1 /*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.10 2003/08/24 21:37:34 hsu Exp $
21 */
22
23 #include "opt_mrouting.h"
24
25 #ifdef PIM
26 #define _PIM_VT 1
27 #endif
28
29 #include <sys/param.h>
30 #include <sys/kernel.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/protosw.h>
34 #include <sys/socket.h>
35 #include <sys/socketvar.h>
36 #include <sys/sockio.h>
37 #include <sys/sysctl.h>
38 #include <sys/syslog.h>
39 #include <sys/systm.h>
40 #include <sys/time.h>
41 #include <sys/in_cksum.h>
42
43 #include <machine/stdarg.h>
44
45 #include <net/if.h>
46 #include <net/netisr.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <netinet/igmp.h>
50 #include <netinet/in_systm.h>
51 #include <netinet/in_var.h>
52 #include <netinet/ip.h>
53 #include "ip_mroute.h"
54 #include <netinet/ip_var.h>
55 #ifdef PIM
56 #include <netinet/pim.h>
57 #include <netinet/pim_var.h>
58 #endif
59 #ifdef ALTQ
60 #include <netinet/in_pcb.h>
61 #endif
62 #include <netinet/udp.h>
63
64 /*
65 * Control debugging code for rsvp and multicast routing code.
66 * Can only set them with the debugger.
67 */
68 static u_int rsvpdebug; /* non-zero enables debugging */
69
70 static u_int mrtdebug; /* any set of the flags below */
71
72 #define DEBUG_MFC 0x02
73 #define DEBUG_FORWARD 0x04
74 #define DEBUG_EXPIRE 0x08
75 #define DEBUG_XMIT 0x10
76 #define DEBUG_PIM 0x20
77
78 #define VIFI_INVALID ((vifi_t) -1)
79
80 #define M_HASCL(m) ((m)->m_flags & M_EXT)
81
82 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83
84 static struct mrtstat mrtstat;
85 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
86 &mrtstat, mrtstat,
87 "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
88
89 static struct mfc *mfctable[MFCTBLSIZ];
90 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
91 &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
92 "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
93
94 static struct vif viftable[MAXVIFS];
95 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
96 &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
97 "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
98
99 static u_char nexpire[MFCTBLSIZ];
100
101 struct lwkt_token mroute_token = LWKT_TOKEN_INITIALIZER(mroute_token);
102
103
104 static struct callout expire_upcalls_ch;
105 static struct callout tbf_reprocess_q_ch;
106 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
107 #define UPCALL_EXPIRE 6 /* number of timeouts */
108
109 /*
110 * Define the token bucket filter structures
111 * tbftable -> each vif has one of these for storing info
112 */
113
114 static struct tbf tbftable[MAXVIFS];
115 #define TBF_REPROCESS (hz / 100) /* 100x / second */
116
117 /*
118 * 'Interfaces' associated with decapsulator (so we can tell
119 * packets that went through it from ones that get reflected
120 * by a broken gateway). These interfaces are never linked into
121 * the system ifnet list & no routes point to them. I.e., packets
122 * can't be sent this way. They only exist as a placeholder for
123 * multicast source verification.
124 */
125 static struct ifnet multicast_decap_if[MAXVIFS];
126
127 #define ENCAP_TTL 64
128 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
129
130 /* prototype IP hdr for encapsulated packets */
131 static struct ip multicast_encap_iphdr = {
132 #if BYTE_ORDER == LITTLE_ENDIAN
133 sizeof(struct ip) >> 2, IPVERSION,
134 #else
135 IPVERSION, sizeof(struct ip) >> 2,
136 #endif
137 0, /* tos */
138 sizeof(struct ip), /* total length */
139 0, /* id */
140 0, /* frag offset */
141 ENCAP_TTL, ENCAP_PROTO,
142 0, /* checksum */
143 };
144
145 /*
146 * Bandwidth meter variables and constants
147 */
148 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
149 /*
150 * Pending timeouts are stored in a hash table, the key being the
151 * expiration time. Periodically, the entries are analysed and processed.
152 */
153 #define BW_METER_BUCKETS 1024
154 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
155 static struct callout bw_meter_ch;
156 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
157
158 /*
159 * Pending upcalls are stored in a vector which is flushed when
160 * full, or periodically
161 */
162 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
163 static u_int bw_upcalls_n; /* # of pending upcalls */
164 static struct callout bw_upcalls_ch;
165 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
166
167 #ifdef PIM
168 static struct pimstat pimstat;
169 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
170 &pimstat, pimstat,
171 "PIM Statistics (struct pimstat, netinet/pim_var.h)");
172
173 /*
174 * Note: the PIM Register encapsulation adds the following in front of a
175 * data packet:
176 *
177 * struct pim_encap_hdr {
178 * struct ip ip;
179 * struct pim_encap_pimhdr pim;
180 * }
181 *
182 */
183
184 struct pim_encap_pimhdr {
185 struct pim pim;
186 uint32_t flags;
187 };
188
189 static struct ip pim_encap_iphdr = {
190 #if BYTE_ORDER == LITTLE_ENDIAN
191 sizeof(struct ip) >> 2,
192 IPVERSION,
193 #else
194 IPVERSION,
195 sizeof(struct ip) >> 2,
196 #endif
197 0, /* tos */
198 sizeof(struct ip), /* total length */
199 0, /* id */
200 0, /* frag offset */
201 ENCAP_TTL,
202 IPPROTO_PIM,
203 0, /* checksum */
204 };
205
206 static struct pim_encap_pimhdr pim_encap_pimhdr = {
207 {
208 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
209 0, /* reserved */
210 0, /* checksum */
211 },
212 0 /* flags */
213 };
214
215 static struct ifnet multicast_register_if;
216 static vifi_t reg_vif_num = VIFI_INVALID;
217 #endif /* PIM */
218
219 /*
220 * Private variables.
221 */
222 static vifi_t numvifs;
223 static int have_encap_tunnel;
224
225 /*
226 * one-back cache used by ipip_input to locate a tunnel's vif
227 * given a datagram's src ip address.
228 */
229 static u_long last_encap_src;
230 static struct vif *last_encap_vif;
231
232 static u_long X_ip_mcast_src(int vifi);
233 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp,
234 struct mbuf *m, struct ip_moptions *imo);
235 static int X_ip_mrouter_done(void);
236 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m);
237 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m);
238 static int X_legal_vif_num(int vif);
239 static int X_mrt_ioctl(u_long cmd, caddr_t data);
240
241 static int get_sg_cnt(struct sioc_sg_req *);
242 static int get_vif_cnt(struct sioc_vif_req *);
243 static int ip_mrouter_init(struct socket *, int);
244 static int add_vif(struct vifctl *);
245 static int del_vif(vifi_t);
246 static int add_mfc(struct mfcctl2 *);
247 static int del_mfc(struct mfcctl2 *);
248 static int set_api_config(uint32_t *); /* chose API capabilities */
249 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
250 static int set_assert(int);
251 static void expire_upcalls(void *);
252 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
253 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
254 static void encap_send(struct ip *, struct vif *, struct mbuf *);
255 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
256 static void tbf_queue(struct vif *, struct mbuf *);
257 static void tbf_process_q(struct vif *);
258 static void tbf_reprocess_q(void *);
259 static int tbf_dq_sel(struct vif *, struct ip *);
260 static void tbf_send_packet(struct vif *, struct mbuf *);
261 static void tbf_update_tokens(struct vif *);
262 static int priority(struct vif *, struct ip *);
263
264 /*
265 * Bandwidth monitoring
266 */
267 static void free_bw_list(struct bw_meter *list);
268 static int add_bw_upcall(struct bw_upcall *);
269 static int del_bw_upcall(struct bw_upcall *);
270 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
271 struct timeval *nowp);
272 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
273 static void bw_upcalls_send(void);
274 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
275 static void unschedule_bw_meter(struct bw_meter *x);
276 static void bw_meter_process(void);
277 static void expire_bw_upcalls_send(void *);
278 static void expire_bw_meter_process(void *);
279
280 #ifdef PIM
281 static int pim_register_send(struct ip *, struct vif *,
282 struct mbuf *, struct mfc *);
283 static int pim_register_send_rp(struct ip *, struct vif *,
284 struct mbuf *, struct mfc *);
285 static int pim_register_send_upcall(struct ip *, struct vif *,
286 struct mbuf *, struct mfc *);
287 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
288 #endif
289
290 /*
291 * whether or not special PIM assert processing is enabled.
292 */
293 static int pim_assert;
294 /*
295 * Rate limit for assert notification messages, in usec
296 */
297 #define ASSERT_MSG_TIME 3000000
298
299 /*
300 * Kernel multicast routing API capabilities and setup.
301 * If more API capabilities are added to the kernel, they should be
302 * recorded in `mrt_api_support'.
303 */
304 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
305 MRT_MFC_FLAGS_BORDER_VIF |
306 MRT_MFC_RP |
307 MRT_MFC_BW_UPCALL);
308 static uint32_t mrt_api_config = 0;
309
310 /*
311 * Hash function for a source, group entry
312 */
313 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
314 ((g) >> 20) ^ ((g) >> 10) ^ (g))
315
316 /*
317 * Find a route for a given origin IP address and Multicast group address
318 * Type of service parameter to be added in the future!!!
319 * Statistics are updated by the caller if needed
320 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
321 */
322 static struct mfc *
mfc_find(in_addr_t o,in_addr_t g)323 mfc_find(in_addr_t o, in_addr_t g)
324 {
325 struct mfc *rt;
326
327 for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
328 if ((rt->mfc_origin.s_addr == o) &&
329 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
330 break;
331 return rt;
332 }
333
334 /*
335 * Macros to compute elapsed time efficiently
336 * Borrowed from Van Jacobson's scheduling code
337 */
338 #define TV_DELTA(a, b, delta) { \
339 int xxs; \
340 delta = (a).tv_usec - (b).tv_usec; \
341 if ((xxs = (a).tv_sec - (b).tv_sec)) { \
342 switch (xxs) { \
343 case 2: \
344 delta += 1000000; \
345 /* FALLTHROUGH */ \
346 case 1: \
347 delta += 1000000; \
348 break; \
349 default: \
350 delta += (1000000 * xxs); \
351 } \
352 } \
353 }
354
355 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
356 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
357
358 /*
359 * Handle MRT setsockopt commands to modify the multicast routing tables.
360 */
361 static int
X_ip_mrouter_set(struct socket * so,struct sockopt * sopt)362 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
363 {
364 int error, optval;
365 vifi_t vifi;
366 struct vifctl vifc;
367 struct mfcctl2 mfc;
368 struct bw_upcall bw_upcall;
369 uint32_t i;
370
371 if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
372 return EPERM;
373
374 error = 0;
375 switch (sopt->sopt_name) {
376 case MRT_INIT:
377 error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
378 if (error)
379 break;
380 error = ip_mrouter_init(so, optval);
381 break;
382
383 case MRT_DONE:
384 error = ip_mrouter_done();
385 break;
386
387 case MRT_ADD_VIF:
388 error = soopt_to_kbuf(sopt, &vifc, sizeof vifc, sizeof vifc);
389 if (error)
390 break;
391 error = add_vif(&vifc);
392 break;
393
394 case MRT_DEL_VIF:
395 error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
396 if (error)
397 break;
398 error = del_vif(vifi);
399 break;
400
401 case MRT_ADD_MFC:
402 case MRT_DEL_MFC:
403 /*
404 * select data size depending on API version.
