1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49
50 struct cpu_fbatches {
51 /*
52 * The following folio batches are grouped together because they are protected
53 * by disabling preemption (and interrupts remain enabled).
54 */
55 local_lock_t lock;
56 struct folio_batch lru_add;
57 struct folio_batch lru_deactivate_file;
58 struct folio_batch lru_deactivate;
59 struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 struct folio_batch lru_activate;
62 #endif
63 /* Protecting the following batches which require disabling interrupts */
64 local_lock_t lock_irq;
65 struct folio_batch lru_move_tail;
66 };
67
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 .lock = INIT_LOCAL_LOCK(lock),
70 .lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72
__page_cache_release(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flagsp)73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 unsigned long *flagsp)
75 {
76 if (folio_test_lru(folio)) {
77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 lruvec_del_folio(*lruvecp, folio);
79 __folio_clear_lru_flags(folio);
80 }
81
82 /*
83 * In rare cases, when truncation or holepunching raced with
84 * munlock after VM_LOCKED was cleared, Mlocked may still be
85 * found set here. This does not indicate a problem, unless
86 * "unevictable_pgs_cleared" appears worryingly large.
87 */
88 if (unlikely(folio_test_mlocked(folio))) {
89 long nr_pages = folio_nr_pages(folio);
90
91 __folio_clear_mlocked(folio);
92 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
93 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
94 }
95 }
96
97 /*
98 * This path almost never happens for VM activity - pages are normally freed
99 * in batches. But it gets used by networking - and for compound pages.
100 */
page_cache_release(struct folio * folio)101 static void page_cache_release(struct folio *folio)
102 {
103 struct lruvec *lruvec = NULL;
104 unsigned long flags;
105
106 __page_cache_release(folio, &lruvec, &flags);
107 if (lruvec)
108 unlock_page_lruvec_irqrestore(lruvec, flags);
109 }
110
__folio_put(struct folio * folio)111 void __folio_put(struct folio *folio)
112 {
113 if (unlikely(folio_is_zone_device(folio))) {
114 free_zone_device_folio(folio);
115 return;
116 }
117
118 if (folio_test_hugetlb(folio)) {
119 free_huge_folio(folio);
120 return;
121 }
122
123 page_cache_release(folio);
124 folio_undo_large_rmappable(folio);
125 mem_cgroup_uncharge(folio);
126 free_unref_page(&folio->page, folio_order(folio));
127 }
128 EXPORT_SYMBOL(__folio_put);
129
130 /**
131 * put_pages_list() - release a list of pages
132 * @pages: list of pages threaded on page->lru
133 *
134 * Release a list of pages which are strung together on page.lru.
135 */
put_pages_list(struct list_head * pages)136 void put_pages_list(struct list_head *pages)
137 {
138 struct folio_batch fbatch;
139 struct folio *folio, *next;
140
141 folio_batch_init(&fbatch);
142 list_for_each_entry_safe(folio, next, pages, lru) {
143 if (!folio_put_testzero(folio))
144 continue;
145 if (folio_test_hugetlb(folio)) {
146 free_huge_folio(folio);
147 continue;
148 }
149 /* LRU flag must be clear because it's passed using the lru */
150 if (folio_batch_add(&fbatch, folio) > 0)
151 continue;
152 free_unref_folios(&fbatch);
153 }
154
155 if (fbatch.nr)
156 free_unref_folios(&fbatch);
157 INIT_LIST_HEAD(pages);
158 }
159 EXPORT_SYMBOL(put_pages_list);
160
161 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
162
lru_add(struct lruvec * lruvec,struct folio * folio)163 static void lru_add(struct lruvec *lruvec, struct folio *folio)
164 {
165 int was_unevictable = folio_test_clear_unevictable(folio);
166 long nr_pages = folio_nr_pages(folio);
167
168 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
169
170 /*
171 * Is an smp_mb__after_atomic() still required here, before
172 * folio_evictable() tests the mlocked flag, to rule out the possibility
173 * of stranding an evictable folio on an unevictable LRU? I think
174 * not, because __munlock_folio() only clears the mlocked flag
175 * while the LRU lock is held.
176 *
177 * (That is not true of __page_cache_release(), and not necessarily
178 * true of folios_put(): but those only clear the mlocked flag after
179 * folio_put_testzero() has excluded any other users of the folio.)
