1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright 2014 Garrett D'Amore <garrett@damore.org>
28 * Copyright (c) 2016 by Delphix. All rights reserved.
29 */
30
31 /*
32 * sun4 specific DDI implementation
33 */
34 #include <sys/cpuvar.h>
35 #include <sys/ddi_subrdefs.h>
36 #include <sys/machsystm.h>
37 #include <sys/sunndi.h>
38 #include <sys/sysmacros.h>
39 #include <sys/ontrap.h>
40 #include <vm/seg_kmem.h>
41 #include <sys/membar.h>
42 #include <sys/dditypes.h>
43 #include <sys/ndifm.h>
44 #include <sys/fm/io/ddi.h>
45 #include <sys/ivintr.h>
46 #include <sys/bootconf.h>
47 #include <sys/conf.h>
48 #include <sys/ethernet.h>
49 #include <sys/idprom.h>
50 #include <sys/promif.h>
51 #include <sys/prom_plat.h>
52 #include <sys/systeminfo.h>
53 #include <sys/fpu/fpusystm.h>
54 #include <sys/vm.h>
55 #include <sys/ddi_isa.h>
56 #include <sys/modctl.h>
57
58 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
59 ddi_intr_handle_impl_t *);
60 #pragma weak get_intr_parent
61
62 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
63 ddi_intr_handle_impl_t *, void *);
64 #pragma weak process_intr_ops
65
66 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
67 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
68 int32_t len);
69 #pragma weak cells_1275_copy
70
71 /*
72 * Wrapper for ddi_prop_lookup_int_array().
73 * This is handy because it returns the prop length in
74 * bytes which is what most of the callers require.
75 */
76
77 static int
get_prop_int_array(dev_info_t * di,char * pname,int ** pval,uint_t * plen)78 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
79 {
80 int ret;
81
82 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
83 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
84 *plen = (*plen) * (uint_t)sizeof (int);
85 }
86 return (ret);
87 }
88
89 /*
90 * SECTION: DDI Node Configuration
91 */
92
93 /*
94 * init_regspec_64:
95 *
96 * If the parent #size-cells is 2, convert the upa-style or
97 * safari-style reg property from 2-size cells to 1 size cell
98 * format, ignoring the size_hi, which must be zero for devices.
99 * (It won't be zero in the memory list properties in the memory
100 * nodes, but that doesn't matter here.)
101 */
102 struct ddi_parent_private_data *
init_regspec_64(dev_info_t * dip)103 init_regspec_64(dev_info_t *dip)
104 {
105 struct ddi_parent_private_data *pd;
106 dev_info_t *parent;
107 int size_cells;
108
109 /*
110 * If there are no "reg"s in the child node, return.
111 */
112 pd = ddi_get_parent_data(dip);
113 if ((pd == NULL) || (pd->par_nreg == 0)) {
114 return (pd);
115 }
116 parent = ddi_get_parent(dip);
117
118 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
119 DDI_PROP_DONTPASS, "#size-cells", 1);
120
121 if (size_cells != 1) {
122
123 int n, j;
124 struct regspec *irp;
125 struct reg_64 {
126 uint_t addr_hi, addr_lo, size_hi, size_lo;
127 };
128 struct reg_64 *r64_rp;
129 struct regspec *rp;
130 uint_t len = 0;
131 int *reg_prop;
132
133 ASSERT(size_cells == 2);
134
135 /*
136 * We already looked the property up once before if
137 * pd is non-NULL.
138 */
139 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
140 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len);
141 ASSERT(len != 0);
142
143 n = sizeof (struct reg_64) / sizeof (int);
144 n = len / n;
145
146 /*
147 * We're allocating a buffer the size of the PROM's property,
148 * but we're only using a smaller portion when we assign it
149 * to a regspec. We do this so that in the
150 * impl_ddi_sunbus_removechild function, we will
151 * always free the right amount of memory.
152 */
153 irp = rp = (struct regspec *)reg_prop;
154 r64_rp = (struct reg_64 *)pd->par_reg;
155
156 for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
157 ASSERT(r64_rp->size_hi == 0);
158 rp->regspec_bustype = r64_rp->addr_hi;
159 rp->regspec_addr = r64_rp->addr_lo;
160 rp->regspec_size = r64_rp->size_lo;
161 }
162
163 ddi_prop_free((void *)pd->par_reg);
164 pd->par_nreg = n;
165 pd->par_reg = irp;
166 }
167 return (pd);
168 }
169
170 /*
171 * Create a ddi_parent_private_data structure from the ddi properties of
172 * the dev_info node.
173 *
174 * The "reg" is required if the driver wishes to create mappings on behalf
175 * of the device. The "reg" property is assumed to be a list of at least
176 * one triplet
177 *
178 * <bustype, address, size>*1
179 *
180 * The "interrupt" property is no longer part of parent private data on
181 * sun4u. The interrupt parent is may not be the device tree parent.
182 *
183 * The "ranges" property describes the mapping of child addresses to parent
184 * addresses.
185 *
186 * N.B. struct rangespec is defined for the following default values:
187 * parent child
188 * #address-cells 2 2
189 * #size-cells 1 1
190 * This function doesn't deal with non-default cells and will not create
191 * ranges in such cases.
192 */
193 void
make_ddi_ppd(dev_info_t * child,struct ddi_parent_private_data ** ppd)194 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
195 {
196 struct ddi_parent_private_data *pdptr;
197 int *reg_prop, *rng_prop;
198 uint_t reg_len = 0, rng_len = 0;
199 dev_info_t *parent;
200 int parent_addr_cells, parent_size_cells;
201 int child_addr_cells, child_size_cells;
202
203 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
204
205 /*
206 * root node has no parent private data, so *ppd should
207 * be initialized for naming to work properly.
208 */
209 if ((parent = ddi_get_parent(child)) == NULL)
210 return;
211
212 /*
213 * Set reg field of parent data from "reg" property
214 */
215 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len)
216 == DDI_PROP_SUCCESS) && (reg_len != 0)) {
217 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
218 pdptr->par_reg = (struct regspec *)reg_prop;
219 }
220
221 /*
222 * "ranges" property ...
223 *
224 * This function does not handle cases where #address-cells != 2
225 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
226 *
227 * Nexus drivers with such exceptions (e.g. pci ranges)
228 * should either create a separate function for handling
229 * ranges or not use parent private data to store ranges.
230 */
231
232 /* root node has no ranges */
233 if ((parent = ddi_get_parent(child)) == NULL)
234 return;
235
236 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
237 DDI_PROP_DONTPASS, "#address-cells", 2);
238 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
239 DDI_PROP_DONTPASS, "#size-cells", 1);
240 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
241 DDI_PROP_DONTPASS, "#address-cells", 2);
242 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
243 DDI_PROP_DONTPASS, "#size-cells", 1);
244 if (child_addr_cells != 2 || parent_addr_cells != 2 ||
245 (child_size_cells != 1 && parent_size_cells != 1)) {
246 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
247 "#address-cells or #size-cells have non-default value"));
248 return;
249 }
250
251 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
252 == DDI_PROP_SUCCESS) {
253 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
254 pdptr->par_rng = (struct rangespec *)rng_prop;
255 }
256 }
257
258 /*
259 * Free ddi_parent_private_data structure
260 */
261 void
impl_free_ddi_ppd(dev_info_t * dip)262 impl_free_ddi_ppd(dev_info_t *dip)
263 {
264 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
265
266 if (pdptr == NULL)
267 return;
268
269 if (pdptr->par_nrng != 0)
270 ddi_prop_free((void *)pdptr->par_rng);
271
272 if (pdptr->par_nreg != 0)
273 ddi_prop_free((void *)pdptr->par_reg);
274
275 kmem_free(pdptr, sizeof (*pdptr));
276 ddi_set_parent_data(dip, NULL);
277 }
278
279 /*
280 * Name a child of sun busses based on the reg spec.