405 */
406 if (sopt->sopt_name == MRT_ADD_MFC &&
407 mrt_api_config & MRT_API_FLAGS_ALL) {
408 error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl2),
409 sizeof(struct mfcctl2));
410 } else {
411 error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl),
412 sizeof(struct mfcctl));
413 bzero((caddr_t)&mfc + sizeof(struct mfcctl),
414 sizeof(mfc) - sizeof(struct mfcctl));
415 }
416 if (error)
417 break;
418 if (sopt->sopt_name == MRT_ADD_MFC)
419 error = add_mfc(&mfc);
420 else
421 error = del_mfc(&mfc);
422 break;
423
424 case MRT_ASSERT:
425 error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
426 if (error)
427 break;
428 set_assert(optval);
429 break;
430
431 case MRT_API_CONFIG:
432 error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
433 if (!error)
434 error = set_api_config(&i);
435 if (!error)
436 soopt_from_kbuf(sopt, &i, sizeof i);
437 break;
438
439 case MRT_ADD_BW_UPCALL:
440 case MRT_DEL_BW_UPCALL:
441 error = soopt_to_kbuf(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall);
442 if (error)
443 break;
444 if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
445 error = add_bw_upcall(&bw_upcall);
446 else
447 error = del_bw_upcall(&bw_upcall);
448 break;
449
450 default:
451 error = EOPNOTSUPP;
452 break;
453 }
454 return error;
455 }
456
457 /*
458 * Handle MRT getsockopt commands
459 */
460 static int
X_ip_mrouter_get(struct socket * so,struct sockopt * sopt)461 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
462 {
463 int error;
464 static int version = 0x0305; /* !!! why is this here? XXX */
465
466 error = 0;
467 switch (sopt->sopt_name) {
468 case MRT_VERSION:
469 soopt_from_kbuf(sopt, &version, sizeof version);
470 break;
471
472 case MRT_ASSERT:
473 soopt_from_kbuf(sopt, &pim_assert, sizeof pim_assert);
474 break;
475
476 case MRT_API_SUPPORT:
477 soopt_from_kbuf(sopt, &mrt_api_support, sizeof mrt_api_support);
478 break;
479
480 case MRT_API_CONFIG:
481 soopt_from_kbuf(sopt, &mrt_api_config, sizeof mrt_api_config);
482 break;
483
484 default:
485 error = EOPNOTSUPP;
486 break;
487 }
488 return error;
489 }
490
491 /*
492 * Handle ioctl commands to obtain information from the cache
493 */
494 static int
X_mrt_ioctl(u_long cmd,caddr_t data)495 X_mrt_ioctl(u_long cmd, caddr_t data)
496 {
497 int error = 0;
498
499 switch (cmd) {
500 case SIOCGETVIFCNT:
501 error = get_vif_cnt((struct sioc_vif_req *)data);
502 break;
503
504 case SIOCGETSGCNT:
505 error = get_sg_cnt((struct sioc_sg_req *)data);
506 break;
507
508 default:
509 error = EINVAL;
510 break;
511 }
512 return error;
513 }
514
515 /*
516 * returns the packet, byte, rpf-failure count for the source group provided
517 */
518 static int
get_sg_cnt(struct sioc_sg_req * req)519 get_sg_cnt(struct sioc_sg_req *req)
520 {
521 struct mfc *rt;
522
523 lwkt_gettoken(&mroute_token);
524 rt = mfc_find(req->src.s_addr, req->grp.s_addr);
525 if (rt == NULL) {
526 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
527 lwkt_reltoken(&mroute_token);
528 return EADDRNOTAVAIL;
529 }
530 req->pktcnt = rt->mfc_pkt_cnt;
531 req->bytecnt = rt->mfc_byte_cnt;
532 req->wrong_if = rt->mfc_wrong_if;
533 lwkt_reltoken(&mroute_token);
534 return 0;
535 }
536
537 /*
538 * returns the input and output packet and byte counts on the vif provided
539 */
540 static int
get_vif_cnt(struct sioc_vif_req * req)541 get_vif_cnt(struct sioc_vif_req *req)
542 {
543 vifi_t vifi = req->vifi;
544
545 if (vifi >= numvifs)
546 return EINVAL;
547
548 req->icount = viftable[vifi].v_pkt_in;
549 req->ocount = viftable[vifi].v_pkt_out;
550 req->ibytes = viftable[vifi].v_bytes_in;
551 req->obytes = viftable[vifi].v_bytes_out;
552
553 return 0;
554 }
555
556 /*
557 * Enable multicast routing
558 */
559 static int
ip_mrouter_init(struct socket * so,int version)560 ip_mrouter_init(struct socket *so, int version)
561 {
562 if (mrtdebug)
563 log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
564 so->so_type, so->so_proto->pr_protocol);
565
566 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
567 return EOPNOTSUPP;
568
569 if (version != 1)
570 return ENOPROTOOPT;
571
572 if (ip_mrouter != NULL)
573 return EADDRINUSE;
574
575 ip_mrouter = so;
576
577 bzero((caddr_t)mfctable, sizeof(mfctable));
578 bzero((caddr_t)nexpire, sizeof(nexpire));
579
580 pim_assert = 0;
581 bw_upcalls_n = 0;
582 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
583
584 callout_init(&expire_upcalls_ch);
585 callout_init(&bw_upcalls_ch);
586 callout_init(&bw_meter_ch);
587 callout_init(&tbf_reprocess_q_ch);
588
589 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
590 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
591 expire_bw_upcalls_send, NULL);
592 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
593
594 mrt_api_config = 0;
595
596 if (mrtdebug)
597 log(LOG_DEBUG, "ip_mrouter_init\n");
598
599 return 0;
600 }
601
602 /*
603 * Disable multicast routing
604 */
605 static int
X_ip_mrouter_done(void)606 X_ip_mrouter_done(void)
607 {
608 vifi_t vifi;
609 int i;
610 struct ifnet *ifp;
611 struct ifreq ifr;
612 struct mfc *rt;
613 struct rtdetq *rte;
614
615 lwkt_gettoken(&mroute_token);
616
617 /*
618 * For each phyint in use, disable promiscuous reception of all IP
619 * multicasts.
620 */
621 for (vifi = 0; vifi < numvifs; vifi++) {
622 if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
623 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
624 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
625
626 so->sin_len = sizeof(struct sockaddr_in);
627 so->sin_family = AF_INET;
628 so->sin_addr.s_addr = INADDR_ANY;
629 ifp = viftable[vifi].v_ifp;
630 if_allmulti(ifp, 0);
631 }
632 }
633 bzero((caddr_t)tbftable, sizeof(tbftable));
634 bzero((caddr_t)viftable, sizeof(viftable));
635 numvifs = 0;
636 pim_assert = 0;
637
638 callout_stop(&expire_upcalls_ch);
639
640 mrt_api_config = 0;
641 bw_upcalls_n = 0;
642 callout_stop(&bw_upcalls_ch);
643 callout_stop(&bw_meter_ch);
644 callout_stop(&tbf_reprocess_q_ch);
645
646 /*
647 * Free all multicast forwarding cache entries.
648 */
649 for (i = 0; i < MFCTBLSIZ; i++) {
650 for (rt = mfctable[i]; rt != NULL; ) {
651 struct mfc *nr = rt->mfc_next;
652
653 for (rte = rt->mfc_stall; rte != NULL; ) {
654 struct rtdetq *n = rte->next;
655
656 m_freem(rte->m);
657 kfree(rte, M_MRTABLE);
658 rte = n;
659 }
660 free_bw_list(rt->mfc_bw_meter);
661 kfree(rt, M_MRTABLE);
662 rt = nr;
663 }
664 }
665
666 bzero((caddr_t)mfctable, sizeof(mfctable));
667
668 bzero(bw_meter_timers, sizeof(bw_meter_timers));
669
670 /*
671 * Reset de-encapsulation cache
672 */
673 last_encap_src = INADDR_ANY;
674 last_encap_vif = NULL;
675 #ifdef PIM
676 reg_vif_num = VIFI_INVALID;
677 #endif
678 have_encap_tunnel = 0;
679
680 ip_mrouter = NULL;
681
682 lwkt_reltoken(&mroute_token);
683
684 if (mrtdebug)
685 log(LOG_DEBUG, "ip_mrouter_done\n");
686
687 return 0;
688 }
689
690 /*
691 * Set PIM assert processing global
692 */
693 static int
set_assert(int i)694 set_assert(int i)
695 {
696 if ((i != 1) && (i != 0))
697 return EINVAL;
698
699 pim_assert = i;
700
701 return 0;
702 }
703
704 /*
705 * Configure API capabilities
706 */
707 static int
set_api_config(uint32_t * apival)708 set_api_config(uint32_t *apival)
709 {
710 int i;
711
712 /*
713 * We can set the API capabilities only if it is the first operation
714 * after MRT_INIT. I.e.:
715 * - there are no vifs installed
716 * - pim_assert is not enabled
717 * - the MFC table is empty
718 */
719 if (numvifs > 0) {
720 *apival = 0;
721 return EPERM;
722 }
723 if (pim_assert) {
724 *apival = 0;
725 return EPERM;
726 }
727 for (i = 0; i < MFCTBLSIZ; i++) {
728 if (mfctable[i] != NULL) {
729 *apival = 0;
730 return EPERM;
731 }
732 }
733
734 mrt_api_config = *apival & mrt_api_support;
735 *apival = mrt_api_config;
736
737 return 0;
738 }
739
740 /*
741 * Add a vif to the vif table
742 */
743 static int
add_vif(struct vifctl * vifcp)744 add_vif(struct vifctl *vifcp)
745 {
746 struct vif *vifp = viftable + vifcp->vifc_vifi;
747 struct sockaddr_in sin = {sizeof sin, AF_INET};
748 struct ifaddr *ifa;
749 struct ifnet *ifp;
750 int error, i;
751 struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
752
753 if (vifcp->vifc_vifi >= MAXVIFS)
754 return EINVAL;
755 if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
756 return EADDRINUSE;
757 if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
758 return EADDRNOTAVAIL;
759
760 /* Find the interface with an address in AF_INET family */
761 #ifdef PIM
762 if (vifcp->vifc_flags & VIFF_REGISTER) {
763 /*
764 * XXX: Because VIFF_REGISTER does not really need a valid
765 * local interface (e.g. it could be 127.0.0.2), we don't
766 * check its address.
767 */
768 ifp = NULL;
769 } else
770 #endif
771 {
772 sin.sin_addr = vifcp->vifc_lcl_addr;
773 ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
774 if (ifa == NULL)
775 return EADDRNOTAVAIL;
776 ifp = ifa->ifa_ifp;
777 }
778
779 if (vifcp->vifc_flags & VIFF_TUNNEL) {
780 if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
781 /*
782 * An encapsulating tunnel is wanted. Tell ipip_input() to
783 * start paying attention to encapsulated packets.
784 */
785 if (have_encap_tunnel == 0) {
786 have_encap_tunnel = 1;
787 for (i = 0; i < MAXVIFS; i++) {
788 if_initname(&multicast_decap_if[i], "mdecap", i);
789 }
790 }
791 /*
792 * Set interface to fake encapsulator interface
793 */
794 ifp = &multicast_decap_if[vifcp->vifc_vifi];
795 /*
796 * Prepare cached route entry
797 */
798 bzero(&vifp->v_route, sizeof(vifp->v_route));
799 } else {
800 log(LOG_ERR, "source routed tunnels not supported\n");
801 return EOPNOTSUPP;
802 }
803 #ifdef PIM
804 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
805 ifp = &multicast_register_if;
806 if (mrtdebug)
807 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
808 (void *)&multicast_register_if);
809 if (reg_vif_num == VIFI_INVALID) {
810 if_initname(&multicast_register_if, "register_vif", 0);
811 multicast_register_if.if_flags = IFF_LOOPBACK;
812 bzero(&vifp->v_route, sizeof(vifp->v_route));
813 reg_vif_num = vifcp->vifc_vifi;
814 }
815 #endif
816 } else { /* Make sure the interface supports multicast */
817 if ((ifp->if_flags & IFF_MULTICAST) == 0)
818 return EOPNOTSUPP;
819
820 /* Enable promiscuous reception of all IP multicasts from the if */
821 lwkt_gettoken(&mroute_token);
822 error = if_allmulti(ifp, 1);
823 lwkt_reltoken(&mroute_token);
824 if (error)
825 return error;
826 }
827
828 lwkt_gettoken(&mroute_token);
829 /* define parameters for the tbf structure */
830 vifp->v_tbf = v_tbf;
831 GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
832 vifp->v_tbf->tbf_n_tok = 0;
833 vifp->v_tbf->tbf_q_len = 0;
834 vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
835 vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
836
837 vifp->v_flags = vifcp->vifc_flags;
838 vifp->v_threshold = vifcp->vifc_threshold;
839 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
840 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
841 vifp->v_ifp = ifp;
842 /* scaling up here allows division by 1024 in critical code */
843 vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
844 vifp->v_rsvp_on = 0;
845 vifp->v_rsvpd = NULL;
846 /* initialize per vif pkt counters */
847 vifp->v_pkt_in = 0;
848 vifp->v_pkt_out = 0;
849 vifp->v_bytes_in = 0;
850 vifp->v_bytes_out = 0;
851
852 /* Adjust numvifs up if the vifi is higher than numvifs */
853 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
854
855 lwkt_reltoken(&mroute_token);
856
857 if (mrtdebug)
858 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
859 vifcp->vifc_vifi,
860 (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
861 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
862 (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
863 vifcp->vifc_threshold,
864 vifcp->vifc_rate_limit);
865
866 return 0;
867 }
868
869 /*
870 * Delete a vif from the vif table
871 */
872 static int
del_vif(vifi_t vifi)873 del_vif(vifi_t vifi)
874 {
875 struct vif *vifp;
876
877 if (vifi >= numvifs)
878 return EINVAL;
879 vifp = &viftable[vifi];
880 if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
881 return EADDRNOTAVAIL;
882
883 lwkt_gettoken(&mroute_token);
884
885 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
886 if_allmulti(vifp->v_ifp, 0);
887
888 if (vifp == last_encap_vif) {
889 last_encap_vif = NULL;
890 last_encap_src = INADDR_ANY;
891 }
892
893 /*
894 * Free packets queued at the interface
895 */
896 while (vifp->v_tbf->tbf_q) {
897 struct mbuf *m = vifp->v_tbf->tbf_q;
898
899 vifp->v_tbf->tbf_q = m->m_nextpkt;
900 m_freem(m);
901 }
902
903 #ifdef PIM
904 if (vifp->v_flags & VIFF_REGISTER)
905 reg_vif_num = VIFI_INVALID;
906 #endif
907
908 bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
909 bzero((caddr_t)vifp, sizeof (*vifp));
910
911 if (mrtdebug)
912 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
913
914 /* Adjust numvifs down */
915 for (vifi = numvifs; vifi > 0; vifi--)
916 if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
917 break;
918 numvifs = vifi;
919
920 lwkt_reltoken(&mroute_token);
921
922 return 0;
923 }
924
925 /*
926 * update an mfc entry without resetting counters and S,G addresses.