180 */
181 if (folio_evictable(folio)) {
182 if (was_unevictable)
183 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
184 } else {
185 folio_clear_active(folio);
186 folio_set_unevictable(folio);
187 /*
188 * folio->mlock_count = !!folio_test_mlocked(folio)?
189 * But that leaves __mlock_folio() in doubt whether another
190 * actor has already counted the mlock or not. Err on the
191 * safe side, underestimate, let page reclaim fix it, rather
192 * than leaving a page on the unevictable LRU indefinitely.
193 */
194 folio->mlock_count = 0;
195 if (!was_unevictable)
196 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
197 }
198
199 lruvec_add_folio(lruvec, folio);
200 trace_mm_lru_insertion(folio);
201 }
202
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)203 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
204 {
205 int i;
206 struct lruvec *lruvec = NULL;
207 unsigned long flags = 0;
208
209 for (i = 0; i < folio_batch_count(fbatch); i++) {
210 struct folio *folio = fbatch->folios[i];
211
212 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
213 move_fn(lruvec, folio);
214
215 folio_set_lru(folio);
216 }
217
218 if (lruvec)
219 unlock_page_lruvec_irqrestore(lruvec, flags);
220 folios_put(fbatch);
221 }
222
__folio_batch_add_and_move(struct folio_batch __percpu * fbatch,struct folio * folio,move_fn_t move_fn,bool on_lru,bool disable_irq)223 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
224 struct folio *folio, move_fn_t move_fn,
225 bool on_lru, bool disable_irq)
226 {
227 unsigned long flags;
228
229 if (on_lru && !folio_test_clear_lru(folio))
230 return;
231
232 folio_get(folio);
233
234 if (disable_irq)
235 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
236 else
237 local_lock(&cpu_fbatches.lock);
238
239 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
240 lru_cache_disabled())
241 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
242
243 if (disable_irq)
244 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
245 else
246 local_unlock(&cpu_fbatches.lock);
247 }
248
249 #define folio_batch_add_and_move(folio, op, on_lru) \
250 __folio_batch_add_and_move( \
251 &cpu_fbatches.op, \
252 folio, \
253 op, \
254 on_lru, \
255 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \
256 )
257
lru_move_tail(struct lruvec * lruvec,struct folio * folio)258 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
259 {
260 if (folio_test_unevictable(folio))
261 return;
262
263 lruvec_del_folio(lruvec, folio);
264 folio_clear_active(folio);
265 lruvec_add_folio_tail(lruvec, folio);
266 __count_vm_events(PGROTATED, folio_nr_pages(folio));
267 }
268
269 /*
270 * Writeback is about to end against a folio which has been marked for
271 * immediate reclaim. If it still appears to be reclaimable, move it
272 * to the tail of the inactive list.
273 *
274 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
275 */
folio_rotate_reclaimable(struct folio * folio)276 void folio_rotate_reclaimable(struct folio *folio)
277 {
278 if (folio_test_locked(folio) || folio_test_dirty(folio) ||
279 folio_test_unevictable(folio))
280 return;
281
282 folio_batch_add_and_move(folio, lru_move_tail, true);
283 }
284
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)285 void lru_note_cost(struct lruvec *lruvec, bool file,
286 unsigned int nr_io, unsigned int nr_rotated)
287 {
288 unsigned long cost;
289
290 /*
291 * Reflect the relative cost of incurring IO and spending CPU
292 * time on rotations. This doesn't attempt to make a precise
293 * comparison, it just says: if reloads are about comparable
294 * between the LRU lists, or rotations are overwhelmingly
295 * different between them, adjust scan balance for CPU work.
296 */
297 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
298
299 do {
300 unsigned long lrusize;
301
302 /*
303 * Hold lruvec->lru_lock is safe here, since
304 * 1) The pinned lruvec in reclaim, or
305 * 2) From a pre-LRU page during refault (which also holds the
306 * rcu lock, so would be safe even if the page was on the LRU
307 * and could move simultaneously to a new lruvec).
308 */
309 spin_lock_irq(&lruvec->lru_lock);
310 /* Record cost event */
311 if (file)
312 lruvec->file_cost += cost;
313 else
314 lruvec->anon_cost += cost;
315
316 /*
317 * Decay previous events
318 *
319 * Because workloads change over time (and to avoid
320 * overflow) we keep these statistics as a floating
321 * average, which ends up weighing recent refaults
322 * more than old ones.
