xref: /linux/mm/memory-failure.c (revision f1264e95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_devmap(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_devmap(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent) && pte_devmap(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = page_shift(compound_head(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(struct folio *folio, struct page *page,
610 		struct list_head *to_kill, int force_early)
611 {
612 	struct task_struct *tsk;
613 	struct anon_vma *av;
614 	pgoff_t pgoff;
615 
616 	av = folio_lock_anon_vma_read(folio, NULL);
617 	if (av == NULL)	/* Not actually mapped anymore */
618 		return;
619 
620 	pgoff = page_to_pgoff(page);
621 	rcu_read_lock();
622 	for_each_process(tsk) {
623 		struct vm_area_struct *vma;
624 		struct anon_vma_chain *vmac;
625 		struct task_struct *t = task_early_kill(tsk, force_early);
626 		unsigned long addr;
627 
628 		if (!t)
629 			continue;
630 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 					       pgoff, pgoff) {
632 			vma = vmac->vma;
633 			if (vma->vm_mm != t->mm)
634 				continue;
635 			addr = page_mapped_in_vma(page, vma);
636 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
637 		}
638 	}
639 	rcu_read_unlock();
640 	anon_vma_unlock_read(av);
641 }
642 
643 /*
644  * Collect processes when the error hit a file mapped page.
645  */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)646 static void collect_procs_file(struct folio *folio, struct page *page,
647 		struct list_head *to_kill, int force_early)
648 {
649 	struct vm_area_struct *vma;
650 	struct task_struct *tsk;
651 	struct address_space *mapping = folio->mapping;
652 	pgoff_t pgoff;
653 
654 	i_mmap_lock_read(mapping);
655 	rcu_read_lock();
656 	pgoff = page_to_pgoff(page);
657 	for_each_process(tsk) {
658 		struct task_struct *t = task_early_kill(tsk, force_early);
659 		unsigned long addr;
660 
661 		if (!t)
662 			continue;
663 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 				      pgoff) {
665 			/*
666 			 * Send early kill signal to tasks where a vma covers
667 			 * the page but the corrupted page is not necessarily
668 			 * mapped in its pte.
669 			 * Assume applications who requested early kill want
670 			 * to be informed of all such data corruptions.
671 			 */
672 			if (vma->vm_mm != t->mm)
673 				continue;
674 			addr = page_address_in_vma(page, vma);
675 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
676 		}
677 	}
678 	rcu_read_unlock();
679 	i_mmap_unlock_read(mapping);
680 }
681 
682 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)683 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684 			      struct vm_area_struct *vma,
685 			      struct list_head *to_kill, pgoff_t pgoff)
686 {
687 	unsigned long addr = vma_address(vma, pgoff, 1);
688 	__add_to_kill(tsk, p, vma, to_kill, addr);
689 }
690 
691 /*
692  * Collect processes when the error hit a fsdax page.
693  */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)694 static void collect_procs_fsdax(struct page *page,
695 		struct address_space *mapping, pgoff_t pgoff,
696 		struct list_head *to_kill, bool pre_remove)
697 {
698 	struct vm_area_struct *vma;
699 	struct task_struct *tsk;
700 
701 	i_mmap_lock_read(mapping);
702 	rcu_read_lock();
703 	for_each_process(tsk) {
704 		struct task_struct *t = tsk;
705 
706 		/*
707 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708 		 * the current may not be the one accessing the fsdax page.
709 		 * Otherwise, search for the current task.
710 		 */
711 		if (!pre_remove)
712 			t = task_early_kill(tsk, true);
713 		if (!t)
714 			continue;
715 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716 			if (vma->vm_mm == t->mm)
717 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
718 		}
719 	}
720 	rcu_read_unlock();
721 	i_mmap_unlock_read(mapping);
722 }
723 #endif /* CONFIG_FS_DAX */
724 
725 /*
726  * Collect the processes who have the corrupted page mapped to kill.
