1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 #define DEBUG_TYPE "legalizer"
31
32 using namespace llvm;
33 using namespace LegalizeActions;
34 using namespace MIPatternMatch;
35
36 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
37 ///
38 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
39 /// with any leftover piece as type \p LeftoverTy
40 ///
41 /// Returns -1 in the first element of the pair if the breakdown is not
42 /// satisfiable.
43 static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy,LLT NarrowTy,LLT & LeftoverTy)44 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
45 assert(!LeftoverTy.isValid() && "this is an out argument");
46
47 unsigned Size = OrigTy.getSizeInBits();
48 unsigned NarrowSize = NarrowTy.getSizeInBits();
49 unsigned NumParts = Size / NarrowSize;
50 unsigned LeftoverSize = Size - NumParts * NarrowSize;
51 assert(Size > NarrowSize);
52
53 if (LeftoverSize == 0)
54 return {NumParts, 0};
55
56 if (NarrowTy.isVector()) {
57 unsigned EltSize = OrigTy.getScalarSizeInBits();
58 if (LeftoverSize % EltSize != 0)
59 return {-1, -1};
60 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
61 } else {
62 LeftoverTy = LLT::scalar(LeftoverSize);
63 }
64
65 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
66 return std::make_pair(NumParts, NumLeftover);
67 }
68
getFloatTypeForLLT(LLVMContext & Ctx,LLT Ty)69 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
70
71 if (!Ty.isScalar())
72 return nullptr;
73
74 switch (Ty.getSizeInBits()) {
75 case 16:
76 return Type::getHalfTy(Ctx);
77 case 32:
78 return Type::getFloatTy(Ctx);
79 case 64:
80 return Type::getDoubleTy(Ctx);
81 case 80:
82 return Type::getX86_FP80Ty(Ctx);
83 case 128:
84 return Type::getFP128Ty(Ctx);
85 default:
86 return nullptr;
87 }
88 }
89
LegalizerHelper(MachineFunction & MF,GISelChangeObserver & Observer,MachineIRBuilder & Builder)90 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
91 GISelChangeObserver &Observer,
92 MachineIRBuilder &Builder)
93 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
94 LI(*MF.getSubtarget().getLegalizerInfo()),
95 TLI(*MF.getSubtarget().getTargetLowering()) { }
96
LegalizerHelper(MachineFunction & MF,const LegalizerInfo & LI,GISelChangeObserver & Observer,MachineIRBuilder & B)97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98 GISelChangeObserver &Observer,
99 MachineIRBuilder &B)
100 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
101 TLI(*MF.getSubtarget().getTargetLowering()) { }
102
103 LegalizerHelper::LegalizeResult
legalizeInstrStep(MachineInstr & MI)104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105 LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106
107 MIRBuilder.setInstrAndDebugLoc(MI);
108
109 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112 auto Step = LI.getAction(MI, MRI);
113 switch (Step.Action) {
114 case Legal:
115 LLVM_DEBUG(dbgs() << ".. Already legal\n");
116 return AlreadyLegal;
117 case Libcall:
118 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119 return libcall(MI);
120 case NarrowScalar:
121 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123 case WidenScalar:
124 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125 return widenScalar(MI, Step.TypeIdx, Step.NewType);
126 case Bitcast:
127 LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128 return bitcast(MI, Step.TypeIdx, Step.NewType);
129 case Lower:
130 LLVM_DEBUG(dbgs() << ".. Lower\n");
131 return lower(MI, Step.TypeIdx, Step.NewType);
132 case FewerElements:
133 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135 case MoreElements:
136 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138 case Custom:
139 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141 default:
142 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143 return UnableToLegalize;
144 }
145 }
146
extractParts(Register Reg,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148 SmallVectorImpl<Register> &VRegs) {
149 for (int i = 0; i < NumParts; ++i)
150 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151 MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153
extractParts(Register Reg,LLT RegTy,LLT MainTy,LLT & LeftoverTy,SmallVectorImpl<Register> & VRegs,SmallVectorImpl<Register> & LeftoverRegs)154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155 LLT MainTy, LLT &LeftoverTy,
156 SmallVectorImpl<Register> &VRegs,
157 SmallVectorImpl<Register> &LeftoverRegs) {
158 assert(!LeftoverTy.isValid() && "this is an out argument");
159
160 unsigned RegSize = RegTy.getSizeInBits();
161 unsigned MainSize = MainTy.getSizeInBits();
162 unsigned NumParts = RegSize / MainSize;
163 unsigned LeftoverSize = RegSize - NumParts * MainSize;
164
165 // Use an unmerge when possible.
166 if (LeftoverSize == 0) {
167 for (unsigned I = 0; I < NumParts; ++I)
168 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169 MIRBuilder.buildUnmerge(VRegs, Reg);
170 return true;
171 }
172
173 if (MainTy.isVector()) {
174 unsigned EltSize = MainTy.getScalarSizeInBits();
175 if (LeftoverSize % EltSize != 0)
176 return false;
177 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178 } else {
179 LeftoverTy = LLT::scalar(LeftoverSize);
180 }
181
182 // For irregular sizes, extract the individual parts.
183 for (unsigned I = 0; I != NumParts; ++I) {
184 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185 VRegs.push_back(NewReg);
186 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187 }
188
189 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190 Offset += LeftoverSize) {
191 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192 LeftoverRegs.push_back(NewReg);
193 MIRBuilder.buildExtract(NewReg, Reg, Offset);
194 }
195
196 return true;
197 }
198
insertParts(Register DstReg,LLT ResultTy,LLT PartTy,ArrayRef<Register> PartRegs,LLT LeftoverTy,ArrayRef<Register> LeftoverRegs)199 void LegalizerHelper::insertParts(Register DstReg,
200 LLT ResultTy, LLT PartTy,
201 ArrayRef<Register> PartRegs,
202 LLT LeftoverTy,
203 ArrayRef<Register> LeftoverRegs) {
204 if (!LeftoverTy.isValid()) {
205 assert(LeftoverRegs.empty());
206
207 if (!ResultTy.isVector()) {
208 MIRBuilder.buildMerge(DstReg, PartRegs);
209 return;
210 }
211
212 if (PartTy.isVector())
213 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214 else
215 MIRBuilder.buildBuildVector(DstReg, PartRegs);
216 return;
217 }
218
219 unsigned PartSize = PartTy.getSizeInBits();
220 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221
222 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223 MIRBuilder.buildUndef(CurResultReg);
224
225 unsigned Offset = 0;
226 for (Register PartReg : PartRegs) {
227 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229 CurResultReg = NewResultReg;
230 Offset += PartSize;
231 }
232
233 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234 // Use the original output register for the final insert to avoid a copy.
235 Register NewResultReg = (I + 1 == E) ?
236 DstReg : MRI.createGenericVirtualRegister(ResultTy);
237
238 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239 CurResultReg = NewResultReg;
240 Offset += LeftoverPartSize;
241 }
242 }
243
244 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
getUnmergeResults(SmallVectorImpl<Register> & Regs,const MachineInstr & MI)245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246 const MachineInstr &MI) {
247 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248
249 const int StartIdx = Regs.size();
250 const int NumResults = MI.getNumOperands() - 1;
251 Regs.resize(Regs.size() + NumResults);
252 for (int I = 0; I != NumResults; ++I)
253 Regs[StartIdx + I] = MI.getOperand(I).getReg();
254 }
255
extractGCDType(SmallVectorImpl<Register> & Parts,LLT GCDTy,Register SrcReg)256 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
257 LLT GCDTy, Register SrcReg) {
258 LLT SrcTy = MRI.getType(SrcReg);
259 if (SrcTy == GCDTy) {
260 // If the source already evenly divides the result type, we don't need to do
261 // anything.
262 Parts.push_back(SrcReg);
263 } else {
264 // Need to split into common type sized pieces.
265 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
266 getUnmergeResults(Parts, *Unmerge);
267 }
268 }
269
extractGCDType(SmallVectorImpl<Register> & Parts,LLT DstTy,LLT NarrowTy,Register SrcReg)270 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
271 LLT NarrowTy, Register SrcReg) {
272 LLT SrcTy = MRI.getType(SrcReg);
273 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
274 extractGCDType(Parts, GCDTy, SrcReg);
275 return GCDTy;
276 }
277
buildLCMMergePieces(LLT DstTy,LLT NarrowTy,LLT GCDTy,SmallVectorImpl<Register> & VRegs,unsigned PadStrategy)278 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
279 SmallVectorImpl<Register> &VRegs,
280 unsigned PadStrategy) {
281 LLT LCMTy = getLCMType(DstTy, NarrowTy);
282
283 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
284 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
285 int NumOrigSrc = VRegs.size();
286
287 Register PadReg;
288
289 // Get a value we can use to pad the source value if the sources won't evenly
290 // cover the result type.
291 if (NumOrigSrc < NumParts * NumSubParts) {
292 if (PadStrategy == TargetOpcode::G_ZEXT)
293 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
294 else if (PadStrategy == TargetOpcode::G_ANYEXT)
295 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
296 else {
297 assert(PadStrategy == TargetOpcode::G_SEXT);
298
299 // Shift the sign bit of the low register through the high register.
300 auto ShiftAmt =
301 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
302 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
303 }
304 }
305
306 // Registers for the final merge to be produced.
307 SmallVector<Register, 4> Remerge(NumParts);
308
309 // Registers needed for intermediate merges, which will be merged into a
310 // source for Remerge.
311 SmallVector<Register, 4> SubMerge(NumSubParts);
312
313 // Once we've fully read off the end of the original source bits, we can reuse
314 // the same high bits for remaining padding elements.
315 Register AllPadReg;
316
317 // Build merges to the LCM type to cover the original result type.
318 for (int I = 0; I != NumParts; ++I) {
319 bool AllMergePartsArePadding = true;
320
321 // Build the requested merges to the requested type.
322 for (int J = 0; J != NumSubParts; ++J) {
323 int Idx = I * NumSubParts + J;
324 if (Idx >= NumOrigSrc) {
325 SubMerge[J] = PadReg;
326 continue;
327 }
328
329 SubMerge[J] = VRegs[Idx];
330
331 // There are meaningful bits here we can't reuse later.
332 AllMergePartsArePadding = false;
333 }
334
335 // If we've filled up a complete piece with padding bits, we can directly
336 // emit the natural sized constant if applicable, rather than a merge of
337 // smaller constants.
338 if (AllMergePartsArePadding && !AllPadReg) {
339 if (PadStrategy == TargetOpcode::G_ANYEXT)
340 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
341 else if (PadStrategy == TargetOpcode::G_ZEXT)
342 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
343
344 // If this is a sign extension, we can't materialize a trivial constant
345 // with the right type and have to produce a merge.
346 }
347
348 if (AllPadReg) {
349 // Avoid creating additional instructions if we're just adding additional
350 // copies of padding bits.
351 Remerge[I] = AllPadReg;
352 continue;
353 }
354
355 if (NumSubParts == 1)
356 Remerge[I] = SubMerge[0];
357 else
358 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
359
360 // In the sign extend padding case, re-use the first all-signbit merge.
361 if (AllMergePartsArePadding && !AllPadReg)
362 AllPadReg = Remerge[I];
363 }
364
365 VRegs = std::move(Remerge);
366 return LCMTy;
367 }
368
buildWidenedRemergeToDst(Register DstReg,LLT LCMTy,ArrayRef<Register> RemergeRegs)369 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
370 ArrayRef<Register> RemergeRegs) {
371 LLT DstTy = MRI.getType(DstReg);
372
373 // Create the merge to the widened source, and extract the relevant bits into
374 // the result.
375
376 if (DstTy == LCMTy) {
377 MIRBuilder.buildMerge(DstReg, RemergeRegs);
378 return;
379 }
380
381 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
382 if (DstTy.isScalar() && LCMTy.isScalar()) {
383 MIRBuilder.buildTrunc(DstReg, Remerge);
384 return;
385 }
386
387 if (LCMTy.isVector()) {
388 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
389 SmallVector<Register, 8> UnmergeDefs(NumDefs);
390 UnmergeDefs[0] = DstReg;
391 for (unsigned I = 1; I != NumDefs; ++I)
392 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
393
394 MIRBuilder.buildUnmerge(UnmergeDefs,
395 MIRBuilder.buildMerge(LCMTy, RemergeRegs));
396 return;
397 }
398
399 llvm_unreachable("unhandled case");
400 }
401
getRTLibDesc(unsigned Opcode,unsigned Size)402 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
403 #define RTLIBCASE_INT(LibcallPrefix) \
404 do { \
405 switch (Size) { \
406 case 32: \
407 return RTLIB::LibcallPrefix##32; \
408 case 64: \
409 return RTLIB::LibcallPrefix##64; \
410 case 128: \
411 return RTLIB::LibcallPrefix##128; \
412 default: \
413 llvm_unreachable("unexpected size"); \
414 } \
415 } while (0)
416
417 #define RTLIBCASE(LibcallPrefix) \
418 do { \
419 switch (Size) { \
420 case 32: \
421 return RTLIB::LibcallPrefix##32; \
422 case 64: \
423 return RTLIB::LibcallPrefix##64; \
424 case 80: \
425 return RTLIB::LibcallPrefix##80; \
426 case 128: \
427 return RTLIB::LibcallPrefix##128; \
428 default: \
429 llvm_unreachable("unexpected size"); \
430 } \
431 } while (0)
432
433 switch (Opcode) {
434 case TargetOpcode::G_SDIV:
435 RTLIBCASE_INT(SDIV_I);
436 case TargetOpcode::G_UDIV:
437 RTLIBCASE_INT(UDIV_I);
438 case TargetOpcode::G_SREM:
439 RTLIBCASE_INT(SREM_I);
440 case TargetOpcode::G_UREM:
441 RTLIBCASE_INT(UREM_I);
442 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
443 RTLIBCASE_INT(CTLZ_I);
444 case TargetOpcode::G_FADD:
445 RTLIBCASE(ADD_F);
446 case TargetOpcode::G_FSUB:
447 RTLIBCASE(SUB_F);
448 case TargetOpcode::G_FMUL:
449 RTLIBCASE(MUL_F);
450 case TargetOpcode::G_FDIV:
451 RTLIBCASE(DIV_F);
452 case TargetOpcode::G_FEXP:
453 RTLIBCASE(EXP_F);
454 case TargetOpcode::G_FEXP2:
455 RTLIBCASE(EXP2_F);
456 case TargetOpcode::G_FREM:
457 RTLIBCASE(REM_F);
458 case TargetOpcode::G_FPOW:
459 RTLIBCASE(POW_F);
460 case TargetOpcode::G_FMA:
461 RTLIBCASE(FMA_F);
462 case TargetOpcode::G_FSIN:
463 RTLIBCASE(SIN_F);
464 case TargetOpcode::G_FCOS:
465 RTLIBCASE(COS_F);
466 case TargetOpcode::G_FLOG10:
467 RTLIBCASE(LOG10_F);
468 case TargetOpcode::G_FLOG:
469 RTLIBCASE(LOG_F);
470 case TargetOpcode::G_FLOG2:
471 RTLIBCASE(LOG2_F);
472 case TargetOpcode::G_FCEIL:
473 RTLIBCASE(CEIL_F);
474 case TargetOpcode::G_FFLOOR:
475 RTLIBCASE(FLOOR_F);
476 case TargetOpcode::G_FMINNUM:
477 RTLIBCASE(FMIN_F);
478 case TargetOpcode::G_FMAXNUM:
479 RTLIBCASE(FMAX_F);
480 case TargetOpcode::G_FSQRT:
481 RTLIBCASE(SQRT_F);
482 case TargetOpcode::G_FRINT:
483 RTLIBCASE(RINT_F);
484 case TargetOpcode::G_FNEARBYINT:
485 RTLIBCASE(NEARBYINT_F);
486 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
487 RTLIBCASE(ROUNDEVEN_F);
488 }
489 llvm_unreachable("Unknown libcall function");
490 }
491
492 /// True if an instruction is in tail position in its caller. Intended for
493 /// legalizing libcalls as tail calls when possible.
isLibCallInTailPosition(const TargetInstrInfo & TII,MachineInstr & MI)494 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
495 MachineInstr &MI) {
496 MachineBasicBlock &MBB = *MI.getParent();
497 const Function &F = MBB.getParent()->getFunction();
498
499 // Conservatively require the attributes of the call to match those of
500 // the return. Ignore NoAlias and NonNull because they don't affect the
501 // call sequence.
502 AttributeList CallerAttrs = F.getAttributes();
503 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
504 .removeAttribute(Attribute::NoAlias)
505 .removeAttribute(Attribute::NonNull)
506 .hasAttributes())
507 return false;
508
509 // It's not safe to eliminate the sign / zero extension of the return value.
510 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
511 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
512 return false;
513
514 // Only tail call if the following instruction is a standard return.
515 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
516 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
517 return false;
518
519 return true;
520 }
521
522 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,const char * Name,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,const CallingConv::ID CC)523 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
524 const CallLowering::ArgInfo &Result,
525 ArrayRef<CallLowering::ArgInfo> Args,
526 const CallingConv::ID CC) {
527 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
528
529 CallLowering::CallLoweringInfo Info;
530 Info.CallConv = CC;
531 Info.Callee = MachineOperand::CreateES(Name);
532 Info.OrigRet = Result;
533 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
534 if (!CLI.lowerCall(MIRBuilder, Info))
535 return LegalizerHelper::UnableToLegalize;
536
537 return LegalizerHelper::Legalized;
538 }
539
540 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,RTLIB::Libcall Libcall,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args)541 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
542 const CallLowering::ArgInfo &Result,
543 ArrayRef<CallLowering::ArgInfo> Args) {
544 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
545 const char *Name = TLI.getLibcallName(Libcall);
546 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
547 return createLibcall(MIRBuilder, Name, Result, Args, CC);
548 }
549
550 // Useful for libcalls where all operands have the same type.
551 static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,unsigned Size,Type * OpType)552 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
553 Type *OpType) {
554 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
555
556 SmallVector<CallLowering::ArgInfo, 3> Args;
557 for (unsigned i = 1; i < MI.getNumOperands(); i++)
558 Args.push_back({MI.getOperand(i).getReg(), OpType});
559 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
560 Args);
561 }
562
563 LegalizerHelper::LegalizeResult
createMemLibcall(MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI,MachineInstr & MI)564 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
565 MachineInstr &MI) {
566 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
567
568 SmallVector<CallLowering::ArgInfo, 3> Args;
569 // Add all the args, except for the last which is an imm denoting 'tail'.
570 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
571 Register Reg = MI.getOperand(i).getReg();
572
573 // Need derive an IR type for call lowering.
574 LLT OpLLT = MRI.getType(Reg);
575 Type *OpTy = nullptr;
576 if (OpLLT.isPointer())
577 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
578 else
579 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
580 Args.push_back({Reg, OpTy});
581 }
582
583 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
584 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
585 RTLIB::Libcall RTLibcall;
586 unsigned Opc = MI.getOpcode();
587 switch (Opc) {
588 case TargetOpcode::G_BZERO:
589 RTLibcall = RTLIB::BZERO;
590 break;
591 case TargetOpcode::G_MEMCPY:
592 RTLibcall = RTLIB::MEMCPY;
593 break;
594 case TargetOpcode::G_MEMMOVE:
595 RTLibcall = RTLIB::MEMMOVE;
596 break;
597 case TargetOpcode::G_MEMSET:
598 RTLibcall = RTLIB::MEMSET;
599 break;
600 default:
601 return LegalizerHelper::UnableToLegalize;
602 }
603 const char *Name = TLI.getLibcallName(RTLibcall);
604
605 // Unsupported libcall on the target.
606 if (!Name) {
607 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
608 << MIRBuilder.getTII().getName(Opc) << "\n");
609 return LegalizerHelper::UnableToLegalize;
610 }
611
612 CallLowering::CallLoweringInfo Info;
613 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
614 Info.Callee = MachineOperand::CreateES(Name);
615 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
616 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
617 isLibCallInTailPosition(MIRBuilder.getTII(), MI);
618
619 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
620 if (!CLI.lowerCall(MIRBuilder, Info))
621 return LegalizerHelper::UnableToLegalize;
622
623 if (Info.LoweredTailCall) {
624 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
625 // We must have a return following the call (or debug insts) to get past
626 // isLibCallInTailPosition.
627 do {
628 MachineInstr *Next = MI.getNextNode();
629 assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
630 "Expected instr following MI to be return or debug inst?");
631 // We lowered a tail call, so the call is now the return from the block.
632 // Delete the old return.
633 Next->eraseFromParent();
634 } while (MI.getNextNode());
635 }
636
637 return LegalizerHelper::Legalized;
638 }
639
getConvRTLibDesc(unsigned Opcode,Type * ToType,Type * FromType)640 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
641 Type *FromType) {
642 auto ToMVT = MVT::getVT(ToType);
643 auto FromMVT = MVT::getVT(FromType);
644
645 switch (Opcode) {
646 case TargetOpcode::G_FPEXT:
647 return RTLIB::getFPEXT(FromMVT, ToMVT);
648 case TargetOpcode::G_FPTRUNC:
649 return RTLIB::getFPROUND(FromMVT, ToMVT);
650 case TargetOpcode::G_FPTOSI:
651 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
652 case TargetOpcode::G_FPTOUI:
653 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
654 case TargetOpcode::G_SITOFP:
655 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
656 case TargetOpcode::G_UITOFP:
657 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
658 }
659 llvm_unreachable("Unsupported libcall function");
660 }
661
662 static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,Type * ToType,Type * FromType)663 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
664 Type *FromType) {
665 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
666 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
667 {{MI.getOperand(1).getReg(), FromType}});
668 }
669
670 LegalizerHelper::LegalizeResult
libcall(MachineInstr & MI)671 LegalizerHelper::libcall(MachineInstr &MI) {
672 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
673 unsigned Size = LLTy.getSizeInBits();
674 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
675
676 switch (MI.getOpcode()) {
677 default:
678 return UnableToLegalize;
679 case TargetOpcode::G_SDIV:
680 case TargetOpcode::G_UDIV:
681 case TargetOpcode::G_SREM:
682 case TargetOpcode::G_UREM:
683 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
684 Type *HLTy = IntegerType::get(Ctx, Size);
685 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
686 if (Status != Legalized)
687 return Status;
688 break;
689 }
690 case TargetOpcode::G_FADD:
691 case TargetOpcode::G_FSUB:
692 case TargetOpcode::G_FMUL:
693 case TargetOpcode::G_FDIV:
694 case TargetOpcode::G_FMA:
695 case TargetOpcode::G_FPOW:
696 case TargetOpcode::G_FREM:
697 case TargetOpcode::G_FCOS:
698 case TargetOpcode::G_FSIN:
699 case TargetOpcode::G_FLOG10:
700 case TargetOpcode::G_FLOG:
701 case TargetOpcode::G_FLOG2:
702 case TargetOpcode::G_FEXP:
703 case TargetOpcode::G_FEXP2:
704 case TargetOpcode::G_FCEIL:
705 case TargetOpcode::G_FFLOOR:
706 case TargetOpcode::G_FMINNUM:
707 case TargetOpcode::G_FMAXNUM:
708 case TargetOpcode::G_FSQRT:
709 case TargetOpcode::G_FRINT:
710 case TargetOpcode::G_FNEARBYINT:
711 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
712 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
713 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
714 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
715 return UnableToLegalize;
716 }
717 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
718 if (Status != Legalized)
719 return Status;
720 break;
721 }
722 case TargetOpcode::G_FPEXT:
723 case TargetOpcode::G_FPTRUNC: {
724 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
725 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
726 if (!FromTy || !ToTy)
727 return UnableToLegalize;
728 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
729 if (Status != Legalized)
730 return Status;
731 break;
732 }
733 case TargetOpcode::G_FPTOSI:
734 case TargetOpcode::G_FPTOUI: {
735 // FIXME: Support other types
736 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
737 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
738 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
739 return UnableToLegalize;
740 LegalizeResult Status = conversionLibcall(
741 MI, MIRBuilder,
742 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
743 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
744 if (Status != Legalized)
745 return Status;
746 break;
747 }
748 case TargetOpcode::G_SITOFP:
749 case TargetOpcode::G_UITOFP: {
750 // FIXME: Support other types
751 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
752 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
753 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
754 return UnableToLegalize;
755 LegalizeResult Status = conversionLibcall(
756 MI, MIRBuilder,
757 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
758 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
759 if (Status != Legalized)
760 return Status;
761 break;
762 }
763 case TargetOpcode::G_BZERO:
764 case TargetOpcode::G_MEMCPY:
765 case TargetOpcode::G_MEMMOVE:
766 case TargetOpcode::G_MEMSET: {
767 LegalizeResult Result =
768 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
769 if (Result != Legalized)
770 return Result;
771 MI.eraseFromParent();
772 return Result;
773 }
774 }
775
776 MI.eraseFromParent();
777 return Legalized;
778 }
779
narrowScalar(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)780 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
781 unsigned TypeIdx,
782 LLT NarrowTy) {
783 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
784 uint64_t NarrowSize = NarrowTy.getSizeInBits();
785
786 switch (MI.getOpcode()) {
787 default:
788 return UnableToLegalize;
789 case TargetOpcode::G_IMPLICIT_DEF: {
790 Register DstReg = MI.getOperand(0).getReg();
791 LLT DstTy = MRI.getType(DstReg);
792
793 // If SizeOp0 is not an exact multiple of NarrowSize, emit
794 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
795 // FIXME: Although this would also be legal for the general case, it causes
796 // a lot of regressions in the emitted code (superfluous COPYs, artifact
797 // combines not being hit). This seems to be a problem related to the
798 // artifact combiner.