281 * Handles the following properties:
282 *
283 * Property value
284 * Name type
285 *
286 * reg register spec
287 * interrupts new (bus-oriented) interrupt spec
288 * ranges range spec
289 *
290 * This may be called multiple times, independent of
291 * initchild calls.
292 */
293 static int
impl_sunbus_name_child(dev_info_t * child,char * name,int namelen)294 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
295 {
296 struct ddi_parent_private_data *pdptr;
297 struct regspec *rp;
298
299 /*
300 * Fill in parent-private data and this function returns to us
301 * an indication if it used "registers" to fill in the data.
302 */
303 if (ddi_get_parent_data(child) == NULL) {
304 make_ddi_ppd(child, &pdptr);
305 ddi_set_parent_data(child, pdptr);
306 }
307
308 /*
309 * No reg property, return null string as address
310 * (e.g. root node)
311 */
312 name[0] = '\0';
313 if (sparc_pd_getnreg(child) == 0) {
314 return (DDI_SUCCESS);
315 }
316
317 rp = sparc_pd_getreg(child, 0);
318 (void) snprintf(name, namelen, "%x,%x",
319 rp->regspec_bustype, rp->regspec_addr);
320 return (DDI_SUCCESS);
321 }
322
323
324 /*
325 * Called from the bus_ctl op of some drivers.
326 * to implement the DDI_CTLOPS_INITCHILD operation.
327 *
328 * NEW drivers should NOT use this function, but should declare
329 * there own initchild/uninitchild handlers. (This function assumes
330 * the layout of the parent private data and the format of "reg",
331 * "ranges", "interrupts" properties and that #address-cells and
332 * #size-cells of the parent bus are defined to be default values.)
333 */
334 int
impl_ddi_sunbus_initchild(dev_info_t * child)335 impl_ddi_sunbus_initchild(dev_info_t *child)
336 {
337 char name[MAXNAMELEN];
338
339 (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
340 ddi_set_name_addr(child, name);
341
342 /*
343 * Try to merge .conf node. If successful, return failure to
344 * remove this child.
345 */
346 if ((ndi_dev_is_persistent_node(child) == 0) &&
347 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
348 impl_ddi_sunbus_removechild(child);
349 return (DDI_FAILURE);
350 }
351 return (DDI_SUCCESS);
352 }
353
354 /*
355 * A better name for this function would be impl_ddi_sunbus_uninitchild()
356 * It does not remove the child, it uninitializes it, reclaiming the
357 * resources taken by impl_ddi_sunbus_initchild.
358 */
359 void
impl_ddi_sunbus_removechild(dev_info_t * dip)360 impl_ddi_sunbus_removechild(dev_info_t *dip)
361 {
362 impl_free_ddi_ppd(dip);
363 ddi_set_name_addr(dip, NULL);
364 /*
365 * Strip the node to properly convert it back to prototype form
366 */
367 impl_rem_dev_props(dip);
368 }
369
370 /*
371 * SECTION: DDI Interrupt
372 */
373
374 void
cells_1275_copy(prop_1275_cell_t * from,prop_1275_cell_t * to,int32_t len)375 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
376 {
377 int i;
378 for (i = 0; i < len; i++)
379 *to = *from;
380 }
381
382 prop_1275_cell_t *
cells_1275_cmp(prop_1275_cell_t * cell1,prop_1275_cell_t * cell2,int32_t len)383 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
384 {
385 prop_1275_cell_t *match_cell = 0;
386 int32_t i;
387
388 for (i = 0; i < len; i++)
389 if (cell1[i] != cell2[i]) {
390 match_cell = &cell1[i];
391 break;
392 }
393
394 return (match_cell);
395 }
396
397 /*
398 * get_intr_parent() is a generic routine that process a 1275 interrupt
399 * map (imap) property. This function returns a dev_info_t structure
400 * which claims ownership of the interrupt domain.
401 * It also returns the new interrupt translation within this new domain.
402 * If an interrupt-parent or interrupt-map property are not found,
403 * then we fallback to using the device tree's parent.
404 *
405 * imap entry format:
406 * <reg>,<interrupt>,<phandle>,<translated interrupt>
407 * reg - The register specification in the interrupts domain
408 * interrupt - The interrupt specification
409 * phandle - PROM handle of the device that owns the xlated interrupt domain
410 * translated interrupt - interrupt specifier in the parents domain
411 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
412 * a unique entry called a unit interrupt specifier.
413 *
414 * Here's the processing steps:
415 * step1 - If the interrupt-parent property exists, create the ispec and
416 * return the dip of the interrupt parent.
417 * step2 - Extract the interrupt-map property and the interrupt-map-mask
418 * If these don't exist, just return the device tree parent.
419 * step3 - build up the unit interrupt specifier to match against the
420 * interrupt map property
421 * step4 - Scan the interrupt-map property until a match is found
422 * step4a - Extract the interrupt parent
423 * step4b - Compare the unit interrupt specifier
424 */
425 dev_info_t *
get_intr_parent(dev_info_t * pdip,dev_info_t * dip,ddi_intr_handle_impl_t * hdlp)426 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
427 {
428 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
429 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
430 addr_cells, intr_cells, reg_len, i, j;
431 int32_t match_found = 0;
432 dev_info_t *intr_parent_dip = NULL;
433 uint32_t *intr = &hdlp->ih_vector;
434 uint32_t nodeid;
435 #ifdef DEBUG
436 static int debug = 0;
437 #endif
438
439 /*
440 * step1
441 * If we have an interrupt-parent property, this property represents
442 * the nodeid of our interrupt parent.
443 */
444 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
445 "interrupt-parent", -1)) != -1) {
446 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
447 ASSERT(intr_parent_dip);
448
449 /*
450 * Attach the interrupt parent.
451 *
452 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
453 * Also, interrupt parent isn't held. This needs
454 * to be revisited if DR-capable platforms implement
455 * interrupt redirection.
456 */
457 if (i_ddi_attach_node_hierarchy(intr_parent_dip)
458 != DDI_SUCCESS) {
459 ndi_rele_devi(intr_parent_dip);
460 return (NULL);
461 }
462
463 return (intr_parent_dip);
464 }
465
466 /*
467 * step2
468 * Get interrupt map structure from PROM property
469 */
470 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
471 "interrupt-map", (caddr_t)&imap, &imap_sz)
472 != DDI_PROP_SUCCESS) {
473 /*
474 * If we don't have an imap property, default to using the
475 * device tree.
476 */
477
478 ndi_hold_devi(pdip);
479 return (pdip);
480 }
481
482 /* Get the interrupt mask property */
483 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
484 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
485 != DDI_PROP_SUCCESS) {
486 /*
487 * If we don't find this property, we have to fail the request
488 * because the 1275 imap property wasn't defined correctly.