727  */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)728 static void collect_procs(struct folio *folio, struct page *page,
729 		struct list_head *tokill, int force_early)
730 {
731 	if (!folio->mapping)
732 		return;
733 	if (unlikely(folio_test_ksm(folio)))
734 		collect_procs_ksm(folio, page, tokill, force_early);
735 	else if (folio_test_anon(folio))
736 		collect_procs_anon(folio, page, tokill, force_early);
737 	else
738 		collect_procs_file(folio, page, tokill, force_early);
739 }
740 
741 struct hwpoison_walk {
742 	struct to_kill tk;
743 	unsigned long pfn;
744 	int flags;
745 };
746 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)747 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
748 {
749 	tk->addr = addr;
750 	tk->size_shift = shift;
751 }
752 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)753 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754 				unsigned long poisoned_pfn, struct to_kill *tk)
755 {
756 	unsigned long pfn = 0;
757 
758 	if (pte_present(pte)) {
759 		pfn = pte_pfn(pte);
760 	} else {
761 		swp_entry_t swp = pte_to_swp_entry(pte);
762 
763 		if (is_hwpoison_entry(swp))
764 			pfn = swp_offset_pfn(swp);
765 	}
766 
767 	if (!pfn || pfn != poisoned_pfn)
768 		return 0;
769 
770 	set_to_kill(tk, addr, shift);
771 	return 1;
772 }
773 
774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)775 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776 				      struct hwpoison_walk *hwp)
777 {
778 	pmd_t pmd = *pmdp;
779 	unsigned long pfn;
780 	unsigned long hwpoison_vaddr;
781 
782 	if (!pmd_present(pmd))
783 		return 0;
784 	pfn = pmd_pfn(pmd);
785 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
788 		return 1;
789 	}
790 	return 0;
791 }
792 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)793 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794 				      struct hwpoison_walk *hwp)
795 {
796 	return 0;
797 }
798 #endif
799 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)800 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801 			      unsigned long end, struct mm_walk *walk)
802 {
803 	struct hwpoison_walk *hwp = walk->private;
804 	int ret = 0;
805 	pte_t *ptep, *mapped_pte;
806 	spinlock_t *ptl;
807 
808 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809 	if (ptl) {
810 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
811 		spin_unlock(ptl);
812 		goto out;
813 	}
814 
815 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
816 						addr, &ptl);
817 	if (!ptep)
818 		goto out;
819 
820 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
821 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
822 					     hwp->pfn, &hwp->tk);
823 		if (ret == 1)
824 			break;
825 	}
826 	pte_unmap_unlock(mapped_pte, ptl);
827 out:
828 	cond_resched();
829 	return ret;
830 }
831 
832 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)833 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834 			    unsigned long addr, unsigned long end,
835 			    struct mm_walk *walk)
836 {
837 	struct hwpoison_walk *hwp = walk->private;
838 	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839 	struct hstate *h = hstate_vma(walk->vma);
840 
841 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
842 				      hwp->pfn, &hwp->tk);
843 }
844 #else
845 #define hwpoison_hugetlb_range	NULL
846 #endif
847 
848 static const struct mm_walk_ops hwpoison_walk_ops = {
849 	.pmd_entry = hwpoison_pte_range,
850 	.hugetlb_entry = hwpoison_hugetlb_range,
851 	.walk_lock = PGWALK_RDLOCK,
852 };
853 
854 /*
855  * Sends SIGBUS to the current process with error info.
856  *
857  * This function is intended to handle "Action Required" MCEs on already
858  * hardware poisoned pages. They could happen, for example, when
859  * memory_failure() failed to unmap the error page at the first call, or
860  * when multiple local machine checks happened on different CPUs.
861  *
862  * MCE handler currently has no easy access to the error virtual address,
863  * so this function walks page table to find it. The returned virtual address
864  * is proper in most cases, but it could be wrong when the application
865  * process has multiple entries mapping the error page.
866  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)867 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
868 				  int flags)
869 {
870 	int ret;
871 	struct hwpoison_walk priv = {
872 		.pfn = pfn,
873 	};
874 	priv.tk.tsk = p;
875 
876 	if (!p->mm)
877 		return -EFAULT;
878 
879 	mmap_read_lock(p->mm);
880 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
881 			      (void *)&priv);
882 	if (ret == 1 && priv.tk.addr)
883 		kill_proc(&priv.tk, pfn, flags);
884 	else
885 		ret = 0;
886 	mmap_read_unlock(p->mm);
887 	return ret > 0 ? -EHWPOISON : -EFAULT;
888 }
889 
890 /*
891  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
892  * But it could not do more to isolate the page from being accessed again,
893  * nor does it kill the process. This is extremely rare and one of the
894  * potential causes is that the page state has been changed due to
895  * underlying race condition. This is the most severe outcomes.
896  *
897  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
898  * It should have killed the process, but it can't isolate the page,
899  * due to conditions such as extra pin, unmap failure, etc. Accessing
900  * the page again may trigger another MCE and the process will be killed
901  * by the m-f() handler immediately.