323 */
324 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
325 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
326 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
327 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
328
329 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
330 lruvec->file_cost /= 2;
331 lruvec->anon_cost /= 2;
332 }
333 spin_unlock_irq(&lruvec->lru_lock);
334 } while ((lruvec = parent_lruvec(lruvec)));
335 }
336
lru_note_cost_refault(struct folio * folio)337 void lru_note_cost_refault(struct folio *folio)
338 {
339 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
340 folio_nr_pages(folio), 0);
341 }
342
lru_activate(struct lruvec * lruvec,struct folio * folio)343 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
344 {
345 long nr_pages = folio_nr_pages(folio);
346
347 if (folio_test_active(folio) || folio_test_unevictable(folio))
348 return;
349
350
351 lruvec_del_folio(lruvec, folio);
352 folio_set_active(folio);
353 lruvec_add_folio(lruvec, folio);
354 trace_mm_lru_activate(folio);
355
356 __count_vm_events(PGACTIVATE, nr_pages);
357 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
358 }
359
360 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)361 static void folio_activate_drain(int cpu)
362 {
363 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
364
365 if (folio_batch_count(fbatch))
366 folio_batch_move_lru(fbatch, lru_activate);
367 }
368
folio_activate(struct folio * folio)369 void folio_activate(struct folio *folio)
370 {
371 if (folio_test_active(folio) || folio_test_unevictable(folio))
372 return;
373
374 folio_batch_add_and_move(folio, lru_activate, true);
375 }
376
377 #else
folio_activate_drain(int cpu)378 static inline void folio_activate_drain(int cpu)
379 {
380 }
381
folio_activate(struct folio * folio)382 void folio_activate(struct folio *folio)
383 {
384 struct lruvec *lruvec;
385
386 if (!folio_test_clear_lru(folio))
387 return;
388
389 lruvec = folio_lruvec_lock_irq(folio);
390 lru_activate(lruvec, folio);
391 unlock_page_lruvec_irq(lruvec);
392 folio_set_lru(folio);
393 }
394 #endif
395
__lru_cache_activate_folio(struct folio * folio)396 static void __lru_cache_activate_folio(struct folio *folio)
397 {
398 struct folio_batch *fbatch;
399 int i;
400
401 local_lock(&cpu_fbatches.lock);
402 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
403
404 /*
405 * Search backwards on the optimistic assumption that the folio being
406 * activated has just been added to this batch. Note that only
407 * the local batch is examined as a !LRU folio could be in the
408 * process of being released, reclaimed, migrated or on a remote
409 * batch that is currently being drained. Furthermore, marking
410 * a remote batch's folio active potentially hits a race where
411 * a folio is marked active just after it is added to the inactive
412 * list causing accounting errors and BUG_ON checks to trigger.
413 */
414 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
415 struct folio *batch_folio = fbatch->folios[i];
416
417 if (batch_folio == folio) {
418 folio_set_active(folio);
419 break;
420 }
421 }
422
423 local_unlock(&cpu_fbatches.lock);
424 }
425
426 #ifdef CONFIG_LRU_GEN
folio_inc_refs(struct folio * folio)427 static void folio_inc_refs(struct folio *folio)
428 {
429 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
430
431 if (folio_test_unevictable(folio))
432 return;
433
434 if (!folio_test_referenced(folio)) {
435 folio_set_referenced(folio);
436 return;
437 }
438
439 if (!folio_test_workingset(folio)) {
440 folio_set_workingset(folio);
441 return;
442 }
443
444 /* see the comment on MAX_NR_TIERS */
445 do {
446 new_flags = old_flags & LRU_REFS_MASK;
447 if (new_flags == LRU_REFS_MASK)
448 break;
449
450 new_flags += BIT(LRU_REFS_PGOFF);
451 new_flags |= old_flags & ~LRU_REFS_MASK;
452 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
453 }
454 #else
folio_inc_refs(struct folio * folio)455 static void folio_inc_refs(struct folio *folio)
456 {
457 }
458 #endif /* CONFIG_LRU_GEN */
459
460 /**
461 * folio_mark_accessed - Mark a folio as having seen activity.
462 * @folio: The folio to mark.
463 *
464 * This function will perform one of the following transitions:
465 *
466 * * inactive,unreferenced -> inactive,referenced
467 * * inactive,referenced -> active,unreferenced
468 * * active,unreferenced -> active,referenced
469 *
470 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
471 * __folio_set_referenced() may be substituted for folio_mark_accessed().
