xref: /openbsd/gnu/usr.bin/binutils/gdb/solib-svr4.c (revision 61974137)
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2 
3    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4    2000, 2001, 2003, 2004
5    Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 
26 #include "elf/external.h"
27 #include "elf/common.h"
28 #include "elf/mips.h"
29 
30 #include "auxv.h"
31 #include "symtab.h"
32 #include "bfd.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdbcore.h"
36 #include "target.h"
37 #include "inferior.h"
38 #include "command.h"
39 
40 #include "solist.h"
41 #include "solib-svr4.h"
42 
43 #include "bfd-target.h"
44 #include "exec.h"
45 
46 #ifndef SVR4_FETCH_LINK_MAP_OFFSETS
47 #define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
48 #endif
49 
50 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
51 static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 
54 /* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
55    architecture specific link map offsets fetching function.  */
56 
57 static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
58 
59 /* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
60    which is used to fetch link map offsets.  It will only be set
61    by solib-legacy.c, if at all. */
62 
63 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
64 
65 /* Link map info to include in an allocated so_list entry */
66 
67 struct lm_info
68   {
69     /* Pointer to copy of link map from inferior.  The type is char *
70        rather than void *, so that we may use byte offsets to find the
71        various fields without the need for a cast.  */
72     char *lm;
73   };
74 
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76    GDB can try to place a breakpoint to monitor shared library
77    events.
78 
79    If none of these symbols are found, or other errors occur, then
80    SVR4 systems will fall back to using a symbol as the "startup
81    mapping complete" breakpoint address.  */
82 
83 static char *solib_break_names[] =
84 {
85   "r_debug_state",
86   "_r_debug_state",
87   "_dl_debug_state",
88   "rtld_db_dlactivity",
89   "_rtld_debug_state",
90 
91   /* On the 64-bit PowerPC, the linker symbol with the same name as
92      the C function points to a function descriptor, not to the entry
93      point.  The linker symbol whose name is the C function name
94      prefixed with a '.' points to the function's entry point.  So
95      when we look through this table, we ignore symbols that point
96      into the data section (thus skipping the descriptor's symbol),
97      and eventually try this one, giving us the real entry point
98      address.  */
99   "._dl_debug_state",
100 
101   NULL
102 };
103 
104 #define BKPT_AT_SYMBOL 1
105 
106 #if defined (BKPT_AT_SYMBOL)
107 static char *bkpt_names[] =
108 {
109 #ifdef SOLIB_BKPT_NAME
110   SOLIB_BKPT_NAME,		/* Prefer configured name if it exists. */
111 #endif
112   "_start",
113   "__start",
114   "main",
115   NULL
116 };
117 #endif
118 
119 static char *main_name_list[] =
120 {
121   "main_$main",
122   NULL
123 };
124 
125 /* Macro to extract an address from a solib structure.  When GDB is
126    configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
127    configured to handle 64-bit targets, so CORE_ADDR is 64 bits.  We
128    have to extract only the significant bits of addresses to get the
129    right address when accessing the core file BFD.
130 
131    Assume that the address is unsigned.  */
132 
133 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
134 	extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
135 
136 /* local data declarations */
137 
138 /* link map access functions */
139 
140 static CORE_ADDR
LM_ADDR(struct so_list * so)141 LM_ADDR (struct so_list *so)
142 {
143   struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
144 
145   return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
146 					     lmo->l_addr_size);
147 }
148 
149 static CORE_ADDR
LM_NEXT(struct so_list * so)150 LM_NEXT (struct so_list *so)
151 {
152   struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
153 
154   /* Assume that the address is unsigned.  */
155   return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
156 				   lmo->l_next_size);
157 }
158 
159 static CORE_ADDR
LM_NAME(struct so_list * so)160 LM_NAME (struct so_list *so)
161 {
162   struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
163 
164   /* Assume that the address is unsigned.  */
165   return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
166 				   lmo->l_name_size);
167 }
168 
169 static int
IGNORE_FIRST_LINK_MAP_ENTRY(struct so_list * so)170 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
171 {
172   struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
173 
174   /* Assume that the address is unsigned.  */
175   return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
176 				   lmo->l_prev_size) == 0;
177 }
178 
179 static CORE_ADDR debug_base;	/* Base of dynamic linker structures */
180 static CORE_ADDR breakpoint_addr;	/* Address where end bkpt is set */
181 
182 /* Local function prototypes */
183 
184 #if 0
185 static int match_main (char *);
186 #endif
187 
188 static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
189 
190 /*
191 
192    LOCAL FUNCTION
193 
194    bfd_lookup_symbol -- lookup the value for a specific symbol
195 
196    SYNOPSIS
197 
198    CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
199 
200    DESCRIPTION
201 
202    An expensive way to lookup the value of a single symbol for
203    bfd's that are only temporary anyway.  This is used by the
204    shared library support to find the address of the debugger
205    interface structures in the shared library.
206 
207    If SECT_FLAGS is non-zero, only match symbols in sections whose
208    flags include all those in SECT_FLAGS.
209 
210    Note that 0 is specifically allowed as an error return (no
211    such symbol).
212  */
213 
214 static CORE_ADDR
bfd_lookup_symbol(bfd * abfd,char * symname,flagword sect_flags)215 bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
216 {
217   long storage_needed;
218   asymbol *sym;
219   asymbol **symbol_table;
220   unsigned int number_of_symbols;
221   unsigned int i;
222   struct cleanup *back_to;
223   CORE_ADDR symaddr = 0;
224 
225   storage_needed = bfd_get_symtab_upper_bound (abfd);
226 
227   if (storage_needed > 0)
228     {
229       symbol_table = (asymbol **) xmalloc (storage_needed);
230       back_to = make_cleanup (xfree, symbol_table);
231       number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
232 
233       for (i = 0; i < number_of_symbols; i++)
234 	{
235 	  sym = *symbol_table++;
236 	  if (strcmp (sym->name, symname) == 0
237               && (sym->section->flags & sect_flags) == sect_flags)
238 	    {
239 	      /* Bfd symbols are section relative. */
240 	      symaddr = sym->value + sym->section->vma;
241 	      break;
242 	    }
243 	}
244       do_cleanups (back_to);
245     }
246 
247   if (symaddr)
248     return symaddr;
249 
250   /* On FreeBSD, the dynamic linker is stripped by default.  So we'll
251      have to check the dynamic string table too.  */
252 
253   storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
254 
255   if (storage_needed > 0)
256     {
257       symbol_table = (asymbol **) xmalloc (storage_needed);
258       back_to = make_cleanup (xfree, symbol_table);
259       number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
260 
261       for (i = 0; i < number_of_symbols; i++)
262 	{
263 	  sym = *symbol_table++;
264 
265 	  if (strcmp (sym->name, symname) == 0
266               && (sym->section->flags & sect_flags) == sect_flags)
267 	    {
268 	      /* Bfd symbols are section relative. */
269 	      symaddr = sym->value + sym->section->vma;
270 	      break;
271 	    }
272 	}
273       do_cleanups (back_to);
274     }
275 
276   return symaddr;
277 }
278 
279 /*
280 
281    LOCAL FUNCTION
282 
283    elf_locate_base -- locate the base address of dynamic linker structs
284    for SVR4 elf targets.