799 if (SizeOp0 % NarrowSize != 0) {
800 LLT ImplicitTy = NarrowTy;
801 if (DstTy.isVector())
802 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
803
804 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
805 MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
806
807 MI.eraseFromParent();
808 return Legalized;
809 }
810
811 int NumParts = SizeOp0 / NarrowSize;
812
813 SmallVector<Register, 2> DstRegs;
814 for (int i = 0; i < NumParts; ++i)
815 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
816
817 if (DstTy.isVector())
818 MIRBuilder.buildBuildVector(DstReg, DstRegs);
819 else
820 MIRBuilder.buildMerge(DstReg, DstRegs);
821 MI.eraseFromParent();
822 return Legalized;
823 }
824 case TargetOpcode::G_CONSTANT: {
825 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
826 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
827 unsigned TotalSize = Ty.getSizeInBits();
828 unsigned NarrowSize = NarrowTy.getSizeInBits();
829 int NumParts = TotalSize / NarrowSize;
830
831 SmallVector<Register, 4> PartRegs;
832 for (int I = 0; I != NumParts; ++I) {
833 unsigned Offset = I * NarrowSize;
834 auto K = MIRBuilder.buildConstant(NarrowTy,
835 Val.lshr(Offset).trunc(NarrowSize));
836 PartRegs.push_back(K.getReg(0));
837 }
838
839 LLT LeftoverTy;
840 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
841 SmallVector<Register, 1> LeftoverRegs;
842 if (LeftoverBits != 0) {
843 LeftoverTy = LLT::scalar(LeftoverBits);
844 auto K = MIRBuilder.buildConstant(
845 LeftoverTy,
846 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
847 LeftoverRegs.push_back(K.getReg(0));
848 }
849
850 insertParts(MI.getOperand(0).getReg(),
851 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
852
853 MI.eraseFromParent();
854 return Legalized;
855 }
856 case TargetOpcode::G_SEXT:
857 case TargetOpcode::G_ZEXT:
858 case TargetOpcode::G_ANYEXT:
859 return narrowScalarExt(MI, TypeIdx, NarrowTy);
860 case TargetOpcode::G_TRUNC: {
861 if (TypeIdx != 1)
862 return UnableToLegalize;
863
864 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
865 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
866 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
867 return UnableToLegalize;
868 }
869
870 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
871 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
872 MI.eraseFromParent();
873 return Legalized;
874 }
875
876 case TargetOpcode::G_FREEZE:
877 return reduceOperationWidth(MI, TypeIdx, NarrowTy);
878 case TargetOpcode::G_ADD:
879 case TargetOpcode::G_SUB:
880 case TargetOpcode::G_SADDO:
881 case TargetOpcode::G_SSUBO:
882 case TargetOpcode::G_SADDE:
883 case TargetOpcode::G_SSUBE:
884 case TargetOpcode::G_UADDO:
885 case TargetOpcode::G_USUBO:
886 case TargetOpcode::G_UADDE:
887 case TargetOpcode::G_USUBE:
888 return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
889 case TargetOpcode::G_MUL:
890 case TargetOpcode::G_UMULH:
891 return narrowScalarMul(MI, NarrowTy);
892 case TargetOpcode::G_EXTRACT:
893 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
894 case TargetOpcode::G_INSERT:
895 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
896 case TargetOpcode::G_LOAD: {
897 auto &MMO = **MI.memoperands_begin();
898 Register DstReg = MI.getOperand(0).getReg();
899 LLT DstTy = MRI.getType(DstReg);
900 if (DstTy.isVector())
901 return UnableToLegalize;
902
903 if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
904 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
905 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
906 MIRBuilder.buildAnyExt(DstReg, TmpReg);
907 MI.eraseFromParent();
908 return Legalized;
909 }
910
911 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
912 }
913 case TargetOpcode::G_ZEXTLOAD:
914 case TargetOpcode::G_SEXTLOAD: {
915 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
916 Register DstReg = MI.getOperand(0).getReg();
917 Register PtrReg = MI.getOperand(1).getReg();
918
919 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
920 auto &MMO = **MI.memoperands_begin();
921 unsigned MemSize = MMO.getSizeInBits();
922
923 if (MemSize == NarrowSize) {
924 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
925 } else if (MemSize < NarrowSize) {
926 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
927 } else if (MemSize > NarrowSize) {
928 // FIXME: Need to split the load.
929 return UnableToLegalize;
930 }
931
932 if (ZExt)
933 MIRBuilder.buildZExt(DstReg, TmpReg);
934 else
935 MIRBuilder.buildSExt(DstReg, TmpReg);
936
937 MI.eraseFromParent();
938 return Legalized;
939 }
940 case TargetOpcode::G_STORE: {
941 const auto &MMO = **MI.memoperands_begin();
942
943 Register SrcReg = MI.getOperand(0).getReg();
944 LLT SrcTy = MRI.getType(SrcReg);
945 if (SrcTy.isVector())
946 return UnableToLegalize;
947
948 int NumParts = SizeOp0 / NarrowSize;
949 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
950 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
951 if (SrcTy.isVector() && LeftoverBits != 0)
952 return UnableToLegalize;
953
954 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
955 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
956 auto &MMO = **MI.memoperands_begin();
957 MIRBuilder.buildTrunc(TmpReg, SrcReg);
958 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
959 MI.eraseFromParent();
960 return Legalized;
961 }
962
963 return reduceLoadStoreWidth(MI, 0, NarrowTy);
964 }
965 case TargetOpcode::G_SELECT:
966 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
967 case TargetOpcode::G_AND:
968 case TargetOpcode::G_OR:
969 case TargetOpcode::G_XOR: {
970 // Legalize bitwise operation:
971 // A = BinOp<Ty> B, C
972 // into:
973 // B1, ..., BN = G_UNMERGE_VALUES B
974 // C1, ..., CN = G_UNMERGE_VALUES C
975 // A1 = BinOp<Ty/N> B1, C2
976 // ...
977 // AN = BinOp<Ty/N> BN, CN
978 // A = G_MERGE_VALUES A1, ..., AN
979 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
980 }
981 case TargetOpcode::G_SHL:
982 case TargetOpcode::G_LSHR:
983 case TargetOpcode::G_ASHR:
984 return narrowScalarShift(MI, TypeIdx, NarrowTy);
985 case TargetOpcode::G_CTLZ:
986 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
987 case TargetOpcode::G_CTTZ:
988 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
989 case TargetOpcode::G_CTPOP:
990 if (TypeIdx == 1)
991 switch (MI.getOpcode()) {
992 case TargetOpcode::G_CTLZ:
993 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
994 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
995 case TargetOpcode::G_CTTZ:
996 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
997 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
998 case TargetOpcode::G_CTPOP:
999 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1000 default:
1001 return UnableToLegalize;
1002 }
1003
1004 Observer.changingInstr(MI);
1005 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1006 Observer.changedInstr(MI);
1007 return Legalized;
1008 case TargetOpcode::G_INTTOPTR:
1009 if (TypeIdx != 1)
1010 return UnableToLegalize;
1011
1012 Observer.changingInstr(MI);
1013 narrowScalarSrc(MI, NarrowTy, 1);
1014 Observer.changedInstr(MI);
1015 return Legalized;
1016 case TargetOpcode::G_PTRTOINT:
1017 if (TypeIdx != 0)
1018 return UnableToLegalize;
1019
1020 Observer.changingInstr(MI);
1021 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1022 Observer.changedInstr(MI);
1023 return Legalized;
1024 case TargetOpcode::G_PHI: {
1025 // FIXME: add support for when SizeOp0 isn't an exact multiple of
1026 // NarrowSize.
1027 if (SizeOp0 % NarrowSize != 0)
1028 return UnableToLegalize;
1029
1030 unsigned NumParts = SizeOp0 / NarrowSize;
1031 SmallVector<Register, 2> DstRegs(NumParts);
1032 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1033 Observer.changingInstr(MI);
1034 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1035 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1036 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1037 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1038 SrcRegs[i / 2]);
1039 }
1040 MachineBasicBlock &MBB = *MI.getParent();
1041 MIRBuilder.setInsertPt(MBB, MI);
1042 for (unsigned i = 0; i < NumParts; ++i) {
1043 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1044 MachineInstrBuilder MIB =
1045 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1046 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1047 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1048 }
1049 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1050 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1051 Observer.changedInstr(MI);
1052 MI.eraseFromParent();
1053 return Legalized;
1054 }
1055 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1056 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1057 if (TypeIdx != 2)
1058 return UnableToLegalize;
1059
1060 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1061 Observer.changingInstr(MI);
1062 narrowScalarSrc(MI, NarrowTy, OpIdx);
1063 Observer.changedInstr(MI);
1064 return Legalized;
1065 }
1066 case TargetOpcode::G_ICMP: {
1067 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1068 if (NarrowSize * 2 != SrcSize)
1069 return UnableToLegalize;
1070
1071 Observer.changingInstr(MI);
1072 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1073 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1074 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1075
1076 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1077 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1078 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1079
1080 CmpInst::Predicate Pred =
1081 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1082 LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1083
1084 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1085 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1086 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1087 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1088 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1089 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1090 } else {
1091 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1092 MachineInstrBuilder CmpHEQ =
1093 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1094 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1095 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1096 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1097 }
1098 Observer.changedInstr(MI);
1099 MI.eraseFromParent();
1100 return Legalized;
1101 }
1102 case TargetOpcode::G_SEXT_INREG: {
1103 if (TypeIdx != 0)
1104 return UnableToLegalize;
1105
1106 int64_t SizeInBits = MI.getOperand(2).getImm();
1107
1108 // So long as the new type has more bits than the bits we're extending we
1109 // don't need to break it apart.
1110 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1111 Observer.changingInstr(MI);
1112 // We don't lose any non-extension bits by truncating the src and
1113 // sign-extending the dst.
1114 MachineOperand &MO1 = MI.getOperand(1);
1115 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1116 MO1.setReg(TruncMIB.getReg(0));
1117
1118 MachineOperand &MO2 = MI.getOperand(0);
1119 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1120 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1121 MIRBuilder.buildSExt(MO2, DstExt);
1122 MO2.setReg(DstExt);
1123 Observer.changedInstr(MI);
1124 return Legalized;
1125 }
1126
1127 // Break it apart. Components below the extension point are unmodified. The
1128 // component containing the extension point becomes a narrower SEXT_INREG.
1129 // Components above it are ashr'd from the component containing the
1130 // extension point.
1131 if (SizeOp0 % NarrowSize != 0)
1132 return UnableToLegalize;
1133 int NumParts = SizeOp0 / NarrowSize;
1134
1135 // List the registers where the destination will be scattered.
1136 SmallVector<Register, 2> DstRegs;
1137 // List the registers where the source will be split.
1138 SmallVector<Register, 2> SrcRegs;
1139
1140 // Create all the temporary registers.
1141 for (int i = 0; i < NumParts; ++i) {
1142 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1143
1144 SrcRegs.push_back(SrcReg);
1145 }
1146
1147 // Explode the big arguments into smaller chunks.
1148 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1149
1150 Register AshrCstReg =
1151 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1152 .getReg(0);
1153 Register FullExtensionReg = 0;
1154 Register PartialExtensionReg = 0;
1155
1156 // Do the operation on each small part.
1157 for (int i = 0; i < NumParts; ++i) {
1158 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1159 DstRegs.push_back(SrcRegs[i]);
1160 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1161 assert(PartialExtensionReg &&
1162 "Expected to visit partial extension before full");
1163 if (FullExtensionReg) {
1164 DstRegs.push_back(FullExtensionReg);
1165 continue;
1166 }
1167 DstRegs.push_back(
1168 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1169 .getReg(0));
1170 FullExtensionReg = DstRegs.back();
1171 } else {
1172 DstRegs.push_back(
1173 MIRBuilder
1174 .buildInstr(
1175 TargetOpcode::G_SEXT_INREG, {NarrowTy},
1176 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1177 .getReg(0));
1178 PartialExtensionReg = DstRegs.back();
1179 }
1180 }
1181
1182 // Gather the destination registers into the final destination.
1183 Register DstReg = MI.getOperand(0).getReg();
1184 MIRBuilder.buildMerge(DstReg, DstRegs);
1185 MI.eraseFromParent();
1186 return Legalized;
1187 }
1188 case TargetOpcode::G_BSWAP:
1189 case TargetOpcode::G_BITREVERSE: {
1190 if (SizeOp0 % NarrowSize != 0)
1191 return UnableToLegalize;
1192
1193 Observer.changingInstr(MI);
1194 SmallVector<Register, 2> SrcRegs, DstRegs;
1195 unsigned NumParts = SizeOp0 / NarrowSize;
1196 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1197
1198 for (unsigned i = 0; i < NumParts; ++i) {
1199 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1200 {SrcRegs[NumParts - 1 - i]});
1201 DstRegs.push_back(DstPart.getReg(0));
1202 }
1203
1204 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1205
1206 Observer.changedInstr(MI);
1207 MI.eraseFromParent();
1208 return Legalized;
1209 }
1210 case TargetOpcode::G_PTR_ADD:
1211 case TargetOpcode::G_PTRMASK: {
1212 if (TypeIdx != 1)
1213 return UnableToLegalize;
1214 Observer.changingInstr(MI);
1215 narrowScalarSrc(MI, NarrowTy, 2);
1216 Observer.changedInstr(MI);
1217 return Legalized;
1218 }
1219 case TargetOpcode::G_FPTOUI:
1220 case TargetOpcode::G_FPTOSI:
1221 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1222 case TargetOpcode::G_FPEXT:
1223 if (TypeIdx != 0)
1224 return UnableToLegalize;
1225 Observer.changingInstr(MI);
1226 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1227 Observer.changedInstr(MI);
1228 return Legalized;
1229 }
1230 }
1231
coerceToScalar(Register Val)1232 Register LegalizerHelper::coerceToScalar(Register Val) {
1233 LLT Ty = MRI.getType(Val);
1234 if (Ty.isScalar())
1235 return Val;
1236
1237 const DataLayout &DL = MIRBuilder.getDataLayout();
1238 LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1239 if (Ty.isPointer()) {
1240 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1241 return Register();
1242 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1243 }
1244
1245 Register NewVal = Val;
1246
1247 assert(Ty.isVector());
1248 LLT EltTy = Ty.getElementType();
1249 if (EltTy.isPointer())
1250 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1251 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1252 }
1253
widenScalarSrc(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned ExtOpcode)1254 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1255 unsigned OpIdx, unsigned ExtOpcode) {
1256 MachineOperand &MO = MI.getOperand(OpIdx);
1257 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1258 MO.setReg(ExtB.getReg(0));
1259 }
1260
narrowScalarSrc(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx)1261 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1262 unsigned OpIdx) {
1263 MachineOperand &MO = MI.getOperand(OpIdx);
1264 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1265 MO.setReg(ExtB.getReg(0));
1266 }
1267
widenScalarDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned TruncOpcode)1268 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1269 unsigned OpIdx, unsigned TruncOpcode) {
1270 MachineOperand &MO = MI.getOperand(OpIdx);
1271 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1272 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1273 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1274 MO.setReg(DstExt);
1275 }
1276
narrowScalarDst(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx,unsigned ExtOpcode)1277 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1278 unsigned OpIdx, unsigned ExtOpcode) {
1279 MachineOperand &MO = MI.getOperand(OpIdx);
1280 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1281 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1282 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1283 MO.setReg(DstTrunc);
1284 }
1285
moreElementsVectorDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx)1286 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1287 unsigned OpIdx) {
1288 MachineOperand &MO = MI.getOperand(OpIdx);
1289 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1290 MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1291 }
1292
moreElementsVectorSrc(MachineInstr & MI,LLT MoreTy,unsigned OpIdx)1293 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1294 unsigned OpIdx) {
1295 MachineOperand &MO = MI.getOperand(OpIdx);
1296
1297 LLT OldTy = MRI.getType(MO.getReg());
1298 unsigned OldElts = OldTy.getNumElements();
1299 unsigned NewElts = MoreTy.getNumElements();
1300
1301 unsigned NumParts = NewElts / OldElts;
1302
1303 // Use concat_vectors if the result is a multiple of the number of elements.
1304 if (NumParts * OldElts == NewElts) {
1305 SmallVector<Register, 8> Parts;
1306 Parts.push_back(MO.getReg());
1307
1308 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1309 for (unsigned I = 1; I != NumParts; ++I)
1310 Parts.push_back(ImpDef);
1311
1312 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1313 MO.setReg(Concat.getReg(0));
1314 return;
1315 }
1316
1317 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1318 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1319 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1320 MO.setReg(MoreReg);
1321 }
1322
bitcastSrc(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1323 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1324 MachineOperand &Op = MI.getOperand(OpIdx);
1325 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1326 }
1327
bitcastDst(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1328 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1329 MachineOperand &MO = MI.getOperand(OpIdx);
1330 Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1331 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1332 MIRBuilder.buildBitcast(MO, CastDst);
1333 MO.setReg(CastDst);
1334 }
1335
1336 LegalizerHelper::LegalizeResult
widenScalarMergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1337 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1338 LLT WideTy) {
1339 if (TypeIdx != 1)
1340 return UnableToLegalize;
1341
1342 Register DstReg = MI.getOperand(0).getReg();
1343 LLT DstTy = MRI.getType(DstReg);
1344 if (DstTy.isVector())
1345 return UnableToLegalize;
1346
1347 Register Src1 = MI.getOperand(1).getReg();
1348 LLT SrcTy = MRI.getType(Src1);
1349 const int DstSize = DstTy.getSizeInBits();
1350 const int SrcSize = SrcTy.getSizeInBits();
1351 const int WideSize = WideTy.getSizeInBits();
1352 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1353
1354 unsigned NumOps = MI.getNumOperands();
1355 unsigned NumSrc = MI.getNumOperands() - 1;
1356 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1357
1358 if (WideSize >= DstSize) {
1359 // Directly pack the bits in the target type.
1360 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1361
1362 for (unsigned I = 2; I != NumOps; ++I) {
1363 const unsigned Offset = (I - 1) * PartSize;
1364
1365 Register SrcReg = MI.getOperand(I).getReg();
1366 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1367
1368 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1369
1370 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1371 MRI.createGenericVirtualRegister(WideTy);
1372
1373 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1374 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1375 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1376 ResultReg = NextResult;
1377 }
1378
1379 if (WideSize > DstSize)
1380 MIRBuilder.buildTrunc(DstReg, ResultReg);
1381 else if (DstTy.isPointer())
1382 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1383
1384 MI.eraseFromParent();
1385 return Legalized;
1386 }
1387
1388 // Unmerge the original values to the GCD type, and recombine to the next
1389 // multiple greater than the original type.
1390 //
1391 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1392 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1393 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1394 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1395 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1396 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1397 // %12:_(s12) = G_MERGE_VALUES %10, %11
1398 //
1399 // Padding with undef if necessary:
1400 //
1401 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1402 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1403 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1404 // %7:_(s2) = G_IMPLICIT_DEF
1405 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1406 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1407 // %10:_(s12) = G_MERGE_VALUES %8, %9
1408
1409 const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1410 LLT GCDTy = LLT::scalar(GCD);
1411
1412 SmallVector<Register, 8> Parts;
1413 SmallVector<Register, 8> NewMergeRegs;
1414 SmallVector<Register, 8> Unmerges;
1415 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1416
1417 // Decompose the original operands if they don't evenly divide.
1418 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1419 Register SrcReg = MI.getOperand(I).getReg();
1420 if (GCD == SrcSize) {
1421 Unmerges.push_back(SrcReg);
1422 } else {
1423 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1424 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1425 Unmerges.push_back(Unmerge.getReg(J));
1426 }
1427 }
1428
1429 // Pad with undef to the next size that is a multiple of the requested size.
1430 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1431 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1432 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1433 Unmerges.push_back(UndefReg);
1434 }
1435
1436 const int PartsPerGCD = WideSize / GCD;
1437
1438 // Build merges of each piece.
1439 ArrayRef<Register> Slicer(Unmerges);
1440 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1441 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1442 NewMergeRegs.push_back(Merge.getReg(0));
1443 }
1444
1445 // A truncate may be necessary if the requested type doesn't evenly divide the
1446 // original result type.
1447 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1448 MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1449 } else {
1450 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1451 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1452 }
1453
1454 MI.eraseFromParent();
1455 return Legalized;
1456 }
1457
widenWithUnmerge(LLT WideTy,Register OrigReg)1458 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1459 Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1460 LLT OrigTy = MRI.getType(OrigReg);
1461 LLT LCMTy = getLCMType(WideTy, OrigTy);
1462
1463 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1464 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1465
1466 Register UnmergeSrc = WideReg;
1467
1468 // Create a merge to the LCM type, padding with undef
1469 // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1470 // =>
1471 // %1:_(<4 x s32>) = G_FOO
1472 // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1473 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1474 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1475 if (NumMergeParts > 1) {
1476 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1477 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1478 MergeParts[0] = WideReg;
1479 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1480 }
1481
1482 // Unmerge to the original register and pad with dead defs.
1483 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1484 UnmergeResults[0] = OrigReg;
1485 for (int I = 1; I != NumUnmergeParts; ++I)
1486 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1487
1488 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1489 return WideReg;
1490 }
1491
1492 LegalizerHelper::LegalizeResult
widenScalarUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1493 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1494 LLT WideTy) {
1495 if (TypeIdx != 0)
1496 return UnableToLegalize;
1497
1498 int NumDst = MI.getNumOperands() - 1;
1499 Register SrcReg = MI.getOperand(NumDst).getReg();
1500 LLT SrcTy = MRI.getType(SrcReg);
1501 if (SrcTy.isVector())
1502 return UnableToLegalize;
1503
1504 Register Dst0Reg = MI.getOperand(0).getReg();
1505 LLT DstTy = MRI.getType(Dst0Reg);
1506 if (!DstTy.isScalar())
1507 return UnableToLegalize;
1508
1509 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1510 if (SrcTy.isPointer()) {
1511 const DataLayout &DL = MIRBuilder.getDataLayout();
1512 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1513 LLVM_DEBUG(
1514 dbgs() << "Not casting non-integral address space integer\n");
1515 return UnableToLegalize;
1516 }
1517
1518 SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1519 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1520 }
1521
1522 // Widen SrcTy to WideTy. This does not affect the result, but since the
1523 // user requested this size, it is probably better handled than SrcTy and
1524 // should reduce the total number of legalization artifacts
1525 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1526 SrcTy = WideTy;
1527 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1528 }
1529
1530 // Theres no unmerge type to target. Directly extract the bits from the
1531 // source type
1532 unsigned DstSize = DstTy.getSizeInBits();
1533
1534 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1535 for (int I = 1; I != NumDst; ++I) {
1536 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1537 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1538 MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1539 }
1540
1541 MI.eraseFromParent();
1542 return Legalized;
1543 }
1544
1545 // Extend the source to a wider type.
1546 LLT LCMTy = getLCMType(SrcTy, WideTy);
1547
1548 Register WideSrc = SrcReg;
1549 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1550 // TODO: If this is an integral address space, cast to integer and anyext.
1551 if (SrcTy.isPointer()) {
1552 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1553 return UnableToLegalize;
1554 }
1555
1556 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1557 }
1558
1559 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1560
1561 // Create a sequence of unmerges and merges to the original results. Since we
1562 // may have widened the source, we will need to pad the results with dead defs
1563 // to cover the source register.
1564 // e.g. widen s48 to s64:
1565 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1566 //
1567 // =>
1568 // %4:_(s192) = G_ANYEXT %0:_(s96)
1569 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1570 // ; unpack to GCD type, with extra dead defs
1571 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1572 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1573 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1574 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
1575 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1576 const LLT GCDTy = getGCDType(WideTy, DstTy);
1577 const int NumUnmerge = Unmerge->getNumOperands() - 1;
1578 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1579
1580 // Directly unmerge to the destination without going through a GCD type
1581 // if possible
1582 if (PartsPerRemerge == 1) {
1583 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1584
1585 for (int I = 0; I != NumUnmerge; ++I) {
1586 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1587
1588 for (int J = 0; J != PartsPerUnmerge; ++J) {
1589 int Idx = I * PartsPerUnmerge + J;
1590 if (Idx < NumDst)
1591 MIB.addDef(MI.getOperand(Idx).getReg());
1592 else {
1593 // Create dead def for excess components.
1594 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1595 }
1596 }
1597
1598 MIB.addUse(Unmerge.getReg(I));
1599 }
1600 } else {
1601 SmallVector<Register, 16> Parts;
1602 for (int J = 0; J != NumUnmerge; ++J)
1603 extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1604
1605 SmallVector<Register, 8> RemergeParts;
1606 for (int I = 0; I != NumDst; ++I) {
1607 for (int J = 0; J < PartsPerRemerge; ++J) {
1608 const int Idx = I * PartsPerRemerge + J;
1609 RemergeParts.emplace_back(Parts[Idx]);
1610 }
1611
1612 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1613 RemergeParts.clear();
1614 }
1615 }
1616
1617 MI.eraseFromParent();
1618 return Legalized;
1619 }
1620
1621 LegalizerHelper::LegalizeResult
widenScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1622 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1623 LLT WideTy) {
1624 Register DstReg = MI.getOperand(0).getReg();
1625 Register SrcReg = MI.getOperand(1).getReg();
1626 LLT SrcTy = MRI.getType(SrcReg);
1627
1628 LLT DstTy = MRI.getType(DstReg);
1629 unsigned Offset = MI.getOperand(2).getImm();
1630
1631 if (TypeIdx == 0) {
1632 if (SrcTy.isVector() || DstTy.isVector())
1633 return UnableToLegalize;
1634
1635 SrcOp Src(SrcReg);
1636 if (SrcTy.isPointer()) {
1637 // Extracts from pointers can be handled only if they are really just
1638 // simple integers.
1639 const DataLayout &DL = MIRBuilder.getDataLayout();
1640 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1641 return UnableToLegalize;
1642
1643 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1644 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1645 SrcTy = SrcAsIntTy;
1646 }
1647
1648 if (DstTy.isPointer())
1649 return UnableToLegalize;
1650
1651 if (Offset == 0) {
1652 // Avoid a shift in the degenerate case.
1653 MIRBuilder.buildTrunc(DstReg,
1654 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1655 MI.eraseFromParent();
1656 return Legalized;
1657 }
1658
1659 // Do a shift in the source type.
1660 LLT ShiftTy = SrcTy;
1661 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1662 Src = MIRBuilder.buildAnyExt(WideTy, Src);
1663 ShiftTy = WideTy;
1664 }
1665
1666 auto LShr = MIRBuilder.buildLShr(
1667 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1668 MIRBuilder.buildTrunc(DstReg, LShr);
1669 MI.eraseFromParent();
1670 return Legalized;
1671 }
1672
1673 if (SrcTy.isScalar()) {
1674 Observer.changingInstr(MI);
1675 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1676 Observer.changedInstr(MI);
1677 return Legalized;
1678 }
1679
1680 if (!SrcTy.isVector())
1681 return UnableToLegalize;
1682
1683 if (DstTy != SrcTy.getElementType())
1684 return UnableToLegalize;
1685
1686 if (Offset % SrcTy.getScalarSizeInBits() != 0)
1687 return UnableToLegalize;
1688
1689 Observer.changingInstr(MI);
1690 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1691
1692 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1693 Offset);
1694 widenScalarDst(MI, WideTy.getScalarType(), 0);
1695 Observer.changedInstr(MI);
1696 return Legalized;
1697 }
1698
1699 LegalizerHelper::LegalizeResult
widenScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1700 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1701 LLT WideTy) {
1702 if (TypeIdx != 0 || WideTy.isVector())
1703 return UnableToLegalize;
1704 Observer.changingInstr(MI);
1705 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1706 widenScalarDst(MI, WideTy);
1707 Observer.changedInstr(MI);
1708 return Legalized;
1709 }
1710
1711 LegalizerHelper::LegalizeResult
widenScalarAddSubOverflow(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1712 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1713 LLT WideTy) {
1714 if (TypeIdx == 1)
1715 return UnableToLegalize; // TODO
1716
1717 unsigned Opcode;
1718 unsigned ExtOpcode;
1719 Optional<Register> CarryIn = None;
1720 switch (MI.getOpcode()) {
1721 default:
1722 llvm_unreachable("Unexpected opcode!");
1723 case TargetOpcode::G_SADDO:
1724 Opcode = TargetOpcode::G_ADD;
1725 ExtOpcode = TargetOpcode::G_SEXT;
1726 break;
1727 case TargetOpcode::G_SSUBO:
1728 Opcode = TargetOpcode::G_SUB;
1729 ExtOpcode = TargetOpcode::G_SEXT;
1730 break;
1731 case TargetOpcode::G_UADDO:
1732 Opcode = TargetOpcode::G_ADD;
1733 ExtOpcode = TargetOpcode::G_ZEXT;
1734 break;
1735 case TargetOpcode::G_USUBO:
1736 Opcode = TargetOpcode::G_SUB;
1737 ExtOpcode = TargetOpcode::G_ZEXT;
1738 break;
1739 case TargetOpcode::G_SADDE:
1740 Opcode = TargetOpcode::G_UADDE;
1741 ExtOpcode = TargetOpcode::G_SEXT;
1742 CarryIn = MI.getOperand(4).getReg();
1743 break;
1744 case TargetOpcode::G_SSUBE:
1745 Opcode = TargetOpcode::G_USUBE;
1746 ExtOpcode = TargetOpcode::G_SEXT;
1747 CarryIn = MI.getOperand(4).getReg();
1748 break;
1749 case TargetOpcode::G_UADDE:
1750 Opcode = TargetOpcode::G_UADDE;
1751 ExtOpcode = TargetOpcode::G_ZEXT;
1752 CarryIn = MI.getOperand(4).getReg();
1753 break;
1754 case TargetOpcode::G_USUBE:
1755 Opcode = TargetOpcode::G_USUBE;
1756 ExtOpcode = TargetOpcode::G_ZEXT;
1757 CarryIn = MI.getOperand(4).getReg();
1758 break;
1759 }
1760
1761 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1762 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1763 // Do the arithmetic in the larger type.