472 */
folio_mark_accessed(struct folio * folio)473 void folio_mark_accessed(struct folio *folio)
474 {
475 if (lru_gen_enabled()) {
476 folio_inc_refs(folio);
477 return;
478 }
479
480 if (!folio_test_referenced(folio)) {
481 folio_set_referenced(folio);
482 } else if (folio_test_unevictable(folio)) {
483 /*
484 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
485 * this list is never rotated or maintained, so marking an
486 * unevictable page accessed has no effect.
487 */
488 } else if (!folio_test_active(folio)) {
489 /*
490 * If the folio is on the LRU, queue it for activation via
491 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
492 * folio_batch, mark it active and it'll be moved to the active
493 * LRU on the next drain.
494 */
495 if (folio_test_lru(folio))
496 folio_activate(folio);
497 else
498 __lru_cache_activate_folio(folio);
499 folio_clear_referenced(folio);
500 workingset_activation(folio);
501 }
502 if (folio_test_idle(folio))
503 folio_clear_idle(folio);
504 }
505 EXPORT_SYMBOL(folio_mark_accessed);
506
507 /**
508 * folio_add_lru - Add a folio to an LRU list.
509 * @folio: The folio to be added to the LRU.
510 *
511 * Queue the folio for addition to the LRU. The decision on whether
512 * to add the page to the [in]active [file|anon] list is deferred until the
513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
514 * have the folio added to the active list using folio_mark_accessed().
515 */
folio_add_lru(struct folio * folio)516 void folio_add_lru(struct folio *folio)
517 {
518 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
519 folio_test_unevictable(folio), folio);
520 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
521
522 /* see the comment in lru_gen_add_folio() */
523 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
524 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
525 folio_set_active(folio);
526
527 folio_batch_add_and_move(folio, lru_add, false);
528 }
529 EXPORT_SYMBOL(folio_add_lru);
530
531 /**
532 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
533 * @folio: The folio to be added to the LRU.
534 * @vma: VMA in which the folio is mapped.
535 *
536 * If the VMA is mlocked, @folio is added to the unevictable list.
537 * Otherwise, it is treated the same way as folio_add_lru().
538 */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)539 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
540 {
541 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
542
543 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
544 mlock_new_folio(folio);
545 else
546 folio_add_lru(folio);
547 }
548
549 /*
550 * If the folio cannot be invalidated, it is moved to the
551 * inactive list to speed up its reclaim. It is moved to the
552 * head of the list, rather than the tail, to give the flusher
553 * threads some time to write it out, as this is much more
554 * effective than the single-page writeout from reclaim.
555 *
556 * If the folio isn't mapped and dirty/writeback, the folio
557 * could be reclaimed asap using the reclaim flag.
558 *
559 * 1. active, mapped folio -> none
560 * 2. active, dirty/writeback folio -> inactive, head, reclaim
561 * 3. inactive, mapped folio -> none
562 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
563 * 5. inactive, clean -> inactive, tail
564 * 6. Others -> none
565 *
566 * In 4, it moves to the head of the inactive list so the folio is
567 * written out by flusher threads as this is much more efficient
568 * than the single-page writeout from reclaim.
569 */
lru_deactivate_file(struct lruvec * lruvec,struct folio * folio)570 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
571 {
572 bool active = folio_test_active(folio);
573 long nr_pages = folio_nr_pages(folio);
574
575 if (folio_test_unevictable(folio))
576 return;
577
578 /* Some processes are using the folio */
579 if (folio_mapped(folio))
580 return;
581
582 lruvec_del_folio(lruvec, folio);
583 folio_clear_active(folio);
584 folio_clear_referenced(folio);
585
586 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
587 /*
588 * Setting the reclaim flag could race with
589 * folio_end_writeback() and confuse readahead. But the
590 * race window is _really_ small and it's not a critical
591 * problem.
592 */
593 lruvec_add_folio(lruvec, folio);
594 folio_set_reclaim(folio);
595 } else {
596 /*
597 * The folio's writeback ended while it was in the batch.
598 * We move that folio to the tail of the inactive list.
