1 // Implementation of access-related functions for RTL SSA -*- C++ -*-
2 // Copyright (C) 2020-2022 Free Software Foundation, Inc.
3 //
4 // This file is part of GCC.
5 //
6 // GCC is free software; you can redistribute it and/or modify it under
7 // the terms of the GNU General Public License as published by the Free
8 // Software Foundation; either version 3, or (at your option) any later
9 // version.
10 //
11 // GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 // WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 // for more details.
15 //
16 // You should have received a copy of the GNU General Public License
17 // along with GCC; see the file COPYING3. If not see
18 // <http://www.gnu.org/licenses/>.
19
20 #define INCLUDE_ALGORITHM
21 #define INCLUDE_FUNCTIONAL
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "rtl-ssa.h"
29 #include "rtl-ssa/internals.h"
30 #include "rtl-ssa/internals.inl"
31
32 using namespace rtl_ssa;
33
34 // This clobber belongs to a clobber_group but m_group appears to be
35 // out of date. Update it and return the new (correct) value.
36 clobber_group *
recompute_group()37 clobber_info::recompute_group ()
38 {
39 using splay_tree = clobber_info::splay_tree;
40
41 // Splay this clobber to the root of the tree while searching for a node
42 // that has the correct group. The root always has the correct group,
43 // so the search always breaks early and does not install this clobber
44 // as the root.
45 clobber_info *cursor = m_parent;
46 auto find_group = [](clobber_info *node, unsigned int)
47 {
48 return node->m_group->has_been_superceded () ? nullptr : node->m_group;
49 };
50 clobber_group *group = splay_tree::splay_and_search (this, nullptr,
51 find_group);
52 gcc_checking_assert (m_parent);
53
54 // If the previous splay operation did anything, this clobber is now an
55 // ancestor of CURSOR, and all the nodes inbetween have a stale group.
56 // Since we have visited the nodes, we might as well update them too.
57 //
58 // If the previous splay operation did nothing, start the update from
59 // this clobber instead. In that case we change at most two clobbers:
60 // this clobber and possibly its parent.
61 if (cursor == m_parent)
62 cursor = this;
63
64 // Walk up the tree from CURSOR updating clobbers that need it.
65 // This walk always includes this clobber.
66 while (cursor->m_group != group)
67 {
68 cursor->m_group = group;
69 cursor = cursor->m_parent;
70 }
71
72 gcc_checking_assert (m_group == group);
73 return group;
74 }
75
76 // See the comment above the declaration.
77 void
print_identifier(pretty_printer * pp) const78 resource_info::print_identifier (pretty_printer *pp) const
79 {
80 if (is_mem ())
81 pp_string (pp, "mem");
82 else
83 {
84 char tmp[3 * sizeof (regno) + 2];
85 snprintf (tmp, sizeof (tmp), "r%d", regno);
86 pp_string (pp, tmp);
87 }
88 }
89
90 // See the comment above the declaration.
91 void
print_context(pretty_printer * pp) const92 resource_info::print_context (pretty_printer *pp) const
93 {
94 if (HARD_REGISTER_NUM_P (regno))
95 {
96 if (const char *name = reg_names[regno])
97 {
98 pp_space (pp);
99 pp_left_paren (pp);
100 pp_string (pp, name);
101 if (mode != E_BLKmode)
102 {
103 pp_colon (pp);
104 pp_string (pp, GET_MODE_NAME (mode));
105 }
106 pp_right_paren (pp);
107 }
108 }
109 else if (is_reg ())
110 {
111 pp_space (pp);
112 pp_left_paren (pp);
113 if (mode != E_BLKmode)
114 {
115 pp_string (pp, GET_MODE_NAME (mode));
116 pp_space (pp);
117 }
118 pp_string (pp, "pseudo");
119 pp_right_paren (pp);
120 }
121 }
122
123 // See the comment above the declaration.
124 void
print(pretty_printer * pp) const125 resource_info::print (pretty_printer *pp) const
126 {
127 print_identifier (pp);
128 print_context (pp);
129 }
130
131 // Some properties can naturally be described using adjectives that attach
132 // to nouns like "use" or "definition". Print such adjectives to PP.
133 void
print_prefix_flags(pretty_printer * pp) const134 access_info::print_prefix_flags (pretty_printer *pp) const
135 {
136 if (m_is_temp)
137 pp_string (pp, "temporary ");
138 if (m_has_been_superceded)
139 pp_string (pp, "superceded ");
140 }
141
142 // Print properties not handled by print_prefix_flags to PP, putting
143 // each property on a new line indented by two extra spaces.
144 void
print_properties_on_new_lines(pretty_printer * pp) const145 access_info::print_properties_on_new_lines (pretty_printer *pp) const
146 {
147 if (m_is_pre_post_modify)
148 {
149 pp_newline_and_indent (pp, 2);
150 pp_string (pp, "set by a pre/post-modify");
151 pp_indentation (pp) -= 2;
152 }
153 if (m_includes_address_uses)
154 {
155 pp_newline_and_indent (pp, 2);
156 pp_string (pp, "appears inside an address");
157 pp_indentation (pp) -= 2;
158 }
159 if (m_includes_read_writes)
160 {
161 pp_newline_and_indent (pp, 2);
162 pp_string (pp, "appears in a read/write context");
163 pp_indentation (pp) -= 2;
164 }
165 if (m_includes_subregs)
166 {
167 pp_newline_and_indent (pp, 2);
168 pp_string (pp, "appears inside a subreg");
169 pp_indentation (pp) -= 2;
170 }
171 }
172
173 // Return true if there are no known issues with the integrity of the
174 // link information.
175 inline bool
check_integrity()176 use_info::check_integrity ()
177 {
178 auto subsequence_id = [](use_info *use)
179 {
180 if (use->is_in_nondebug_insn ())
181 return 1;
182 if (use->is_in_debug_insn ())
183 return 2;
184 return 3;
185 };
186
187 use_info *prev = prev_use ();
188 use_info *next = next_use ();
189
190 if (prev && subsequence_id (prev) > subsequence_id (this))
191 return false;
192 if (next && subsequence_id (next) < subsequence_id (this))
193 return false;
194 if (m_is_last_nondebug_insn_use != calculate_is_last_nondebug_insn_use ())
195 return false;
196
197 if (!prev && last_use ()->next_use ())
198 return false;
199 if (!next)
200 if (use_info *use = last_nondebug_insn_use ())
201 if (!use->m_is_last_nondebug_insn_use)
202 return false;
203
204 return true;
205 }
206
207 // See the comment above the declaration.
208 void
print_location(pretty_printer * pp) const209 use_info::print_location (pretty_printer *pp) const
210 {
211 if (is_in_phi ())
212 pp_access (pp, phi (), PP_ACCESS_INCLUDE_LOCATION);
213 else
214 insn ()->print_identifier_and_location (pp);
215 }
216
217 // See the comment above the declaration.
218 void
print_def(pretty_printer * pp) const219 use_info::print_def (pretty_printer *pp) const
220 {
221 if (const set_info *set = def ())
222 pp_access (pp, set, 0);
223 else
224 {
225 pp_string (pp, "undefined ");
226 resource ().print (pp);
227 }
228 }
229
230 // See the comment above the declaration.