285 
286    SYNOPSIS
287 
288    CORE_ADDR elf_locate_base (void)
289 
290    DESCRIPTION
291 
292    For SVR4 elf targets the address of the dynamic linker's runtime
293    structure is contained within the dynamic info section in the
294    executable file.  The dynamic section is also mapped into the
295    inferior address space.  Because the runtime loader fills in the
296    real address before starting the inferior, we have to read in the
297    dynamic info section from the inferior address space.
298    If there are any errors while trying to find the address, we
299    silently return 0, otherwise the found address is returned.
300 
301  */
302 
303 static CORE_ADDR
elf_locate_base(void)304 elf_locate_base (void)
305 {
306   struct bfd_section *dyninfo_sect;
307   int dyninfo_sect_size;
308   CORE_ADDR dyninfo_addr, relocated_dyninfo_addr, entry_addr;
309   char *buf;
310   char *bufend;
311   int arch_size;
312 
313   /* Find the address of the entry point of the program from the
314      auxv vector.  */
315   if (target_auxv_search (&current_target, AT_ENTRY, &entry_addr) != 1)
316     {
317       /* No auxv info, maybe an older kernel. Fake our way through.  */
318       entry_addr = bfd_get_start_address (exec_bfd);
319     }
320 
321   /* Find the start address of the .dynamic section.  */
322   dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
323   if (dyninfo_sect == NULL)
324     return 0;
325   dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
326 
327   relocated_dyninfo_addr = dyninfo_addr
328     + entry_addr - bfd_get_start_address(exec_bfd);
329 
330   /* Read in .dynamic section, silently ignore errors.  */
331   dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
332   buf = alloca (dyninfo_sect_size);
333   if (target_read_memory (relocated_dyninfo_addr, buf, dyninfo_sect_size))
334     return 0;
335 
336   /* Find the DT_DEBUG entry in the the .dynamic section.
337      For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
338      no DT_DEBUG entries.  */
339 
340   arch_size = bfd_get_arch_size (exec_bfd);
341   if (arch_size == -1)	/* failure */
342     return 0;
343 
344   if (arch_size == 32)
345     { /* 32-bit elf */
346       for (bufend = buf + dyninfo_sect_size;
347 	   buf < bufend;
348 	   buf += sizeof (Elf32_External_Dyn))
349 	{
350 	  Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
351 	  long dyn_tag;
352 	  CORE_ADDR dyn_ptr;
353 
354 	  dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
355 	  if (dyn_tag == DT_NULL)
356 	    break;
357 	  else if (dyn_tag == DT_DEBUG)
358 	    {
359 	      dyn_ptr = bfd_h_get_32 (exec_bfd,
360 				      (bfd_byte *) x_dynp->d_un.d_ptr);
361 	      return dyn_ptr;
362 	    }
363 	  else if (dyn_tag == DT_MIPS_RLD_MAP)
364 	    {
365 	      char *pbuf;
366 	      int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
367 
368 	      pbuf = alloca (pbuf_size);
369 	      /* DT_MIPS_RLD_MAP contains a pointer to the address
370 		 of the dynamic link structure.  */
371 	      dyn_ptr = bfd_h_get_32 (exec_bfd,
372 				      (bfd_byte *) x_dynp->d_un.d_ptr);
373 	      if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
374 		return 0;
375 	      return extract_unsigned_integer (pbuf, pbuf_size);
376 	    }
377 	}
378     }
379   else /* 64-bit elf */
380     {
381       char *bufstart = buf;
382 
383       for (bufend = buf + dyninfo_sect_size;
384 	   buf < bufend;
385 	   buf += sizeof (Elf64_External_Dyn))
386 	{
387 	  Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
388 	  long dyn_tag;
389 	  CORE_ADDR dyn_ptr;
390 
391 	  dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
392 	  if (dyn_tag == DT_NULL)
393 	    break;
394 	  else if (dyn_tag == DT_DEBUG)
395 	    {
396 	      dyn_ptr = bfd_h_get_64 (exec_bfd,
397 				      (bfd_byte *) x_dynp->d_un.d_ptr);
398 	      return dyn_ptr;
399 	    }
400 	  else if (dyn_tag == DT_MIPS_RLD_MAP ||
401 		   dyn_tag == DT_MIPS_RLD_MAP_REL)
402 	    {
403 	      char *pbuf;
404 	      int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
405 
406 	      pbuf = alloca (pbuf_size);
407 	      /* DT_MIPS_RLD_MAP contains a pointer to the address
408 		 of the dynamic link structure.  */
409 	      dyn_ptr = bfd_h_get_64 (exec_bfd,
410 				      (bfd_byte *) x_dynp->d_un.d_ptr);
411 	      if (dyn_tag == DT_MIPS_RLD_MAP_REL)
412 		dyn_ptr += (relocated_dyninfo_addr + (buf - bufstart));
413 	      if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
414 		return 0;
415 	      return extract_unsigned_integer (pbuf, pbuf_size);
416 	    }
417 	}
418     }
419 
420   /* DT_DEBUG entry not found.  */
421   return 0;
422 }
423 
424 /*
425 
426    LOCAL FUNCTION
427 
428    locate_base -- locate the base address of dynamic linker structs
429 
430    SYNOPSIS
431 
432    CORE_ADDR locate_base (void)
433 
434    DESCRIPTION
435 
436    For both the SunOS and SVR4 shared library implementations, if the
437    inferior executable has been linked dynamically, there is a single
438    address somewhere in the inferior's data space which is the key to
439    locating all of the dynamic linker's runtime structures.  This
440    address is the value of the debug base symbol.  The job of this
441    function is to find and return that address, or to return 0 if there
442    is no such address (the executable is statically linked for example).