599 */
600 lruvec_add_folio_tail(lruvec, folio);
601 __count_vm_events(PGROTATED, nr_pages);
602 }
603
604 if (active) {
605 __count_vm_events(PGDEACTIVATE, nr_pages);
606 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
607 nr_pages);
608 }
609 }
610
lru_deactivate(struct lruvec * lruvec,struct folio * folio)611 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
612 {
613 long nr_pages = folio_nr_pages(folio);
614
615 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
616 return;
617
618 lruvec_del_folio(lruvec, folio);
619 folio_clear_active(folio);
620 folio_clear_referenced(folio);
621 lruvec_add_folio(lruvec, folio);
622
623 __count_vm_events(PGDEACTIVATE, nr_pages);
624 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
625 }
626
lru_lazyfree(struct lruvec * lruvec,struct folio * folio)627 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
628 {
629 long nr_pages = folio_nr_pages(folio);
630
631 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
632 folio_test_swapcache(folio) || folio_test_unevictable(folio))
633 return;
634
635 lruvec_del_folio(lruvec, folio);
636 folio_clear_active(folio);
637 folio_clear_referenced(folio);
638 /*
639 * Lazyfree folios are clean anonymous folios. They have
640 * the swapbacked flag cleared, to distinguish them from normal
641 * anonymous folios
642 */
643 folio_clear_swapbacked(folio);
644 lruvec_add_folio(lruvec, folio);
645
646 __count_vm_events(PGLAZYFREE, nr_pages);
647 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
648 }
649
650 /*
651 * Drain pages out of the cpu's folio_batch.
652 * Either "cpu" is the current CPU, and preemption has already been
653 * disabled; or "cpu" is being hot-unplugged, and is already dead.
654 */
lru_add_drain_cpu(int cpu)655 void lru_add_drain_cpu(int cpu)
656 {
657 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
658 struct folio_batch *fbatch = &fbatches->lru_add;
659
660 if (folio_batch_count(fbatch))
661 folio_batch_move_lru(fbatch, lru_add);
662
663 fbatch = &fbatches->lru_move_tail;
664 /* Disabling interrupts below acts as a compiler barrier. */
665 if (data_race(folio_batch_count(fbatch))) {
666 unsigned long flags;
667
668 /* No harm done if a racing interrupt already did this */
669 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
670 folio_batch_move_lru(fbatch, lru_move_tail);
671 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
672 }
673
674 fbatch = &fbatches->lru_deactivate_file;
675 if (folio_batch_count(fbatch))
676 folio_batch_move_lru(fbatch, lru_deactivate_file);
677
678 fbatch = &fbatches->lru_deactivate;
679 if (folio_batch_count(fbatch))
680 folio_batch_move_lru(fbatch, lru_deactivate);
681
682 fbatch = &fbatches->lru_lazyfree;
683 if (folio_batch_count(fbatch))
684 folio_batch_move_lru(fbatch, lru_lazyfree);
685
686 folio_activate_drain(cpu);
687 }
688
689 /**
690 * deactivate_file_folio() - Deactivate a file folio.
691 * @folio: Folio to deactivate.
692 *
693 * This function hints to the VM that @folio is a good reclaim candidate,
694 * for example if its invalidation fails due to the folio being dirty
695 * or under writeback.
696 *
697 * Context: Caller holds a reference on the folio.
698 */
deactivate_file_folio(struct folio * folio)699 void deactivate_file_folio(struct folio *folio)
700 {
701 /* Deactivating an unevictable folio will not accelerate reclaim */
702 if (folio_test_unevictable(folio))
703 return;
704
705 folio_batch_add_and_move(folio, lru_deactivate_file, true);
706 }
707
708 /*
709 * folio_deactivate - deactivate a folio
710 * @folio: folio to deactivate
711 *
712 * folio_deactivate() moves @folio to the inactive list if @folio was on the
713 * active list and was not unevictable. This is done to accelerate the
714 * reclaim of @folio.
715 */
folio_deactivate(struct folio * folio)716 void folio_deactivate(struct folio *folio)
717 {
718 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
719 return;
720
721 folio_batch_add_and_move(folio, lru_deactivate, true);
722 }
723
724 /**
725 * folio_mark_lazyfree - make an anon folio lazyfree
726 * @folio: folio to deactivate
727 *
728 * folio_mark_lazyfree() moves @folio to the inactive file list.
729 * This is done to accelerate the reclaim of @folio.