489 */
490 ASSERT(intr_parent_dip == NULL);
491 goto exit2;
492 }
493
494 /* Get the address cell size */
495 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
496 "#address-cells", 2);
497
498 /* Get the interrupts cell size */
499 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
500 "#interrupt-cells", 1);
501
502 /*
503 * step3
504 * Now lets build up the unit interrupt specifier e.g. reg,intr
505 * and apply the imap mask. match_req will hold this when we're
506 * through.
507 */
508 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
509 (caddr_t)®_p, ®_len) != DDI_SUCCESS) {
510 ASSERT(intr_parent_dip == NULL);
511 goto exit3;
512 }
513
514 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
515 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
516
517 for (i = 0; i < addr_cells; i++)
518 match_req[i] = (reg_p[i] & imap_mask[i]);
519
520 for (j = 0; j < intr_cells; i++, j++)
521 match_req[i] = (intr[j] & imap_mask[i]);
522
523 /* Calculate the imap size in cells */
524 imap_cells = BYTES_TO_1275_CELLS(imap_sz);
525
526 #ifdef DEBUG
527 if (debug)
528 prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
529 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
530 (void *)match_req, (void *)imap);
531 #endif
532
533 /*
534 * Scan the imap property looking for a match of the interrupt unit
535 * specifier. This loop is rather complex since the data within the
536 * imap property may vary in size.
537 */
538 for (scan = imap, imap_scan_cells = i = 0;
539 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
540 int new_intr_cells;
541
542 /* Set the index to the nodeid field */
543 i = addr_cells + intr_cells;
544
545 /*
546 * step4a
547 * Translate the nodeid field to a dip
548 */
549 ASSERT(intr_parent_dip == NULL);
550 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
551
552 ASSERT(intr_parent_dip != 0);
553 #ifdef DEBUG
554 if (debug)
555 prom_printf("scan 0x%p\n", (void *)scan);
556 #endif
557 /*
558 * The tmp_dip describes the new domain, get it's interrupt
559 * cell size
560 */
561 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
562 "#interrupts-cells", 1);
563
564 /*
565 * step4b
566 * See if we have a match on the interrupt unit specifier
567 */
568 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
569 == 0) {
570 uint32_t *intr;
571
572 match_found = 1;
573
574 /*
575 * If we have an imap parent whose not in our device
576 * tree path, we need to hold and install that driver.
577 */
578 if (i_ddi_attach_node_hierarchy(intr_parent_dip)
579 != DDI_SUCCESS) {
580 ndi_rele_devi(intr_parent_dip);
581 intr_parent_dip = (dev_info_t *)NULL;
582 goto exit4;
583 }
584
585 /*
586 * We need to handcraft an ispec along with a bus
587 * interrupt value, so we can dup it into our
588 * standard ispec structure.
589 */
590 /* Extract the translated interrupt information */
591 intr = kmem_alloc(
592 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
593
594 for (j = 0; j < new_intr_cells; j++, i++)
595 intr[j] = scan[i];
596
597 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
598
599 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
600
601 #ifdef DEBUG
602 if (debug)
603 prom_printf("dip 0x%p\n",
604 (void *)intr_parent_dip);
605 #endif
606 break;
607 } else {
608 #ifdef DEBUG
609 if (debug)
610 prom_printf("dip 0x%p\n",
611 (void *)intr_parent_dip);
612 #endif
613 ndi_rele_devi(intr_parent_dip);
614 intr_parent_dip = NULL;
615 i += new_intr_cells;
616 }
617 }
618
619 /*
620 * If we haven't found our interrupt parent at this point, fallback
621 * to using the device tree.
622 */
623 if (!match_found) {
624 ndi_hold_devi(pdip);
625 ASSERT(intr_parent_dip == NULL);
626 intr_parent_dip = pdip;
627 }
628
629 ASSERT(intr_parent_dip != NULL);
630
631 exit4:
632 kmem_free(reg_p, reg_len);
633 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
634 CELLS_1275_TO_BYTES(intr_cells));
635
636 exit3:
637 kmem_free(imap_mask, imap_mask_sz);
638
639 exit2:
640 kmem_free(imap, imap_sz);
641
642 return (intr_parent_dip);
643 }
644
645 /*
646 * process_intr_ops:
647 *
648 * Process the interrupt op via the interrupt parent.
649 */
650 int
process_intr_ops(dev_info_t * pdip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)651 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
652 ddi_intr_handle_impl_t *hdlp, void *result)
653 {
654 int ret = DDI_FAILURE;
655
656 if (NEXUS_HAS_INTR_OP(pdip)) {
657 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
658 bus_intr_op)) (pdip, rdip, op, hdlp, result);
659 } else {
660 cmn_err(CE_WARN, "Failed to process interrupt "
661 "for %s%d due to down-rev nexus driver %s%d",
662 ddi_get_name(rdip), ddi_get_instance(rdip),
663 ddi_get_name(pdip), ddi_get_instance(pdip));
664 }
665
666 return (ret);
667 }
668
669 /*ARGSUSED*/
670 uint_t
softlevel1(caddr_t arg)671 softlevel1(caddr_t arg)
672 {
673 softint();
674 return (1);
675 }
676
677 /*
678 * indirection table, to save us some large switch statements
679 * NOTE: This must agree with "INTLEVEL_foo" constants in
680 * <sys/avintr.h>
681 */
682 struct autovec *const vectorlist[] = { 0 };
683
684 /*
685 * This value is exported here for the functions in avintr.c
686 */
687 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
688
689 /*
690 * Check for machine specific interrupt levels which cannot be reassigned by
691 * settrap(), sun4u version.
692 *
693 * sun4u does not support V8 SPARC "fast trap" handlers.
694 */
695 /*ARGSUSED*/
696 int
exclude_settrap(int lvl)697 exclude_settrap(int lvl)
698 {
699 return (1);
700 }
701
702 /*
703 * Check for machine specific interrupt levels which cannot have interrupt
704 * handlers added. We allow levels 1 through 15; level 0 is nonsense.
705 */
706 /*ARGSUSED*/
707 int
exclude_level(int lvl)708 exclude_level(int lvl)
709 {
710 return ((lvl < 1) || (lvl > 15));
711 }
712
713 /*
714 * Wrapper functions used by New DDI interrupt framework.
715 */
716
717 /*
718 * i_ddi_intr_ops:
719 */
720 int
i_ddi_intr_ops(dev_info_t * dip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)721 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
722 ddi_intr_handle_impl_t *hdlp, void *result)
723 {
724 dev_info_t *pdip = ddi_get_parent(dip);
725 int ret = DDI_FAILURE;
726
727 /*
728 * The following check is required to address
729 * one of the test case of ADDI test suite.