927 */
928 static void
update_mfc_params(struct mfc * rt,struct mfcctl2 * mfccp)929 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
930 {
931 int i;
932
933 rt->mfc_parent = mfccp->mfcc_parent;
934 for (i = 0; i < numvifs; i++) {
935 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
936 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
937 MRT_MFC_FLAGS_ALL;
938 }
939 /* set the RP address */
940 if (mrt_api_config & MRT_MFC_RP)
941 rt->mfc_rp = mfccp->mfcc_rp;
942 else
943 rt->mfc_rp.s_addr = INADDR_ANY;
944 }
945
946 /*
947 * fully initialize an mfc entry from the parameter.
948 */
949 static void
init_mfc_params(struct mfc * rt,struct mfcctl2 * mfccp)950 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
951 {
952 rt->mfc_origin = mfccp->mfcc_origin;
953 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
954
955 update_mfc_params(rt, mfccp);
956
957 /* initialize pkt counters per src-grp */
958 rt->mfc_pkt_cnt = 0;
959 rt->mfc_byte_cnt = 0;
960 rt->mfc_wrong_if = 0;
961 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
962 }
963
964
965 /*
966 * Add an mfc entry
967 */
968 static int
add_mfc(struct mfcctl2 * mfccp)969 add_mfc(struct mfcctl2 *mfccp)
970 {
971 struct mfc *rt;
972 u_long hash;
973 struct rtdetq *rte;
974 u_short nstl;
975
976 rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
977
978 /* If an entry already exists, just update the fields */
979 if (rt) {
980 if (mrtdebug & DEBUG_MFC)
981 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
982 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
983 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
984 mfccp->mfcc_parent);
985
986 lwkt_gettoken(&mroute_token);
987 update_mfc_params(rt, mfccp);
988 lwkt_reltoken(&mroute_token);
989 return 0;
990 }
991
992 /*
993 * Find the entry for which the upcall was made and update
994 */
995 lwkt_gettoken(&mroute_token);
996 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
997 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
998
999 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1000 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1001 (rt->mfc_stall != NULL)) {
1002
1003 if (nstl++)
1004 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1005 "multiple kernel entries",
1006 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1007 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1008 mfccp->mfcc_parent, (void *)rt->mfc_stall);
1009
1010 if (mrtdebug & DEBUG_MFC)
1011 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1012 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1013 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1014 mfccp->mfcc_parent, (void *)rt->mfc_stall);
1015
1016 init_mfc_params(rt, mfccp);
1017
1018 rt->mfc_expire = 0; /* Don't clean this guy up */
1019 nexpire[hash]--;
1020
1021 /* free packets Qed at the end of this entry */
1022 for (rte = rt->mfc_stall; rte != NULL; ) {
1023 struct rtdetq *n = rte->next;
1024
1025 ip_mdq(rte->m, rte->ifp, rt, -1);
1026 m_freem(rte->m);
1027 kfree(rte, M_MRTABLE);
1028 rte = n;
1029 }
1030 rt->mfc_stall = NULL;
1031 }
1032 }
1033
1034 /*
1035 * It is possible that an entry is being inserted without an upcall
1036 */
1037 if (nstl == 0) {
1038 if (mrtdebug & DEBUG_MFC)
1039 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1040 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1041 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1042 mfccp->mfcc_parent);
1043
1044 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1045 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1046 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1047 init_mfc_params(rt, mfccp);
1048 if (rt->mfc_expire)
1049 nexpire[hash]--;
1050 rt->mfc_expire = 0;
1051 break; /* XXX */
1052 }
1053 }
1054 if (rt == NULL) { /* no upcall, so make a new entry */
1055 rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1056 if (rt == NULL) {
1057 lwkt_reltoken(&mroute_token);
1058 return ENOBUFS;
1059 }
1060
1061 init_mfc_params(rt, mfccp);
1062 rt->mfc_expire = 0;
1063 rt->mfc_stall = NULL;
1064
1065 rt->mfc_bw_meter = NULL;
1066 /* insert new entry at head of hash chain */
1067 rt->mfc_next = mfctable[hash];
1068 mfctable[hash] = rt;
1069 }
1070 }
1071 lwkt_reltoken(&mroute_token);
1072 return 0;
1073 }
1074
1075 /*
1076 * Delete an mfc entry
1077 */
1078 static int
del_mfc(struct mfcctl2 * mfccp)1079 del_mfc(struct mfcctl2 *mfccp)
1080 {
1081 struct in_addr origin;
1082 struct in_addr mcastgrp;
1083 struct mfc *rt;
1084 struct mfc **nptr;
1085 u_long hash;
1086 struct bw_meter *list;
1087
1088 origin = mfccp->mfcc_origin;
1089 mcastgrp = mfccp->mfcc_mcastgrp;
1090
1091 if (mrtdebug & DEBUG_MFC)
1092 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1093 (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1094
1095 lwkt_gettoken(&mroute_token);
1096
1097 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1098 for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1099 if (origin.s_addr == rt->mfc_origin.s_addr &&
1100 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1101 rt->mfc_stall == NULL)
1102 break;
1103 if (rt == NULL) {
1104 lwkt_reltoken(&mroute_token);
1105 return EADDRNOTAVAIL;
1106 }
1107
1108 *nptr = rt->mfc_next;
1109
1110 /*
1111 * free the bw_meter entries
1112 */
1113 list = rt->mfc_bw_meter;
1114 rt->mfc_bw_meter = NULL;
1115 lwkt_reltoken(&mroute_token);
1116
1117 kfree(rt, M_MRTABLE);
1118 free_bw_list(list);
1119
1120 return 0;
1121 }
1122
1123 /*
1124 * Send a message to mrouted on the multicast routing socket
1125 */
1126 static int
socket_send(struct socket * s,struct mbuf * mm,struct sockaddr_in * src)1127 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1128 {
1129 if (s) {
1130 if (ssb_appendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1131 sorwakeup(s);
1132 return 0;
1133 } else
1134 soroverflow(s);
1135 }
1136 m_freem(mm);
1137 return -1;
1138 }
1139
1140 /*
1141 * IP multicast forwarding function. This function assumes that the packet
1142 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1143 * pointed to by "ifp", and the packet is to be relayed to other networks
1144 * that have members of the packet's destination IP multicast group.
1145 *
1146 * The packet is returned unscathed to the caller, unless it is
1147 * erroneous, in which case a non-zero return value tells the caller to
1148 * discard it.
1149 */
1150
1151 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1152
1153 static int
X_ip_mforward(struct ip * ip,struct ifnet * ifp,struct mbuf * m,struct ip_moptions * imo)1154 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1155 struct ip_moptions *imo)
1156 {
1157 struct mfc *rt;
1158 vifi_t vifi;
1159
1160 if (mrtdebug & DEBUG_FORWARD)
1161 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1162 (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1163 (void *)ifp);
1164
1165 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1166 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1167 /*
1168 * Packet arrived via a physical interface or
1169 * an encapsulated tunnel or a register_vif.
1170 */
1171 } else {
1172 /*
1173 * Packet arrived through a source-route tunnel.
1174 * Source-route tunnels are no longer supported.
1175 */
1176 static time_t last_log;
1177 if (last_log != time_uptime) {
1178 last_log = time_uptime;
1179 log(LOG_ERR,
1180 "ip_mforward: received source-routed packet from %lx\n",
1181 (u_long)ntohl(ip->ip_src.s_addr));
1182 }
1183 return 1;
1184 }
1185
1186 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1187 if (ip->ip_ttl < 255)
1188 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1189 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1190 struct vif *vifp = viftable + vifi;
1191
1192 kprintf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1193 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1194 vifi,
1195 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1196 vifp->v_ifp->if_xname);
1197 }
1198 return ip_mdq(m, ifp, NULL, vifi);
1199 }
1200 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1201 kprintf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1202 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1203 if (!imo)
1204 kprintf("In fact, no options were specified at all\n");
1205 }
1206
1207 /*
1208 * Don't forward a packet with time-to-live of zero or one,
1209 * or a packet destined to a local-only group.
1210 */
1211 if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1212 return 0;
1213
1214 /*
1215 * Determine forwarding vifs from the forwarding cache table
1216 */
1217 lwkt_gettoken(&mroute_token);
1218 ++mrtstat.mrts_mfc_lookups;
1219 rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1220
1221 /* Entry exists, so forward if necessary */
1222 if (rt != NULL) {
1223 int ipres = ip_mdq(m, ifp, rt, -1);
1224 lwkt_reltoken(&mroute_token);
1225 return ipres;
1226 } else {
1227 /*
1228 * If we don't have a route for packet's origin,
1229 * Make a copy of the packet & send message to routing daemon
1230 */
1231
1232 struct mbuf *mb0;
1233 struct rtdetq *rte;
1234 u_long hash;
1235 int hlen = ip->ip_hl << 2;
1236
1237 ++mrtstat.mrts_mfc_misses;
1238
1239 mrtstat.mrts_no_route++;
1240 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1241 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1242 (u_long)ntohl(ip->ip_src.s_addr),
1243 (u_long)ntohl(ip->ip_dst.s_addr));
1244
1245 /*
1246 * Allocate mbufs early so that we don't do extra work if we are
1247 * just going to fail anyway. Make sure to pullup the header so
1248 * that other people can't step on it.
1249 */
1250 rte = kmalloc((sizeof *rte), M_MRTABLE, M_INTWAIT | M_NULLOK);
1251 if (rte == NULL) {
1252 lwkt_reltoken(&mroute_token);
1253 return ENOBUFS;
1254 }
1255
1256 mb0 = m_copypacket(m, M_NOWAIT);
1257 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1258 mb0 = m_pullup(mb0, hlen);
1259 if (mb0 == NULL) {
1260 kfree(rte, M_MRTABLE);
1261 lwkt_reltoken(&mroute_token);
1262 return ENOBUFS;
1263 }
1264
1265 /* is there an upcall waiting for this flow ? */
1266 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1267 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1268 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1269 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1270 (rt->mfc_stall != NULL))
1271 break;
1272 }
1273
1274 if (rt == NULL) {
1275 int i;
1276 struct igmpmsg *im;
1277 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1278 struct mbuf *mm;
1279
1280 /*
1281 * Locate the vifi for the incoming interface for this packet.
1282 * If none found, drop packet.
1283 */
1284 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1285 ;
1286 if (vifi >= numvifs) /* vif not found, drop packet */
1287 goto non_fatal;
1288
1289 /* no upcall, so make a new entry */
1290 rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1291 if (rt == NULL)
1292 goto fail;
1293
1294 /* Make a copy of the header to send to the user level process */
1295 mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1296 if (mm == NULL)
1297 goto fail1;
1298
1299 /*
1300 * Send message to routing daemon to install
1301 * a route into the kernel table
1302 */
1303
1304 im = mtod(mm, struct igmpmsg *);
1305 im->im_msgtype = IGMPMSG_NOCACHE;
1306 im->im_mbz = 0;
1307 im->im_vif = vifi;
1308
1309 mrtstat.mrts_upcalls++;
1310
1311 k_igmpsrc.sin_addr = ip->ip_src;
1312 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1313 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1314 ++mrtstat.mrts_upq_sockfull;
1315 fail1:
1316 kfree(rt, M_MRTABLE);
1317 fail:
1318 kfree(rte, M_MRTABLE);
1319 m_freem(mb0);
1320 lwkt_reltoken(&mroute_token);
1321 return ENOBUFS;
1322 }
1323
1324 /* insert new entry at head of hash chain */
1325 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1326 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1327 rt->mfc_expire = UPCALL_EXPIRE;
1328 nexpire[hash]++;
1329 for (i = 0; i < numvifs; i++) {
1330 rt->mfc_ttls[i] = 0;
1331 rt->mfc_flags[i] = 0;
1332 }
1333 rt->mfc_parent = -1;
1334
1335 rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1336
1337 rt->mfc_bw_meter = NULL;
1338
1339 /* link into table */
1340 rt->mfc_next = mfctable[hash];
1341 mfctable[hash] = rt;
1342 rt->mfc_stall = rte;
1343
1344 } else {
1345 /* determine if q has overflowed */
1346 int npkts = 0;
1347 struct rtdetq **p;
1348
1349 /*
1350 * XXX ouch! we need to append to the list, but we
1351 * only have a pointer to the front, so we have to
1352 * scan the entire list every time.