231 void
print(pretty_printer * pp,unsigned int flags) const232 use_info::print (pretty_printer *pp, unsigned int flags) const
233 {
234 print_prefix_flags (pp);
235
236 const set_info *set = def ();
237 if (set && set->mode () != mode ())
238 {
239 pp_string (pp, GET_MODE_NAME (mode ()));
240 pp_space (pp);
241 }
242
243 pp_string (pp, "use of ");
244 print_def (pp);
245 if (flags & PP_ACCESS_INCLUDE_LOCATION)
246 {
247 pp_string (pp, " by ");
248 print_location (pp);
249 }
250 if (set && (flags & PP_ACCESS_INCLUDE_LINKS))
251 {
252 pp_newline_and_indent (pp, 2);
253 pp_string (pp, "defined in ");
254 set->insn ()->print_location (pp);
255 pp_indentation (pp) -= 2;
256 }
257 if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
258 print_properties_on_new_lines (pp);
259 }
260
261 // See the comment above the declaration.
262 void
print_identifier(pretty_printer * pp) const263 def_info::print_identifier (pretty_printer *pp) const
264 {
265 resource ().print_identifier (pp);
266 pp_colon (pp);
267 insn ()->print_identifier (pp);
268 resource ().print_context (pp);
269 }
270
271 // See the comment above the declaration.
272 void
print_location(pretty_printer * pp) const273 def_info::print_location (pretty_printer *pp) const
274 {
275 insn ()->print_identifier_and_location (pp);
276 }
277
278 // See the comment above the declaration.
279 void
print(pretty_printer * pp,unsigned int flags) const280 clobber_info::print (pretty_printer *pp, unsigned int flags) const
281 {
282 print_prefix_flags (pp);
283 if (is_call_clobber ())
284 pp_string (pp, "call ");
285 pp_string (pp, "clobber ");
286 print_identifier (pp);
287 if (flags & PP_ACCESS_INCLUDE_LOCATION)
288 {
289 pp_string (pp, " in ");
290 insn ()->print_location (pp);
291 }
292 if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
293 print_properties_on_new_lines (pp);
294 }
295
296 // See the comment above the declaration.
297 void
print_uses_on_new_lines(pretty_printer * pp) const298 set_info::print_uses_on_new_lines (pretty_printer *pp) const
299 {
300 for (const use_info *use : all_uses ())
301 {
302 pp_newline_and_indent (pp, 2);
303 if (use->is_live_out_use ())
304 {
305 pp_string (pp, "live out from ");
306 use->insn ()->print_location (pp);
307 }
308 else
309 {
310 pp_string (pp, "used by ");
311 use->print_location (pp);
312 }
313 pp_indentation (pp) -= 2;
314 }
315 if (m_use_tree)
316 {
317 pp_newline_and_indent (pp, 2);
318 pp_string (pp, "splay tree:");
319 pp_newline_and_indent (pp, 2);
320 auto print_use = [](pretty_printer *pp,
321 splay_tree_node<use_info *> *node)
322 {
323 pp_string (pp, "use by ");
324 node->value ()->print_location (pp);
325 };
326 m_use_tree.print (pp, m_use_tree.root (), print_use);
327 pp_indentation (pp) -= 4;
328 }
329 }
330
331 // See the comment above the declaration.
332 void
print(pretty_printer * pp,unsigned int flags) const333 set_info::print (pretty_printer *pp, unsigned int flags) const
334 {
335 print_prefix_flags (pp);
336 pp_string (pp, "set ");
337 print_identifier (pp);
338 if (flags & PP_ACCESS_INCLUDE_LOCATION)
339 {
340 pp_string (pp, " in ");
341 insn ()->print_location (pp);
342 }
343 if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
344 print_properties_on_new_lines (pp);
345 if (flags & PP_ACCESS_INCLUDE_LINKS)
346 print_uses_on_new_lines (pp);
347 }
348
349 // See the comment above the declaration.
350 void
print(pretty_printer * pp,unsigned int flags) const351 phi_info::print (pretty_printer *pp, unsigned int flags) const
352 {
353 print_prefix_flags (pp);
354 pp_string (pp, "phi node ");
355 print_identifier (pp);
356 if (flags & PP_ACCESS_INCLUDE_LOCATION)
357 {
358 pp_string (pp, " in ");
359 insn ()->print_location (pp);
360 }
361
362 if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
363 print_properties_on_new_lines (pp);
364
365 if (flags & PP_ACCESS_INCLUDE_LINKS)
366 {
367 basic_block cfg_bb = bb ()->cfg_bb ();
368 pp_newline_and_indent (pp, 2);
369 pp_string (pp, "inputs:");
370 unsigned int i = 0;
371 for (const use_info *input : inputs ())
372 {
373 basic_block pred_cfg_bb = EDGE_PRED (cfg_bb, i)->src;
374 pp_newline_and_indent (pp, 2);
375 pp_string (pp, "bb");
376 pp_decimal_int (pp, pred_cfg_bb->index);
377 pp_colon (pp);
378 pp_space (pp);
379 input->print_def (pp);
380 pp_indentation (pp) -= 2;
381 i += 1;
382 }
383 pp_indentation (pp) -= 2;
384
385 print_uses_on_new_lines (pp);
386 }
387 }
388
389 // See the comment above the declaration.
390 void
print(pretty_printer * pp) const391 set_node::print (pretty_printer *pp) const
392 {
393 pp_access (pp, first_def ());
394 }
395
396 // See the comment above the declaration.
397 clobber_info *
prev_clobber(insn_info * insn) const398 clobber_group::prev_clobber (insn_info *insn) const
399 {
400 auto &tree = const_cast<clobber_tree &> (m_clobber_tree);
401 int comparison = lookup_clobber (tree, insn);
402 if (comparison <= 0)
403 return dyn_cast<clobber_info *> (tree.root ()->prev_def ());
404 return tree.root ();
405 }
406
407 // See the comment above the declaration.
408 clobber_info *
next_clobber(insn_info * insn) const409 clobber_group::next_clobber (insn_info *insn) const
410 {
411 auto &tree = const_cast<clobber_tree &> (m_clobber_tree);
412 int comparison = lookup_clobber (tree, insn);
413 if (comparison >= 0)
414 return dyn_cast<clobber_info *> (tree.root ()->next_def ());
415 return tree.root ();
416 }
417
418 // See the comment above the declaration.
419 void
print(pretty_printer * pp) const420 clobber_group::print (pretty_printer *pp) const
421 {
422 auto print_clobber = [](pretty_printer *pp, const def_info *clobber)
423 {
424 pp_access (pp, clobber);
425 };
426 pp_string (pp, "grouped clobber");
427 for (const def_info *clobber : clobbers ())
428 {
429 pp_newline_and_indent (pp, 2);
430 print_clobber (pp, clobber);
431 pp_indentation (pp) -= 2;
432 }
433 pp_newline_and_indent (pp, 2);
434 pp_string (pp, "splay tree");
435 pp_newline_and_indent (pp, 2);
436 m_clobber_tree.print (pp, print_clobber);
437 pp_indentation (pp) -= 4;
438 }
439
440 // See the comment above the declaration.
441 def_info *
prev_def(insn_info * insn) const442 def_lookup::prev_def (insn_info *insn) const
443 {
444 if (mux && comparison == 0)
445 if (auto *node = mux.dyn_cast<def_node *> ())
446 if (auto *group = dyn_cast<clobber_group *> (node))
447 if (clobber_info *clobber = group->prev_clobber (insn))
448 return clobber;
449
450 return last_def_of_prev_group ();
451 }
452
453 // See the comment above the declaration.