1764 Register NewOp;
1765 if (CarryIn) {
1766 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1767 NewOp = MIRBuilder
1768 .buildInstr(Opcode, {WideTy, CarryOutTy},
1769 {LHSExt, RHSExt, *CarryIn})
1770 .getReg(0);
1771 } else {
1772 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1773 }
1774 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1775 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1776 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1777 // There is no overflow if the ExtOp is the same as NewOp.
1778 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1779 // Now trunc the NewOp to the original result.
1780 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1781 MI.eraseFromParent();
1782 return Legalized;
1783 }
1784
1785 LegalizerHelper::LegalizeResult
widenScalarAddSubShlSat(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1786 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1787 LLT WideTy) {
1788 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1789 MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1790 MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1791 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1792 MI.getOpcode() == TargetOpcode::G_USHLSAT;
1793 // We can convert this to:
1794 // 1. Any extend iN to iM
1795 // 2. SHL by M-N
1796 // 3. [US][ADD|SUB|SHL]SAT
1797 // 4. L/ASHR by M-N
1798 //
1799 // It may be more efficient to lower this to a min and a max operation in
1800 // the higher precision arithmetic if the promoted operation isn't legal,
1801 // but this decision is up to the target's lowering request.
1802 Register DstReg = MI.getOperand(0).getReg();
1803
1804 unsigned NewBits = WideTy.getScalarSizeInBits();
1805 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1806
1807 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1808 // must not left shift the RHS to preserve the shift amount.
1809 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1810 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1811 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1812 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1813 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1814 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1815
1816 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1817 {ShiftL, ShiftR}, MI.getFlags());
1818
1819 // Use a shift that will preserve the number of sign bits when the trunc is
1820 // folded away.
1821 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1822 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1823
1824 MIRBuilder.buildTrunc(DstReg, Result);
1825 MI.eraseFromParent();
1826 return Legalized;
1827 }
1828
1829 LegalizerHelper::LegalizeResult
widenScalarMulo(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1830 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1831 LLT WideTy) {
1832 if (TypeIdx == 1)
1833 return UnableToLegalize;
1834
1835 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1836 Register Result = MI.getOperand(0).getReg();
1837 Register OriginalOverflow = MI.getOperand(1).getReg();
1838 Register LHS = MI.getOperand(2).getReg();
1839 Register RHS = MI.getOperand(3).getReg();
1840 LLT SrcTy = MRI.getType(LHS);
1841 LLT OverflowTy = MRI.getType(OriginalOverflow);
1842 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1843
1844 // To determine if the result overflowed in the larger type, we extend the
1845 // input to the larger type, do the multiply (checking if it overflows),
1846 // then also check the high bits of the result to see if overflow happened
1847 // there.
1848 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1849 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1850 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1851
1852 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1853 {LeftOperand, RightOperand});
1854 auto Mul = Mulo->getOperand(0);
1855 MIRBuilder.buildTrunc(Result, Mul);
1856
1857 MachineInstrBuilder ExtResult;
1858 // Overflow occurred if it occurred in the larger type, or if the high part
1859 // of the result does not zero/sign-extend the low part. Check this second
1860 // possibility first.
1861 if (IsSigned) {
1862 // For signed, overflow occurred when the high part does not sign-extend
1863 // the low part.
1864 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1865 } else {
1866 // Unsigned overflow occurred when the high part does not zero-extend the
1867 // low part.
1868 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1869 }
1870
1871 // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1872 // so we don't need to check the overflow result of larger type Mulo.
1873 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1874 auto Overflow =
1875 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1876 // Finally check if the multiplication in the larger type itself overflowed.
1877 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1878 } else {
1879 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1880 }
1881 MI.eraseFromParent();
1882 return Legalized;
1883 }
1884
1885 LegalizerHelper::LegalizeResult
widenScalar(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1886 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1887 switch (MI.getOpcode()) {
1888 default:
1889 return UnableToLegalize;
1890 case TargetOpcode::G_EXTRACT:
1891 return widenScalarExtract(MI, TypeIdx, WideTy);
1892 case TargetOpcode::G_INSERT:
1893 return widenScalarInsert(MI, TypeIdx, WideTy);
1894 case TargetOpcode::G_MERGE_VALUES:
1895 return widenScalarMergeValues(MI, TypeIdx, WideTy);
1896 case TargetOpcode::G_UNMERGE_VALUES:
1897 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1898 case TargetOpcode::G_SADDO:
1899 case TargetOpcode::G_SSUBO:
1900 case TargetOpcode::G_UADDO:
1901 case TargetOpcode::G_USUBO:
1902 case TargetOpcode::G_SADDE:
1903 case TargetOpcode::G_SSUBE:
1904 case TargetOpcode::G_UADDE:
1905 case TargetOpcode::G_USUBE:
1906 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1907 case TargetOpcode::G_UMULO:
1908 case TargetOpcode::G_SMULO:
1909 return widenScalarMulo(MI, TypeIdx, WideTy);
1910 case TargetOpcode::G_SADDSAT:
1911 case TargetOpcode::G_SSUBSAT:
1912 case TargetOpcode::G_SSHLSAT:
1913 case TargetOpcode::G_UADDSAT:
1914 case TargetOpcode::G_USUBSAT:
1915 case TargetOpcode::G_USHLSAT:
1916 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1917 case TargetOpcode::G_CTTZ:
1918 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1919 case TargetOpcode::G_CTLZ:
1920 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1921 case TargetOpcode::G_CTPOP: {
1922 if (TypeIdx == 0) {
1923 Observer.changingInstr(MI);
1924 widenScalarDst(MI, WideTy, 0);
1925 Observer.changedInstr(MI);
1926 return Legalized;
1927 }
1928
1929 Register SrcReg = MI.getOperand(1).getReg();
1930
1931 // First ZEXT the input.
1932 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1933 LLT CurTy = MRI.getType(SrcReg);
1934 if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1935 // The count is the same in the larger type except if the original
1936 // value was zero. This can be handled by setting the bit just off
1937 // the top of the original type.
1938 auto TopBit =
1939 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1940 MIBSrc = MIRBuilder.buildOr(
1941 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1942 }
1943
1944 // Perform the operation at the larger size.
1945 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1946 // This is already the correct result for CTPOP and CTTZs
1947 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1948 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1949 // The correct result is NewOp - (Difference in widety and current ty).
1950 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1951 MIBNewOp = MIRBuilder.buildSub(
1952 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1953 }
1954
1955 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1956 MI.eraseFromParent();
1957 return Legalized;
1958 }
1959 case TargetOpcode::G_BSWAP: {
1960 Observer.changingInstr(MI);
1961 Register DstReg = MI.getOperand(0).getReg();
1962
1963 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1964 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1965 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1967
1968 MI.getOperand(0).setReg(DstExt);
1969
1970 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1971
1972 LLT Ty = MRI.getType(DstReg);
1973 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1974 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1975 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1976
1977 MIRBuilder.buildTrunc(DstReg, ShrReg);
1978 Observer.changedInstr(MI);
1979 return Legalized;
1980 }
1981 case TargetOpcode::G_BITREVERSE: {
1982 Observer.changingInstr(MI);
1983
1984 Register DstReg = MI.getOperand(0).getReg();
1985 LLT Ty = MRI.getType(DstReg);
1986 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1987
1988 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1989 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1990 MI.getOperand(0).setReg(DstExt);
1991 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1992
1993 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1994 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1995 MIRBuilder.buildTrunc(DstReg, Shift);
1996 Observer.changedInstr(MI);
1997 return Legalized;
1998 }
1999 case TargetOpcode::G_FREEZE:
2000 Observer.changingInstr(MI);
2001 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002 widenScalarDst(MI, WideTy);
2003 Observer.changedInstr(MI);
2004 return Legalized;
2005
2006 case TargetOpcode::G_ADD:
2007 case TargetOpcode::G_AND:
2008 case TargetOpcode::G_MUL:
2009 case TargetOpcode::G_OR:
2010 case TargetOpcode::G_XOR:
2011 case TargetOpcode::G_SUB:
2012 // Perform operation at larger width (any extension is fines here, high bits
2013 // don't affect the result) and then truncate the result back to the
2014 // original type.
2015 Observer.changingInstr(MI);
2016 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2017 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2018 widenScalarDst(MI, WideTy);
2019 Observer.changedInstr(MI);
2020 return Legalized;
2021
2022 case TargetOpcode::G_SHL:
2023 Observer.changingInstr(MI);
2024
2025 if (TypeIdx == 0) {
2026 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2027 widenScalarDst(MI, WideTy);
2028 } else {
2029 assert(TypeIdx == 1);
2030 // The "number of bits to shift" operand must preserve its value as an
2031 // unsigned integer:
2032 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2033 }
2034
2035 Observer.changedInstr(MI);
2036 return Legalized;
2037
2038 case TargetOpcode::G_SDIV:
2039 case TargetOpcode::G_SREM:
2040 case TargetOpcode::G_SMIN:
2041 case TargetOpcode::G_SMAX:
2042 Observer.changingInstr(MI);
2043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2044 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2045 widenScalarDst(MI, WideTy);
2046 Observer.changedInstr(MI);
2047 return Legalized;
2048
2049 case TargetOpcode::G_ASHR:
2050 case TargetOpcode::G_LSHR:
2051 Observer.changingInstr(MI);
2052
2053 if (TypeIdx == 0) {
2054 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2055 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2056
2057 widenScalarSrc(MI, WideTy, 1, CvtOp);
2058 widenScalarDst(MI, WideTy);
2059 } else {
2060 assert(TypeIdx == 1);
2061 // The "number of bits to shift" operand must preserve its value as an
2062 // unsigned integer:
2063 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2064 }
2065
2066 Observer.changedInstr(MI);
2067 return Legalized;
2068 case TargetOpcode::G_UDIV:
2069 case TargetOpcode::G_UREM:
2070 case TargetOpcode::G_UMIN:
2071 case TargetOpcode::G_UMAX:
2072 Observer.changingInstr(MI);
2073 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2074 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2075 widenScalarDst(MI, WideTy);
2076 Observer.changedInstr(MI);
2077 return Legalized;
2078
2079 case TargetOpcode::G_SELECT:
2080 Observer.changingInstr(MI);
2081 if (TypeIdx == 0) {
2082 // Perform operation at larger width (any extension is fine here, high
2083 // bits don't affect the result) and then truncate the result back to the
2084 // original type.
2085 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2086 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2087 widenScalarDst(MI, WideTy);
2088 } else {
2089 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2090 // Explicit extension is required here since high bits affect the result.
2091 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2092 }
2093 Observer.changedInstr(MI);
2094 return Legalized;
2095
2096 case TargetOpcode::G_FPTOSI:
2097 case TargetOpcode::G_FPTOUI:
2098 Observer.changingInstr(MI);
2099
2100 if (TypeIdx == 0)
2101 widenScalarDst(MI, WideTy);
2102 else
2103 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2104
2105 Observer.changedInstr(MI);
2106 return Legalized;
2107 case TargetOpcode::G_SITOFP:
2108 Observer.changingInstr(MI);
2109
2110 if (TypeIdx == 0)
2111 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2112 else
2113 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2114
2115 Observer.changedInstr(MI);
2116 return Legalized;
2117 case TargetOpcode::G_UITOFP:
2118 Observer.changingInstr(MI);
2119
2120 if (TypeIdx == 0)
2121 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2122 else
2123 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2124
2125 Observer.changedInstr(MI);
2126 return Legalized;
2127 case TargetOpcode::G_LOAD:
2128 case TargetOpcode::G_SEXTLOAD:
2129 case TargetOpcode::G_ZEXTLOAD:
2130 Observer.changingInstr(MI);
2131 widenScalarDst(MI, WideTy);
2132 Observer.changedInstr(MI);
2133 return Legalized;
2134
2135 case TargetOpcode::G_STORE: {
2136 if (TypeIdx != 0)
2137 return UnableToLegalize;
2138
2139 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2140 if (!Ty.isScalar())
2141 return UnableToLegalize;
2142
2143 Observer.changingInstr(MI);
2144
2145 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2146 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2147 widenScalarSrc(MI, WideTy, 0, ExtType);
2148
2149 Observer.changedInstr(MI);
2150 return Legalized;
2151 }
2152 case TargetOpcode::G_CONSTANT: {
2153 MachineOperand &SrcMO = MI.getOperand(1);
2154 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2155 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2156 MRI.getType(MI.getOperand(0).getReg()));
2157 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2158 ExtOpc == TargetOpcode::G_ANYEXT) &&
2159 "Illegal Extend");
2160 const APInt &SrcVal = SrcMO.getCImm()->getValue();
2161 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2162 ? SrcVal.sext(WideTy.getSizeInBits())
2163 : SrcVal.zext(WideTy.getSizeInBits());
2164 Observer.changingInstr(MI);
2165 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2166
2167 widenScalarDst(MI, WideTy);
2168 Observer.changedInstr(MI);
2169 return Legalized;
2170 }
2171 case TargetOpcode::G_FCONSTANT: {
2172 MachineOperand &SrcMO = MI.getOperand(1);
2173 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2174 APFloat Val = SrcMO.getFPImm()->getValueAPF();
2175 bool LosesInfo;
2176 switch (WideTy.getSizeInBits()) {
2177 case 32:
2178 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2179 &LosesInfo);
2180 break;
2181 case 64:
2182 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2183 &LosesInfo);
2184 break;
2185 default:
2186 return UnableToLegalize;
2187 }
2188
2189 assert(!LosesInfo && "extend should always be lossless");
2190
2191 Observer.changingInstr(MI);
2192 SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2193
2194 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2195 Observer.changedInstr(MI);
2196 return Legalized;
2197 }
2198 case TargetOpcode::G_IMPLICIT_DEF: {
2199 Observer.changingInstr(MI);
2200 widenScalarDst(MI, WideTy);
2201 Observer.changedInstr(MI);
2202 return Legalized;
2203 }
2204 case TargetOpcode::G_BRCOND:
2205 Observer.changingInstr(MI);
2206 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2207 Observer.changedInstr(MI);
2208 return Legalized;
2209
2210 case TargetOpcode::G_FCMP:
2211 Observer.changingInstr(MI);
2212 if (TypeIdx == 0)
2213 widenScalarDst(MI, WideTy);
2214 else {
2215 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2216 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2217 }
2218 Observer.changedInstr(MI);
2219 return Legalized;
2220
2221 case TargetOpcode::G_ICMP:
2222 Observer.changingInstr(MI);
2223 if (TypeIdx == 0)
2224 widenScalarDst(MI, WideTy);
2225 else {
2226 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2227 MI.getOperand(1).getPredicate()))
2228 ? TargetOpcode::G_SEXT
2229 : TargetOpcode::G_ZEXT;
2230 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2231 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2232 }
2233 Observer.changedInstr(MI);
2234 return Legalized;
2235
2236 case TargetOpcode::G_PTR_ADD:
2237 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2238 Observer.changingInstr(MI);
2239 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2240 Observer.changedInstr(MI);
2241 return Legalized;
2242
2243 case TargetOpcode::G_PHI: {
2244 assert(TypeIdx == 0 && "Expecting only Idx 0");
2245
2246 Observer.changingInstr(MI);
2247 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2248 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2249 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2250 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2251 }
2252
2253 MachineBasicBlock &MBB = *MI.getParent();
2254 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2255 widenScalarDst(MI, WideTy);
2256 Observer.changedInstr(MI);
2257 return Legalized;
2258 }
2259 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2260 if (TypeIdx == 0) {
2261 Register VecReg = MI.getOperand(1).getReg();
2262 LLT VecTy = MRI.getType(VecReg);
2263 Observer.changingInstr(MI);
2264
2265 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2266 WideTy.getSizeInBits()),
2267 1, TargetOpcode::G_SEXT);
2268
2269 widenScalarDst(MI, WideTy, 0);
2270 Observer.changedInstr(MI);
2271 return Legalized;
2272 }
2273
2274 if (TypeIdx != 2)
2275 return UnableToLegalize;
2276 Observer.changingInstr(MI);
2277 // TODO: Probably should be zext
2278 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2279 Observer.changedInstr(MI);
2280 return Legalized;
2281 }
2282 case TargetOpcode::G_INSERT_VECTOR_ELT: {
2283 if (TypeIdx == 1) {
2284 Observer.changingInstr(MI);
2285
2286 Register VecReg = MI.getOperand(1).getReg();
2287 LLT VecTy = MRI.getType(VecReg);
2288 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2289
2290 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2291 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2292 widenScalarDst(MI, WideVecTy, 0);
2293 Observer.changedInstr(MI);
2294 return Legalized;
2295 }
2296
2297 if (TypeIdx == 2) {
2298 Observer.changingInstr(MI);
2299 // TODO: Probably should be zext
2300 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2301 Observer.changedInstr(MI);
2302 return Legalized;
2303 }
2304
2305 return UnableToLegalize;
2306 }
2307 case TargetOpcode::G_FADD:
2308 case TargetOpcode::G_FMUL:
2309 case TargetOpcode::G_FSUB:
2310 case TargetOpcode::G_FMA:
2311 case TargetOpcode::G_FMAD:
2312 case TargetOpcode::G_FNEG:
2313 case TargetOpcode::G_FABS:
2314 case TargetOpcode::G_FCANONICALIZE:
2315 case TargetOpcode::G_FMINNUM:
2316 case TargetOpcode::G_FMAXNUM:
2317 case TargetOpcode::G_FMINNUM_IEEE:
2318 case TargetOpcode::G_FMAXNUM_IEEE:
2319 case TargetOpcode::G_FMINIMUM:
2320 case TargetOpcode::G_FMAXIMUM:
2321 case TargetOpcode::G_FDIV:
2322 case TargetOpcode::G_FREM:
2323 case TargetOpcode::G_FCEIL:
2324 case TargetOpcode::G_FFLOOR:
2325 case TargetOpcode::G_FCOS:
2326 case TargetOpcode::G_FSIN:
2327 case TargetOpcode::G_FLOG10:
2328 case TargetOpcode::G_FLOG:
2329 case TargetOpcode::G_FLOG2:
2330 case TargetOpcode::G_FRINT:
2331 case TargetOpcode::G_FNEARBYINT:
2332 case TargetOpcode::G_FSQRT:
2333 case TargetOpcode::G_FEXP:
2334 case TargetOpcode::G_FEXP2:
2335 case TargetOpcode::G_FPOW:
2336 case TargetOpcode::G_INTRINSIC_TRUNC:
2337 case TargetOpcode::G_INTRINSIC_ROUND:
2338 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2339 assert(TypeIdx == 0);
2340 Observer.changingInstr(MI);
2341
2342 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2343 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2344
2345 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2346 Observer.changedInstr(MI);
2347 return Legalized;
2348 case TargetOpcode::G_FPOWI: {
2349 if (TypeIdx != 0)
2350 return UnableToLegalize;
2351 Observer.changingInstr(MI);
2352 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2353 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2354 Observer.changedInstr(MI);
2355 return Legalized;
2356 }
2357 case TargetOpcode::G_INTTOPTR:
2358 if (TypeIdx != 1)
2359 return UnableToLegalize;
2360
2361 Observer.changingInstr(MI);
2362 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2363 Observer.changedInstr(MI);
2364 return Legalized;
2365 case TargetOpcode::G_PTRTOINT:
2366 if (TypeIdx != 0)
2367 return UnableToLegalize;
2368
2369 Observer.changingInstr(MI);
2370 widenScalarDst(MI, WideTy, 0);
2371 Observer.changedInstr(MI);
2372 return Legalized;
2373 case TargetOpcode::G_BUILD_VECTOR: {
2374 Observer.changingInstr(MI);
2375
2376 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2377 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2378 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2379
2380 // Avoid changing the result vector type if the source element type was
2381 // requested.
2382 if (TypeIdx == 1) {
2383 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2384 } else {
2385 widenScalarDst(MI, WideTy, 0);
2386 }
2387
2388 Observer.changedInstr(MI);
2389 return Legalized;
2390 }
2391 case TargetOpcode::G_SEXT_INREG:
2392 if (TypeIdx != 0)
2393 return UnableToLegalize;
2394
2395 Observer.changingInstr(MI);
2396 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2397 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2398 Observer.changedInstr(MI);
2399 return Legalized;
2400 case TargetOpcode::G_PTRMASK: {
2401 if (TypeIdx != 1)
2402 return UnableToLegalize;
2403 Observer.changingInstr(MI);
2404 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2405 Observer.changedInstr(MI);
2406 return Legalized;
2407 }
2408 }
2409 }
2410
getUnmergePieces(SmallVectorImpl<Register> & Pieces,MachineIRBuilder & B,Register Src,LLT Ty)2411 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2412 MachineIRBuilder &B, Register Src, LLT Ty) {
2413 auto Unmerge = B.buildUnmerge(Ty, Src);
2414 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2415 Pieces.push_back(Unmerge.getReg(I));
2416 }
2417
2418 LegalizerHelper::LegalizeResult
lowerBitcast(MachineInstr & MI)2419 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2420 Register Dst = MI.getOperand(0).getReg();
2421 Register Src = MI.getOperand(1).getReg();
2422 LLT DstTy = MRI.getType(Dst);
2423 LLT SrcTy = MRI.getType(Src);
2424
2425 if (SrcTy.isVector()) {
2426 LLT SrcEltTy = SrcTy.getElementType();
2427 SmallVector<Register, 8> SrcRegs;
2428
2429 if (DstTy.isVector()) {
2430 int NumDstElt = DstTy.getNumElements();
2431 int NumSrcElt = SrcTy.getNumElements();
2432
2433 LLT DstEltTy = DstTy.getElementType();
2434 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2435 LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2436
2437 // If there's an element size mismatch, insert intermediate casts to match
2438 // the result element type.
2439 if (NumSrcElt < NumDstElt) { // Source element type is larger.
2440 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2441 //
2442 // =>
2443 //
2444 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2445 // %3:_(<2 x s8>) = G_BITCAST %2
2446 // %4:_(<2 x s8>) = G_BITCAST %3
2447 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2448 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2449 SrcPartTy = SrcEltTy;
2450 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2451 //
2452 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2453 //
2454 // =>
2455 //
2456 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2457 // %3:_(s16) = G_BITCAST %2
2458 // %4:_(s16) = G_BITCAST %3
2459 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2460 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2461 DstCastTy = DstEltTy;
2462 }
2463
2464 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2465 for (Register &SrcReg : SrcRegs)
2466 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2467 } else
2468 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2469
2470 MIRBuilder.buildMerge(Dst, SrcRegs);
2471 MI.eraseFromParent();
2472 return Legalized;
2473 }
2474
2475 if (DstTy.isVector()) {
2476 SmallVector<Register, 8> SrcRegs;
2477 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2478 MIRBuilder.buildMerge(Dst, SrcRegs);
2479 MI.eraseFromParent();
2480 return Legalized;
2481 }
2482
2483 return UnableToLegalize;
2484 }
2485
2486 /// Figure out the bit offset into a register when coercing a vector index for
2487 /// the wide element type. This is only for the case when promoting vector to
2488 /// one with larger elements.
2489 //
2490 ///
2491 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2492 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
getBitcastWiderVectorElementOffset(MachineIRBuilder & B,Register Idx,unsigned NewEltSize,unsigned OldEltSize)2493 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2494 Register Idx,
2495 unsigned NewEltSize,
2496 unsigned OldEltSize) {
2497 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2498 LLT IdxTy = B.getMRI()->getType(Idx);
2499
2500 // Now figure out the amount we need to shift to get the target bits.
2501 auto OffsetMask = B.buildConstant(
2502 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2503 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2504 return B.buildShl(IdxTy, OffsetIdx,
2505 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2506 }
2507
2508 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2509 /// is casting to a vector with a smaller element size, perform multiple element
2510 /// extracts and merge the results. If this is coercing to a vector with larger
2511 /// elements, index the bitcasted vector and extract the target element with bit
2512 /// operations. This is intended to force the indexing in the native register
2513 /// size for architectures that can dynamically index the register file.
2514 LegalizerHelper::LegalizeResult
bitcastExtractVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2515 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2516 LLT CastTy) {
2517 if (TypeIdx != 1)
2518 return UnableToLegalize;
2519
2520 Register Dst = MI.getOperand(0).getReg();
2521 Register SrcVec = MI.getOperand(1).getReg();
2522 Register Idx = MI.getOperand(2).getReg();
2523 LLT SrcVecTy = MRI.getType(SrcVec);
2524 LLT IdxTy = MRI.getType(Idx);
2525
2526 LLT SrcEltTy = SrcVecTy.getElementType();
2527 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2528 unsigned OldNumElts = SrcVecTy.getNumElements();
2529
2530 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2531 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2532
2533 const unsigned NewEltSize = NewEltTy.getSizeInBits();
2534 const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2535 if (NewNumElts > OldNumElts) {
2536 // Decreasing the vector element size
2537 //
2538 // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2539 // =>
2540 // v4i32:castx = bitcast x:v2i64
2541 //
2542 // i64 = bitcast
2543 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2544 // (i32 (extract_vector_elt castx, (2 * y + 1)))
2545 //
2546 if (NewNumElts % OldNumElts != 0)
2547 return UnableToLegalize;
2548
2549 // Type of the intermediate result vector.