443 
444    For SunOS, the job is almost trivial, since the dynamic linker and
445    all of it's structures are statically linked to the executable at
446    link time.  Thus the symbol for the address we are looking for has
447    already been added to the minimal symbol table for the executable's
448    objfile at the time the symbol file's symbols were read, and all we
449    have to do is look it up there.  Note that we explicitly do NOT want
450    to find the copies in the shared library.
451 
452    The SVR4 version is a bit more complicated because the address
453    is contained somewhere in the dynamic info section.  We have to go
454    to a lot more work to discover the address of the debug base symbol.
455    Because of this complexity, we cache the value we find and return that
456    value on subsequent invocations.  Note there is no copy in the
457    executable symbol tables.
458 
459  */
460 
461 static CORE_ADDR
locate_base(void)462 locate_base (void)
463 {
464   /* Check to see if we have a currently valid address, and if so, avoid
465      doing all this work again and just return the cached address.  If
466      we have no cached address, try to locate it in the dynamic info
467      section for ELF executables.  There's no point in doing any of this
468      though if we don't have some link map offsets to work with.  */
469 
470   if (debug_base == 0 && svr4_have_link_map_offsets ())
471     {
472       if (exec_bfd != NULL
473 	  && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
474 	debug_base = elf_locate_base ();
475     }
476   return (debug_base);
477 }
478 
479 /*
480 
481    LOCAL FUNCTION
482 
483    first_link_map_member -- locate first member in dynamic linker's map
484 
485    SYNOPSIS
486 
487    static CORE_ADDR first_link_map_member (void)
488 
489    DESCRIPTION
490 
491    Find the first element in the inferior's dynamic link map, and
492    return its address in the inferior.  This function doesn't copy the
493    link map entry itself into our address space; current_sos actually
494    does the reading.  */
495 
496 static CORE_ADDR
first_link_map_member(void)497 first_link_map_member (void)
498 {
499   CORE_ADDR lm = 0;
500   struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
501   char *r_map_buf = xmalloc (lmo->r_map_size);
502   struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
503 
504   read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
505 
506   /* Assume that the address is unsigned.  */
507   lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size);
508 
509   /* FIXME:  Perhaps we should validate the info somehow, perhaps by
510      checking r_version for a known version number, or r_state for
511      RT_CONSISTENT. */
512 
513   do_cleanups (cleanups);
514 
515   return (lm);
516 }
517 
518 /*
519 
520   LOCAL FUNCTION
521 
522   open_symbol_file_object
523 
524   SYNOPSIS
525 
526   void open_symbol_file_object (void *from_tty)
527 
528   DESCRIPTION
529 
530   If no open symbol file, attempt to locate and open the main symbol
531   file.  On SVR4 systems, this is the first link map entry.  If its
532   name is here, we can open it.  Useful when attaching to a process
533   without first loading its symbol file.
534 
535   If FROM_TTYP dereferences to a non-zero integer, allow messages to
536   be printed.  This parameter is a pointer rather than an int because
537   open_symbol_file_object() is called via catch_errors() and
538   catch_errors() requires a pointer argument. */
539 
540 static int
open_symbol_file_object(void * from_ttyp)541 open_symbol_file_object (void *from_ttyp)
542 {
543   CORE_ADDR lm, l_name;
544   char *filename;
545   int errcode;
546   int from_tty = *(int *)from_ttyp;
547   struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
548   char *l_name_buf = xmalloc (lmo->l_name_size);
549   struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
550 
551   if (symfile_objfile)
552     if (!query ("Attempt to reload symbols from process? "))
553       return 0;
554 
555   if ((debug_base = locate_base ()) == 0)
556     return 0;	/* failed somehow... */
557 
558   /* First link map member should be the executable.  */
559   if ((lm = first_link_map_member ()) == 0)
560     return 0;	/* failed somehow... */
561 
562   /* Read address of name from target memory to GDB.  */
563   read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
564 
565   /* Convert the address to host format.  Assume that the address is
566      unsigned.  */
567   l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
568 
569   /* Free l_name_buf.  */
570   do_cleanups (cleanups);
571 
572   if (l_name == 0)
573     return 0;		/* No filename.  */
574 
575   /* Now fetch the filename from target memory.  */
576   target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
577 
578   if (errcode)
579     {
580       warning ("failed to read exec filename from attached file: %s",
581 	       safe_strerror (errcode));
582       return 0;
583     }
584 
585   make_cleanup (xfree, filename);
586   /* Have a pathname: read the symbol file.  */
587   symbol_file_add_main (filename, from_tty);
588 
589   return 1;
590 }
591 
592 /* LOCAL FUNCTION
593 
594    current_sos -- build a list of currently loaded shared objects
595 
596    SYNOPSIS
597 
598    struct so_list *current_sos ()
599 
600    DESCRIPTION
601 
602    Build a list of `struct so_list' objects describing the shared
603    objects currently loaded in the inferior.  This list does not
604    include an entry for the main executable file.
605 
606    Note that we only gather information directly available from the
607    inferior --- we don't examine any of the shared library files
608    themselves.  The declaration of `struct so_list' says which fields
609    we provide values for.  */
610 
611 static struct so_list *
svr4_current_sos(void)612 svr4_current_sos (void)
613 {
614   CORE_ADDR lm;
615   struct so_list *head = 0;
616   struct so_list **link_ptr = &head;
617 
618   /* Make sure we've looked up the inferior's dynamic linker's base
619      structure.  */
620   if (! debug_base)
621     {
622       debug_base = locate_base ();
623 
624       /* If we can't find the dynamic linker's base structure, this
625 	 must not be a dynamically linked executable.  Hmm.  */
626       if (! debug_base)
627 	{
628 	  if (exec_bfd != NULL &&
629 	      bfd_get_section_by_name (exec_bfd, ".interp") == NULL &&
630 	      (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0 &&
631 	      bfd_get_start_address (exec_bfd) != entry_point_address ())
632 	    {
633 	      /* this is relocatable static link.
