1 /* Integer matrix math routines
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "lambda.h"
28
29 static void lambda_matrix_get_column (lambda_matrix, int, int,
30 lambda_vector);
31
32 /* Allocate a matrix of M rows x N cols. */
33
34 lambda_matrix
lambda_matrix_new(int m,int n)35 lambda_matrix_new (int m, int n)
36 {
37 lambda_matrix mat;
38 int i;
39
40 mat = ggc_alloc (m * sizeof (lambda_vector));
41
42 for (i = 0; i < m; i++)
43 mat[i] = lambda_vector_new (n);
44
45 return mat;
46 }
47
48 /* Copy the elements of M x N matrix MAT1 to MAT2. */
49
50 void
lambda_matrix_copy(lambda_matrix mat1,lambda_matrix mat2,int m,int n)51 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
52 int m, int n)
53 {
54 int i;
55
56 for (i = 0; i < m; i++)
57 lambda_vector_copy (mat1[i], mat2[i], n);
58 }
59
60 /* Store the N x N identity matrix in MAT. */
61
62 void
lambda_matrix_id(lambda_matrix mat,int size)63 lambda_matrix_id (lambda_matrix mat, int size)
64 {
65 int i, j;
66
67 for (i = 0; i < size; i++)
68 for (j = 0; j < size; j++)
69 mat[i][j] = (i == j) ? 1 : 0;
70 }
71
72 /* Return true if MAT is the identity matrix of SIZE */
73
74 bool
lambda_matrix_id_p(lambda_matrix mat,int size)75 lambda_matrix_id_p (lambda_matrix mat, int size)
76 {
77 int i, j;
78 for (i = 0; i < size; i++)
79 for (j = 0; j < size; j++)
80 {
81 if (i == j)
82 {
83 if (mat[i][j] != 1)
84 return false;
85 }
86 else
87 {
88 if (mat[i][j] != 0)
89 return false;
90 }
91 }
92 return true;
93 }
94
95 /* Negate the elements of the M x N matrix MAT1 and store it in MAT2. */
96
97 void
lambda_matrix_negate(lambda_matrix mat1,lambda_matrix mat2,int m,int n)98 lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
99 {
100 int i;
101
102 for (i = 0; i < m; i++)
103 lambda_vector_negate (mat1[i], mat2[i], n);
104 }
105
106 /* Take the transpose of matrix MAT1 and store it in MAT2.
107 MAT1 is an M x N matrix, so MAT2 must be N x M. */
108
109 void
lambda_matrix_transpose(lambda_matrix mat1,lambda_matrix mat2,int m,int n)110 lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
111 {
112 int i, j;
113
114 for (i = 0; i < n; i++)
115 for (j = 0; j < m; j++)
116 mat2[i][j] = mat1[j][i];
117 }
118
119
120 /* Add two M x N matrices together: MAT3 = MAT1+MAT2. */
121
122 void
lambda_matrix_add(lambda_matrix mat1,lambda_matrix mat2,lambda_matrix mat3,int m,int n)123 lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2,
124 lambda_matrix mat3, int m, int n)
125 {
126 int i;
127
128 for (i = 0; i < m; i++)
129 lambda_vector_add (mat1[i], mat2[i], mat3[i], n);
130 }
131
132 /* MAT3 = CONST1 * MAT1 + CONST2 * MAT2. All matrices are M x N. */
133
134 void
lambda_matrix_add_mc(lambda_matrix mat1,int const1,lambda_matrix mat2,int const2,lambda_matrix mat3,int m,int n)135 lambda_matrix_add_mc (lambda_matrix mat1, int const1,
136 lambda_matrix mat2, int const2,
137 lambda_matrix mat3, int m, int n)
138 {
139 int i;
140
141 for (i = 0; i < m; i++)
142 lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n);
143 }
144
145 /* Multiply two matrices: MAT3 = MAT1 * MAT2.