2550 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2551 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2552
2553 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2554
2555 SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2556 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2557
2558 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2559 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2560 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2561 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2562 NewOps[I] = Elt.getReg(0);
2563 }
2564
2565 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2566 MIRBuilder.buildBitcast(Dst, NewVec);
2567 MI.eraseFromParent();
2568 return Legalized;
2569 }
2570
2571 if (NewNumElts < OldNumElts) {
2572 if (NewEltSize % OldEltSize != 0)
2573 return UnableToLegalize;
2574
2575 // This only depends on powers of 2 because we use bit tricks to figure out
2576 // the bit offset we need to shift to get the target element. A general
2577 // expansion could emit division/multiply.
2578 if (!isPowerOf2_32(NewEltSize / OldEltSize))
2579 return UnableToLegalize;
2580
2581 // Increasing the vector element size.
2582 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2583 //
2584 // =>
2585 //
2586 // %cast = G_BITCAST %vec
2587 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2588 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2589 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2590 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2591 // %elt_bits = G_LSHR %wide_elt, %offset_bits
2592 // %elt = G_TRUNC %elt_bits
2593
2594 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2595 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2596
2597 // Divide to get the index in the wider element type.
2598 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2599
2600 Register WideElt = CastVec;
2601 if (CastTy.isVector()) {
2602 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2603 ScaledIdx).getReg(0);
2604 }
2605
2606 // Compute the bit offset into the register of the target element.
2607 Register OffsetBits = getBitcastWiderVectorElementOffset(
2608 MIRBuilder, Idx, NewEltSize, OldEltSize);
2609
2610 // Shift the wide element to get the target element.
2611 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2612 MIRBuilder.buildTrunc(Dst, ExtractedBits);
2613 MI.eraseFromParent();
2614 return Legalized;
2615 }
2616
2617 return UnableToLegalize;
2618 }
2619
2620 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2621 /// TargetReg, while preserving other bits in \p TargetReg.
2622 ///
2623 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
buildBitFieldInsert(MachineIRBuilder & B,Register TargetReg,Register InsertReg,Register OffsetBits)2624 static Register buildBitFieldInsert(MachineIRBuilder &B,
2625 Register TargetReg, Register InsertReg,
2626 Register OffsetBits) {
2627 LLT TargetTy = B.getMRI()->getType(TargetReg);
2628 LLT InsertTy = B.getMRI()->getType(InsertReg);
2629 auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2630 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2631
2632 // Produce a bitmask of the value to insert
2633 auto EltMask = B.buildConstant(
2634 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2635 InsertTy.getSizeInBits()));
2636 // Shift it into position
2637 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2638 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2639
2640 // Clear out the bits in the wide element
2641 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2642
2643 // The value to insert has all zeros already, so stick it into the masked
2644 // wide element.
2645 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2646 }
2647
2648 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2649 /// is increasing the element size, perform the indexing in the target element
2650 /// type, and use bit operations to insert at the element position. This is
2651 /// intended for architectures that can dynamically index the register file and
2652 /// want to force indexing in the native register size.
2653 LegalizerHelper::LegalizeResult
bitcastInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2654 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2655 LLT CastTy) {
2656 if (TypeIdx != 0)
2657 return UnableToLegalize;
2658
2659 Register Dst = MI.getOperand(0).getReg();
2660 Register SrcVec = MI.getOperand(1).getReg();
2661 Register Val = MI.getOperand(2).getReg();
2662 Register Idx = MI.getOperand(3).getReg();
2663
2664 LLT VecTy = MRI.getType(Dst);
2665 LLT IdxTy = MRI.getType(Idx);
2666
2667 LLT VecEltTy = VecTy.getElementType();
2668 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2669 const unsigned NewEltSize = NewEltTy.getSizeInBits();
2670 const unsigned OldEltSize = VecEltTy.getSizeInBits();
2671
2672 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2673 unsigned OldNumElts = VecTy.getNumElements();
2674
2675 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2676 if (NewNumElts < OldNumElts) {
2677 if (NewEltSize % OldEltSize != 0)
2678 return UnableToLegalize;
2679
2680 // This only depends on powers of 2 because we use bit tricks to figure out
2681 // the bit offset we need to shift to get the target element. A general
2682 // expansion could emit division/multiply.
2683 if (!isPowerOf2_32(NewEltSize / OldEltSize))
2684 return UnableToLegalize;
2685
2686 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2687 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2688
2689 // Divide to get the index in the wider element type.
2690 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2691
2692 Register ExtractedElt = CastVec;
2693 if (CastTy.isVector()) {
2694 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2695 ScaledIdx).getReg(0);
2696 }
2697
2698 // Compute the bit offset into the register of the target element.
2699 Register OffsetBits = getBitcastWiderVectorElementOffset(
2700 MIRBuilder, Idx, NewEltSize, OldEltSize);
2701
2702 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2703 Val, OffsetBits);
2704 if (CastTy.isVector()) {
2705 InsertedElt = MIRBuilder.buildInsertVectorElement(
2706 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2707 }
2708
2709 MIRBuilder.buildBitcast(Dst, InsertedElt);
2710 MI.eraseFromParent();
2711 return Legalized;
2712 }
2713
2714 return UnableToLegalize;
2715 }
2716
2717 LegalizerHelper::LegalizeResult
lowerLoad(MachineInstr & MI)2718 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2719 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2720 Register DstReg = MI.getOperand(0).getReg();
2721 Register PtrReg = MI.getOperand(1).getReg();
2722 LLT DstTy = MRI.getType(DstReg);
2723 auto &MMO = **MI.memoperands_begin();
2724
2725 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2726 if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2727 // This load needs splitting into power of 2 sized loads.
2728 if (DstTy.isVector())
2729 return UnableToLegalize;
2730 if (isPowerOf2_32(DstTy.getSizeInBits()))
2731 return UnableToLegalize; // Don't know what we're being asked to do.
2732
2733 // Our strategy here is to generate anyextending loads for the smaller
2734 // types up to next power-2 result type, and then combine the two larger
2735 // result values together, before truncating back down to the non-pow-2
2736 // type.
2737 // E.g. v1 = i24 load =>
2738 // v2 = i32 zextload (2 byte)
2739 // v3 = i32 load (1 byte)
2740 // v4 = i32 shl v3, 16
2741 // v5 = i32 or v4, v2
2742 // v1 = i24 trunc v5
2743 // By doing this we generate the correct truncate which should get
2744 // combined away as an artifact with a matching extend.
2745 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2746 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2747
2748 MachineFunction &MF = MIRBuilder.getMF();
2749 MachineMemOperand *LargeMMO =
2750 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2751 MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2752 &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2753
2754 LLT PtrTy = MRI.getType(PtrReg);
2755 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2756 LLT AnyExtTy = LLT::scalar(AnyExtSize);
2757 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2758 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2759 auto LargeLoad = MIRBuilder.buildLoadInstr(
2760 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2761
2762 auto OffsetCst = MIRBuilder.buildConstant(
2763 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2764 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2765 auto SmallPtr =
2766 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2767 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2768 *SmallMMO);
2769
2770 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2771 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2772 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2773 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2774 MI.eraseFromParent();
2775 return Legalized;
2776 }
2777
2778 MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2779 MI.eraseFromParent();
2780 return Legalized;
2781 }
2782
2783 if (DstTy.isScalar()) {
2784 Register TmpReg =
2785 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2786 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2787 switch (MI.getOpcode()) {
2788 default:
2789 llvm_unreachable("Unexpected opcode");
2790 case TargetOpcode::G_LOAD:
2791 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2792 break;
2793 case TargetOpcode::G_SEXTLOAD:
2794 MIRBuilder.buildSExt(DstReg, TmpReg);
2795 break;
2796 case TargetOpcode::G_ZEXTLOAD:
2797 MIRBuilder.buildZExt(DstReg, TmpReg);
2798 break;
2799 }
2800
2801 MI.eraseFromParent();
2802 return Legalized;
2803 }
2804
2805 return UnableToLegalize;
2806 }
2807
2808 LegalizerHelper::LegalizeResult
lowerStore(MachineInstr & MI)2809 LegalizerHelper::lowerStore(MachineInstr &MI) {
2810 // Lower a non-power of 2 store into multiple pow-2 stores.
2811 // E.g. split an i24 store into an i16 store + i8 store.
2812 // We do this by first extending the stored value to the next largest power
2813 // of 2 type, and then using truncating stores to store the components.
2814 // By doing this, likewise with G_LOAD, generate an extend that can be
2815 // artifact-combined away instead of leaving behind extracts.
2816 Register SrcReg = MI.getOperand(0).getReg();
2817 Register PtrReg = MI.getOperand(1).getReg();
2818 LLT SrcTy = MRI.getType(SrcReg);
2819 MachineMemOperand &MMO = **MI.memoperands_begin();
2820 if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2821 return UnableToLegalize;
2822 if (SrcTy.isVector())
2823 return UnableToLegalize;
2824 if (isPowerOf2_32(SrcTy.getSizeInBits()))
2825 return UnableToLegalize; // Don't know what we're being asked to do.
2826
2827 // Extend to the next pow-2.
2828 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2829 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2830
2831 // Obtain the smaller value by shifting away the larger value.
2832 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2833 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2834 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2835 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2836
2837 // Generate the PtrAdd and truncating stores.
2838 LLT PtrTy = MRI.getType(PtrReg);
2839 auto OffsetCst = MIRBuilder.buildConstant(
2840 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2841 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2842 auto SmallPtr =
2843 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2844
2845 MachineFunction &MF = MIRBuilder.getMF();
2846 MachineMemOperand *LargeMMO =
2847 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2848 MachineMemOperand *SmallMMO =
2849 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2850 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2851 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2852 MI.eraseFromParent();
2853 return Legalized;
2854 }
2855
2856 LegalizerHelper::LegalizeResult
bitcast(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2857 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2858 switch (MI.getOpcode()) {
2859 case TargetOpcode::G_LOAD: {
2860 if (TypeIdx != 0)
2861 return UnableToLegalize;
2862
2863 Observer.changingInstr(MI);
2864 bitcastDst(MI, CastTy, 0);
2865 Observer.changedInstr(MI);
2866 return Legalized;
2867 }
2868 case TargetOpcode::G_STORE: {
2869 if (TypeIdx != 0)
2870 return UnableToLegalize;
2871
2872 Observer.changingInstr(MI);
2873 bitcastSrc(MI, CastTy, 0);
2874 Observer.changedInstr(MI);
2875 return Legalized;
2876 }
2877 case TargetOpcode::G_SELECT: {
2878 if (TypeIdx != 0)
2879 return UnableToLegalize;
2880
2881 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2882 LLVM_DEBUG(
2883 dbgs() << "bitcast action not implemented for vector select\n");
2884 return UnableToLegalize;
2885 }
2886
2887 Observer.changingInstr(MI);
2888 bitcastSrc(MI, CastTy, 2);
2889 bitcastSrc(MI, CastTy, 3);
2890 bitcastDst(MI, CastTy, 0);
2891 Observer.changedInstr(MI);
2892 return Legalized;
2893 }
2894 case TargetOpcode::G_AND:
2895 case TargetOpcode::G_OR:
2896 case TargetOpcode::G_XOR: {
2897 Observer.changingInstr(MI);
2898 bitcastSrc(MI, CastTy, 1);
2899 bitcastSrc(MI, CastTy, 2);
2900 bitcastDst(MI, CastTy, 0);
2901 Observer.changedInstr(MI);
2902 return Legalized;
2903 }
2904 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2905 return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2906 case TargetOpcode::G_INSERT_VECTOR_ELT:
2907 return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2908 default:
2909 return UnableToLegalize;
2910 }
2911 }
2912
2913 // Legalize an instruction by changing the opcode in place.
changeOpcode(MachineInstr & MI,unsigned NewOpcode)2914 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2915 Observer.changingInstr(MI);
2916 MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2917 Observer.changedInstr(MI);
2918 }
2919
2920 LegalizerHelper::LegalizeResult
lower(MachineInstr & MI,unsigned TypeIdx,LLT LowerHintTy)2921 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2922 using namespace TargetOpcode;
2923
2924 switch(MI.getOpcode()) {
2925 default:
2926 return UnableToLegalize;
2927 case TargetOpcode::G_BITCAST:
2928 return lowerBitcast(MI);
2929 case TargetOpcode::G_SREM:
2930 case TargetOpcode::G_UREM: {
2931 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2932 auto Quot =
2933 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2934 {MI.getOperand(1), MI.getOperand(2)});
2935
2936 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2937 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2938 MI.eraseFromParent();
2939 return Legalized;
2940 }
2941 case TargetOpcode::G_SADDO:
2942 case TargetOpcode::G_SSUBO:
2943 return lowerSADDO_SSUBO(MI);
2944 case TargetOpcode::G_UMULH:
2945 case TargetOpcode::G_SMULH:
2946 return lowerSMULH_UMULH(MI);
2947 case TargetOpcode::G_SMULO:
2948 case TargetOpcode::G_UMULO: {
2949 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2950 // result.
2951 Register Res = MI.getOperand(0).getReg();
2952 Register Overflow = MI.getOperand(1).getReg();
2953 Register LHS = MI.getOperand(2).getReg();
2954 Register RHS = MI.getOperand(3).getReg();
2955 LLT Ty = MRI.getType(Res);
2956
2957 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2958 ? TargetOpcode::G_SMULH
2959 : TargetOpcode::G_UMULH;
2960
2961 Observer.changingInstr(MI);
2962 const auto &TII = MIRBuilder.getTII();
2963 MI.setDesc(TII.get(TargetOpcode::G_MUL));
2964 MI.RemoveOperand(1);
2965 Observer.changedInstr(MI);
2966
2967 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2968 auto Zero = MIRBuilder.buildConstant(Ty, 0);
2969
2970 // Move insert point forward so we can use the Res register if needed.
2971 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2972
2973 // For *signed* multiply, overflow is detected by checking:
2974 // (hi != (lo >> bitwidth-1))
2975 if (Opcode == TargetOpcode::G_SMULH) {
2976 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2977 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2978 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2979 } else {
2980 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2981 }
2982 return Legalized;
2983 }
2984 case TargetOpcode::G_FNEG: {
2985 Register Res = MI.getOperand(0).getReg();
2986 LLT Ty = MRI.getType(Res);
2987
2988 // TODO: Handle vector types once we are able to
2989 // represent them.
2990 if (Ty.isVector())
2991 return UnableToLegalize;
2992 auto SignMask =
2993 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2994 Register SubByReg = MI.getOperand(1).getReg();
2995 MIRBuilder.buildXor(Res, SubByReg, SignMask);
2996 MI.eraseFromParent();
2997 return Legalized;
2998 }
2999 case TargetOpcode::G_FSUB: {
3000 Register Res = MI.getOperand(0).getReg();
3001 LLT Ty = MRI.getType(Res);
3002
3003 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3004 // First, check if G_FNEG is marked as Lower. If so, we may
3005 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3006 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3007 return UnableToLegalize;
3008 Register LHS = MI.getOperand(1).getReg();
3009 Register RHS = MI.getOperand(2).getReg();
3010 Register Neg = MRI.createGenericVirtualRegister(Ty);
3011 MIRBuilder.buildFNeg(Neg, RHS);
3012 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3013 MI.eraseFromParent();
3014 return Legalized;
3015 }
3016 case TargetOpcode::G_FMAD:
3017 return lowerFMad(MI);
3018 case TargetOpcode::G_FFLOOR:
3019 return lowerFFloor(MI);
3020 case TargetOpcode::G_INTRINSIC_ROUND:
3021 return lowerIntrinsicRound(MI);
3022 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3023 // Since round even is the assumed rounding mode for unconstrained FP
3024 // operations, rint and roundeven are the same operation.
3025 changeOpcode(MI, TargetOpcode::G_FRINT);
3026 return Legalized;
3027 }
3028 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3029 Register OldValRes = MI.getOperand(0).getReg();
3030 Register SuccessRes = MI.getOperand(1).getReg();
3031 Register Addr = MI.getOperand(2).getReg();
3032 Register CmpVal = MI.getOperand(3).getReg();
3033 Register NewVal = MI.getOperand(4).getReg();
3034 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3035 **MI.memoperands_begin());
3036 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3037 MI.eraseFromParent();
3038 return Legalized;
3039 }
3040 case TargetOpcode::G_LOAD:
3041 case TargetOpcode::G_SEXTLOAD:
3042 case TargetOpcode::G_ZEXTLOAD:
3043 return lowerLoad(MI);
3044 case TargetOpcode::G_STORE:
3045 return lowerStore(MI);
3046 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3047 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3048 case TargetOpcode::G_CTLZ:
3049 case TargetOpcode::G_CTTZ:
3050 case TargetOpcode::G_CTPOP:
3051 return lowerBitCount(MI);
3052 case G_UADDO: {
3053 Register Res = MI.getOperand(0).getReg();
3054 Register CarryOut = MI.getOperand(1).getReg();
3055 Register LHS = MI.getOperand(2).getReg();
3056 Register RHS = MI.getOperand(3).getReg();
3057
3058 MIRBuilder.buildAdd(Res, LHS, RHS);
3059 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3060
3061 MI.eraseFromParent();
3062 return Legalized;
3063 }
3064 case G_UADDE: {
3065 Register Res = MI.getOperand(0).getReg();
3066 Register CarryOut = MI.getOperand(1).getReg();
3067 Register LHS = MI.getOperand(2).getReg();
3068 Register RHS = MI.getOperand(3).getReg();
3069 Register CarryIn = MI.getOperand(4).getReg();
3070 LLT Ty = MRI.getType(Res);
3071
3072 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3073 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3074 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3075 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3076
3077 MI.eraseFromParent();
3078 return Legalized;
3079 }
3080 case G_USUBO: {
3081 Register Res = MI.getOperand(0).getReg();
3082 Register BorrowOut = MI.getOperand(1).getReg();
3083 Register LHS = MI.getOperand(2).getReg();
3084 Register RHS = MI.getOperand(3).getReg();
3085
3086 MIRBuilder.buildSub(Res, LHS, RHS);
3087 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3088
3089 MI.eraseFromParent();
3090 return Legalized;
3091 }
3092 case G_USUBE: {
3093 Register Res = MI.getOperand(0).getReg();
3094 Register BorrowOut = MI.getOperand(1).getReg();
3095 Register LHS = MI.getOperand(2).getReg();
3096 Register RHS = MI.getOperand(3).getReg();
3097 Register BorrowIn = MI.getOperand(4).getReg();
3098 const LLT CondTy = MRI.getType(BorrowOut);
3099 const LLT Ty = MRI.getType(Res);
3100
3101 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3102 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3103 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3104
3105 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3106 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3107 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3108
3109 MI.eraseFromParent();
3110 return Legalized;
3111 }
3112 case G_UITOFP:
3113 return lowerUITOFP(MI);
3114 case G_SITOFP:
3115 return lowerSITOFP(MI);
3116 case G_FPTOUI:
3117 return lowerFPTOUI(MI);
3118 case G_FPTOSI:
3119 return lowerFPTOSI(MI);
3120 case G_FPTRUNC:
3121 return lowerFPTRUNC(MI);
3122 case G_FPOWI:
3123 return lowerFPOWI(MI);
3124 case G_SMIN:
3125 case G_SMAX:
3126 case G_UMIN:
3127 case G_UMAX:
3128 return lowerMinMax(MI);
3129 case G_FCOPYSIGN:
3130 return lowerFCopySign(MI);
3131 case G_FMINNUM:
3132 case G_FMAXNUM:
3133 return lowerFMinNumMaxNum(MI);
3134 case G_MERGE_VALUES:
3135 return lowerMergeValues(MI);
3136 case G_UNMERGE_VALUES:
3137 return lowerUnmergeValues(MI);
3138 case TargetOpcode::G_SEXT_INREG: {
3139 assert(MI.getOperand(2).isImm() && "Expected immediate");
3140 int64_t SizeInBits = MI.getOperand(2).getImm();
3141
3142 Register DstReg = MI.getOperand(0).getReg();
3143 Register SrcReg = MI.getOperand(1).getReg();
3144 LLT DstTy = MRI.getType(DstReg);
3145 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3146
3147 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3148 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3149 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3150 MI.eraseFromParent();
3151 return Legalized;
3152 }
3153 case G_EXTRACT_VECTOR_ELT:
3154 case G_INSERT_VECTOR_ELT:
3155 return lowerExtractInsertVectorElt(MI);
3156 case G_SHUFFLE_VECTOR:
3157 return lowerShuffleVector(MI);
3158 case G_DYN_STACKALLOC:
3159 return lowerDynStackAlloc(MI);
3160 case G_EXTRACT:
3161 return lowerExtract(MI);
3162 case G_INSERT:
3163 return lowerInsert(MI);
3164 case G_BSWAP:
3165 return lowerBswap(MI);
3166 case G_BITREVERSE:
3167 return lowerBitreverse(MI);
3168 case G_READ_REGISTER:
3169 case G_WRITE_REGISTER:
3170 return lowerReadWriteRegister(MI);
3171 case G_UADDSAT:
3172 case G_USUBSAT: {
3173 // Try to make a reasonable guess about which lowering strategy to use. The
3174 // target can override this with custom lowering and calling the
3175 // implementation functions.
3176 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3177 if (LI.isLegalOrCustom({G_UMIN, Ty}))
3178 return lowerAddSubSatToMinMax(MI);
3179 return lowerAddSubSatToAddoSubo(MI);
3180 }
3181 case G_SADDSAT:
3182 case G_SSUBSAT: {
3183 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3184
3185 // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3186 // since it's a shorter expansion. However, we would need to figure out the
3187 // preferred boolean type for the carry out for the query.
3188 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3189 return lowerAddSubSatToMinMax(MI);
3190 return lowerAddSubSatToAddoSubo(MI);
3191 }
3192 case G_SSHLSAT:
3193 case G_USHLSAT:
3194 return lowerShlSat(MI);
3195 case G_ABS: {
3196 // Expand %res = G_ABS %a into:
3197 // %v1 = G_ASHR %a, scalar_size-1
3198 // %v2 = G_ADD %a, %v1
3199 // %res = G_XOR %v2, %v1
3200 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3201 Register OpReg = MI.getOperand(1).getReg();
3202 auto ShiftAmt =
3203 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3204 auto Shift =
3205 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3206 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3207 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3208 MI.eraseFromParent();
3209 return Legalized;
3210 }
3211 case G_SELECT:
3212 return lowerSelect(MI);
3213 case G_SDIVREM:
3214 case G_UDIVREM:
3215 return lowerDIVREM(MI);
3216 case G_FSHL:
3217 case G_FSHR:
3218 return lowerFunnelShift(MI);
3219 case G_ROTL:
3220 case G_ROTR:
3221 return lowerRotate(MI);
3222 }
3223 }
3224
getStackTemporaryAlignment(LLT Ty,Align MinAlign) const3225 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3226 Align MinAlign) const {
3227 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3228 // datalayout for the preferred alignment. Also there should be a target hook
3229 // for this to allow targets to reduce the alignment and ignore the
3230 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3231 // the type.
3232 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3233 }
3234
3235 MachineInstrBuilder
createStackTemporary(TypeSize Bytes,Align Alignment,MachinePointerInfo & PtrInfo)3236 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3237 MachinePointerInfo &PtrInfo) {
3238 MachineFunction &MF = MIRBuilder.getMF();
3239 const DataLayout &DL = MIRBuilder.getDataLayout();
3240 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3241
3242 unsigned AddrSpace = DL.getAllocaAddrSpace();
3243 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3244
3245 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3246 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3247 }
3248
clampDynamicVectorIndex(MachineIRBuilder & B,Register IdxReg,LLT VecTy)3249 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3250 LLT VecTy) {
3251 int64_t IdxVal;
3252 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3253 return IdxReg;
3254
3255 LLT IdxTy = B.getMRI()->getType(IdxReg);
3256 unsigned NElts = VecTy.getNumElements();
3257 if (isPowerOf2_32(NElts)) {
3258 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3259 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3260 }
3261
3262 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3263 .getReg(0);
3264 }
3265
getVectorElementPointer(Register VecPtr,LLT VecTy,Register Index)3266 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3267 Register Index) {
3268 LLT EltTy = VecTy.getElementType();
3269
3270 // Calculate the element offset and add it to the pointer.
3271 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3272 assert(EltSize * 8 == EltTy.getSizeInBits() &&
3273 "Converting bits to bytes lost precision");
3274
3275 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3276
3277 LLT IdxTy = MRI.getType(Index);
3278 auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3279 MIRBuilder.buildConstant(IdxTy, EltSize));
3280
3281 LLT PtrTy = MRI.getType(VecPtr);
3282 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3283 }
3284
fewerElementsVectorImplicitDef(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3285 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3286 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3287 Register DstReg = MI.getOperand(0).getReg();
3288 LLT DstTy = MRI.getType(DstReg);
3289 LLT LCMTy = getLCMType(DstTy, NarrowTy);
3290
3291 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3292
3293 auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3294 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3295
3296 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3297 MI.eraseFromParent();
3298 return Legalized;
3299 }
3300
3301 // Handle splitting vector operations which need to have the same number of
3302 // elements in each type index, but each type index may have a different element
3303 // type.
3304 //
3305 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3306 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3307 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3308 //
3309 // Also handles some irregular breakdown cases, e.g.
3310 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3311 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3312 // s64 = G_SHL s64, s32
3313 LegalizerHelper::LegalizeResult
fewerElementsVectorMultiEltType(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTyArg)3314 LegalizerHelper::fewerElementsVectorMultiEltType(
3315 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3316 if (TypeIdx != 0)
3317 return UnableToLegalize;
3318
3319 const LLT NarrowTy0 = NarrowTyArg;
3320 const unsigned NewNumElts =
3321 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3322
3323 const Register DstReg = MI.getOperand(0).getReg();
3324 LLT DstTy = MRI.getType(DstReg);
3325 LLT LeftoverTy0;
3326
3327 // All of the operands need to have the same number of elements, so if we can
3328 // determine a type breakdown for the result type, we can for all of the
3329 // source types.
3330 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3331 if (NumParts < 0)
3332 return UnableToLegalize;
3333
3334 SmallVector<MachineInstrBuilder, 4> NewInsts;
3335
3336 SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3337 SmallVector<Register, 4> PartRegs, LeftoverRegs;
3338
3339 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3340 Register SrcReg = MI.getOperand(I).getReg();
3341 LLT SrcTyI = MRI.getType(SrcReg);
3342 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3343 LLT LeftoverTyI;
3344
3345 // Split this operand into the requested typed registers, and any leftover
3346 // required to reproduce the original type.
3347 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3348 LeftoverRegs))
3349 return UnableToLegalize;
3350
3351 if (I == 1) {
3352 // For the first operand, create an instruction for each part and setup
3353 // the result.