730 */
731 if (pdip == NULL)
732 return (DDI_FAILURE);
733
734 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
735 return (process_intr_ops(pdip, rdip, op, hdlp, result));
736
737 if (hdlp->ih_vector == 0)
738 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
739
740 if (hdlp->ih_pri == 0)
741 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
742
743 switch (op) {
744 case DDI_INTROP_ADDISR:
745 case DDI_INTROP_REMISR:
746 case DDI_INTROP_GETTARGET:
747 case DDI_INTROP_SETTARGET:
748 case DDI_INTROP_ENABLE:
749 case DDI_INTROP_DISABLE:
750 case DDI_INTROP_BLOCKENABLE:
751 case DDI_INTROP_BLOCKDISABLE:
752 /*
753 * Try and determine our parent and possibly an interrupt
754 * translation. intr parent dip returned held
755 */
756 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
757 goto done;
758 }
759
760 ret = process_intr_ops(pdip, rdip, op, hdlp, result);
761
762 done:
763 switch (op) {
764 case DDI_INTROP_ADDISR:
765 case DDI_INTROP_REMISR:
766 case DDI_INTROP_ENABLE:
767 case DDI_INTROP_DISABLE:
768 case DDI_INTROP_BLOCKENABLE:
769 case DDI_INTROP_BLOCKDISABLE:
770 /* Release hold acquired in get_intr_parent() */
771 if (pdip)
772 ndi_rele_devi(pdip);
773 }
774
775 hdlp->ih_vector = 0;
776
777 return (ret);
778 }
779
780 /*
781 * i_ddi_add_ivintr:
782 */
783 /*ARGSUSED*/
784 int
i_ddi_add_ivintr(ddi_intr_handle_impl_t * hdlp)785 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
786 {
787 /*
788 * If the PIL was set and is valid use it, otherwise
789 * default it to 1
790 */
791 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
792 hdlp->ih_pri = 1;
793
794 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
795 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1,
796 hdlp->ih_cb_arg2, NULL) == 0);
797
798 return (DDI_SUCCESS);
799 }
800
801 /*
802 * i_ddi_rem_ivintr:
803 */
804 /*ARGSUSED*/
805 void
i_ddi_rem_ivintr(ddi_intr_handle_impl_t * hdlp)806 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
807 {
808 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0);
809 }
810
811 /*
812 * i_ddi_get_inum - Get the interrupt number property from the
813 * specified device. Note that this function is called only for
814 * the FIXED interrupt type.
815 */
816 uint32_t
i_ddi_get_inum(dev_info_t * dip,uint_t inumber)817 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
818 {
819 int32_t intrlen, intr_cells, max_intrs;
820 prop_1275_cell_t *ip, intr_sz;
821 uint32_t intr = 0;
822
823 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
824 DDI_PROP_CANSLEEP,
825 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
826
827 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
828 "#interrupt-cells", 1);
829
830 /* adjust for number of bytes */
831 intr_sz = CELLS_1275_TO_BYTES(intr_cells);
832
833 /* Calculate the number of interrupts */
834 max_intrs = intrlen / intr_sz;
835
836 if (inumber < max_intrs) {
837 prop_1275_cell_t *intrp = ip;
838
839 /* Index into interrupt property */
840 intrp += (inumber * intr_cells);
841
842 cells_1275_copy(intrp, &intr, intr_cells);
843 }
844
845 kmem_free(ip, intrlen);
846 }
847
848 return (intr);
849 }
850
851 /*
852 * i_ddi_get_intr_pri - Get the interrupt-priorities property from
853 * the specified device. Note that this function is called only for
854 * the FIXED interrupt type.
855 */
856 uint32_t
i_ddi_get_intr_pri(dev_info_t * dip,uint_t inumber)857 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
858 {
859 uint32_t *intr_prio_p;
860 uint32_t pri = 0;
861 int32_t i;
862
863 /*
864 * Use the "interrupt-priorities" property to determine the
865 * the pil/ipl for the interrupt handler.
866 */
867 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
868 "interrupt-priorities", (caddr_t)&intr_prio_p,
869 &i) == DDI_SUCCESS) {
870 if (inumber < (i / sizeof (int32_t)))
871 pri = intr_prio_p[inumber];
872 kmem_free(intr_prio_p, i);
873 }
874
875 return (pri);
876 }
877
878 int
i_ddi_get_intx_nintrs(dev_info_t * dip)879 i_ddi_get_intx_nintrs(dev_info_t *dip)
880 {
881 int32_t intrlen;
882 prop_1275_cell_t intr_sz;
883 prop_1275_cell_t *ip;
884 int32_t ret = 0;
885
886 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
887 DDI_PROP_CANSLEEP,
888 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
889
890 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
891 "#interrupt-cells", 1);
892 /* adjust for number of bytes */
893 intr_sz = CELLS_1275_TO_BYTES(intr_sz);
894
895 ret = intrlen / intr_sz;
896
897 kmem_free(ip, intrlen);
898 }
899
900 return (ret);
901 }
902
903 /*
904 * i_ddi_add_softint - allocate and add a software interrupt.
905 *
906 * NOTE: All software interrupts that are registered through DDI
907 * should be triggered only on a single target or CPU.
908 */
909 int
i_ddi_add_softint(ddi_softint_hdl_impl_t * hdlp)910 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
911 {
912 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri,
913 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL)
914 return (DDI_FAILURE);
915
916 return (DDI_SUCCESS);
917 }
918
919 /*
920 * i_ddi_remove_softint - remove and free a software interrupt.
921 */
922 void
i_ddi_remove_softint(ddi_softint_hdl_impl_t * hdlp)923 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
924 {
925 ASSERT(hdlp->ih_private != NULL);
926
927 if (rem_softintr((uint64_t)hdlp->ih_private) == 0)
928 hdlp->ih_private = NULL;
929 }
930
931 /*
932 * i_ddi_trigger_softint - trigger a software interrupt.
933 */
934 int
i_ddi_trigger_softint(ddi_softint_hdl_impl_t * hdlp,void * arg2)935 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
936 {
937 int ret;
938
939 ASSERT(hdlp->ih_private != NULL);
940
941 /* Update the second argument for the software interrupt */
942 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0)
943 setsoftint((uint64_t)hdlp->ih_private);
944
945 return (ret ? DDI_EPENDING : DDI_SUCCESS);
946 }
947
948 /*
949 * i_ddi_set_softint_pri - change software interrupt priority.
950 */
951 /* ARGSUSED */
952 int
i_ddi_set_softint_pri(ddi_softint_hdl_impl_t * hdlp,uint_t old_pri)953 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
954 {
955 int ret;
956
957 ASSERT(hdlp->ih_private != NULL);
958
959 /* Update the interrupt priority for the software interrupt */
960 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri);
961
962 return (ret ? DDI_FAILURE : DDI_SUCCESS);
963 }
964
965 /*ARGSUSED*/
966 void
i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t * hdlp)967 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
968 {
969 }
970
971 /*ARGSUSED*/
972 void
i_ddi_free_intr_phdl(ddi_intr_handle_impl_t * hdlp)973 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
974 {
975 }
976
977 /*
978 * SECTION: DDI Memory/DMA
979 */
980
981 /* set HAT endianess attributes from ddi_device_acc_attr */
982 void
i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t * devaccp,uint_t * hataccp)983 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
984 {
985 if (devaccp != NULL) {
986 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
987 *hataccp &= ~HAT_ENDIAN_MASK;
988 *hataccp |= HAT_STRUCTURE_LE;
989 }
990 }
991 }
992
993 /*
994 * Check if the specified cache attribute is supported on the platform.
995 * This function must be called before i_ddi_cacheattr_to_hatacc().
996 */
997 boolean_t
i_ddi_check_cache_attr(uint_t flags)998 i_ddi_check_cache_attr(uint_t flags)
999 {
1000 /*
1001 * The cache attributes are mutually exclusive. Any combination of
1002 * the attributes leads to a failure.
1003 */
1004 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1005 if ((cache_attr != 0) && !ISP2(cache_attr))
1006 return (B_FALSE);
1007
1008 /*
1009 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1010 * but others lead to a failure.
