1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
44 #include "vecprim.h"
45
46 /* This loop nest code generation is based on non-singular matrix
47 math.
48
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
53
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
57 of basis vectors.
58
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
62
63 for i = 1 to 3, step 1 is a dense iteration space.
64
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
67
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
70
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
74
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
83
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
88
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
95
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
105
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
114
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
117
118 static bool perfect_nestify (struct loops *,
119 struct loop *, VEC(tree,heap) *,
120 VEC(tree,heap) *, VEC(int,heap) *,
121 VEC(tree,heap) *);
122 /* Lattice stuff that is internal to the code generation algorithm. */
123
124 typedef struct
125 {
126 /* Lattice base matrix. */
127 lambda_matrix base;
128 /* Lattice dimension. */
129 int dimension;
130 /* Origin vector for the coefficients. */
131 lambda_vector origin;
132 /* Origin matrix for the invariants. */
133 lambda_matrix origin_invariants;
134 /* Number of invariants. */
135 int invariants;
136 } *lambda_lattice;
137
138 #define LATTICE_BASE(T) ((T)->base)
139 #define LATTICE_DIMENSION(T) ((T)->dimension)
140 #define LATTICE_ORIGIN(T) ((T)->origin)
141 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
142 #define LATTICE_INVARIANTS(T) ((T)->invariants)
143
144 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
145 int, int);
146 static lambda_lattice lambda_lattice_new (int, int);
147 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
148
149 static tree find_induction_var_from_exit_cond (struct loop *);
150 static bool can_convert_to_perfect_nest (struct loop *);
151
152 /* Create a new lambda body vector. */
153
154 lambda_body_vector
lambda_body_vector_new(int size)155 lambda_body_vector_new (int size)
156 {
157 lambda_body_vector ret;
158
159 ret = ggc_alloc (sizeof (*ret));
160 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
161 LBV_SIZE (ret) = size;
162 LBV_DENOMINATOR (ret) = 1;
163 return ret;
164 }
165
166 /* Compute the new coefficients for the vector based on the
167 *inverse* of the transformation matrix. */
168
169 lambda_body_vector
lambda_body_vector_compute_new(lambda_trans_matrix transform,lambda_body_vector vect)170 lambda_body_vector_compute_new (lambda_trans_matrix transform,
171 lambda_body_vector vect)
172 {
173 lambda_body_vector temp;
174 int depth;
175
176 /* Make sure the matrix is square. */
177 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
178
179 depth = LTM_ROWSIZE (transform);
180
181 temp = lambda_body_vector_new (depth);
182 LBV_DENOMINATOR (temp) =
183 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
184 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
185 LTM_MATRIX (transform), depth,
186 LBV_COEFFICIENTS (temp));
187 LBV_SIZE (temp) = LBV_SIZE (vect);
188 return temp;
189 }
190
191 /* Print out a lambda body vector. */
192
193 void
print_lambda_body_vector(FILE * outfile,lambda_body_vector body)194 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
195 {
196 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
197 }
198
199 /* Return TRUE if two linear expressions are equal. */
200
201 static bool
lle_equal(lambda_linear_expression lle1,lambda_linear_expression lle2,int depth,int invariants)202 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
203 int depth, int invariants)
204 {
205 int i;
206
207 if (lle1 == NULL || lle2 == NULL)
208 return false;
209 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
210 return false;
211 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
212 return false;
213 for (i = 0; i < depth; i++)
214 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
215 return false;
216 for (i = 0; i < invariants; i++)
217 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
218 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
219 return false;
220 return true;
221 }
222
223 /* Create a new linear expression with dimension DIM, and total number
224 of invariants INVARIANTS. */
225
226 lambda_linear_expression
lambda_linear_expression_new(int dim,int invariants)227 lambda_linear_expression_new (int dim, int invariants)
228 {
229 lambda_linear_expression ret;
230
231 ret = ggc_alloc_cleared (sizeof (*ret));
232
233 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
234 LLE_CONSTANT (ret) = 0;
235 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
236 LLE_DENOMINATOR (ret) = 1;
237 LLE_NEXT (ret) = NULL;
238
239 return ret;
240 }
241
242 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
243 The starting letter used for variable names is START. */
244
245 static void
print_linear_expression(FILE * outfile,lambda_vector expr,int size,char start)246 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
247 char start)
248 {
249 int i;
250 bool first = true;
251 for (i = 0; i < size; i++)
252 {
253 if (expr[i] != 0)
254 {
255 if (first)
256 {
257 if (expr[i] < 0)
258 fprintf (outfile, "-");
259 first = false;
260 }
261 else if (expr[i] > 0)
262 fprintf (outfile, " + ");
263 else
264 fprintf (outfile, " - ");
265 if (abs (expr[i]) == 1)
266 fprintf (outfile, "%c", start + i);
267 else
268 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
269 }
270 }
271 }
272
273 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
274 depth/number of coefficients is given by DEPTH, the number of invariants is
275 given by INVARIANTS, and the character to start variable names with is given
276 by START. */
277
278 void
print_lambda_linear_expression(FILE * outfile,lambda_linear_expression expr,int depth,int invariants,char start)279 print_lambda_linear_expression (FILE * outfile,
280 lambda_linear_expression expr,
281 int depth, int invariants, char start)
282 {
283 fprintf (outfile, "\tLinear expression: ");
284 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
285 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
286 fprintf (outfile, " invariants: ");
287 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
288 invariants, 'A');
289 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
290 }
291
292 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
293 coefficients is given by DEPTH, the number of invariants is
294 given by INVARIANTS, and the character to start variable names with is given
295 by START. */
296
297 void
print_lambda_loop(FILE * outfile,lambda_loop loop,int depth,int invariants,char start)298 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
299 int invariants, char start)
300 {
301 int step;
302 lambda_linear_expression expr;
303
304 gcc_assert (loop);
305
306 expr = LL_LINEAR_OFFSET (loop);
307 step = LL_STEP (loop);
308 fprintf (outfile, " step size = %d \n", step);
309
310 if (expr)
311 {
312 fprintf (outfile, " linear offset: \n");
313 print_lambda_linear_expression (outfile, expr, depth, invariants,
314 start);
315 }
316
317 fprintf (outfile, " lower bound: \n");
318 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
319 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
320 fprintf (outfile, " upper bound: \n");
321 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
322 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
323 }
324
325 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
326 number of invariants. */
327
328 lambda_loopnest
lambda_loopnest_new(int depth,int invariants)329 lambda_loopnest_new (int depth, int invariants)
330 {
331 lambda_loopnest ret;
332 ret = ggc_alloc (sizeof (*ret));
333
334 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
335 LN_DEPTH (ret) = depth;
336 LN_INVARIANTS (ret) = invariants;
337
338 return ret;
339 }
340
341 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
342 character to use for loop names is given by START. */
343
344 void
print_lambda_loopnest(FILE * outfile,lambda_loopnest nest,char start)345 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
346 {
347 int i;
348 for (i = 0; i < LN_DEPTH (nest); i++)
349 {
350 fprintf (outfile, "Loop %c\n", start + i);
351 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
352 LN_INVARIANTS (nest), 'i');
353 fprintf (outfile, "\n");
354 }
355 }
356
357 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
358 of invariants. */
359
360 static lambda_lattice
lambda_lattice_new(int depth,int invariants)361 lambda_lattice_new (int depth, int invariants)
362 {
363 lambda_lattice ret;
364 ret = ggc_alloc (sizeof (*ret));
365 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
366 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
367 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
368 LATTICE_DIMENSION (ret) = depth;
369 LATTICE_INVARIANTS (ret) = invariants;
370 return ret;
371 }
372
373 /* Compute the lattice base for NEST. The lattice base is essentially a
374 non-singular transform from a dense base space to a sparse iteration space.
375 We use it so that we don't have to specially handle the case of a sparse
376 iteration space in other parts of the algorithm. As a result, this routine
377 only does something interesting (IE produce a matrix that isn't the
378 identity matrix) if NEST is a sparse space. */
379
380 static lambda_lattice
lambda_lattice_compute_base(lambda_loopnest nest)381 lambda_lattice_compute_base (lambda_loopnest nest)
382 {
383 lambda_lattice ret;
384 int depth, invariants;
385 lambda_matrix base;
386
387 int i, j, step;
388 lambda_loop loop;
389 lambda_linear_expression expression;
390
391 depth = LN_DEPTH (nest);
392 invariants = LN_INVARIANTS (nest);
393
394 ret = lambda_lattice_new (depth, invariants);
395 base = LATTICE_BASE (ret);
396 for (i = 0; i < depth; i++)
397 {
398 loop = LN_LOOPS (nest)[i];
399 gcc_assert (loop);
400 step = LL_STEP (loop);
401 /* If we have a step of 1, then the base is one, and the
402 origin and invariant coefficients are 0. */
403 if (step == 1)
404 {
405 for (j = 0; j < depth; j++)
406 base[i][j] = 0;
407 base[i][i] = 1;
408 LATTICE_ORIGIN (ret)[i] = 0;
409 for (j = 0; j < invariants; j++)
410 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
411 }
412 else
413 {
414 /* Otherwise, we need the lower bound expression (which must
415 be an affine function) to determine the base. */
416 expression = LL_LOWER_BOUND (loop);
417 gcc_assert (expression && !LLE_NEXT (expression)
418 && LLE_DENOMINATOR (expression) == 1);
419
420 /* The lower triangular portion of the base is going to be the
421 coefficient times the step */
422 for (j = 0; j < i; j++)
423 base[i][j] = LLE_COEFFICIENTS (expression)[j]
424 * LL_STEP (LN_LOOPS (nest)[j]);
425 base[i][i] = step;
426 for (j = i + 1; j < depth; j++)
427 base[i][j] = 0;
428
429 /* Origin for this loop is the constant of the lower bound
430 expression. */
431 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
432
433 /* Coefficient for the invariants are equal to the invariant
434 coefficients in the expression. */
435 for (j = 0; j < invariants; j++)
436 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
437 LLE_INVARIANT_COEFFICIENTS (expression)[j];
438 }
439 }
440 return ret;
441 }
442
443 /* Compute the least common multiple of two numbers A and B . */
444
445 static int
lcm(int a,int b)446 lcm (int a, int b)
447 {
448 return (abs (a) * abs (b) / gcd (a, b));
449 }
450
451 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
452 auxiliary nest.
453 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
454 it is easy to calculate the answer and bounds.