902  *
903  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
904  * The page is unmapped, and is removed from the LRU or file mapping.
905  * An attempt to access the page again will trigger page fault and the
906  * PF handler will kill the process.
907  *
908  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
909  * The page has been completely isolated, that is, unmapped, taken out of
910  * the buddy system, or hole-punnched out of the file mapping.
911  */
912 static const char *action_name[] = {
913 	[MF_IGNORED] = "Ignored",
914 	[MF_FAILED] = "Failed",
915 	[MF_DELAYED] = "Delayed",
916 	[MF_RECOVERED] = "Recovered",
917 };
918 
919 static const char * const action_page_types[] = {
920 	[MF_MSG_KERNEL]			= "reserved kernel page",
921 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
922 	[MF_MSG_HUGE]			= "huge page",
923 	[MF_MSG_FREE_HUGE]		= "free huge page",
924 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
925 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
926 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
927 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
928 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
929 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
930 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
931 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
932 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
933 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
934 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
935 	[MF_MSG_BUDDY]			= "free buddy page",
936 	[MF_MSG_DAX]			= "dax page",
937 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
938 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
939 	[MF_MSG_UNKNOWN]		= "unknown page",
940 };
941 
942 /*
943  * XXX: It is possible that a page is isolated from LRU cache,
944  * and then kept in swap cache or failed to remove from page cache.
945  * The page count will stop it from being freed by unpoison.
946  * Stress tests should be aware of this memory leak problem.
947  */
delete_from_lru_cache(struct folio * folio)948 static int delete_from_lru_cache(struct folio *folio)
949 {
950 	if (folio_isolate_lru(folio)) {
951 		/*
952 		 * Clear sensible page flags, so that the buddy system won't
953 		 * complain when the folio is unpoison-and-freed.
954 		 */
955 		folio_clear_active(folio);
956 		folio_clear_unevictable(folio);
957 
958 		/*
959 		 * Poisoned page might never drop its ref count to 0 so we have
960 		 * to uncharge it manually from its memcg.
961 		 */
962 		mem_cgroup_uncharge(folio);
963 
964 		/*
965 		 * drop the refcount elevated by folio_isolate_lru()
966 		 */
967 		folio_put(folio);
968 		return 0;
969 	}
970 	return -EIO;
971 }
972 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)973 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
974 				struct address_space *mapping)
975 {
976 	int ret = MF_FAILED;
977 
978 	if (mapping->a_ops->error_remove_folio) {
979 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
980 
981 		if (err != 0)
982 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
983 		else if (!filemap_release_folio(folio, GFP_NOIO))
984 			pr_info("%#lx: failed to release buffers\n", pfn);
985 		else
986 			ret = MF_RECOVERED;
987 	} else {
988 		/*
989 		 * If the file system doesn't support it just invalidate
990 		 * This fails on dirty or anything with private pages
991 		 */
992 		if (mapping_evict_folio(mapping, folio))
993 			ret = MF_RECOVERED;
994 		else
995 			pr_info("%#lx: Failed to invalidate\n",	pfn);
996 	}
997 
998 	return ret;
999 }
1000 
1001 struct page_state {
1002 	unsigned long mask;
1003 	unsigned long res;
1004 	enum mf_action_page_type type;
1005 
1006 	/* Callback ->action() has to unlock the relevant page inside it. */
1007 	int (*action)(struct page_state *ps, struct page *p);
1008 };
1009 
1010 /*
1011  * Return true if page is still referenced by others, otherwise return
1012  * false.
1013  *
1014  * The extra_pins is true when one extra refcount is expected.
1015  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1016 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1017 			       bool extra_pins)
1018 {
1019 	int count = page_count(p) - 1;
1020 
1021 	if (extra_pins)
1022 		count -= folio_nr_pages(page_folio(p));
1023 
1024 	if (count > 0) {
1025 		pr_err("%#lx: %s still referenced by %d users\n",
1026 		       page_to_pfn(p), action_page_types[ps->type], count);
1027 		return true;
1028 	}
1029 
1030 	return false;
1031 }
1032 
1033 /*
1034  * Error hit kernel page.
1035  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1036  * could be more sophisticated.
1037  */
me_kernel(struct page_state * ps,struct page * p)1038 static int me_kernel(struct page_state *ps, struct page *p)
1039 {
1040 	unlock_page(p);
1041 	return MF_IGNORED;
1042 }
1043 
1044 /*
1045  * Page in unknown state. Do nothing.