454 def_info *
next_def(insn_info * insn) const455 def_lookup::next_def (insn_info *insn) const
456 {
457 if (mux && comparison == 0)
458 if (auto *node = mux.dyn_cast<def_node *> ())
459 if (auto *group = dyn_cast<clobber_group *> (node))
460 if (clobber_info *clobber = group->next_clobber (insn))
461 return clobber;
462
463 return first_def_of_next_group ();
464 }
465
466 // Return a clobber_group for CLOBBER, creating one if CLOBBER doesn't
467 // already belong to a group.
468 clobber_group *
need_clobber_group(clobber_info * clobber)469 function_info::need_clobber_group (clobber_info *clobber)
470 {
471 if (clobber->is_in_group ())
472 return clobber->group ();
473 return allocate<clobber_group> (clobber);
474 }
475
476 // Return a def_node for inserting DEF into the associated resource's
477 // splay tree. Use a clobber_group if DEF is a clobber and a set_node
478 // otherwise.
479 def_node *
need_def_node(def_info * def)480 function_info::need_def_node (def_info *def)
481 {
482 if (auto *clobber = dyn_cast<clobber_info *> (def))
483 return need_clobber_group (clobber);
484 return allocate<set_node> (as_a<set_info *> (def));
485 }
486
487 // LAST is the last thing to define LAST->resource (), and is where any
488 // splay tree root for LAST->resource () is stored. Require such a splay tree
489 // to exist, creating a new one if necessary. Return the root of the tree.
490 //
491 // The caller must call LAST->set_splay_root after it has finished with
492 // the splay tree.
493 def_splay_tree
need_def_splay_tree(def_info * last)494 function_info::need_def_splay_tree (def_info *last)
495 {
496 if (def_node *root = last->splay_root ())
497 return root;
498
499 // Use a left-spine rooted at the last node.
500 def_node *root = need_def_node (last);
501 def_node *parent = root;
502 while (def_info *prev = first_def (parent)->prev_def ())
503 {
504 def_node *node = need_def_node (prev);
505 def_splay_tree::insert_child (parent, 0, node);
506 parent = node;
507 }
508 return root;
509 }
510
511 // Search TREE for either:
512 //
513 // - a set_info at INSN or
514 // - a clobber_group whose range includes INSN
515 //
516 // If such a node exists, install it as the root of TREE and return 0.
517 // Otherwise arbitrarily choose between:
518 //
519 // (1) Installing the closest preceding node as the root and returning 1.
520 // (2) Installing the closest following node as the root and returning -1.
521 //
522 // Note that this routine should not be used to check whether INSN
523 // itself defines a resource; that can be checked more cheaply using
524 // find_access_index.
525 int
lookup_def(def_splay_tree & tree,insn_info * insn)526 rtl_ssa::lookup_def (def_splay_tree &tree, insn_info *insn)
527 {
528 auto go_left = [&](def_node *node)
529 {
530 return *insn < *first_def (node)->insn ();
531 };
532 auto go_right = [&](def_node *node)
533 {
534 return *insn > *last_def (node)->insn ();
535 };
536 return tree.lookup (go_left, go_right);
537 }
538
539 // Search TREE for a clobber in INSN. If such a clobber exists, install
540 // it as the root of TREE and return 0. Otherwise arbitrarily choose between:
541 //
542 // (1) Installing the closest preceding clobber as the root and returning 1.
543 // (2) Installing the closest following clobber as the root and returning -1.
544 int
lookup_clobber(clobber_tree & tree,insn_info * insn)545 rtl_ssa::lookup_clobber (clobber_tree &tree, insn_info *insn)
546 {
547 auto compare = [&](clobber_info *clobber)
548 {
549 return insn->compare_with (clobber->insn ());
550 };
551 return tree.lookup (compare);
552 }
553
554 // Search for a definition of RESOURCE at INSN and return the result of
555 // the search as a def_lookup. See the comment above the class for more
556 // details.
557 def_lookup
find_def(resource_info resource,insn_info * insn)558 function_info::find_def (resource_info resource, insn_info *insn)
559 {
560 def_info *first = m_defs[resource.regno + 1];
561 if (!first)
562 // There are no nodes. The comparison result is pretty meaningless
563 // in this case.
564 return { nullptr, -1 };
565
566 // See whether the first node matches.
567 auto first_result = clobber_group_or_single_def (first);
568 if (*insn <= *last_def (first_result)->insn ())
569 {
570 int comparison = (*insn >= *first->insn () ? 0 : -1);
571 return { first_result, comparison };
572 }
573
574 // See whether the last node matches.
575 def_info *last = first->last_def ();
576 auto last_result = clobber_group_or_single_def (last);
577 if (*insn >= *first_def (last_result)->insn ())
578 {
579 int comparison = (*insn <= *last->insn () ? 0 : 1);
580 return { last_result, comparison };
581 }
582
583 // Resort to using a splay tree to search for the result.
584 def_splay_tree tree = need_def_splay_tree (last);
585 int comparison = lookup_def (tree, insn);
586 last->set_splay_root (tree.root ());
587 return { tree.root (), comparison };
588 }
589
590 // Add DEF to the function's list of definitions of DEF->resource (),
591 // inserting DEF immediately before BEFORE. DEF is not currently in the list.
592 void
insert_def_before(def_info * def,def_info * before)593 function_info::insert_def_before (def_info *def, def_info *before)
594 {
595 gcc_checking_assert (!def->has_def_links ()
596 && *before->insn () > *def->insn ());
597
598 def->copy_prev_from (before);
599 if (def_info *prev = def->prev_def ())
600 {
601 gcc_checking_assert (*prev->insn () < *def->insn ());
602 prev->set_next_def (def);
603 }
604 else
605 m_defs[def->regno () + 1] = def;
606
607 def->set_next_def (before);
608 before->set_prev_def (def);
609 }
610
611 // Add DEF to the function's list of definitions of DEF->resource (),
612 // inserting DEF immediately after AFTER. DEF is not currently in the list.
613 void
insert_def_after(def_info * def,def_info * after)614 function_info::insert_def_after (def_info *def, def_info *after)
615 {
616 gcc_checking_assert (!def->has_def_links ()
617 && *after->insn () < *def->insn ());
618
619 def->copy_next_from (after);
620 if (def_info *next = def->next_def ())
621 {
622 gcc_checking_assert (*next->insn () > *def->insn ());
623 next->set_prev_def (def);
624 }
625 else
626 m_defs[def->regno () + 1]->set_last_def (def);
627
628 def->set_prev_def (after);
629 after->set_next_def (def);
630 }
631
632 // Remove DEF from the function's list of definitions of DEF->resource ().
633 void
remove_def_from_list(def_info * def)634 function_info::remove_def_from_list (def_info *def)
635 {
636 def_info *prev = def->prev_def ();
637 def_info *next = def->next_def ();
638
639 if (next)
640 next->copy_prev_from (def);
641 else
642 m_defs[def->regno () + 1]->set_last_def (prev);
643
644 if (prev)
645 prev->copy_next_from (def);
646 else
647 m_defs[def->regno () + 1] = next;
648
649 def->clear_def_links ();
650 }
651
652 // Add CLOBBER to GROUP and insert it into the function's list of
653 // accesses to CLOBBER->resource (). CLOBBER is not currently part
654 // of an active group and is not currently in the list.
655 void
add_clobber(clobber_info * clobber,clobber_group * group)656 function_info::add_clobber (clobber_info *clobber, clobber_group *group)
657 {
658 // Search for either the previous or next clobber in the group.
659 // The result is less than zero if CLOBBER should come before NEIGHBOR
660 // or greater than zero if CLOBBER should come after NEIGHBOR.
