1 //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveRange and LiveInterval classes. Given some 10 // numbering of each the machine instructions an interval [i, j) is said to be a 11 // live range for register v if there is no instruction with number j' >= j 12 // such that v is live at j' and there is no instruction with number i' < i such 13 // that v is live at i'. In this implementation ranges can have holes, 14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 15 // individual segment is represented as an instance of LiveRange::Segment, 16 // and the whole range is represented as an instance of LiveRange. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H 21 #define LLVM_CODEGEN_LIVEINTERVAL_H 22 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/IntEqClasses.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/CodeGen/Register.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/MC/LaneBitmask.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <functional> 37 #include <memory> 38 #include <set> 39 #include <tuple> 40 #include <utility> 41 42 namespace llvm { 43 44 class CoalescerPair; 45 class LiveIntervals; 46 class MachineRegisterInfo; 47 class raw_ostream; 48 49 /// VNInfo - Value Number Information. 50 /// This class holds information about a machine level values, including 51 /// definition and use points. 52 /// 53 class VNInfo { 54 public: 55 using Allocator = BumpPtrAllocator; 56 57 /// The ID number of this value. 58 unsigned id; 59 60 /// The index of the defining instruction. 61 SlotIndex def; 62 63 /// VNInfo constructor. VNInfo(unsigned i,SlotIndex d)64 VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {} 65 66 /// VNInfo constructor, copies values from orig, except for the value number. VNInfo(unsigned i,const VNInfo & orig)67 VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {} 68 69 /// Copy from the parameter into this VNInfo. copyFrom(VNInfo & src)70 void copyFrom(VNInfo &src) { 71 def = src.def; 72 } 73 74 /// Returns true if this value is defined by a PHI instruction (or was, 75 /// PHI instructions may have been eliminated). 76 /// PHI-defs begin at a block boundary, all other defs begin at register or 77 /// EC slots. isPHIDef()78 bool isPHIDef() const { return def.isBlock(); } 79 80 /// Returns true if this value is unused. isUnused()81 bool isUnused() const { return !def.isValid(); } 82 83 /// Mark this value as unused. markUnused()84 void markUnused() { def = SlotIndex(); } 85 }; 86 87 /// Result of a LiveRange query. This class hides the implementation details 88 /// of live ranges, and it should be used as the primary interface for 89 /// examining live ranges around instructions. 90 class LiveQueryResult { 91 VNInfo *const EarlyVal; 92 VNInfo *const LateVal; 93 const SlotIndex EndPoint; 94 const bool Kill; 95 96 public: LiveQueryResult(VNInfo * EarlyVal,VNInfo * LateVal,SlotIndex EndPoint,bool Kill)97 LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint, 98 bool Kill) 99 : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill) 100 {} 101 102 /// Return the value that is live-in to the instruction. This is the value 103 /// that will be read by the instruction's use operands. Return NULL if no 104 /// value is live-in. valueIn()105 VNInfo *valueIn() const { 106 return EarlyVal; 107 } 108 109 /// Return true if the live-in value is killed by this instruction. This 110 /// means that either the live range ends at the instruction, or it changes 111 /// value. isKill()112 bool isKill() const { 113 return Kill; 114 } 115 116 /// Return true if this instruction has a dead def. isDeadDef()117 bool isDeadDef() const { 118 return EndPoint.isDead(); 119 } 120 121 /// Return the value leaving the instruction, if any. This can be a 122 /// live-through value, or a live def. A dead def returns NULL. valueOut()123 VNInfo *valueOut() const { 124 return isDeadDef() ? nullptr : LateVal; 125 } 126 127 /// Returns the value alive at the end of the instruction, if any. This can 128 /// be a live-through value, a live def or a dead def. valueOutOrDead()129 VNInfo *valueOutOrDead() const { 130 return LateVal; 131 } 132 133 /// Return the value defined by this instruction, if any. This includes 134 /// dead defs, it is the value created by the instruction's def operands. valueDefined()135 VNInfo *valueDefined() const { 136 return EarlyVal == LateVal ? nullptr : LateVal; 137 } 138 139 /// Return the end point of the last live range segment to interact with 140 /// the instruction, if any. 141 /// 142 /// The end point is an invalid SlotIndex only if the live range doesn't 143 /// intersect the instruction at all. 144 /// 145 /// The end point may be at or past the end of the instruction's basic 146 /// block. That means the value was live out of the block. endPoint()147 SlotIndex endPoint() const { 148 return EndPoint; 149 } 150 }; 151 152 /// This class represents the liveness of a register, stack slot, etc. 153 /// It manages an ordered list of Segment objects. 