1046  * This is a catch-all in case we fail to make sense of the page state.
1047  */
me_unknown(struct page_state * ps,struct page * p)1048 static int me_unknown(struct page_state *ps, struct page *p)
1049 {
1050 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1051 	unlock_page(p);
1052 	return MF_IGNORED;
1053 }
1054 
1055 /*
1056  * Clean (or cleaned) page cache page.
1057  */
me_pagecache_clean(struct page_state * ps,struct page * p)1058 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1059 {
1060 	struct folio *folio = page_folio(p);
1061 	int ret;
1062 	struct address_space *mapping;
1063 	bool extra_pins;
1064 
1065 	delete_from_lru_cache(folio);
1066 
1067 	/*
1068 	 * For anonymous folios the only reference left
1069 	 * should be the one m_f() holds.
1070 	 */
1071 	if (folio_test_anon(folio)) {
1072 		ret = MF_RECOVERED;
1073 		goto out;
1074 	}
1075 
1076 	/*
1077 	 * Now truncate the page in the page cache. This is really
1078 	 * more like a "temporary hole punch"
1079 	 * Don't do this for block devices when someone else
1080 	 * has a reference, because it could be file system metadata
1081 	 * and that's not safe to truncate.
1082 	 */
1083 	mapping = folio_mapping(folio);
1084 	if (!mapping) {
1085 		/* Folio has been torn down in the meantime */
1086 		ret = MF_FAILED;
1087 		goto out;
1088 	}
1089 
1090 	/*
1091 	 * The shmem page is kept in page cache instead of truncating
1092 	 * so is expected to have an extra refcount after error-handling.
1093 	 */
1094 	extra_pins = shmem_mapping(mapping);
1095 
1096 	/*
1097 	 * Truncation is a bit tricky. Enable it per file system for now.
1098 	 *
1099 	 * Open: to take i_rwsem or not for this? Right now we don't.
1100 	 */
1101 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1102 	if (has_extra_refcount(ps, p, extra_pins))
1103 		ret = MF_FAILED;
1104 
1105 out:
1106 	folio_unlock(folio);
1107 
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Dirty pagecache page
1113  * Issues: when the error hit a hole page the error is not properly
1114  * propagated.
1115  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1116 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1117 {
1118 	struct folio *folio = page_folio(p);
1119 	struct address_space *mapping = folio_mapping(folio);
1120 
1121 	/* TBD: print more information about the file. */
1122 	if (mapping) {
1123 		/*
1124 		 * IO error will be reported by write(), fsync(), etc.
1125 		 * who check the mapping.
1126 		 * This way the application knows that something went
1127 		 * wrong with its dirty file data.
1128 		 */
1129 		mapping_set_error(mapping, -EIO);
1130 	}
1131 
1132 	return me_pagecache_clean(ps, p);
1133 }
1134 
1135 /*
1136  * Clean and dirty swap cache.
1137  *
1138  * Dirty swap cache page is tricky to handle. The page could live both in page
1139  * table and swap cache(ie. page is freshly swapped in). So it could be
1140  * referenced concurrently by 2 types of PTEs:
1141  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1142  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1143  * and then
1144  *      - clear dirty bit to prevent IO
1145  *      - remove from LRU
1146  *      - but keep in the swap cache, so that when we return to it on
1147  *        a later page fault, we know the application is accessing
1148  *        corrupted data and shall be killed (we installed simple
1149  *        interception code in do_swap_page to catch it).
1150  *
1151  * Clean swap cache pages can be directly isolated. A later page fault will
1152  * bring in the known good data from disk.
1153  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1154 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1155 {
1156 	struct folio *folio = page_folio(p);
1157 	int ret;
1158 	bool extra_pins = false;
1159 
1160 	folio_clear_dirty(folio);
1161 	/* Trigger EIO in shmem: */
1162 	folio_clear_uptodate(folio);
1163 
1164 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1165 	folio_unlock(folio);
1166 
1167 	if (ret == MF_DELAYED)
1168 		extra_pins = true;
1169 
1170 	if (has_extra_refcount(ps, p, extra_pins))
1171 		ret = MF_FAILED;
1172 
1173 	return ret;
1174 }
1175 
me_swapcache_clean(struct page_state * ps,struct page * p)1176 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1177 {
1178 	struct folio *folio = page_folio(p);
1179 	int ret;
1180 
1181 	delete_from_swap_cache(folio);
1182 
1183 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1184 	folio_unlock(folio);
1185 
1186 	if (has_extra_refcount(ps, p, false))
1187 		ret = MF_FAILED;
1188 
1189 	return ret;
1190 }
1191 
1192 /*
1193  * Huge pages. Needs work.
