1 /*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * %sccs.include.redist.c%
10 */
11
12 #ifndef lint
13 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 05/31/93";
14 #endif /* not lint */
15
16 #include <sys/types.h>
17 #include <sys/time.h>
18 #include <sys/stat.h>
19 #include <sys/param.h>
20 #include <sys/fcntl.h>
21 #include <stdio.h>
22 #include <ctype.h>
23 #include <string.h>
24 #include <unistd.h>
25 #include <errno.h>
26 #include <stdlib.h>
27 #include "pax.h"
28 #include "tables.h"
29 #include "extern.h"
30
31 /*
32 * Routines for controlling the contents of all the different databases pax
33 * keeps. Tables are dynamically created only when they are needed. The
34 * goal was speed and the ability to work with HUGE archives. The databases
35 * were kept simple, but do have complex rules for when the contents change.
36 * As of this writing, the posix library functions were more complex than
37 * needed for this application (pax databases have very short lifetimes and
38 * do not survive after pax is finished). Pax is required to handle very
39 * large archives. These database routines carefully combine memory usage and
40 * temporary file storage in ways which will not significantly impact runtime
41 * performance while allowing the largest possible archives to be handled.
42 * Trying to force the fit to the posix databases routines was not considered
43 * time well spent.
44 */
45
46 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
47 static FTM **ftab = NULL; /* file time table for updating arch */
48 static NAMT **ntab = NULL; /* interactive rename storage table */
49 static DEVT **dtab = NULL; /* device/inode mapping tables */
50 static ATDIR **atab = NULL; /* file tree directory time reset table */
51 static int dirfd = -1; /* storage for setting created dir time/mode */
52 static u_long dircnt; /* entries in dir time/mode storage */
53 static int ffd = -1; /* tmp file for file time table name storage */
54
55 static DEVT *chk_dev __P((dev_t, int));
56
57 /*
58 * hard link table routines
59 *
60 * The hard link table tries to detect hard links to files using the device and
61 * inode values. We do this when writing an archive, so we can tell the format
62 * write routine that this file is a hard link to another file. The format
63 * write routine then can store this file in whatever way it wants (as a hard
64 * link if the format supports that like tar, or ignore this info like cpio).
65 * (Actually a field in the format driver table tells us if the format wants
66 * hard link info. if not, we do not waste time looking for them). We also use
67 * the same table when reading an archive. In that situation, this table is
68 * used by the format read routine to detect hard links from stored dev and
69 * inode numbers (like cpio). This will allow pax to create a link when one
70 * can be detected by the archive format.
71 */
72
73 /*
74 * lnk_start
75 * Creates the hard link table.
76 * Return:
77 * 0 if created, -1 if failure
78 */
79
80 #if __STDC__
81 int
lnk_start(void)82 lnk_start(void)
83 #else
84 int
85 lnk_start()
86 #endif
87 {
88 if (ltab != NULL)
89 return(0);
90 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
91 warn(1, "Cannot allocate memory for hard link table");
92 return(-1);
93 }
94 return(0);
95 }
96
97 /*
98 * chk_lnk()
99 * Looks up entry in hard link hash table. If found, it copies the name
100 * of the file it is linked to (we already saw that file) into ln_name.
101 * lnkcnt is decremented and if goes to 1 the node is deleted from the
102 * database. (We have seen all the links to this file). If not found,
103 * we add the file to the database if it has the potential for having
104 * hard links to other files we may process (it has a link count > 1)
105 * Return:
106 * if found returns 1; if not found returns 0; -1 on error
107 */
108
109 #if __STDC__
110 int
chk_lnk(register ARCHD * arcn)111 chk_lnk(register ARCHD *arcn)
112 #else
113 int
114 chk_lnk(arcn)
115 register ARCHD *arcn;
116 #endif
117 {
118 register HRDLNK *pt;
119 register HRDLNK **ppt;
120 register u_int indx;
121
122 if (ltab == NULL)
123 return(-1);
124 /*
125 * ignore those nodes that cannot have hard links
126 */
127 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
128 return(0);
129
130 /*
131 * hash inode number and look for this file
132 */
133 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
134 if ((pt = ltab[indx]) != NULL) {
135 /*
136 * it's hash chain in not empty, walk down looking for it
137 */
138 ppt = &(ltab[indx]);
139 while (pt != NULL) {
140 if ((pt->ino == arcn->sb.st_ino) &&
141 (pt->dev == arcn->sb.st_dev))
142 break;
143 ppt = &(pt->fow);
144 pt = pt->fow;
145 }
146
147 if (pt != NULL) {
148 /*
149 * found a link. set the node type and copy in the
150 * name of the file it is to link to. we need to
151 * handle hardlinks to regular files differently than
152 * other links.