146 MAT1 is an M x R matrix, and MAT2 is R x N. The resulting MAT2
147 must therefore be M x N. */
148
149 void
lambda_matrix_mult(lambda_matrix mat1,lambda_matrix mat2,lambda_matrix mat3,int m,int r,int n)150 lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
151 lambda_matrix mat3, int m, int r, int n)
152 {
153
154 int i, j, k;
155
156 for (i = 0; i < m; i++)
157 {
158 for (j = 0; j < n; j++)
159 {
160 mat3[i][j] = 0;
161 for (k = 0; k < r; k++)
162 mat3[i][j] += mat1[i][k] * mat2[k][j];
163 }
164 }
165 }
166
167 /* Get column COL from the matrix MAT and store it in VEC. MAT has
168 N rows, so the length of VEC must be N. */
169
170 static void
lambda_matrix_get_column(lambda_matrix mat,int n,int col,lambda_vector vec)171 lambda_matrix_get_column (lambda_matrix mat, int n, int col,
172 lambda_vector vec)
173 {
174 int i;
175
176 for (i = 0; i < n; i++)
177 vec[i] = mat[i][col];
178 }
179
180 /* Delete rows r1 to r2 (not including r2). */
181
182 void
lambda_matrix_delete_rows(lambda_matrix mat,int rows,int from,int to)183 lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to)
184 {
185 int i;
186 int dist;
187 dist = to - from;
188
189 for (i = to; i < rows; i++)
190 mat[i - dist] = mat[i];
191
192 for (i = rows - dist; i < rows; i++)
193 mat[i] = NULL;
194 }
195
196 /* Swap rows R1 and R2 in matrix MAT. */
197
198 void
lambda_matrix_row_exchange(lambda_matrix mat,int r1,int r2)199 lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
200 {
201 lambda_vector row;
202
203 row = mat[r1];
204 mat[r1] = mat[r2];
205 mat[r2] = row;
206 }
207
208 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
209 R2 = R2 + CONST1 * R1. */
210
211 void
lambda_matrix_row_add(lambda_matrix mat,int n,int r1,int r2,int const1)212 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
213 {
214 int i;
215
216 if (const1 == 0)
217 return;
218
219 for (i = 0; i < n; i++)
220 mat[r2][i] += const1 * mat[r1][i];
221 }
222
223 /* Negate row R1 of matrix MAT which has N columns. */
224
225 void
lambda_matrix_row_negate(lambda_matrix mat,int n,int r1)226 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
227 {
228 lambda_vector_negate (mat[r1], mat[r1], n);
229 }
230
231 /* Multiply row R1 of matrix MAT with N columns by CONST1. */
232
233 void
lambda_matrix_row_mc(lambda_matrix mat,int n,int r1,int const1)234 lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1)
235 {
236 int i;
237
238 for (i = 0; i < n; i++)
239 mat[r1][i] *= const1;
240 }
241
242 /* Exchange COL1 and COL2 in matrix MAT. M is the number of rows. */
243
244 void
lambda_matrix_col_exchange(lambda_matrix mat,int m,int col1,int col2)245 lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2)
246 {
247 int i;
248 int tmp;
249 for (i = 0; i < m; i++)
250 {
251 tmp = mat[i][col1];
252 mat[i][col1] = mat[i][col2];
253 mat[i][col2] = tmp;
254 }
255 }
256
257 /* Add a multiple of column C1 of matrix MAT with M rows to column C2:
258 C2 = C2 + CONST1 * C1. */
259
260 void
lambda_matrix_col_add(lambda_matrix mat,int m,int c1,int c2,int const1)261 lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1)
262 {
263 int i;
264
265 if (const1 == 0)
266 return;
267
268 for (i = 0; i < m; i++)
269 mat[i][c2] += const1 * mat[i][c1];
270 }
271
272 /* Negate column C1 of matrix MAT which has M rows. */
273
274 void
lambda_matrix_col_negate(lambda_matrix mat,int m,int c1)275 lambda_matrix_col_negate (lambda_matrix mat, int m, int c1)
276 {
277 int i;
278
279 for (i = 0; i < m; i++)
280 mat[i][c1] *= -1;
281 }
282
283 /* Multiply column C1 of matrix MAT with M rows by CONST1. */
284
285 void
lambda_matrix_col_mc(lambda_matrix mat,int m,int c1,int const1)286 lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
287 {
288 int i;
289
290 for (i = 0; i < m; i++)
291 mat[i][c1] *= const1;
292 }
293
294 /* Compute the inverse of the N x N matrix MAT and store it in INV.