634 		 cf. svr4_relocate_main_executable() */
635 	      struct cleanup *old_chain;
636 	      struct section_offsets *new_offsets;
637 	      int i, changed;
638 	      CORE_ADDR displacement;
639 
640 	      displacement = entry_point_address () - bfd_get_start_address (exec_bfd);
641 	      changed = 0;
642 
643 	      new_offsets = xcalloc (symfile_objfile->num_sections,
644 				     sizeof (struct section_offsets));
645 	      old_chain = make_cleanup (xfree, new_offsets);
646 
647 	      for (i = 0; i < symfile_objfile->num_sections; i++)
648 		{
649 		  if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
650 		    changed = 1;
651 		  new_offsets->offsets[i] = displacement;
652 		}
653 
654 	      if (changed)
655 		objfile_relocate (symfile_objfile, new_offsets);
656 
657 	      do_cleanups (old_chain);
658 	      exec_set_section_offsets(displacement, displacement, displacement);
659 	    }
660 	  return 0;
661 	}
662     }
663 
664   /* Walk the inferior's link map list, and build our list of
665      `struct so_list' nodes.  */
666   lm = first_link_map_member ();
667   while (lm)
668     {
669       struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
670       struct so_list *new
671 	= (struct so_list *) xmalloc (sizeof (struct so_list));
672       struct cleanup *old_chain = make_cleanup (xfree, new);
673 
674       memset (new, 0, sizeof (*new));
675 
676       new->lm_info = xmalloc (sizeof (struct lm_info));
677       make_cleanup (xfree, new->lm_info);
678 
679       new->lm_info->lm = xmalloc (lmo->link_map_size);
680       make_cleanup (xfree, new->lm_info->lm);
681       memset (new->lm_info->lm, 0, lmo->link_map_size);
682 
683       read_memory (lm, new->lm_info->lm, lmo->link_map_size);
684 
685       lm = LM_NEXT (new);
686 
687       /* For SVR4 versions, the first entry in the link map is for the
688          inferior executable, so we must ignore it.  For some versions of
689          SVR4, it has no name.  For others (Solaris 2.3 for example), it
690          does have a name, so we can no longer use a missing name to
691          decide when to ignore it. */
692       if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
693 	{
694           /* It is the first link map entry, i.e. it is the main executable.  */
695 
696 	  if (bfd_get_start_address (exec_bfd) == entry_point_address ())
697 	    {
698               /* Non-pie case, main executable has not been relocated.  */
699 	      free_so (new);
700 	    }
701 	  else
702 	    {
703               /* Pie case, main executable has been relocated.  */
704 	      struct so_list *gdb_solib;
705 
706 	      strncpy (new->so_name, exec_bfd->filename,
707 		       SO_NAME_MAX_PATH_SIZE - 1);
708 	      new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
709 	      strcpy (new->so_original_name, new->so_name);
710 	      new->main_relocated = 0;
711 
712 	      for (gdb_solib = master_so_list ();
713                    gdb_solib;
714                    gdb_solib = gdb_solib->next)
715 		{
716 		  if (strcmp (gdb_solib->so_name, new->so_name) == 0)
717 		    if (gdb_solib->main_relocated)
718 		      break;
719 		}
720 
721 	      if ((gdb_solib && !gdb_solib->main_relocated) || (!gdb_solib))
722 		{
723 		  add_to_target_sections (0 /*from_tty*/, &current_target, new);
724 		  new->main = 1;
725 		}
726 
727 	      /* We need this in the list of shared libs we return because
728 		 solib_add_stub will loop through it and add the symbol file.  */
729 	      new->next = 0;
730 	      *link_ptr = new;
731 	      link_ptr = &new->next;
732 	    }
733 	} /* End of IGNORE_FIRST_LINK_MAP_ENTRY  */
734       else
735 	{
736 	  int errcode;
737 	  char *buffer;
738 
739 	  /* Extract this shared object's name.  */
740 	  target_read_string (LM_NAME (new), &buffer,
741 			      SO_NAME_MAX_PATH_SIZE - 1, &errcode);
742 	  if (errcode != 0)
743 	    {
744 	      warning ("current_sos: Can't read pathname for load map: %s\n",
745 		       safe_strerror (errcode));
746 	    }
747 	  else
748 	    {
749 	      strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
750 	      new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
751 	      xfree (buffer);
752 	      strcpy (new->so_original_name, new->so_name);
753 	    }
754 
755 	  new->next = 0;
756 	  *link_ptr = new;
757 	  link_ptr = &new->next;
758 
759 	}
760 
761       discard_cleanups (old_chain);
762     }
763 
764   return head;
765 }
766 
767 /* Get the address of the link_map for a given OBJFILE.  Loop through
768    the link maps, and return the address of the one corresponding to
769    the given objfile.  Note that this function takes into account that
770    objfile can be the main executable, not just a shared library.  The
771    main executable has always an empty name field in the linkmap.  */
772 
773 CORE_ADDR
svr4_fetch_objfile_link_map(struct objfile * objfile)774 svr4_fetch_objfile_link_map (struct objfile *objfile)
775 {
776   CORE_ADDR lm;
777 
778   if ((debug_base = locate_base ()) == 0)
779     return 0;   /* failed somehow... */
780 
781   /* Position ourselves on the first link map.  */
782   lm = first_link_map_member ();
783   while (lm)
784     {
785       /* Get info on the layout of the r_debug and link_map structures. */
786       struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
787       int errcode;
788       char *buffer;
789       struct lm_info objfile_lm_info;
790       struct cleanup *old_chain;
791       CORE_ADDR name_address;
792       char *l_name_buf = xmalloc (lmo->l_name_size);
793       old_chain = make_cleanup (xfree, l_name_buf);
794 
795       /* Set up the buffer to contain the portion of the link_map
796          structure that gdb cares about.  Note that this is not the
797          whole link_map structure.  */
798       objfile_lm_info.lm = xmalloc (lmo->link_map_size);
799       make_cleanup (xfree, objfile_lm_info.lm);
800       memset (objfile_lm_info.lm, 0, lmo->link_map_size);
801 
802       /* Read the link map into our internal structure.  */
803       read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
804 
805       /* Read address of name from target memory to GDB.  */
806       read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
807 
808       /* Extract this object's name.  Assume that the address is
809          unsigned.  */
810       name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
811       target_read_string (name_address, &buffer,
812       			  SO_NAME_MAX_PATH_SIZE - 1, &errcode);
813       make_cleanup (xfree, buffer);
814       if (errcode != 0)
815     	{
816 	  warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
817   		   safe_strerror (errcode));
818   	}
819       else
820   	{
821 	  /* Is this the linkmap for the file we want?  */
822 	  /* If the file is not a shared library and has no name,
823 	     we are sure it is the main executable, so we return that.  */
824 	  if ((buffer && strcmp (buffer, objfile->name) == 0)
825               || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
826   	    {
827     	      do_cleanups (old_chain);
828     	      return lm;
829       	    }
830   	}
831       /* Not the file we wanted, continue checking.  Assume that the
832          address is unsigned.  */
833       lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
834 				     lmo->l_next_size);
835       do_cleanups (old_chain);
836     }
837   return 0;
838 }
839 
840 /* On some systems, the only way to recognize the link map entry for
841    the main executable file is by looking at its name.  Return
842    non-zero iff SONAME matches one of the known main executable names.  */
843 
844 #if 0
845 static int
846 match_main (char *soname)
847 {
848   char **mainp;
849 
850   for (mainp = main_name_list; *mainp != NULL; mainp++)
851     {
852       if (strcmp (soname, *mainp) == 0)
853 	return (1);
854     }
855 
856   return (0);
857 }
858 #endif
859 
860 /* Return 1 if PC lies in the dynamic symbol resolution code of the
861    SVR4 run time loader.  */
862 static CORE_ADDR interp_text_sect_low;
863 static CORE_ADDR interp_text_sect_high;