455 A sketch of how it works:
456 Given a system of linear inequalities, ai * xj >= bk, you can always
457 rewrite the constraints so they are all of the form
458 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
459 in b1 ... bk, and some a in a1...ai)
460 You can then eliminate this x from the non-constant inequalities by
461 rewriting these as a <= b, x >= constant, and delete the x variable.
462 You can then repeat this for any remaining x variables, and then we have
463 an easy to use variable <= constant (or no variables at all) form that we
464 can construct our bounds from.
465
466 In our case, each time we eliminate, we construct part of the bound from
467 the ith variable, then delete the ith variable.
468
469 Remember the constant are in our vector a, our coefficient matrix is A,
470 and our invariant coefficient matrix is B.
471
472 SIZE is the size of the matrices being passed.
473 DEPTH is the loop nest depth.
474 INVARIANTS is the number of loop invariants.
475 A, B, and a are the coefficient matrix, invariant coefficient, and a
476 vector of constants, respectively. */
477
478 static lambda_loopnest
compute_nest_using_fourier_motzkin(int size,int depth,int invariants,lambda_matrix A,lambda_matrix B,lambda_vector a)479 compute_nest_using_fourier_motzkin (int size,
480 int depth,
481 int invariants,
482 lambda_matrix A,
483 lambda_matrix B,
484 lambda_vector a)
485 {
486
487 int multiple, f1, f2;
488 int i, j, k;
489 lambda_linear_expression expression;
490 lambda_loop loop;
491 lambda_loopnest auxillary_nest;
492 lambda_matrix swapmatrix, A1, B1;
493 lambda_vector swapvector, a1;
494 int newsize;
495
496 A1 = lambda_matrix_new (128, depth);
497 B1 = lambda_matrix_new (128, invariants);
498 a1 = lambda_vector_new (128);
499
500 auxillary_nest = lambda_loopnest_new (depth, invariants);
501
502 for (i = depth - 1; i >= 0; i--)
503 {
504 loop = lambda_loop_new ();
505 LN_LOOPS (auxillary_nest)[i] = loop;
506 LL_STEP (loop) = 1;
507
508 for (j = 0; j < size; j++)
509 {
510 if (A[j][i] < 0)
511 {
512 /* Any linear expression in the matrix with a coefficient less
513 than 0 becomes part of the new lower bound. */
514 expression = lambda_linear_expression_new (depth, invariants);
515
516 for (k = 0; k < i; k++)
517 LLE_COEFFICIENTS (expression)[k] = A[j][k];
518
519 for (k = 0; k < invariants; k++)
520 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
521
522 LLE_DENOMINATOR (expression) = -1 * A[j][i];
523 LLE_CONSTANT (expression) = -1 * a[j];
524
525 /* Ignore if identical to the existing lower bound. */
526 if (!lle_equal (LL_LOWER_BOUND (loop),
527 expression, depth, invariants))
528 {
529 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
530 LL_LOWER_BOUND (loop) = expression;
531 }
532
533 }
534 else if (A[j][i] > 0)
535 {
536 /* Any linear expression with a coefficient greater than 0
537 becomes part of the new upper bound. */
538 expression = lambda_linear_expression_new (depth, invariants);
539 for (k = 0; k < i; k++)
540 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
541
542 for (k = 0; k < invariants; k++)
543 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
544
545 LLE_DENOMINATOR (expression) = A[j][i];
546 LLE_CONSTANT (expression) = a[j];
547
548 /* Ignore if identical to the existing upper bound. */
549 if (!lle_equal (LL_UPPER_BOUND (loop),
550 expression, depth, invariants))
551 {
552 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
553 LL_UPPER_BOUND (loop) = expression;
554 }
555
556 }
557 }
558
559 /* This portion creates a new system of linear inequalities by deleting
560 the i'th variable, reducing the system by one variable. */
561 newsize = 0;
562 for (j = 0; j < size; j++)
563 {
564 /* If the coefficient for the i'th variable is 0, then we can just
565 eliminate the variable straightaway. Otherwise, we have to
566 multiply through by the coefficients we are eliminating. */
567 if (A[j][i] == 0)
568 {
569 lambda_vector_copy (A[j], A1[newsize], depth);
570 lambda_vector_copy (B[j], B1[newsize], invariants);
571 a1[newsize] = a[j];
572 newsize++;
573 }
574 else if (A[j][i] > 0)
575 {
576 for (k = 0; k < size; k++)
577 {
578 if (A[k][i] < 0)
579 {
580 multiple = lcm (A[j][i], A[k][i]);
581 f1 = multiple / A[j][i];
582 f2 = -1 * multiple / A[k][i];
583
584 lambda_vector_add_mc (A[j], f1, A[k], f2,
585 A1[newsize], depth);
586 lambda_vector_add_mc (B[j], f1, B[k], f2,
587 B1[newsize], invariants);
588 a1[newsize] = f1 * a[j] + f2 * a[k];
589 newsize++;
590 }
591 }
592 }
593 }
594
595 swapmatrix = A;
596 A = A1;
597 A1 = swapmatrix;
598
599 swapmatrix = B;
600 B = B1;
601 B1 = swapmatrix;
602
603 swapvector = a;
604 a = a1;
605 a1 = swapvector;
606
607 size = newsize;
608 }
609
610 return auxillary_nest;
611 }
612
613 /* Compute the loop bounds for the auxiliary space NEST.
614 Input system used is Ax <= b. TRANS is the unimodular transformation.
615 Given the original nest, this function will
616 1. Convert the nest into matrix form, which consists of a matrix for the
617 coefficients, a matrix for the
618 invariant coefficients, and a vector for the constants.
619 2. Use the matrix form to calculate the lattice base for the nest (which is
620 a dense space)
621 3. Compose the dense space transform with the user specified transform, to
622 get a transform we can easily calculate transformed bounds for.
623 4. Multiply the composed transformation matrix times the matrix form of the
624 loop.
625 5. Transform the newly created matrix (from step 4) back into a loop nest
626 using Fourier-Motzkin elimination to figure out the bounds. */
627
628 static lambda_loopnest
lambda_compute_auxillary_space(lambda_loopnest nest,lambda_trans_matrix trans)629 lambda_compute_auxillary_space (lambda_loopnest nest,
630 lambda_trans_matrix trans)
631 {
632 lambda_matrix A, B, A1, B1;
633 lambda_vector a, a1;
634 lambda_matrix invertedtrans;
635 int depth, invariants, size;
636 int i, j;
637 lambda_loop loop;
638 lambda_linear_expression expression;
639 lambda_lattice lattice;
640
641 depth = LN_DEPTH (nest);
642 invariants = LN_INVARIANTS (nest);
643
644 /* Unfortunately, we can't know the number of constraints we'll have
645 ahead of time, but this should be enough even in ridiculous loop nest
646 cases. We must not go over this limit. */
647 A = lambda_matrix_new (128, depth);
648 B = lambda_matrix_new (128, invariants);
649 a = lambda_vector_new (128);
650
651 A1 = lambda_matrix_new (128, depth);
652 B1 = lambda_matrix_new (128, invariants);
653 a1 = lambda_vector_new (128);
654
655 /* Store the bounds in the equation matrix A, constant vector a, and
656 invariant matrix B, so that we have Ax <= a + B.
657 This requires a little equation rearranging so that everything is on the
658 correct side of the inequality. */
659 size = 0;
660 for (i = 0; i < depth; i++)
661 {
662 loop = LN_LOOPS (nest)[i];
663
664 /* First we do the lower bound. */
665 if (LL_STEP (loop) > 0)
666 expression = LL_LOWER_BOUND (loop);
667 else
668 expression = LL_UPPER_BOUND (loop);
669
670 for (; expression != NULL; expression = LLE_NEXT (expression))
671 {
672 /* Fill in the coefficient. */
673 for (j = 0; j < i; j++)
674 A[size][j] = LLE_COEFFICIENTS (expression)[j];
675
676 /* And the invariant coefficient. */
677 for (j = 0; j < invariants; j++)
678 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
679
680 /* And the constant. */
681 a[size] = LLE_CONSTANT (expression);
682
683 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
684 constants and single variables on */
685 A[size][i] = -1 * LLE_DENOMINATOR (expression);
686 a[size] *= -1;
687 for (j = 0; j < invariants; j++)
688 B[size][j] *= -1;
689
690 size++;
691 /* Need to increase matrix sizes above. */
692 gcc_assert (size <= 127);
693
694 }
695
696 /* Then do the exact same thing for the upper bounds. */
697 if (LL_STEP (loop) > 0)
698 expression = LL_UPPER_BOUND (loop);
699 else
700 expression = LL_LOWER_BOUND (loop);
701
702 for (; expression != NULL; expression = LLE_NEXT (expression))
703 {
704 /* Fill in the coefficient. */
705 for (j = 0; j < i; j++)
706 A[size][j] = LLE_COEFFICIENTS (expression)[j];
707
708 /* And the invariant coefficient. */
709 for (j = 0; j < invariants; j++)
710 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
711
712 /* And the constant. */
713 a[size] = LLE_CONSTANT (expression);
714
715 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
716 for (j = 0; j < i; j++)
717 A[size][j] *= -1;
718 A[size][i] = LLE_DENOMINATOR (expression);
719 size++;
720 /* Need to increase matrix sizes above. */
721 gcc_assert (size <= 127);
722
723 }
724 }
725
726 /* Compute the lattice base x = base * y + origin, where y is the
727 base space. */
728 lattice = lambda_lattice_compute_base (nest);
729
730 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
731
732 /* A1 = A * L */
733 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
734
735 /* a1 = a - A * origin constant. */
736 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
737 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
738
739 /* B1 = B - A * origin invariant. */
740 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
741 invariants);
742 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
743
744 /* Now compute the auxiliary space bounds by first inverting U, multiplying
745 it by A1, then performing Fourier-Motzkin. */
746
747 invertedtrans = lambda_matrix_new (depth, depth);
748
749 /* Compute the inverse of U. */
750 lambda_matrix_inverse (LTM_MATRIX (trans),
751 invertedtrans, depth);
752
753 /* A = A1 inv(U). */
754 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
755
756 return compute_nest_using_fourier_motzkin (size, depth, invariants,
757 A, B1, a1);
758 }
759
760 /* Compute the loop bounds for the target space, using the bounds of
761 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
762 The target space loop bounds are computed by multiplying the triangular
763 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
764 the loop steps (positive or negative) is then used to swap the bounds if
765 the loop counts downwards.