1353 */
1354 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1355 npkts++;
1356
1357 if (npkts > MAX_UPQ) {
1358 mrtstat.mrts_upq_ovflw++;
1359 non_fatal:
1360 kfree(rte, M_MRTABLE);
1361 m_freem(mb0);
1362 lwkt_reltoken(&mroute_token);
1363 return 0;
1364 }
1365
1366 /* Add this entry to the end of the queue */
1367 *p = rte;
1368 }
1369
1370 rte->m = mb0;
1371 rte->ifp = ifp;
1372 rte->next = NULL;
1373
1374 lwkt_reltoken(&mroute_token);
1375 return 0;
1376 }
1377 }
1378
1379 /*
1380 * Clean up the cache entry if upcall is not serviced
1381 */
1382 static void
expire_upcalls(void * unused)1383 expire_upcalls(void *unused)
1384 {
1385 struct rtdetq *rte;
1386 struct mfc *mfc, **nptr;
1387 int i;
1388
1389 lwkt_gettoken(&mroute_token);
1390 for (i = 0; i < MFCTBLSIZ; i++) {
1391 if (nexpire[i] == 0)
1392 continue;
1393 nptr = &mfctable[i];
1394 for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1395 /*
1396 * Skip real cache entries
1397 * Make sure it wasn't marked to not expire (shouldn't happen)
1398 * If it expires now
1399 */
1400 if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1401 --mfc->mfc_expire == 0) {
1402 if (mrtdebug & DEBUG_EXPIRE)
1403 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1404 (u_long)ntohl(mfc->mfc_origin.s_addr),
1405 (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1406 /*
1407 * drop all the packets
1408 * free the mbuf with the pkt, if, timing info
1409 */
1410 for (rte = mfc->mfc_stall; rte; ) {
1411 struct rtdetq *n = rte->next;
1412
1413 m_freem(rte->m);
1414 kfree(rte, M_MRTABLE);
1415 rte = n;
1416 }
1417 ++mrtstat.mrts_cache_cleanups;
1418 nexpire[i]--;
1419
1420 /*
1421 * free the bw_meter entries
1422 */
1423 while (mfc->mfc_bw_meter != NULL) {
1424 struct bw_meter *x = mfc->mfc_bw_meter;
1425
1426 mfc->mfc_bw_meter = x->bm_mfc_next;
1427 kfree(x, M_BWMETER);
1428 }
1429
1430 *nptr = mfc->mfc_next;
1431 kfree(mfc, M_MRTABLE);
1432 } else {
1433 nptr = &mfc->mfc_next;
1434 }
1435 }
1436 }
1437 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1438 lwkt_reltoken(&mroute_token);
1439 }
1440
1441 /*
1442 * Packet forwarding routine once entry in the cache is made
1443 */
1444 static int
ip_mdq(struct mbuf * m,struct ifnet * ifp,struct mfc * rt,vifi_t xmt_vif)1445 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1446 {
1447 struct ip *ip = mtod(m, struct ip *);
1448 vifi_t vifi;
1449 int plen = ntohs(ip->ip_len);
1450
1451 /*
1452 * Macro to send packet on vif. Since RSVP packets don't get counted on
1453 * input, they shouldn't get counted on output, so statistics keeping is
1454 * separate.
1455 */
1456 #define MC_SEND(ip,vifp,m) { \
1457 if ((vifp)->v_flags & VIFF_TUNNEL) \
1458 encap_send((ip), (vifp), (m)); \
1459 else \
1460 phyint_send((ip), (vifp), (m)); \
1461 }
1462
1463 /*
1464 * If xmt_vif is not -1, send on only the requested vif.
1465 *
1466 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1467 */
1468 if (xmt_vif < numvifs) {
1469 #ifdef PIM
1470 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1471 pim_register_send(ip, viftable + xmt_vif, m, rt);
1472 else
1473 #endif
1474 MC_SEND(ip, viftable + xmt_vif, m);
1475 return 1;
1476 }
1477
1478 /*
1479 * Don't forward if it didn't arrive from the parent vif for its origin.
1480 */
1481 vifi = rt->mfc_parent;
1482 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1483 /* came in the wrong interface */
1484 if (mrtdebug & DEBUG_FORWARD)
1485 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1486 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1487 ++mrtstat.mrts_wrong_if;
1488 ++rt->mfc_wrong_if;
1489 /*
1490 * If we are doing PIM assert processing, send a message
1491 * to the routing daemon.
1492 *
1493 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1494 * can complete the SPT switch, regardless of the type
1495 * of the iif (broadcast media, GRE tunnel, etc).
1496 */
1497 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1498 struct timeval now;
1499 u_long delta;
1500
1501 #ifdef PIM
1502 if (ifp == &multicast_register_if)
1503 pimstat.pims_rcv_registers_wrongiif++;
1504 #endif
1505
1506 /* Get vifi for the incoming packet */
1507 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1508 ;
1509 if (vifi >= numvifs)
1510 return 0; /* The iif is not found: ignore the packet. */
1511
1512 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1513 return 0; /* WRONGVIF disabled: ignore the packet */
1514
1515 GET_TIME(now);
1516
1517 TV_DELTA(rt->mfc_last_assert, now, delta);
1518
1519 if (delta > ASSERT_MSG_TIME) {
1520 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1521 struct igmpmsg *im;
1522 int hlen = ip->ip_hl << 2;
1523 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1524
1525 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1526 mm = m_pullup(mm, hlen);
1527 if (mm == NULL)
1528 return ENOBUFS;
1529
1530 rt->mfc_last_assert = now;
1531
1532 im = mtod(mm, struct igmpmsg *);
1533 im->im_msgtype = IGMPMSG_WRONGVIF;
1534 im->im_mbz = 0;
1535 im->im_vif = vifi;
1536
1537 mrtstat.mrts_upcalls++;
1538
1539 k_igmpsrc.sin_addr = im->im_src;
1540 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1541 log(LOG_WARNING,
1542 "ip_mforward: ip_mrouter socket queue full\n");
1543 ++mrtstat.mrts_upq_sockfull;
1544 return ENOBUFS;
1545 }
1546 }
1547 }
1548 return 0;
1549 }
1550
1551 /* If I sourced this packet, it counts as output, else it was input. */
1552 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1553 viftable[vifi].v_pkt_out++;
1554 viftable[vifi].v_bytes_out += plen;
1555 } else {
1556 viftable[vifi].v_pkt_in++;
1557 viftable[vifi].v_bytes_in += plen;
1558 }
1559 rt->mfc_pkt_cnt++;
1560 rt->mfc_byte_cnt += plen;
1561
1562 /*
1563 * For each vif, decide if a copy of the packet should be forwarded.
1564 * Forward if:
1565 * - the ttl exceeds the vif's threshold
1566 * - there are group members downstream on interface
1567 */
1568 for (vifi = 0; vifi < numvifs; vifi++)
1569 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1570 viftable[vifi].v_pkt_out++;
1571 viftable[vifi].v_bytes_out += plen;
1572 #ifdef PIM
1573 if (viftable[vifi].v_flags & VIFF_REGISTER)
1574 pim_register_send(ip, viftable + vifi, m, rt);
1575 else
1576 #endif
1577 MC_SEND(ip, viftable+vifi, m);
1578 }
1579
1580 /*
1581 * Perform upcall-related bw measuring.
1582 */
1583 if (rt->mfc_bw_meter != NULL) {
1584 struct bw_meter *x;
1585 struct timeval now;
1586
1587 GET_TIME(now);
1588 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1589 bw_meter_receive_packet(x, plen, &now);
1590 }
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * check if a vif number is legal/ok. This is used by ip_output.
1597 */
1598 static int
X_legal_vif_num(int vif)1599 X_legal_vif_num(int vif)
1600 {
1601 return (vif >= 0 && vif < numvifs);
1602 }
1603
1604 /*
1605 * Return the local address used by this vif
1606 */
1607 static u_long
X_ip_mcast_src(int vifi)1608 X_ip_mcast_src(int vifi)
1609 {
1610 if (vifi >= 0 && vifi < numvifs)
1611 return viftable[vifi].v_lcl_addr.s_addr;
1612 else
1613 return INADDR_ANY;
1614 }
1615
1616 static void
phyint_send(struct ip * ip,struct vif * vifp,struct mbuf * m)1617 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1618 {
1619 struct mbuf *mb_copy;
1620 int hlen = ip->ip_hl << 2;
1621
1622 /*
1623 * Make a new reference to the packet; make sure that
1624 * the IP header is actually copied, not just referenced,
1625 * so that ip_output() only scribbles on the copy.
1626 */
1627 mb_copy = m_copypacket(m, M_NOWAIT);
1628 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1629 mb_copy = m_pullup(mb_copy, hlen);
1630 if (mb_copy == NULL)
1631 return;
1632
1633 if (vifp->v_rate_limit == 0)
1634 tbf_send_packet(vifp, mb_copy);
1635 else
1636 tbf_control(vifp, mb_copy,
1637 mtod(mb_copy, struct ip *), ntohs(ip->ip_len));
1638 }
1639
1640 static void
encap_send(struct ip * ip,struct vif * vifp,struct mbuf * m)1641 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1642 {
1643 struct mbuf *mb_copy;
1644 struct ip *ip_copy;
1645 int i, len = ntohs(ip->ip_len);
1646
1647 /* Take care of delayed checksums */
1648 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1649 in_delayed_cksum(m);
1650 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1651 }
1652
1653 /*
1654 * copy the old packet & pullup its IP header into the
1655 * new mbuf so we can modify it. Try to fill the new
1656 * mbuf since if we don't the ethernet driver will.
1657 */
1658 MGETHDR(mb_copy, M_NOWAIT, MT_HEADER);
1659 if (mb_copy == NULL)
1660 return;
1661 mb_copy->m_data += max_linkhdr;
1662 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1663
1664 if ((mb_copy->m_next = m_copypacket(m, M_NOWAIT)) == NULL) {
1665 m_freem(mb_copy);
1666 return;
1667 }
1668 i = MHLEN - M_LEADINGSPACE(mb_copy);
1669 if (i > len)
1670 i = len;
1671 mb_copy = m_pullup(mb_copy, i);
1672 if (mb_copy == NULL)
1673 return;
1674 mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1675
1676 /*
1677 * fill in the encapsulating IP header.
1678 */
1679 ip_copy = mtod(mb_copy, struct ip *);
1680 *ip_copy = multicast_encap_iphdr;
1681 ip_copy->ip_id = ip_newid();
1682 ip_copy->ip_len = htons(ntohs(ip_copy->ip_len) + len);
1683 ip_copy->ip_src = vifp->v_lcl_addr;
1684 ip_copy->ip_dst = vifp->v_rmt_addr;
1685
1686 /*
1687 * turn the encapsulated IP header back into a valid one.
1688 */
1689 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1690 --ip->ip_ttl;
1691 ip->ip_sum = 0;
1692 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1693 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1694 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1695
1696 if (vifp->v_rate_limit == 0)
1697 tbf_send_packet(vifp, mb_copy);
1698 else
1699 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1700 }
1701
1702 /*
1703 * De-encapsulate a packet and feed it back through ip input (this
1704 * routine is called whenever IP gets a packet with proto type
1705 * ENCAP_PROTO and a local destination address).
1706 *
1707 * This is similar to mroute_encapcheck() + mroute_encap_input() in -current.
1708 */
1709 static int
X_ipip_input(struct mbuf ** mp,int * offp,int proto)1710 X_ipip_input(struct mbuf **mp, int *offp, int proto)
1711 {
1712 struct mbuf *m = *mp;
1713 struct ip *ip = mtod(m, struct ip *);
1714 int hlen = ip->ip_hl << 2;
1715
1716 if (!have_encap_tunnel) {
1717 rip_input(mp, offp, proto);
1718 return(IPPROTO_DONE);
1719 }
1720 *mp = NULL;
1721
1722 /*
1723 * dump the packet if it's not to a multicast destination or if
1724 * we don't have an encapsulating tunnel with the source.