154 /// The Segments are organized in a static single assignment form: At places 155 /// where a new value is defined or different values reach a CFG join a new 156 /// segment with a new value number is used. 157 class LiveRange { 158 public: 159 /// This represents a simple continuous liveness interval for a value. 160 /// The start point is inclusive, the end point exclusive. These intervals 161 /// are rendered as [start,end). 162 struct Segment { 163 SlotIndex start; // Start point of the interval (inclusive) 164 SlotIndex end; // End point of the interval (exclusive) 165 VNInfo *valno = nullptr; // identifier for the value contained in this 166 // segment. 167 168 Segment() = default; 169 SegmentSegment170 Segment(SlotIndex S, SlotIndex E, VNInfo *V) 171 : start(S), end(E), valno(V) { 172 assert(S < E && "Cannot create empty or backwards segment"); 173 } 174 175 /// Return true if the index is covered by this segment. containsSegment176 bool contains(SlotIndex I) const { 177 return start <= I && I < end; 178 } 179 180 /// Return true if the given interval, [S, E), is covered by this segment. containsIntervalSegment181 bool containsInterval(SlotIndex S, SlotIndex E) const { 182 assert((S < E) && "Backwards interval?"); 183 return (start <= S && S < end) && (start < E && E <= end); 184 } 185 186 bool operator<(const Segment &Other) const { 187 return std::tie(start, end) < std::tie(Other.start, Other.end); 188 } 189 bool operator==(const Segment &Other) const { 190 return start == Other.start && end == Other.end; 191 } 192 193 bool operator!=(const Segment &Other) const { 194 return !(*this == Other); 195 } 196 197 void dump() const; 198 }; 199 200 using Segments = SmallVector<Segment, 2>; 201 using VNInfoList = SmallVector<VNInfo *, 2>; 202 203 Segments segments; // the liveness segments 204 VNInfoList valnos; // value#'s 205 206 // The segment set is used temporarily to accelerate initial computation 207 // of live ranges of physical registers in computeRegUnitRange. 208 // After that the set is flushed to the segment vector and deleted. 209 using SegmentSet = std::set<Segment>; 210 std::unique_ptr<SegmentSet> segmentSet; 211 212 using iterator = Segments::iterator; 213 using const_iterator = Segments::const_iterator; 214 begin()215 iterator begin() { return segments.begin(); } end()216 iterator end() { return segments.end(); } 217 begin()218 const_iterator begin() const { return segments.begin(); } end()219 const_iterator end() const { return segments.end(); } 220 221 using vni_iterator = VNInfoList::iterator; 222 using const_vni_iterator = VNInfoList::const_iterator; 223 vni_begin()224 vni_iterator vni_begin() { return valnos.begin(); } vni_end()225 vni_iterator vni_end() { return valnos.end(); } 226 vni_begin()227 const_vni_iterator vni_begin() const { return valnos.begin(); } vni_end()228 const_vni_iterator vni_end() const { return valnos.end(); } 229 vnis()230 iterator_range<vni_iterator> vnis() { 231 return make_range(vni_begin(), vni_end()); 232 } 233 vnis()234 iterator_range<const_vni_iterator> vnis() const { 235 return make_range(vni_begin(), vni_end()); 236 } 237 238 /// Constructs a new LiveRange object. 239 LiveRange(bool UseSegmentSet = false) 240 : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>() 241 : nullptr) {} 242 243 /// Constructs a new LiveRange object by copying segments and valnos from 244 /// another LiveRange. LiveRange(const LiveRange & Other,BumpPtrAllocator & Allocator)245 LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) { 246 assert(Other.segmentSet == nullptr && 247 "Copying of LiveRanges with active SegmentSets is not supported"); 248 assign(Other, Allocator); 249 } 250 251 /// Copies values numbers and live segments from \p Other into this range. assign(const LiveRange & Other,BumpPtrAllocator & Allocator)252 void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) { 253 if (this == &Other) 254 return; 255 256 assert(Other.segmentSet == nullptr && 257 "Copying of LiveRanges with active SegmentSets is not supported"); 258 // Duplicate valnos. 259 for (const VNInfo *VNI : Other.valnos) 260 createValueCopy(VNI, Allocator); 261 // Now we can copy segments and remap their valnos. 262 for (const Segment &S : Other.segments) 263 segments.push_back(Segment(S.start, S.end, valnos[S.valno->id])); 264 } 265 266 /// advanceTo - Advance the specified iterator to point to the Segment 267 /// containing the specified position, or end() if the position is past the 268 /// end of the range. If no Segment contains this position, but the 269 /// position is in a hole, this method returns an iterator pointing to the 270 /// Segment immediately after the hole. advanceTo(iterator I,SlotIndex Pos)271 iterator advanceTo(iterator I, SlotIndex Pos) { 272 assert(I != end()); 273 if (Pos >= endIndex()) 274 return end(); 275 while (I->end <= Pos) ++I; 276 return I; 277 } 278 advanceTo(const_iterator I,SlotIndex Pos)279 const_iterator advanceTo(const_iterator I, SlotIndex Pos) const { 280 assert(I != end()); 281 if (Pos >= endIndex()) 282 return end(); 283 while (I->end <= Pos) ++I; 284 return I; 285 } 286 287 /// find - Return an iterator pointing to the first segment that ends after 288 /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster 289 /// when searching large ranges. 