766 Return the target loopnest. */
767
768 static lambda_loopnest
lambda_compute_target_space(lambda_loopnest auxillary_nest,lambda_trans_matrix H,lambda_vector stepsigns)769 lambda_compute_target_space (lambda_loopnest auxillary_nest,
770 lambda_trans_matrix H, lambda_vector stepsigns)
771 {
772 lambda_matrix inverse, H1;
773 int determinant, i, j;
774 int gcd1, gcd2;
775 int factor;
776
777 lambda_loopnest target_nest;
778 int depth, invariants;
779 lambda_matrix target;
780
781 lambda_loop auxillary_loop, target_loop;
782 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
783
784 depth = LN_DEPTH (auxillary_nest);
785 invariants = LN_INVARIANTS (auxillary_nest);
786
787 inverse = lambda_matrix_new (depth, depth);
788 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
789
790 /* H1 is H excluding its diagonal. */
791 H1 = lambda_matrix_new (depth, depth);
792 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
793
794 for (i = 0; i < depth; i++)
795 H1[i][i] = 0;
796
797 /* Computes the linear offsets of the loop bounds. */
798 target = lambda_matrix_new (depth, depth);
799 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
800
801 target_nest = lambda_loopnest_new (depth, invariants);
802
803 for (i = 0; i < depth; i++)
804 {
805
806 /* Get a new loop structure. */
807 target_loop = lambda_loop_new ();
808 LN_LOOPS (target_nest)[i] = target_loop;
809
810 /* Computes the gcd of the coefficients of the linear part. */
811 gcd1 = lambda_vector_gcd (target[i], i);
812
813 /* Include the denominator in the GCD. */
814 gcd1 = gcd (gcd1, determinant);
815
816 /* Now divide through by the gcd. */
817 for (j = 0; j < i; j++)
818 target[i][j] = target[i][j] / gcd1;
819
820 expression = lambda_linear_expression_new (depth, invariants);
821 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
822 LLE_DENOMINATOR (expression) = determinant / gcd1;
823 LLE_CONSTANT (expression) = 0;
824 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
825 invariants);
826 LL_LINEAR_OFFSET (target_loop) = expression;
827 }
828
829 /* For each loop, compute the new bounds from H. */
830 for (i = 0; i < depth; i++)
831 {
832 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
833 target_loop = LN_LOOPS (target_nest)[i];
834 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
835 factor = LTM_MATRIX (H)[i][i];
836
837 /* First we do the lower bound. */
838 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
839
840 for (; auxillary_expr != NULL;
841 auxillary_expr = LLE_NEXT (auxillary_expr))
842 {
843 target_expr = lambda_linear_expression_new (depth, invariants);
844 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
845 depth, inverse, depth,
846 LLE_COEFFICIENTS (target_expr));
847 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
848 LLE_COEFFICIENTS (target_expr), depth,
849 factor);
850
851 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
852 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
853 LLE_INVARIANT_COEFFICIENTS (target_expr),
854 invariants);
855 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
856 LLE_INVARIANT_COEFFICIENTS (target_expr),
857 invariants, factor);
858 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
859
860 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
861 {
862 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
863 * determinant;
864 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
865 (target_expr),
866 LLE_INVARIANT_COEFFICIENTS
867 (target_expr), invariants,
868 determinant);
869 LLE_DENOMINATOR (target_expr) =
870 LLE_DENOMINATOR (target_expr) * determinant;
871 }
872 /* Find the gcd and divide by it here, rather than doing it
873 at the tree level. */
874 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
875 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
876 invariants);
877 gcd1 = gcd (gcd1, gcd2);
878 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
879 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
880 for (j = 0; j < depth; j++)
881 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
882 for (j = 0; j < invariants; j++)
883 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
884 LLE_CONSTANT (target_expr) /= gcd1;
885 LLE_DENOMINATOR (target_expr) /= gcd1;
886 /* Ignore if identical to existing bound. */
887 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
888 invariants))
889 {
890 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
891 LL_LOWER_BOUND (target_loop) = target_expr;
892 }
893 }
894 /* Now do the upper bound. */
895 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
896
897 for (; auxillary_expr != NULL;
898 auxillary_expr = LLE_NEXT (auxillary_expr))
899 {
900 target_expr = lambda_linear_expression_new (depth, invariants);
901 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
902 depth, inverse, depth,
903 LLE_COEFFICIENTS (target_expr));
904 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
905 LLE_COEFFICIENTS (target_expr), depth,
906 factor);
907 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
908 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
909 LLE_INVARIANT_COEFFICIENTS (target_expr),
910 invariants);
911 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
912 LLE_INVARIANT_COEFFICIENTS (target_expr),
913 invariants, factor);
914 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
915
916 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
917 {
918 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
919 * determinant;
920 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
921 (target_expr),
922 LLE_INVARIANT_COEFFICIENTS
923 (target_expr), invariants,
924 determinant);
925 LLE_DENOMINATOR (target_expr) =
926 LLE_DENOMINATOR (target_expr) * determinant;
927 }
928 /* Find the gcd and divide by it here, instead of at the
929 tree level. */
930 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
931 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
932 invariants);
933 gcd1 = gcd (gcd1, gcd2);
934 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
935 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
936 for (j = 0; j < depth; j++)
937 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
938 for (j = 0; j < invariants; j++)
939 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
940 LLE_CONSTANT (target_expr) /= gcd1;
941 LLE_DENOMINATOR (target_expr) /= gcd1;
942 /* Ignore if equal to existing bound. */
943 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
944 invariants))
945 {
946 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
947 LL_UPPER_BOUND (target_loop) = target_expr;
948 }
949 }
950 }
951 for (i = 0; i < depth; i++)
952 {
953 target_loop = LN_LOOPS (target_nest)[i];
954 /* If necessary, exchange the upper and lower bounds and negate
955 the step size. */
956 if (stepsigns[i] < 0)
957 {
958 LL_STEP (target_loop) *= -1;
959 tmp_expr = LL_LOWER_BOUND (target_loop);
960 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
961 LL_UPPER_BOUND (target_loop) = tmp_expr;
962 }
963 }
964 return target_nest;
965 }
966
967 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
968 result. */
969
970 static lambda_vector
lambda_compute_step_signs(lambda_trans_matrix trans,lambda_vector stepsigns)971 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
972 {
973 lambda_matrix matrix, H;
974 int size;
975 lambda_vector newsteps;
976 int i, j, factor, minimum_column;
977 int temp;
978
979 matrix = LTM_MATRIX (trans);
980 size = LTM_ROWSIZE (trans);
981 H = lambda_matrix_new (size, size);
982
983 newsteps = lambda_vector_new (size);
984 lambda_vector_copy (stepsigns, newsteps, size);
985
986 lambda_matrix_copy (matrix, H, size, size);
987
988 for (j = 0; j < size; j++)
989 {
990 lambda_vector row;
991 row = H[j];
992 for (i = j; i < size; i++)
993 if (row[i] < 0)
994 lambda_matrix_col_negate (H, size, i);
995 while (lambda_vector_first_nz (row, size, j + 1) < size)
996 {
997 minimum_column = lambda_vector_min_nz (row, size, j);
998 lambda_matrix_col_exchange (H, size, j, minimum_column);
999
1000 temp = newsteps[j];
1001 newsteps[j] = newsteps[minimum_column];
1002 newsteps[minimum_column] = temp;
1003
1004 for (i = j + 1; i < size; i++)
1005 {
1006 factor = row[i] / row[j];
1007 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1008 }
1009 }
1010 }
1011 return newsteps;
1012 }
1013
1014 /* Transform NEST according to TRANS, and return the new loopnest.
1015 This involves
1016 1. Computing a lattice base for the transformation
1017 2. Composing the dense base with the specified transformation (TRANS)
1018 3. Decomposing the combined transformation into a lower triangular portion,
1019 and a unimodular portion.
1020 4. Computing the auxiliary nest using the unimodular portion.
1021 5. Computing the target nest using the auxiliary nest and the lower
1022 triangular portion. */
1023
1024 lambda_loopnest
lambda_loopnest_transform(lambda_loopnest nest,lambda_trans_matrix trans)1025 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1026 {
1027 lambda_loopnest auxillary_nest, target_nest;
1028
1029 int depth, invariants;
1030 int i, j;
1031 lambda_lattice lattice;
1032 lambda_trans_matrix trans1, H, U;
1033 lambda_loop loop;
1034 lambda_linear_expression expression;
1035 lambda_vector origin;
1036 lambda_matrix origin_invariants;
1037 lambda_vector stepsigns;
1038 int f;
1039
1040 depth = LN_DEPTH (nest);
1041 invariants = LN_INVARIANTS (nest);
1042
1043 /* Keep track of the signs of the loop steps. */
1044 stepsigns = lambda_vector_new (depth);
1045 for (i = 0; i < depth; i++)
1046 {
1047 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1048 stepsigns[i] = 1;
1049 else
1050 stepsigns[i] = -1;
1051 }
1052
1053 /* Compute the lattice base. */
1054 lattice = lambda_lattice_compute_base (nest);
1055 trans1 = lambda_trans_matrix_new (depth, depth);
1056
1057 /* Multiply the transformation matrix by the lattice base. */
1058
1059 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1060 LTM_MATRIX (trans1), depth, depth, depth);
1061
1062 /* Compute the Hermite normal form for the new transformation matrix. */
1063 H = lambda_trans_matrix_new (depth, depth);
1064 U = lambda_trans_matrix_new (depth, depth);
1065 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1066 LTM_MATRIX (U));
1067
1068 /* Compute the auxiliary loop nest's space from the unimodular
1069 portion. */
1070 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1071
1072 /* Compute the loop step signs from the old step signs and the
1073 transformation matrix. */
1074 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1075
1076 /* Compute the target loop nest space from the auxiliary nest and
1077 the lower triangular matrix H. */
1078 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1079 origin = lambda_vector_new (depth);
1080 origin_invariants = lambda_matrix_new (depth, invariants);
1081 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1082 LATTICE_ORIGIN (lattice), origin);
1083 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1084 origin_invariants, depth, depth, invariants);
1085
1086 for (i = 0; i < depth; i++)
1087 {
1088 loop = LN_LOOPS (target_nest)[i];
1089 expression = LL_LINEAR_OFFSET (loop);
1090 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1091 f = 1;
1092 else
1093 f = LLE_DENOMINATOR (expression);
1094
1095 LLE_CONSTANT (expression) += f * origin[i];
1096
1097 for (j = 0; j < invariants; j++)
1098 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1099 f * origin_invariants[i][j];
1100 }
1101
1102 return target_nest;
1103
1104 }
1105
1106 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1107 return the new expression. DEPTH is the depth of the loopnest.