153 */
154 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
155 PAXPATHLEN+1);
156 if (arcn->type == PAX_REG)
157 arcn->type = PAX_HRG;
158 else
159 arcn->type = PAX_HLK;
160
161 /*
162 * if we have found all the links to this file, remove
163 * it from the database
164 */
165 if (--pt->nlink <= 1) {
166 *ppt = pt->fow;
167 (void)free((char *)pt->name);
168 (void)free((char *)pt);
169 }
170 return(1);
171 }
172 }
173
174 /*
175 * we never saw this file before. It has links so we add it to the
176 * front of this hash chain
177 */
178 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
179 if ((pt->name = strdup(arcn->name)) != NULL) {
180 pt->dev = arcn->sb.st_dev;
181 pt->ino = arcn->sb.st_ino;
182 pt->nlink = arcn->sb.st_nlink;
183 pt->fow = ltab[indx];
184 ltab[indx] = pt;
185 return(0);
186 }
187 (void)free((char *)pt);
188 }
189
190 warn(1, "Hard link table out of memory");
191 return(-1);
192 }
193
194 /*
195 * purg_lnk
196 * remove reference for a file that we may have added to the data base as
197 * a potential source for hard links. We ended up not using the file, so
198 * we do not want to accidently point another file at it later on.
199 */
200
201 #if __STDC__
202 void
purg_lnk(register ARCHD * arcn)203 purg_lnk(register ARCHD *arcn)
204 #else
205 void
206 purg_lnk(arcn)
207 register ARCHD *arcn;
208 #endif
209 {
210 register HRDLNK *pt;
211 register HRDLNK **ppt;
212 register u_int indx;
213
214 if (ltab == NULL)
215 return;
216 /*
217 * do not bother to look if it could not be in the database
218 */
219 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
220 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
221 return;
222
223 /*
224 * find the hash chain for this inode value, if empty return
225 */
226 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
227 if ((pt = ltab[indx]) == NULL)
228 return;
229
230 /*
231 * walk down the list looking for the inode/dev pair, unlink and
232 * free if found
233 */
234 ppt = &(ltab[indx]);
235 while (pt != NULL) {
236 if ((pt->ino == arcn->sb.st_ino) &&
237 (pt->dev == arcn->sb.st_dev))
238 break;
239 ppt = &(pt->fow);
240 pt = pt->fow;
241 }
242 if (pt == NULL)
243 return;
244
245 /*
246 * remove and free it
247 */
248 *ppt = pt->fow;
249 (void)free((char *)pt->name);
250 (void)free((char *)pt);
251 }
252
253 /*
254 * lnk_end()
255 * pull apart a existing link table so we can reuse it. We do this between
256 * read and write phases of append with update. (The format may have
257 * used the link table, and we need to start with a fresh table for the
258 * write phase
259 */
260
261 #if __STDC__
262 void
lnk_end(void)263 lnk_end(void)
264 #else
265 void
266 lnk_end()
267 #endif
268 {
269 register int i;
270 register HRDLNK *pt;
271 register HRDLNK *ppt;
272
273 if (ltab == NULL)
274 return;
275
276 for (i = 0; i < L_TAB_SZ; ++i) {
277 if (ltab[i] == NULL)
278 continue;
279 pt = ltab[i];
280 ltab[i] = NULL;
281
282 /*
283 * free up each entry on this chain
284 */
285 while (pt != NULL) {
286 ppt = pt;
287 pt = ppt->fow;
288 (void)free((char *)ppt->name);
289 (void)free((char *)ppt);
290 }
291 }
292 return;
293 }
294
295 /*
296 * modification time table routines
297 *
298 * The modification time table keeps track of last modification times for all
299 * files stored in an archive during a write phase when -u is set. We only
300 * add a file to the archive if it is newer than a file with the same name
301 * already stored on the archive (if there is no other file with the same
302 * name on the archive it is added). This applies to writes and appends.
303 * An append with an -u must read the archive and store the modification time
304 * for every file on that archive before starting the write phase. It is clear
305 * that this is one HUGE database. To save memory space, the actual file names
306 * are stored in a scatch file and indexed by an in memory hash table. The
307 * hash table is indexed by hashing the file path. The nodes in the table store
308 * the length of the filename and the lseek offset within the scratch file
309 * where the actual name is stored. Since there are never any deletions to this
310 * table, fragmentation of the scratch file is never a issue. Lookups seem to
311 * not exhibit any locality at all (files in the database are rarely
312 * looked up more than once...). So caching is just a waste of memory. The
313 * only limitation is the amount of scatch file space available to store the
314 * path names.
315 */
316
317 /*
318 * ftime_start()
319 * create the file time hash table and open for read/write the scratch
320 * file. (after created it is unlinked, so when we exit we leave
321 * no witnesses).
322 * Return:
323 * 0 if the table and file was created ok, -1 otherwise
324 */
325
326 #if __STDC__
327 int
ftime_start(void)328 ftime_start(void)
329 #else
330 int
331 ftime_start()
332 #endif
333 {
334 char *pt;
335
336 if (ftab != NULL)
337 return(0);
338 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
339 warn(1, "Cannot allocate memory for file time table");
340 return(-1);
341 }
342
343 /*
344 * get random name and create temporary scratch file, unlink name
345 * so it will get removed on exit
346 */
347 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
348 return(-1);
349 (void)unlink(pt);
350
351 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) {
352 syswarn(1, errno, "Unable to open temporary file: %s", pt);
353 return(-1);
354 }
355
356 (void)unlink(pt);
357 return(0);
358 }
359
360 /*
361 * chk_ftime()
362 * looks up entry in file time hash table. If not found, the file is
363 * added to the hash table and the file named stored in the scratch file.