290 /// 291 /// If Pos is contained in a Segment, that segment is returned. 292 /// If Pos is in a hole, the following Segment is returned. 293 /// If Pos is beyond endIndex, end() is returned. 294 iterator find(SlotIndex Pos); 295 find(SlotIndex Pos)296 const_iterator find(SlotIndex Pos) const { 297 return const_cast<LiveRange*>(this)->find(Pos); 298 } 299 clear()300 void clear() { 301 valnos.clear(); 302 segments.clear(); 303 } 304 size()305 size_t size() const { 306 return segments.size(); 307 } 308 hasAtLeastOneValue()309 bool hasAtLeastOneValue() const { return !valnos.empty(); } 310 containsOneValue()311 bool containsOneValue() const { return valnos.size() == 1; } 312 getNumValNums()313 unsigned getNumValNums() const { return (unsigned)valnos.size(); } 314 315 /// getValNumInfo - Returns pointer to the specified val#. 316 /// getValNumInfo(unsigned ValNo)317 inline VNInfo *getValNumInfo(unsigned ValNo) { 318 return valnos[ValNo]; 319 } getValNumInfo(unsigned ValNo)320 inline const VNInfo *getValNumInfo(unsigned ValNo) const { 321 return valnos[ValNo]; 322 } 323 324 /// containsValue - Returns true if VNI belongs to this range. containsValue(const VNInfo * VNI)325 bool containsValue(const VNInfo *VNI) const { 326 return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); 327 } 328 329 /// getNextValue - Create a new value number and return it. MIIdx specifies 330 /// the instruction that defines the value number. getNextValue(SlotIndex def,VNInfo::Allocator & VNInfoAllocator)331 VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) { 332 VNInfo *VNI = 333 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def); 334 valnos.push_back(VNI); 335 return VNI; 336 } 337 338 /// createDeadDef - Make sure the range has a value defined at Def. 339 /// If one already exists, return it. Otherwise allocate a new value and 340 /// add liveness for a dead def. 341 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc); 342 343 /// Create a def of value @p VNI. Return @p VNI. If there already exists 344 /// a definition at VNI->def, the value defined there must be @p VNI. 345 VNInfo *createDeadDef(VNInfo *VNI); 346 347 /// Create a copy of the given value. The new value will be identical except 348 /// for the Value number. createValueCopy(const VNInfo * orig,VNInfo::Allocator & VNInfoAllocator)349 VNInfo *createValueCopy(const VNInfo *orig, 350 VNInfo::Allocator &VNInfoAllocator) { 351 VNInfo *VNI = 352 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); 353 valnos.push_back(VNI); 354 return VNI; 355 } 356 357 /// RenumberValues - Renumber all values in order of appearance and remove 358 /// unused values. 359 void RenumberValues(); 360 361 /// MergeValueNumberInto - This method is called when two value numbers 362 /// are found to be equivalent. This eliminates V1, replacing all 363 /// segments with the V1 value number with the V2 value number. This can 364 /// cause merging of V1/V2 values numbers and compaction of the value space. 365 VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); 366 367 /// Merge all of the live segments of a specific val# in RHS into this live 368 /// range as the specified value number. The segments in RHS are allowed 369 /// to overlap with segments in the current range, it will replace the 370 /// value numbers of the overlaped live segments with the specified value 371 /// number. 372 void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo); 373 374 /// MergeValueInAsValue - Merge all of the segments of a specific val# 375 /// in RHS into this live range as the specified value number. 376 /// The segments in RHS are allowed to overlap with segments in the 377 /// current range, but only if the overlapping segments have the 378 /// specified value number. 