1108 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1109 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1110 is the amount we have to add/subtract from the expression because of the
1111 type of comparison it is used in. */
1112
1113 static lambda_linear_expression
gcc_tree_to_linear_expression(int depth,tree expr,VEC (tree,heap)* outerinductionvars,VEC (tree,heap)* invariants,int extra)1114 gcc_tree_to_linear_expression (int depth, tree expr,
1115 VEC(tree,heap) *outerinductionvars,
1116 VEC(tree,heap) *invariants, int extra)
1117 {
1118 lambda_linear_expression lle = NULL;
1119 switch (TREE_CODE (expr))
1120 {
1121 case INTEGER_CST:
1122 {
1123 lle = lambda_linear_expression_new (depth, 2 * depth);
1124 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1125 if (extra != 0)
1126 LLE_CONSTANT (lle) += extra;
1127
1128 LLE_DENOMINATOR (lle) = 1;
1129 }
1130 break;
1131 case SSA_NAME:
1132 {
1133 tree iv, invar;
1134 size_t i;
1135 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1136 if (iv != NULL)
1137 {
1138 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1139 {
1140 lle = lambda_linear_expression_new (depth, 2 * depth);
1141 LLE_COEFFICIENTS (lle)[i] = 1;
1142 if (extra != 0)
1143 LLE_CONSTANT (lle) = extra;
1144
1145 LLE_DENOMINATOR (lle) = 1;
1146 }
1147 }
1148 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1149 if (invar != NULL)
1150 {
1151 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1152 {
1153 lle = lambda_linear_expression_new (depth, 2 * depth);
1154 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1155 if (extra != 0)
1156 LLE_CONSTANT (lle) = extra;
1157 LLE_DENOMINATOR (lle) = 1;
1158 }
1159 }
1160 }
1161 break;
1162 default:
1163 return NULL;
1164 }
1165
1166 return lle;
1167 }
1168
1169 /* Return the depth of the loopnest NEST */
1170
1171 static int
depth_of_nest(struct loop * nest)1172 depth_of_nest (struct loop *nest)
1173 {
1174 size_t depth = 0;
1175 while (nest)
1176 {
1177 depth++;
1178 nest = nest->inner;
1179 }
1180 return depth;
1181 }
1182
1183
1184 /* Return true if OP is invariant in LOOP and all outer loops. */
1185
1186 static bool
invariant_in_loop_and_outer_loops(struct loop * loop,tree op)1187 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1188 {
1189 if (is_gimple_min_invariant (op))
1190 return true;
1191 if (loop->depth == 0)
1192 return true;
1193 if (!expr_invariant_in_loop_p (loop, op))
1194 return false;
1195 if (loop->outer
1196 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1197 return false;
1198 return true;
1199 }
1200
1201 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1202 or NULL if it could not be converted.
1203 DEPTH is the depth of the loop.
1204 INVARIANTS is a pointer to the array of loop invariants.
1205 The induction variable for this loop should be stored in the parameter
1206 OURINDUCTIONVAR.
1207 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1208
1209 static lambda_loop
gcc_loop_to_lambda_loop(struct loop * loop,int depth,VEC (tree,heap)** invariants,tree * ourinductionvar,VEC (tree,heap)* outerinductionvars,VEC (tree,heap)** lboundvars,VEC (tree,heap)** uboundvars,VEC (int,heap)** steps)1210 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1211 VEC(tree,heap) ** invariants,
1212 tree * ourinductionvar,
1213 VEC(tree,heap) * outerinductionvars,
1214 VEC(tree,heap) ** lboundvars,
1215 VEC(tree,heap) ** uboundvars,
1216 VEC(int,heap) ** steps)
1217 {
1218 tree phi;
1219 tree exit_cond;
1220 tree access_fn, inductionvar;
1221 tree step;
1222 lambda_loop lloop = NULL;
1223 lambda_linear_expression lbound, ubound;
1224 tree test;
1225 int stepint;
1226 int extra = 0;
1227 tree lboundvar, uboundvar, uboundresult;
1228
1229 /* Find out induction var and exit condition. */
1230 inductionvar = find_induction_var_from_exit_cond (loop);
1231 exit_cond = get_loop_exit_condition (loop);
1232
1233 if (inductionvar == NULL || exit_cond == NULL)
1234 {
1235 if (dump_file && (dump_flags & TDF_DETAILS))
1236 fprintf (dump_file,
1237 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1238 return NULL;
1239 }
1240
1241 test = TREE_OPERAND (exit_cond, 0);
1242
1243 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1244 {
1245
1246 if (dump_file && (dump_flags & TDF_DETAILS))
1247 fprintf (dump_file,
1248 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1249
1250 return NULL;
1251 }
1252
1253 phi = SSA_NAME_DEF_STMT (inductionvar);
1254 if (TREE_CODE (phi) != PHI_NODE)
1255 {
1256 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1257 if (!phi)
1258 {
1259
1260 if (dump_file && (dump_flags & TDF_DETAILS))
1261 fprintf (dump_file,
1262 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1263
1264 return NULL;
1265 }
1266
1267 phi = SSA_NAME_DEF_STMT (phi);
1268 if (TREE_CODE (phi) != PHI_NODE)
1269 {
1270
1271 if (dump_file && (dump_flags & TDF_DETAILS))
1272 fprintf (dump_file,
1273 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1274 return NULL;
1275 }
1276
1277 }
1278
1279 /* The induction variable name/version we want to put in the array is the
1280 result of the induction variable phi node. */
1281 *ourinductionvar = PHI_RESULT (phi);
1282 access_fn = instantiate_parameters
1283 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1284 if (access_fn == chrec_dont_know)
1285 {
1286 if (dump_file && (dump_flags & TDF_DETAILS))
1287 fprintf (dump_file,
1288 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1289
1290 return NULL;
1291 }
1292
1293 step = evolution_part_in_loop_num (access_fn, loop->num);
1294 if (!step || step == chrec_dont_know)
1295 {
1296 if (dump_file && (dump_flags & TDF_DETAILS))
1297 fprintf (dump_file,
1298 "Unable to convert loop: Cannot determine step of loop.\n");
1299
1300 return NULL;
1301 }
1302 if (TREE_CODE (step) != INTEGER_CST)
1303 {
1304
1305 if (dump_file && (dump_flags & TDF_DETAILS))
1306 fprintf (dump_file,
1307 "Unable to convert loop: Step of loop is not integer.\n");
1308 return NULL;
1309 }
1310
1311 stepint = TREE_INT_CST_LOW (step);
1312
1313 /* Only want phis for induction vars, which will have two
1314 arguments. */
1315 if (PHI_NUM_ARGS (phi) != 2)
1316 {
1317 if (dump_file && (dump_flags & TDF_DETAILS))
1318 fprintf (dump_file,
1319 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1320 return NULL;
1321 }
1322
1323 /* Another induction variable check. One argument's source should be
1324 in the loop, one outside the loop. */
1325 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1326 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1327 {
1328
1329 if (dump_file && (dump_flags & TDF_DETAILS))
1330 fprintf (dump_file,
1331 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1332
1333 return NULL;
1334 }
1335
1336 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1337 {
1338 lboundvar = PHI_ARG_DEF (phi, 1);
1339 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1340 outerinductionvars, *invariants,
1341 0);
1342 }
1343 else
1344 {
1345 lboundvar = PHI_ARG_DEF (phi, 0);
1346 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1347 outerinductionvars, *invariants,
1348 0);
1349 }
1350
1351 if (!lbound)
1352 {
1353
1354 if (dump_file && (dump_flags & TDF_DETAILS))
1355 fprintf (dump_file,
1356 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1357
1358 return NULL;
1359 }
1360 /* One part of the test may be a loop invariant tree. */
1361 VEC_reserve (tree, heap, *invariants, 1);
1362 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1363 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1364 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1365 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1366 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1367 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1368
1369 /* The non-induction variable part of the test is the upper bound variable.
1370 */
1371 if (TREE_OPERAND (test, 0) == inductionvar)
1372 uboundvar = TREE_OPERAND (test, 1);
1373 else
1374 uboundvar = TREE_OPERAND (test, 0);
1375
1376
1377 /* We only size the vectors assuming we have, at max, 2 times as many
1378 invariants as we do loops (one for each bound).
1379 This is just an arbitrary number, but it has to be matched against the
1380 code below. */
1381 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1382
1383
1384 /* We might have some leftover. */
1385 if (TREE_CODE (test) == LT_EXPR)
1386 extra = -1 * stepint;
1387 else if (TREE_CODE (test) == NE_EXPR)
1388 extra = -1 * stepint;
1389 else if (TREE_CODE (test) == GT_EXPR)
1390 extra = -1 * stepint;
1391 else if (TREE_CODE (test) == EQ_EXPR)
1392 extra = 1 * stepint;
1393
1394 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1395 outerinductionvars,
1396 *invariants, extra);
1397 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1398 build_int_cst (TREE_TYPE (uboundvar), extra));
1399 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1400 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1401 VEC_safe_push (int, heap, *steps, stepint);
1402 if (!ubound)
1403 {
1404 if (dump_file && (dump_flags & TDF_DETAILS))
1405 fprintf (dump_file,
1406 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1407 return NULL;
1408 }
1409
1410 lloop = lambda_loop_new ();
1411 LL_STEP (lloop) = stepint;
1412 LL_LOWER_BOUND (lloop) = lbound;
1413 LL_UPPER_BOUND (lloop) = ubound;
1414 return lloop;
1415 }
1416
1417 /* Given a LOOP, find the induction variable it is testing against in the exit
1418 condition. Return the induction variable if found, NULL otherwise. */
1419
1420 static tree
find_induction_var_from_exit_cond(struct loop * loop)1421 find_induction_var_from_exit_cond (struct loop *loop)
1422 {
1423 tree expr = get_loop_exit_condition (loop);
1424 tree ivarop;
1425 tree test;
1426 if (expr == NULL_TREE)
1427 return NULL_TREE;
1428 if (TREE_CODE (expr) != COND_EXPR)
1429 return NULL_TREE;
1430 test = TREE_OPERAND (expr, 0);
1431 if (!COMPARISON_CLASS_P (test))
1432 return NULL_TREE;
1433
1434 /* Find the side that is invariant in this loop. The ivar must be the other
1435 side. */
1436
1437 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1438 ivarop = TREE_OPERAND (test, 1);
1439 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1440 ivarop = TREE_OPERAND (test, 0);
1441 else
1442 return NULL_TREE;
1443
1444 if (TREE_CODE (ivarop) != SSA_NAME)
1445 return NULL_TREE;
1446 return ivarop;
1447 }
1448
1449 DEF_VEC_P(lambda_loop);
1450 DEF_VEC_ALLOC_P(lambda_loop,heap);
1451
1452 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1453 Return the new loop nest.