1194  * Issues:
1195  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1196  *   To narrow down kill region to one page, we need to break up pmd.
1197  */
me_huge_page(struct page_state * ps,struct page * p)1198 static int me_huge_page(struct page_state *ps, struct page *p)
1199 {
1200 	struct folio *folio = page_folio(p);
1201 	int res;
1202 	struct address_space *mapping;
1203 	bool extra_pins = false;
1204 
1205 	mapping = folio_mapping(folio);
1206 	if (mapping) {
1207 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1208 		/* The page is kept in page cache. */
1209 		extra_pins = true;
1210 		folio_unlock(folio);
1211 	} else {
1212 		folio_unlock(folio);
1213 		/*
1214 		 * migration entry prevents later access on error hugepage,
1215 		 * so we can free and dissolve it into buddy to save healthy
1216 		 * subpages.
1217 		 */
1218 		folio_put(folio);
1219 		if (__page_handle_poison(p) > 0) {
1220 			page_ref_inc(p);
1221 			res = MF_RECOVERED;
1222 		} else {
1223 			res = MF_FAILED;
1224 		}
1225 	}
1226 
1227 	if (has_extra_refcount(ps, p, extra_pins))
1228 		res = MF_FAILED;
1229 
1230 	return res;
1231 }
1232 
1233 /*
1234  * Various page states we can handle.
1235  *
1236  * A page state is defined by its current page->flags bits.
1237  * The table matches them in order and calls the right handler.
1238  *
1239  * This is quite tricky because we can access page at any time
1240  * in its live cycle, so all accesses have to be extremely careful.
1241  *
1242  * This is not complete. More states could be added.
1243  * For any missing state don't attempt recovery.
1244  */
1245 
1246 #define dirty		(1UL << PG_dirty)
1247 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1248 #define unevict		(1UL << PG_unevictable)
1249 #define mlock		(1UL << PG_mlocked)
1250 #define lru		(1UL << PG_lru)
1251 #define head		(1UL << PG_head)
1252 #define reserved	(1UL << PG_reserved)
1253 
1254 static struct page_state error_states[] = {
1255 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1256 	/*
1257 	 * free pages are specially detected outside this table:
1258 	 * PG_buddy pages only make a small fraction of all free pages.
1259 	 */
1260 
1261 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1262 
1263 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1264 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1265 
1266 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1267 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1268 
1269 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1270 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1271 
1272 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1273 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1274 
1275 	/*
1276 	 * Catchall entry: must be at end.
1277 	 */
1278 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1279 };
1280 
1281 #undef dirty
1282 #undef sc
1283 #undef unevict
1284 #undef mlock
1285 #undef lru
1286 #undef head
1287 #undef reserved
1288 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1289 static void update_per_node_mf_stats(unsigned long pfn,
1290 				     enum mf_result result)
1291 {
1292 	int nid = MAX_NUMNODES;
1293 	struct memory_failure_stats *mf_stats = NULL;
1294 
1295 	nid = pfn_to_nid(pfn);
1296 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1297 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1298 		return;
1299 	}
1300 
1301 	mf_stats = &NODE_DATA(nid)->mf_stats;
1302 	switch (result) {
1303 	case MF_IGNORED:
1304 		++mf_stats->ignored;
1305 		break;
1306 	case MF_FAILED:
1307 		++mf_stats->failed;
1308 		break;
1309 	case MF_DELAYED:
1310 		++mf_stats->delayed;
1311 		break;
1312 	case MF_RECOVERED:
1313 		++mf_stats->recovered;
1314 		break;
1315 	default:
1316 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1317 		break;
1318 	}
1319 	++mf_stats->total;
1320 }
1321 
1322 /*
1323  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1324  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1325  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1326 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1327 			 enum mf_result result)
1328 {
1329 	trace_memory_failure_event(pfn, type, result);
1330 
1331 	num_poisoned_pages_inc(pfn);
1332 
1333 	update_per_node_mf_stats(pfn, result);
1334 
1335 	pr_err("%#lx: recovery action for %s: %s\n",
1336 		pfn, action_page_types[type], action_name[result]);
1337 
1338 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1339 }
1340 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1341 static int page_action(struct page_state *ps, struct page *p,
1342 			unsigned long pfn)
1343 {
1344 	int result;
1345 
1346 	/* page p should be unlocked after returning from ps->action().  */
1347 	result = ps->action(ps, p);
1348 
1349 	/* Could do more checks here if page looks ok */
1350 	/*
1351 	 * Could adjust zone counters here to correct for the missing page.