295
296 We don't _really_ compute the inverse of MAT. Instead we compute
297 det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function
298 result. This is necessary to preserve accuracy, because we are dealing
299 with integer matrices here.
300
301 The algorithm used here is a column based Gauss-Jordan elimination on MAT
302 and the identity matrix in parallel. The inverse is the result of applying
303 the same operations on the identity matrix that reduce MAT to the identity
304 matrix.
305
306 When MAT is a 2 x 2 matrix, we don't go through the whole process, because
307 it is easily inverted by inspection and it is a very common case. */
308
309 static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int);
310
311 int
lambda_matrix_inverse(lambda_matrix mat,lambda_matrix inv,int n)312 lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
313 {
314 if (n == 2)
315 {
316 int a, b, c, d, det;
317 a = mat[0][0];
318 b = mat[1][0];
319 c = mat[0][1];
320 d = mat[1][1];
321 inv[0][0] = d;
322 inv[0][1] = -c;
323 inv[1][0] = -b;
324 inv[1][1] = a;
325 det = (a * d - b * c);
326 if (det < 0)
327 {
328 det *= -1;
329 inv[0][0] *= -1;
330 inv[1][0] *= -1;
331 inv[0][1] *= -1;
332 inv[1][1] *= -1;
333 }
334 return det;
335 }
336 else
337 return lambda_matrix_inverse_hard (mat, inv, n);
338 }
339
340 /* If MAT is not a special case, invert it the hard way. */
341
342 static int
lambda_matrix_inverse_hard(lambda_matrix mat,lambda_matrix inv,int n)343 lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n)
344 {
345 lambda_vector row;
346 lambda_matrix temp;
347 int i, j;
348 int determinant;
349
350 temp = lambda_matrix_new (n, n);
351 lambda_matrix_copy (mat, temp, n, n);
352 lambda_matrix_id (inv, n);
353
354 /* Reduce TEMP to a lower triangular form, applying the same operations on
355 INV which starts as the identity matrix. N is the number of rows and
356 columns. */
357 for (j = 0; j < n; j++)
358 {
359 row = temp[j];
360
361 /* Make every element in the current row positive. */
362 for (i = j; i < n; i++)
363 if (row[i] < 0)
364 {
365 lambda_matrix_col_negate (temp, n, i);
366 lambda_matrix_col_negate (inv, n, i);
367 }
368
369 /* Sweep the upper triangle. Stop when only the diagonal element in the
370 current row is nonzero. */
371 while (lambda_vector_first_nz (row, n, j + 1) < n)
372 {
373 int min_col = lambda_vector_min_nz (row, n, j);
374 lambda_matrix_col_exchange (temp, n, j, min_col);
375 lambda_matrix_col_exchange (inv, n, j, min_col);
376
377 for (i = j + 1; i < n; i++)
378 {
379 int factor;
380
381 factor = -1 * row[i];
382 if (row[j] != 1)
383 factor /= row[j];
384
385 lambda_matrix_col_add (temp, n, j, i, factor);
386 lambda_matrix_col_add (inv, n, j, i, factor);
387 }
388 }
389 }
390
391 /* Reduce TEMP from a lower triangular to the identity matrix. Also compute
392 the determinant, which now is simply the product of the elements on the
393 diagonal of TEMP. If one of these elements is 0, the matrix has 0 as an
394 eigenvalue so it is singular and hence not invertible. */
395 determinant = 1;
396 for (j = n - 1; j >= 0; j--)
397 {
398 int diagonal;
399
400 row = temp[j];
401 diagonal = row[j];