661 int comparison = lookup_clobber (group->m_clobber_tree, clobber->insn ());
662 gcc_checking_assert (comparison != 0);
663 clobber_info *neighbor = group->m_clobber_tree.root ();
664
665 // Since HEIGHBOR is now the root of the splay tree, its group needs
666 // to be up-to-date.
667 neighbor->update_group (group);
668
669 // If CLOBBER comes before NEIGHBOR, insert CLOBBER to NEIGHBOR's left,
670 // otherwise insert CLOBBER to NEIGHBOR's right.
671 clobber_info::splay_tree::insert_child (neighbor, comparison > 0, clobber);
672 clobber->set_group (group);
673
674 // Insert the clobber into the function-wide list and update the
675 // bounds of the group.
676 if (comparison > 0)
677 {
678 insert_def_after (clobber, neighbor);
679 if (neighbor == group->last_clobber ())
680 group->set_last_clobber (clobber);
681 }
682 else
683 {
684 insert_def_before (clobber, neighbor);
685 if (neighbor == group->first_clobber ())
686 group->set_first_clobber (clobber);
687 }
688 }
689
690 // Remove CLOBBER from GROUP, given that GROUP contains other clobbers too.
691 // Also remove CLOBBER from the function's list of accesses to
692 // CLOBBER->resource ().
693 void
remove_clobber(clobber_info * clobber,clobber_group * group)694 function_info::remove_clobber (clobber_info *clobber, clobber_group *group)
695 {
696 if (clobber == group->first_clobber ())
697 {
698 auto *new_first = as_a<clobber_info *> (clobber->next_def ());
699 group->set_first_clobber (new_first);
700 new_first->update_group (group);
701 }
702 else if (clobber == group->last_clobber ())
703 {
704 auto *new_last = as_a<clobber_info *> (clobber->prev_def ());
705 group->set_last_clobber (new_last);
706 new_last->update_group (group);
707 }
708
709 clobber_info *replacement = clobber_info::splay_tree::remove_node (clobber);
710 if (clobber == group->m_clobber_tree.root ())
711 {
712 group->m_clobber_tree = replacement;
713 replacement->update_group (group);
714 }
715 clobber->set_group (nullptr);
716
717 remove_def_from_list (clobber);
718 }
719
720 // Add CLOBBER immediately before the first clobber in GROUP, given that
721 // CLOBBER is not currently part of any group.
722 void
prepend_clobber_to_group(clobber_info * clobber,clobber_group * group)723 function_info::prepend_clobber_to_group (clobber_info *clobber,
724 clobber_group *group)
725 {
726 clobber_info *next = group->first_clobber ();
727 clobber_info::splay_tree::insert_child (next, 0, clobber);
728 group->set_first_clobber (clobber);
729 clobber->set_group (group);
730 }
731
732 // Add CLOBBER immediately after the last clobber in GROUP, given that
733 // CLOBBER is not currently part of any group.
734 void
append_clobber_to_group(clobber_info * clobber,clobber_group * group)735 function_info::append_clobber_to_group (clobber_info *clobber,
736 clobber_group *group)
737 {
738 clobber_info *prev = group->last_clobber ();
739 clobber_info::splay_tree::insert_child (prev, 1, clobber);
740 group->set_last_clobber (clobber);
741 clobber->set_group (group);
742 }
743
744 // Put CLOBBER1 and CLOBBER2 into the same clobber_group, given that
745 // CLOBBER1 occurs immediately before CLOBBER2 and that the two clobbers
746 // are not currently in the same group. LAST is the last definition of
747 // the associated resource, and is where any splay tree is stored.
748 void
merge_clobber_groups(clobber_info * clobber1,clobber_info * clobber2,def_info * last)749 function_info::merge_clobber_groups (clobber_info *clobber1,
750 clobber_info *clobber2,
751 def_info *last)
752 {
753 if (clobber1->is_in_group () && clobber2->is_in_group ())
754 {
755 clobber_group *group1 = clobber1->group ();
756 clobber_group *group2 = clobber2->group ();
757 gcc_checking_assert (clobber1 == group1->last_clobber ()
758 && clobber2 == group2->first_clobber ());
759
760 if (def_splay_tree tree = last->splay_root ())
761 {
762 // Remove GROUP2 from the splay tree.
763 int comparison = lookup_def (tree, clobber2->insn ());
764 gcc_checking_assert (comparison == 0);
765 tree.remove_root ();
766 last->set_splay_root (tree.root ());
767 }
768
769 // Splice the trees together.
770 group1->m_clobber_tree.splice_next_tree (group2->m_clobber_tree);
771
772 // Bring the two extremes of GROUP2 under GROUP1. Any other
773 // clobbers in the group are updated lazily on demand.
774 clobber2->set_group (group1);
775 group2->last_clobber ()->set_group (group1);
776 group1->set_last_clobber (group2->last_clobber ());
777
778 // Record that GROUP2 is no more.
779 group2->set_first_clobber (nullptr);
780 group2->set_last_clobber (nullptr);
781 group2->m_clobber_tree = nullptr;
782 }
783 else
784 {
785 // In this case there can be no active splay tree.
786 gcc_assert (!last->splay_root ());
787 if (clobber2->is_in_group ())
788 prepend_clobber_to_group (clobber1, clobber2->group ());
789 else
790 append_clobber_to_group (clobber2, need_clobber_group (clobber1));
791 }
792 }
793
794 // GROUP spans INSN, and INSN now sets the resource that GROUP clobbers.
795 // Split GROUP around INSN and return the clobber that comes immediately
796 // before INSN.
797 //
798 // The resource that GROUP clobbers is known to have an associated
799 // splay tree.
800 clobber_info *
split_clobber_group(clobber_group * group,insn_info * insn)801 function_info::split_clobber_group (clobber_group *group, insn_info *insn)
802 {
803 // Search for either the previous or next clobber in the group.
804 // The result is less than zero if CLOBBER should come before NEIGHBOR
805 // or greater than zero if CLOBBER should come after NEIGHBOR.
806 clobber_tree &tree1 = group->m_clobber_tree;
807 int comparison = lookup_clobber (tree1, insn);
808 gcc_checking_assert (comparison != 0);
809 clobber_info *neighbor = tree1.root ();
810
811 clobber_tree tree2;
812 clobber_info *prev;
813 clobber_info *next;
814 if (comparison > 0)
815 {
816 // NEIGHBOR is the last clobber in what will become the first group.
817 tree2 = tree1.split_after_root ();
818 prev = neighbor;
819 next = as_a<clobber_info *> (prev->next_def ());
820 }
821 else
822 {
823 // NEIGHBOR is the first clobber in what will become the second group.
824 tree2 = neighbor;
825 tree1 = tree2.split_before_root ();
826 next = neighbor;
827 prev = as_a<clobber_info *> (next->prev_def ());
828 }
829
830 // Use GROUP to hold PREV and earlier clobbers. Create a new group for
831 // NEXT onwards.
832 clobber_info *last_clobber = group->last_clobber ();
833 clobber_group *group1 = group;
834 clobber_group *group2 = allocate<clobber_group> (next);
835
836 // Finish setting up GROUP1, making sure that the roots and extremities
837 // have a correct group pointer. Leave the rest to be updated lazily.
838 group1->set_last_clobber (prev);
839 tree1->set_group (group1);
840 prev->set_group (group1);
841
842 // Finish setting up GROUP2, with the same approach as for GROUP1.
843 group2->set_first_clobber (next);
844 group2->set_last_clobber (last_clobber);
845 next->set_group (group2);
846 tree2->set_group (group2);
847 last_clobber->set_group (group2);
848
849 // Insert GROUP2 into the splay tree as an immediate successor of GROUP1.