1454 INDUCTIONVARS is a pointer to an array of induction variables for the
1455 loopnest that will be filled in during this process.
1456 INVARIANTS is a pointer to an array of invariants that will be filled in
1457 during this process. */
1458
1459 lambda_loopnest
gcc_loopnest_to_lambda_loopnest(struct loops * currloops,struct loop * loop_nest,VEC (tree,heap)** inductionvars,VEC (tree,heap)** invariants)1460 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1461 struct loop *loop_nest,
1462 VEC(tree,heap) **inductionvars,
1463 VEC(tree,heap) **invariants)
1464 {
1465 lambda_loopnest ret = NULL;
1466 struct loop *temp = loop_nest;
1467 int depth = depth_of_nest (loop_nest);
1468 size_t i;
1469 VEC(lambda_loop,heap) *loops = NULL;
1470 VEC(tree,heap) *uboundvars = NULL;
1471 VEC(tree,heap) *lboundvars = NULL;
1472 VEC(int,heap) *steps = NULL;
1473 lambda_loop newloop;
1474 tree inductionvar = NULL;
1475 bool perfect_nest = perfect_nest_p (loop_nest);
1476
1477 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1478 goto fail;
1479
1480 while (temp)
1481 {
1482 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1483 &inductionvar, *inductionvars,
1484 &lboundvars, &uboundvars,
1485 &steps);
1486 if (!newloop)
1487 goto fail;
1488
1489 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1490 VEC_safe_push (lambda_loop, heap, loops, newloop);
1491 temp = temp->inner;
1492 }
1493
1494 if (!perfect_nest)
1495 {
1496 if (!perfect_nestify (currloops, loop_nest,
1497 lboundvars, uboundvars, steps, *inductionvars))
1498 {
1499 if (dump_file)
1500 fprintf (dump_file,
1501 "Not a perfect loop nest and couldn't convert to one.\n");
1502 goto fail;
1503 }
1504 else if (dump_file)
1505 fprintf (dump_file,
1506 "Successfully converted loop nest to perfect loop nest.\n");
1507 }
1508
1509 ret = lambda_loopnest_new (depth, 2 * depth);
1510
1511 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1512 LN_LOOPS (ret)[i] = newloop;
1513
1514 fail:
1515 VEC_free (lambda_loop, heap, loops);
1516 VEC_free (tree, heap, uboundvars);
1517 VEC_free (tree, heap, lboundvars);
1518 VEC_free (int, heap, steps);
1519
1520 return ret;
1521 }
1522
1523 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1524 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1525 inserted for us are stored. INDUCTION_VARS is the array of induction
1526 variables for the loop this LBV is from. TYPE is the tree type to use for
1527 the variables and trees involved. */
1528
1529 static tree
lbv_to_gcc_expression(lambda_body_vector lbv,tree type,VEC (tree,heap)* induction_vars,tree * stmts_to_insert)1530 lbv_to_gcc_expression (lambda_body_vector lbv,
1531 tree type, VEC(tree,heap) *induction_vars,
1532 tree *stmts_to_insert)
1533 {
1534 tree stmts, stmt, resvar, name;
1535 tree iv;
1536 size_t i;
1537 tree_stmt_iterator tsi;
1538
1539 /* Create a statement list and a linear expression temporary. */
1540 stmts = alloc_stmt_list ();
1541 resvar = create_tmp_var (type, "lbvtmp");
1542 add_referenced_var (resvar);
1543
1544 /* Start at 0. */
1545 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1546 name = make_ssa_name (resvar, stmt);
1547 TREE_OPERAND (stmt, 0) = name;
1548 tsi = tsi_last (stmts);
1549 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1550
1551 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1552 {
1553 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1554 {
1555 tree newname;
1556 tree coeffmult;
1557
1558 /* newname = coefficient * induction_variable */
1559 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1560 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1561 fold_build2 (MULT_EXPR, type, iv, coeffmult));
1562
1563 newname = make_ssa_name (resvar, stmt);
1564 TREE_OPERAND (stmt, 0) = newname;
1565 fold_stmt (&stmt);
1566 tsi = tsi_last (stmts);
1567 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1568
1569 /* name = name + newname */
1570 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1571 build2 (PLUS_EXPR, type, name, newname));
1572 name = make_ssa_name (resvar, stmt);
1573 TREE_OPERAND (stmt, 0) = name;
1574 fold_stmt (&stmt);
1575 tsi = tsi_last (stmts);
1576 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1577
1578 }
1579 }
1580
1581 /* Handle any denominator that occurs. */
1582 if (LBV_DENOMINATOR (lbv) != 1)
1583 {
1584 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1585 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1586 build2 (CEIL_DIV_EXPR, type, name, denominator));
1587 name = make_ssa_name (resvar, stmt);
1588 TREE_OPERAND (stmt, 0) = name;
1589 fold_stmt (&stmt);
1590 tsi = tsi_last (stmts);
1591 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1592 }
1593 *stmts_to_insert = stmts;
1594 return name;
1595 }
1596
1597 /* Convert a linear expression from coefficient and constant form to a
1598 gcc tree.
1599 Return the tree that represents the final value of the expression.
1600 LLE is the linear expression to convert.
1601 OFFSET is the linear offset to apply to the expression.
1602 TYPE is the tree type to use for the variables and math.
1603 INDUCTION_VARS is a vector of induction variables for the loops.
1604 INVARIANTS is a vector of the loop nest invariants.
1605 WRAP specifies what tree code to wrap the results in, if there is more than
1606 one (it is either MAX_EXPR, or MIN_EXPR).
1607 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1608 statements that need to be inserted for the linear expression. */
1609
1610 static tree
lle_to_gcc_expression(lambda_linear_expression lle,lambda_linear_expression offset,tree type,VEC (tree,heap)* induction_vars,VEC (tree,heap)* invariants,enum tree_code wrap,tree * stmts_to_insert)1611 lle_to_gcc_expression (lambda_linear_expression lle,
1612 lambda_linear_expression offset,
1613 tree type,
1614 VEC(tree,heap) *induction_vars,
1615 VEC(tree,heap) *invariants,
1616 enum tree_code wrap, tree *stmts_to_insert)
1617 {
1618 tree stmts, stmt, resvar, name;
1619 size_t i;
1620 tree_stmt_iterator tsi;
1621 tree iv, invar;
1622 VEC(tree,heap) *results = NULL;
1623
1624 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1625 name = NULL_TREE;
1626 /* Create a statement list and a linear expression temporary. */
1627 stmts = alloc_stmt_list ();
1628 resvar = create_tmp_var (type, "lletmp");
1629 add_referenced_var (resvar);
1630
1631 /* Build up the linear expressions, and put the variable representing the
1632 result in the results array. */
1633 for (; lle != NULL; lle = LLE_NEXT (lle))
1634 {
1635 /* Start at name = 0. */
1636 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1637 name = make_ssa_name (resvar, stmt);
1638 TREE_OPERAND (stmt, 0) = name;
1639 fold_stmt (&stmt);
1640 tsi = tsi_last (stmts);
1641 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1642
1643 /* First do the induction variables.
1644 at the end, name = name + all the induction variables added
1645 together. */
1646 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1647 {
1648 if (LLE_COEFFICIENTS (lle)[i] != 0)
1649 {
1650 tree newname;
1651 tree mult;
1652 tree coeff;
1653
1654 /* mult = induction variable * coefficient. */
1655 if (LLE_COEFFICIENTS (lle)[i] == 1)
1656 {
1657 mult = VEC_index (tree, induction_vars, i);
1658 }
1659 else
1660 {
1661 coeff = build_int_cst (type,
1662 LLE_COEFFICIENTS (lle)[i]);
1663 mult = fold_build2 (MULT_EXPR, type, iv, coeff);
1664 }
1665
1666 /* newname = mult */
1667 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
1668 newname = make_ssa_name (resvar, stmt);
1669 TREE_OPERAND (stmt, 0) = newname;
1670 fold_stmt (&stmt);
1671 tsi = tsi_last (stmts);
1672 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1673
1674 /* name = name + newname */
1675 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1676 build2 (PLUS_EXPR, type, name, newname));
1677 name = make_ssa_name (resvar, stmt);
1678 TREE_OPERAND (stmt, 0) = name;
1679 fold_stmt (&stmt);
1680 tsi = tsi_last (stmts);
1681 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1682 }
1683 }
1684
1685 /* Handle our invariants.
1686 At the end, we have name = name + result of adding all multiplied
1687 invariants. */
1688 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1689 {
1690 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1691 {
1692 tree newname;
1693 tree mult;
1694 tree coeff;
1695 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1696 /* mult = invariant * coefficient */
1697 if (invcoeff == 1)
1698 {
1699 mult = invar;
1700 }
1701 else
1702 {
1703 coeff = build_int_cst (type, invcoeff);
1704 mult = fold_build2 (MULT_EXPR, type, invar, coeff);
1705 }
1706
1707 /* newname = mult */
1708 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
1709 newname = make_ssa_name (resvar, stmt);
1710 TREE_OPERAND (stmt, 0) = newname;
1711 fold_stmt (&stmt);
1712 tsi = tsi_last (stmts);
1713 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1714
1715 /* name = name + newname */
1716 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1717 build2 (PLUS_EXPR, type, name, newname));
1718 name = make_ssa_name (resvar, stmt);
1719 TREE_OPERAND (stmt, 0) = name;
1720 fold_stmt (&stmt);
1721 tsi = tsi_last (stmts);
1722 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1723 }
1724 }
1725
1726 /* Now handle the constant.