1011 */
1012 if (cache_attr & IOMEM_DATA_CACHED)
1013 return (B_TRUE);
1014 else
1015 return (B_FALSE);
1016 }
1017
1018 /* set HAT cache attributes from the cache attributes */
1019 void
i_ddi_cacheattr_to_hatacc(uint_t flags,uint_t * hataccp)1020 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1021 {
1022 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1023 static char *fname = "i_ddi_cacheattr_to_hatacc";
1024 #if defined(lint)
1025 *hataccp = *hataccp;
1026 #endif
1027 /*
1028 * set HAT attrs according to the cache attrs.
1029 */
1030 switch (cache_attr) {
1031 /*
1032 * The cache coherency is always maintained on SPARC, and
1033 * nothing is required.
1034 */
1035 case IOMEM_DATA_CACHED:
1036 break;
1037 /*
1038 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1039 * not supported on SPARC -- this case must not occur because the
1040 * cache attribute is scrutinized before this function is called.
1041 */
1042 case IOMEM_DATA_UNCACHED:
1043 case IOMEM_DATA_UC_WR_COMBINE:
1044 default:
1045 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1046 fname, cache_attr);
1047 }
1048 }
1049
1050 static vmem_t *little_endian_arena;
1051 static vmem_t *big_endian_arena;
1052
1053 static void *
segkmem_alloc_le(vmem_t * vmp,size_t size,int flag)1054 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1055 {
1056 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1057 segkmem_page_create, NULL));
1058 }
1059
1060 static void *
segkmem_alloc_be(vmem_t * vmp,size_t size,int flag)1061 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1062 {
1063 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1064 segkmem_page_create, NULL));
1065 }
1066
1067 void
ka_init(void)1068 ka_init(void)
1069 {
1070 little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1071 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1072 big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1073 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1074 }
1075
1076 /*
1077 * Allocate from the system, aligned on a specific boundary.
1078 * The alignment, if non-zero, must be a power of 2.
1079 */
1080 static void *
kalloca(size_t size,size_t align,int cansleep,uint_t endian_flags)1081 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1082 {
1083 size_t *addr, *raddr, rsize;
1084 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
1085
1086 align = MAX(align, hdrsize);
1087 ASSERT((align & (align - 1)) == 0);
1088
1089 /*
1090 * We need to allocate
1091 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1092 * bytes to be sure we have enough freedom to satisfy the request.
1093 * Since the buffer alignment depends on the request size, this is
1094 * not straightforward to use directly.
1095 *
1096 * kmem guarantees that any allocation of a 64-byte multiple will be
1097 * 64-byte aligned. Since rounding up the request could add more
1098 * than we save, we compute the size with and without alignment, and
1099 * use the smaller of the two.
1100 */
1101 rsize = size + hdrsize + align;
1102
1103 if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1104 raddr = vmem_alloc(little_endian_arena, rsize,
1105 cansleep ? VM_SLEEP : VM_NOSLEEP);
1106 } else {
1107 raddr = vmem_alloc(big_endian_arena, rsize,
1108 cansleep ? VM_SLEEP : VM_NOSLEEP);
1109 }
1110
1111 if (raddr == NULL)
1112 return (NULL);
1113
1114 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1115 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1116
1117 addr[-3] = (size_t)endian_flags;
1118 addr[-2] = (size_t)raddr;
1119 addr[-1] = rsize;
1120
1121 return (addr);
1122 }
1123
1124 static void
kfreea(void * addr)1125 kfreea(void *addr)
1126 {
1127 size_t *saddr = addr;
1128
1129 if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1130 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1131 else
1132 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1133 }
1134
1135 /*
1136 * This used to be ddi_iomin, but we were the only remaining caller, so
1137 * we've made it private and moved it here.
1138 */
1139 static int
i_ddi_iomin(dev_info_t * a,int i,int stream)1140 i_ddi_iomin(dev_info_t *a, int i, int stream)
1141 {
1142 int r;
1143
1144 /*
1145 * Make sure that the initial value is sane
1146 */
1147 if (!ISP2(i))
1148 return (0);
1149 if (i == 0)
1150 i = (stream) ? 4 : 1;
1151
1152 r = ddi_ctlops(a, a,
1153 DDI_CTLOPS_IOMIN, (void *)(uintptr_t)stream, (void *)&i);
1154 if (r != DDI_SUCCESS || !ISP2(i))
1155 return (0);
1156 return (i);
1157 }
1158
1159 int
i_ddi_mem_alloc(dev_info_t * dip,ddi_dma_attr_t * attr,size_t length,int cansleep,int flags,ddi_device_acc_attr_t * accattrp,caddr_t * kaddrp,size_t * real_length,ddi_acc_hdl_t * handlep)1160 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1161 size_t length, int cansleep, int flags,
1162 ddi_device_acc_attr_t *accattrp,
1163 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1164 {
1165 caddr_t a;
1166 int iomin, align, streaming;
1167 uint_t endian_flags = DDI_NEVERSWAP_ACC;
1168
1169 #if defined(lint)
1170 *handlep = *handlep;
1171 #endif
1172
1173 /*
1174 * Check legality of arguments
1175 */
1176 if (length == 0 || kaddrp == NULL || attr == NULL) {
1177 return (DDI_FAILURE);
1178 }
1179
1180 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1181 !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
1182 return (DDI_FAILURE);
1183 }
1184
1185 /*
1186 * check if a streaming sequential xfer is requested.
1187 */
1188 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1189
1190 /*
1191 * Drivers for 64-bit capable SBus devices will encode
1192 * the burtsizes for 64-bit xfers in the upper 16-bits.
1193 * For DMA alignment, we use the most restrictive
1194 * alignment of 32-bit and 64-bit xfers.
1195 */
1196 iomin = (attr->dma_attr_burstsizes & 0xffff) |
1197 ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1198 /*
1199 * If a driver set burtsizes to 0, we give it byte alignment.
1200 * Otherwise align at the burtsizes boundary.
1201 */
1202 if (iomin == 0)
1203 iomin = 1;
1204 else
1205 iomin = 1 << (ddi_fls(iomin) - 1);
1206 iomin = maxbit(iomin, attr->dma_attr_minxfer);
1207 iomin = maxbit(iomin, attr->dma_attr_align);
1208 iomin = i_ddi_iomin(dip, iomin, streaming);
1209 if (iomin == 0)
1210 return (DDI_FAILURE);
1211
1212 ASSERT((iomin & (iomin - 1)) == 0);
1213 ASSERT(iomin >= attr->dma_attr_minxfer);
1214 ASSERT(iomin >= attr->dma_attr_align);
1215
1216 length = P2ROUNDUP(length, iomin);
1217 align = iomin;
1218
1219 if (accattrp != NULL)
1220 endian_flags = accattrp->devacc_attr_endian_flags;
1221
1222 a = kalloca(length, align, cansleep, endian_flags);
1223 if ((*kaddrp = a) == 0) {
1224 return (DDI_FAILURE);
1225 } else {
1226 if (real_length) {
1227 *real_length = length;
1228 }
1229 if (handlep) {
1230 /*
1231 * assign handle information
1232 */
1233 impl_acc_hdl_init(handlep);
1234 }
1235 return (DDI_SUCCESS);
1236 }
1237 }
1238
1239 /* ARGSUSED */
1240 void
i_ddi_mem_free(caddr_t kaddr,ddi_acc_hdl_t * ap)1241 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1242 {
1243 kfreea(kaddr);
1244 }
1245
1246 /*
1247 * SECTION: DDI Data Access
1248 */
1249
1250 static uintptr_t impl_acc_hdl_id = 0;
1251
1252 /*
1253 * access handle allocator
1254 */
1255 ddi_acc_hdl_t *
impl_acc_hdl_get(ddi_acc_handle_t hdl)1256 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1257 {
1258 /*
1259 * Extract the access handle address from the DDI implemented
1260 * access handle
1261 */
1262 return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1263 }
1264
1265 ddi_acc_handle_t
impl_acc_hdl_alloc(int (* waitfp)(caddr_t),caddr_t arg)1266 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1267 {
1268 ddi_acc_impl_t *hp;
1269 on_trap_data_t *otp;
1270 int sleepflag;
1271
1272 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1273
1274 /*
1275 * Allocate and initialize the data access handle and error status.