364 * If a file with the same name is found, the file times are compared and
365 * the most recent file time is retained. If the new file was younger (or
366 * was not in the database) the new file is selected for storage.
367 * Return:
368 * 0 if file should be added to the archive, 1 if it should be skipped,
369 * -1 on error
370 */
371
372 #if __STDC__
373 int
chk_ftime(register ARCHD * arcn)374 chk_ftime(register ARCHD *arcn)
375 #else
376 int
377 chk_ftime(arcn)
378 register ARCHD *arcn;
379 #endif
380 {
381 register FTM *pt;
382 register int namelen;
383 register u_int indx;
384 char ckname[PAXPATHLEN+1];
385
386 /*
387 * no info, go ahead and add to archive
388 */
389 if (ftab == NULL)
390 return(0);
391
392 /*
393 * hash the pathname and look up in table
394 */
395 namelen = arcn->nlen;
396 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
397 if ((pt = ftab[indx]) != NULL) {
398 /*
399 * the hash chain is not empty, walk down looking for match
400 * only read up the path names if the lengths match, speeds
401 * up the search a lot
402 */
403 while (pt != NULL) {
404 if (pt->namelen == namelen) {
405 /*
406 * potential match, have to read the name
407 * from the scratch file.
408 */
409 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
410 syswarn(1, errno,
411 "Failed ftime table seek");
412 return(-1);
413 }
414 if (read(ffd, ckname, namelen) != namelen) {
415 syswarn(1, errno,
416 "Failed ftime table read");
417 return(-1);
418 }
419
420 /*
421 * if the names match, we are done
422 */
423 if (!strncmp(ckname, arcn->name, namelen))
424 break;
425 }
426
427 /*
428 * try the next entry on the chain
429 */
430 pt = pt->fow;
431 }
432
433 if (pt != NULL) {
434 /*
435 * found the file, compare the times, save the newer
436 */
437 if (arcn->sb.st_mtime > pt->mtime) {
438 /*
439 * file is newer
440 */
441 pt->mtime = arcn->sb.st_mtime;
442 return(0);
443 }
444 /*
445 * file is older
446 */
447 return(1);
448 }
449 }
450
451 /*
452 * not in table, add it
453 */
454 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
455 /*
456 * add the name at the end of the scratch file, saving the
457 * offset. add the file to the head of the hash chain
458 */
459 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
460 if (write(ffd, arcn->name, namelen) == namelen) {
461 pt->mtime = arcn->sb.st_mtime;
462 pt->namelen = namelen;
463 pt->fow = ftab[indx];
464 ftab[indx] = pt;
465 return(0);
466 }
467 syswarn(1, errno, "Failed write to file time table");
468 } else
469 syswarn(1, errno, "Failed seek on file time table");
470 } else
471 warn(1, "File time table ran out of memory");
472
473 if (pt != NULL)
474 (void)free((char *)pt);
475 return(-1);
476 }
477
478 /*
479 * Interactive rename table routines
480 *
481 * The interactive rename table keeps track of the new names that the user
482 * assignes to files from tty input. Since this map is unique for each file
483 * we must store it in case there is a reference to the file later in archive
484 * (a link). Otherwise we will be unable to find the file we know was
485 * extracted. The remapping of these files is stored in a memory based hash
486 * table (it is assumed since input must come from /dev/tty, it is unlikely to
487 * be a very large table).
488 */
489
490 /*
491 * name_start()
492 * create the interactive rename table
493 * Return:
494 * 0 if successful, -1 otherwise
495 */
496
497 #if __STDC__
498 int
name_start(void)499 name_start(void)
500 #else
501 int
502 name_start()
503 #endif
504 {
505 if (ntab != NULL)
506 return(0);
507 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
508 warn(1, "Cannot allocate memory for interactive rename table");
509 return(-1);
510 }
511 return(0);
512 }
513
514 /*
515 * add_name()
516 * add the new name to old name mapping just created by the user.
517 * If an old name mapping is found (there may be duplicate names on an
518 * archive) only the most recent is kept.