3354 for (Register PartReg : PartRegs) {
3355 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3356 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3357 .addDef(PartDstReg)
3358 .addUse(PartReg));
3359 DstRegs.push_back(PartDstReg);
3360 }
3361
3362 for (Register LeftoverReg : LeftoverRegs) {
3363 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3364 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3365 .addDef(PartDstReg)
3366 .addUse(LeftoverReg));
3367 LeftoverDstRegs.push_back(PartDstReg);
3368 }
3369 } else {
3370 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3371
3372 // Add the newly created operand splits to the existing instructions. The
3373 // odd-sized pieces are ordered after the requested NarrowTyArg sized
3374 // pieces.
3375 unsigned InstCount = 0;
3376 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3377 NewInsts[InstCount++].addUse(PartRegs[J]);
3378 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3379 NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3380 }
3381
3382 PartRegs.clear();
3383 LeftoverRegs.clear();
3384 }
3385
3386 // Insert the newly built operations and rebuild the result register.
3387 for (auto &MIB : NewInsts)
3388 MIRBuilder.insertInstr(MIB);
3389
3390 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3391
3392 MI.eraseFromParent();
3393 return Legalized;
3394 }
3395
3396 LegalizerHelper::LegalizeResult
fewerElementsVectorCasts(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3397 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3398 LLT NarrowTy) {
3399 if (TypeIdx != 0)
3400 return UnableToLegalize;
3401
3402 Register DstReg = MI.getOperand(0).getReg();
3403 Register SrcReg = MI.getOperand(1).getReg();
3404 LLT DstTy = MRI.getType(DstReg);
3405 LLT SrcTy = MRI.getType(SrcReg);
3406
3407 LLT NarrowTy0 = NarrowTy;
3408 LLT NarrowTy1;
3409 unsigned NumParts;
3410
3411 if (NarrowTy.isVector()) {
3412 // Uneven breakdown not handled.
3413 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3414 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3415 return UnableToLegalize;
3416
3417 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3418 } else {
3419 NumParts = DstTy.getNumElements();
3420 NarrowTy1 = SrcTy.getElementType();
3421 }
3422
3423 SmallVector<Register, 4> SrcRegs, DstRegs;
3424 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3425
3426 for (unsigned I = 0; I < NumParts; ++I) {
3427 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3428 MachineInstr *NewInst =
3429 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3430
3431 NewInst->setFlags(MI.getFlags());
3432 DstRegs.push_back(DstReg);
3433 }
3434
3435 if (NarrowTy.isVector())
3436 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3437 else
3438 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3439
3440 MI.eraseFromParent();
3441 return Legalized;
3442 }
3443
3444 LegalizerHelper::LegalizeResult
fewerElementsVectorCmp(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3445 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3446 LLT NarrowTy) {
3447 Register DstReg = MI.getOperand(0).getReg();
3448 Register Src0Reg = MI.getOperand(2).getReg();
3449 LLT DstTy = MRI.getType(DstReg);
3450 LLT SrcTy = MRI.getType(Src0Reg);
3451
3452 unsigned NumParts;
3453 LLT NarrowTy0, NarrowTy1;
3454
3455 if (TypeIdx == 0) {
3456 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3457 unsigned OldElts = DstTy.getNumElements();
3458
3459 NarrowTy0 = NarrowTy;
3460 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3461 NarrowTy1 = NarrowTy.isVector() ?
3462 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3463 SrcTy.getElementType();
3464
3465 } else {
3466 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3467 unsigned OldElts = SrcTy.getNumElements();
3468
3469 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3470 NarrowTy.getNumElements();
3471 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3472 DstTy.getScalarSizeInBits());
3473 NarrowTy1 = NarrowTy;
3474 }
3475
3476 // FIXME: Don't know how to handle the situation where the small vectors
3477 // aren't all the same size yet.
3478 if (NarrowTy1.isVector() &&
3479 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3480 return UnableToLegalize;
3481
3482 CmpInst::Predicate Pred
3483 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3484
3485 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3486 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3487 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3488
3489 for (unsigned I = 0; I < NumParts; ++I) {
3490 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3491 DstRegs.push_back(DstReg);
3492
3493 if (MI.getOpcode() == TargetOpcode::G_ICMP)
3494 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3495 else {
3496 MachineInstr *NewCmp
3497 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3498 NewCmp->setFlags(MI.getFlags());
3499 }
3500 }
3501
3502 if (NarrowTy1.isVector())
3503 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3504 else
3505 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3506
3507 MI.eraseFromParent();
3508 return Legalized;
3509 }
3510
3511 LegalizerHelper::LegalizeResult
fewerElementsVectorSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3512 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3513 LLT NarrowTy) {
3514 Register DstReg = MI.getOperand(0).getReg();
3515 Register CondReg = MI.getOperand(1).getReg();
3516
3517 unsigned NumParts = 0;
3518 LLT NarrowTy0, NarrowTy1;
3519
3520 LLT DstTy = MRI.getType(DstReg);
3521 LLT CondTy = MRI.getType(CondReg);
3522 unsigned Size = DstTy.getSizeInBits();
3523
3524 assert(TypeIdx == 0 || CondTy.isVector());
3525
3526 if (TypeIdx == 0) {
3527 NarrowTy0 = NarrowTy;
3528 NarrowTy1 = CondTy;
3529
3530 unsigned NarrowSize = NarrowTy0.getSizeInBits();
3531 // FIXME: Don't know how to handle the situation where the small vectors
3532 // aren't all the same size yet.
3533 if (Size % NarrowSize != 0)
3534 return UnableToLegalize;
3535
3536 NumParts = Size / NarrowSize;
3537
3538 // Need to break down the condition type
3539 if (CondTy.isVector()) {
3540 if (CondTy.getNumElements() == NumParts)
3541 NarrowTy1 = CondTy.getElementType();
3542 else
3543 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3544 CondTy.getScalarSizeInBits());
3545 }
3546 } else {
3547 NumParts = CondTy.getNumElements();
3548 if (NarrowTy.isVector()) {
3549 // TODO: Handle uneven breakdown.
3550 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3551 return UnableToLegalize;
3552
3553 return UnableToLegalize;
3554 } else {
3555 NarrowTy0 = DstTy.getElementType();
3556 NarrowTy1 = NarrowTy;
3557 }
3558 }
3559
3560 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3561 if (CondTy.isVector())
3562 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3563
3564 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3565 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3566
3567 for (unsigned i = 0; i < NumParts; ++i) {
3568 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3569 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3570 Src1Regs[i], Src2Regs[i]);
3571 DstRegs.push_back(DstReg);
3572 }
3573
3574 if (NarrowTy0.isVector())
3575 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3576 else
3577 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3578
3579 MI.eraseFromParent();
3580 return Legalized;
3581 }
3582
3583 LegalizerHelper::LegalizeResult
fewerElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3584 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3585 LLT NarrowTy) {
3586 const Register DstReg = MI.getOperand(0).getReg();
3587 LLT PhiTy = MRI.getType(DstReg);
3588 LLT LeftoverTy;
3589
3590 // All of the operands need to have the same number of elements, so if we can
3591 // determine a type breakdown for the result type, we can for all of the
3592 // source types.
3593 int NumParts, NumLeftover;
3594 std::tie(NumParts, NumLeftover)
3595 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3596 if (NumParts < 0)
3597 return UnableToLegalize;
3598
3599 SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3600 SmallVector<MachineInstrBuilder, 4> NewInsts;
3601
3602 const int TotalNumParts = NumParts + NumLeftover;
3603
3604 // Insert the new phis in the result block first.
3605 for (int I = 0; I != TotalNumParts; ++I) {
3606 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3607 Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3608 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3609 .addDef(PartDstReg));
3610 if (I < NumParts)
3611 DstRegs.push_back(PartDstReg);
3612 else
3613 LeftoverDstRegs.push_back(PartDstReg);
3614 }
3615
3616 MachineBasicBlock *MBB = MI.getParent();
3617 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3618 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3619
3620 SmallVector<Register, 4> PartRegs, LeftoverRegs;
3621
3622 // Insert code to extract the incoming values in each predecessor block.
3623 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3624 PartRegs.clear();
3625 LeftoverRegs.clear();
3626
3627 Register SrcReg = MI.getOperand(I).getReg();
3628 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3629 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3630
3631 LLT Unused;
3632 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3633 LeftoverRegs))
3634 return UnableToLegalize;
3635
3636 // Add the newly created operand splits to the existing instructions. The
3637 // odd-sized pieces are ordered after the requested NarrowTyArg sized
3638 // pieces.
3639 for (int J = 0; J != TotalNumParts; ++J) {
3640 MachineInstrBuilder MIB = NewInsts[J];
3641 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3642 MIB.addMBB(&OpMBB);
3643 }
3644 }
3645
3646 MI.eraseFromParent();
3647 return Legalized;
3648 }
3649
3650 LegalizerHelper::LegalizeResult
fewerElementsVectorUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3651 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3652 unsigned TypeIdx,
3653 LLT NarrowTy) {
3654 if (TypeIdx != 1)
3655 return UnableToLegalize;
3656
3657 const int NumDst = MI.getNumOperands() - 1;
3658 const Register SrcReg = MI.getOperand(NumDst).getReg();
3659 LLT SrcTy = MRI.getType(SrcReg);
3660
3661 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3662
3663 // TODO: Create sequence of extracts.
3664 if (DstTy == NarrowTy)
3665 return UnableToLegalize;
3666
3667 LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3668 if (DstTy == GCDTy) {
3669 // This would just be a copy of the same unmerge.
3670 // TODO: Create extracts, pad with undef and create intermediate merges.
3671 return UnableToLegalize;
3672 }
3673
3674 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3675 const int NumUnmerge = Unmerge->getNumOperands() - 1;
3676 const int PartsPerUnmerge = NumDst / NumUnmerge;
3677
3678 for (int I = 0; I != NumUnmerge; ++I) {
3679 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3680
3681 for (int J = 0; J != PartsPerUnmerge; ++J)
3682 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3683 MIB.addUse(Unmerge.getReg(I));
3684 }
3685
3686 MI.eraseFromParent();
3687 return Legalized;
3688 }
3689
3690 LegalizerHelper::LegalizeResult
fewerElementsVectorMulo(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3691 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3692 LLT NarrowTy) {
3693 Register Result = MI.getOperand(0).getReg();
3694 Register Overflow = MI.getOperand(1).getReg();
3695 Register LHS = MI.getOperand(2).getReg();
3696 Register RHS = MI.getOperand(3).getReg();
3697
3698 LLT SrcTy = MRI.getType(LHS);
3699 if (!SrcTy.isVector())
3700 return UnableToLegalize;
3701
3702 LLT ElementType = SrcTy.getElementType();
3703 LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3704 const int NumResult = SrcTy.getNumElements();
3705 LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3706
3707 // Unmerge the operands to smaller parts of GCD type.
3708 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3709 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3710
3711 const int NumOps = UnmergeLHS->getNumOperands() - 1;
3712 const int PartsPerUnmerge = NumResult / NumOps;
3713 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3714 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3715
3716 // Perform the operation over unmerged parts.
3717 SmallVector<Register, 8> ResultParts;
3718 SmallVector<Register, 8> OverflowParts;
3719 for (int I = 0; I != NumOps; ++I) {
3720 Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3721 Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3722 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3723 {Operand1, Operand2});
3724 ResultParts.push_back(PartMul->getOperand(0).getReg());
3725 OverflowParts.push_back(PartMul->getOperand(1).getReg());
3726 }
3727
3728 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3729 LLT OverflowLCMTy =
3730 LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3731
3732 // Recombine the pieces to the original result and overflow registers.
3733 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3734 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3735 MI.eraseFromParent();
3736 return Legalized;
3737 }
3738
3739 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3740 // a vector
3741 //
3742 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3743 // undef as necessary.
3744 //
3745 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3746 // -> <2 x s16>
3747 //
3748 // %4:_(s16) = G_IMPLICIT_DEF
3749 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3750 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3751 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3752 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3753 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3754 LegalizerHelper::LegalizeResult
fewerElementsVectorMerge(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3755 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3756 LLT NarrowTy) {
3757 Register DstReg = MI.getOperand(0).getReg();
3758 LLT DstTy = MRI.getType(DstReg);
3759 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3760 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3761
3762 // Break into a common type
3763 SmallVector<Register, 16> Parts;
3764 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3765 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3766
3767 // Build the requested new merge, padding with undef.
3768 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3769 TargetOpcode::G_ANYEXT);
3770
3771 // Pack into the original result register.
3772 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3773
3774 MI.eraseFromParent();
3775 return Legalized;
3776 }
3777
3778 LegalizerHelper::LegalizeResult
fewerElementsVectorExtractInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowVecTy)3779 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3780 unsigned TypeIdx,
3781 LLT NarrowVecTy) {
3782 Register DstReg = MI.getOperand(0).getReg();
3783 Register SrcVec = MI.getOperand(1).getReg();
3784 Register InsertVal;
3785 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3786
3787 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3788 if (IsInsert)
3789 InsertVal = MI.getOperand(2).getReg();
3790
3791 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3792
3793 // TODO: Handle total scalarization case.
3794 if (!NarrowVecTy.isVector())
3795 return UnableToLegalize;
3796
3797 LLT VecTy = MRI.getType(SrcVec);
3798
3799 // If the index is a constant, we can really break this down as you would
3800 // expect, and index into the target size pieces.
3801 int64_t IdxVal;
3802 if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3803 // Avoid out of bounds indexing the pieces.
3804 if (IdxVal >= VecTy.getNumElements()) {
3805 MIRBuilder.buildUndef(DstReg);
3806 MI.eraseFromParent();
3807 return Legalized;
3808 }
3809
3810 SmallVector<Register, 8> VecParts;
3811 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3812
3813 // Build a sequence of NarrowTy pieces in VecParts for this operand.
3814 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3815 TargetOpcode::G_ANYEXT);
3816
3817 unsigned NewNumElts = NarrowVecTy.getNumElements();
3818
3819 LLT IdxTy = MRI.getType(Idx);
3820 int64_t PartIdx = IdxVal / NewNumElts;
3821 auto NewIdx =
3822 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3823
3824 if (IsInsert) {
3825 LLT PartTy = MRI.getType(VecParts[PartIdx]);
3826
3827 // Use the adjusted index to insert into one of the subvectors.
3828 auto InsertPart = MIRBuilder.buildInsertVectorElement(
3829 PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3830 VecParts[PartIdx] = InsertPart.getReg(0);
3831
3832 // Recombine the inserted subvector with the others to reform the result
3833 // vector.
3834 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3835 } else {
3836 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3837 }
3838
3839 MI.eraseFromParent();
3840 return Legalized;
3841 }
3842
3843 // With a variable index, we can't perform the operation in a smaller type, so
3844 // we're forced to expand this.
3845 //
3846 // TODO: We could emit a chain of compare/select to figure out which piece to
3847 // index.
3848 return lowerExtractInsertVectorElt(MI);
3849 }
3850
3851 LegalizerHelper::LegalizeResult
reduceLoadStoreWidth(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3852 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3853 LLT NarrowTy) {
3854 // FIXME: Don't know how to handle secondary types yet.
3855 if (TypeIdx != 0)
3856 return UnableToLegalize;
3857
3858 MachineMemOperand *MMO = *MI.memoperands_begin();
3859
3860 // This implementation doesn't work for atomics. Give up instead of doing
3861 // something invalid.
3862 if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3863 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3864 return UnableToLegalize;
3865
3866 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3867 Register ValReg = MI.getOperand(0).getReg();
3868 Register AddrReg = MI.getOperand(1).getReg();
3869 LLT ValTy = MRI.getType(ValReg);
3870
3871 // FIXME: Do we need a distinct NarrowMemory legalize action?
3872 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3873 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3874 return UnableToLegalize;
3875 }
3876
3877 int NumParts = -1;
3878 int NumLeftover = -1;
3879 LLT LeftoverTy;
3880 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3881 if (IsLoad) {
3882 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3883 } else {
3884 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3885 NarrowLeftoverRegs)) {
3886 NumParts = NarrowRegs.size();
3887 NumLeftover = NarrowLeftoverRegs.size();
3888 }
3889 }
3890
3891 if (NumParts == -1)
3892 return UnableToLegalize;
3893
3894 LLT PtrTy = MRI.getType(AddrReg);
3895 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3896
3897 unsigned TotalSize = ValTy.getSizeInBits();
3898
3899 // Split the load/store into PartTy sized pieces starting at Offset. If this
3900 // is a load, return the new registers in ValRegs. For a store, each elements
3901 // of ValRegs should be PartTy. Returns the next offset that needs to be
3902 // handled.
3903 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3904 unsigned Offset) -> unsigned {
3905 MachineFunction &MF = MIRBuilder.getMF();
3906 unsigned PartSize = PartTy.getSizeInBits();
3907 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3908 Offset += PartSize, ++Idx) {
3909 unsigned ByteSize = PartSize / 8;
3910 unsigned ByteOffset = Offset / 8;
3911 Register NewAddrReg;
3912
3913 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3914
3915 MachineMemOperand *NewMMO =
3916 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3917
3918 if (IsLoad) {
3919 Register Dst = MRI.createGenericVirtualRegister(PartTy);
3920 ValRegs.push_back(Dst);
3921 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3922 } else {
3923 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3924 }
3925 }
3926
3927 return Offset;
3928 };
3929
3930 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3931
3932 // Handle the rest of the register if this isn't an even type breakdown.
3933 if (LeftoverTy.isValid())
3934 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3935
3936 if (IsLoad) {
3937 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3938 LeftoverTy, NarrowLeftoverRegs);
3939 }
3940
3941 MI.eraseFromParent();
3942 return Legalized;
3943 }
3944
3945 LegalizerHelper::LegalizeResult
reduceOperationWidth(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)3946 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3947 LLT NarrowTy) {
3948 assert(TypeIdx == 0 && "only one type index expected");
3949
3950 const unsigned Opc = MI.getOpcode();
3951 const int NumDefOps = MI.getNumExplicitDefs();
3952 const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3953 const unsigned Flags = MI.getFlags();
3954 const unsigned NarrowSize = NarrowTy.getSizeInBits();
3955 const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3956
3957 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3958 "result and 1-3 sources or 2 results and "
3959 "1-2 sources");
3960
3961 SmallVector<Register, 2> DstRegs;
3962 for (int I = 0; I < NumDefOps; ++I)
3963 DstRegs.push_back(MI.getOperand(I).getReg());
3964
3965 // First of all check whether we are narrowing (changing the element type)
3966 // or reducing the vector elements
3967 const LLT DstTy = MRI.getType(DstRegs[0]);
3968 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3969
3970 SmallVector<Register, 8> ExtractedRegs[3];
3971 SmallVector<Register, 8> Parts;
3972
3973 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3974
3975 // Break down all the sources into NarrowTy pieces we can operate on. This may
3976 // involve creating merges to a wider type, padded with undef.
3977 for (int I = 0; I != NumSrcOps; ++I) {
3978 Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3979 LLT SrcTy = MRI.getType(SrcReg);
3980
3981 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3982 // For fewerElements, this is a smaller vector with the same element type.
3983 LLT OpNarrowTy;
3984 if (IsNarrow) {
3985 OpNarrowTy = NarrowScalarTy;
3986
3987 // In case of narrowing, we need to cast vectors to scalars for this to
3988 // work properly
3989 // FIXME: Can we do without the bitcast here if we're narrowing?
3990 if (SrcTy.isVector()) {
3991 SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3992 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3993 }
3994 } else {
3995 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3996 }
3997
3998 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3999
4000 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4001 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4002 TargetOpcode::G_ANYEXT);
4003 }
4004
4005 SmallVector<Register, 8> ResultRegs[2];
4006
4007 // Input operands for each sub-instruction.
4008 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4009
4010 int NumParts = ExtractedRegs[0].size();
4011 const unsigned DstSize = DstTy.getSizeInBits();
4012 const LLT DstScalarTy = LLT::scalar(DstSize);
4013
4014 // Narrowing needs to use scalar types
4015 LLT DstLCMTy, NarrowDstTy;
4016 if (IsNarrow) {
4017 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4018 NarrowDstTy = NarrowScalarTy;
4019 } else {
4020 DstLCMTy = getLCMType(DstTy, NarrowTy);
4021 NarrowDstTy = NarrowTy;
4022 }
4023
4024 // We widened the source registers to satisfy merge/unmerge size
4025 // constraints. We'll have some extra fully undef parts.
4026 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4027
4028 for (int I = 0; I != NumRealParts; ++I) {
4029 // Emit this instruction on each of the split pieces.
4030 for (int J = 0; J != NumSrcOps; ++J)
4031 InputRegs[J] = ExtractedRegs[J][I];
4032
4033 MachineInstrBuilder Inst;
4034 if (NumDefOps == 1)
4035 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4036 else
4037 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4038 Flags);
4039
4040 for (int J = 0; J != NumDefOps; ++J)
4041 ResultRegs[J].push_back(Inst.getReg(J));
4042 }
4043
4044 // Fill out the widened result with undef instead of creating instructions
4045 // with undef inputs.
4046 int NumUndefParts = NumParts - NumRealParts;
4047 if (NumUndefParts != 0) {
4048 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4049 for (int I = 0; I != NumDefOps; ++I)
4050 ResultRegs[I].append(NumUndefParts, Undef);
4051 }
4052
4053 // Extract the possibly padded result. Use a scratch register if we need to do
4054 // a final bitcast, otherwise use the original result register.
4055 Register MergeDstReg;
4056 for (int I = 0; I != NumDefOps; ++I) {
4057 if (IsNarrow && DstTy.isVector())
4058 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4059 else
4060 MergeDstReg = DstRegs[I];
4061
4062 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4063
4064 // Recast to vector if we narrowed a vector
4065 if (IsNarrow && DstTy.isVector())
4066 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4067 }
4068
4069 MI.eraseFromParent();
4070 return Legalized;
4071 }
4072
4073 LegalizerHelper::LegalizeResult
fewerElementsVectorSextInReg(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4074 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4075 LLT NarrowTy) {
4076 Register DstReg = MI.getOperand(0).getReg();
4077 Register SrcReg = MI.getOperand(1).getReg();
4078 int64_t Imm = MI.getOperand(2).getImm();
4079
4080 LLT DstTy = MRI.getType(DstReg);
4081
4082 SmallVector<Register, 8> Parts;
4083 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4084 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4085
4086 for (Register &R : Parts)
4087 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4088
4089 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4090
4091 MI.eraseFromParent();
4092 return Legalized;
4093 }
4094
4095 LegalizerHelper::LegalizeResult
fewerElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4096 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4097 LLT NarrowTy) {
4098 using namespace TargetOpcode;
4099
4100 switch (MI.getOpcode()) {
4101 case G_IMPLICIT_DEF:
4102 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4103 case G_TRUNC:
4104 case G_AND:
4105 case G_OR:
4106 case G_XOR:
4107 case G_ADD:
4108 case G_SUB:
4109 case G_MUL:
4110 case G_PTR_ADD:
4111 case G_SMULH:
4112 case G_UMULH:
4113 case G_FADD:
4114 case G_FMUL:
4115 case G_FSUB:
4116 case G_FNEG:
4117 case G_FABS:
4118 case G_FCANONICALIZE:
4119 case G_FDIV:
4120 case G_FREM:
4121 case G_FMA:
4122 case G_FMAD:
4123 case G_FPOW:
4124 case G_FEXP:
4125 case G_FEXP2:
4126 case G_FLOG:
4127 case G_FLOG2:
4128 case G_FLOG10:
4129 case G_FNEARBYINT:
4130 case G_FCEIL:
4131 case G_FFLOOR:
4132 case G_FRINT:
4133 case G_INTRINSIC_ROUND:
4134 case G_INTRINSIC_ROUNDEVEN:
4135 case G_INTRINSIC_TRUNC:
4136 case G_FCOS:
4137 case G_FSIN:
4138 case G_FSQRT:
4139 case G_BSWAP:
4140 case G_BITREVERSE:
4141 case G_SDIV:
4142 case G_UDIV:
4143 case G_SREM:
4144 case G_UREM:
4145 case G_SMIN:
4146 case G_SMAX:
4147 case G_UMIN:
4148 case G_UMAX:
4149 case G_FMINNUM:
4150 case G_FMAXNUM:
4151 case G_FMINNUM_IEEE:
4152 case G_FMAXNUM_IEEE:
4153 case G_FMINIMUM:
4154 case G_FMAXIMUM:
4155 case G_FSHL:
4156 case G_FSHR:
4157 case G_FREEZE:
4158 case G_SADDSAT:
4159 case G_SSUBSAT:
4160 case G_UADDSAT:
4161 case G_USUBSAT:
4162 return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4163 case G_UMULO:
4164 case G_SMULO:
4165 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4166 case G_SHL:
4167 case G_LSHR:
4168 case G_ASHR:
4169 case G_SSHLSAT:
4170 case G_USHLSAT:
4171 case G_CTLZ:
4172 case G_CTLZ_ZERO_UNDEF:
4173 case G_CTTZ:
4174 case G_CTTZ_ZERO_UNDEF:
4175 case G_CTPOP:
4176 case G_FCOPYSIGN:
4177 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4178 case G_ZEXT:
4179 case G_SEXT:
4180 case G_ANYEXT:
4181 case G_FPEXT:
4182 case G_FPTRUNC:
4183 case G_SITOFP:
4184 case G_UITOFP:
4185 case G_FPTOSI:
4186 case G_FPTOUI:
4187 case G_INTTOPTR:
4188 case G_PTRTOINT:
4189 case G_ADDRSPACE_CAST:
4190 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4191 case G_ICMP:
4192 case G_FCMP:
4193 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4194 case G_SELECT:
4195 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4196 case G_PHI:
4197 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4198 case G_UNMERGE_VALUES:
4199 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4200 case G_BUILD_VECTOR:
4201 assert(TypeIdx == 0 && "not a vector type index");
4202 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4203 case G_CONCAT_VECTORS:
4204 if (TypeIdx != 1) // TODO: This probably does work as expected already.
4205 return UnableToLegalize;
4206 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4207 case G_EXTRACT_VECTOR_ELT:
4208 case G_INSERT_VECTOR_ELT:
4209 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4210 case G_LOAD:
4211 case G_STORE:
4212 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4213 case G_SEXT_INREG:
4214 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4215 GISEL_VECREDUCE_CASES_NONSEQ
4216 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4217 default:
4218 return UnableToLegalize;
4219 }
4220 }
4221
fewerElementsVectorReductions(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4222 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4223 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4224 unsigned Opc = MI.getOpcode();
4225 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4226 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4227 "Sequential reductions not expected");
4228
4229 if (TypeIdx != 1)
4230 return UnableToLegalize;
4231
4232 // The semantics of the normal non-sequential reductions allow us to freely
4233 // re-associate the operation.