864 static CORE_ADDR interp_plt_sect_low;
865 static CORE_ADDR interp_plt_sect_high;
866 
867 static int
svr4_in_dynsym_resolve_code(CORE_ADDR pc)868 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
869 {
870   return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
871 	  || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
872 	  || in_plt_section (pc, NULL));
873 }
874 
875 /* Given an executable's ABFD and target, compute the entry-point
876    address.  */
877 
878 static CORE_ADDR
exec_entry_point(struct bfd * abfd,struct target_ops * targ)879 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
880 {
881   /* KevinB wrote ... for most targets, the address returned by
882      bfd_get_start_address() is the entry point for the start
883      function.  But, for some targets, bfd_get_start_address() returns
884      the address of a function descriptor from which the entry point
885      address may be extracted.  This address is extracted by
886      gdbarch_convert_from_func_ptr_addr().  The method
887      gdbarch_convert_from_func_ptr_addr() is the merely the identify
888      function for targets which don't use function descriptors.  */
889   return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
890 					     bfd_get_start_address (abfd),
891 					     targ);
892 }
893 
894 /*
895 
896    LOCAL FUNCTION
897 
898    enable_break -- arrange for dynamic linker to hit breakpoint
899 
900    SYNOPSIS
901 
902    int enable_break (void)
903 
904    DESCRIPTION
905 
906    Both the SunOS and the SVR4 dynamic linkers have, as part of their
907    debugger interface, support for arranging for the inferior to hit
908    a breakpoint after mapping in the shared libraries.  This function
909    enables that breakpoint.
910 
911    For SunOS, there is a special flag location (in_debugger) which we
912    set to 1.  When the dynamic linker sees this flag set, it will set
913    a breakpoint at a location known only to itself, after saving the
914    original contents of that place and the breakpoint address itself,
915    in it's own internal structures.  When we resume the inferior, it
916    will eventually take a SIGTRAP when it runs into the breakpoint.
917    We handle this (in a different place) by restoring the contents of
918    the breakpointed location (which is only known after it stops),
919    chasing around to locate the shared libraries that have been
920    loaded, then resuming.
921 
922    For SVR4, the debugger interface structure contains a member (r_brk)
923    which is statically initialized at the time the shared library is
924    built, to the offset of a function (_r_debug_state) which is guaran-
925    teed to be called once before mapping in a library, and again when
926    the mapping is complete.  At the time we are examining this member,
927    it contains only the unrelocated offset of the function, so we have
928    to do our own relocation.  Later, when the dynamic linker actually
929    runs, it relocates r_brk to be the actual address of _r_debug_state().
930 
931    The debugger interface structure also contains an enumeration which
932    is set to either RT_ADD or RT_DELETE prior to changing the mapping,
933    depending upon whether or not the library is being mapped or unmapped,
934    and then set to RT_CONSISTENT after the library is mapped/unmapped.
935  */
936 
937 static int
enable_break(void)938 enable_break (void)
939 {
940   int success = 0;
941 
942 #ifdef BKPT_AT_SYMBOL
943 
944   struct minimal_symbol *msymbol;
945   char **bkpt_namep;
946   asection *interp_sect;
947 
948   /* First, remove all the solib event breakpoints.  Their addresses
949      may have changed since the last time we ran the program.  */
950   remove_solib_event_breakpoints ();
951 
952   interp_text_sect_low = interp_text_sect_high = 0;
953   interp_plt_sect_low = interp_plt_sect_high = 0;
954 
955   /* Find the .interp section; if not found, warn the user and drop
956      into the old breakpoint at symbol code.  */
957   interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
958   if (interp_sect)
959     {
960       unsigned int interp_sect_size;
961       char *buf;
962       CORE_ADDR load_addr = 0;
963       int load_addr_found = 0;
964       struct so_list *so;
965       bfd *tmp_bfd = NULL;
966       struct target_ops *tmp_bfd_target;
967       int tmp_fd = -1;
968       char *tmp_pathname = NULL;
969       CORE_ADDR sym_addr = 0;
970 
971       /* Read the contents of the .interp section into a local buffer;
972          the contents specify the dynamic linker this program uses.  */
973       interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
974       buf = alloca (interp_sect_size);
975       bfd_get_section_contents (exec_bfd, interp_sect,
976 				buf, 0, interp_sect_size);
977 
978       /* Now we need to figure out where the dynamic linker was
979          loaded so that we can load its symbols and place a breakpoint
980          in the dynamic linker itself.
981 
982          This address is stored on the stack.  However, I've been unable
983          to find any magic formula to find it for Solaris (appears to
984          be trivial on GNU/Linux).  Therefore, we have to try an alternate
985          mechanism to find the dynamic linker's base address.  */
986 
987       tmp_fd  = solib_open (buf, &tmp_pathname);
988       if (tmp_fd >= 0)
989 	tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
990 
991       if (tmp_bfd == NULL)
992 	goto bkpt_at_symbol;
993 
994       /* Make sure the dynamic linker's really a useful object.  */
995       if (!bfd_check_format (tmp_bfd, bfd_object))
996 	{
997 	  warning ("Unable to grok dynamic linker %s as an object file", buf);
998 	  bfd_close (tmp_bfd);
999 	  goto bkpt_at_symbol;
1000 	}
1001 
1002       /* Now convert the TMP_BFD into a target.  That way target, as
1003          well as BFD operations can be used.  Note that closing the
1004          target will also close the underlying bfd.  */
1005       tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1006 
1007       /* On a running target, we can get the dynamic linker's base
1008          address from the shared library table.  */
1009       solib_add (NULL, 0, NULL, auto_solib_add);
1010       so = master_so_list ();
1011       while (so)
1012 	{
1013 	  if (strcmp (buf, so->so_original_name) == 0)
1014 	    {
1015 	      load_addr_found = 1;
1016 	      load_addr = LM_ADDR (so);
1017 	      break;
1018 	    }
1019 	  so = so->next;
1020 	}
1021 
1022       /* Otherwise we find the dynamic linker's base address by examining
1023 	 the current pc (which should point at the entry point for the
1024 	 dynamic linker) and subtracting the offset of the entry point.  */
1025       if (!load_addr_found)
1026 	load_addr = (read_pc ()
1027 		     - exec_entry_point (tmp_bfd, tmp_bfd_target));
1028 
1029       /* Record the relocated start and end address of the dynamic linker
1030          text and plt section for svr4_in_dynsym_resolve_code.  */
1031       interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1032       if (interp_sect)
1033 	{
1034 	  interp_text_sect_low =
1035 	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1036 	  interp_text_sect_high =
1037 	    interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1038 	}
1039       interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1040       if (interp_sect)
1041 	{
1042 	  interp_plt_sect_low =
1043 	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1044 	  interp_plt_sect_high =
1045 	    interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1046 	}
1047 
1048       /* Now try to set a breakpoint in the dynamic linker.  */
1049       for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1050 	{
1051           /* On ABI's that use function descriptors, there are usually
1052              two linker symbols associated with each C function: one
1053              pointing at the actual entry point of the machine code,
1054              and one pointing at the function's descriptor.  The
1055              latter symbol has the same name as the C function.