519 * Return:
520 * 0 if added, -1 otherwise
521 */
522
523 #if __STDC__
524 int
add_name(register char * oname,int onamelen,char * nname)525 add_name(register char *oname, int onamelen, char *nname)
526 #else
527 int
528 add_name(oname, onamelen, nname)
529 register char *oname;
530 int onamelen;
531 char *nname;
532 #endif
533 {
534 register NAMT *pt;
535 register u_int indx;
536
537 if (ntab == NULL) {
538 /*
539 * should never happen
540 */
541 warn(0, "No interactive rename table, links may fail\n");
542 return(0);
543 }
544
545 /*
546 * look to see if we have already mapped this file, if so we
547 * will update it
548 */
549 indx = st_hash(oname, onamelen, N_TAB_SZ);
550 if ((pt = ntab[indx]) != NULL) {
551 /*
552 * look down the has chain for the file
553 */
554 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
555 pt = pt->fow;
556
557 if (pt != NULL) {
558 /*
559 * found an old mapping, replace it with the new one
560 * the user just input (if it is different)
561 */
562 if (strcmp(nname, pt->nname) == 0)
563 return(0);
564
565 (void)free((char *)pt->nname);
566 if ((pt->nname = strdup(nname)) == NULL) {
567 warn(1, "Cannot update rename table");
568 return(-1);
569 }
570 return(0);
571 }
572 }
573
574 /*
575 * this is a new mapping, add it to the table
576 */
577 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
578 if ((pt->oname = strdup(oname)) != NULL) {
579 if ((pt->nname = strdup(nname)) != NULL) {
580 pt->fow = ntab[indx];
581 ntab[indx] = pt;
582 return(0);
583 }
584 (void)free((char *)pt->oname);
585 }
586 (void)free((char *)pt);
587 }
588 warn(1, "Interactive rename table out of memory");
589 return(-1);
590 }
591
592 /*
593 * sub_name()
594 * look up a link name to see if it points at a file that has been
595 * remapped by the user. If found, the link is adjusted to contain the
596 * new name (oname is the link to name)
597 */
598
599 #if __STDC__
600 void
sub_name(register char * oname,int * onamelen)601 sub_name(register char *oname, int *onamelen)
602 #else
603 void
604 sub_name(oname, onamelen)
605 register char *oname;
606 int *onamelen;
607 #endif
608 {
609 register NAMT *pt;
610 register u_int indx;
611
612 if (ntab == NULL)
613 return;
614 /*
615 * look the name up in the hash table
616 */
617 indx = st_hash(oname, *onamelen, N_TAB_SZ);
618 if ((pt = ntab[indx]) == NULL)
619 return;
620
621 while (pt != NULL) {
622 /*
623 * walk down the hash cahin looking for a match
624 */
625 if (strcmp(oname, pt->oname) == 0) {
626 /*
627 * found it, replace it with the new name
628 * and return (we know that oname has enough space)
629 */
630 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
631 return;
632 }
633 pt = pt->fow;
634 }
635
636 /*
637 * no match, just return
638 */
639 return;
640 }
641
642 /*
643 * device/inode mapping table routines
644 * (used with formats that store device and inodes fields)
645 *
646 * device/inode mapping tables remap the device field in a archive header. The
647 * device/inode fields are used to determine when files are hard links to each
648 * other. However these values have very little meaning outside of that. This
649 * database is used to solve one of two different problems.
650 *
651 * 1) when files are appended to an archive, while the new files may have hard
652 * links to each other, you cannot determine if they have hard links to any
653 * file already stored on the archive from a prior run of pax. We must assume
654 * that these inode/device pairs are unique only within a SINGLE run of pax
655 * (which adds a set of files to an archive). So we have to make sure the
656 * inode/dev pairs we add each time are always unique. We do this by observing
657 * while the inode field is very dense, the use of the dev field is fairly
658 * sparse. Within each run of pax, we remap any device number of a new archive
659 * member that has a device number used in a prior run and already stored in a
660 * file on the archive. During the read phase of the append, we store the
661 * device numbers used and mark them to not be used by any file during the
662 * write phase. If during write we go to use one of those old device numbers,
663 * we remap it to a new value.
664 *
665 * 2) Often the fields in the archive header used to store these values are
666 * too small to store the entire value. The result is an inode or device value
667 * which can be truncated. This really can foul up an archive. With truncation
668 * we end up creating links between files that are really not links (after
669 * truncation the inodes are the same value). We address that by detecting
670 * truncation and forcing a remap of the device field to split truncated
671 * inodes away from each other. Each truncation creates a pattern of bits that
672 * are removed. We use this pattern of truncated bits to partition the inodes
673 * on a single device to many different devices (each one represented by the
674 * truncated bit pattern). All inodes on the same device that have the same
675 * truncation pattern are mapped to the same new device. Two inodes that
676 * truncate to the same value clearly will always have different truncation
677 * bit patterns, so they will be split from away each other. When we spot
678 * device truncation we remap the device number to a non truncated value.
679 * (for more info see table.h for the data structures involved).
680 */
681
682 /*
683 * dev_start()
684 * create the device mapping table
685 * Return:
686 * 0 if successful, -1 otherwise
687 */
688
689 #if __STDC__
690 int
dev_start(void)691 dev_start(void)
692 #else
693 int
694 dev_start()
695 #endif
696 {
697 if (dtab != NULL)
698 return(0);
699 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
700 warn(1, "Cannot allocate memory for device mapping table");
701 return(-1);
702 }
703 return(0);
704 }
705
706 /*
707 * add_dev()
708 * add a device number to the table. this will force the device to be
709 * remapped to a new value if it be used during a write phase. This
710 * function is called during the read phase of an append to prohibit the
711 * use of any device number already in the archive.