1727 name = name + constant. */
1728 if (LLE_CONSTANT (lle) != 0)
1729 {
1730 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1731 build2 (PLUS_EXPR, type, name,
1732 build_int_cst (type, LLE_CONSTANT (lle))));
1733 name = make_ssa_name (resvar, stmt);
1734 TREE_OPERAND (stmt, 0) = name;
1735 fold_stmt (&stmt);
1736 tsi = tsi_last (stmts);
1737 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1738 }
1739
1740 /* Now handle the offset.
1741 name = name + linear offset. */
1742 if (LLE_CONSTANT (offset) != 0)
1743 {
1744 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1745 build2 (PLUS_EXPR, type, name,
1746 build_int_cst (type, LLE_CONSTANT (offset))));
1747 name = make_ssa_name (resvar, stmt);
1748 TREE_OPERAND (stmt, 0) = name;
1749 fold_stmt (&stmt);
1750 tsi = tsi_last (stmts);
1751 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1752 }
1753
1754 /* Handle any denominator that occurs. */
1755 if (LLE_DENOMINATOR (lle) != 1)
1756 {
1757 stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
1758 stmt = build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1759 type, name, stmt);
1760 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, stmt);
1761
1762 /* name = {ceil, floor}(name/denominator) */
1763 name = make_ssa_name (resvar, stmt);
1764 TREE_OPERAND (stmt, 0) = name;
1765 tsi = tsi_last (stmts);
1766 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1767 }
1768 VEC_safe_push (tree, heap, results, name);
1769 }
1770
1771 /* Again, out of laziness, we don't handle this case yet. It's not
1772 hard, it just hasn't occurred. */
1773 gcc_assert (VEC_length (tree, results) <= 2);
1774
1775 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1776 if (VEC_length (tree, results) > 1)
1777 {
1778 tree op1 = VEC_index (tree, results, 0);
1779 tree op2 = VEC_index (tree, results, 1);
1780 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1781 build2 (wrap, type, op1, op2));
1782 name = make_ssa_name (resvar, stmt);
1783 TREE_OPERAND (stmt, 0) = name;
1784 tsi = tsi_last (stmts);
1785 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1786 }
1787
1788 VEC_free (tree, heap, results);
1789
1790 *stmts_to_insert = stmts;
1791 return name;
1792 }
1793
1794 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1795 it, back into gcc code. This changes the
1796 loops, their induction variables, and their bodies, so that they
1797 match the transformed loopnest.
1798 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1799 loopnest.
1800 OLD_IVS is a vector of induction variables from the old loopnest.
1801 INVARIANTS is a vector of loop invariants from the old loopnest.
1802 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1803 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1804 NEW_LOOPNEST. */
1805
1806 void
lambda_loopnest_to_gcc_loopnest(struct loop * old_loopnest,VEC (tree,heap)* old_ivs,VEC (tree,heap)* invariants,lambda_loopnest new_loopnest,lambda_trans_matrix transform)1807 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1808 VEC(tree,heap) *old_ivs,
1809 VEC(tree,heap) *invariants,
1810 lambda_loopnest new_loopnest,
1811 lambda_trans_matrix transform)
1812 {
1813 struct loop *temp;
1814 size_t i = 0;
1815 size_t depth = 0;
1816 VEC(tree,heap) *new_ivs = NULL;
1817 tree oldiv;
1818
1819 block_stmt_iterator bsi;
1820
1821 if (dump_file)
1822 {
1823 transform = lambda_trans_matrix_inverse (transform);
1824 fprintf (dump_file, "Inverse of transformation matrix:\n");
1825 print_lambda_trans_matrix (dump_file, transform);
1826 }
1827 depth = depth_of_nest (old_loopnest);
1828 temp = old_loopnest;
1829
1830 while (temp)
1831 {
1832 lambda_loop newloop;
1833 basic_block bb;
1834 edge exit;
1835 tree ivvar, ivvarinced, exitcond, stmts;
1836 enum tree_code testtype;
1837 tree newupperbound, newlowerbound;
1838 lambda_linear_expression offset;
1839 tree type;
1840 bool insert_after;
1841 tree inc_stmt;
1842
1843 oldiv = VEC_index (tree, old_ivs, i);
1844 type = TREE_TYPE (oldiv);
1845
1846 /* First, build the new induction variable temporary */
1847
1848 ivvar = create_tmp_var (type, "lnivtmp");
1849 add_referenced_var (ivvar);
1850
1851 VEC_safe_push (tree, heap, new_ivs, ivvar);
1852
1853 newloop = LN_LOOPS (new_loopnest)[i];
1854
1855 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1856 cases for now. */
1857 offset = LL_LINEAR_OFFSET (newloop);
1858
1859 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1860 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1861
1862 /* Now build the new lower bounds, and insert the statements
1863 necessary to generate it on the loop preheader. */
1864 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1865 LL_LINEAR_OFFSET (newloop),
1866 type,
1867 new_ivs,
1868 invariants, MAX_EXPR, &stmts);
1869 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1870 bsi_commit_edge_inserts ();
1871 /* Build the new upper bound and insert its statements in the
1872 basic block of the exit condition */
1873 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1874 LL_LINEAR_OFFSET (newloop),
1875 type,
1876 new_ivs,
1877 invariants, MIN_EXPR, &stmts);
1878 exit = temp->single_exit;
1879 exitcond = get_loop_exit_condition (temp);
1880 bb = bb_for_stmt (exitcond);
1881 bsi = bsi_start (bb);
1882 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1883
1884 /* Create the new iv. */
1885
1886 standard_iv_increment_position (temp, &bsi, &insert_after);
1887 create_iv (newlowerbound,
1888 build_int_cst (type, LL_STEP (newloop)),
1889 ivvar, temp, &bsi, insert_after, &ivvar,
1890 NULL);
1891
1892 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1893 dominate the block containing the exit condition.
1894 So we simply create our own incremented iv to use in the new exit
1895 test, and let redundancy elimination sort it out. */
1896 inc_stmt = build2 (PLUS_EXPR, type,
1897 ivvar, build_int_cst (type, LL_STEP (newloop)));
1898 inc_stmt = build2 (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1899 inc_stmt);
1900 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1901 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1902 bsi = bsi_for_stmt (exitcond);
1903 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1904
1905 /* Replace the exit condition with the new upper bound
1906 comparison. */
1907
1908 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1909
1910 /* We want to build a conditional where true means exit the loop, and
1911 false means continue the loop.
1912 So swap the testtype if this isn't the way things are.*/
1913
1914 if (exit->flags & EDGE_FALSE_VALUE)
1915 testtype = swap_tree_comparison (testtype);
1916
1917 COND_EXPR_COND (exitcond) = build2 (testtype,
1918 boolean_type_node,
1919 newupperbound, ivvarinced);
1920 update_stmt (exitcond);
1921 VEC_replace (tree, new_ivs, i, ivvar);
1922
1923 i++;
1924 temp = temp->inner;
1925 }
1926
1927 /* Rewrite uses of the old ivs so that they are now specified in terms of
1928 the new ivs. */
1929
1930 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1931 {
1932 imm_use_iterator imm_iter;
1933 use_operand_p use_p;
1934 tree oldiv_def;
1935 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1936 tree stmt;
1937
1938 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1939 oldiv_def = PHI_RESULT (oldiv_stmt);
1940 else
1941 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1942 gcc_assert (oldiv_def != NULL_TREE);
1943
1944 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1945 {
1946 tree newiv, stmts;
1947 lambda_body_vector lbv, newlbv;
1948
1949 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1950
1951 /* Compute the new expression for the induction
1952 variable. */
1953 depth = VEC_length (tree, new_ivs);
1954 lbv = lambda_body_vector_new (depth);
1955 LBV_COEFFICIENTS (lbv)[i] = 1;
1956
1957 newlbv = lambda_body_vector_compute_new (transform, lbv);
1958
1959 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1960 new_ivs, &stmts);
1961 bsi = bsi_for_stmt (stmt);
1962 /* Insert the statements to build that
1963 expression. */
1964 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1965
1966 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1967 propagate_value (use_p, newiv);
1968 update_stmt (stmt);
1969 }
1970 }
1971 VEC_free (tree, heap, new_ivs);
1972 }
1973
1974 /* Return TRUE if this is not interesting statement from the perspective of
1975 determining if we have a perfect loop nest. */
1976
1977 static bool
not_interesting_stmt(tree stmt)1978 not_interesting_stmt (tree stmt)
1979 {
1980 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1981 loop, we would have already failed the number of exits tests. */
1982 if (TREE_CODE (stmt) == LABEL_EXPR
1983 || TREE_CODE (stmt) == GOTO_EXPR
1984 || TREE_CODE (stmt) == COND_EXPR)
1985 return true;
1986 return false;
1987 }
1988
1989 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1990
1991 static bool
phi_loop_edge_uses_def(struct loop * loop,tree phi,tree def)1992 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1993 {
1994 int i;
1995 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1996 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1997 if (PHI_ARG_DEF (phi, i) == def)
1998 return true;
1999 return false;
2000 }
2001
2002 /* Return TRUE if STMT is a use of PHI_RESULT. */
2003
2004 static bool
stmt_uses_phi_result(tree stmt,tree phi_result)2005 stmt_uses_phi_result (tree stmt, tree phi_result)
2006 {
2007 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2008
2009 /* This is conservatively true, because we only want SIMPLE bumpers
2010 of the form x +- constant for our pass. */
2011 return (use == phi_result);
2012 }
2013
2014 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2015 in-loop-edge in a phi node, and the operand it uses is the result of that
2016 phi node.
2017 I.E. i_29 = i_3 + 1
2018 i_3 = PHI (0, i_29); */
2019
2020 static bool
stmt_is_bumper_for_loop(struct loop * loop,tree stmt)2021 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2022 {
2023 tree use;
2024 tree def;
2025 imm_use_iterator iter;
2026 use_operand_p use_p;
2027
2028 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
2029 if (!def)
2030 return false;
2031
2032 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
2033 {
2034 use = USE_STMT (use_p);
2035 if (TREE_CODE (use) == PHI_NODE)
2036 {
2037 if (phi_loop_edge_uses_def (loop, use, def))
2038 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2039 return true;
2040 }
2041 }
2042 return false;
2043 }
2044
2045
2046 /* Return true if LOOP is a perfect loop nest.
2047 Perfect loop nests are those loop nests where all code occurs in the
2048 innermost loop body.
2049 If S is a program statement, then
2050
2051 i.e.