379 void MergeValueInAsValue(const LiveRange &RHS, 380 const VNInfo *RHSValNo, VNInfo *LHSValNo); 381 empty()382 bool empty() const { return segments.empty(); } 383 384 /// beginIndex - Return the lowest numbered slot covered. beginIndex()385 SlotIndex beginIndex() const { 386 assert(!empty() && "Call to beginIndex() on empty range."); 387 return segments.front().start; 388 } 389 390 /// endNumber - return the maximum point of the range of the whole, 391 /// exclusive. endIndex()392 SlotIndex endIndex() const { 393 assert(!empty() && "Call to endIndex() on empty range."); 394 return segments.back().end; 395 } 396 expiredAt(SlotIndex index)397 bool expiredAt(SlotIndex index) const { 398 return index >= endIndex(); 399 } 400 liveAt(SlotIndex index)401 bool liveAt(SlotIndex index) const { 402 const_iterator r = find(index); 403 return r != end() && r->start <= index; 404 } 405 406 /// Return the segment that contains the specified index, or null if there 407 /// is none. getSegmentContaining(SlotIndex Idx)408 const Segment *getSegmentContaining(SlotIndex Idx) const { 409 const_iterator I = FindSegmentContaining(Idx); 410 return I == end() ? nullptr : &*I; 411 } 412 413 /// Return the live segment that contains the specified index, or null if 414 /// there is none. getSegmentContaining(SlotIndex Idx)415 Segment *getSegmentContaining(SlotIndex Idx) { 416 iterator I = FindSegmentContaining(Idx); 417 return I == end() ? nullptr : &*I; 418 } 419 420 /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL. getVNInfoAt(SlotIndex Idx)421 VNInfo *getVNInfoAt(SlotIndex Idx) const { 422 const_iterator I = FindSegmentContaining(Idx); 423 return I == end() ? nullptr : I->valno; 424 } 425 426 /// getVNInfoBefore - Return the VNInfo that is live up to but not 427 /// necessarilly including Idx, or NULL. Use this to find the reaching def 428 /// used by an instruction at this SlotIndex position. getVNInfoBefore(SlotIndex Idx)429 VNInfo *getVNInfoBefore(SlotIndex Idx) const { 430 const_iterator I = FindSegmentContaining(Idx.getPrevSlot()); 431 return I == end() ? nullptr : I->valno; 432 } 433 434 /// Return an iterator to the segment that contains the specified index, or 435 /// end() if there is none. FindSegmentContaining(SlotIndex Idx)436 iterator FindSegmentContaining(SlotIndex Idx) { 437 iterator I = find(Idx); 438 return I != end() && I->start <= Idx ? I : end(); 439 } 440 FindSegmentContaining(SlotIndex Idx)441 const_iterator FindSegmentContaining(SlotIndex Idx) const { 442 const_iterator I = find(Idx); 443 return I != end() && I->start <= Idx ? I : end(); 444 } 445 446 /// overlaps - Return true if the intersection of the two live ranges is 447 /// not empty. overlaps(const LiveRange & other)448 bool overlaps(const LiveRange &other) const { 449 if (other.empty()) 450 return false; 451 return overlapsFrom(other, other.begin()); 452 } 453 454 /// overlaps - Return true if the two ranges have overlapping segments 455 /// that are not coalescable according to CP. 456 /// 457 /// Overlapping segments where one range is defined by a coalescable 458 /// copy are allowed. 459 bool overlaps(const LiveRange &Other, const CoalescerPair &CP, 460 const SlotIndexes&) const; 461 462 /// overlaps - Return true if the live range overlaps an interval specified 463 /// by [Start, End). 464 bool overlaps(SlotIndex Start, SlotIndex End) const; 465 466 /// overlapsFrom - Return true if the intersection of the two live ranges 467 /// is not empty. The specified iterator is a hint that we can begin 468 /// scanning the Other range starting at I. 469 bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const; 470 471 /// Returns true if all segments of the @p Other live range are completely 472 /// covered by this live range. 473 /// Adjacent live ranges do not affect the covering:the liverange 474 /// [1,5](5,10] covers (3,7]. 475 bool covers(const LiveRange &Other) const; 476 477 /// Add the specified Segment to this range, merging segments as 478 /// appropriate. This returns an iterator to the inserted segment (which 479 /// may have grown since it was inserted). 480 iterator addSegment(Segment S); 481 482 /// Attempt to extend a value defined after @p StartIdx to include @p Use. 483 /// Both @p StartIdx and @p Use should be in the same basic block. In case 484 /// of subranges, an extension could be prevented by an explicit "undef" 485 /// caused by a <def,read-undef> on a non-overlapping lane. The list of 486 /// location of such "undefs" should be provided in @p Undefs. 487 /// The return value is a pair: the first element is VNInfo of the value 488 /// that was extended (possibly nullptr), the second is a boolean value 489 /// indicating whether an "undef" was encountered. 490 /// If this range is live before @p Use in the basic block that starts at 491 /// @p StartIdx, and there is no intervening "undef", extend it to be live 492 /// up to @p Use, and return the pair {value, false}. If there is no 493 /// segment before @p Use and there is no "undef" between @p StartIdx and 494 /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use, 495 /// return {nullptr, true}. 496 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, 497 SlotIndex StartIdx, SlotIndex Kill); 498 499 /// Simplified version of the above "extendInBlock", which assumes that 500 /// no register lanes are undefined by <def,read-undef> operands. 