712 * Return:
713 * 0 if added ok, -1 otherwise
714 */
715
716 #if __STDC__
717 int
add_dev(register ARCHD * arcn)718 add_dev(register ARCHD *arcn)
719 #else
720 int
721 add_dev(arcn)
722 register ARCHD *arcn;
723 #endif
724 {
725 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
726 return(-1);
727 return(0);
728 }
729
730 /*
731 * chk_dev()
732 * check for a device value in the device table. If not found and the add
733 * flag is set, it is added. This does NOT assign any mapping values, just
734 * adds the device number as one that need to be remapped. If this device
735 * is alread mapped, just return with a pointer to that entry.
736 * Return:
737 * pointer to the entry for this device in the device map table. Null
738 * if the add flag is not set and the device is not in the table (it is
739 * not been seen yet). If add is set and the device cannot be added, null
740 * is returned (indicates an error).
741 */
742
743 #if __STDC__
744 static DEVT *
chk_dev(dev_t dev,int add)745 chk_dev(dev_t dev, int add)
746 #else
747 static DEVT *
748 chk_dev(dev, add)
749 dev_t dev;
750 int add;
751 #endif
752 {
753 register DEVT *pt;
754 register u_int indx;
755
756 if (dtab == NULL)
757 return(NULL);
758 /*
759 * look to see if this device is already in the table
760 */
761 indx = ((unsigned)dev) % D_TAB_SZ;
762 if ((pt = dtab[indx]) != NULL) {
763 while ((pt != NULL) && (pt->dev != dev))
764 pt = pt->fow;
765
766 /*
767 * found it, return a pointer to it
768 */
769 if (pt != NULL)
770 return(pt);
771 }
772
773 /*
774 * not in table, we add it only if told to as this may just be a check
775 * to see if a device number is being used.
776 */
777 if (add == 0)
778 return(NULL);
779
780 /*
781 * allocate a node for this device and add it to the front of the hash
782 * chain. Note we do not assign remaps values here, so the pt->list
783 * list must be NULL.
784 */
785 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
786 warn(1, "Device map table out of memory");
787 return(NULL);
788 }
789 pt->dev = dev;
790 pt->list = NULL;
791 pt->fow = dtab[indx];
792 dtab[indx] = pt;
793 return(pt);
794 }
795 /*
796 * map_dev()
797 * given an inode and device storage mask (the mask has a 1 for each bit
798 * the archive format is able to store in a header), we check for inode
799 * and device truncation and remap the device as required. Device mapping
800 * can also occur when during the read phase of append a device number was
801 * seen (and was marked as do not use during the write phase). WE ASSUME
802 * that unsigned longs are the same size or bigger than the fields used
803 * for ino_t and dev_t. If not the types will have to be changed.
804 * Return:
805 * 0 if all ok, -1 otherwise.
806 */
807
808 #if __STDC__
809 int
map_dev(register ARCHD * arcn,u_long dev_mask,u_long ino_mask)810 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
811 #else
812 int
813 map_dev(arcn, dev_mask, ino_mask)
814 register ARCHD *arcn;
815 u_long dev_mask;
816 u_long ino_mask;
817 #endif
818 {
819 register DEVT *pt;
820 register DLIST *dpt;
821 static dev_t lastdev = 0; /* next device number to try */
822 int trc_ino = 0;
823 int trc_dev = 0;
824 ino_t trunc_bits = 0;
825 ino_t nino;
826
827 if (dtab == NULL)
828 return(0);
829 /*
830 * check for device and inode truncation, and extract the truncated
831 * bit pattern.
832 */
833 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
834 ++trc_dev;
835 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
836 ++trc_ino;
837 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
838 }
839
840 /*
841 * see if this device is already being mapped, look up the device
842 * then find the truncation bit pattern which applies
843 */
844 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
845 /*
846 * this device is already marked to be remapped
847 */
848 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
849 if (dpt->trunc_bits == trunc_bits)
850 break;
851
852 if (dpt != NULL) {
853 /*
854 * we are being remapped for this device and pattern
855 * change the device number to be stored and return
856 */
857 arcn->sb.st_dev = dpt->dev;
858 arcn->sb.st_ino = nino;
859 return(0);
860 }
861 } else {
862 /*
863 * this device is not being remapped YET. if we do not have any
864 * form of truncation, we do not need a remap
865 */
866 if (!trc_ino && !trc_dev)
867 return(0);
868
869 /*
870 * we have truncation, have to add this as a device to remap
871 */
872 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
873 goto bad;
874
875 /*
876 * if we just have a truncated inode, we have to make sure that
877 * all future inodes that do not truncate (they have the
878 * truncation pattern of all 0's) continue to map to the same
879 * device number. We probably have already written inodes with
880 * this device number to the archive with the truncation
881 * pattern of all 0's. So we add the mapping for all 0's to the
882 * same device number.