730 */
folio_mark_lazyfree(struct folio * folio)731 void folio_mark_lazyfree(struct folio *folio)
732 {
733 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
734 folio_test_swapcache(folio) || folio_test_unevictable(folio))
735 return;
736
737 folio_batch_add_and_move(folio, lru_lazyfree, true);
738 }
739
lru_add_drain(void)740 void lru_add_drain(void)
741 {
742 local_lock(&cpu_fbatches.lock);
743 lru_add_drain_cpu(smp_processor_id());
744 local_unlock(&cpu_fbatches.lock);
745 mlock_drain_local();
746 }
747
748 /*
749 * It's called from per-cpu workqueue context in SMP case so
750 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
751 * the same cpu. It shouldn't be a problem in !SMP case since
752 * the core is only one and the locks will disable preemption.
753 */
lru_add_and_bh_lrus_drain(void)754 static void lru_add_and_bh_lrus_drain(void)
755 {
756 local_lock(&cpu_fbatches.lock);
757 lru_add_drain_cpu(smp_processor_id());
758 local_unlock(&cpu_fbatches.lock);
759 invalidate_bh_lrus_cpu();
760 mlock_drain_local();
761 }
762
lru_add_drain_cpu_zone(struct zone * zone)763 void lru_add_drain_cpu_zone(struct zone *zone)
764 {
765 local_lock(&cpu_fbatches.lock);
766 lru_add_drain_cpu(smp_processor_id());
767 drain_local_pages(zone);
768 local_unlock(&cpu_fbatches.lock);
769 mlock_drain_local();
770 }
771
772 #ifdef CONFIG_SMP
773
774 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
775
lru_add_drain_per_cpu(struct work_struct * dummy)776 static void lru_add_drain_per_cpu(struct work_struct *dummy)
777 {
778 lru_add_and_bh_lrus_drain();
779 }
780
cpu_needs_drain(unsigned int cpu)781 static bool cpu_needs_drain(unsigned int cpu)
782 {
783 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
784
785 /* Check these in order of likelihood that they're not zero */
786 return folio_batch_count(&fbatches->lru_add) ||
787 folio_batch_count(&fbatches->lru_move_tail) ||
788 folio_batch_count(&fbatches->lru_deactivate_file) ||
789 folio_batch_count(&fbatches->lru_deactivate) ||
790 folio_batch_count(&fbatches->lru_lazyfree) ||
791 folio_batch_count(&fbatches->lru_activate) ||
792 need_mlock_drain(cpu) ||
793 has_bh_in_lru(cpu, NULL);
794 }
795
796 /*
797 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
798 * kworkers being shut down before our page_alloc_cpu_dead callback is
799 * executed on the offlined cpu.
800 * Calling this function with cpu hotplug locks held can actually lead
801 * to obscure indirect dependencies via WQ context.
802 */
__lru_add_drain_all(bool force_all_cpus)803 static inline void __lru_add_drain_all(bool force_all_cpus)
804 {
805 /*
806 * lru_drain_gen - Global pages generation number
807 *
808 * (A) Definition: global lru_drain_gen = x implies that all generations
809 * 0 < n <= x are already *scheduled* for draining.
810 *
811 * This is an optimization for the highly-contended use case where a
812 * user space workload keeps constantly generating a flow of pages for
813 * each CPU.
814 */
815 static unsigned int lru_drain_gen;
816 static struct cpumask has_work;
817 static DEFINE_MUTEX(lock);
818 unsigned cpu, this_gen;
819
820 /*
821 * Make sure nobody triggers this path before mm_percpu_wq is fully
822 * initialized.
823 */
824 if (WARN_ON(!mm_percpu_wq))
825 return;
826
827 /*
828 * Guarantee folio_batch counter stores visible by this CPU
829 * are visible to other CPUs before loading the current drain
830 * generation.
831 */
832 smp_mb();
833
834 /*
835 * (B) Locally cache global LRU draining generation number
836 *
837 * The read barrier ensures that the counter is loaded before the mutex
838 * is taken. It pairs with smp_mb() inside the mutex critical section
839 * at (D).
840 */
841 this_gen = smp_load_acquire(&lru_drain_gen);
842
843 mutex_lock(&lock);
844
845 /*
846 * (C) Exit the draining operation if a newer generation, from another
847 * lru_add_drain_all(), was already scheduled for draining. Check (A).