1725 * Note: This code assumes that the remote site IP address
1726 * uniquely identifies the tunnel (i.e., that this site has
1727 * at most one tunnel with the remote site).
1728 */
1729 if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) {
1730 ++mrtstat.mrts_bad_tunnel;
1731 m_freem(m);
1732 return(IPPROTO_DONE);
1733 }
1734 if (ip->ip_src.s_addr != last_encap_src) {
1735 struct vif *vifp = viftable;
1736 struct vif *vife = vifp + numvifs;
1737
1738 last_encap_src = ip->ip_src.s_addr;
1739 last_encap_vif = NULL;
1740 for ( ; vifp < vife; ++vifp)
1741 if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1742 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1743 == VIFF_TUNNEL)
1744 last_encap_vif = vifp;
1745 break;
1746 }
1747 }
1748 if (last_encap_vif == NULL) {
1749 last_encap_src = INADDR_ANY;
1750 mrtstat.mrts_cant_tunnel++; /*XXX*/
1751 m_freem(m);
1752 if (mrtdebug)
1753 log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1754 (u_long)ntohl(ip->ip_src.s_addr));
1755 return(IPPROTO_DONE);
1756 }
1757
1758 if (hlen > sizeof(struct ip))
1759 ip_stripoptions(m);
1760 m->m_data += sizeof(struct ip);
1761 m->m_len -= sizeof(struct ip);
1762 m->m_pkthdr.len -= sizeof(struct ip);
1763 m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
1764
1765 netisr_queue(NETISR_IP, m);
1766 return(IPPROTO_DONE);
1767 }
1768
1769 /*
1770 * Token bucket filter module
1771 */
1772
1773 static void
tbf_control(struct vif * vifp,struct mbuf * m,struct ip * ip,u_long p_len)1774 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1775 {
1776 struct tbf *t = vifp->v_tbf;
1777
1778 if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */
1779 mrtstat.mrts_pkt2large++;
1780 m_freem(m);
1781 return;
1782 }
1783
1784 tbf_update_tokens(vifp);
1785
1786 if (t->tbf_q_len == 0) { /* queue empty... */
1787 if (p_len <= t->tbf_n_tok) { /* send packet if enough tokens */
1788 t->tbf_n_tok -= p_len;
1789 tbf_send_packet(vifp, m);
1790 } else { /* no, queue packet and try later */
1791 tbf_queue(vifp, m);
1792 callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1793 tbf_reprocess_q, vifp);
1794 }
1795 } else if (t->tbf_q_len < t->tbf_max_q_len) {
1796 /* finite queue length, so queue pkts and process queue */
1797 tbf_queue(vifp, m);
1798 tbf_process_q(vifp);
1799 } else {
1800 /* queue full, try to dq and queue and process */
1801 if (!tbf_dq_sel(vifp, ip)) {
1802 mrtstat.mrts_q_overflow++;
1803 m_freem(m);
1804 } else {
1805 tbf_queue(vifp, m);
1806 tbf_process_q(vifp);
1807 }
1808 }
1809 }
1810
1811 /*
1812 * adds a packet to the queue at the interface
1813 */
1814 static void
tbf_queue(struct vif * vifp,struct mbuf * m)1815 tbf_queue(struct vif *vifp, struct mbuf *m)
1816 {
1817 struct tbf *t = vifp->v_tbf;
1818
1819 lwkt_gettoken(&mroute_token);
1820
1821 if (t->tbf_t == NULL) /* Queue was empty */
1822 t->tbf_q = m;
1823 else /* Insert at tail */
1824 t->tbf_t->m_nextpkt = m;
1825
1826 t->tbf_t = m; /* Set new tail pointer */
1827
1828 #ifdef DIAGNOSTIC
1829 /* Make sure we didn't get fed a bogus mbuf */
1830 if (m->m_nextpkt)
1831 panic("tbf_queue: m_nextpkt");
1832 #endif
1833 m->m_nextpkt = NULL;
1834
1835 t->tbf_q_len++;
1836
1837 lwkt_reltoken(&mroute_token);
1838 }
1839
1840 /*
1841 * processes the queue at the interface
1842 */
1843 static void
tbf_process_q(struct vif * vifp)1844 tbf_process_q(struct vif *vifp)
1845 {
1846 struct tbf *t = vifp->v_tbf;
1847
1848 lwkt_gettoken(&mroute_token);
1849
1850 /* loop through the queue at the interface and send as many packets
1851 * as possible
1852 */
1853 while (t->tbf_q_len > 0) {
1854 struct mbuf *m = t->tbf_q;
1855 int len = ntohs(mtod(m, struct ip *)->ip_len);
1856
1857 /* determine if the packet can be sent */
1858 if (len > t->tbf_n_tok) /* not enough tokens, we are done */
1859 break;
1860 /* ok, reduce no of tokens, dequeue and send the packet. */
1861 t->tbf_n_tok -= len;
1862
1863 t->tbf_q = m->m_nextpkt;
1864 if (--t->tbf_q_len == 0)
1865 t->tbf_t = NULL;
1866
1867 m->m_nextpkt = NULL;
1868 tbf_send_packet(vifp, m);
1869 }
1870 lwkt_reltoken(&mroute_token);
1871 }
1872
1873 static void
tbf_reprocess_q(void * xvifp)1874 tbf_reprocess_q(void *xvifp)
1875 {
1876 struct vif *vifp = xvifp;
1877
1878 if (ip_mrouter == NULL)
1879 return;
1880 tbf_update_tokens(vifp);
1881 tbf_process_q(vifp);
1882 if (vifp->v_tbf->tbf_q_len)
1883 callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1884 tbf_reprocess_q, vifp);
1885 }
1886
1887 /* function that will selectively discard a member of the queue
1888 * based on the precedence value and the priority
1889 */
1890 static int
tbf_dq_sel(struct vif * vifp,struct ip * ip)1891 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1892 {
1893 u_int p;
1894 struct mbuf *m, *last;
1895 struct mbuf **np;
1896 struct tbf *t = vifp->v_tbf;
1897
1898 lwkt_gettoken(&mroute_token);
1899
1900 p = priority(vifp, ip);
1901
1902 np = &t->tbf_q;
1903 last = NULL;
1904 while ((m = *np) != NULL) {
1905 if (p > priority(vifp, mtod(m, struct ip *))) {
1906 *np = m->m_nextpkt;
1907 /* If we're removing the last packet, fix the tail pointer */
1908 if (m == t->tbf_t)
1909 t->tbf_t = last;
1910 m_freem(m);
1911 /* It's impossible for the queue to be empty, but check anyways. */
1912 if (--t->tbf_q_len == 0)
1913 t->tbf_t = NULL;
1914 mrtstat.mrts_drop_sel++;
1915 lwkt_reltoken(&mroute_token);
1916 return 1;
1917 }
1918 np = &m->m_nextpkt;
1919 last = m;
1920 }
1921 lwkt_reltoken(&mroute_token);
1922 return 0;
1923 }
1924
1925 static void
tbf_send_packet(struct vif * vifp,struct mbuf * m)1926 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1927 {
1928 lwkt_gettoken(&mroute_token);
1929
1930 if (vifp->v_flags & VIFF_TUNNEL) /* If tunnel options */
1931 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1932 else {
1933 struct ip_moptions imo;
1934 int error;
1935 static struct route ro; /* XXX check this */
1936
1937 imo.imo_multicast_ifp = vifp->v_ifp;
1938 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1939 imo.imo_multicast_loop = 1;
1940 imo.imo_multicast_vif = -1;
1941
1942 /*
1943 * Re-entrancy should not be a problem here, because
1944 * the packets that we send out and are looped back at us
1945 * should get rejected because they appear to come from
1946 * the loopback interface, thus preventing looping.
1947 */
1948 error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1949
1950 if (mrtdebug & DEBUG_XMIT)
1951 log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1952 (int)(vifp - viftable), error);
1953 }
1954 lwkt_reltoken(&mroute_token);
1955 }
1956
1957 /* determine the current time and then
1958 * the elapsed time (between the last time and time now)
1959 * in milliseconds & update the no. of tokens in the bucket
1960 */
1961 static void
tbf_update_tokens(struct vif * vifp)1962 tbf_update_tokens(struct vif *vifp)
1963 {
1964 struct timeval tp;
1965 u_long tm;
1966 struct tbf *t = vifp->v_tbf;
1967
1968 lwkt_gettoken(&mroute_token);
1969
1970 GET_TIME(tp);
1971
1972 TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1973
1974 /*
1975 * This formula is actually
1976 * "time in seconds" * "bytes/second".
1977 *
1978 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1979 *
1980 * The (1000/1024) was introduced in add_vif to optimize
1981 * this divide into a shift.
1982 */
1983 t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1984 t->tbf_last_pkt_t = tp;
1985
1986 if (t->tbf_n_tok > MAX_BKT_SIZE)
1987 t->tbf_n_tok = MAX_BKT_SIZE;
1988
1989 lwkt_reltoken(&mroute_token);
1990 }
1991
1992 static int
priority(struct vif * vifp,struct ip * ip)1993 priority(struct vif *vifp, struct ip *ip)
1994 {
1995 int prio = 50; /* the lowest priority -- default case */
1996
1997 /* temporary hack; may add general packet classifier some day */
1998
1999 /*
2000 * The UDP port space is divided up into four priority ranges:
2001 * [0, 16384) : unclassified - lowest priority
2002 * [16384, 32768) : audio - highest priority
2003 * [32768, 49152) : whiteboard - medium priority
2004 * [49152, 65536) : video - low priority
2005 *
2006 * Everything else gets lowest priority.
2007 */
2008 if (ip->ip_p == IPPROTO_UDP) {
2009 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2010 switch (ntohs(udp->uh_dport) & 0xc000) {
2011 case 0x4000:
2012 prio = 70;
2013 break;
2014 case 0x8000:
2015 prio = 60;
2016 break;
2017 case 0xc000:
2018 prio = 55;
2019 break;
2020 }
2021 }
2022 return prio;
2023 }
2024
2025 /*
2026 * End of token bucket filter modifications
2027 */
2028
2029 static int
X_ip_rsvp_vif(struct socket * so,struct sockopt * sopt)2030 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2031 {
2032 int error, vifi;
2033
2034 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2035 return EOPNOTSUPP;
2036
2037 error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
2038 if (error)
2039 return error;
2040
2041 lwkt_gettoken(&mroute_token);
2042
2043 if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
2044 lwkt_reltoken(&mroute_token);
2045 return EADDRNOTAVAIL;
2046 }
2047
2048 if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2049 /* Check if socket is available. */
2050 if (viftable[vifi].v_rsvpd != NULL) {
2051 lwkt_reltoken(&mroute_token);
2052 return EADDRINUSE;
2053 }
2054
2055 viftable[vifi].v_rsvpd = so;
2056 /* This may seem silly, but we need to be sure we don't over-increment
2057 * the RSVP counter, in case something slips up.
2058 */
2059 if (!viftable[vifi].v_rsvp_on) {
2060 viftable[vifi].v_rsvp_on = 1;
2061 rsvp_on++;
2062 }
2063 } else { /* must be VIF_OFF */
2064 /*
2065 * XXX as an additional consistency check, one could make sure
2066 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2067 * first parameter is pretty useless.
2068 */
2069 viftable[vifi].v_rsvpd = NULL;
2070 /*
2071 * This may seem silly, but we need to be sure we don't over-decrement
2072 * the RSVP counter, in case something slips up.
2073 */
2074 if (viftable[vifi].v_rsvp_on) {
2075 viftable[vifi].v_rsvp_on = 0;
2076 rsvp_on--;
2077 }
2078 }
2079 lwkt_reltoken(&mroute_token);
2080 return 0;
2081 }
2082
2083 static void
X_ip_rsvp_force_done(struct socket * so)2084 X_ip_rsvp_force_done(struct socket *so)
2085 {
2086 int vifi;
2087
2088 /* Don't bother if it is not the right type of socket. */
2089 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2090 return;
2091
2092 lwkt_gettoken(&mroute_token);
2093
2094 /* The socket may be attached to more than one vif...this
2095 * is perfectly legal.
2096 */
2097 for (vifi = 0; vifi < numvifs; vifi++) {
2098 if (viftable[vifi].v_rsvpd == so) {
2099 viftable[vifi].v_rsvpd = NULL;
2100 /* This may seem silly, but we need to be sure we don't
2101 * over-decrement the RSVP counter, in case something slips up.