883 */
884 if (!trc_dev && (trunc_bits != 0)) {
885 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
886 goto bad;
887 dpt->trunc_bits = 0;
888 dpt->dev = arcn->sb.st_dev;
889 dpt->fow = pt->list;
890 pt->list = dpt;
891 }
892 }
893
894 /*
895 * look for a device number not being used. We must watch for wrap
896 * around on lastdev (so we do not get stuck looking forever!)
897 */
898 while (++lastdev > 0) {
899 if (chk_dev(lastdev, 0) != NULL)
900 continue;
901 /*
902 * found an unused value. If we have reached truncation point
903 * for this format we are hosed, so we give up. Otherwise we
904 * mark it as being used.
905 */
906 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
907 (chk_dev(lastdev, 1) == NULL))
908 goto bad;
909 break;
910 }
911
912 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
913 goto bad;
914
915 /*
916 * got a new device number, store it under this truncation pattern.
917 * change the device number this file is being stored with.
918 */
919 dpt->trunc_bits = trunc_bits;
920 dpt->dev = lastdev;
921 dpt->fow = pt->list;
922 pt->list = dpt;
923 arcn->sb.st_dev = lastdev;
924 arcn->sb.st_ino = nino;
925 return(0);
926
927 bad:
928 warn(1, "Unable to fix truncated inode/device field when storing %s",
929 arcn->name);
930 warn(0, "Archive may create improper hard links when extracted");
931 return(0);
932 }
933
934 /*
935 * directory access/mod time reset table routines (for directories READ by pax)
936 *
937 * The pax -t flag requires that access times of archive files to be the same
938 * before being read by pax. For regular files, access time is restored after
939 * the file has been copied. This database provides the same functionality for
940 * directories read during file tree traversal. Restoring directory access time
941 * is more complex than files since directories may be read several times until
942 * all the descendants in their subtree are visited by fts. Directory access
943 * and modification times are stored during the fts pre-order visit (done
944 * before any descendants in the subtree is visited) and restored after the
945 * fts post-order visit (after all the descendants have been visited). In the
946 * case of premature exit from a subtree (like from the effects of -n), any
947 * directory entries left in this database are reset during final cleanup
948 * operations of pax. Entries are hashed by inode number for fast lookup.
949 */
950
951 /*
952 * atdir_start()
953 * create the directory access time database for directories READ by pax.
954 * Return:
955 * 0 is created ok, -1 otherwise.
956 */
957
958 #if __STDC__
959 int
atdir_start(void)960 atdir_start(void)
961 #else
962 int
963 atdir_start()
964 #endif
965 {
966 if (atab != NULL)
967 return(0);
968 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
969 warn(1,"Cannot allocate space for directory access time table");
970 return(-1);
971 }
972 return(0);
973 }
974
975
976 /*
977 * atdir_end()
978 * walk through the directory access time table and reset the access time
979 * of any directory who still has an entry left in the database. These
980 * entries are for directories READ by pax
981 */
982
983 #if __STDC__
984 void
atdir_end(void)985 atdir_end(void)
986 #else
987 void
988 atdir_end()
989 #endif
990 {
991 register ATDIR *pt;
992 register int i;
993
994 if (atab == NULL)
995 return;
996 /*
997 * for each non-empty hash table entry reset all the directories
998 * chained there.
999 */
1000 for (i = 0; i < A_TAB_SZ; ++i) {
1001 if ((pt = atab[i]) == NULL)
1002 continue;
1003 /*
1004 * remember to force the times, set_ftime() looks at pmtime
1005 * and patime, which only applies to things CREATED by pax,
1006 * not read by pax. Read time reset is controlled by -t.
1007 */
1008 for (; pt != NULL; pt = pt->fow)
1009 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1010 }
1011 }
1012
1013 /*
1014 * add_atdir()
1015 * add a directory to the directory access time table. Table is hashed
1016 * and chained by inode number. This is for directories READ by pax
1017 */
1018
1019 #if __STDC__
1020 void
add_atdir(char * fname,dev_t dev,ino_t ino,time_t mtime,time_t atime)1021 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1022 #else
1023 void
1024 add_atdir(fname, dev, ino, mtime, atime)
1025 char *fname;
1026 dev_t dev;
1027 ino_t ino;
1028 time_t mtime;
1029 time_t atime;
1030 #endif
1031 {
1032 register ATDIR *pt;
1033 register u_int indx;
1034
1035 if (atab == NULL)
1036 return;
1037
1038 /*
1039 * make sure this directory is not already in the table, if so just
1040 * return (the older entry always has the correct time). The only
1041 * way this will happen is when the same subtree can be traversed by
1042 * different args to pax and the -n option is aborting fts out of a
1043 * subtree before all the post-order visits have been made).
1044 */
1045 indx = ((unsigned)ino) % A_TAB_SZ;
1046 if ((pt = atab[indx]) != NULL) {
1047 while (pt != NULL) {
1048 if ((pt->ino == ino) && (pt->dev == dev))
1049 break;
1050 pt = pt->fow;
1051 }
1052
1053 /*
1054 * oops, already there. Leave it alone.