848 */
849 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
850 goto done;
851
852 /*
853 * (D) Increment global generation number
854 *
855 * Pairs with smp_load_acquire() at (B), outside of the critical
856 * section. Use a full memory barrier to guarantee that the
857 * new global drain generation number is stored before loading
858 * folio_batch counters.
859 *
860 * This pairing must be done here, before the for_each_online_cpu loop
861 * below which drains the page vectors.
862 *
863 * Let x, y, and z represent some system CPU numbers, where x < y < z.
864 * Assume CPU #z is in the middle of the for_each_online_cpu loop
865 * below and has already reached CPU #y's per-cpu data. CPU #x comes
866 * along, adds some pages to its per-cpu vectors, then calls
867 * lru_add_drain_all().
868 *
869 * If the paired barrier is done at any later step, e.g. after the
870 * loop, CPU #x will just exit at (C) and miss flushing out all of its
871 * added pages.
872 */
873 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
874 smp_mb();
875
876 cpumask_clear(&has_work);
877 for_each_online_cpu(cpu) {
878 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
879
880 if (cpu_needs_drain(cpu)) {
881 INIT_WORK(work, lru_add_drain_per_cpu);
882 queue_work_on(cpu, mm_percpu_wq, work);
883 __cpumask_set_cpu(cpu, &has_work);
884 }
885 }
886
887 for_each_cpu(cpu, &has_work)
888 flush_work(&per_cpu(lru_add_drain_work, cpu));
889
890 done:
891 mutex_unlock(&lock);
892 }
893
lru_add_drain_all(void)894 void lru_add_drain_all(void)
895 {
896 __lru_add_drain_all(false);
897 }
898 #else
lru_add_drain_all(void)899 void lru_add_drain_all(void)
900 {
901 lru_add_drain();
902 }
903 #endif /* CONFIG_SMP */
904
905 atomic_t lru_disable_count = ATOMIC_INIT(0);
906
907 /*
908 * lru_cache_disable() needs to be called before we start compiling
909 * a list of folios to be migrated using folio_isolate_lru().
910 * It drains folios on LRU cache and then disable on all cpus until
911 * lru_cache_enable is called.
912 *
913 * Must be paired with a call to lru_cache_enable().
914 */
lru_cache_disable(void)915 void lru_cache_disable(void)
916 {
917 atomic_inc(&lru_disable_count);
918 /*
919 * Readers of lru_disable_count are protected by either disabling
920 * preemption or rcu_read_lock:
921 *
922 * preempt_disable, local_irq_disable [bh_lru_lock()]
923 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
924 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
925 *
926 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
927 * preempt_disable() regions of code. So any CPU which sees
928 * lru_disable_count = 0 will have exited the critical
929 * section when synchronize_rcu() returns.
930 */
931 synchronize_rcu_expedited();
932 #ifdef CONFIG_SMP
933 __lru_add_drain_all(true);
934 #else
935 lru_add_and_bh_lrus_drain();
936 #endif
937 }
938
939 /**
940 * folios_put_refs - Reduce the reference count on a batch of folios.
941 * @folios: The folios.
942 * @refs: The number of refs to subtract from each folio.
943 *
944 * Like folio_put(), but for a batch of folios. This is more efficient
945 * than writing the loop yourself as it will optimise the locks which need
946 * to be taken if the folios are freed. The folios batch is returned
947 * empty and ready to be reused for another batch; there is no need
948 * to reinitialise it. If @refs is NULL, we subtract one from each
949 * folio refcount.
950 *
951 * Context: May be called in process or interrupt context, but not in NMI
952 * context. May be called while holding a spinlock.