850 def_splay_tree::insert_child (group1, 1, group2);
851
852 return prev;
853 }
854
855 // Add DEF to the end of the function's list of definitions of
856 // DEF->resource (). There is known to be no associated splay tree yet.
857 void
append_def(def_info * def)858 function_info::append_def (def_info *def)
859 {
860 gcc_checking_assert (!def->has_def_links ());
861 def_info **head = &m_defs[def->regno () + 1];
862 def_info *first = *head;
863 if (!first)
864 {
865 // This is the only definition of the resource.
866 def->set_last_def (def);
867 *head = def;
868 return;
869 }
870
871 def_info *prev = first->last_def ();
872 gcc_checking_assert (!prev->splay_root ());
873
874 // Maintain the invariant that two clobbers must not appear in
875 // neighboring nodes of the splay tree.
876 auto *clobber = dyn_cast<clobber_info *> (def);
877 auto *prev_clobber = dyn_cast<clobber_info *> (prev);
878 if (clobber && prev_clobber)
879 append_clobber_to_group (clobber, need_clobber_group (prev_clobber));
880
881 prev->set_next_def (def);
882 def->set_prev_def (prev);
883 first->set_last_def (def);
884 }
885
886 // Add DEF to the function's list of definitions of DEF->resource ().
887 // Also insert it into the associated splay tree, if there is one.
888 // DEF is not currently part of the list and is not in the splay tree.
889 void
add_def(def_info * def)890 function_info::add_def (def_info *def)
891 {
892 gcc_checking_assert (!def->has_def_links ()
893 && !def->m_is_temp
894 && !def->m_has_been_superceded);
895 def_info **head = &m_defs[def->regno () + 1];
896 def_info *first = *head;
897 if (!first)
898 {
899 // This is the only definition of the resource.
900 def->set_last_def (def);
901 *head = def;
902 return;
903 }
904
905 def_info *last = first->last_def ();
906 insn_info *insn = def->insn ();
907
908 int comparison;
909 def_node *root = nullptr;
910 def_info *prev = nullptr;
911 def_info *next = nullptr;
912 if (*insn > *last->insn ())
913 {
914 // This definition comes after all other definitions.
915 comparison = 1;
916 if (def_splay_tree tree = last->splay_root ())
917 {
918 tree.splay_max_node ();
919 root = tree.root ();
920 last->set_splay_root (root);
921 }
922 prev = last;
923 }
924 else if (*insn < *first->insn ())
925 {
926 // This definition comes before all other definitions.
927 comparison = -1;
928 if (def_splay_tree tree = last->splay_root ())
929 {
930 tree.splay_min_node ();
931 root = tree.root ();
932 last->set_splay_root (root);
933 }
934 next = first;
935 }
936 else
937 {
938 // Search the splay tree for an insertion point.
939 def_splay_tree tree = need_def_splay_tree (last);
940 comparison = lookup_def (tree, insn);
941 root = tree.root ();
942 last->set_splay_root (root);
943
944 // Deal with cases in which we found an overlapping live range.
945 if (comparison == 0)
946 {
947 auto *group = as_a<clobber_group *> (tree.root ());
948 if (auto *clobber = dyn_cast<clobber_info *> (def))
949 {
950 add_clobber (clobber, group);
951 return;
952 }
953 prev = split_clobber_group (group, insn);
954 next = prev->next_def ();
955 }
956 // COMPARISON is < 0 if DEF comes before ROOT or > 0 if DEF comes
957 // after ROOT.
958 else if (comparison < 0)
959 {
960 next = first_def (root);
961 prev = next->prev_def ();
962 }
963 else
964 {
965 prev = last_def (root);
966 next = prev->next_def ();
967 }
968 }
969
970 // See if we should merge CLOBBER with a neighboring clobber.
971 auto *clobber = dyn_cast<clobber_info *> (def);
972 auto *prev_clobber = safe_dyn_cast<clobber_info *> (prev);
973 auto *next_clobber = safe_dyn_cast<clobber_info *> (next);
974 // We shouldn't have consecutive clobber_groups.
975 gcc_checking_assert (!(clobber && prev_clobber && next_clobber));
976 if (clobber && prev_clobber)
977 append_clobber_to_group (clobber, need_clobber_group (prev_clobber));
978 else if (clobber && next_clobber)
979 prepend_clobber_to_group (clobber, need_clobber_group (next_clobber));
980 else if (root)
981 {
982 // If DEF comes before ROOT, insert DEF to ROOT's left,
983 // otherwise insert DEF to ROOT's right.
984 def_node *node = need_def_node (def);
985 def_splay_tree::insert_child (root, comparison >= 0, node);
986 }
987 if (prev)
988 insert_def_after (def, prev);
989 else
990 insert_def_before (def, next);
991 }
992
993 // Remove DEF from the function's list of definitions of DEF->resource ().
994 // Also remove DEF from the associated splay tree, if there is one.
995 void
remove_def(def_info * def)996 function_info::remove_def (def_info *def)
997 {
998 def_info **head = &m_defs[def->regno () + 1];
999 def_info *first = *head;
1000 gcc_checking_assert (first);
1001 if (first->is_last_def ())
1002 {
1003 // DEF is the only definition of the resource.
1004 gcc_checking_assert (first == def);
1005 *head = nullptr;
1006 def->clear_def_links ();
1007 return;
1008 }
1009
1010 // If CLOBBER belongs to a clobber_group that contains other clobbers
1011 // too, then we need to update the clobber_group and the list, but any
1012 // splay tree that contains the clobber_group is unaffected.
1013 if (auto *clobber = dyn_cast<clobber_info *> (def))
1014 if (clobber->is_in_group ())
1015 {
1016 clobber_group *group = clobber->group ();
1017 if (group->first_clobber () != group->last_clobber ())
1018 {
1019 remove_clobber (clobber, group);
1020 return;
1021 }
1022 }
1023
1024 // If we've created a splay tree for this resource, remove the entry
1025 // for DEF.
1026 def_info *last = first->last_def ();
1027 if (def_splay_tree tree = last->splay_root ())
1028 {
1029 int comparison = lookup_def (tree, def->insn ());
1030 gcc_checking_assert (comparison == 0);
1031 tree.remove_root ();
1032 last->set_splay_root (tree.root ());
1033 }
1034
1035 // If the definition came between two clobbers, merge them into a single
1036 // group.
1037 auto *prev_clobber = safe_dyn_cast<clobber_info *> (def->prev_def ());
1038 auto *next_clobber = safe_dyn_cast<clobber_info *> (def->next_def ());
1039 if (prev_clobber && next_clobber)
1040 merge_clobber_groups (prev_clobber, next_clobber, last);
1041
1042 remove_def_from_list (def);
1043 }
1044
1045 // Require DEF to have a splay tree that contains all non-phi uses.
1046 void
need_use_splay_tree(set_info * def)1047 function_info::need_use_splay_tree (set_info *def)
1048 {
1049 if (!def->m_use_tree)
1050 for (use_info *use : def->all_insn_uses ())
1051 {
1052 auto *use_node = allocate<splay_tree_node<use_info *>> (use);
1053 def->m_use_tree.insert_max_node (use_node);
1054 }
1055 }
1056
1057 // Compare two instructions by their position in a use splay tree. Return >0
1058 // if INSN1 comes after INSN2, <0 if INSN1 comes before INSN2, or 0 if they are
1059 // the same instruction.
1060 static inline int
compare_use_insns(insn_info * insn1,insn_info * insn2)1061 compare_use_insns (insn_info *insn1, insn_info *insn2)
1062 {
1063 // Debug instructions go after nondebug instructions.