402
403 /* The matrix must not be singular. */
404 gcc_assert (diagonal);
405
406 determinant = determinant * diagonal;
407
408 /* If the diagonal is not 1, then multiply the each row by the
409 diagonal so that the middle number is now 1, rather than a
410 rational. */
411 if (diagonal != 1)
412 {
413 for (i = 0; i < j; i++)
414 lambda_matrix_col_mc (inv, n, i, diagonal);
415 for (i = j + 1; i < n; i++)
416 lambda_matrix_col_mc (inv, n, i, diagonal);
417
418 row[j] = diagonal = 1;
419 }
420
421 /* Sweep the lower triangle column wise. */
422 for (i = j - 1; i >= 0; i--)
423 {
424 if (row[i])
425 {
426 int factor = -row[i];
427 lambda_matrix_col_add (temp, n, j, i, factor);
428 lambda_matrix_col_add (inv, n, j, i, factor);
429 }
430
431 }
432 }
433
434 return determinant;
435 }
436
437 /* Decompose a N x N matrix MAT to a product of a lower triangular H
438 and a unimodular U matrix such that MAT = H.U. N is the size of
439 the rows of MAT. */
440
441 void
lambda_matrix_hermite(lambda_matrix mat,int n,lambda_matrix H,lambda_matrix U)442 lambda_matrix_hermite (lambda_matrix mat, int n,
443 lambda_matrix H, lambda_matrix U)
444 {
445 lambda_vector row;
446 int i, j, factor, minimum_col;
447
448 lambda_matrix_copy (mat, H, n, n);
449 lambda_matrix_id (U, n);
450
451 for (j = 0; j < n; j++)
452 {
453 row = H[j];
454
455 /* Make every element of H[j][j..n] positive. */
456 for (i = j; i < n; i++)
457 {
458 if (row[i] < 0)
459 {
460 lambda_matrix_col_negate (H, n, i);
461 lambda_vector_negate (U[i], U[i], n);
462 }
463 }
464
465 /* Stop when only the diagonal element is nonzero. */
466 while (lambda_vector_first_nz (row, n, j + 1) < n)
467 {
468 minimum_col = lambda_vector_min_nz (row, n, j);
469 lambda_matrix_col_exchange (H, n, j, minimum_col);
470 lambda_matrix_row_exchange (U, j, minimum_col);
471
472 for (i = j + 1; i < n; i++)
473 {
474 factor = row[i] / row[j];
475 lambda_matrix_col_add (H, n, j, i, -1 * factor);
476 lambda_matrix_row_add (U, n, i, j, factor);
477 }
478 }
479 }
480 }
481
482 /* Given an M x N integer matrix A, this function determines an M x
483 M unimodular matrix U, and an M x N echelon matrix S such that
484 "U.A = S". This decomposition is also known as "right Hermite".
485
486 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
487 Restructuring Compilers" Utpal Banerjee. */
488
489 void
lambda_matrix_right_hermite(lambda_matrix A,int m,int n,lambda_matrix S,lambda_matrix U)490 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
491 lambda_matrix S, lambda_matrix U)
492 {
493 int i, j, i0 = 0;
494
495 lambda_matrix_copy (A, S, m, n);
496 lambda_matrix_id (U, m);
497
498 for (j = 0; j < n; j++)
499 {
500 if (lambda_vector_first_nz (S[j], m, i0) < m)
501 {
502 ++i0;
503 for (i = m - 1; i >= i0; i--)
504 {
505 while (S[i][j] != 0)
506 {
507 int sigma, factor, a, b;
508
509 a = S[i-1][j];
510 b = S[i][j];
511 sigma = (a * b < 0) ? -1: 1;
512 a = abs (a);
513 b = abs (b);
514 factor = sigma * (a / b);
515
516 lambda_matrix_row_add (S, n, i, i-1, -factor);
517 lambda_matrix_row_exchange (S, i, i-1);
518
519 lambda_matrix_row_add (U, m, i, i-1, -factor);
520 lambda_matrix_row_exchange (U, i, i-1);