4234 Register SrcReg = MI.getOperand(1).getReg();
4235 LLT SrcTy = MRI.getType(SrcReg);
4236 Register DstReg = MI.getOperand(0).getReg();
4237 LLT DstTy = MRI.getType(DstReg);
4238
4239 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4240 return UnableToLegalize;
4241
4242 SmallVector<Register> SplitSrcs;
4243 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4244 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4245 SmallVector<Register> PartialReductions;
4246 for (unsigned Part = 0; Part < NumParts; ++Part) {
4247 PartialReductions.push_back(
4248 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4249 }
4250
4251 unsigned ScalarOpc;
4252 switch (Opc) {
4253 case TargetOpcode::G_VECREDUCE_FADD:
4254 ScalarOpc = TargetOpcode::G_FADD;
4255 break;
4256 case TargetOpcode::G_VECREDUCE_FMUL:
4257 ScalarOpc = TargetOpcode::G_FMUL;
4258 break;
4259 case TargetOpcode::G_VECREDUCE_FMAX:
4260 ScalarOpc = TargetOpcode::G_FMAXNUM;
4261 break;
4262 case TargetOpcode::G_VECREDUCE_FMIN:
4263 ScalarOpc = TargetOpcode::G_FMINNUM;
4264 break;
4265 case TargetOpcode::G_VECREDUCE_ADD:
4266 ScalarOpc = TargetOpcode::G_ADD;
4267 break;
4268 case TargetOpcode::G_VECREDUCE_MUL:
4269 ScalarOpc = TargetOpcode::G_MUL;
4270 break;
4271 case TargetOpcode::G_VECREDUCE_AND:
4272 ScalarOpc = TargetOpcode::G_AND;
4273 break;
4274 case TargetOpcode::G_VECREDUCE_OR:
4275 ScalarOpc = TargetOpcode::G_OR;
4276 break;
4277 case TargetOpcode::G_VECREDUCE_XOR:
4278 ScalarOpc = TargetOpcode::G_XOR;
4279 break;
4280 case TargetOpcode::G_VECREDUCE_SMAX:
4281 ScalarOpc = TargetOpcode::G_SMAX;
4282 break;
4283 case TargetOpcode::G_VECREDUCE_SMIN:
4284 ScalarOpc = TargetOpcode::G_SMIN;
4285 break;
4286 case TargetOpcode::G_VECREDUCE_UMAX:
4287 ScalarOpc = TargetOpcode::G_UMAX;
4288 break;
4289 case TargetOpcode::G_VECREDUCE_UMIN:
4290 ScalarOpc = TargetOpcode::G_UMIN;
4291 break;
4292 default:
4293 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4294 return UnableToLegalize;
4295 }
4296
4297 // If the types involved are powers of 2, we can generate intermediate vector
4298 // ops, before generating a final reduction operation.
4299 if (isPowerOf2_32(SrcTy.getNumElements()) &&
4300 isPowerOf2_32(NarrowTy.getNumElements())) {
4301 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4302 }
4303
4304 Register Acc = PartialReductions[0];
4305 for (unsigned Part = 1; Part < NumParts; ++Part) {
4306 if (Part == NumParts - 1) {
4307 MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4308 {Acc, PartialReductions[Part]});
4309 } else {
4310 Acc = MIRBuilder
4311 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4312 .getReg(0);
4313 }
4314 }
4315 MI.eraseFromParent();
4316 return Legalized;
4317 }
4318
4319 LegalizerHelper::LegalizeResult
tryNarrowPow2Reduction(MachineInstr & MI,Register SrcReg,LLT SrcTy,LLT NarrowTy,unsigned ScalarOpc)4320 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4321 LLT SrcTy, LLT NarrowTy,
4322 unsigned ScalarOpc) {
4323 SmallVector<Register> SplitSrcs;
4324 // Split the sources into NarrowTy size pieces.
4325 extractParts(SrcReg, NarrowTy,
4326 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4327 // We're going to do a tree reduction using vector operations until we have
4328 // one NarrowTy size value left.
4329 while (SplitSrcs.size() > 1) {
4330 SmallVector<Register> PartialRdxs;
4331 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4332 Register LHS = SplitSrcs[Idx];
4333 Register RHS = SplitSrcs[Idx + 1];
4334 // Create the intermediate vector op.
4335 Register Res =
4336 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4337 PartialRdxs.push_back(Res);
4338 }
4339 SplitSrcs = std::move(PartialRdxs);
4340 }
4341 // Finally generate the requested NarrowTy based reduction.
4342 Observer.changingInstr(MI);
4343 MI.getOperand(1).setReg(SplitSrcs[0]);
4344 Observer.changedInstr(MI);
4345 return Legalized;
4346 }
4347
4348 LegalizerHelper::LegalizeResult
narrowScalarShiftByConstant(MachineInstr & MI,const APInt & Amt,const LLT HalfTy,const LLT AmtTy)4349 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4350 const LLT HalfTy, const LLT AmtTy) {
4351
4352 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4353 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4354 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4355
4356 if (Amt.isNullValue()) {
4357 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4358 MI.eraseFromParent();
4359 return Legalized;
4360 }
4361
4362 LLT NVT = HalfTy;
4363 unsigned NVTBits = HalfTy.getSizeInBits();
4364 unsigned VTBits = 2 * NVTBits;
4365
4366 SrcOp Lo(Register(0)), Hi(Register(0));
4367 if (MI.getOpcode() == TargetOpcode::G_SHL) {
4368 if (Amt.ugt(VTBits)) {
4369 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4370 } else if (Amt.ugt(NVTBits)) {
4371 Lo = MIRBuilder.buildConstant(NVT, 0);
4372 Hi = MIRBuilder.buildShl(NVT, InL,
4373 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4374 } else if (Amt == NVTBits) {
4375 Lo = MIRBuilder.buildConstant(NVT, 0);
4376 Hi = InL;
4377 } else {
4378 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4379 auto OrLHS =
4380 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4381 auto OrRHS = MIRBuilder.buildLShr(
4382 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4383 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4384 }
4385 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4386 if (Amt.ugt(VTBits)) {
4387 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4388 } else if (Amt.ugt(NVTBits)) {
4389 Lo = MIRBuilder.buildLShr(NVT, InH,
4390 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4391 Hi = MIRBuilder.buildConstant(NVT, 0);
4392 } else if (Amt == NVTBits) {
4393 Lo = InH;
4394 Hi = MIRBuilder.buildConstant(NVT, 0);
4395 } else {
4396 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4397
4398 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4399 auto OrRHS = MIRBuilder.buildShl(
4400 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4401
4402 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4403 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4404 }
4405 } else {
4406 if (Amt.ugt(VTBits)) {
4407 Hi = Lo = MIRBuilder.buildAShr(
4408 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4409 } else if (Amt.ugt(NVTBits)) {
4410 Lo = MIRBuilder.buildAShr(NVT, InH,
4411 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4412 Hi = MIRBuilder.buildAShr(NVT, InH,
4413 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4414 } else if (Amt == NVTBits) {
4415 Lo = InH;
4416 Hi = MIRBuilder.buildAShr(NVT, InH,
4417 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4418 } else {
4419 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4420
4421 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4422 auto OrRHS = MIRBuilder.buildShl(
4423 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4424
4425 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4426 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4427 }
4428 }
4429
4430 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4431 MI.eraseFromParent();
4432
4433 return Legalized;
4434 }
4435
4436 // TODO: Optimize if constant shift amount.
4437 LegalizerHelper::LegalizeResult
narrowScalarShift(MachineInstr & MI,unsigned TypeIdx,LLT RequestedTy)4438 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4439 LLT RequestedTy) {
4440 if (TypeIdx == 1) {
4441 Observer.changingInstr(MI);
4442 narrowScalarSrc(MI, RequestedTy, 2);
4443 Observer.changedInstr(MI);
4444 return Legalized;
4445 }
4446
4447 Register DstReg = MI.getOperand(0).getReg();
4448 LLT DstTy = MRI.getType(DstReg);
4449 if (DstTy.isVector())
4450 return UnableToLegalize;
4451
4452 Register Amt = MI.getOperand(2).getReg();
4453 LLT ShiftAmtTy = MRI.getType(Amt);
4454 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4455 if (DstEltSize % 2 != 0)
4456 return UnableToLegalize;
4457
4458 // Ignore the input type. We can only go to exactly half the size of the
4459 // input. If that isn't small enough, the resulting pieces will be further
4460 // legalized.
4461 const unsigned NewBitSize = DstEltSize / 2;
4462 const LLT HalfTy = LLT::scalar(NewBitSize);
4463 const LLT CondTy = LLT::scalar(1);
4464
4465 if (const MachineInstr *KShiftAmt =
4466 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4467 return narrowScalarShiftByConstant(
4468 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4469 }
4470
4471 // TODO: Expand with known bits.
4472
4473 // Handle the fully general expansion by an unknown amount.
4474 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4475
4476 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4477 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4478 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4479
4480 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4481 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4482
4483 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4484 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4485 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4486
4487 Register ResultRegs[2];
4488 switch (MI.getOpcode()) {
4489 case TargetOpcode::G_SHL: {
4490 // Short: ShAmt < NewBitSize
4491 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4492
4493 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4494 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4495 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4496
4497 // Long: ShAmt >= NewBitSize
4498 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
4499 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4500
4501 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4502 auto Hi = MIRBuilder.buildSelect(
4503 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4504
4505 ResultRegs[0] = Lo.getReg(0);
4506 ResultRegs[1] = Hi.getReg(0);
4507 break;
4508 }
4509 case TargetOpcode::G_LSHR:
4510 case TargetOpcode::G_ASHR: {
4511 // Short: ShAmt < NewBitSize
4512 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4513
4514 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4515 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4516 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4517
4518 // Long: ShAmt >= NewBitSize
4519 MachineInstrBuilder HiL;
4520 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4521 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
4522 } else {
4523 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4524 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
4525 }
4526 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4527 {InH, AmtExcess}); // Lo from Hi part.
4528
4529 auto Lo = MIRBuilder.buildSelect(
4530 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4531
4532 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4533
4534 ResultRegs[0] = Lo.getReg(0);
4535 ResultRegs[1] = Hi.getReg(0);
4536 break;
4537 }
4538 default:
4539 llvm_unreachable("not a shift");
4540 }
4541
4542 MIRBuilder.buildMerge(DstReg, ResultRegs);
4543 MI.eraseFromParent();
4544 return Legalized;
4545 }
4546
4547 LegalizerHelper::LegalizeResult
moreElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4548 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4549 LLT MoreTy) {
4550 assert(TypeIdx == 0 && "Expecting only Idx 0");
4551
4552 Observer.changingInstr(MI);
4553 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4554 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4555 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4556 moreElementsVectorSrc(MI, MoreTy, I);
4557 }
4558
4559 MachineBasicBlock &MBB = *MI.getParent();
4560 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4561 moreElementsVectorDst(MI, MoreTy, 0);
4562 Observer.changedInstr(MI);
4563 return Legalized;
4564 }
4565
4566 LegalizerHelper::LegalizeResult
moreElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4567 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4568 LLT MoreTy) {
4569 unsigned Opc = MI.getOpcode();
4570 switch (Opc) {
4571 case TargetOpcode::G_IMPLICIT_DEF:
4572 case TargetOpcode::G_LOAD: {
4573 if (TypeIdx != 0)
4574 return UnableToLegalize;
4575 Observer.changingInstr(MI);
4576 moreElementsVectorDst(MI, MoreTy, 0);
4577 Observer.changedInstr(MI);
4578 return Legalized;
4579 }
4580 case TargetOpcode::G_STORE:
4581 if (TypeIdx != 0)
4582 return UnableToLegalize;
4583 Observer.changingInstr(MI);
4584 moreElementsVectorSrc(MI, MoreTy, 0);
4585 Observer.changedInstr(MI);
4586 return Legalized;
4587 case TargetOpcode::G_AND:
4588 case TargetOpcode::G_OR:
4589 case TargetOpcode::G_XOR:
4590 case TargetOpcode::G_SMIN:
4591 case TargetOpcode::G_SMAX:
4592 case TargetOpcode::G_UMIN:
4593 case TargetOpcode::G_UMAX:
4594 case TargetOpcode::G_FMINNUM:
4595 case TargetOpcode::G_FMAXNUM:
4596 case TargetOpcode::G_FMINNUM_IEEE:
4597 case TargetOpcode::G_FMAXNUM_IEEE:
4598 case TargetOpcode::G_FMINIMUM:
4599 case TargetOpcode::G_FMAXIMUM: {
4600 Observer.changingInstr(MI);
4601 moreElementsVectorSrc(MI, MoreTy, 1);
4602 moreElementsVectorSrc(MI, MoreTy, 2);
4603 moreElementsVectorDst(MI, MoreTy, 0);
4604 Observer.changedInstr(MI);
4605 return Legalized;
4606 }
4607 case TargetOpcode::G_EXTRACT:
4608 if (TypeIdx != 1)
4609 return UnableToLegalize;
4610 Observer.changingInstr(MI);
4611 moreElementsVectorSrc(MI, MoreTy, 1);
4612 Observer.changedInstr(MI);
4613 return Legalized;
4614 case TargetOpcode::G_INSERT:
4615 case TargetOpcode::G_FREEZE:
4616 if (TypeIdx != 0)
4617 return UnableToLegalize;
4618 Observer.changingInstr(MI);
4619 moreElementsVectorSrc(MI, MoreTy, 1);
4620 moreElementsVectorDst(MI, MoreTy, 0);
4621 Observer.changedInstr(MI);
4622 return Legalized;
4623 case TargetOpcode::G_SELECT:
4624 if (TypeIdx != 0)
4625 return UnableToLegalize;
4626 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4627 return UnableToLegalize;
4628
4629 Observer.changingInstr(MI);
4630 moreElementsVectorSrc(MI, MoreTy, 2);
4631 moreElementsVectorSrc(MI, MoreTy, 3);
4632 moreElementsVectorDst(MI, MoreTy, 0);
4633 Observer.changedInstr(MI);
4634 return Legalized;
4635 case TargetOpcode::G_UNMERGE_VALUES: {
4636 if (TypeIdx != 1)
4637 return UnableToLegalize;
4638
4639 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4640 int NumDst = MI.getNumOperands() - 1;
4641 moreElementsVectorSrc(MI, MoreTy, NumDst);
4642
4643 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4644 for (int I = 0; I != NumDst; ++I)
4645 MIB.addDef(MI.getOperand(I).getReg());
4646
4647 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4648 for (int I = NumDst; I != NewNumDst; ++I)
4649 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4650
4651 MIB.addUse(MI.getOperand(NumDst).getReg());
4652 MI.eraseFromParent();
4653 return Legalized;
4654 }
4655 case TargetOpcode::G_PHI:
4656 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4657 default:
4658 return UnableToLegalize;
4659 }
4660 }
4661
multiplyRegisters(SmallVectorImpl<Register> & DstRegs,ArrayRef<Register> Src1Regs,ArrayRef<Register> Src2Regs,LLT NarrowTy)4662 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4663 ArrayRef<Register> Src1Regs,
4664 ArrayRef<Register> Src2Regs,
4665 LLT NarrowTy) {
4666 MachineIRBuilder &B = MIRBuilder;
4667 unsigned SrcParts = Src1Regs.size();
4668 unsigned DstParts = DstRegs.size();
4669
4670 unsigned DstIdx = 0; // Low bits of the result.
4671 Register FactorSum =
4672 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4673 DstRegs[DstIdx] = FactorSum;
4674
4675 unsigned CarrySumPrevDstIdx;
4676 SmallVector<Register, 4> Factors;
4677
4678 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4679 // Collect low parts of muls for DstIdx.
4680 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4681 i <= std::min(DstIdx, SrcParts - 1); ++i) {
4682 MachineInstrBuilder Mul =
4683 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4684 Factors.push_back(Mul.getReg(0));
4685 }
4686 // Collect high parts of muls from previous DstIdx.
4687 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4688 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4689 MachineInstrBuilder Umulh =
4690 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4691 Factors.push_back(Umulh.getReg(0));
4692 }
4693 // Add CarrySum from additions calculated for previous DstIdx.
4694 if (DstIdx != 1) {
4695 Factors.push_back(CarrySumPrevDstIdx);
4696 }
4697
4698 Register CarrySum;
4699 // Add all factors and accumulate all carries into CarrySum.
4700 if (DstIdx != DstParts - 1) {
4701 MachineInstrBuilder Uaddo =
4702 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4703 FactorSum = Uaddo.getReg(0);
4704 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4705 for (unsigned i = 2; i < Factors.size(); ++i) {
4706 MachineInstrBuilder Uaddo =
4707 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4708 FactorSum = Uaddo.getReg(0);
4709 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4710 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4711 }
4712 } else {
4713 // Since value for the next index is not calculated, neither is CarrySum.
4714 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4715 for (unsigned i = 2; i < Factors.size(); ++i)
4716 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4717 }
4718
4719 CarrySumPrevDstIdx = CarrySum;
4720 DstRegs[DstIdx] = FactorSum;
4721 Factors.clear();
4722 }
4723 }
4724
4725 LegalizerHelper::LegalizeResult
narrowScalarAddSub(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4726 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4727 LLT NarrowTy) {
4728 if (TypeIdx != 0)
4729 return UnableToLegalize;
4730
4731 Register DstReg = MI.getOperand(0).getReg();
4732 LLT DstType = MRI.getType(DstReg);
4733 // FIXME: add support for vector types
4734 if (DstType.isVector())
4735 return UnableToLegalize;
4736
4737 uint64_t SizeOp0 = DstType.getSizeInBits();
4738 uint64_t NarrowSize = NarrowTy.getSizeInBits();
4739
4740 // FIXME: add support for when SizeOp0 isn't an exact multiple of
4741 // NarrowSize.
4742 if (SizeOp0 % NarrowSize != 0)
4743 return UnableToLegalize;
4744
4745 // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4746 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4747
4748 unsigned Opcode = MI.getOpcode();
4749 unsigned OpO, OpE, OpF;
4750 switch (Opcode) {
4751 case TargetOpcode::G_SADDO:
4752 case TargetOpcode::G_SADDE:
4753 case TargetOpcode::G_UADDO:
4754 case TargetOpcode::G_UADDE:
4755 case TargetOpcode::G_ADD:
4756 OpO = TargetOpcode::G_UADDO;
4757 OpE = TargetOpcode::G_UADDE;
4758 OpF = TargetOpcode::G_UADDE;
4759 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4760 OpF = TargetOpcode::G_SADDE;
4761 break;
4762 case TargetOpcode::G_SSUBO:
4763 case TargetOpcode::G_SSUBE:
4764 case TargetOpcode::G_USUBO:
4765 case TargetOpcode::G_USUBE:
4766 case TargetOpcode::G_SUB:
4767 OpO = TargetOpcode::G_USUBO;
4768 OpE = TargetOpcode::G_USUBE;
4769 OpF = TargetOpcode::G_USUBE;
4770 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4771 OpF = TargetOpcode::G_SSUBE;
4772 break;
4773 default:
4774 llvm_unreachable("Unexpected add/sub opcode!");
4775 }
4776
4777 // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4778 unsigned NumDefs = MI.getNumExplicitDefs();
4779 Register Src1 = MI.getOperand(NumDefs).getReg();
4780 Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4781 Register CarryDst;
4782 if (NumDefs == 2)
4783 CarryDst = MI.getOperand(1).getReg();
4784 Register CarryIn;
4785 if (MI.getNumOperands() == NumDefs + 3)
4786 CarryIn = MI.getOperand(NumDefs + 2).getReg();
4787
4788 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4789 extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4790 extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4791
4792 for (int i = 0; i < NumParts; ++i) {
4793 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4794 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4795 // Forward the final carry-out to the destination register
4796 if (i == NumParts - 1 && CarryDst)
4797 CarryOut = CarryDst;
4798
4799 if (!CarryIn) {
4800 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4801 {Src1Regs[i], Src2Regs[i]});
4802 } else if (i == NumParts - 1) {
4803 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4804 {Src1Regs[i], Src2Regs[i], CarryIn});
4805 } else {
4806 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4807 {Src1Regs[i], Src2Regs[i], CarryIn});
4808 }
4809
4810 DstRegs.push_back(DstReg);
4811 CarryIn = CarryOut;
4812 }
4813 MIRBuilder.buildMerge(DstReg, DstRegs);
4814 MI.eraseFromParent();
4815 return Legalized;
4816 }
4817
4818 LegalizerHelper::LegalizeResult
narrowScalarMul(MachineInstr & MI,LLT NarrowTy)4819 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4820 Register DstReg = MI.getOperand(0).getReg();
4821 Register Src1 = MI.getOperand(1).getReg();
4822 Register Src2 = MI.getOperand(2).getReg();
4823
4824 LLT Ty = MRI.getType(DstReg);
4825 if (Ty.isVector())
4826 return UnableToLegalize;
4827
4828 unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4829 unsigned DstSize = Ty.getSizeInBits();
4830 unsigned NarrowSize = NarrowTy.getSizeInBits();
4831 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4832 return UnableToLegalize;
4833
4834 unsigned NumDstParts = DstSize / NarrowSize;
4835 unsigned NumSrcParts = SrcSize / NarrowSize;
4836 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4837 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4838
4839 SmallVector<Register, 2> Src1Parts, Src2Parts;
4840 SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4841 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4842 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4843 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4844
4845 // Take only high half of registers if this is high mul.
4846 ArrayRef<Register> DstRegs(
4847 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4848 MIRBuilder.buildMerge(DstReg, DstRegs);
4849 MI.eraseFromParent();
4850 return Legalized;
4851 }
4852
4853 LegalizerHelper::LegalizeResult
narrowScalarFPTOI(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4854 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
4855 LLT NarrowTy) {
4856 if (TypeIdx != 0)
4857 return UnableToLegalize;
4858
4859 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
4860
4861 Register Src = MI.getOperand(1).getReg();
4862 LLT SrcTy = MRI.getType(Src);
4863
4864 // If all finite floats fit into the narrowed integer type, we can just swap
4865 // out the result type. This is practically only useful for conversions from
4866 // half to at least 16-bits, so just handle the one case.
4867 if (SrcTy.getScalarType() != LLT::scalar(16) ||
4868 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
4869 return UnableToLegalize;
4870
4871 Observer.changingInstr(MI);
4872 narrowScalarDst(MI, NarrowTy, 0,
4873 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
4874 Observer.changedInstr(MI);
4875 return Legalized;
4876 }
4877
4878 LegalizerHelper::LegalizeResult
narrowScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4879 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4880 LLT NarrowTy) {
4881 if (TypeIdx != 1)
4882 return UnableToLegalize;
4883
4884 uint64_t NarrowSize = NarrowTy.getSizeInBits();
4885
4886 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4887 // FIXME: add support for when SizeOp1 isn't an exact multiple of
4888 // NarrowSize.
4889 if (SizeOp1 % NarrowSize != 0)
4890 return UnableToLegalize;
4891 int NumParts = SizeOp1 / NarrowSize;
4892
4893 SmallVector<Register, 2> SrcRegs, DstRegs;
4894 SmallVector<uint64_t, 2> Indexes;
4895 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4896
4897 Register OpReg = MI.getOperand(0).getReg();
4898 uint64_t OpStart = MI.getOperand(2).getImm();
4899 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4900 for (int i = 0; i < NumParts; ++i) {
4901 unsigned SrcStart = i * NarrowSize;
4902
4903 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4904 // No part of the extract uses this subregister, ignore it.
4905 continue;
4906 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4907 // The entire subregister is extracted, forward the value.
4908 DstRegs.push_back(SrcRegs[i]);
4909 continue;
4910 }
4911
4912 // OpSegStart is where this destination segment would start in OpReg if it
4913 // extended infinitely in both directions.
4914 int64_t ExtractOffset;
4915 uint64_t SegSize;
4916 if (OpStart < SrcStart) {
4917 ExtractOffset = 0;
4918 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4919 } else {
4920 ExtractOffset = OpStart - SrcStart;
4921 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4922 }
4923
4924 Register SegReg = SrcRegs[i];
4925 if (ExtractOffset != 0 || SegSize != NarrowSize) {
4926 // A genuine extract is needed.
4927 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4928 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4929 }
4930
4931 DstRegs.push_back(SegReg);
4932 }
4933
4934 Register DstReg = MI.getOperand(0).getReg();
4935 if (MRI.getType(DstReg).isVector())
4936 MIRBuilder.buildBuildVector(DstReg, DstRegs);
4937 else if (DstRegs.size() > 1)
4938 MIRBuilder.buildMerge(DstReg, DstRegs);
4939 else
4940 MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4941 MI.eraseFromParent();
4942 return Legalized;
4943 }
4944
4945 LegalizerHelper::LegalizeResult
narrowScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4946 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4947 LLT NarrowTy) {
4948 // FIXME: Don't know how to handle secondary types yet.
4949 if (TypeIdx != 0)
4950 return UnableToLegalize;
4951
4952 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4953 uint64_t NarrowSize = NarrowTy.getSizeInBits();
4954
4955 // FIXME: add support for when SizeOp0 isn't an exact multiple of
4956 // NarrowSize.
4957 if (SizeOp0 % NarrowSize != 0)
4958 return UnableToLegalize;
4959
4960 int NumParts = SizeOp0 / NarrowSize;
4961
4962 SmallVector<Register, 2> SrcRegs, DstRegs;
4963 SmallVector<uint64_t, 2> Indexes;
4964 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4965
4966 Register OpReg = MI.getOperand(2).getReg();
4967 uint64_t OpStart = MI.getOperand(3).getImm();
4968 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4969 for (int i = 0; i < NumParts; ++i) {
4970 unsigned DstStart = i * NarrowSize;
4971
4972 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4973 // No part of the insert affects this subregister, forward the original.
4974 DstRegs.push_back(SrcRegs[i]);
4975 continue;
4976 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4977 // The entire subregister is defined by this insert, forward the new
4978 // value.
4979 DstRegs.push_back(OpReg);
4980 continue;
4981 }
4982
4983 // OpSegStart is where this destination segment would start in OpReg if it
4984 // extended infinitely in both directions.
4985 int64_t ExtractOffset, InsertOffset;
4986 uint64_t SegSize;
4987 if (OpStart < DstStart) {
4988 InsertOffset = 0;
4989 ExtractOffset = DstStart - OpStart;
4990 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4991 } else {
4992 InsertOffset = OpStart - DstStart;
4993 ExtractOffset = 0;
4994 SegSize =
4995 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4996 }
4997
4998 Register SegReg = OpReg;
4999 if (ExtractOffset != 0 || SegSize != OpSize) {
5000 // A genuine extract is needed.