1064 int diff = insn1->is_debug_insn () - insn2->is_debug_insn ();
1065 if (diff != 0)
1066 return diff;
1067 return insn1->compare_with (insn2);
1068 }
1069
1070 // Search TREE for a use in INSN. If such a use exists, install it as
1071 // the root of TREE and return 0. Otherwise arbitrarily choose between:
1072 //
1073 // (1) Installing the closest preceding use as the root and returning 1.
1074 // (2) Installing the closest following use as the root and returning -1.
1075 int
lookup_use(splay_tree<use_info * > & tree,insn_info * insn)1076 rtl_ssa::lookup_use (splay_tree<use_info *> &tree, insn_info *insn)
1077 {
1078 auto compare = [&](splay_tree_node<use_info *> *node)
1079 {
1080 return compare_use_insns (insn, node->value ()->insn ());
1081 };
1082 return tree.lookup (compare);
1083 }
1084
1085 // Add USE to USE->def ()'s list of uses. inserting USE immediately before
1086 // BEFORE. USE is not currently in the list.
1087 //
1088 // This routine should not be used for inserting phi uses.
1089 void
insert_use_before(use_info * use,use_info * before)1090 function_info::insert_use_before (use_info *use, use_info *before)
1091 {
1092 gcc_checking_assert (!use->has_use_links () && use->is_in_any_insn ());
1093
1094 set_info *def = use->def ();
1095
1096 use->copy_prev_from (before);
1097 use->set_next_use (before);
1098
1099 if (use_info *prev = use->prev_use ())
1100 prev->set_next_use (use);
1101 else
1102 use->def ()->set_first_use (use);
1103
1104 before->set_prev_use (use);
1105 if (use->is_in_nondebug_insn () && before->is_in_debug_insn_or_phi ())
1106 def->last_use ()->set_last_nondebug_insn_use (use);
1107
1108 gcc_checking_assert (use->check_integrity () && before->check_integrity ());
1109 }
1110
1111 // Add USE to USE->def ()'s list of uses. inserting USE immediately after
1112 // AFTER. USE is not currently in the list.
1113 //
1114 // This routine should not be used for inserting phi uses.
1115 void
insert_use_after(use_info * use,use_info * after)1116 function_info::insert_use_after (use_info *use, use_info *after)
1117 {
1118 set_info *def = use->def ();
1119 gcc_checking_assert (after->is_in_any_insn ()
1120 && !use->has_use_links ()
1121 && use->is_in_any_insn ());
1122
1123 use->set_prev_use (after);
1124 use->copy_next_from (after);
1125
1126 after->set_next_use (use);
1127
1128 if (use_info *next = use->next_use ())
1129 {
1130 // The last node doesn't change, but we might need to update its
1131 // last_nondebug_insn_use record.
1132 if (use->is_in_nondebug_insn () && next->is_in_debug_insn_or_phi ())
1133 def->last_use ()->set_last_nondebug_insn_use (use);
1134 next->set_prev_use (use);
1135 }
1136 else
1137 {
1138 // USE is now the last node.
1139 if (use->is_in_nondebug_insn ())
1140 use->set_last_nondebug_insn_use (use);
1141 def->first_use ()->set_last_use (use);
1142 }
1143
1144 gcc_checking_assert (use->check_integrity () && after->check_integrity ());
1145 }
1146
1147 // If USE has a known definition, add USE to that definition's list of uses.
1148 // Also update the associated splay tree, if any.
1149 void
add_use(use_info * use)1150 function_info::add_use (use_info *use)
1151 {
1152 gcc_checking_assert (!use->has_use_links ()
1153 && !use->m_is_temp
1154 && !use->m_has_been_superceded);
1155
1156 set_info *def = use->def ();
1157 if (!def)
1158 return;
1159
1160 use_info *first = def->first_use ();
1161 if (!first)
1162 {
1163 // This is the only use of the definition.
1164 use->set_last_use (use);
1165 if (use->is_in_nondebug_insn ())
1166 use->set_last_nondebug_insn_use (use);
1167
1168 def->set_first_use (use);
1169
1170 gcc_checking_assert (use->check_integrity ());
1171 return;
1172 }
1173
1174 if (use->is_in_phi ())
1175 {
1176 // Add USE at the end of the list, as the new first phi.
1177 use_info *last = first->last_use ();
1178
1179 use->set_prev_use (last);
1180 use->copy_next_from (last);
1181
1182 last->set_next_use (use);
1183 first->set_last_use (use);
1184
1185 gcc_checking_assert (use->check_integrity ());
1186 return;
1187 }
1188
1189 // If there is currently no splay tree for this definition, see if can
1190 // get away with a pure list-based update.
1191 insn_info *insn = use->insn ();
1192 auto quick_path = [&]()
1193 {
1194 // Check if USE should come before all current uses.
1195 if (first->is_in_phi () || compare_use_insns (insn, first->insn ()) < 0)
1196 {
1197 insert_use_before (use, first);
1198 return true;
1199 }
1200
1201 // Check if USE should come after all current uses in the same
1202 // subsequence (i.e. the list of nondebug insn uses or the list
1203 // of debug insn uses).
1204 use_info *last = first->last_use ();
1205 if (use->is_in_debug_insn ())
1206 {
1207 if (last->is_in_phi ())
1208 return false;
1209 }
1210 else
1211 last = last->last_nondebug_insn_use ();
1212
1213 if (compare_use_insns (insn, last->insn ()) > 0)
1214 {
1215 insert_use_after (use, last);
1216 return true;
1217 }
1218
1219 return false;
1220 };
1221 if (!def->m_use_tree && quick_path ())
1222 return;
1223
1224 // Search the splay tree for an insertion point. COMPARISON is less
1225 // than zero if USE should come before NEIGHBOR, or greater than zero
1226 // if USE should come after NEIGHBOR.
1227 need_use_splay_tree (def);
1228 int comparison = lookup_use (def->m_use_tree, insn);
1229 gcc_checking_assert (comparison != 0);
1230 splay_tree_node<use_info *> *neighbor = def->m_use_tree.root ();
1231
1232 // If USE comes before NEIGHBOR, insert USE to NEIGHBOR's left,
1233 // otherwise insert USE to NEIGHBOR's right.
1234 auto *use_node = allocate<splay_tree_node<use_info *>> (use);
1235 def->m_use_tree.insert_child (neighbor, comparison > 0, use_node);
1236 if (comparison > 0)
1237 insert_use_after (use, neighbor->value ());
1238 else
1239 insert_use_before (use, neighbor->value ());
1240 }
1241
1242 // If USE has a known definition, remove USE from that definition's list
1243 // of uses. Also remove if it from the associated splay tree, if any.
1244 void
remove_use(use_info * use)1245 function_info::remove_use (use_info *use)
1246 {
1247 set_info *def = use->def ();
1248 if (!def)
1249 return;
1250
1251 // Remove USE from the splay tree.