1055 */
1056 if (pt != NULL)
1057 return;
1058 }
1059
1060 /*
1061 * add it to the front of the hash chain
1062 */
1063 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1064 if ((pt->name = strdup(fname)) != NULL) {
1065 pt->dev = dev;
1066 pt->ino = ino;
1067 pt->mtime = mtime;
1068 pt->atime = atime;
1069 pt->fow = atab[indx];
1070 atab[indx] = pt;
1071 return;
1072 }
1073 (void)free((char *)pt);
1074 }
1075
1076 warn(1, "Directory access time reset table ran out of memory");
1077 return;
1078 }
1079
1080 /*
1081 * get_atdir()
1082 * look up a directory by inode and device number to obtain the access
1083 * and modification time you want to set to. If found, the modification
1084 * and access time parameters are set and the entry is removed from the
1085 * table (as it is no longer needed). These are for directories READ by
1086 * pax
1087 * Return:
1088 * 0 if found, -1 if not found.
1089 */
1090
1091 #if __STDC__
1092 int
get_atdir(dev_t dev,ino_t ino,time_t * mtime,time_t * atime)1093 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1094 #else
1095 int
1096 get_atdir(dev, ino, mtime, atime)
1097 dev_t dev;
1098 ino_t ino;
1099 time_t *mtime;
1100 time_t *atime;
1101 #endif
1102 {
1103 register ATDIR *pt;
1104 register ATDIR **ppt;
1105 register u_int indx;
1106
1107 if (atab == NULL)
1108 return(-1);
1109 /*
1110 * hash by inode and search the chain for an inode and device match
1111 */
1112 indx = ((unsigned)ino) % A_TAB_SZ;
1113 if ((pt = atab[indx]) == NULL)
1114 return(-1);
1115
1116 ppt = &(atab[indx]);
1117 while (pt != NULL) {
1118 if ((pt->ino == ino) && (pt->dev == dev))
1119 break;
1120 /*
1121 * no match, go to next one
1122 */
1123 ppt = &(pt->fow);
1124 pt = pt->fow;
1125 }
1126
1127 /*
1128 * return if we did not find it.
1129 */
1130 if (pt == NULL)
1131 return(-1);
1132
1133 /*
1134 * found it. return the times and remove the entry from the table.
1135 */
1136 *ppt = pt->fow;
1137 *mtime = pt->mtime;
1138 *atime = pt->atime;
1139 (void)free((char *)pt->name);
1140 (void)free((char *)pt);
1141 return(0);
1142 }
1143
1144 /*
1145 * directory access mode and time storage routines (for directories CREATED
1146 * by pax).
1147 *
1148 * Pax requires that extracted directories, by default, have their access/mod
1149 * times and permissions set to the values specified in the archive. During the
1150 * actions of extracting (and creating the destination subtree during -rw copy)
1151 * directories extracted may be modified after being created. Even worse is
1152 * that these directories may have been created with file permissions which
1153 * prohibits any descendants of these directories from being extracted. When
1154 * directories are created by pax, access rights may be added to permit the
1155 * creation of files in their subtree. Every time pax creates a directory, the
1156 * times and file permissions specified by the archive are stored. After all
1157 * files have been extracted (or copied), these directories have their times
1158 * and file modes reset to the stored values. The directory info is restored in
1159 * reverse order as entries were added to the data file from root to leaf. To
1160 * restore atime properly, we must go backwards. The data file consists of
1161 * records with two parts, the file name followed by a DIRDATA trailer. The
1162 * fixed sized trailer contains the size of the name plus the off_t location in
1163 * the file. To restore we work backwards through the file reading the trailer
1164 * then the file name.
1165 */
1166
1167 /*
1168 * dir_start()
1169 * set up the directory time and file mode storage for directories CREATED
1170 * by pax.