521 }
522 }
523 }
524 }
525 }
526
527 /* Given an M x N integer matrix A, this function determines an M x M
528 unimodular matrix V, and an M x N echelon matrix S such that "A =
529 V.S". This decomposition is also known as "left Hermite".
530
531 Ref: Algorithm 2.2 page 36 in "Loop Transformations for
532 Restructuring Compilers" Utpal Banerjee. */
533
534 void
lambda_matrix_left_hermite(lambda_matrix A,int m,int n,lambda_matrix S,lambda_matrix V)535 lambda_matrix_left_hermite (lambda_matrix A, int m, int n,
536 lambda_matrix S, lambda_matrix V)
537 {
538 int i, j, i0 = 0;
539
540 lambda_matrix_copy (A, S, m, n);
541 lambda_matrix_id (V, m);
542
543 for (j = 0; j < n; j++)
544 {
545 if (lambda_vector_first_nz (S[j], m, i0) < m)
546 {
547 ++i0;
548 for (i = m - 1; i >= i0; i--)
549 {
550 while (S[i][j] != 0)
551 {
552 int sigma, factor, a, b;
553
554 a = S[i-1][j];
555 b = S[i][j];
556 sigma = (a * b < 0) ? -1: 1;
557 a = abs (a);
558 b = abs (b);
559 factor = sigma * (a / b);
560
561 lambda_matrix_row_add (S, n, i, i-1, -factor);
562 lambda_matrix_row_exchange (S, i, i-1);
563
564 lambda_matrix_col_add (V, m, i-1, i, factor);
565 lambda_matrix_col_exchange (V, m, i, i-1);
566 }
567 }
568 }
569 }
570 }
571
572 /* When it exists, return the first nonzero row in MAT after row
573 STARTROW. Otherwise return rowsize. */
574
575 int
lambda_matrix_first_nz_vec(lambda_matrix mat,int rowsize,int colsize,int startrow)576 lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
577 int startrow)
578 {
579 int j;
580 bool found = false;
581
582 for (j = startrow; (j < rowsize) && !found; j++)
583 {
584 if ((mat[j] != NULL)
585 && (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize))
586 found = true;
587 }
588
589 if (found)
590 return j - 1;
591 return rowsize;
592 }
593
594 /* Calculate the projection of E sub k to the null space of B. */
595
596 void
lambda_matrix_project_to_null(lambda_matrix B,int rowsize,int colsize,int k,lambda_vector x)597 lambda_matrix_project_to_null (lambda_matrix B, int rowsize,
598 int colsize, int k, lambda_vector x)
599 {
600 lambda_matrix M1, M2, M3, I;
601 int determinant;
602
603 /* Compute c(I-B^T inv(B B^T) B) e sub k. */
604
605 /* M1 is the transpose of B. */
606 M1 = lambda_matrix_new (colsize, colsize);
607 lambda_matrix_transpose (B, M1, rowsize, colsize);
608
609 /* M2 = B * B^T */
610 M2 = lambda_matrix_new (colsize, colsize);
611 lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize);
612
613 /* M3 = inv(M2) */
614 M3 = lambda_matrix_new (colsize, colsize);
615 determinant = lambda_matrix_inverse (M2, M3, rowsize);
616
617 /* M2 = B^T (inv(B B^T)) */
618 lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize);
619
620 /* M1 = B^T (inv(B B^T)) B */
621 lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize);
622 lambda_matrix_negate (M1, M1, colsize, colsize);
623
624 I = lambda_matrix_new (colsize, colsize);
625 lambda_matrix_id (I, colsize);
626
627 lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize);
628
629 lambda_matrix_get_column (M2, colsize, k - 1, x);
630
631 }
632
633 /* Multiply a vector VEC by a matrix MAT.
634 MAT is an M*N matrix, and VEC is a vector with length N. The result
635 is stored in DEST which must be a vector of length M. */
636
637 void
lambda_matrix_vector_mult(lambda_matrix matrix,int m,int n,lambda_vector vec,lambda_vector dest)638 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
639 lambda_vector vec, lambda_vector dest)
640 {
641 int i, j;
642
643 lambda_vector_clear (dest, m);
644 for (i = 0; i < m; i++)
645 for (j = 0; j < n; j++)
646 dest[i] += matrix[i][j] * vec[j];
647 }
648
649 /* Print out an M x N matrix MAT to OUTFILE. */
650
651 void
print_lambda_matrix(FILE * outfile,lambda_matrix matrix,int m,int n)652 print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n)
653 {
654 int i;
655
656 for (i = 0; i < m; i++)
657 print_lambda_vector (outfile, matrix[i], n);
658 fprintf (outfile, "\n");
659 }
660
661