1252 if (def->m_use_tree && use->is_in_any_insn ())
1253 {
1254 int comparison = lookup_use (def->m_use_tree, use->insn ());
1255 gcc_checking_assert (comparison == 0);
1256 def->m_use_tree.remove_root ();
1257 }
1258
1259 use_info *prev = use->prev_use ();
1260 use_info *next = use->next_use ();
1261
1262 use_info *first = def->first_use ();
1263 use_info *last = first->last_use ();
1264 if (last->last_nondebug_insn_use () == use)
1265 last->set_last_nondebug_insn_use (prev);
1266
1267 if (next)
1268 next->copy_prev_from (use);
1269 else
1270 first->set_last_use (prev);
1271
1272 if (prev)
1273 prev->copy_next_from (use);
1274 else
1275 def->set_first_use (next);
1276
1277 use->clear_use_links ();
1278 gcc_checking_assert ((!prev || prev->check_integrity ())
1279 && (!next || next->check_integrity ()));
1280 }
1281
1282 // Allocate a temporary clobber_info for register REGNO in insn INSN,
1283 // including it in the region of the obstack governed by WATERMARK.
1284 // Return a new def_array that contains OLD_DEFS and the new clobber.
1285 //
1286 // OLD_DEFS is known not to define REGNO.
1287 def_array
insert_temp_clobber(obstack_watermark & watermark,insn_info * insn,unsigned int regno,def_array old_defs)1288 function_info::insert_temp_clobber (obstack_watermark &watermark,
1289 insn_info *insn, unsigned int regno,
1290 def_array old_defs)
1291 {
1292 gcc_checking_assert (watermark == &m_temp_obstack);
1293 auto *clobber = allocate_temp<clobber_info> (insn, regno);
1294 clobber->m_is_temp = true;
1295 return insert_access (watermark, clobber, old_defs);
1296 }
1297
1298 // A subroutine of make_uses_available. Try to make USE's definition
1299 // available at the head of BB. WILL_BE_DEBUG_USE is true if the
1300 // definition will be used only in debug instructions.
1301 //
1302 // On success:
1303 //
1304 // - If the use would have the same def () as USE, return USE.
1305 //
1306 // - If BB already has a degenerate phi for the same definition,
1307 // return a temporary use of that phi.
1308 //
1309 // - Otherwise, the use would need a new degenerate phi. Allocate a
1310 // temporary phi and return a temporary use of it.
1311 //
1312 // Return null on failure.
1313 use_info *
make_use_available(use_info * use,bb_info * bb,bool will_be_debug_use)1314 function_info::make_use_available (use_info *use, bb_info *bb,
1315 bool will_be_debug_use)
1316 {
1317 set_info *def = use->def ();
1318 if (!def)
1319 return use;
1320
1321 if (is_single_dominating_def (def))
1322 return use;
1323
1324 // FIXME: Deliberately limited for fwprop compatibility testing.
1325 basic_block cfg_bb = bb->cfg_bb ();
1326 bb_info *use_bb = use->bb ();
1327 if (single_pred_p (cfg_bb)
1328 && single_pred (cfg_bb) == use_bb->cfg_bb ()
1329 && remains_available_on_exit (def, use_bb))
1330 {
1331 if (def->ebb () == bb->ebb () || will_be_debug_use)
1332 return use;
1333
1334 resource_info resource = use->resource ();
1335 set_info *ultimate_def = look_through_degenerate_phi (def);
1336
1337 // See if there is already a (degenerate) phi for DEF.
1338 insn_info *phi_insn = bb->ebb ()->phi_insn ();
1339 phi_info *phi;
1340 def_lookup dl = find_def (resource, phi_insn);
1341 if (set_info *set = dl.matching_set ())
1342 {
1343 // There is an existing phi.
1344 phi = as_a<phi_info *> (set);
1345 gcc_checking_assert (phi->input_value (0) == ultimate_def);
1346 }
1347 else
1348 {
1349 // Create a temporary placeholder phi. This will become
1350 // permanent if the change is later committed.
1351 phi = allocate_temp<phi_info> (phi_insn, resource, 0);
1352 auto *input = allocate_temp<use_info> (phi, resource, ultimate_def);
1353 input->m_is_temp = true;
1354 phi->m_is_temp = true;
1355 phi->make_degenerate (input);
1356 if (def_info *prev = dl.prev_def (phi_insn))
1357 phi->set_prev_def (prev);
1358 if (def_info *next = dl.next_def (phi_insn))
1359 phi->set_next_def (next);
1360 }
1361
1362 // Create a temporary use of the phi at the head of the first
1363 // block, since we know for sure that it's available there.
1364 insn_info *use_insn = bb->ebb ()->first_bb ()->head_insn ();
1365 auto *new_use = allocate_temp<use_info> (use_insn, resource, phi);
1366 new_use->m_is_temp = true;
1367 return new_use;
1368 }
1369 return nullptr;
1370 }
1371
1372 // See the comment above the declaration.
1373 use_array
make_uses_available(obstack_watermark & watermark,use_array uses,bb_info * bb,bool will_be_debug_uses)1374 function_info::make_uses_available (obstack_watermark &watermark,
1375 use_array uses, bb_info *bb,
1376 bool will_be_debug_uses)
1377 {
1378 unsigned int num_uses = uses.size ();
1379 if (num_uses == 0)
1380 return uses;
1381
1382 auto **new_uses = XOBNEWVEC (watermark, access_info *, num_uses);
1383 for (unsigned int i = 0; i < num_uses; ++i)
1384 {
1385 use_info *use = make_use_available (uses[i], bb, will_be_debug_uses);
1386 if (!use)
1387 return use_array (access_array::invalid ());
1388 new_uses[i] = use;
1389 }
1390 return use_array (new_uses, num_uses);
1391 }
1392
1393 // Return true if ACCESS1 can represent ACCESS2 and if ACCESS2 can
1394 // represent ACCESS1.
1395 static bool
can_merge_accesses(access_info * access1,access_info * access2)1396 can_merge_accesses (access_info *access1, access_info *access2)
1397 {
1398 if (access1 == access2)
1399 return true;
1400
1401 auto *use1 = dyn_cast<use_info *> (access1);
1402 auto *use2 = dyn_cast<use_info *> (access2);
1403 return use1 && use2 && use1->def () == use2->def ();
1404 }
1405
1406 // See the comment above the declaration.
1407 access_array
merge_access_arrays_base(obstack_watermark & watermark,access_array accesses1,access_array accesses2)1408 rtl_ssa::merge_access_arrays_base (obstack_watermark &watermark,
1409 access_array accesses1,
1410 access_array accesses2)
1411 {
1412 if (accesses1.empty ())
1413 return accesses2;
1414 if (accesses2.empty ())
1415 return accesses1;
1416
1417 auto i1 = accesses1.begin ();
1418 auto end1 = accesses1.end ();
1419 auto i2 = accesses2.begin ();
1420 auto end2 = accesses2.end ();
1421
1422 access_array_builder builder (watermark);
1423 builder.reserve (accesses1.size () + accesses2.size ());
1424
1425 while (i1 != end1 && i2 != end2)
1426 {
1427 access_info *access1 = *i1;
1428 access_info *access2 = *i2;
1429
1430 unsigned int regno1 = access1->regno ();
1431 unsigned int regno2 = access2->regno ();
1432 if (regno1 == regno2)
1433 {
1434 if (!can_merge_accesses (access1, access2))
1435 return access_array::invalid ();
1436
1437 builder.quick_push (access1);
1438 ++i1;
1439 ++i2;
1440 }
1441 else if (regno1 < regno2)
1442 {
1443 builder.quick_push (access1);
1444 ++i1;
1445 }
1446 else
1447 {
1448 builder.quick_push (access2);
1449 ++i2;
1450 }
1451 }
1452 for (; i1 != end1; ++i1)
1453 builder.quick_push (*i1);
1454 for (; i2 != end2; ++i2)
1455 builder.quick_push (*i2);
1456
1457 return builder.finish ();
1458 }
1459
1460 // See the comment above the declaration.