5001 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5002 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5003 }
5004
5005 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5006 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
5007 DstRegs.push_back(DstReg);
5008 }
5009
5010 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
5011 Register DstReg = MI.getOperand(0).getReg();
5012 if(MRI.getType(DstReg).isVector())
5013 MIRBuilder.buildBuildVector(DstReg, DstRegs);
5014 else
5015 MIRBuilder.buildMerge(DstReg, DstRegs);
5016 MI.eraseFromParent();
5017 return Legalized;
5018 }
5019
5020 LegalizerHelper::LegalizeResult
narrowScalarBasic(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5021 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5022 LLT NarrowTy) {
5023 Register DstReg = MI.getOperand(0).getReg();
5024 LLT DstTy = MRI.getType(DstReg);
5025
5026 assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5027
5028 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5029 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5030 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5031 LLT LeftoverTy;
5032 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5033 Src0Regs, Src0LeftoverRegs))
5034 return UnableToLegalize;
5035
5036 LLT Unused;
5037 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5038 Src1Regs, Src1LeftoverRegs))
5039 llvm_unreachable("inconsistent extractParts result");
5040
5041 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5042 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5043 {Src0Regs[I], Src1Regs[I]});
5044 DstRegs.push_back(Inst.getReg(0));
5045 }
5046
5047 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5048 auto Inst = MIRBuilder.buildInstr(
5049 MI.getOpcode(),
5050 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5051 DstLeftoverRegs.push_back(Inst.getReg(0));
5052 }
5053
5054 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5055 LeftoverTy, DstLeftoverRegs);
5056
5057 MI.eraseFromParent();
5058 return Legalized;
5059 }
5060
5061 LegalizerHelper::LegalizeResult
narrowScalarExt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5062 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5063 LLT NarrowTy) {
5064 if (TypeIdx != 0)
5065 return UnableToLegalize;
5066
5067 Register DstReg = MI.getOperand(0).getReg();
5068 Register SrcReg = MI.getOperand(1).getReg();
5069
5070 LLT DstTy = MRI.getType(DstReg);
5071 if (DstTy.isVector())
5072 return UnableToLegalize;
5073
5074 SmallVector<Register, 8> Parts;
5075 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5076 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5077 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5078
5079 MI.eraseFromParent();
5080 return Legalized;
5081 }
5082
5083 LegalizerHelper::LegalizeResult
narrowScalarSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5084 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5085 LLT NarrowTy) {
5086 if (TypeIdx != 0)
5087 return UnableToLegalize;
5088
5089 Register CondReg = MI.getOperand(1).getReg();
5090 LLT CondTy = MRI.getType(CondReg);
5091 if (CondTy.isVector()) // TODO: Handle vselect
5092 return UnableToLegalize;
5093
5094 Register DstReg = MI.getOperand(0).getReg();
5095 LLT DstTy = MRI.getType(DstReg);
5096
5097 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5098 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5099 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5100 LLT LeftoverTy;
5101 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5102 Src1Regs, Src1LeftoverRegs))
5103 return UnableToLegalize;
5104
5105 LLT Unused;
5106 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5107 Src2Regs, Src2LeftoverRegs))
5108 llvm_unreachable("inconsistent extractParts result");
5109
5110 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5111 auto Select = MIRBuilder.buildSelect(NarrowTy,
5112 CondReg, Src1Regs[I], Src2Regs[I]);
5113 DstRegs.push_back(Select.getReg(0));
5114 }
5115
5116 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5117 auto Select = MIRBuilder.buildSelect(
5118 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5119 DstLeftoverRegs.push_back(Select.getReg(0));
5120 }
5121
5122 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5123 LeftoverTy, DstLeftoverRegs);
5124
5125 MI.eraseFromParent();
5126 return Legalized;
5127 }
5128
5129 LegalizerHelper::LegalizeResult
narrowScalarCTLZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5130 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5131 LLT NarrowTy) {
5132 if (TypeIdx != 1)
5133 return UnableToLegalize;
5134
5135 Register DstReg = MI.getOperand(0).getReg();
5136 Register SrcReg = MI.getOperand(1).getReg();
5137 LLT DstTy = MRI.getType(DstReg);
5138 LLT SrcTy = MRI.getType(SrcReg);
5139 unsigned NarrowSize = NarrowTy.getSizeInBits();
5140
5141 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5142 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5143
5144 MachineIRBuilder &B = MIRBuilder;
5145 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5146 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5147 auto C_0 = B.buildConstant(NarrowTy, 0);
5148 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5149 UnmergeSrc.getReg(1), C_0);
5150 auto LoCTLZ = IsUndef ?
5151 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5152 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5153 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5154 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5155 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5156 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5157
5158 MI.eraseFromParent();
5159 return Legalized;
5160 }
5161
5162 return UnableToLegalize;
5163 }
5164
5165 LegalizerHelper::LegalizeResult
narrowScalarCTTZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5166 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5167 LLT NarrowTy) {
5168 if (TypeIdx != 1)
5169 return UnableToLegalize;
5170
5171 Register DstReg = MI.getOperand(0).getReg();
5172 Register SrcReg = MI.getOperand(1).getReg();
5173 LLT DstTy = MRI.getType(DstReg);
5174 LLT SrcTy = MRI.getType(SrcReg);
5175 unsigned NarrowSize = NarrowTy.getSizeInBits();
5176
5177 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5178 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5179
5180 MachineIRBuilder &B = MIRBuilder;
5181 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5182 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5183 auto C_0 = B.buildConstant(NarrowTy, 0);
5184 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5185 UnmergeSrc.getReg(0), C_0);
5186 auto HiCTTZ = IsUndef ?
5187 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5188 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5189 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5190 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5191 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5192 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5193
5194 MI.eraseFromParent();
5195 return Legalized;
5196 }
5197
5198 return UnableToLegalize;
5199 }
5200
5201 LegalizerHelper::LegalizeResult
narrowScalarCTPOP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5202 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5203 LLT NarrowTy) {
5204 if (TypeIdx != 1)
5205 return UnableToLegalize;
5206
5207 Register DstReg = MI.getOperand(0).getReg();
5208 LLT DstTy = MRI.getType(DstReg);
5209 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5210 unsigned NarrowSize = NarrowTy.getSizeInBits();
5211
5212 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5213 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5214
5215 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5216 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5217 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5218
5219 MI.eraseFromParent();
5220 return Legalized;
5221 }
5222
5223 return UnableToLegalize;
5224 }
5225
5226 LegalizerHelper::LegalizeResult
lowerBitCount(MachineInstr & MI)5227 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5228 unsigned Opc = MI.getOpcode();
5229 const auto &TII = MIRBuilder.getTII();
5230 auto isSupported = [this](const LegalityQuery &Q) {
5231 auto QAction = LI.getAction(Q).Action;
5232 return QAction == Legal || QAction == Libcall || QAction == Custom;
5233 };
5234 switch (Opc) {
5235 default:
5236 return UnableToLegalize;
5237 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5238 // This trivially expands to CTLZ.
5239 Observer.changingInstr(MI);
5240 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5241 Observer.changedInstr(MI);
5242 return Legalized;
5243 }
5244 case TargetOpcode::G_CTLZ: {
5245 Register DstReg = MI.getOperand(0).getReg();
5246 Register SrcReg = MI.getOperand(1).getReg();
5247 LLT DstTy = MRI.getType(DstReg);
5248 LLT SrcTy = MRI.getType(SrcReg);
5249 unsigned Len = SrcTy.getSizeInBits();
5250
5251 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5252 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5253 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5254 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5255 auto ICmp = MIRBuilder.buildICmp(
5256 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5257 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5258 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5259 MI.eraseFromParent();
5260 return Legalized;
5261 }
5262 // for now, we do this:
5263 // NewLen = NextPowerOf2(Len);
5264 // x = x | (x >> 1);
5265 // x = x | (x >> 2);
5266 // ...
5267 // x = x | (x >>16);
5268 // x = x | (x >>32); // for 64-bit input
5269 // Upto NewLen/2
5270 // return Len - popcount(x);
5271 //
5272 // Ref: "Hacker's Delight" by Henry Warren
5273 Register Op = SrcReg;
5274 unsigned NewLen = PowerOf2Ceil(Len);
5275 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5276 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5277 auto MIBOp = MIRBuilder.buildOr(
5278 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5279 Op = MIBOp.getReg(0);
5280 }
5281 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5282 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5283 MIBPop);
5284 MI.eraseFromParent();
5285 return Legalized;
5286 }
5287 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5288 // This trivially expands to CTTZ.
5289 Observer.changingInstr(MI);
5290 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5291 Observer.changedInstr(MI);
5292 return Legalized;
5293 }
5294 case TargetOpcode::G_CTTZ: {
5295 Register DstReg = MI.getOperand(0).getReg();
5296 Register SrcReg = MI.getOperand(1).getReg();
5297 LLT DstTy = MRI.getType(DstReg);
5298 LLT SrcTy = MRI.getType(SrcReg);
5299
5300 unsigned Len = SrcTy.getSizeInBits();
5301 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5302 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5303 // zero.
5304 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5305 auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5306 auto ICmp = MIRBuilder.buildICmp(
5307 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5308 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5309 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5310 MI.eraseFromParent();
5311 return Legalized;
5312 }
5313 // for now, we use: { return popcount(~x & (x - 1)); }
5314 // unless the target has ctlz but not ctpop, in which case we use:
5315 // { return 32 - nlz(~x & (x-1)); }
5316 // Ref: "Hacker's Delight" by Henry Warren
5317 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5318 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5319 auto MIBTmp = MIRBuilder.buildAnd(
5320 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5321 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5322 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5323 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5324 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5325 MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5326 MI.eraseFromParent();
5327 return Legalized;
5328 }
5329 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5330 MI.getOperand(1).setReg(MIBTmp.getReg(0));
5331 return Legalized;
5332 }
5333 case TargetOpcode::G_CTPOP: {
5334 Register SrcReg = MI.getOperand(1).getReg();
5335 LLT Ty = MRI.getType(SrcReg);
5336 unsigned Size = Ty.getSizeInBits();
5337 MachineIRBuilder &B = MIRBuilder;
5338
5339 // Count set bits in blocks of 2 bits. Default approach would be
5340 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5341 // We use following formula instead:
5342 // B2Count = val - { (val >> 1) & 0x55555555 }
5343 // since it gives same result in blocks of 2 with one instruction less.
5344 auto C_1 = B.buildConstant(Ty, 1);
5345 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5346 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5347 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5348 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5349 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5350
5351 // In order to get count in blocks of 4 add values from adjacent block of 2.
5352 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5353 auto C_2 = B.buildConstant(Ty, 2);
5354 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5355 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5356 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5357 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5358 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5359 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5360
5361 // For count in blocks of 8 bits we don't have to mask high 4 bits before
5362 // addition since count value sits in range {0,...,8} and 4 bits are enough
5363 // to hold such binary values. After addition high 4 bits still hold count
5364 // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5365 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5366 auto C_4 = B.buildConstant(Ty, 4);
5367 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5368 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5369 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5370 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5371 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5372
5373 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5374 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5375 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5376 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5377 auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5378
5379 // Shift count result from 8 high bits to low bits.
5380 auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5381 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5382
5383 MI.eraseFromParent();
5384 return Legalized;
5385 }
5386 }
5387 }
5388
5389 // Check that (every element of) Reg is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(const MachineRegisterInfo & MRI,Register Reg,unsigned BW)5390 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5391 Register Reg, unsigned BW) {
5392 return matchUnaryPredicate(
5393 MRI, Reg,
5394 [=](const Constant *C) {
5395 // Null constant here means an undef.
5396 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5397 return !CI || CI->getValue().urem(BW) != 0;
5398 },
5399 /*AllowUndefs*/ true);
5400 }
5401
5402 LegalizerHelper::LegalizeResult
lowerFunnelShiftWithInverse(MachineInstr & MI)5403 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5404 Register Dst = MI.getOperand(0).getReg();
5405 Register X = MI.getOperand(1).getReg();
5406 Register Y = MI.getOperand(2).getReg();
5407 Register Z = MI.getOperand(3).getReg();
5408 LLT Ty = MRI.getType(Dst);
5409 LLT ShTy = MRI.getType(Z);
5410
5411 unsigned BW = Ty.getScalarSizeInBits();
5412
5413 if (!isPowerOf2_32(BW))
5414 return UnableToLegalize;
5415
5416 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5417 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5418
5419 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5420 // fshl X, Y, Z -> fshr X, Y, -Z
5421 // fshr X, Y, Z -> fshl X, Y, -Z
5422 auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5423 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5424 } else {
5425 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5426 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5427 auto One = MIRBuilder.buildConstant(ShTy, 1);
5428 if (IsFSHL) {
5429 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5430 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5431 } else {
5432 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5433 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5434 }
5435
5436 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5437 }
5438
5439 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5440 MI.eraseFromParent();
5441 return Legalized;
5442 }
5443
5444 LegalizerHelper::LegalizeResult
lowerFunnelShiftAsShifts(MachineInstr & MI)5445 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5446 Register Dst = MI.getOperand(0).getReg();
5447 Register X = MI.getOperand(1).getReg();
5448 Register Y = MI.getOperand(2).getReg();
5449 Register Z = MI.getOperand(3).getReg();
5450 LLT Ty = MRI.getType(Dst);
5451 LLT ShTy = MRI.getType(Z);
5452
5453 const unsigned BW = Ty.getScalarSizeInBits();
5454 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5455
5456 Register ShX, ShY;
5457 Register ShAmt, InvShAmt;
5458
5459 // FIXME: Emit optimized urem by constant instead of letting it expand later.
5460 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5461 // fshl: X << C | Y >> (BW - C)
5462 // fshr: X << (BW - C) | Y >> C
5463 // where C = Z % BW is not zero
5464 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5465 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5466 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5467 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5468 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5469 } else {
5470 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5471 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5472 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5473 if (isPowerOf2_32(BW)) {
5474 // Z % BW -> Z & (BW - 1)
5475 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5476 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5477 auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5478 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5479 } else {
5480 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5481 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5482 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5483 }
5484
5485 auto One = MIRBuilder.buildConstant(ShTy, 1);
5486 if (IsFSHL) {
5487 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5488 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5489 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5490 } else {
5491 auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5492 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5493 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5494 }
5495 }
5496
5497 MIRBuilder.buildOr(Dst, ShX, ShY);
5498 MI.eraseFromParent();
5499 return Legalized;
5500 }
5501
5502 LegalizerHelper::LegalizeResult
lowerFunnelShift(MachineInstr & MI)5503 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5504 // These operations approximately do the following (while avoiding undefined
5505 // shifts by BW):
5506 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5507 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5508 Register Dst = MI.getOperand(0).getReg();
5509 LLT Ty = MRI.getType(Dst);
5510 LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5511
5512 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5513 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5514
5515 // TODO: Use smarter heuristic that accounts for vector legalization.
5516 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5517 return lowerFunnelShiftAsShifts(MI);
5518
5519 // This only works for powers of 2, fallback to shifts if it fails.
5520 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5521 if (Result == UnableToLegalize)
5522 return lowerFunnelShiftAsShifts(MI);
5523 return Result;
5524 }
5525
5526 LegalizerHelper::LegalizeResult
lowerRotateWithReverseRotate(MachineInstr & MI)5527 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5528 Register Dst = MI.getOperand(0).getReg();
5529 Register Src = MI.getOperand(1).getReg();
5530 Register Amt = MI.getOperand(2).getReg();
5531 LLT AmtTy = MRI.getType(Amt);
5532 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5533 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5534 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5535 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5536 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5537 MI.eraseFromParent();
5538 return Legalized;
5539 }
5540
lowerRotate(MachineInstr & MI)5541 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5542 Register Dst = MI.getOperand(0).getReg();
5543 Register Src = MI.getOperand(1).getReg();
5544 Register Amt = MI.getOperand(2).getReg();
5545 LLT DstTy = MRI.getType(Dst);
5546 LLT SrcTy = MRI.getType(Dst);
5547 LLT AmtTy = MRI.getType(Amt);
5548
5549 unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5550 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5551
5552 MIRBuilder.setInstrAndDebugLoc(MI);
5553
5554 // If a rotate in the other direction is supported, use it.
5555 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5556 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5557 isPowerOf2_32(EltSizeInBits))
5558 return lowerRotateWithReverseRotate(MI);
5559
5560 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5561 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5562 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5563 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5564 Register ShVal;
5565 Register RevShiftVal;
5566 if (isPowerOf2_32(EltSizeInBits)) {
5567 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5568 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5569 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5570 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5571 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5572 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5573 RevShiftVal =
5574 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5575 } else {
5576 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5577 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5578 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5579 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5580 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5581 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5582 auto One = MIRBuilder.buildConstant(AmtTy, 1);
5583 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5584 RevShiftVal =
5585 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5586 }
5587 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5588 MI.eraseFromParent();
5589 return Legalized;
5590 }
5591
5592 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5593 // representation.
5594 LegalizerHelper::LegalizeResult
lowerU64ToF32BitOps(MachineInstr & MI)5595 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5596 Register Dst = MI.getOperand(0).getReg();
5597 Register Src = MI.getOperand(1).getReg();
5598 const LLT S64 = LLT::scalar(64);
5599 const LLT S32 = LLT::scalar(32);
5600 const LLT S1 = LLT::scalar(1);
5601
5602 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5603
5604 // unsigned cul2f(ulong u) {
5605 // uint lz = clz(u);
5606 // uint e = (u != 0) ? 127U + 63U - lz : 0;
5607 // u = (u << lz) & 0x7fffffffffffffffUL;
5608 // ulong t = u & 0xffffffffffUL;
5609 // uint v = (e << 23) | (uint)(u >> 40);
5610 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5611 // return as_float(v + r);
5612 // }
5613
5614 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5615 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5616
5617 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5618
5619 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5620 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5621
5622 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5623 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5624
5625 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5626 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5627
5628 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5629
5630 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5631 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5632
5633 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5634 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5635 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5636
5637 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5638 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5639 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5640 auto One = MIRBuilder.buildConstant(S32, 1);
5641
5642 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5643 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5644 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5645 MIRBuilder.buildAdd(Dst, V, R);
5646
5647 MI.eraseFromParent();
5648 return Legalized;
5649 }
5650
lowerUITOFP(MachineInstr & MI)5651 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5652 Register Dst = MI.getOperand(0).getReg();
5653 Register Src = MI.getOperand(1).getReg();
5654 LLT DstTy = MRI.getType(Dst);
5655 LLT SrcTy = MRI.getType(Src);
5656
5657 if (SrcTy == LLT::scalar(1)) {
5658 auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5659 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5660 MIRBuilder.buildSelect(Dst, Src, True, False);
5661 MI.eraseFromParent();
5662 return Legalized;
5663 }
5664
5665 if (SrcTy != LLT::scalar(64))
5666 return UnableToLegalize;
5667
5668 if (DstTy == LLT::scalar(32)) {
5669 // TODO: SelectionDAG has several alternative expansions to port which may
5670 // be more reasonble depending on the available instructions. If a target
5671 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5672 // intermediate type, this is probably worse.
5673 return lowerU64ToF32BitOps(MI);
5674 }
5675
5676 return UnableToLegalize;
5677 }
5678
lowerSITOFP(MachineInstr & MI)5679 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5680 Register Dst = MI.getOperand(0).getReg();
5681 Register Src = MI.getOperand(1).getReg();
5682 LLT DstTy = MRI.getType(Dst);
5683 LLT SrcTy = MRI.getType(Src);
5684
5685 const LLT S64 = LLT::scalar(64);
5686 const LLT S32 = LLT::scalar(32);
5687 const LLT S1 = LLT::scalar(1);
5688
5689 if (SrcTy == S1) {
5690 auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5691 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5692 MIRBuilder.buildSelect(Dst, Src, True, False);
5693 MI.eraseFromParent();
5694 return Legalized;
5695 }
5696
5697 if (SrcTy != S64)
5698 return UnableToLegalize;
5699
5700 if (DstTy == S32) {
5701 // signed cl2f(long l) {
5702 // long s = l >> 63;
5703 // float r = cul2f((l + s) ^ s);
5704 // return s ? -r : r;
5705 // }
5706 Register L = Src;
5707 auto SignBit = MIRBuilder.buildConstant(S64, 63);
5708 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5709
5710 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5711 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5712 auto R = MIRBuilder.buildUITOFP(S32, Xor);
5713
5714 auto RNeg = MIRBuilder.buildFNeg(S32, R);
5715 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5716 MIRBuilder.buildConstant(S64, 0));
5717 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5718 MI.eraseFromParent();
5719 return Legalized;
5720 }
5721
5722 return UnableToLegalize;
5723 }
5724
lowerFPTOUI(MachineInstr & MI)5725 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5726 Register Dst = MI.getOperand(0).getReg();
5727 Register Src = MI.getOperand(1).getReg();
5728 LLT DstTy = MRI.getType(Dst);
5729 LLT SrcTy = MRI.getType(Src);
5730 const LLT S64 = LLT::scalar(64);
5731 const LLT S32 = LLT::scalar(32);
5732
5733 if (SrcTy != S64 && SrcTy != S32)
5734 return UnableToLegalize;
5735 if (DstTy != S32 && DstTy != S64)
5736 return UnableToLegalize;
5737
5738 // FPTOSI gives same result as FPTOUI for positive signed integers.
5739 // FPTOUI needs to deal with fp values that convert to unsigned integers
5740 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5741
5742 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5743 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5744 : APFloat::IEEEdouble(),
5745 APInt::getNullValue(SrcTy.getSizeInBits()));
5746 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5747
5748 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5749
5750 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5751 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5752 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5753 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5754 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5755 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5756 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5757
5758 const LLT S1 = LLT::scalar(1);
5759
5760 MachineInstrBuilder FCMP =
5761 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5762 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5763
5764 MI.eraseFromParent();
5765 return Legalized;
5766 }
5767
lowerFPTOSI(MachineInstr & MI)5768 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5769 Register Dst = MI.getOperand(0).getReg();
5770 Register Src = MI.getOperand(1).getReg();
5771 LLT DstTy = MRI.getType(Dst);
5772 LLT SrcTy = MRI.getType(Src);
5773 const LLT S64 = LLT::scalar(64);
5774 const LLT S32 = LLT::scalar(32);
5775
5776 // FIXME: Only f32 to i64 conversions are supported.
5777 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5778 return UnableToLegalize;
5779
5780 // Expand f32 -> i64 conversion
5781 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5782 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5783
5784 unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5785
5786 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5787 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5788
5789 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5790 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5791
5792 auto SignMask = MIRBuilder.buildConstant(SrcTy,
5793 APInt::getSignMask(SrcEltBits));
5794 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5795 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5796 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5797 Sign = MIRBuilder.buildSExt(DstTy, Sign);
5798
5799 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5800 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5801 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5802
5803 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5804 R = MIRBuilder.buildZExt(DstTy, R);
5805
5806 auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5807 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5808 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5809 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5810
5811 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5812 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5813
5814 const LLT S1 = LLT::scalar(1);
5815 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5816 S1, Exponent, ExponentLoBit);
5817
5818 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5819
5820 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5821 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5822
5823 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5824
5825 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5826 S1, Exponent, ZeroSrcTy);
5827
5828 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5829 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5830
5831 MI.eraseFromParent();
5832 return Legalized;
5833 }
5834
5835 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5836 LegalizerHelper::LegalizeResult
lowerFPTRUNC_F64_TO_F16(MachineInstr & MI)5837 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5838 Register Dst = MI.getOperand(0).getReg();
5839 Register Src = MI.getOperand(1).getReg();
5840
5841 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5842 return UnableToLegalize;
5843
5844 const unsigned ExpMask = 0x7ff;
5845 const unsigned ExpBiasf64 = 1023;
5846 const unsigned ExpBiasf16 = 15;
5847 const LLT S32 = LLT::scalar(32);
5848 const LLT S1 = LLT::scalar(1);
5849
5850 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5851 Register U = Unmerge.getReg(0);
5852 Register UH = Unmerge.getReg(1);
5853
5854 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5855 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5856
5857 // Subtract the fp64 exponent bias (1023) to get the real exponent and
5858 // add the f16 bias (15) to get the biased exponent for the f16 format.
5859 E = MIRBuilder.buildAdd(
5860 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5861
5862 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5863 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5864
5865 auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5866 MIRBuilder.buildConstant(S32, 0x1ff));
5867 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5868
5869 auto Zero = MIRBuilder.buildConstant(S32, 0);
5870 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5871 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5872 M = MIRBuilder.buildOr(S32, M, Lo40Set);
5873
5874 // (M != 0 ? 0x0200 : 0) | 0x7c00;
5875 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5876 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5877 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5878
5879 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5880 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5881
5882 // N = M | (E << 12);
5883 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5884 auto N = MIRBuilder.buildOr(S32, M, EShl12);
5885
5886 // B = clamp(1-E, 0, 13);
5887 auto One = MIRBuilder.buildConstant(S32, 1);
5888 auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5889 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5890 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5891
5892 auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5893 MIRBuilder.buildConstant(S32, 0x1000));
5894
5895 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5896 auto D0 = MIRBuilder.buildShl(S32, D, B);
5897
5898 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5899 D0, SigSetHigh);
5900 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5901 D = MIRBuilder.buildOr(S32, D, D1);
5902
5903 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5904 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5905
5906 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5907 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5908
5909 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5910 MIRBuilder.buildConstant(S32, 3));
5911 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5912
5913 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5914 MIRBuilder.buildConstant(S32, 5));
5915 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5916
5917 V1 = MIRBuilder.buildOr(S32, V0, V1);
5918 V = MIRBuilder.buildAdd(S32, V, V1);
5919
5920 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
5921 E, MIRBuilder.buildConstant(S32, 30));
5922 V = MIRBuilder.buildSelect(S32, CmpEGt30,
5923 MIRBuilder.buildConstant(S32, 0x7c00), V);
5924
5925 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5926 E, MIRBuilder.buildConstant(S32, 1039));
5927 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5928
5929 // Extract the sign bit.
5930 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5931 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5932
5933 // Insert the sign bit
5934 V = MIRBuilder.buildOr(S32, Sign, V);
5935
5936 MIRBuilder.buildTrunc(Dst, V);
5937 MI.eraseFromParent();
5938 return Legalized;
5939 }
5940
5941 LegalizerHelper::LegalizeResult
lowerFPTRUNC(MachineInstr & MI)5942 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5943 Register Dst = MI.getOperand(0).getReg();
5944 Register Src = MI.getOperand(1).getReg();
5945
5946 LLT DstTy = MRI.getType(Dst);
5947 LLT SrcTy = MRI.getType(Src);
5948 const LLT S64 = LLT::scalar(64);
5949 const LLT S16 = LLT::scalar(16);
5950
5951 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5952 return lowerFPTRUNC_F64_TO_F16(MI);
5953
5954 return UnableToLegalize;
5955 }
5956
5957 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5958 // multiplication tree.
lowerFPOWI(MachineInstr & MI)5959 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5960 Register Dst = MI.getOperand(0).getReg();
5961 Register Src0 = MI.getOperand(1).getReg();
5962 Register Src1 = MI.getOperand(2).getReg();
5963 LLT Ty = MRI.getType(Dst);
5964
5965 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5966 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5967 MI.eraseFromParent();
5968 return Legalized;
5969 }
5970
minMaxToCompare(unsigned Opc)5971 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5972 switch (Opc) {
5973 case TargetOpcode::G_SMIN:
5974 return CmpInst::ICMP_SLT;
5975 case TargetOpcode::G_SMAX:
5976 return CmpInst::ICMP_SGT;
5977 case TargetOpcode::G_UMIN:
5978 return CmpInst::ICMP_ULT;
5979 case TargetOpcode::G_UMAX:
5980 return CmpInst::ICMP_UGT;
5981 default:
5982 llvm_unreachable("not in integer min/max");
5983 }
5984 }
5985
lowerMinMax(MachineInstr & MI)5986 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5987 Register Dst = MI.getOperand(0).getReg();
5988 Register Src0 = MI.getOperand(1).getReg();
5989 Register Src1 = MI.getOperand(2).getReg();
5990
5991 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5992 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5993
5994 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5995 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5996
5997 MI.eraseFromParent();
5998 return Legalized;
5999 }
6000
6001 LegalizerHelper::LegalizeResult
lowerFCopySign(MachineInstr & MI)6002 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6003 Register Dst = MI.getOperand(0).getReg();
6004 Register Src0 = MI.getOperand(1).getReg();
6005 Register Src1 = MI.getOperand(2).getReg();
6006
6007 const LLT Src0Ty = MRI.getType(Src0);
6008 const LLT Src1Ty = MRI.getType(Src1);
6009
6010 const int Src0Size = Src0Ty.getScalarSizeInBits();
6011 const int Src1Size = Src1Ty.getScalarSizeInBits();
6012
6013 auto SignBitMask = MIRBuilder.buildConstant(
6014 Src0Ty, APInt::getSignMask(Src0Size));
6015
6016 auto NotSignBitMask = MIRBuilder.buildConstant(
6017 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6018
6019 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6020 Register And1;
6021 if (Src0Ty == Src1Ty) {
6022 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6023 } else if (Src0Size > Src1Size) {
6024 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6025 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6026 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6027 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6028 } else {
6029 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6030 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6031 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6032 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6033 }
6034
6035 // Be careful about setting nsz/nnan/ninf on every instruction, since the
6036 // constants are a nan and -0.0, but the final result should preserve
6037 // everything.