2102 */
2103 if (viftable[vifi].v_rsvp_on) {
2104 viftable[vifi].v_rsvp_on = 0;
2105 rsvp_on--;
2106 }
2107 }
2108 }
2109
2110 lwkt_reltoken(&mroute_token);
2111 }
2112
2113 static int
X_rsvp_input(struct mbuf ** mp,int * offp,int proto)2114 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
2115 {
2116 int vifi;
2117 struct mbuf *m = *mp;
2118 struct ip *ip = mtod(m, struct ip *);
2119 struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2120 struct ifnet *ifp;
2121 #ifdef ALTQ
2122 /* support IP_RECVIF used by rsvpd rel4.2a1 */
2123 struct inpcb *inp;
2124 struct socket *so;
2125 struct mbuf *opts;
2126 #endif
2127
2128 *mp = NULL;
2129
2130 if (rsvpdebug)
2131 kprintf("rsvp_input: rsvp_on %d\n",rsvp_on);
2132
2133 /* Can still get packets with rsvp_on = 0 if there is a local member
2134 * of the group to which the RSVP packet is addressed. But in this
2135 * case we want to throw the packet away.
2136 */
2137 if (!rsvp_on) {
2138 m_freem(m);
2139 return(IPPROTO_DONE);
2140 }
2141
2142 lwkt_gettoken(&mroute_token);
2143
2144 if (rsvpdebug)
2145 kprintf("rsvp_input: check vifs\n");
2146
2147 #ifdef DIAGNOSTIC
2148 if (!(m->m_flags & M_PKTHDR))
2149 panic("rsvp_input no hdr");
2150 #endif
2151
2152 ifp = m->m_pkthdr.rcvif;
2153 /* Find which vif the packet arrived on. */
2154 for (vifi = 0; vifi < numvifs; vifi++)
2155 if (viftable[vifi].v_ifp == ifp)
2156 break;
2157
2158 #ifdef ALTQ
2159 if (vifi == numvifs || (so = viftable[vifi].v_rsvpd) == NULL) {
2160 #else
2161 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2162 #endif
2163 /*
2164 * If the old-style non-vif-associated socket is set,
2165 * then use it. Otherwise, drop packet since there
2166 * is no specific socket for this vif.
2167 */
2168 if (ip_rsvpd != NULL) {
2169 if (rsvpdebug)
2170 kprintf("rsvp_input: Sending packet up old-style socket\n");
2171 *mp = m;
2172 rip_input(mp, offp, proto); /* xxx */
2173 } else {
2174 if (rsvpdebug && vifi == numvifs)
2175 kprintf("rsvp_input: Can't find vif for packet.\n");
2176 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2177 kprintf("rsvp_input: No socket defined for vif %d\n",vifi);
2178 m_freem(m);
2179 }
2180 lwkt_reltoken(&mroute_token);
2181 return(IPPROTO_DONE);
2182 }
2183 rsvp_src.sin_addr = ip->ip_src;
2184
2185 if (rsvpdebug && m)
2186 kprintf("rsvp_input: m->m_len = %d, ssb_space() = %ld\n",
2187 m->m_len,ssb_space(&(viftable[vifi].v_rsvpd->so_rcv)));
2188
2189 #ifdef ALTQ
2190 opts = NULL;
2191 inp = (struct inpcb *)so->so_pcb;
2192 if (inp->inp_flags & INP_CONTROLOPTS ||
2193 inp->inp_socket->so_options & SO_TIMESTAMP) {
2194 ip_savecontrol(inp, &opts, ip, m);
2195 }
2196 if (ssb_appendaddr(&so->so_rcv,
2197 (struct sockaddr *)&rsvp_src,m, opts) == 0) {
2198 m_freem(m);
2199 if (opts)
2200 m_freem(opts);
2201 soroverflow(so);
2202 if (rsvpdebug)
2203 kprintf("rsvp_input: Failed to append to socket\n");
2204 }
2205 else {
2206 sorwakeup(so);
2207 if (rsvpdebug)
2208 kprintf("rsvp_input: send packet up\n");
2209 }
2210 #else /* !ALTQ */
2211 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2212 if (rsvpdebug)
2213 kprintf("rsvp_input: Failed to append to socket\n");
2214 } else {
2215 if (rsvpdebug)
2216 kprintf("rsvp_input: send packet up\n");
2217 }
2218 #endif /* !ALTQ */
2219 lwkt_reltoken(&mroute_token);
2220 return(IPPROTO_DONE);
2221 }
2222
2223 /*
2224 * Code for bandwidth monitors
2225 */
2226
2227 /*
2228 * Define common interface for timeval-related methods
2229 */
2230 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2231 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2232 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2233
2234 static uint32_t
2235 compute_bw_meter_flags(struct bw_upcall *req)
2236 {
2237 uint32_t flags = 0;
2238
2239 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2240 flags |= BW_METER_UNIT_PACKETS;
2241 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2242 flags |= BW_METER_UNIT_BYTES;
2243 if (req->bu_flags & BW_UPCALL_GEQ)
2244 flags |= BW_METER_GEQ;
2245 if (req->bu_flags & BW_UPCALL_LEQ)
2246 flags |= BW_METER_LEQ;
2247
2248 return flags;
2249 }
2250
2251 /*
2252 * Add a bw_meter entry
2253 */
2254 static int
2255 add_bw_upcall(struct bw_upcall *req)
2256 {
2257 struct mfc *mfc;
2258 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2259 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2260 struct timeval now;
2261 struct bw_meter *x;
2262 uint32_t flags;
2263
2264 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2265 return EOPNOTSUPP;
2266
2267 /* Test if the flags are valid */
2268 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2269 return EINVAL;
2270 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2271 return EINVAL;
2272 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2273 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2274 return EINVAL;
2275
2276 /* Test if the threshold time interval is valid */
2277 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2278 return EINVAL;
2279
2280 flags = compute_bw_meter_flags(req);
2281
2282 /*
2283 * Find if we have already same bw_meter entry
2284 */
2285 lwkt_gettoken(&mroute_token);
2286 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2287 if (mfc == NULL) {
2288 lwkt_reltoken(&mroute_token);
2289 return EADDRNOTAVAIL;
2290 }
2291 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2292 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2293 &req->bu_threshold.b_time, ==)) &&
2294 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2295 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2296 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2297 lwkt_reltoken(&mroute_token);
2298 return 0; /* XXX Already installed */
2299 }
2300 }
2301 lwkt_reltoken(&mroute_token);
2302
2303 /* Allocate the new bw_meter entry */
2304 x = kmalloc(sizeof(*x), M_BWMETER, M_INTWAIT);
2305
2306 /* Set the new bw_meter entry */
2307 x->bm_threshold.b_time = req->bu_threshold.b_time;
2308 GET_TIME(now);
2309 x->bm_start_time = now;
2310 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2311 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2312 x->bm_measured.b_packets = 0;
2313 x->bm_measured.b_bytes = 0;
2314 x->bm_flags = flags;
2315 x->bm_time_next = NULL;
2316 x->bm_time_hash = BW_METER_BUCKETS;
2317
2318 /* Add the new bw_meter entry to the front of entries for this MFC */
2319 lwkt_gettoken(&mroute_token);
2320 x->bm_mfc = mfc;
2321 x->bm_mfc_next = mfc->mfc_bw_meter;
2322 mfc->mfc_bw_meter = x;
2323 schedule_bw_meter(x, &now);
2324 lwkt_reltoken(&mroute_token);
2325
2326 return 0;
2327 }
2328
2329 static void
2330 free_bw_list(struct bw_meter *list)
2331 {
2332 while (list != NULL) {
2333 struct bw_meter *x = list;
2334
2335 list = list->bm_mfc_next;
2336 unschedule_bw_meter(x);
2337 kfree(x, M_BWMETER);
2338 }
2339 }
2340
2341 /*
2342 * Delete one or multiple bw_meter entries
2343 */
2344 static int
2345 del_bw_upcall(struct bw_upcall *req)
2346 {
2347 struct mfc *mfc;
2348 struct bw_meter *x;
2349
2350 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2351 return EOPNOTSUPP;
2352
2353 lwkt_gettoken(&mroute_token);
2354 /* Find the corresponding MFC entry */
2355 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2356 if (mfc == NULL) {
2357 lwkt_reltoken(&mroute_token);
2358 return EADDRNOTAVAIL;
2359 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2360 /*
2361 * Delete all bw_meter entries for this mfc
2362 */
2363 struct bw_meter *list;
2364
2365 list = mfc->mfc_bw_meter;
2366 mfc->mfc_bw_meter = NULL;
2367 lwkt_reltoken(&mroute_token);
2368 free_bw_list(list);
2369 return 0;
2370 } else { /* Delete a single bw_meter entry */
2371 struct bw_meter *prev;
2372 uint32_t flags = 0;
2373
2374 flags = compute_bw_meter_flags(req);
2375
2376 /* Find the bw_meter entry to delete */
2377 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2378 prev = x, x = x->bm_mfc_next) {
2379 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2380 &req->bu_threshold.b_time, ==)) &&
2381 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2382 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2383 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2384 break;
2385 }
2386 if (x != NULL) { /* Delete entry from the list for this MFC */
2387 if (prev != NULL)
2388 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2389 else
2390 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2391 unschedule_bw_meter(x);
2392 lwkt_reltoken(&mroute_token);
2393 /* Free the bw_meter entry */
2394 kfree(x, M_BWMETER);
2395 return 0;
2396 } else {
2397 lwkt_reltoken(&mroute_token);
2398 return EINVAL;
2399 }
2400 }
2401 /* NOTREACHED */
2402 }
2403
2404 /*
2405 * Perform bandwidth measurement processing that may result in an upcall
2406 */
2407 static void
2408 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2409 {
2410 struct timeval delta;
2411
2412 lwkt_gettoken(&mroute_token);
2413 delta = *nowp;
2414 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2415
2416 if (x->bm_flags & BW_METER_GEQ) {
2417 /*
2418 * Processing for ">=" type of bw_meter entry
2419 */
2420 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2421 /* Reset the bw_meter entry */
2422 x->bm_start_time = *nowp;
2423 x->bm_measured.b_packets = 0;
2424 x->bm_measured.b_bytes = 0;
2425 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2426 }
2427
2428 /* Record that a packet is received */
2429 x->bm_measured.b_packets++;
2430 x->bm_measured.b_bytes += plen;
2431
2432 /*
2433 * Test if we should deliver an upcall
2434 */
2435 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2436 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2437 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2438 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2439 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2440 /* Prepare an upcall for delivery */
2441 bw_meter_prepare_upcall(x, nowp);
2442 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2443 }
2444 }
2445 } else if (x->bm_flags & BW_METER_LEQ) {
2446 /*
2447 * Processing for "<=" type of bw_meter entry
2448 */
2449 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2450 /*
2451 * We are behind time with the multicast forwarding table
2452 * scanning for "<=" type of bw_meter entries, so test now
2453 * if we should deliver an upcall.
2454 */
2455 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2456 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2457 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2458 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2459 /* Prepare an upcall for delivery */
2460 bw_meter_prepare_upcall(x, nowp);
2461 }
2462 /* Reschedule the bw_meter entry */
2463 unschedule_bw_meter(x);
2464 schedule_bw_meter(x, nowp);
2465 }
2466
2467 /* Record that a packet is received */
2468 x->bm_measured.b_packets++;
2469 x->bm_measured.b_bytes += plen;
2470
2471 /*
2472 * Test if we should restart the measuring interval
2473 */
2474 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2475 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2476 (x->bm_flags & BW_METER_UNIT_BYTES &&
2477 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2478 /* Don't restart the measuring interval */
2479 } else {
2480 /* Do restart the measuring interval */
2481 /*
2482 * XXX: note that we don't unschedule and schedule, because this
2483 * might be too much overhead per packet. Instead, when we process
2484 * all entries for a given timer hash bin, we check whether it is
2485 * really a timeout. If not, we reschedule at that time.