1461 access_array
insert_access_base(obstack_watermark & watermark,access_info * access1,access_array accesses2)1462 rtl_ssa::insert_access_base (obstack_watermark &watermark,
1463 access_info *access1, access_array accesses2)
1464 {
1465 access_array_builder builder (watermark);
1466 builder.reserve (1 + accesses2.size ());
1467
1468 unsigned int regno1 = access1->regno ();
1469 auto i2 = accesses2.begin ();
1470 auto end2 = accesses2.end ();
1471 while (i2 != end2)
1472 {
1473 access_info *access2 = *i2;
1474
1475 unsigned int regno2 = access2->regno ();
1476 if (regno1 == regno2)
1477 {
1478 if (!can_merge_accesses (access1, access2))
1479 return access_array::invalid ();
1480
1481 builder.quick_push (access1);
1482 access1 = nullptr;
1483 ++i2;
1484 break;
1485 }
1486 else if (regno1 < regno2)
1487 {
1488 builder.quick_push (access1);
1489 access1 = nullptr;
1490 break;
1491 }
1492 else
1493 {
1494 builder.quick_push (access2);
1495 ++i2;
1496 }
1497 }
1498 if (access1)
1499 builder.quick_push (access1);
1500 for (; i2 != end2; ++i2)
1501 builder.quick_push (*i2);
1502
1503 return builder.finish ();
1504 }
1505
1506 // See the comment above the declaration.
1507 access_array
remove_note_accesses_base(obstack_watermark & watermark,access_array accesses)1508 rtl_ssa::remove_note_accesses_base (obstack_watermark &watermark,
1509 access_array accesses)
1510 {
1511 for (access_info *access : accesses)
1512 if (access->only_occurs_in_notes ())
1513 {
1514 access_array_builder builder (watermark);
1515 builder.reserve (accesses.size ());
1516 for (access_info *access2 : accesses)
1517 if (!access2->only_occurs_in_notes ())
1518 builder.quick_push (access2);
1519 return builder.finish ();
1520 }
1521 return accesses;
1522 }
1523
1524 // Print RESOURCE to PP.
1525 void
pp_resource(pretty_printer * pp,resource_info resource)1526 rtl_ssa::pp_resource (pretty_printer *pp, resource_info resource)
1527 {
1528 resource.print (pp);
1529 }
1530
1531 // Print ACCESS to PP. FLAGS is a bitmask of PP_ACCESS_* flags.
1532 void
pp_access(pretty_printer * pp,const access_info * access,unsigned int flags)1533 rtl_ssa::pp_access (pretty_printer *pp, const access_info *access,
1534 unsigned int flags)
1535 {
1536 if (!access)
1537 pp_string (pp, "<null>");
1538 else if (auto *phi = dyn_cast<const phi_info *> (access))
1539 phi->print (pp, flags);
1540 else if (auto *set = dyn_cast<const set_info *> (access))
1541 set->print (pp, flags);
1542 else if (auto *clobber = dyn_cast<const clobber_info *> (access))
1543 clobber->print (pp, flags);
1544 else if (auto *use = dyn_cast<const use_info *> (access))
1545 use->print (pp, flags);
1546 else
1547 pp_string (pp, "??? Unknown access");
1548 }
1549
1550 // Print ACCESSES to PP. FLAGS is a bitmask of PP_ACCESS_* flags.
1551 void
pp_accesses(pretty_printer * pp,access_array accesses,unsigned int flags)1552 rtl_ssa::pp_accesses (pretty_printer *pp, access_array accesses,
1553 unsigned int flags)
1554 {
1555 if (accesses.empty ())
1556 pp_string (pp, "none");
1557 else
1558 {
1559 bool is_first = true;
1560 for (access_info *access : accesses)
1561 {
1562 if (is_first)
1563 is_first = false;
1564 else
1565 pp_newline_and_indent (pp, 0);
1566 pp_access (pp, access, flags);
1567 }
1568 }
1569 }
1570
1571 // Print NODE to PP.
1572 void
pp_def_node(pretty_printer * pp,const def_node * node)1573 rtl_ssa::pp_def_node (pretty_printer *pp, const def_node *node)
1574 {
1575 if (!node)
1576 pp_string (pp, "<null>");
1577 else if (auto *group = dyn_cast<const clobber_group *> (node))
1578 group->print (pp);
1579 else if (auto *set = dyn_cast<const set_node *> (node))
1580 set->print (pp);
1581 else
1582 pp_string (pp, "??? Unknown def node");
1583 }
1584
1585 // Print MUX to PP.
1586 void
pp_def_mux(pretty_printer * pp,def_mux mux)1587 rtl_ssa::pp_def_mux (pretty_printer *pp, def_mux mux)
1588 {
1589 if (auto *node = mux.dyn_cast<def_node *> ())
1590 pp_def_node (pp, node);
1591 else
1592 pp_access (pp, mux.as_a<def_info *> ());
1593 }
1594
1595 // Print DL to PP.
1596 void
pp_def_lookup(pretty_printer * pp,def_lookup dl)1597 rtl_ssa::pp_def_lookup (pretty_printer *pp, def_lookup dl)
1598 {
1599 pp_string (pp, "comparison result of ");
1600 pp_decimal_int (pp, dl.comparison);
1601 pp_string (pp, " for ");
1602 pp_newline_and_indent (pp, 0);
1603 pp_def_mux (pp, dl.mux);
1604 }
1605
1606 // Dump RESOURCE to FILE.
1607 void
dump(FILE * file,resource_info resource)1608 dump (FILE *file, resource_info resource)
1609 {
1610 dump_using (file, pp_resource, resource);
1611 }
1612
1613 // Dump ACCESS to FILE. FLAGS is a bitmask of PP_ACCESS_* flags.
1614 void
dump(FILE * file,const access_info * access,unsigned int flags)1615 dump (FILE *file, const access_info *access, unsigned int flags)
1616 {
1617 dump_using (file, pp_access, access, flags);
1618 }
1619
1620 // Dump ACCESSES to FILE. FLAGS is a bitmask of PP_ACCESS_* flags.
1621 void
dump(FILE * file,access_array accesses,unsigned int flags)1622 dump (FILE *file, access_array accesses, unsigned int flags)
1623 {
1624 dump_using (file, pp_accesses, accesses, flags);
1625 }
1626
1627 // Print NODE to FILE.
1628 void
dump(FILE * file,const def_node * node)1629 dump (FILE *file, const def_node *node)
1630 {
1631 dump_using (file, pp_def_node, node);
1632 }
1633
1634 // Print MUX to FILE.
1635 void
dump(FILE * file,def_mux mux)1636 dump (FILE *file, def_mux mux)
1637 {
1638 dump_using (file, pp_def_mux, mux);
1639 }
1640
1641 // Print RESULT to FILE.
1642 void
dump(FILE * file,def_lookup result)1643 dump (FILE *file, def_lookup result)
1644 {
1645 dump_using (file, pp_def_lookup, result);
1646 }
1647
1648 // Debug interfaces to the dump routines above.
debug(const resource_info & x)1649 void debug (const resource_info &x) { dump (stderr, x); }
debug(const access_info * x)1650 void debug (const access_info *x) { dump (stderr, x); }
debug(const access_array & x)1651 void debug (const access_array &x) { dump (stderr, x); }
debug(const def_node * x)1652 void debug (const def_node *x) { dump (stderr, x); }
debug(const def_mux & x)1653 void debug (const def_mux &x) { dump (stderr, x); }
debug(const def_lookup & x)1654 void debug (const def_lookup &x) { dump (stderr, x); }
1655