1056 
1057              What we're looking for here is the machine code entry
1058              point, so we are only interested in symbols in code
1059              sections.  */
1060 	  sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
1061 	  if (sym_addr != 0)
1062 	    break;
1063 	}
1064 
1065       /* We're done with both the temporary bfd and target.  Remember,
1066          closing the target closes the underlying bfd.  */
1067       target_close (tmp_bfd_target, 0);
1068 
1069       if (sym_addr != 0)
1070 	{
1071 	  create_solib_event_breakpoint (load_addr + sym_addr);
1072 	  return 1;
1073 	}
1074 
1075       /* For whatever reason we couldn't set a breakpoint in the dynamic
1076          linker.  Warn and drop into the old code.  */
1077     bkpt_at_symbol:
1078       warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1079     }
1080 
1081   /* Scan through the list of symbols, trying to look up the symbol and
1082      set a breakpoint there.  Terminate loop when we/if we succeed. */
1083 
1084   breakpoint_addr = 0;
1085   for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1086     {
1087       msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1088       if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1089 	{
1090 	  create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1091 	  return 1;
1092 	}
1093     }
1094 
1095   /* Nothing good happened.  */
1096   success = 0;
1097 
1098 #endif /* BKPT_AT_SYMBOL */
1099 
1100   return (success);
1101 }
1102 
1103 /*
1104 
1105    LOCAL FUNCTION
1106 
1107    special_symbol_handling -- additional shared library symbol handling
1108 
1109    SYNOPSIS
1110 
1111    void special_symbol_handling ()
1112 
1113    DESCRIPTION
1114 
1115    Once the symbols from a shared object have been loaded in the usual
1116    way, we are called to do any system specific symbol handling that
1117    is needed.
1118 
1119    For SunOS4, this consisted of grunging around in the dynamic
1120    linkers structures to find symbol definitions for "common" symbols
1121    and adding them to the minimal symbol table for the runtime common
1122    objfile.
1123 
1124    However, for SVR4, there's nothing to do.
1125 
1126  */
1127 
1128 static void
svr4_special_symbol_handling(void)1129 svr4_special_symbol_handling (void)
1130 {
1131 }
1132 
1133 /* Relocate the main executable.  This function should be called upon
1134    stopping the inferior process at the entry point to the program.
1135    The entry point from BFD is compared to the PC and if they are
1136    different, the main executable is relocated by the proper amount.
1137 
1138    As written it will only attempt to relocate executables which
1139    lack interpreter sections.  It seems likely that only dynamic
1140    linker executables will get relocated, though it should work
1141    properly for a position-independent static executable as well.  */
1142 
1143 static void
svr4_relocate_main_executable(void)1144 svr4_relocate_main_executable (void)
1145 {
1146   asection *interp_sect;
1147   CORE_ADDR pc = read_pc ();
1148 
1149   /* Decide if the objfile needs to be relocated.  As indicated above,
1150      we will only be here when execution is stopped at the beginning
1151      of the program.  Relocation is necessary if the address at which
1152      we are presently stopped differs from the start address stored in
1153      the executable AND there's no interpreter section.  The condition
1154      regarding the interpreter section is very important because if
1155      there *is* an interpreter section, execution will begin there
1156      instead.  When there is an interpreter section, the start address
1157      is (presumably) used by the interpreter at some point to start
1158      execution of the program.
1159 
1160      If there is an interpreter, it is normal for it to be set to an
1161      arbitrary address at the outset.  The job of finding it is
1162      handled in enable_break().
1163 
1164      So, to summarize, relocations are necessary when there is no
1165      interpreter section and the start address obtained from the
1166      executable is different from the address at which GDB is
1167      currently stopped.
1168 
1169      [ The astute reader will note that we also test to make sure that
1170        the executable in question has the DYNAMIC flag set.  It is my
1171        opinion that this test is unnecessary (undesirable even).  It
1172        was added to avoid inadvertent relocation of an executable
1173        whose e_type member in the ELF header is not ET_DYN.  There may
1174        be a time in the future when it is desirable to do relocations
1175        on other types of files as well in which case this condition
1176        should either be removed or modified to accomodate the new file
1177        type.  (E.g, an ET_EXEC executable which has been built to be
1178        position-independent could safely be relocated by the OS if
1179        desired.  It is true that this violates the ABI, but the ABI
1180        has been known to be bent from time to time.)  - Kevin, Nov 2000. ]
1181      */
1182 
1183   interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1184   if (interp_sect == NULL
1185       && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1186       && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1187     {
1188       struct cleanup *old_chain;
1189       struct section_offsets *new_offsets;
1190       int i, changed;
1191       CORE_ADDR displacement;
1192 
1193       /* It is necessary to relocate the objfile.  The amount to
1194 	 relocate by is simply the address at which we are stopped
1195 	 minus the starting address from the executable.
1196 
1197 	 We relocate all of the sections by the same amount.  This
1198 	 behavior is mandated by recent editions of the System V ABI.
1199 	 According to the System V Application Binary Interface,
1200 	 Edition 4.1, page 5-5:
1201 
1202 	   ...  Though the system chooses virtual addresses for
1203 	   individual processes, it maintains the segments' relative
1204 	   positions.  Because position-independent code uses relative
1205 	   addressesing between segments, the difference between
1206 	   virtual addresses in memory must match the difference
1207 	   between virtual addresses in the file.  The difference
1208 	   between the virtual address of any segment in memory and
1209 	   the corresponding virtual address in the file is thus a
1210 	   single constant value for any one executable or shared
1211 	   object in a given process.  This difference is the base
1212 	   address.  One use of the base address is to relocate the
1213 	   memory image of the program during dynamic linking.