501 /// If this range is live before @p Use in the basic block that starts 502 /// at @p StartIdx, extend it to be live up to @p Use, and return the 503 /// value. If there is no segment before @p Use, return nullptr. 504 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill); 505 506 /// join - Join two live ranges (this, and other) together. This applies 507 /// mappings to the value numbers in the LHS/RHS ranges as specified. If 508 /// the ranges are not joinable, this aborts. 509 void join(LiveRange &Other, 510 const int *ValNoAssignments, 511 const int *RHSValNoAssignments, 512 SmallVectorImpl<VNInfo *> &NewVNInfo); 513 514 /// True iff this segment is a single segment that lies between the 515 /// specified boundaries, exclusively. Vregs live across a backedge are not 516 /// considered local. The boundaries are expected to lie within an extended 517 /// basic block, so vregs that are not live out should contain no holes. isLocal(SlotIndex Start,SlotIndex End)518 bool isLocal(SlotIndex Start, SlotIndex End) const { 519 return beginIndex() > Start.getBaseIndex() && 520 endIndex() < End.getBoundaryIndex(); 521 } 522 523 /// Remove the specified segment from this range. Note that the segment 524 /// must be a single Segment in its entirety. 525 void removeSegment(SlotIndex Start, SlotIndex End, 526 bool RemoveDeadValNo = false); 527 528 void removeSegment(Segment S, bool RemoveDeadValNo = false) { 529 removeSegment(S.start, S.end, RemoveDeadValNo); 530 } 531 532 /// Remove segment pointed to by iterator @p I from this range. 533 iterator removeSegment(iterator I, bool RemoveDeadValNo = false); 534 535 /// Mark \p ValNo for deletion if no segments in this range use it. 536 void removeValNoIfDead(VNInfo *ValNo); 537 538 /// Query Liveness at Idx. 539 /// The sub-instruction slot of Idx doesn't matter, only the instruction 540 /// it refers to is considered. Query(SlotIndex Idx)541 LiveQueryResult Query(SlotIndex Idx) const { 542 // Find the segment that enters the instruction. 543 const_iterator I = find(Idx.getBaseIndex()); 544 const_iterator E = end(); 545 if (I == E) 546 return LiveQueryResult(nullptr, nullptr, SlotIndex(), false); 547 548 // Is this an instruction live-in segment? 549 // If Idx is the start index of a basic block, include live-in segments 550 // that start at Idx.getBaseIndex(). 551 VNInfo *EarlyVal = nullptr; 552 VNInfo *LateVal = nullptr; 553 SlotIndex EndPoint; 554 bool Kill = false; 555 if (I->start <= Idx.getBaseIndex()) { 556 EarlyVal = I->valno; 557 EndPoint = I->end; 558 // Move to the potentially live-out segment. 559 if (SlotIndex::isSameInstr(Idx, I->end)) { 560 Kill = true; 561 if (++I == E) 562 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); 563 } 564 // Special case: A PHIDef value can have its def in the middle of a 565 // segment if the value happens to be live out of the layout 566 // predecessor. 567 // Such a value is not live-in. 568 if (EarlyVal->def == Idx.getBaseIndex()) 569 EarlyVal = nullptr; 570 } 571 // I now points to the segment that may be live-through, or defined by 572 // this instr. Ignore segments starting after the current instr. 573 if (!SlotIndex::isEarlierInstr(Idx, I->start)) { 574 LateVal = I->valno; 575 EndPoint = I->end; 576 } 577 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); 578 } 579 580 /// removeValNo - Remove all the segments defined by the specified value#. 581 /// Also remove the value# from value# list. 582 void removeValNo(VNInfo *ValNo); 583 584 /// Returns true if the live range is zero length, i.e. no live segments 585 /// span instructions. It doesn't pay to spill such a range. isZeroLength(SlotIndexes * Indexes)586 bool isZeroLength(SlotIndexes *Indexes) const { 587 for (const Segment &S : segments) 588 if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() < 589 S.end.getBaseIndex()) 590 return false; 591 return true; 592 } 593 594 // Returns true if any segment in the live range contains any of the 595 // provided slot indexes. Slots which occur in holes between 596 // segments will not cause the function to return true. 597 bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const; 598 599 bool operator<(const LiveRange& other) const { 600 const SlotIndex &thisIndex = beginIndex(); 601 const SlotIndex &otherIndex = other.beginIndex(); 602 return thisIndex < otherIndex; 603 } 604 605 /// Returns true if there is an explicit "undef" between @p Begin 606 /// @p End. isUndefIn(ArrayRef<SlotIndex> Undefs,SlotIndex Begin,SlotIndex End)607 bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin, 608 SlotIndex End) const { 609 return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool { 610 return Begin <= Idx && Idx < End; 611 }); 612 } 613 614 /// Flush segment set into the regular segment vector. 615 /// The method is to be called after the live range 616 /// has been created, if use of the segment set was 617 /// activated in the constructor of the live range. 