2486 */
2487 x->bm_start_time = *nowp;
2488 x->bm_measured.b_packets = 0;
2489 x->bm_measured.b_bytes = 0;
2490 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2491 }
2492 }
2493 lwkt_reltoken(&mroute_token);
2494 }
2495
2496 /*
2497 * Prepare a bandwidth-related upcall
2498 */
2499 static void
2500 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2501 {
2502 struct timeval delta;
2503 struct bw_upcall *u;
2504
2505 lwkt_gettoken(&mroute_token);
2506
2507 /*
2508 * Compute the measured time interval
2509 */
2510 delta = *nowp;
2511 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2512
2513 /*
2514 * If there are too many pending upcalls, deliver them now
2515 */
2516 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2517 bw_upcalls_send();
2518
2519 /*
2520 * Set the bw_upcall entry
2521 */
2522 u = &bw_upcalls[bw_upcalls_n++];
2523 u->bu_src = x->bm_mfc->mfc_origin;
2524 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2525 u->bu_threshold.b_time = x->bm_threshold.b_time;
2526 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2527 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2528 u->bu_measured.b_time = delta;
2529 u->bu_measured.b_packets = x->bm_measured.b_packets;
2530 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2531 u->bu_flags = 0;
2532 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2533 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2534 if (x->bm_flags & BW_METER_UNIT_BYTES)
2535 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2536 if (x->bm_flags & BW_METER_GEQ)
2537 u->bu_flags |= BW_UPCALL_GEQ;
2538 if (x->bm_flags & BW_METER_LEQ)
2539 u->bu_flags |= BW_UPCALL_LEQ;
2540
2541 lwkt_reltoken(&mroute_token);
2542 }
2543
2544 /*
2545 * Send the pending bandwidth-related upcalls
2546 */
2547 static void
2548 bw_upcalls_send(void)
2549 {
2550 struct mbuf *m;
2551 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2552 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2553 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2554 0, /* unused2 */
2555 IGMPMSG_BW_UPCALL,/* im_msgtype */
2556 0, /* im_mbz */
2557 0, /* im_vif */
2558 0, /* unused3 */
2559 { 0 }, /* im_src */
2560 { 0 } }; /* im_dst */
2561
2562 if (bw_upcalls_n == 0)
2563 return; /* No pending upcalls */
2564
2565 bw_upcalls_n = 0;
2566
2567 /*
2568 * Allocate a new mbuf, initialize it with the header and
2569 * the payload for the pending calls.
2570 */
2571 MGETHDR(m, M_NOWAIT, MT_HEADER);
2572 if (m == NULL) {
2573 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2574 return;
2575 }
2576
2577 m_copyback(m, 0, sizeof(struct igmpmsg), &igmpmsg);
2578 m_copyback(m, sizeof(struct igmpmsg), len, &bw_upcalls[0]);
2579
2580 /*
2581 * Send the upcalls
2582 * XXX do we need to set the address in k_igmpsrc ?
2583 */
2584 mrtstat.mrts_upcalls++;
2585 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2586 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2587 ++mrtstat.mrts_upq_sockfull;
2588 }
2589 }
2590
2591 /*
2592 * Compute the timeout hash value for the bw_meter entries
2593 */
2594 #define BW_METER_TIMEHASH(bw_meter, hash) \
2595 do { \
2596 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2597 \
2598 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2599 (hash) = next_timeval.tv_sec; \
2600 if (next_timeval.tv_usec) \
2601 (hash)++; /* XXX: make sure we don't timeout early */ \
2602 (hash) %= BW_METER_BUCKETS; \
2603 } while (0)
2604
2605 /*
2606 * Schedule a timer to process periodically bw_meter entry of type "<="
2607 * by linking the entry in the proper hash bucket.
2608 */
2609 static void
2610 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2611 {
2612 int time_hash;
2613
2614 if (!(x->bm_flags & BW_METER_LEQ))
2615 return; /* XXX: we schedule timers only for "<=" entries */
2616
2617 /*
2618 * Reset the bw_meter entry
2619 */
2620 lwkt_gettoken(&mroute_token);
2621 x->bm_start_time = *nowp;
2622 x->bm_measured.b_packets = 0;
2623 x->bm_measured.b_bytes = 0;
2624 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2625
2626 /*
2627 * Compute the timeout hash value and insert the entry
2628 */
2629 BW_METER_TIMEHASH(x, time_hash);
2630 x->bm_time_next = bw_meter_timers[time_hash];
2631 bw_meter_timers[time_hash] = x;
2632 x->bm_time_hash = time_hash;
2633
2634 lwkt_reltoken(&mroute_token);
2635 }
2636
2637 /*
2638 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2639 * by removing the entry from the proper hash bucket.
2640 */
2641 static void
2642 unschedule_bw_meter(struct bw_meter *x)
2643 {
2644 int time_hash;
2645 struct bw_meter *prev, *tmp;
2646
2647 if (!(x->bm_flags & BW_METER_LEQ))
2648 return; /* XXX: we schedule timers only for "<=" entries */
2649
2650 /*
2651 * Compute the timeout hash value and delete the entry
2652 */
2653 time_hash = x->bm_time_hash;
2654 if (time_hash >= BW_METER_BUCKETS)
2655 return; /* Entry was not scheduled */
2656
2657 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2658 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2659 if (tmp == x)
2660 break;
2661
2662 if (tmp == NULL)
2663 panic("unschedule_bw_meter: bw_meter entry not found");
2664
2665 if (prev != NULL)
2666 prev->bm_time_next = x->bm_time_next;
2667 else
2668 bw_meter_timers[time_hash] = x->bm_time_next;
2669
2670 x->bm_time_next = NULL;
2671 x->bm_time_hash = BW_METER_BUCKETS;
2672 }
2673
2674
2675 /*
2676 * Process all "<=" type of bw_meter that should be processed now,
2677 * and for each entry prepare an upcall if necessary. Each processed
2678 * entry is rescheduled again for the (periodic) processing.
2679 *
2680 * This is run periodically (once per second normally). On each round,
2681 * all the potentially matching entries are in the hash slot that we are
2682 * looking at.
2683 */
2684 static void
2685 bw_meter_process(void)
2686 {
2687 static uint32_t last_tv_sec; /* last time we processed this */
2688
2689 uint32_t loops;
2690 int i;
2691 struct timeval now, process_endtime;
2692
2693 GET_TIME(now);
2694 if (last_tv_sec == now.tv_sec)
2695 return; /* nothing to do */
2696
2697 lwkt_gettoken(&mroute_token);
2698 loops = now.tv_sec - last_tv_sec;
2699 last_tv_sec = now.tv_sec;
2700 if (loops > BW_METER_BUCKETS)
2701 loops = BW_METER_BUCKETS;
2702
2703 /*
2704 * Process all bins of bw_meter entries from the one after the last
2705 * processed to the current one. On entry, i points to the last bucket
2706 * visited, so we need to increment i at the beginning of the loop.
2707 */
2708 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2709 struct bw_meter *x, *tmp_list;
2710
2711 if (++i >= BW_METER_BUCKETS)
2712 i = 0;
2713
2714 /* Disconnect the list of bw_meter entries from the bin */
2715 tmp_list = bw_meter_timers[i];
2716 bw_meter_timers[i] = NULL;
2717
2718 /* Process the list of bw_meter entries */
2719 while (tmp_list != NULL) {
2720 x = tmp_list;
2721 tmp_list = tmp_list->bm_time_next;
2722
2723 /* Test if the time interval is over */
2724 process_endtime = x->bm_start_time;
2725 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2726 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2727 /* Not yet: reschedule, but don't reset */
2728 int time_hash;
2729
2730 BW_METER_TIMEHASH(x, time_hash);
2731 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2732 /*
2733 * XXX: somehow the bin processing is a bit ahead of time.
2734 * Put the entry in the next bin.
2735 */
2736 if (++time_hash >= BW_METER_BUCKETS)
2737 time_hash = 0;
2738 }
2739 x->bm_time_next = bw_meter_timers[time_hash];
2740 bw_meter_timers[time_hash] = x;
2741 x->bm_time_hash = time_hash;
2742
2743 continue;
2744 }
2745
2746 /*
2747 * Test if we should deliver an upcall
2748 */
2749 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2750 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2751 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2752 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2753 /* Prepare an upcall for delivery */
2754 bw_meter_prepare_upcall(x, &now);
2755 }
2756
2757 /*
2758 * Reschedule for next processing
2759 */
2760 schedule_bw_meter(x, &now);
2761 }
2762 }
2763 /* Send all upcalls that are pending delivery */
2764 bw_upcalls_send();
2765 lwkt_reltoken(&mroute_token);
2766 }
2767
2768 /*
2769 * A periodic function for sending all upcalls that are pending delivery
2770 */
2771 static void
2772 expire_bw_upcalls_send(void *unused)
2773 {
2774 bw_upcalls_send();
2775
2776 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2777 expire_bw_upcalls_send, NULL);
2778 }
2779
2780 /*
2781 * A periodic function for periodic scanning of the multicast forwarding
2782 * table for processing all "<=" bw_meter entries.
2783 */
2784 static void
2785 expire_bw_meter_process(void *unused)
2786 {
2787 if (mrt_api_config & MRT_MFC_BW_UPCALL)
2788 bw_meter_process();
2789
2790 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2791 expire_bw_meter_process, NULL);
2792 }
2793
2794 /*
2795 * End of bandwidth monitoring code
2796 */
2797
2798 #ifdef PIM
2799 /*
2800 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2801 *
2802 */
2803 static int
2804 pim_register_send(struct ip *ip, struct vif *vifp,
2805 struct mbuf *m, struct mfc *rt)
2806 {
2807 struct mbuf *mb_copy, *mm;
2808
2809 if (mrtdebug & DEBUG_PIM)
2810 log(LOG_DEBUG, "pim_register_send: ");
2811
2812 mb_copy = pim_register_prepare(ip, m);
2813 if (mb_copy == NULL)
2814 return ENOBUFS;
2815
2816 /*
2817 * Send all the fragments. Note that the mbuf for each fragment
2818 * is freed by the sending machinery.
2819 */
2820 for (mm = mb_copy; mm; mm = mb_copy) {
2821 mb_copy = mm->m_nextpkt;
2822 mm->m_nextpkt = 0;
2823 mm = m_pullup(mm, sizeof(struct ip));
2824 if (mm != NULL) {
2825 ip = mtod(mm, struct ip *);
2826 if ((mrt_api_config & MRT_MFC_RP) &&
2827 (rt->mfc_rp.s_addr != INADDR_ANY)) {
2828 pim_register_send_rp(ip, vifp, mm, rt);
2829 } else {
2830 pim_register_send_upcall(ip, vifp, mm, rt);
2831 }
2832 }
2833 }
2834
2835 return 0;
2836 }
2837
2838 /*
2839 * Return a copy of the data packet that is ready for PIM Register
2840 * encapsulation.
2841 * XXX: Note that in the returned copy the IP header is a valid one.
2842 */
2843 static struct mbuf *
2844 pim_register_prepare(struct ip *ip, struct mbuf *m)
2845 {
2846 struct mbuf *mb_copy = NULL;
2847 int mtu;
2848
2849 /* Take care of delayed checksums */
2850 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2851 in_delayed_cksum(m);
2852 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2853 }
2854
2855 /*
2856 * Copy the old packet & pullup its IP header into the
2857 * new mbuf so we can modify it.
2858 */
2859 mb_copy = m_copypacket(m, M_NOWAIT);
2860 if (mb_copy == NULL)
2861 return NULL;
2862 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2863 if (mb_copy == NULL)
2864 return NULL;
2865
2866 /* take care of the TTL */
2867 ip = mtod(mb_copy, struct ip *);
2868 --ip->ip_ttl;
2869
2870 /* Compute the MTU after the PIM Register encapsulation */
2871 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2872
2873 if (ntohs(ip->ip_len) <= mtu) {
2874 /* Turn the IP header into a valid one */
2875 ip->ip_sum = 0;
2876 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2877 } else {
2878 /* Fragment the packet */
2879 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2880 m_freem(mb_copy);
2881 return NULL;
2882 }
2883 }
2884 return mb_copy;
2885 }
2886
2887 /*
2888 * Send an upcall with the data packet to the user-level process.
2889 */
2890 static int
2891 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2892 struct mbuf *mb_copy, struct mfc *rt)
2893 {
2894 struct mbuf *mb_first;
2895 int len = ntohs(ip->ip_len);
2896 struct igmpmsg *im;
2897 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2898
2899 /*
2900 * Add a new mbuf with an upcall header
2901 */
2902 MGETHDR(mb_first, M_NOWAIT, MT_HEADER);
2903 if (mb_first == NULL) {
2904 m_freem(mb_copy);
2905 return ENOBUFS;
2906 }
2907 mb_first->m_data += max_linkhdr;
2908 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2909 mb_first->m_len = sizeof(struct igmpmsg);
2910 mb_first->m_next = mb_copy;
2911
2912 /* Send message to routing daemon */
2913 im = mtod(mb_first, struct igmpmsg *);
2914 im->im_msgtype = IGMPMSG_WHOLEPKT;
2915 im->im_mbz = 0;
2916 im->im_vif = vifp - viftable;
2917 im->im_src = ip->ip_src;
2918 im->im_dst = ip->ip_dst;
2919
2920 k_igmpsrc.sin_addr = ip->ip_src;
2921
2922 mrtstat.mrts_upcalls++;
2923
2924 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2925 if (mrtdebug & DEBUG_PIM)
2926 log(LOG_WARNING,
2927 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2928 ++mrtstat.mrts_upq_sockfull;
2929 return ENOBUFS;
2930 }
2931
2932 /* Keep statistics */
2933 pimstat.pims_snd_registers_msgs++;
2934 pimstat.pims_snd_registers_bytes += len;
2935
2936 return 0;
2937 }
2938
2939 /*
2940 * Encapsulate the data packet in PIM Register message and send it to the RP.