2052 DO I = 1, 20
2053 S1
2054 DO J = 1, 20
2055 ...
2056 END DO
2057 END DO
2058 is not a perfect loop nest because of S1.
2059
2060 DO I = 1, 20
2061 DO J = 1, 20
2062 S1
2063 ...
2064 END DO
2065 END DO
2066 is a perfect loop nest.
2067
2068 Since we don't have high level loops anymore, we basically have to walk our
2069 statements and ignore those that are there because the loop needs them (IE
2070 the induction variable increment, and jump back to the top of the loop). */
2071
2072 bool
perfect_nest_p(struct loop * loop)2073 perfect_nest_p (struct loop *loop)
2074 {
2075 basic_block *bbs;
2076 size_t i;
2077 tree exit_cond;
2078
2079 if (!loop->inner)
2080 return true;
2081 bbs = get_loop_body (loop);
2082 exit_cond = get_loop_exit_condition (loop);
2083 for (i = 0; i < loop->num_nodes; i++)
2084 {
2085 if (bbs[i]->loop_father == loop)
2086 {
2087 block_stmt_iterator bsi;
2088 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2089 {
2090 tree stmt = bsi_stmt (bsi);
2091 if (stmt == exit_cond
2092 || not_interesting_stmt (stmt)
2093 || stmt_is_bumper_for_loop (loop, stmt))
2094 continue;
2095 free (bbs);
2096 return false;
2097 }
2098 }
2099 }
2100 free (bbs);
2101 /* See if the inner loops are perfectly nested as well. */
2102 if (loop->inner)
2103 return perfect_nest_p (loop->inner);
2104 return true;
2105 }
2106
2107 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
2108 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2109 avoid creating duplicate temporaries and FIRSTBSI is statement
2110 iterator where new temporaries should be inserted at the beginning
2111 of body basic block. */
2112
2113 static void
replace_uses_equiv_to_x_with_y(struct loop * loop,tree stmt,tree x,int xstep,tree y,tree yinit,htab_t replacements,block_stmt_iterator * firstbsi)2114 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2115 int xstep, tree y, tree yinit,
2116 htab_t replacements,
2117 block_stmt_iterator *firstbsi)
2118 {
2119 ssa_op_iter iter;
2120 use_operand_p use_p;
2121
2122 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2123 {
2124 tree use = USE_FROM_PTR (use_p);
2125 tree step = NULL_TREE;
2126 tree scev, init, val, var, setstmt;
2127 struct tree_map *h, in;
2128 void **loc;
2129
2130 /* Replace uses of X with Y right away. */
2131 if (use == x)
2132 {
2133 SET_USE (use_p, y);
2134 continue;
2135 }
2136
2137 scev = instantiate_parameters (loop,
2138 analyze_scalar_evolution (loop, use));
2139
2140 if (scev == NULL || scev == chrec_dont_know)
2141 continue;
2142
2143 step = evolution_part_in_loop_num (scev, loop->num);
2144 if (step == NULL
2145 || step == chrec_dont_know
2146 || TREE_CODE (step) != INTEGER_CST
2147 || int_cst_value (step) != xstep)
2148 continue;
2149
2150 /* Use REPLACEMENTS hash table to cache already created
2151 temporaries. */
2152 in.hash = htab_hash_pointer (use);
2153 in.from = use;
2154 h = htab_find_with_hash (replacements, &in, in.hash);
2155 if (h != NULL)
2156 {
2157 SET_USE (use_p, h->to);
2158 continue;
2159 }
2160
2161 /* USE which has the same step as X should be replaced
2162 with a temporary set to Y + YINIT - INIT. */
2163 init = initial_condition_in_loop_num (scev, loop->num);
2164 gcc_assert (init != NULL && init != chrec_dont_know);
2165 if (TREE_TYPE (use) == TREE_TYPE (y))
2166 {
2167 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2168 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2169 if (val == y)
2170 {
2171 /* If X has the same type as USE, the same step
2172 and same initial value, it can be replaced by Y. */
2173 SET_USE (use_p, y);
2174 continue;
2175 }
2176 }
2177 else
2178 {
2179 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2180 val = fold_convert (TREE_TYPE (use), val);
2181 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2182 }
2183
2184 /* Create a temporary variable and insert it at the beginning
2185 of the loop body basic block, right after the PHI node
2186 which sets Y. */
2187 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2188 add_referenced_var (var);
2189 val = force_gimple_operand_bsi (firstbsi, val, false, NULL);
2190 setstmt = build2 (MODIFY_EXPR, void_type_node, var, val);
2191 var = make_ssa_name (var, setstmt);
2192 TREE_OPERAND (setstmt, 0) = var;
2193 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2194 update_stmt (setstmt);
2195 SET_USE (use_p, var);
2196 h = ggc_alloc (sizeof (struct tree_map));
2197 h->hash = in.hash;
2198 h->from = use;
2199 h->to = var;
2200 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2201 gcc_assert ((*(struct tree_map **)loc) == NULL);
2202 *(struct tree_map **) loc = h;
2203 }
2204 }
2205
2206 /* Return true if STMT is an exit PHI for LOOP */
2207
2208 static bool
exit_phi_for_loop_p(struct loop * loop,tree stmt)2209 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2210 {
2211
2212 if (TREE_CODE (stmt) != PHI_NODE
2213 || PHI_NUM_ARGS (stmt) != 1
2214 || bb_for_stmt (stmt) != loop->single_exit->dest)
2215 return false;
2216
2217 return true;
2218 }
2219
2220 /* Return true if STMT can be put back into the loop INNER, by
2221 copying it to the beginning of that loop and changing the uses. */
2222
2223 static bool
can_put_in_inner_loop(struct loop * inner,tree stmt)2224 can_put_in_inner_loop (struct loop *inner, tree stmt)
2225 {
2226 imm_use_iterator imm_iter;
2227 use_operand_p use_p;
2228
2229 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
2230 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2231 || !expr_invariant_in_loop_p (inner, TREE_OPERAND (stmt, 1)))
2232 return false;
2233
2234 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2235 {
2236 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2237 {
2238 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2239
2240 if (!flow_bb_inside_loop_p (inner, immbb))
2241 return false;
2242 }
2243 }
2244 return true;
2245 }
2246
2247 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2248 static bool
can_put_after_inner_loop(struct loop * loop,tree stmt)2249 can_put_after_inner_loop (struct loop *loop, tree stmt)
2250 {
2251 imm_use_iterator imm_iter;
2252 use_operand_p use_p;
2253
2254 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2255 return false;
2256
2257 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2258 {
2259 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2260 {
2261 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2262
2263 if (!dominated_by_p (CDI_DOMINATORS,
2264 immbb,
2265 loop->inner->header)
2266 && !can_put_in_inner_loop (loop->inner, stmt))
2267 return false;
2268 }
2269 }
2270 return true;
2271 }
2272
2273
2274
2275 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2276 perfect one. At the moment, we only handle imperfect nests of
2277 depth 2, where all of the statements occur after the inner loop. */
2278
2279 static bool
can_convert_to_perfect_nest(struct loop * loop)2280 can_convert_to_perfect_nest (struct loop *loop)
2281 {
2282 basic_block *bbs;
2283 tree exit_condition, phi;
2284 size_t i;
2285 block_stmt_iterator bsi;
2286 basic_block exitdest;
2287
2288 /* Can't handle triply nested+ loops yet. */
2289 if (!loop->inner || loop->inner->inner)
2290 return false;
2291
2292 bbs = get_loop_body (loop);
2293 exit_condition = get_loop_exit_condition (loop);
2294 for (i = 0; i < loop->num_nodes; i++)
2295 {
2296 if (bbs[i]->loop_father == loop)
2297 {
2298 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2299 {
2300 tree stmt = bsi_stmt (bsi);
2301
2302 if (stmt == exit_condition
2303 || not_interesting_stmt (stmt)
2304 || stmt_is_bumper_for_loop (loop, stmt))
2305 continue;
2306
2307 /* If this is a scalar operation that can be put back
2308 into the inner loop, or after the inner loop, through
2309 copying, then do so. This works on the theory that
2310 any amount of scalar code we have to reduplicate
2311 into or after the loops is less expensive that the
2312 win we get from rearranging the memory walk
2313 the loop is doing so that it has better
2314 cache behavior. */
2315 if (TREE_CODE (stmt) == MODIFY_EXPR)
2316 {
2317 use_operand_p use_a, use_b;
2318 imm_use_iterator imm_iter;
2319 ssa_op_iter op_iter, op_iter1;
2320 tree op0 = TREE_OPERAND (stmt, 0);
2321 tree scev = instantiate_parameters
2322 (loop, analyze_scalar_evolution (loop, op0));
2323
2324 /* If the IV is simple, it can be duplicated. */
2325 if (!automatically_generated_chrec_p (scev))
2326 {
2327 tree step = evolution_part_in_loop_num (scev, loop->num);
2328 if (step && step != chrec_dont_know
2329 && TREE_CODE (step) == INTEGER_CST)
2330 continue;
2331 }
2332
2333 /* The statement should not define a variable used
2334 in the inner loop. */
2335 if (TREE_CODE (op0) == SSA_NAME)
2336 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2337 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2338 == loop->inner)
2339 goto fail;
2340
2341 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2342 {
2343 tree node, op = USE_FROM_PTR (use_a);
2344
2345 /* The variables should not be used in both loops. */
2346 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2347 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2348 == loop->inner)
2349 goto fail;
2350
2351 /* The statement should not use the value of a
2352 scalar that was modified in the loop. */
2353 node = SSA_NAME_DEF_STMT (op);
2354 if (TREE_CODE (node) == PHI_NODE)
2355 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2356 {
2357 tree arg = USE_FROM_PTR (use_b);
2358
2359 if (TREE_CODE (arg) == SSA_NAME)
2360 {
2361 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2362
2363 if (bb_for_stmt (arg_stmt)->loop_father
2364 == loop->inner)
2365 goto fail;
2366 }
2367 }
2368 }
2369
2370 if (can_put_in_inner_loop (loop->inner, stmt)
2371 || can_put_after_inner_loop (loop, stmt))
2372 continue;
2373 }
2374
2375 /* Otherwise, if the bb of a statement we care about isn't
2376 dominated by the header of the inner loop, then we can't
2377 handle this case right now. This test ensures that the
2378 statement comes completely *after* the inner loop. */
2379 if (!dominated_by_p (CDI_DOMINATORS,
2380 bb_for_stmt (stmt),
2381 loop->inner->header))
2382 goto fail;
2383 }
2384 }
2385 }
2386
2387 /* We also need to make sure the loop exit only has simple copy phis in it,
2388 otherwise we don't know how to transform it into a perfect nest right
2389 now. */
2390 exitdest = loop->single_exit->dest;
2391
2392 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2393 if (PHI_NUM_ARGS (phi) != 1)
2394 goto fail;
2395
2396 free (bbs);
2397 return true;
2398
2399 fail:
2400 free (bbs);
2401 return false;
2402 }
2403
2404 /* Transform the loop nest into a perfect nest, if possible.