6038 unsigned Flags = MI.getFlags();
6039 MIRBuilder.buildOr(Dst, And0, And1, Flags);
6040
6041 MI.eraseFromParent();
6042 return Legalized;
6043 }
6044
6045 LegalizerHelper::LegalizeResult
lowerFMinNumMaxNum(MachineInstr & MI)6046 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6047 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6048 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6049
6050 Register Dst = MI.getOperand(0).getReg();
6051 Register Src0 = MI.getOperand(1).getReg();
6052 Register Src1 = MI.getOperand(2).getReg();
6053 LLT Ty = MRI.getType(Dst);
6054
6055 if (!MI.getFlag(MachineInstr::FmNoNans)) {
6056 // Insert canonicalizes if it's possible we need to quiet to get correct
6057 // sNaN behavior.
6058
6059 // Note this must be done here, and not as an optimization combine in the
6060 // absence of a dedicate quiet-snan instruction as we're using an
6061 // omni-purpose G_FCANONICALIZE.
6062 if (!isKnownNeverSNaN(Src0, MRI))
6063 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6064
6065 if (!isKnownNeverSNaN(Src1, MRI))
6066 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6067 }
6068
6069 // If there are no nans, it's safe to simply replace this with the non-IEEE
6070 // version.
6071 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6072 MI.eraseFromParent();
6073 return Legalized;
6074 }
6075
lowerFMad(MachineInstr & MI)6076 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6077 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6078 Register DstReg = MI.getOperand(0).getReg();
6079 LLT Ty = MRI.getType(DstReg);
6080 unsigned Flags = MI.getFlags();
6081
6082 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6083 Flags);
6084 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6085 MI.eraseFromParent();
6086 return Legalized;
6087 }
6088
6089 LegalizerHelper::LegalizeResult
lowerIntrinsicRound(MachineInstr & MI)6090 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6091 Register DstReg = MI.getOperand(0).getReg();
6092 Register X = MI.getOperand(1).getReg();
6093 const unsigned Flags = MI.getFlags();
6094 const LLT Ty = MRI.getType(DstReg);
6095 const LLT CondTy = Ty.changeElementSize(1);
6096
6097 // round(x) =>
6098 // t = trunc(x);
6099 // d = fabs(x - t);
6100 // o = copysign(1.0f, x);
6101 // return t + (d >= 0.5 ? o : 0.0);
6102
6103 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6104
6105 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6106 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6107 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6108 auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6109 auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6110 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6111
6112 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6113 Flags);
6114 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6115
6116 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6117
6118 MI.eraseFromParent();
6119 return Legalized;
6120 }
6121
6122 LegalizerHelper::LegalizeResult
lowerFFloor(MachineInstr & MI)6123 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6124 Register DstReg = MI.getOperand(0).getReg();
6125 Register SrcReg = MI.getOperand(1).getReg();
6126 unsigned Flags = MI.getFlags();
6127 LLT Ty = MRI.getType(DstReg);
6128 const LLT CondTy = Ty.changeElementSize(1);
6129
6130 // result = trunc(src);
6131 // if (src < 0.0 && src != result)
6132 // result += -1.0.
6133
6134 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6135 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6136
6137 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6138 SrcReg, Zero, Flags);
6139 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6140 SrcReg, Trunc, Flags);
6141 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6142 auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6143
6144 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6145 MI.eraseFromParent();
6146 return Legalized;
6147 }
6148
6149 LegalizerHelper::LegalizeResult
lowerMergeValues(MachineInstr & MI)6150 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6151 const unsigned NumOps = MI.getNumOperands();
6152 Register DstReg = MI.getOperand(0).getReg();
6153 Register Src0Reg = MI.getOperand(1).getReg();
6154 LLT DstTy = MRI.getType(DstReg);
6155 LLT SrcTy = MRI.getType(Src0Reg);
6156 unsigned PartSize = SrcTy.getSizeInBits();
6157
6158 LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6159 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6160
6161 for (unsigned I = 2; I != NumOps; ++I) {
6162 const unsigned Offset = (I - 1) * PartSize;
6163
6164 Register SrcReg = MI.getOperand(I).getReg();
6165 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6166
6167 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6168 MRI.createGenericVirtualRegister(WideTy);
6169
6170 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6171 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6172 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6173 ResultReg = NextResult;
6174 }
6175
6176 if (DstTy.isPointer()) {
6177 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6178 DstTy.getAddressSpace())) {
6179 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6180 return UnableToLegalize;
6181 }
6182
6183 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6184 }
6185
6186 MI.eraseFromParent();
6187 return Legalized;
6188 }
6189
6190 LegalizerHelper::LegalizeResult
lowerUnmergeValues(MachineInstr & MI)6191 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6192 const unsigned NumDst = MI.getNumOperands() - 1;
6193 Register SrcReg = MI.getOperand(NumDst).getReg();
6194 Register Dst0Reg = MI.getOperand(0).getReg();
6195 LLT DstTy = MRI.getType(Dst0Reg);
6196 if (DstTy.isPointer())
6197 return UnableToLegalize; // TODO
6198
6199 SrcReg = coerceToScalar(SrcReg);
6200 if (!SrcReg)
6201 return UnableToLegalize;
6202
6203 // Expand scalarizing unmerge as bitcast to integer and shift.
6204 LLT IntTy = MRI.getType(SrcReg);
6205
6206 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6207
6208 const unsigned DstSize = DstTy.getSizeInBits();
6209 unsigned Offset = DstSize;
6210 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6211 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6212 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6213 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6214 }
6215
6216 MI.eraseFromParent();
6217 return Legalized;
6218 }
6219
6220 /// Lower a vector extract or insert by writing the vector to a stack temporary
6221 /// and reloading the element or vector.
6222 ///
6223 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6224 /// =>
6225 /// %stack_temp = G_FRAME_INDEX
6226 /// G_STORE %vec, %stack_temp
6227 /// %idx = clamp(%idx, %vec.getNumElements())
6228 /// %element_ptr = G_PTR_ADD %stack_temp, %idx
6229 /// %dst = G_LOAD %element_ptr
6230 LegalizerHelper::LegalizeResult
lowerExtractInsertVectorElt(MachineInstr & MI)6231 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6232 Register DstReg = MI.getOperand(0).getReg();
6233 Register SrcVec = MI.getOperand(1).getReg();
6234 Register InsertVal;
6235 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6236 InsertVal = MI.getOperand(2).getReg();
6237
6238 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6239
6240 LLT VecTy = MRI.getType(SrcVec);
6241 LLT EltTy = VecTy.getElementType();
6242 if (!EltTy.isByteSized()) { // Not implemented.
6243 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6244 return UnableToLegalize;
6245 }
6246
6247 unsigned EltBytes = EltTy.getSizeInBytes();
6248 Align VecAlign = getStackTemporaryAlignment(VecTy);
6249 Align EltAlign;
6250
6251 MachinePointerInfo PtrInfo;
6252 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6253 VecAlign, PtrInfo);
6254 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6255
6256 // Get the pointer to the element, and be sure not to hit undefined behavior
6257 // if the index is out of bounds.
6258 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6259
6260 int64_t IdxVal;
6261 if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6262 int64_t Offset = IdxVal * EltBytes;
6263 PtrInfo = PtrInfo.getWithOffset(Offset);
6264 EltAlign = commonAlignment(VecAlign, Offset);
6265 } else {
6266 // We lose information with a variable offset.
6267 EltAlign = getStackTemporaryAlignment(EltTy);
6268 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6269 }
6270
6271 if (InsertVal) {
6272 // Write the inserted element
6273 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6274
6275 // Reload the whole vector.
6276 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6277 } else {
6278 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6279 }
6280
6281 MI.eraseFromParent();
6282 return Legalized;
6283 }
6284
6285 LegalizerHelper::LegalizeResult
lowerShuffleVector(MachineInstr & MI)6286 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6287 Register DstReg = MI.getOperand(0).getReg();
6288 Register Src0Reg = MI.getOperand(1).getReg();
6289 Register Src1Reg = MI.getOperand(2).getReg();
6290 LLT Src0Ty = MRI.getType(Src0Reg);
6291 LLT DstTy = MRI.getType(DstReg);
6292 LLT IdxTy = LLT::scalar(32);
6293
6294 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6295
6296 if (DstTy.isScalar()) {
6297 if (Src0Ty.isVector())
6298 return UnableToLegalize;
6299
6300 // This is just a SELECT.
6301 assert(Mask.size() == 1 && "Expected a single mask element");
6302 Register Val;
6303 if (Mask[0] < 0 || Mask[0] > 1)
6304 Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6305 else
6306 Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6307 MIRBuilder.buildCopy(DstReg, Val);
6308 MI.eraseFromParent();
6309 return Legalized;
6310 }
6311
6312 Register Undef;
6313 SmallVector<Register, 32> BuildVec;
6314 LLT EltTy = DstTy.getElementType();
6315
6316 for (int Idx : Mask) {
6317 if (Idx < 0) {
6318 if (!Undef.isValid())
6319 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6320 BuildVec.push_back(Undef);
6321 continue;
6322 }
6323
6324 if (Src0Ty.isScalar()) {
6325 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6326 } else {
6327 int NumElts = Src0Ty.getNumElements();
6328 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6329 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6330 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6331 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6332 BuildVec.push_back(Extract.getReg(0));
6333 }
6334 }
6335
6336 MIRBuilder.buildBuildVector(DstReg, BuildVec);
6337 MI.eraseFromParent();
6338 return Legalized;
6339 }
6340
6341 LegalizerHelper::LegalizeResult
lowerDynStackAlloc(MachineInstr & MI)6342 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6343 const auto &MF = *MI.getMF();
6344 const auto &TFI = *MF.getSubtarget().getFrameLowering();
6345 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6346 return UnableToLegalize;
6347
6348 Register Dst = MI.getOperand(0).getReg();
6349 Register AllocSize = MI.getOperand(1).getReg();
6350 Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6351
6352 LLT PtrTy = MRI.getType(Dst);
6353 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6354
6355 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6356 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6357 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6358
6359 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6360 // have to generate an extra instruction to negate the alloc and then use
6361 // G_PTR_ADD to add the negative offset.
6362 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6363 if (Alignment > Align(1)) {
6364 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6365 AlignMask.negate();
6366 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6367 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6368 }
6369
6370 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6371 MIRBuilder.buildCopy(SPReg, SPTmp);
6372 MIRBuilder.buildCopy(Dst, SPTmp);
6373
6374 MI.eraseFromParent();
6375 return Legalized;
6376 }
6377
6378 LegalizerHelper::LegalizeResult
lowerExtract(MachineInstr & MI)6379 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6380 Register Dst = MI.getOperand(0).getReg();
6381 Register Src = MI.getOperand(1).getReg();
6382 unsigned Offset = MI.getOperand(2).getImm();
6383
6384 LLT DstTy = MRI.getType(Dst);
6385 LLT SrcTy = MRI.getType(Src);
6386
6387 if (DstTy.isScalar() &&
6388 (SrcTy.isScalar() ||
6389 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6390 LLT SrcIntTy = SrcTy;
6391 if (!SrcTy.isScalar()) {
6392 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6393 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6394 }
6395
6396 if (Offset == 0)
6397 MIRBuilder.buildTrunc(Dst, Src);
6398 else {
6399 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6400 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6401 MIRBuilder.buildTrunc(Dst, Shr);
6402 }
6403
6404 MI.eraseFromParent();
6405 return Legalized;
6406 }
6407
6408 return UnableToLegalize;
6409 }
6410
lowerInsert(MachineInstr & MI)6411 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6412 Register Dst = MI.getOperand(0).getReg();
6413 Register Src = MI.getOperand(1).getReg();
6414 Register InsertSrc = MI.getOperand(2).getReg();
6415 uint64_t Offset = MI.getOperand(3).getImm();
6416
6417 LLT DstTy = MRI.getType(Src);
6418 LLT InsertTy = MRI.getType(InsertSrc);
6419
6420 if (InsertTy.isVector() ||
6421 (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6422 return UnableToLegalize;
6423
6424 const DataLayout &DL = MIRBuilder.getDataLayout();
6425 if ((DstTy.isPointer() &&
6426 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6427 (InsertTy.isPointer() &&
6428 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6429 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6430 return UnableToLegalize;
6431 }
6432
6433 LLT IntDstTy = DstTy;
6434
6435 if (!DstTy.isScalar()) {
6436 IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6437 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6438 }
6439
6440 if (!InsertTy.isScalar()) {
6441 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6442 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6443 }
6444
6445 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6446 if (Offset != 0) {
6447 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6448 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6449 }
6450
6451 APInt MaskVal = APInt::getBitsSetWithWrap(
6452 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6453
6454 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6455 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6456 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6457
6458 MIRBuilder.buildCast(Dst, Or);
6459 MI.eraseFromParent();
6460 return Legalized;
6461 }
6462
6463 LegalizerHelper::LegalizeResult
lowerSADDO_SSUBO(MachineInstr & MI)6464 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6465 Register Dst0 = MI.getOperand(0).getReg();
6466 Register Dst1 = MI.getOperand(1).getReg();
6467 Register LHS = MI.getOperand(2).getReg();
6468 Register RHS = MI.getOperand(3).getReg();
6469 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6470
6471 LLT Ty = MRI.getType(Dst0);
6472 LLT BoolTy = MRI.getType(Dst1);
6473
6474 if (IsAdd)
6475 MIRBuilder.buildAdd(Dst0, LHS, RHS);
6476 else
6477 MIRBuilder.buildSub(Dst0, LHS, RHS);
6478
6479 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6480
6481 auto Zero = MIRBuilder.buildConstant(Ty, 0);
6482
6483 // For an addition, the result should be less than one of the operands (LHS)
6484 // if and only if the other operand (RHS) is negative, otherwise there will
6485 // be overflow.
6486 // For a subtraction, the result should be less than one of the operands
6487 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6488 // otherwise there will be overflow.
6489 auto ResultLowerThanLHS =
6490 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6491 auto ConditionRHS = MIRBuilder.buildICmp(
6492 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6493
6494 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6495 MI.eraseFromParent();
6496 return Legalized;
6497 }
6498
6499 LegalizerHelper::LegalizeResult
lowerAddSubSatToMinMax(MachineInstr & MI)6500 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6501 Register Res = MI.getOperand(0).getReg();
6502 Register LHS = MI.getOperand(1).getReg();
6503 Register RHS = MI.getOperand(2).getReg();
6504 LLT Ty = MRI.getType(Res);
6505 bool IsSigned;
6506 bool IsAdd;
6507 unsigned BaseOp;
6508 switch (MI.getOpcode()) {
6509 default:
6510 llvm_unreachable("unexpected addsat/subsat opcode");
6511 case TargetOpcode::G_UADDSAT:
6512 IsSigned = false;
6513 IsAdd = true;
6514 BaseOp = TargetOpcode::G_ADD;
6515 break;
6516 case TargetOpcode::G_SADDSAT:
6517 IsSigned = true;
6518 IsAdd = true;
6519 BaseOp = TargetOpcode::G_ADD;
6520 break;
6521 case TargetOpcode::G_USUBSAT:
6522 IsSigned = false;
6523 IsAdd = false;
6524 BaseOp = TargetOpcode::G_SUB;
6525 break;
6526 case TargetOpcode::G_SSUBSAT:
6527 IsSigned = true;
6528 IsAdd = false;
6529 BaseOp = TargetOpcode::G_SUB;
6530 break;
6531 }
6532
6533 if (IsSigned) {
6534 // sadd.sat(a, b) ->
6535 // hi = 0x7fffffff - smax(a, 0)
6536 // lo = 0x80000000 - smin(a, 0)
6537 // a + smin(smax(lo, b), hi)
6538 // ssub.sat(a, b) ->
6539 // lo = smax(a, -1) - 0x7fffffff
6540 // hi = smin(a, -1) - 0x80000000
6541 // a - smin(smax(lo, b), hi)
6542 // TODO: AMDGPU can use a "median of 3" instruction here:
6543 // a +/- med3(lo, b, hi)
6544 uint64_t NumBits = Ty.getScalarSizeInBits();
6545 auto MaxVal =
6546 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6547 auto MinVal =
6548 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6549 MachineInstrBuilder Hi, Lo;
6550 if (IsAdd) {
6551 auto Zero = MIRBuilder.buildConstant(Ty, 0);
6552 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6553 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6554 } else {
6555 auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6556 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6557 MaxVal);
6558 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6559 MinVal);
6560 }
6561 auto RHSClamped =
6562 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6563 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6564 } else {
6565 // uadd.sat(a, b) -> a + umin(~a, b)
6566 // usub.sat(a, b) -> a - umin(a, b)
6567 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6568 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6569 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6570 }
6571
6572 MI.eraseFromParent();
6573 return Legalized;
6574 }
6575
6576 LegalizerHelper::LegalizeResult
lowerAddSubSatToAddoSubo(MachineInstr & MI)6577 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6578 Register Res = MI.getOperand(0).getReg();
6579 Register LHS = MI.getOperand(1).getReg();
6580 Register RHS = MI.getOperand(2).getReg();
6581 LLT Ty = MRI.getType(Res);
6582 LLT BoolTy = Ty.changeElementSize(1);
6583 bool IsSigned;
6584 bool IsAdd;
6585 unsigned OverflowOp;
6586 switch (MI.getOpcode()) {
6587 default:
6588 llvm_unreachable("unexpected addsat/subsat opcode");
6589 case TargetOpcode::G_UADDSAT:
6590 IsSigned = false;
6591 IsAdd = true;
6592 OverflowOp = TargetOpcode::G_UADDO;
6593 break;
6594 case TargetOpcode::G_SADDSAT:
6595 IsSigned = true;
6596 IsAdd = true;
6597 OverflowOp = TargetOpcode::G_SADDO;
6598 break;
6599 case TargetOpcode::G_USUBSAT:
6600 IsSigned = false;
6601 IsAdd = false;
6602 OverflowOp = TargetOpcode::G_USUBO;
6603 break;
6604 case TargetOpcode::G_SSUBSAT:
6605 IsSigned = true;
6606 IsAdd = false;
6607 OverflowOp = TargetOpcode::G_SSUBO;
6608 break;
6609 }
6610
6611 auto OverflowRes =
6612 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6613 Register Tmp = OverflowRes.getReg(0);
6614 Register Ov = OverflowRes.getReg(1);
6615 MachineInstrBuilder Clamp;
6616 if (IsSigned) {
6617 // sadd.sat(a, b) ->
6618 // {tmp, ov} = saddo(a, b)
6619 // ov ? (tmp >>s 31) + 0x80000000 : r
6620 // ssub.sat(a, b) ->
6621 // {tmp, ov} = ssubo(a, b)
6622 // ov ? (tmp >>s 31) + 0x80000000 : r
6623 uint64_t NumBits = Ty.getScalarSizeInBits();
6624 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6625 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6626 auto MinVal =
6627 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6628 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6629 } else {
6630 // uadd.sat(a, b) ->
6631 // {tmp, ov} = uaddo(a, b)
6632 // ov ? 0xffffffff : tmp
6633 // usub.sat(a, b) ->
6634 // {tmp, ov} = usubo(a, b)
6635 // ov ? 0 : tmp
6636 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6637 }
6638 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6639
6640 MI.eraseFromParent();
6641 return Legalized;
6642 }
6643
6644 LegalizerHelper::LegalizeResult
lowerShlSat(MachineInstr & MI)6645 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6646 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6647 MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6648 "Expected shlsat opcode!");
6649 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6650 Register Res = MI.getOperand(0).getReg();
6651 Register LHS = MI.getOperand(1).getReg();
6652 Register RHS = MI.getOperand(2).getReg();
6653 LLT Ty = MRI.getType(Res);
6654 LLT BoolTy = Ty.changeElementSize(1);
6655
6656 unsigned BW = Ty.getScalarSizeInBits();
6657 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6658 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6659 : MIRBuilder.buildLShr(Ty, Result, RHS);
6660
6661 MachineInstrBuilder SatVal;
6662 if (IsSigned) {
6663 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6664 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6665 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6666 MIRBuilder.buildConstant(Ty, 0));
6667 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6668 } else {
6669 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6670 }
6671 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6672 MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6673
6674 MI.eraseFromParent();
6675 return Legalized;
6676 }
6677
6678 LegalizerHelper::LegalizeResult
lowerBswap(MachineInstr & MI)6679 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6680 Register Dst = MI.getOperand(0).getReg();
6681 Register Src = MI.getOperand(1).getReg();
6682 const LLT Ty = MRI.getType(Src);
6683 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6684 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6685
6686 // Swap most and least significant byte, set remaining bytes in Res to zero.
6687 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6688 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6689 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6690 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6691
6692 // Set i-th high/low byte in Res to i-th low/high byte from Src.
6693 for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6694 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6695 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6696 auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6697 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6698 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6699 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6700 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6701 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6702 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6703 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6704 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6705 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6706 }
6707 Res.getInstr()->getOperand(0).setReg(Dst);
6708
6709 MI.eraseFromParent();
6710 return Legalized;
6711 }
6712
6713 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
SwapN(unsigned N,DstOp Dst,MachineIRBuilder & B,MachineInstrBuilder Src,APInt Mask)6714 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6715 MachineInstrBuilder Src, APInt Mask) {
6716 const LLT Ty = Dst.getLLTTy(*B.getMRI());
6717 MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6718 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6719 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6720 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6721 return B.buildOr(Dst, LHS, RHS);
6722 }
6723
6724 LegalizerHelper::LegalizeResult
lowerBitreverse(MachineInstr & MI)6725 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6726 Register Dst = MI.getOperand(0).getReg();
6727 Register Src = MI.getOperand(1).getReg();
6728 const LLT Ty = MRI.getType(Src);
6729 unsigned Size = Ty.getSizeInBits();
6730
6731 MachineInstrBuilder BSWAP =
6732 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6733
6734 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6735 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6736 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6737 MachineInstrBuilder Swap4 =
6738 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6739
6740 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6741 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6742 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6743 MachineInstrBuilder Swap2 =
6744 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6745
6746 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6747 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6748 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6749 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6750
6751 MI.eraseFromParent();
6752 return Legalized;
6753 }
6754
6755 LegalizerHelper::LegalizeResult
lowerReadWriteRegister(MachineInstr & MI)6756 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6757 MachineFunction &MF = MIRBuilder.getMF();
6758
6759 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6760 int NameOpIdx = IsRead ? 1 : 0;
6761 int ValRegIndex = IsRead ? 0 : 1;
6762
6763 Register ValReg = MI.getOperand(ValRegIndex).getReg();
6764 const LLT Ty = MRI.getType(ValReg);
6765 const MDString *RegStr = cast<MDString>(
6766 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6767
6768 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6769 if (!PhysReg.isValid())
6770 return UnableToLegalize;
6771
6772 if (IsRead)
6773 MIRBuilder.buildCopy(ValReg, PhysReg);
6774 else
6775 MIRBuilder.buildCopy(PhysReg, ValReg);
6776
6777 MI.eraseFromParent();
6778 return Legalized;
6779 }
6780
6781 LegalizerHelper::LegalizeResult
lowerSMULH_UMULH(MachineInstr & MI)6782 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6783 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6784 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6785 Register Result = MI.getOperand(0).getReg();
6786 LLT OrigTy = MRI.getType(Result);
6787 auto SizeInBits = OrigTy.getScalarSizeInBits();
6788 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6789
6790 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6791 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6792 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6793 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6794
6795 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6796 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6797 MIRBuilder.buildTrunc(Result, Shifted);
6798
6799 MI.eraseFromParent();
6800 return Legalized;
6801 }
6802
lowerSelect(MachineInstr & MI)6803 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6804 // Implement vector G_SELECT in terms of XOR, AND, OR.
6805 Register DstReg = MI.getOperand(0).getReg();
6806 Register MaskReg = MI.getOperand(1).getReg();
6807 Register Op1Reg = MI.getOperand(2).getReg();
6808 Register Op2Reg = MI.getOperand(3).getReg();
6809 LLT DstTy = MRI.getType(DstReg);
6810 LLT MaskTy = MRI.getType(MaskReg);
6811 LLT Op1Ty = MRI.getType(Op1Reg);
6812 if (!DstTy.isVector())
6813 return UnableToLegalize;
6814
6815 // Vector selects can have a scalar predicate. If so, splat into a vector and
6816 // finish for later legalization attempts to try again.
6817 if (MaskTy.isScalar()) {
6818 Register MaskElt = MaskReg;
6819 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6820 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6821 // Generate a vector splat idiom to be pattern matched later.
6822 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6823 Observer.changingInstr(MI);
6824 MI.getOperand(1).setReg(ShufSplat.getReg(0));
6825 Observer.changedInstr(MI);
6826 return Legalized;
6827 }
6828
6829 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6830 return UnableToLegalize;
6831 }
6832
6833 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6834 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6835 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6836 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6837 MI.eraseFromParent();
6838 return Legalized;
6839 }
6840
lowerDIVREM(MachineInstr & MI)6841 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6842 // Split DIVREM into individual instructions.
6843 unsigned Opcode = MI.getOpcode();
6844
6845 MIRBuilder.buildInstr(
6846 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6847 : TargetOpcode::G_UDIV,
6848 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6849 MIRBuilder.buildInstr(
6850 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6851 : TargetOpcode::G_UREM,
6852 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6853 MI.eraseFromParent();
6854 return Legalized;
6855 }
6856