1276 */
1277 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1278 goto fail;
1279 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1280 sizeof (ndi_err_t), sleepflag)) == NULL) {
1281 kmem_free(hp, sizeof (ddi_acc_impl_t));
1282 goto fail;
1283 }
1284 if ((otp = (on_trap_data_t *)kmem_zalloc(
1285 sizeof (on_trap_data_t), sleepflag)) == NULL) {
1286 kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1287 kmem_free(hp, sizeof (ddi_acc_impl_t));
1288 goto fail;
1289 }
1290 hp->ahi_err->err_ontrap = otp;
1291 hp->ahi_common.ah_platform_private = (void *)hp;
1292
1293 return ((ddi_acc_handle_t)hp);
1294 fail:
1295 if ((waitfp != (int (*)())KM_SLEEP) &&
1296 (waitfp != (int (*)())KM_NOSLEEP))
1297 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1298 return (NULL);
1299 }
1300
1301 void
impl_acc_hdl_free(ddi_acc_handle_t handle)1302 impl_acc_hdl_free(ddi_acc_handle_t handle)
1303 {
1304 ddi_acc_impl_t *hp;
1305
1306 /*
1307 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1308 * because that's what we allocated in impl_acc_hdl_alloc() above.
1309 */
1310 hp = (ddi_acc_impl_t *)handle;
1311 if (hp) {
1312 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1313 kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1314 kmem_free(hp, sizeof (ddi_acc_impl_t));
1315 if (impl_acc_hdl_id)
1316 ddi_run_callback(&impl_acc_hdl_id);
1317 }
1318 }
1319
1320 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \
1321 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1322
1323 /*
1324 * Function called after a dma fault occurred to find out whether the
1325 * fault address is associated with a driver that is able to handle faults
1326 * and recover from faults.
1327 */
1328 /* ARGSUSED */
1329 int
impl_dma_check(dev_info_t * dip,const void * handle,const void * addr,const void * not_used)1330 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1331 const void *not_used)
1332 {
1333 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1334 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1335 pfn_t comp_pfn;
1336
1337 /*
1338 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1339 */
1340 int page;
1341
1342 ASSERT(mp);
1343 for (page = 0; page < mp->dmai_ndvmapages; page++) {
1344 comp_pfn = PCI_GET_MP_PFN(mp, page);
1345 if (fault_pfn == comp_pfn)
1346 return (DDI_FM_NONFATAL);
1347 }
1348 return (DDI_FM_UNKNOWN);
1349 }
1350
1351 /*
1352 * Function used to check if a given access handle owns the failing address.
1353 * Called by ndi_fmc_error, when we detect a PIO error.
1354 */
1355 /* ARGSUSED */
1356 static int
impl_acc_check(dev_info_t * dip,const void * handle,const void * addr,const void * not_used)1357 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1358 const void *not_used)
1359 {
1360 pfn_t pfn, fault_pfn;
1361 ddi_acc_hdl_t *hp;
1362
1363 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1364
1365 ASSERT(hp);
1366
1367 if (addr != NULL) {
1368 pfn = hp->ah_pfn;
1369 fault_pfn = mmu_btop(*(uint64_t *)addr);
1370 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1371 return (DDI_FM_NONFATAL);
1372 }
1373 return (DDI_FM_UNKNOWN);
1374 }
1375
1376 void
impl_acc_err_init(ddi_acc_hdl_t * handlep)1377 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1378 {
1379 int fmcap;
1380 ndi_err_t *errp;
1381 on_trap_data_t *otp;
1382 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1383
1384 fmcap = ddi_fm_capable(handlep->ah_dip);
1385
1386 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1387 !DDI_FM_ACC_ERR_CAP(fmcap)) {
1388 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1389 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1390 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1391 if (handlep->ah_xfermodes)
1392 return;
1393 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1394 NULL, DDI_NOSLEEP);
1395 } else {
1396 errp = hp->ahi_err;
1397 otp = (on_trap_data_t *)errp->err_ontrap;
1398 otp->ot_handle = (void *)(hp);
1399 otp->ot_prot = OT_DATA_ACCESS;
1400 if (handlep->ah_acc.devacc_attr_access ==
1401 DDI_CAUTIOUS_ACC)
1402 otp->ot_trampoline =
1403 (uintptr_t)&i_ddi_caut_trampoline;
1404 else
1405 otp->ot_trampoline =
1406 (uintptr_t)&i_ddi_prot_trampoline;
1407 errp->err_status = DDI_FM_OK;
1408 errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1409 errp->err_cf = impl_acc_check;
1410 }
1411 }
1412 }
1413
1414 void
impl_acc_hdl_init(ddi_acc_hdl_t * handlep)1415 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1416 {
1417 ddi_acc_impl_t *hp;
1418
1419 ASSERT(handlep);
1420
1421 hp = (ddi_acc_impl_t *)handlep;
1422
1423 /*
1424 * check for SW byte-swapping
1425 */
1426 hp->ahi_get8 = i_ddi_get8;
1427 hp->ahi_put8 = i_ddi_put8;
1428 hp->ahi_rep_get8 = i_ddi_rep_get8;
1429 hp->ahi_rep_put8 = i_ddi_rep_put8;
1430 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1431 hp->ahi_get16 = i_ddi_swap_get16;
1432 hp->ahi_get32 = i_ddi_swap_get32;
1433 hp->ahi_get64 = i_ddi_swap_get64;
1434 hp->ahi_put16 = i_ddi_swap_put16;
1435 hp->ahi_put32 = i_ddi_swap_put32;
1436 hp->ahi_put64 = i_ddi_swap_put64;
1437 hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1438 hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1439 hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1440 hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1441 hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1442 hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1443 } else {
1444 hp->ahi_get16 = i_ddi_get16;
1445 hp->ahi_get32 = i_ddi_get32;
1446 hp->ahi_get64 = i_ddi_get64;
1447 hp->ahi_put16 = i_ddi_put16;
1448 hp->ahi_put32 = i_ddi_put32;
1449 hp->ahi_put64 = i_ddi_put64;
1450 hp->ahi_rep_get16 = i_ddi_rep_get16;
1451 hp->ahi_rep_get32 = i_ddi_rep_get32;
1452 hp->ahi_rep_get64 = i_ddi_rep_get64;
1453 hp->ahi_rep_put16 = i_ddi_rep_put16;
1454 hp->ahi_rep_put32 = i_ddi_rep_put32;
1455 hp->ahi_rep_put64 = i_ddi_rep_put64;
1456 }
1457
1458 /* Legacy fault flags and support */
1459 hp->ahi_fault_check = i_ddi_acc_fault_check;
1460 hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1461 hp->ahi_fault = 0;
1462 impl_acc_err_init(handlep);
1463 }
1464
1465 void
i_ddi_acc_set_fault(ddi_acc_handle_t handle)1466 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1467 {
1468 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1469
1470 if (!hp->ahi_fault) {
1471 hp->ahi_fault = 1;
1472 (*hp->ahi_fault_notify)(hp);
1473 }
1474 }
1475
1476 void
i_ddi_acc_clr_fault(ddi_acc_handle_t handle)1477 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1478 {