2941 */
2942 static int
2943 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2944 struct mbuf *mb_copy, struct mfc *rt)
2945 {
2946 struct mbuf *mb_first;
2947 struct ip *ip_outer;
2948 struct pim_encap_pimhdr *pimhdr;
2949 int len = ntohs(ip->ip_len);
2950 vifi_t vifi = rt->mfc_parent;
2951
2952 if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2953 m_freem(mb_copy);
2954 return EADDRNOTAVAIL; /* The iif vif is invalid */
2955 }
2956
2957 /*
2958 * Add a new mbuf with the encapsulating header
2959 */
2960 MGETHDR(mb_first, M_NOWAIT, MT_HEADER);
2961 if (mb_first == NULL) {
2962 m_freem(mb_copy);
2963 return ENOBUFS;
2964 }
2965 mb_first->m_data += max_linkhdr;
2966 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2967 mb_first->m_next = mb_copy;
2968
2969 mb_first->m_pkthdr.len = len + mb_first->m_len;
2970
2971 /*
2972 * Fill in the encapsulating IP and PIM header
2973 */
2974 ip_outer = mtod(mb_first, struct ip *);
2975 *ip_outer = pim_encap_iphdr;
2976 ip_outer->ip_id = ip_newid();
2977 ip_outer->ip_len = htons(len +
2978 sizeof(pim_encap_iphdr) +
2979 sizeof(pim_encap_pimhdr));
2980 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2981 ip_outer->ip_dst = rt->mfc_rp;
2982 /*
2983 * Copy the inner header TOS to the outer header, and take care of the
2984 * IP_DF bit.
2985 */
2986 ip_outer->ip_tos = ip->ip_tos;
2987 if (ip->ip_off & htons(IP_DF))
2988 ip_outer->ip_off |= htons(IP_DF);
2989 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2990 + sizeof(pim_encap_iphdr));
2991 *pimhdr = pim_encap_pimhdr;
2992 /* If the iif crosses a border, set the Border-bit */
2993 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2994 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2995
2996 mb_first->m_data += sizeof(pim_encap_iphdr);
2997 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2998 mb_first->m_data -= sizeof(pim_encap_iphdr);
2999
3000 if (vifp->v_rate_limit == 0)
3001 tbf_send_packet(vifp, mb_first);
3002 else
3003 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3004
3005 /* Keep statistics */
3006 pimstat.pims_snd_registers_msgs++;
3007 pimstat.pims_snd_registers_bytes += len;
3008
3009 return 0;
3010 }
3011
3012 /*
3013 * PIM-SMv2 and PIM-DM messages processing.
3014 * Receives and verifies the PIM control messages, and passes them
3015 * up to the listening socket, using rip_input().
3016 * The only message with special processing is the PIM_REGISTER message
3017 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3018 * is passed to if_simloop().
3019 */
3020 int
3021 pim_input(struct mbuf **mp, int *offp, int proto)
3022 {
3023 struct mbuf *m = *mp;
3024 struct ip *ip = mtod(m, struct ip *);
3025 struct pim *pim;
3026 int minlen;
3027 int datalen = ntohs(ip->ip_len);
3028 int ip_tos;
3029 int iphlen;
3030
3031 iphlen = *offp;
3032 *mp = NULL;
3033
3034 /* Keep statistics */
3035 pimstat.pims_rcv_total_msgs++;
3036 pimstat.pims_rcv_total_bytes += datalen;
3037
3038 /*
3039 * Validate lengths
3040 */
3041 if (datalen < PIM_MINLEN) {
3042 pimstat.pims_rcv_tooshort++;
3043 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3044 datalen, (u_long)ip->ip_src.s_addr);
3045 m_freem(m);
3046 return(IPPROTO_DONE);
3047 }
3048
3049 /*
3050 * If the packet is at least as big as a REGISTER, go agead
3051 * and grab the PIM REGISTER header size, to avoid another
3052 * possible m_pullup() later.
3053 *
3054 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3055 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3056 */
3057 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3058 /*
3059 * Get the IP and PIM headers in contiguous memory, and
3060 * possibly the PIM REGISTER header.
3061 */
3062 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3063 (m = m_pullup(m, minlen)) == NULL) {
3064 log(LOG_ERR, "pim_input: m_pullup failure\n");
3065 return(IPPROTO_DONE);
3066 }
3067 /* m_pullup() may have given us a new mbuf so reset ip. */
3068 ip = mtod(m, struct ip *);
3069 ip_tos = ip->ip_tos;
3070
3071 /* adjust mbuf to point to the PIM header */
3072 m->m_data += iphlen;
3073 m->m_len -= iphlen;
3074 pim = mtod(m, struct pim *);
3075
3076 /*
3077 * Validate checksum. If PIM REGISTER, exclude the data packet.
3078 *
3079 * XXX: some older PIMv2 implementations don't make this distinction,
3080 * so for compatibility reason perform the checksum over part of the
3081 * message, and if error, then over the whole message.
3082 */
3083 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3084 /* do nothing, checksum okay */
3085 } else if (in_cksum(m, datalen)) {
3086 pimstat.pims_rcv_badsum++;
3087 if (mrtdebug & DEBUG_PIM)
3088 log(LOG_DEBUG, "pim_input: invalid checksum");
3089 m_freem(m);
3090 return(IPPROTO_DONE);
3091 }
3092
3093 /* PIM version check */
3094 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3095 pimstat.pims_rcv_badversion++;
3096 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3097 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3098 m_freem(m);
3099 return(IPPROTO_DONE);
3100 }
3101
3102 /* restore mbuf back to the outer IP */
3103 m->m_data -= iphlen;
3104 m->m_len += iphlen;
3105
3106 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3107 /*
3108 * Since this is a REGISTER, we'll make a copy of the register
3109 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3110 * routing daemon.
3111 */
3112 struct sockaddr_in dst = { sizeof(dst), AF_INET };
3113 struct mbuf *mcp;
3114 struct ip *encap_ip;
3115 u_int32_t *reghdr;
3116
3117 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3118 if (mrtdebug & DEBUG_PIM)
3119 log(LOG_DEBUG,
3120 "pim_input: register vif not set: %d\n", reg_vif_num);
3121 m_freem(m);
3122 return(IPPROTO_DONE);
3123 }
3124
3125 /*
3126 * Validate length
3127 */
3128 if (datalen < PIM_REG_MINLEN) {
3129 pimstat.pims_rcv_tooshort++;
3130 pimstat.pims_rcv_badregisters++;
3131 log(LOG_ERR,
3132 "pim_input: register packet size too small %d from %lx\n",
3133 datalen, (u_long)ip->ip_src.s_addr);
3134 m_freem(m);
3135 return(IPPROTO_DONE);
3136 }
3137
3138 reghdr = (u_int32_t *)(pim + 1);
3139 encap_ip = (struct ip *)(reghdr + 1);
3140
3141 if (mrtdebug & DEBUG_PIM) {
3142 log(LOG_DEBUG,
3143 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3144 (u_long)ntohl(encap_ip->ip_src.s_addr),
3145 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3146 ntohs(encap_ip->ip_len));
3147 }
3148
3149 /* verify the version number of the inner packet */
3150 if (encap_ip->ip_v != IPVERSION) {
3151 pimstat.pims_rcv_badregisters++;
3152 if (mrtdebug & DEBUG_PIM) {
3153 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3154 "of the inner packet\n", encap_ip->ip_v);
3155 }
3156 m_freem(m);
3157 return(IPPROTO_DONE);
3158 }
3159
3160 /* verify the inner packet is destined to a mcast group */
3161 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3162 pimstat.pims_rcv_badregisters++;
3163 if (mrtdebug & DEBUG_PIM)
3164 log(LOG_DEBUG,
3165 "pim_input: inner packet of register is not "
3166 "multicast %lx\n",
3167 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3168 m_freem(m);
3169 return(IPPROTO_DONE);
3170 }
3171
3172 /* If a NULL_REGISTER, pass it to the daemon */
3173 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3174 goto pim_input_to_daemon;
3175
3176 /*
3177 * Copy the TOS from the outer IP header to the inner IP header.
3178 */
3179 if (encap_ip->ip_tos != ip_tos) {
3180 /* Outer TOS -> inner TOS */
3181 encap_ip->ip_tos = ip_tos;
3182 /* Recompute the inner header checksum. Sigh... */
3183
3184 /* adjust mbuf to point to the inner IP header */
3185 m->m_data += (iphlen + PIM_MINLEN);
3186 m->m_len -= (iphlen + PIM_MINLEN);
3187
3188 encap_ip->ip_sum = 0;
3189 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3190
3191 /* restore mbuf to point back to the outer IP header */
3192 m->m_data -= (iphlen + PIM_MINLEN);
3193 m->m_len += (iphlen + PIM_MINLEN);
3194 }
3195
3196 /*
3197 * Decapsulate the inner IP packet and loopback to forward it
3198 * as a normal multicast packet. Also, make a copy of the
3199 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3200 * to pass to the daemon later, so it can take the appropriate
3201 * actions (e.g., send back PIM_REGISTER_STOP).
3202 * XXX: here m->m_data points to the outer IP header.
3203 */
3204 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
3205 if (mcp == NULL) {
3206 log(LOG_ERR,
3207 "pim_input: pim register: could not copy register head\n");
3208 m_freem(m);
3209 return(IPPROTO_DONE);
3210 }
3211
3212 /* Keep statistics */
3213 /* XXX: registers_bytes include only the encap. mcast pkt */
3214 pimstat.pims_rcv_registers_msgs++;
3215 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3216
3217 /*
3218 * forward the inner ip packet; point m_data at the inner ip.
3219 */
3220 m_adj(m, iphlen + PIM_MINLEN);
3221
3222 if (mrtdebug & DEBUG_PIM) {
3223 log(LOG_DEBUG,
3224 "pim_input: forwarding decapsulated register: "
3225 "src %lx, dst %lx, vif %d\n",
3226 (u_long)ntohl(encap_ip->ip_src.s_addr),
3227 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3228 reg_vif_num);
3229 }
3230 if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3231
3232 /* prepare the register head to send to the mrouting daemon */
3233 m = mcp;
3234 }
3235
3236 pim_input_to_daemon:
3237 /*
3238 * Pass the PIM message up to the daemon; if it is a Register message,
3239 * pass the 'head' only up to the daemon. This includes the
3240 * outer IP header, PIM header, PIM-Register header and the
3241 * inner IP header.
3242 * XXX: the outer IP header pkt size of a Register is not adjust to
3243 * reflect the fact that the inner multicast data is truncated.
3244 */
3245 *mp = m;
3246 *offp = iphlen;
3247 rip_input(mp, offp, proto);
3248 return(IPPROTO_DONE);
3249 }
3250 #endif /* PIM */
3251
3252 static int
3253 ip_mroute_modevent(module_t mod, int type, void *unused)
3254 {
3255 switch (type) {
3256 case MOD_LOAD:
3257 lwkt_gettoken(&mroute_token);
3258 /* XXX Protect against multiple loading */
3259 ip_mcast_src = X_ip_mcast_src;
3260 ip_mforward = X_ip_mforward;
3261 ip_mrouter_done = X_ip_mrouter_done;
3262 ip_mrouter_get = X_ip_mrouter_get;
3263 ip_mrouter_set = X_ip_mrouter_set;
3264 ip_rsvp_force_done = X_ip_rsvp_force_done;
3265 ip_rsvp_vif = X_ip_rsvp_vif;
3266 ipip_input = X_ipip_input;
3267 legal_vif_num = X_legal_vif_num;
3268 mrt_ioctl = X_mrt_ioctl;
3269 rsvp_input_p = X_rsvp_input;
3270 lwkt_reltoken(&mroute_token);
3271 break;
3272
3273 case MOD_UNLOAD:
3274 if (ip_mrouter)
3275 return EINVAL;
3276
3277 lwkt_gettoken(&mroute_token);
3278 ip_mcast_src = NULL;
3279 ip_mforward = NULL;
3280 ip_mrouter_done = NULL;
3281 ip_mrouter_get = NULL;
3282 ip_mrouter_set = NULL;
3283 ip_rsvp_force_done = NULL;
3284 ip_rsvp_vif = NULL;
3285 ipip_input = NULL;
3286 legal_vif_num = NULL;
3287 mrt_ioctl = NULL;
3288 rsvp_input_p = NULL;
3289 lwkt_reltoken(&mroute_token);
3290 break;
3291 }
3292 return 0;
3293 }
3294
3295 static moduledata_t ip_mroutemod = {
3296 "ip_mroute",
3297 ip_mroute_modevent,
3298 0
3299 };
3300 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3301