618 void flushSegmentSet(); 619 620 /// Stores indexes from the input index sequence R at which this LiveRange 621 /// is live to the output O iterator. 622 /// R is a range of _ascending sorted_ _random_ access iterators 623 /// to the input indexes. Indexes stored at O are ascending sorted so it 624 /// can be used directly in the subsequent search (for example for 625 /// subranges). Returns true if found at least one index. 626 template <typename Range, typename OutputIt> findIndexesLiveAt(Range && R,OutputIt O)627 bool findIndexesLiveAt(Range &&R, OutputIt O) const { 628 assert(llvm::is_sorted(R)); 629 auto Idx = R.begin(), EndIdx = R.end(); 630 auto Seg = segments.begin(), EndSeg = segments.end(); 631 bool Found = false; 632 while (Idx != EndIdx && Seg != EndSeg) { 633 // if the Seg is lower find first segment that is above Idx using binary 634 // search 635 if (Seg->end <= *Idx) { 636 Seg = 637 std::upper_bound(++Seg, EndSeg, *Idx, [=](auto V, const auto &S) { 638 return V < S.end; 639 }); 640 if (Seg == EndSeg) 641 break; 642 } 643 auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start); 644 if (NotLessStart == EndIdx) 645 break; 646 auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end); 647 if (NotLessEnd != NotLessStart) { 648 Found = true; 649 O = std::copy(NotLessStart, NotLessEnd, O); 650 } 651 Idx = NotLessEnd; 652 ++Seg; 653 } 654 return Found; 655 } 656 657 void print(raw_ostream &OS) const; 658 void dump() const; 659 660 /// Walk the range and assert if any invariants fail to hold. 661 /// 662 /// Note that this is a no-op when asserts are disabled. 663 #ifdef NDEBUG verify()664 void verify() const {} 665 #else 666 void verify() const; 667 #endif 668 669 protected: 670 /// Append a segment to the list of segments. 671 void append(const LiveRange::Segment S); 672 673 private: 674 friend class LiveRangeUpdater; 675 void addSegmentToSet(Segment S); 676 void markValNoForDeletion(VNInfo *V); 677 }; 678 679 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) { 680 LR.print(OS); 681 return OS; 682 } 683 684 /// LiveInterval - This class represents the liveness of a register, 685 /// or stack slot. 686 class LiveInterval : public LiveRange { 687 public: 688 using super = LiveRange; 689 690 /// A live range for subregisters. The LaneMask specifies which parts of the 691 /// super register are covered by the interval. 692 /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()). 693 class SubRange : public LiveRange { 694 public: 695 SubRange *Next = nullptr; 696 LaneBitmask LaneMask; 697 698 /// Constructs a new SubRange object. SubRange(LaneBitmask LaneMask)699 SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {} 700 701 /// Constructs a new SubRange object by copying liveness from @p Other. SubRange(LaneBitmask LaneMask,const LiveRange & Other,BumpPtrAllocator & Allocator)702 SubRange(LaneBitmask LaneMask, const LiveRange &Other, 703 BumpPtrAllocator &Allocator) 704 : LiveRange(Other, Allocator), LaneMask(LaneMask) {} 705 706 void print(raw_ostream &OS) const; 707 void dump() const; 708 }; 709 710 private: 711 SubRange *SubRanges = nullptr; ///< Single linked list of subregister live 712 /// ranges. 713 const Register Reg; // the register or stack slot of this interval. 714 float Weight = 0.0; // weight of this interval 715 716 public: reg()717 Register reg() const { return Reg; } weight()718 float weight() const { return Weight; } incrementWeight(float Inc)719 void incrementWeight(float Inc) { Weight += Inc; } setWeight(float Value)720 void setWeight(float Value) { Weight = Value; } 721 LiveInterval(unsigned Reg,float Weight)722 LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {} 723 ~LiveInterval()724 ~LiveInterval() { 725 clearSubRanges(); 726 } 727 728 template<typename T> 729 class SingleLinkedListIterator { 730 T *P; 731 732 public: SingleLinkedListIterator(T * P)733 SingleLinkedListIterator(T *P) : P(P) {} 734 735 SingleLinkedListIterator<T> &operator++() { 736 P = P->Next; 737 return *this; 738 } 739 SingleLinkedListIterator<T> operator++(int) { 740 SingleLinkedListIterator res = *this; 741 ++*this; 742 return res; 743 } 744 bool operator!=(const SingleLinkedListIterator<T> &Other) const { 745 return P != Other.operator->(); 746 } 747 bool operator==(const SingleLinkedListIterator<T> &Other) const { 748 return P == Other.operator->(); 749 } 750 T &operator*() const { 751 return *P; 752 } 753 T *operator->() const { 754 return P; 755 } 756 }; 757 758 using subrange_iterator = SingleLinkedListIterator<SubRange>; 759 using const_subrange_iterator = SingleLinkedListIterator<const SubRange>; 760 subrange_begin()761 subrange_iterator subrange_begin() { 762 return subrange_iterator(SubRanges); 763 } subrange_end()764 subrange_iterator subrange_end() { 765 return subrange_iterator(nullptr); 766 } 767 subrange_begin()768 const_subrange_iterator subrange_begin() const { 769 return