1214 
1215 	 The same language also appears in Edition 4.0 of the System V
1216 	 ABI and is left unspecified in some of the earlier editions.  */
1217 
1218       displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1219       changed = 0;
1220 
1221       new_offsets = xcalloc (symfile_objfile->num_sections,
1222 			     sizeof (struct section_offsets));
1223       old_chain = make_cleanup (xfree, new_offsets);
1224 
1225       for (i = 0; i < symfile_objfile->num_sections; i++)
1226 	{
1227 	  if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1228 	    changed = 1;
1229 	  new_offsets->offsets[i] = displacement;
1230 	}
1231 
1232       if (changed)
1233 	objfile_relocate (symfile_objfile, new_offsets);
1234 
1235       do_cleanups (old_chain);
1236     }
1237 }
1238 
1239 /*
1240 
1241    GLOBAL FUNCTION
1242 
1243    svr4_solib_create_inferior_hook -- shared library startup support
1244 
1245    SYNOPSIS
1246 
1247    void svr4_solib_create_inferior_hook()
1248 
1249    DESCRIPTION
1250 
1251    When gdb starts up the inferior, it nurses it along (through the
1252    shell) until it is ready to execute it's first instruction.  At this
1253    point, this function gets called via expansion of the macro
1254    SOLIB_CREATE_INFERIOR_HOOK.
1255 
1256    For SunOS executables, this first instruction is typically the
1257    one at "_start", or a similar text label, regardless of whether
1258    the executable is statically or dynamically linked.  The runtime
1259    startup code takes care of dynamically linking in any shared
1260    libraries, once gdb allows the inferior to continue.
1261 
1262    For SVR4 executables, this first instruction is either the first
1263    instruction in the dynamic linker (for dynamically linked
1264    executables) or the instruction at "start" for statically linked
1265    executables.  For dynamically linked executables, the system
1266    first exec's /lib/libc.so.N, which contains the dynamic linker,
1267    and starts it running.  The dynamic linker maps in any needed
1268    shared libraries, maps in the actual user executable, and then
1269    jumps to "start" in the user executable.
1270 
1271    For both SunOS shared libraries, and SVR4 shared libraries, we
1272    can arrange to cooperate with the dynamic linker to discover the
1273    names of shared libraries that are dynamically linked, and the
1274    base addresses to which they are linked.
1275 
1276    This function is responsible for discovering those names and
1277    addresses, and saving sufficient information about them to allow
1278    their symbols to be read at a later time.
1279 
1280    FIXME
1281 
1282    Between enable_break() and disable_break(), this code does not
1283    properly handle hitting breakpoints which the user might have
1284    set in the startup code or in the dynamic linker itself.  Proper
1285    handling will probably have to wait until the implementation is
1286    changed to use the "breakpoint handler function" method.
1287 
1288    Also, what if child has exit()ed?  Must exit loop somehow.
1289  */
1290 
1291 static void
svr4_solib_create_inferior_hook(void)1292 svr4_solib_create_inferior_hook (void)
1293 {
1294   /* Relocate the main executable if necessary.  */
1295   svr4_relocate_main_executable ();
1296 
1297   if (!svr4_have_link_map_offsets ())
1298     {
1299       warning ("no shared library support for this OS / ABI");
1300       return;
1301 
1302     }
1303 
1304   if (!enable_break ())
1305     {
1306       warning ("shared library handler failed to enable breakpoint");
1307       return;
1308     }
1309 
1310 #if defined(_SCO_DS)
1311   /* SCO needs the loop below, other systems should be using the
1312      special shared library breakpoints and the shared library breakpoint
1313      service routine.
1314 
1315      Now run the target.  It will eventually hit the breakpoint, at
1316      which point all of the libraries will have been mapped in and we
1317      can go groveling around in the dynamic linker structures to find
1318      out what we need to know about them. */
1319 
1320   clear_proceed_status ();
1321   stop_soon = STOP_QUIETLY;
1322   stop_signal = TARGET_SIGNAL_0;
1323   do
1324     {
1325       target_resume (pid_to_ptid (-1), 0, stop_signal);
1326       wait_for_inferior ();
1327     }
1328   while (stop_signal != TARGET_SIGNAL_TRAP);
1329   stop_soon = NO_STOP_QUIETLY;
1330 #endif /* defined(_SCO_DS) */
1331 
1332    disable_breakpoints_at_startup (1);
1333 }
1334 
1335 static void
svr4_clear_solib(void)1336 svr4_clear_solib (void)
1337 {
1338   debug_base = 0;
1339 }
1340 
1341 static void
svr4_free_so(struct so_list * so)1342 svr4_free_so (struct so_list *so)
1343 {
1344   xfree (so->lm_info->lm);
1345   xfree (so->lm_info);
1346 }
1347 
1348 
1349 /* Clear any bits of ADDR that wouldn't fit in a target-format
1350    data pointer.  "Data pointer" here refers to whatever sort of
1351    address the dynamic linker uses to manage its sections.  At the
1352    moment, we don't support shared libraries on any processors where
1353    code and data pointers are different sizes.
1354 
1355    This isn't really the right solution.  What we really need here is
1356    a way to do arithmetic on CORE_ADDR values that respects the
1357    natural pointer/address correspondence.  (For example, on the MIPS,
1358    converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1359    sign-extend the value.  There, simply truncating the bits above
1360    TARGET_PTR_BIT, as we do below, is no good.)  This should probably
1361    be a new gdbarch method or something.  */
1362 static CORE_ADDR
svr4_truncate_ptr(CORE_ADDR addr)1363 svr4_truncate_ptr (CORE_ADDR addr)
1364 {
1365   if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1366     /* We don't need to truncate anything, and the bit twiddling below
1367        will fail due to overflow problems.  */
1368     return addr;
1369   else
1370     return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1371 }
1372 
1373 
1374 static void
svr4_relocate_section_addresses(struct so_list * so,struct section_table * sec)1375 svr4_relocate_section_addresses (struct so_list *so,
1376                                  struct section_table *sec)
1377 {
1378   sec->addr    = svr4_truncate_ptr (sec->addr    + LM_ADDR (so));
1379   sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
1380 }
1381 
1382 
1383 /* Fetch a link_map_offsets structure for native targets using struct
1384    definitions from link.h.  See solib-legacy.c for the function
1385    which does the actual work.