2405 LOOPS is the current struct loops *
2406 LOOP is the loop nest to transform into a perfect nest
2407 LBOUNDS are the lower bounds for the loops to transform
2408 UBOUNDS are the upper bounds for the loops to transform
2409 STEPS is the STEPS for the loops to transform.
2410 LOOPIVS is the induction variables for the loops to transform.
2411
2412 Basically, for the case of
2413
2414 FOR (i = 0; i < 50; i++)
2415 {
2416 FOR (j =0; j < 50; j++)
2417 {
2418 <whatever>
2419 }
2420 <some code>
2421 }
2422
2423 This function will transform it into a perfect loop nest by splitting the
2424 outer loop into two loops, like so:
2425
2426 FOR (i = 0; i < 50; i++)
2427 {
2428 FOR (j = 0; j < 50; j++)
2429 {
2430 <whatever>
2431 }
2432 }
2433
2434 FOR (i = 0; i < 50; i ++)
2435 {
2436 <some code>
2437 }
2438
2439 Return FALSE if we can't make this loop into a perfect nest. */
2440
2441 static bool
perfect_nestify(struct loops * loops,struct loop * loop,VEC (tree,heap)* lbounds,VEC (tree,heap)* ubounds,VEC (int,heap)* steps,VEC (tree,heap)* loopivs)2442 perfect_nestify (struct loops *loops,
2443 struct loop *loop,
2444 VEC(tree,heap) *lbounds,
2445 VEC(tree,heap) *ubounds,
2446 VEC(int,heap) *steps,
2447 VEC(tree,heap) *loopivs)
2448 {
2449 basic_block *bbs;
2450 tree exit_condition;
2451 tree then_label, else_label, cond_stmt;
2452 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2453 int i;
2454 block_stmt_iterator bsi, firstbsi;
2455 bool insert_after;
2456 edge e;
2457 struct loop *newloop;
2458 tree phi;
2459 tree uboundvar;
2460 tree stmt;
2461 tree oldivvar, ivvar, ivvarinced;
2462 VEC(tree,heap) *phis = NULL;
2463 htab_t replacements = NULL;
2464
2465 /* Create the new loop. */
2466 olddest = loop->single_exit->dest;
2467 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2468 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2469
2470 /* Push the exit phi nodes that we are moving. */
2471 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2472 {
2473 VEC_reserve (tree, heap, phis, 2);
2474 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2475 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2476 }
2477 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2478
2479 /* Remove the exit phis from the old basic block. Make sure to set
2480 PHI_RESULT to null so it doesn't get released. */
2481 while (phi_nodes (olddest) != NULL)
2482 {
2483 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2484 remove_phi_node (phi_nodes (olddest), NULL);
2485 }
2486
2487 /* and add them back to the new basic block. */
2488 while (VEC_length (tree, phis) != 0)
2489 {
2490 tree def;
2491 tree phiname;
2492 def = VEC_pop (tree, phis);
2493 phiname = VEC_pop (tree, phis);
2494 phi = create_phi_node (phiname, preheaderbb);
2495 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2496 }
2497 flush_pending_stmts (e);
2498 VEC_free (tree, heap, phis);
2499
2500 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2501 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2502 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2503 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2504 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2505 cond_stmt = build3 (COND_EXPR, void_type_node,
2506 build2 (NE_EXPR, boolean_type_node,
2507 integer_one_node,
2508 integer_zero_node),
2509 then_label, else_label);
2510 bsi = bsi_start (bodybb);
2511 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2512 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2513 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2514 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2515
2516 /* Update the loop structures. */
2517 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2518 newloop->header = headerbb;
2519 newloop->latch = latchbb;
2520 newloop->single_exit = e;
2521 add_bb_to_loop (latchbb, newloop);
2522 add_bb_to_loop (bodybb, newloop);
2523 add_bb_to_loop (headerbb, newloop);
2524 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2525 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2526 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2527 loop->single_exit->src);
2528 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2529 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2530 /* Create the new iv. */
2531 oldivvar = VEC_index (tree, loopivs, 0);
2532 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2533 add_referenced_var (ivvar);
2534 standard_iv_increment_position (newloop, &bsi, &insert_after);
2535 create_iv (VEC_index (tree, lbounds, 0),
2536 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2537 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2538
2539 /* Create the new upper bound. This may be not just a variable, so we copy
2540 it to one just in case. */
2541
2542 exit_condition = get_loop_exit_condition (newloop);
2543 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2544 add_referenced_var (uboundvar);
2545 stmt = build2 (MODIFY_EXPR, void_type_node, uboundvar,
2546 VEC_index (tree, ubounds, 0));
2547 uboundvar = make_ssa_name (uboundvar, stmt);
2548 TREE_OPERAND (stmt, 0) = uboundvar;
2549
2550 if (insert_after)
2551 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2552 else
2553 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2554 update_stmt (stmt);
2555 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2556 boolean_type_node,
2557 uboundvar,
2558 ivvarinced);
2559 update_stmt (exit_condition);
2560 replacements = htab_create_ggc (20, tree_map_hash,
2561 tree_map_eq, NULL);
2562 bbs = get_loop_body_in_dom_order (loop);
2563 /* Now move the statements, and replace the induction variable in the moved
2564 statements with the correct loop induction variable. */
2565 oldivvar = VEC_index (tree, loopivs, 0);
2566 firstbsi = bsi_start (bodybb);
2567 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2568 {
2569 block_stmt_iterator tobsi = bsi_last (bodybb);
2570 if (bbs[i]->loop_father == loop)
2571 {
2572 /* If this is true, we are *before* the inner loop.
2573 If this isn't true, we are *after* it.
2574
2575 The only time can_convert_to_perfect_nest returns true when we
2576 have statements before the inner loop is if they can be moved
2577 into the inner loop.
2578
2579 The only time can_convert_to_perfect_nest returns true when we
2580 have statements after the inner loop is if they can be moved into
2581 the new split loop. */
2582
2583 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2584 {
2585 block_stmt_iterator header_bsi
2586 = bsi_after_labels (loop->inner->header);
2587
2588 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2589 {
2590 tree stmt = bsi_stmt (bsi);
2591
2592 if (stmt == exit_condition
2593 || not_interesting_stmt (stmt)
2594 || stmt_is_bumper_for_loop (loop, stmt))
2595 {
2596 bsi_next (&bsi);
2597 continue;
2598 }
2599
2600 bsi_move_before (&bsi, &header_bsi);
2601 }
2602 }
2603 else
2604 {
2605 /* Note that the bsi only needs to be explicitly incremented
2606 when we don't move something, since it is automatically
2607 incremented when we do. */
2608 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2609 {
2610 ssa_op_iter i;
2611 tree n, stmt = bsi_stmt (bsi);
2612
2613 if (stmt == exit_condition
2614 || not_interesting_stmt (stmt)
2615 || stmt_is_bumper_for_loop (loop, stmt))
2616 {
2617 bsi_next (&bsi);
2618 continue;
2619 }
2620
2621 replace_uses_equiv_to_x_with_y
2622 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2623 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2624
2625 bsi_move_before (&bsi, &tobsi);
2626
2627 /* If the statement has any virtual operands, they may
2628 need to be rewired because the original loop may
2629 still reference them. */
2630 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2631 mark_sym_for_renaming (SSA_NAME_VAR (n));
2632 }
2633 }
2634
2635 }
2636 }
2637
2638 free (bbs);
2639 htab_delete (replacements);
2640 return perfect_nest_p (loop);
2641 }
2642
2643 /* Return true if TRANS is a legal transformation matrix that respects
2644 the dependence vectors in DISTS and DIRS. The conservative answer
2645 is false.
2646
2647 "Wolfe proves that a unimodular transformation represented by the
2648 matrix T is legal when applied to a loop nest with a set of
2649 lexicographically non-negative distance vectors RDG if and only if
2650 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2651 i.e.: if and only if it transforms the lexicographically positive
2652 distance vectors to lexicographically positive vectors. Note that
2653 a unimodular matrix must transform the zero vector (and only it) to
2654 the zero vector." S.Muchnick. */
2655
2656 bool
lambda_transform_legal_p(lambda_trans_matrix trans,int nb_loops,VEC (ddr_p,heap)* dependence_relations)2657 lambda_transform_legal_p (lambda_trans_matrix trans,
2658 int nb_loops,
2659 VEC (ddr_p, heap) *dependence_relations)
2660 {
2661 unsigned int i, j;
2662 lambda_vector distres;
2663 struct data_dependence_relation *ddr;
2664
2665 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2666 && LTM_ROWSIZE (trans) == nb_loops);
2667
2668 /* When there is an unknown relation in the dependence_relations, we
2669 know that it is no worth looking at this loop nest: give up. */
2670 ddr = VEC_index (ddr_p, dependence_relations, 0);
2671 if (ddr == NULL)
2672 return true;
2673 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2674 return false;
2675
2676 distres = lambda_vector_new (nb_loops);
2677
2678 /* For each distance vector in the dependence graph. */
2679 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2680 {
2681 /* Don't care about relations for which we know that there is no
2682 dependence, nor about read-read (aka. output-dependences):
2683 these data accesses can happen in any order. */
2684 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2685 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2686 continue;
2687
2688 /* Conservatively answer: "this transformation is not valid". */
2689 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2690 return false;
2691
2692 /* If the dependence could not be captured by a distance vector,
2693 conservatively answer that the transform is not valid. */
2694 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2695 return false;
2696
2697 /* Compute trans.dist_vect */
2698 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2699 {
2700 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2701 DDR_DIST_VECT (ddr, j), distres);
2702
2703 if (!lambda_vector_lexico_pos (distres, nb_loops))
2704 return false;
2705 }
2706 }
2707 return true;
2708 }
2709