953 */
folios_put_refs(struct folio_batch * folios,unsigned int * refs)954 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
955 {
956 int i, j;
957 struct lruvec *lruvec = NULL;
958 unsigned long flags = 0;
959
960 for (i = 0, j = 0; i < folios->nr; i++) {
961 struct folio *folio = folios->folios[i];
962 unsigned int nr_refs = refs ? refs[i] : 1;
963
964 if (is_huge_zero_folio(folio))
965 continue;
966
967 if (folio_is_zone_device(folio)) {
968 if (lruvec) {
969 unlock_page_lruvec_irqrestore(lruvec, flags);
970 lruvec = NULL;
971 }
972 if (put_devmap_managed_folio_refs(folio, nr_refs))
973 continue;
974 if (folio_ref_sub_and_test(folio, nr_refs))
975 free_zone_device_folio(folio);
976 continue;
977 }
978
979 if (!folio_ref_sub_and_test(folio, nr_refs))
980 continue;
981
982 /* hugetlb has its own memcg */
983 if (folio_test_hugetlb(folio)) {
984 if (lruvec) {
985 unlock_page_lruvec_irqrestore(lruvec, flags);
986 lruvec = NULL;
987 }
988 free_huge_folio(folio);
989 continue;
990 }
991 folio_undo_large_rmappable(folio);
992 __page_cache_release(folio, &lruvec, &flags);
993
994 if (j != i)
995 folios->folios[j] = folio;
996 j++;
997 }
998 if (lruvec)
999 unlock_page_lruvec_irqrestore(lruvec, flags);
1000 if (!j) {
1001 folio_batch_reinit(folios);
1002 return;
1003 }
1004
1005 folios->nr = j;
1006 mem_cgroup_uncharge_folios(folios);
1007 free_unref_folios(folios);
1008 }
1009 EXPORT_SYMBOL(folios_put_refs);
1010
1011 /**
1012 * release_pages - batched put_page()
1013 * @arg: array of pages to release
1014 * @nr: number of pages
1015 *
1016 * Decrement the reference count on all the pages in @arg. If it
1017 * fell to zero, remove the page from the LRU and free it.
1018 *
1019 * Note that the argument can be an array of pages, encoded pages,
1020 * or folio pointers. We ignore any encoded bits, and turn any of
1021 * them into just a folio that gets free'd.
1022 */
release_pages(release_pages_arg arg,int nr)1023 void release_pages(release_pages_arg arg, int nr)
1024 {
1025 struct folio_batch fbatch;
1026 int refs[PAGEVEC_SIZE];
1027 struct encoded_page **encoded = arg.encoded_pages;
1028 int i;
1029
1030 folio_batch_init(&fbatch);
1031 for (i = 0; i < nr; i++) {
1032 /* Turn any of the argument types into a folio */
1033 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1034
1035 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1036 refs[fbatch.nr] = 1;
1037 if (unlikely(encoded_page_flags(encoded[i]) &
1038 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1039 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1040
1041 if (folio_batch_add(&fbatch, folio) > 0)
1042 continue;
1043 folios_put_refs(&fbatch, refs);
1044 }
1045
1046 if (fbatch.nr)
1047 folios_put_refs(&fbatch, refs);
1048 }
1049 EXPORT_SYMBOL(release_pages);
1050
1051 /*
1052 * The folios which we're about to release may be in the deferred lru-addition
1053 * queues. That would prevent them from really being freed right now. That's
1054 * OK from a correctness point of view but is inefficient - those folios may be
1055 * cache-warm and we want to give them back to the page allocator ASAP.
1056 *
1057 * So __folio_batch_release() will drain those queues here.
1058 * folio_batch_move_lru() calls folios_put() directly to avoid
1059 * mutual recursion.
1060 */
__folio_batch_release(struct folio_batch * fbatch)1061 void __folio_batch_release(struct folio_batch *fbatch)
1062 {
1063 if (!fbatch->percpu_pvec_drained) {
1064 lru_add_drain();
1065 fbatch->percpu_pvec_drained = true;
1066 }
1067 folios_put(fbatch);
1068 }
1069 EXPORT_SYMBOL(__folio_batch_release);
1070
1071 /**
1072 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1073 * @fbatch: The batch to prune
1074 *
1075 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1076 * entries. This function prunes all the non-folio entries from @fbatch
1077 * without leaving holes, so that it can be passed on to folio-only batch
1078 * operations.
1079 */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1080 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1081 {
1082 unsigned int i, j;
1083
1084 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1085 struct folio *folio = fbatch->folios[i];
1086 if (!xa_is_value(folio))
1087 fbatch->folios[j++] = folio;
1088 }
1089 fbatch->nr = j;
1090 }
1091
1092 /*
1093 * Perform any setup for the swap system
1094 */
swap_setup(void)1095 void __init swap_setup(void)
1096 {
1097 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1098
1099 /* Use a smaller cluster for small-memory machines */
1100 if (megs < 16)
1101 page_cluster = 2;
1102 else
1103 page_cluster = 3;
1104 /*
1105 * Right now other parts of the system means that we
1106 * _really_ don't want to cluster much more
1107 */
1108 }
1109