1479 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1480
1481 if (hp->ahi_fault) {
1482 hp->ahi_fault = 0;
1483 (*hp->ahi_fault_notify)(hp);
1484 }
1485 }
1486
1487 /* ARGSUSED */
1488 void
i_ddi_acc_fault_notify(ddi_acc_impl_t * hp)1489 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1490 {
1491 /* Default version, does nothing */
1492 }
1493
1494 /*
1495 * SECTION: Misc functions
1496 */
1497
1498 /*
1499 * instance wrappers
1500 */
1501 /*ARGSUSED*/
1502 uint_t
impl_assign_instance(dev_info_t * dip)1503 impl_assign_instance(dev_info_t *dip)
1504 {
1505 return ((uint_t)-1);
1506 }
1507
1508 /*ARGSUSED*/
1509 int
impl_keep_instance(dev_info_t * dip)1510 impl_keep_instance(dev_info_t *dip)
1511 {
1512 return (DDI_FAILURE);
1513 }
1514
1515 /*ARGSUSED*/
1516 int
impl_free_instance(dev_info_t * dip)1517 impl_free_instance(dev_info_t *dip)
1518 {
1519 return (DDI_FAILURE);
1520 }
1521
1522 /*ARGSUSED*/
1523 int
impl_check_cpu(dev_info_t * devi)1524 impl_check_cpu(dev_info_t *devi)
1525 {
1526 return (DDI_SUCCESS);
1527 }
1528
1529
1530 static const char *nocopydevs[] = {
1531 "SUNW,ffb",
1532 "SUNW,afb",
1533 NULL
1534 };
1535
1536 /*
1537 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1538 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1539 */
1540 /*ARGSUSED*/
1541 int
e_ddi_copyfromdev(dev_info_t * devi,off_t off,const void * devaddr,void * kaddr,size_t len)1542 e_ddi_copyfromdev(dev_info_t *devi,
1543 off_t off, const void *devaddr, void *kaddr, size_t len)
1544 {
1545 const char **argv;
1546
1547 for (argv = nocopydevs; *argv; argv++)
1548 if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1549 bzero(kaddr, len);
1550 return (0);
1551 }
1552
1553 bcopy(devaddr, kaddr, len);
1554 return (0);
1555 }
1556
1557 /*
1558 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1559 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1560 */
1561 /*ARGSUSED*/
1562 int
e_ddi_copytodev(dev_info_t * devi,off_t off,const void * kaddr,void * devaddr,size_t len)1563 e_ddi_copytodev(dev_info_t *devi,
1564 off_t off, const void *kaddr, void *devaddr, size_t len)
1565 {
1566 const char **argv;
1567
1568 for (argv = nocopydevs; *argv; argv++)
1569 if (strcmp(ddi_binding_name(devi), *argv) == 0)
1570 return (1);
1571
1572 bcopy(kaddr, devaddr, len);
1573 return (0);
1574 }
1575
1576 /*
1577 * Boot Configuration
1578 */
1579 idprom_t idprom;
1580
1581 /*
1582 * Configure the hardware on the system.
1583 * Called before the rootfs is mounted
1584 */
1585 void
configure(void)1586 configure(void)
1587 {
1588 extern void i_ddi_init_root();
1589
1590 /* We better have released boot by this time! */
1591 ASSERT(!bootops);
1592
1593 /*
1594 * Determine whether or not to use the fpu, V9 SPARC cpus
1595 * always have one. Could check for existence of a fp queue,
1596 * Ultra I, II and IIa do not have a fp queue.
1597 */
1598 if (fpu_exists)
1599 fpu_probe();
1600 else
1601 cmn_err(CE_CONT, "FPU not in use\n");
1602
1603 #if 0 /* XXXQ - not necessary for sun4u */
1604 /*
1605 * This following line fixes bugid 1041296; we need to do a
1606 * prom_nextnode(0) because this call ALSO patches the DMA+
1607 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1608 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1609 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1610 */
1611 (void) prom_nextnode((pnode_t)0);
1612 #endif
1613
1614 /*
1615 * Initialize devices on the machine.
1616 * Uses configuration tree built by the PROMs to determine what
1617 * is present, and builds a tree of prototype dev_info nodes
1618 * corresponding to the hardware which identified itself.
1619 */
1620 i_ddi_init_root();
1621
1622 #ifdef DDI_PROP_DEBUG
1623 (void) ddi_prop_debug(1); /* Enable property debugging */
1624 #endif /* DDI_PROP_DEBUG */
1625 }
1626
1627 /*
1628 * The "status" property indicates the operational status of a device.
1629 * If this property is present, the value is a string indicating the
1630 * status of the device as follows:
1631 *
1632 * "okay" operational.
1633 * "disabled" not operational, but might become operational.
1634 * "fail" not operational because a fault has been detected,
1635 * and it is unlikely that the device will become
1636 * operational without repair. no additional details
1637 * are available.
1638 * "fail-xxx" not operational because a fault has been detected,
1639 * and it is unlikely that the device will become
1640 * operational without repair. "xxx" is additional
1641 * human-readable information about the particular
1642 * fault condition that was detected.
1643 *
1644 * The absence of this property means that the operational status is
1645 * unknown or okay.
1646 *
1647 * This routine checks the status property of the specified device node
1648 * and returns 0 if the operational status indicates failure, and 1 otherwise.
1649 *
1650 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1651 * And, in that case, the property may not even be a string. So we carefully
1652 * check for the value "fail", in the beginning of the string, noting
1653 * the property length.
1654 */
1655 int
status_okay(int id,char * buf,int buflen)1656 status_okay(int id, char *buf, int buflen)
1657 {
1658 char status_buf[OBP_MAXPROPNAME];
1659 char *bufp = buf;
1660 int len = buflen;
1661 int proplen;
1662 static const char *status = "status";
1663 static const char *fail = "fail";
1664 size_t fail_len = strlen(fail);
1665
1666 /*
1667 * Get the proplen ... if it's smaller than "fail",
1668 * or doesn't exist ... then we don't care, since
1669 * the value can't begin with the char string "fail".
1670 *
1671 * NB: proplen, if it's a string, includes the NULL in the
1672 * the size of the property, and fail_len does not.
1673 */
1674 proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1675 if (proplen <= fail_len) /* nonexistent or uninteresting len */
1676 return (1);
1677
1678 /*
1679 * if a buffer was provided, use it
1680 */
1681 if ((buf == (char *)NULL) || (buflen <= 0)) {
1682 bufp = status_buf;
1683 len = sizeof (status_buf);
1684 }
1685 *bufp = (char)0;
1686
1687 /*
1688 * Get the property into the buffer, to the extent of the buffer,
1689 * and in case the buffer is smaller than the property size,
1690 * NULL terminate the buffer. (This handles the case where
1691 * a buffer was passed in and the caller wants to print the
1692 * value, but the buffer was too small).