const_subrange_iterator(SubRanges); 770 } subrange_end()771 const_subrange_iterator subrange_end() const { 772 return const_subrange_iterator(nullptr); 773 } 774 subranges()775 iterator_range<subrange_iterator> subranges() { 776 return make_range(subrange_begin(), subrange_end()); 777 } 778 subranges()779 iterator_range<const_subrange_iterator> subranges() const { 780 return make_range(subrange_begin(), subrange_end()); 781 } 782 783 /// Creates a new empty subregister live range. The range is added at the 784 /// beginning of the subrange list; subrange iterators stay valid. createSubRange(BumpPtrAllocator & Allocator,LaneBitmask LaneMask)785 SubRange *createSubRange(BumpPtrAllocator &Allocator, 786 LaneBitmask LaneMask) { 787 SubRange *Range = new (Allocator) SubRange(LaneMask); 788 appendSubRange(Range); 789 return Range; 790 } 791 792 /// Like createSubRange() but the new range is filled with a copy of the 793 /// liveness information in @p CopyFrom. createSubRangeFrom(BumpPtrAllocator & Allocator,LaneBitmask LaneMask,const LiveRange & CopyFrom)794 SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, 795 LaneBitmask LaneMask, 796 const LiveRange &CopyFrom) { 797 SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator); 798 appendSubRange(Range); 799 return Range; 800 } 801 802 /// Returns true if subregister liveness information is available. hasSubRanges()803 bool hasSubRanges() const { 804 return SubRanges != nullptr; 805 } 806 807 /// Removes all subregister liveness information. 808 void clearSubRanges(); 809 810 /// Removes all subranges without any segments (subranges without segments 811 /// are not considered valid and should only exist temporarily). 812 void removeEmptySubRanges(); 813 814 /// getSize - Returns the sum of sizes of all the LiveRange's. 815 /// 816 unsigned getSize() const; 817 818 /// isSpillable - Can this interval be spilled? isSpillable()819 bool isSpillable() const { return Weight != huge_valf; } 820 821 /// markNotSpillable - Mark interval as not spillable markNotSpillable()822 void markNotSpillable() { Weight = huge_valf; } 823 824 /// For a given lane mask @p LaneMask, compute indexes at which the 825 /// lane is marked undefined by subregister <def,read-undef> definitions. 826 void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, 827 LaneBitmask LaneMask, 828 const MachineRegisterInfo &MRI, 829 const SlotIndexes &Indexes) const; 830 831 /// Refines the subranges to support \p LaneMask. This may only be called 832 /// for LI.hasSubrange()==true. Subregister ranges are split or created 833 /// until \p LaneMask can be matched exactly. \p Mod is executed on the 834 /// matching subranges. 835 /// 836 /// Example: 837 /// Given an interval with subranges with lanemasks L0F00, L00F0 and 838 /// L000F, refining for mask L0018. Will split the L00F0 lane into 839 /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod 840 /// function will be applied to the L0010 and L0008 subranges. 841 /// 842 /// \p Indexes and \p TRI are required to clean up the VNIs that 843 /// don't define the related lane masks after they get shrunk. E.g., 844 /// when L000F gets split into L0007 and L0008 maybe only a subset 845 /// of the VNIs that defined L000F defines L0007. 846 /// 847 /// The clean up of the VNIs need to look at the actual instructions 848 /// to decide what is or is not live at a definition point. If the 849 /// update of the subranges occurs while the IR does not reflect these 850 /// changes, \p ComposeSubRegIdx can be used to specify how the 851 /// definition are going to be rewritten. 852 /// E.g., let say we want to merge: 853 /// V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32> 854 /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32> 855 /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3". 856 /// Put differently we align V2's sub3 with V1's sub1: 857 /// V2: sub0 sub1 sub2 sub3 858 /// V1: <offset> sub0 sub1 859 /// 860 /// This offset will look like a composed subregidx in the the class: 861 /// V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32> 862 /// => V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32> 863 /// 864 /// Now if we didn't rewrite the uses and def of V1, all the checks for V1 865 /// need to account for this offset. 866 /// This happens during coalescing where we update the live-ranges while 867 /// still having the old IR around because updating the IR on-the-fly 868 /// would actually clobber some information on how the live-ranges that 869 /// are being updated look like. 870 void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, 871 std::function<void(LiveInterval::SubRange &)> Apply, 872 const SlotIndexes &Indexes, 873 const TargetRegisterInfo &TRI, 874 unsigned ComposeSubRegIdx = 0); 875 876 bool operator<(const LiveInterval& other) const { 877 const SlotIndex &thisIndex = beginIndex(); 878 const SlotIndex &otherIndex = other.beginIndex(); 879 return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg); 880 } 881 882 void print(raw_ostream &OS) const; 883 void dump() const; 884 885 /// Walks the interval and assert if any invariants fail to hold. 886 /// 887 /// Note that this is a no-op when asserts are disabled. 