1171 * Return:
1172 * 0 if ok, -1 otherwise
1173 */
1174
1175 #if __STDC__
1176 int
dir_start(void)1177 dir_start(void)
1178 #else
1179 int
1180 dir_start()
1181 #endif
1182 {
1183 char *pt;
1184
1185 if (dirfd != -1)
1186 return(0);
1187 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1188 return(-1);
1189
1190 /*
1191 * unlink the file so it goes away at termination by itself
1192 */
1193 (void)unlink(pt);
1194 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1195 (void)unlink(pt);
1196 return(0);
1197 }
1198 warn(1, "Unable to create temporary file for directory times: %s", pt);
1199 return(-1);
1200 }
1201
1202 /*
1203 * add_dir()
1204 * add the mode and times for a newly CREATED directory
1205 * name is name of the directory, psb the stat buffer with the data in it,
1206 * frc_mode is a flag that says whether to force the setting of the mode
1207 * (ignoring the user set values for preserving file mode). Frc_mode is
1208 * for the case where we created a file and found that the resulting
1209 * directory was not writeable and the user asked for file modes to NOT
1210 * be preserved. (we have to preserve what was created by default, so we
1211 * have to force the setting at the end. this is stated explicitly in the
1212 * pax spec)
1213 */
1214
1215 #if __STDC__
1216 void
add_dir(char * name,int nlen,struct stat * psb,int frc_mode)1217 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1218 #else
1219 void
1220 add_dir(name, nlen, psb, frc_mode)
1221 char *name;
1222 int nlen;
1223 struct stat *psb;
1224 int frc_mode;
1225 #endif
1226 {
1227 DIRDATA dblk;
1228
1229 if (dirfd < 0)
1230 return;
1231
1232 /*
1233 * get current position (where file name will start) so we can store it
1234 * in the trailer
1235 */
1236 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1237 warn(1,"Unable to store mode and times for directory: %s",name);
1238 return;
1239 }
1240
1241 /*
1242 * write the file name followed by the trailer
1243 */
1244 dblk.nlen = nlen + 1;
1245 dblk.mode = psb->st_mode & 0xffff;
1246 dblk.mtime = psb->st_mtime;
1247 dblk.atime = psb->st_atime;
1248 dblk.frc_mode = frc_mode;
1249 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1250 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1251 ++dircnt;
1252 return;
1253 }
1254
1255 warn(1,"Unable to store mode and times for created directory: %s",name);
1256 return;
1257 }
1258
1259 /*
1260 * proc_dir()
1261 * process all file modes and times stored for directories CREATED
1262 * by pax
1263 */
1264
1265 #if __STDC__
1266 void
proc_dir(void)1267 proc_dir(void)
1268 #else
1269 void
1270 proc_dir()
1271 #endif
1272 {
1273 char name[PAXPATHLEN+1];
1274 DIRDATA dblk;
1275 u_long cnt;
1276
1277 if (dirfd < 0)
1278 return;
1279 /*
1280 * read backwards through the file and process each directory
1281 */
1282 for (cnt = 0; cnt < dircnt; ++cnt) {
1283 /*
1284 * read the trailer, then the file name, if this fails
1285 * just give up.
1286 */
1287 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1288 break;
1289 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1290 break;
1291 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1292 break;
1293 if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1294 break;
1295 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1296 break;
1297
1298 /*
1299 * frc_mode set, make sure we set the file modes even if
1300 * the user didn't ask for it (see file_subs.c for more info)
1301 */
1302 if (pmode || dblk.frc_mode)
1303 set_pmode(name, dblk.mode);
1304 if (patime || pmtime)
1305 set_ftime(name, dblk.mtime, dblk.atime, 0);
1306 }
1307
1308 (void)close(dirfd);
1309 dirfd = -1;
1310 if (cnt != dircnt)
1311 warn(1,"Unable to set mode and times for created directories");
1312 return;
1313 }
1314
1315 /*
1316 * database independent routines
1317 */
1318
1319 /*
1320 * st_hash()
1321 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1322 * end of file, as this provides far better distribution than any other
1323 * part of the name. For performance reasons we only care about the last
1324 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1325 * name). Was tested on 500,000 name file tree traversal from the root
1326 * and gave almost a perfectly uniform distribution of keys when used with
1327 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1328 * chars at a time and pads with 0 for last addition.
1329 * Return:
1330 * the hash value of the string MOD (%) the table size.
1331 */
1332
1333 #if __STDC__
1334 u_int
st_hash(char * name,int len,int tabsz)1335 st_hash(char *name, int len, int tabsz)
1336 #else
1337 u_int
1338 st_hash(name, len, tabsz)
1339 char *name;
1340 int len;
1341 int tabsz;
1342 #endif
1343 {
1344 register char *pt;
1345 register char *dest;
1346 register char *end;
1347 register int i;
1348 register u_int key = 0;
1349 register int steps;
1350 register int res;
1351 u_int val;
1352
1353 /*
1354 * only look at the tail up to MAXKEYLEN, we do not need to waste
1355 * time here (remember these are pathnames, the tail is what will
1356 * spread out the keys)
1357 */
1358 if (len > MAXKEYLEN) {
1359 pt = &(name[len - MAXKEYLEN]);
1360 len = MAXKEYLEN;
1361 } else
1362 pt = name;
1363
1364 /*
1365 * calculate the number of u_int size steps in the string and if
1366 * there is a runt to deal with
1367 */
1368 steps = len/sizeof(u_int);
1369 res = len % sizeof(u_int);
1370
1371 /*
1372 * add up the value of the string in unsigned integer sized pieces
1373 * too bad we cannot have unsigned int aligned strings, then we
1374 * could avoid the expensive copy.
1375 */
1376 for (i = 0; i < steps; ++i) {
1377 end = pt + sizeof(u_int);
1378 dest = (char *)&val;
1379 while (pt < end)
1380 *dest++ = *pt++;
1381 key += val;
1382 }
1383
1384 /*
1385 * add in the runt padded with zero to the right
1386 */
1387 if (res) {
1388 val = 0;
1389 end = pt + res;
1390 dest = (char *)&val;
1391 while (pt < end)
1392 *dest++ = *pt++;
1393 key += val;
1394 }
1395
1396 /*
1397 * return the result mod the table size
1398 */
1399 return(key % tabsz);
1400 }
1401