1693 */
1694 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1695 (caddr_t)bufp, len);
1696 *(bufp + len - 1) = (char)0;
1697
1698 /*
1699 * If the value begins with the char string "fail",
1700 * then it means the node is failed. We don't care
1701 * about any other values. We assume the node is ok
1702 * although it might be 'disabled'.
1703 */
1704 if (strncmp(bufp, fail, fail_len) == 0)
1705 return (0);
1706
1707 return (1);
1708 }
1709
1710
1711 /*
1712 * We set the cpu type from the idprom, if we can.
1713 * Note that we just read out the contents of it, for the most part.
1714 */
1715 void
setcputype(void)1716 setcputype(void)
1717 {
1718 /*
1719 * We cache the idprom info early on so that we don't
1720 * rummage through the NVRAM unnecessarily later.
1721 */
1722 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1723 }
1724
1725 /*
1726 * Here is where we actually infer meanings to the members of idprom_t
1727 */
1728 void
parse_idprom(void)1729 parse_idprom(void)
1730 {
1731 if (idprom.id_format == IDFORM_1) {
1732 (void) localetheraddr((struct ether_addr *)idprom.id_ether,
1733 (struct ether_addr *)NULL);
1734 (void) snprintf(hw_serial, HW_HOSTID_LEN, "%u",
1735 (idprom.id_machine << 24) + idprom.id_serial);
1736 } else
1737 prom_printf("Invalid format code in IDprom.\n");
1738 }
1739
1740 /*
1741 * Allow for implementation specific correction of PROM property values.
1742 */
1743 /*ARGSUSED*/
1744 void
impl_fix_props(dev_info_t * dip,dev_info_t * ch_dip,char * name,int len,caddr_t buffer)1745 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1746 caddr_t buffer)
1747 {
1748 /*
1749 * There are no adjustments needed in this implementation.
1750 */
1751 }
1752
1753 /*
1754 * The following functions ready a cautious request to go up to the nexus
1755 * driver. It is up to the nexus driver to decide how to process the request.
1756 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1757 * differently.
1758 */
1759
1760 static void
i_ddi_caut_getput_ctlops(ddi_acc_impl_t * hp,uint64_t host_addr,uint64_t dev_addr,size_t size,size_t repcount,uint_t flags,ddi_ctl_enum_t cmd)1761 i_ddi_caut_getput_ctlops(
1762 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1763 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1764 {
1765 peekpoke_ctlops_t cautacc_ctlops_arg;
1766
1767 cautacc_ctlops_arg.size = size;
1768 cautacc_ctlops_arg.dev_addr = dev_addr;
1769 cautacc_ctlops_arg.host_addr = host_addr;
1770 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1771 cautacc_ctlops_arg.repcount = repcount;
1772 cautacc_ctlops_arg.flags = flags;
1773
1774 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1775 &cautacc_ctlops_arg, NULL);
1776 }
1777
1778 uint8_t
i_ddi_caut_get8(ddi_acc_impl_t * hp,uint8_t * addr)1779 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1780 {
1781 uint8_t value;
1782 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1783 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1784
1785 return (value);
1786 }
1787
1788 uint16_t
i_ddi_caut_get16(ddi_acc_impl_t * hp,uint16_t * addr)1789 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1790 {
1791 uint16_t value;
1792 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1793 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1794
1795 return (value);
1796 }
1797
1798 uint32_t
i_ddi_caut_get32(ddi_acc_impl_t * hp,uint32_t * addr)1799 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1800 {
1801 uint32_t value;
1802 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1803 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1804
1805 return (value);
1806 }
1807
1808 uint64_t
i_ddi_caut_get64(ddi_acc_impl_t * hp,uint64_t * addr)1809 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1810 {
1811 uint64_t value;
1812 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1813 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1814
1815 return (value);
1816 }
1817
1818 void
i_ddi_caut_put8(ddi_acc_impl_t * hp,uint8_t * addr,uint8_t value)1819 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1820 {
1821 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1822 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1823 }
1824
1825 void
i_ddi_caut_put16(ddi_acc_impl_t * hp,uint16_t * addr,uint16_t value)1826 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1827 {
1828 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1829 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1830 }
1831
1832 void
i_ddi_caut_put32(ddi_acc_impl_t * hp,uint32_t * addr,uint32_t value)1833 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1834 {
1835 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1836 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1837 }
1838
1839 void
i_ddi_caut_put64(ddi_acc_impl_t * hp,uint64_t * addr,uint64_t value)1840 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1841 {
1842 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1843 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1844 }
1845
1846 void
i_ddi_caut_rep_get8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1847 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1848 size_t repcount, uint_t flags)
1849 {
1850 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1851 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1852 }
1853
1854 void
i_ddi_caut_rep_get16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1855 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1856 uint16_t *dev_addr, size_t repcount, uint_t flags)
1857 {
1858 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1859 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1860 }
1861
1862 void
i_ddi_caut_rep_get32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)1863 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1864 uint32_t *dev_addr, size_t repcount, uint_t flags)
1865 {
1866 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1867 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1868 }
1869
1870 void
i_ddi_caut_rep_get64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)1871 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1872 uint64_t *dev_addr, size_t repcount, uint_t flags)
1873 {
1874 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1875 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1876 }
1877
1878 void
i_ddi_caut_rep_put8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1879 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1880 size_t repcount, uint_t flags)
1881 {
1882 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1883 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1884 }
1885
1886 void
i_ddi_caut_rep_put16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1887 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1888 uint16_t *dev_addr, size_t repcount, uint_t flags)
1889 {
1890 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1891 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1892 }
1893
1894 void
i_ddi_caut_rep_put32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)1895 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1896 uint32_t *dev_addr, size_t repcount, uint_t flags)
1897 {
1898 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1899 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1900 }
1901
1902 void
i_ddi_caut_rep_put64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)1903 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1904 uint64_t *dev_addr, size_t repcount, uint_t flags)
1905 {
1906 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1907 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1908 }
1909
1910 /*
1911 * This is called only to process peek/poke when the DIP is NULL.
1912 * Assume that this is for memory, as nexi take care of device safe accesses.
1913 */
1914 int
peekpoke_mem(ddi_ctl_enum_t cmd,peekpoke_ctlops_t * in_args)1915 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1916 {
1917 int err = DDI_SUCCESS;
1918 on_trap_data_t otd;
1919
1920 /* Set up protected environment. */
1921 if (!on_trap(&otd, OT_DATA_ACCESS)) {
1922 uintptr_t tramp = otd.ot_trampoline;
1923
1924 if (cmd == DDI_CTLOPS_POKE) {
1925 otd.ot_trampoline = (uintptr_t)&poke_fault;
1926 err = do_poke(in_args->size, (void *)in_args->dev_addr,
1927 (void *)in_args->host_addr);
1928 } else {
1929 otd.ot_trampoline = (uintptr_t)&peek_fault;
1930 err = do_peek(in_args->size, (void *)in_args->dev_addr,
1931 (void *)in_args->host_addr);
1932 }
1933 otd.ot_trampoline = tramp;
1934 } else
1935 err = DDI_FAILURE;
1936
1937 /* Take down protected environment. */
1938 no_trap();
1939
1940 return (err);
1941 }
1942