888 #ifdef NDEBUG 889 void verify(const MachineRegisterInfo *MRI = nullptr) const {} 890 #else 891 void verify(const MachineRegisterInfo *MRI = nullptr) const; 892 #endif 893 894 private: 895 /// Appends @p Range to SubRanges list. appendSubRange(SubRange * Range)896 void appendSubRange(SubRange *Range) { 897 Range->Next = SubRanges; 898 SubRanges = Range; 899 } 900 901 /// Free memory held by SubRange. 902 void freeSubRange(SubRange *S); 903 }; 904 905 inline raw_ostream &operator<<(raw_ostream &OS, 906 const LiveInterval::SubRange &SR) { 907 SR.print(OS); 908 return OS; 909 } 910 911 inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { 912 LI.print(OS); 913 return OS; 914 } 915 916 raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S); 917 918 inline bool operator<(SlotIndex V, const LiveRange::Segment &S) { 919 return V < S.start; 920 } 921 922 inline bool operator<(const LiveRange::Segment &S, SlotIndex V) { 923 return S.start < V; 924 } 925 926 /// Helper class for performant LiveRange bulk updates. 927 /// 928 /// Calling LiveRange::addSegment() repeatedly can be expensive on large 929 /// live ranges because segments after the insertion point may need to be 930 /// shifted. The LiveRangeUpdater class can defer the shifting when adding 931 /// many segments in order. 932 /// 933 /// The LiveRange will be in an invalid state until flush() is called. 934 class LiveRangeUpdater { 935 LiveRange *LR; 936 SlotIndex LastStart; 937 LiveRange::iterator WriteI; 938 LiveRange::iterator ReadI; 939 SmallVector<LiveRange::Segment, 16> Spills; 940 void mergeSpills(); 941 942 public: 943 /// Create a LiveRangeUpdater for adding segments to LR. 944 /// LR will temporarily be in an invalid state until flush() is called. LR(lr)945 LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {} 946 ~LiveRangeUpdater()947 ~LiveRangeUpdater() { flush(); } 948 949 /// Add a segment to LR and coalesce when possible, just like 950 /// LR.addSegment(). Segments should be added in increasing start order for 951 /// best performance. 952 void add(LiveRange::Segment); 953 add(SlotIndex Start,SlotIndex End,VNInfo * VNI)954 void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 955 add(LiveRange::Segment(Start, End, VNI)); 956 } 957 958 /// Return true if the LR is currently in an invalid state, and flush() 959 /// needs to be called. isDirty()960 bool isDirty() const { return LastStart.isValid(); } 961 962 /// Flush the updater state to LR so it is valid and contains all added 963 /// segments. 964 void flush(); 965 966 /// Select a different destination live range. setDest(LiveRange * lr)967 void setDest(LiveRange *lr) { 968 if (LR != lr && isDirty()) 969 flush(); 970 LR = lr; 971 } 972 973 /// Get the current destination live range. getDest()974 LiveRange *getDest() const { return LR; } 975 976 void dump() const; 977 void print(raw_ostream&) const; 978 }; 979 980 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { 981 X.print(OS); 982 return OS; 983 } 984 985 /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a 986 /// LiveInterval into equivalence clases of connected components. A 987 /// LiveInterval that has multiple connected components can be broken into 988 /// multiple LiveIntervals. 989 /// 990 /// Given a LiveInterval that may have multiple connected components, run: 991 /// 992 /// unsigned numComps = ConEQ.Classify(LI); 993 /// if (numComps > 1) { 994 /// // allocate numComps-1 new LiveIntervals into LIS[1..] 995 /// ConEQ.Distribute(LIS); 996 /// } 997 998 class ConnectedVNInfoEqClasses { 999 LiveIntervals &LIS; 1000 IntEqClasses EqClass; 1001 1002 public: ConnectedVNInfoEqClasses(LiveIntervals & lis)1003 explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {} 1004 1005 /// Classify the values in \p LR into connected components. 1006 /// Returns the number of connected components. 1007 unsigned Classify(const LiveRange &LR); 1008 1009 /// getEqClass - Classify creates equivalence classes numbered 0..N. Return 1010 /// the equivalence class assigned the VNI. getEqClass(const VNInfo * VNI)1011 unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; } 1012 1013 /// Distribute values in \p LI into a separate LiveIntervals 1014 /// for each connected component. LIV must have an empty LiveInterval for 1015 /// each additional connected component. The first connected component is 1016 /// left in \p LI. 1017 void Distribute(LiveInterval &LI, LiveInterval *LIV[], 1018 MachineRegisterInfo &MRI); 1019 }; 1020 1021 } // end namespace llvm 1022 1023 #endif // LLVM_CODEGEN_LIVEINTERVAL_H 1024