1386 
1387    Note: For non-native targets (i.e. cross-debugging situations),
1388    a target specific fetch_link_map_offsets() function should be
1389    defined and registered via set_solib_svr4_fetch_link_map_offsets().  */
1390 
1391 static struct link_map_offsets *
legacy_fetch_link_map_offsets(void)1392 legacy_fetch_link_map_offsets (void)
1393 {
1394   if (legacy_svr4_fetch_link_map_offsets_hook)
1395     return legacy_svr4_fetch_link_map_offsets_hook ();
1396   else
1397     {
1398       internal_error (__FILE__, __LINE__,
1399                       "legacy_fetch_link_map_offsets called without legacy "
1400 		      "link_map support enabled.");
1401       return 0;
1402     }
1403 }
1404 
1405 /* Fetch a link_map_offsets structure using the method registered in the
1406    architecture vector.  */
1407 
1408 static struct link_map_offsets *
svr4_fetch_link_map_offsets(void)1409 svr4_fetch_link_map_offsets (void)
1410 {
1411   struct link_map_offsets *(*flmo)(void) =
1412     gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1413 
1414   if (flmo == NULL)
1415     {
1416       internal_error (__FILE__, __LINE__,
1417                       "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1418 		      "method not defined for this architecture.");
1419       return 0;
1420     }
1421   else
1422     return (flmo ());
1423 }
1424 
1425 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */
1426 static int
svr4_have_link_map_offsets(void)1427 svr4_have_link_map_offsets (void)
1428 {
1429   struct link_map_offsets *(*flmo)(void) =
1430     gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1431   if (flmo == NULL
1432       || (flmo == legacy_fetch_link_map_offsets
1433           && legacy_svr4_fetch_link_map_offsets_hook == NULL))
1434     return 0;
1435   else
1436     return 1;
1437 }
1438 
1439 /* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
1440    a <arch>_gdbarch_init() function.  It is used to establish an
1441    architecture specific link_map_offsets fetcher for the architecture
1442    being defined.  */
1443 
1444 void
set_solib_svr4_fetch_link_map_offsets(struct gdbarch * gdbarch,struct link_map_offsets * (* flmo)(void))1445 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1446                                        struct link_map_offsets *(*flmo) (void))
1447 {
1448   deprecated_set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
1449 }
1450 
1451 /* Initialize the architecture-specific link_map_offsets fetcher.
1452    This is called after <arch>_gdbarch_init() has set up its `struct
1453    gdbarch' for the new architecture, and is only called if the
1454    link_map_offsets fetcher isn't already initialized (which is
1455    usually done by calling set_solib_svr4_fetch_link_map_offsets()
1456    above in <arch>_gdbarch_init()).  Therefore we attempt to provide a
1457    reasonable alternative (for native targets anyway) if the
1458    <arch>_gdbarch_init() fails to call
1459    set_solib_svr4_fetch_link_map_offsets().  */
1460 
1461 static void *
init_fetch_link_map_offsets(struct gdbarch * gdbarch)1462 init_fetch_link_map_offsets (struct gdbarch *gdbarch)
1463 {
1464   return legacy_fetch_link_map_offsets;
1465 }
1466 
1467 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1468    `struct r_debug' and a `struct link_map' that are binary compatible
1469    with the origional SVR4 implementation.  */
1470 
1471 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1472    for an ILP32 SVR4 system.  */
1473 
1474 struct link_map_offsets *
svr4_ilp32_fetch_link_map_offsets(void)1475 svr4_ilp32_fetch_link_map_offsets (void)
1476 {
1477   static struct link_map_offsets lmo;
1478   static struct link_map_offsets *lmp = NULL;
1479 
1480   if (lmp == NULL)
1481     {
1482       lmp = &lmo;
1483 
1484       /* Everything we need is in the first 8 bytes.  */
1485       lmo.r_debug_size = 8;
1486       lmo.r_map_offset = 4;
1487       lmo.r_map_size   = 4;
1488 
1489       /* Everything we need is in the first 20 bytes.  */
1490       lmo.link_map_size = 20;
1491       lmo.l_addr_offset = 0;
1492       lmo.l_addr_size   = 4;
1493       lmo.l_name_offset = 4;
1494       lmo.l_name_size   = 4;
1495       lmo.l_next_offset = 12;
1496       lmo.l_next_size   = 4;
1497       lmo.l_prev_offset = 16;
1498       lmo.l_prev_size   = 4;
1499     }
1500 
1501   return lmp;
1502 }
1503 
1504 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1505    for an LP64 SVR4 system.  */
1506 
1507 struct link_map_offsets *
svr4_lp64_fetch_link_map_offsets(void)1508 svr4_lp64_fetch_link_map_offsets (void)
1509 {
1510   static struct link_map_offsets lmo;
1511   static struct link_map_offsets *lmp = NULL;
1512 
1513   if (lmp == NULL)
1514     {
1515       lmp = &lmo;
1516 
1517       /* Everything we need is in the first 16 bytes.  */
1518       lmo.r_debug_size = 16;
1519       lmo.r_map_offset = 8;
1520       lmo.r_map_size   = 8;
1521 
1522       /* Everything we need is in the first 40 bytes.  */
1523       lmo.link_map_size = 40;
1524       lmo.l_addr_offset = 0;
1525       lmo.l_addr_size   = 8;
1526       lmo.l_name_offset = 8;
1527       lmo.l_name_size   = 8;
1528       lmo.l_next_offset = 24;
1529       lmo.l_next_size   = 8;
1530       lmo.l_prev_offset = 32;
1531       lmo.l_prev_size   = 8;
1532     }
1533 
1534   return lmp;
1535 }
1536 
1537 
1538 static struct target_so_ops svr4_so_ops;
1539 
1540 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1541 
1542 void
_initialize_svr4_solib(void)1543 _initialize_svr4_solib (void)
1544 {
1545   fetch_link_map_offsets_gdbarch_data =
1546     gdbarch_data_register_post_init (init_fetch_link_map_offsets);
1547 
1548   svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1549   svr4_so_ops.free_so = svr4_free_so;
1550   svr4_so_ops.clear_solib = svr4_clear_solib;
1551   svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1552   svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1553   svr4_so_ops.current_sos = svr4_current_sos;
1554   svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1555   svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1556 
1557   /* FIXME: Don't do this here.  *_gdbarch_init() should set so_ops. */
1558   current_target_so_ops = &svr4_so_ops;
1559 }
1560