(struct phylink_config *config,
1828 struct phy_device *phydev, unsigned int mode,
1829 phy_interface_t interface, int speed, int duplex,
1830 bool tx_pause, bool rx_pause)
1831 {
1832 struct dsa_port *dp = dsa_phylink_to_port(config);
1833 struct ksz_device *dev = dp->ds->priv;
1834 int port = dp->index;
1835
1836 /* If the port is the CPU port, apply special handling. Only the CPU
1837 * port is configured via global registers.
1838 */
1839 if (dev->cpu_port == port)
1840 ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1841 else if (dev->info->internal_phy[port])
1842 ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1843 }
1844
ksz8_handle_global_errata(struct dsa_switch * ds)1845 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1846 {
1847 struct ksz_device *dev = ds->priv;
1848 int ret = 0;
1849
1850 /* KSZ87xx Errata DS80000687C.
1851 * Module 2: Link drops with some EEE link partners.
1852 * An issue with the EEE next page exchange between the
1853 * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1854 * the link dropping.
1855 */
1856 if (dev->info->ksz87xx_eee_link_erratum)
1857 ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1858
1859 return ret;
1860 }
1861
ksz8_enable_stp_addr(struct ksz_device * dev)1862 int ksz8_enable_stp_addr(struct ksz_device *dev)
1863 {
1864 struct alu_struct alu;
1865
1866 /* Setup STP address for STP operation. */
1867 memset(&alu, 0, sizeof(alu));
1868 ether_addr_copy(alu.mac, eth_stp_addr);
1869 alu.is_static = true;
1870 alu.is_override = true;
1871 alu.port_forward = dev->info->cpu_ports;
1872
1873 return ksz8_w_sta_mac_table(dev, 0, &alu);
1874 }
1875
ksz8_setup(struct dsa_switch * ds)1876 int ksz8_setup(struct dsa_switch *ds)
1877 {
1878 struct ksz_device *dev = ds->priv;
1879 const u16 *regs = dev->info->regs;
1880 int i, ret = 0;
1881
1882 ds->mtu_enforcement_ingress = true;
1883
1884 /* We rely on software untagging on the CPU port, so that we
1885 * can support both tagged and untagged VLANs
1886 */
1887 ds->untag_bridge_pvid = true;
1888
1889 /* VLAN filtering is partly controlled by the global VLAN
1890 * Enable flag
1891 */
1892 ds->vlan_filtering_is_global = true;
1893
1894 /* Enable automatic fast aging when link changed detected. */
1895 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1896
1897 /* Enable aggressive back off algorithm in half duplex mode. */
1898 regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1899 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1900
1901 /*
1902 * Make sure unicast VLAN boundary is set as default and
1903 * enable no excessive collision drop.
1904 */
1905 regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1906 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1907 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1908
1909 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1910
1911 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1912
1913 if (!ksz_is_ksz88x3(dev))
1914 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1915
1916 for (i = 0; i < (dev->info->num_vlans / 4); i++)
1917 ksz8_r_vlan_entries(dev, i);
1918
1919 /* Make sure PME (WoL) is not enabled. If requested, it will
1920 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1921 * do not like PME events changes before shutdown. PME only
1922 * available on KSZ87xx family.
1923 */
1924 if (ksz_is_ksz87xx(dev)) {
1925 ret = ksz8_pme_write8(dev, regs[REG_SW_PME_CTRL], 0);
1926 if (!ret)
1927 ret = ksz_rmw8(dev, REG_INT_ENABLE, INT_PME, 0);
1928 }
1929
1930 if (!ret)
1931 return ksz8_handle_global_errata(ds);
1932 else
1933 return ret;
1934 }
1935
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1936 void ksz8_get_caps(struct ksz_device *dev, int port,
1937 struct phylink_config *config)
1938 {
1939 config->mac_capabilities = MAC_10 | MAC_100;
1940
1941 /* Silicon Errata Sheet (DS80000830A):
1942 * "Port 1 does not respond to received flow control PAUSE frames"
1943 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1944 * switches.
1945 */
1946 if (!ksz_is_ksz88x3(dev) || port)
1947 config->mac_capabilities |= MAC_SYM_PAUSE;
1948
1949 /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1950 if (!ksz_is_ksz88x3(dev))
1951 config->mac_capabilities |= MAC_ASYM_PAUSE;
1952 }
1953
ksz8_get_port_addr(int port,int offset)1954 u32 ksz8_get_port_addr(int port, int offset)
1955 {
1956 return PORT_CTRL_ADDR(port, offset);
1957 }
1958
ksz8_switch_init(struct ksz_device * dev)1959 int ksz8_switch_init(struct ksz_device *dev)
1960 {
1961 dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1962 dev->phy_port_cnt = dev->info->port_cnt - 1;
1963 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1964
1965 return 0;
1966 }
1967
ksz8_switch_exit(struct ksz_device * dev)1968 void ksz8_switch_exit(struct ksz_device *dev)
1969 {
1970 ksz8_reset_switch(dev);
1971 }
1972
1973 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1974 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1975 MODULE_LICENSE("GPL");
1976