1352 	 */
1353 
1354 	return action_result(pfn, ps->type, result);
1355 }
1356 
PageHWPoisonTakenOff(struct page * page)1357 static inline bool PageHWPoisonTakenOff(struct page *page)
1358 {
1359 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1360 }
1361 
SetPageHWPoisonTakenOff(struct page * page)1362 void SetPageHWPoisonTakenOff(struct page *page)
1363 {
1364 	set_page_private(page, MAGIC_HWPOISON);
1365 }
1366 
ClearPageHWPoisonTakenOff(struct page * page)1367 void ClearPageHWPoisonTakenOff(struct page *page)
1368 {
1369 	if (PageHWPoison(page))
1370 		set_page_private(page, 0);
1371 }
1372 
1373 /*
1374  * Return true if a page type of a given page is supported by hwpoison
1375  * mechanism (while handling could fail), otherwise false.  This function
1376  * does not return true for hugetlb or device memory pages, so it's assumed
1377  * to be called only in the context where we never have such pages.
1378  */
HWPoisonHandlable(struct page * page,unsigned long flags)1379 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1380 {
1381 	if (PageSlab(page))
1382 		return false;
1383 
1384 	/* Soft offline could migrate non-LRU movable pages */
1385 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1386 		return true;
1387 
1388 	return PageLRU(page) || is_free_buddy_page(page);
1389 }
1390 
__get_hwpoison_page(struct page * page,unsigned long flags)1391 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1392 {
1393 	struct folio *folio = page_folio(page);
1394 	int ret = 0;
1395 	bool hugetlb = false;
1396 
1397 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1398 	if (hugetlb) {
1399 		/* Make sure hugetlb demotion did not happen from under us. */
1400 		if (folio == page_folio(page))
1401 			return ret;
1402 		if (ret > 0) {
1403 			folio_put(folio);
1404 			folio = page_folio(page);
1405 		}
1406 	}
1407 
1408 	/*
1409 	 * This check prevents from calling folio_try_get() for any
1410 	 * unsupported type of folio in order to reduce the risk of unexpected
1411 	 * races caused by taking a folio refcount.
1412 	 */
1413 	if (!HWPoisonHandlable(&folio->page, flags))
1414 		return -EBUSY;
1415 
1416 	if (folio_try_get(folio)) {
1417 		if (folio == page_folio(page))
1418 			return 1;
1419 
1420 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1421 		folio_put(folio);
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 #define GET_PAGE_MAX_RETRY_NUM 3
1428 
get_any_page(struct page * p,unsigned long flags)1429 static int get_any_page(struct page *p, unsigned long flags)
1430 {
1431 	int ret = 0, pass = 0;
1432 	bool count_increased = false;
1433 
1434 	if (flags & MF_COUNT_INCREASED)
1435 		count_increased = true;
1436 
1437 try_again:
1438 	if (!count_increased) {
1439 		ret = __get_hwpoison_page(p, flags);
1440 		if (!ret) {
1441 			if (page_count(p)) {
1442 				/* We raced with an allocation, retry. */
1443 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1444 					goto try_again;
1445 				ret = -EBUSY;
1446 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447 				/* We raced with put_page, retry. */
1448 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1449 					goto try_again;
1450 				ret = -EIO;
1451 			}
1452 			goto out;
1453 		} else if (ret == -EBUSY) {
1454 			/*
1455 			 * We raced with (possibly temporary) unhandlable
1456 			 * page, retry.
1457 			 */
1458 			if (pass++ < 3) {
1459 				shake_page(p);
1460 				goto try_again;
1461 			}
1462 			ret = -EIO;
1463 			goto out;
1464 		}
1465 	}
1466 
1467 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1468 		ret = 1;
1469 	} else {
1470 		/*
1471 		 * A page we cannot handle. Check whether we can turn
1472 		 * it into something we can handle.
1473 		 */
1474 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1475 			put_page(p);
1476 			shake_page(p);
1477 			count_increased = false;
1478 			goto try_again;
1479 		}
1480 		put_page(p);
1481 		ret = -EIO;
1482 	}
1483 out:
1484 	if (ret == -EIO)
1485 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1486 
1487 	return ret;
1488 }
1489 
__get_unpoison_page(struct page * page)1490 static int __get_unpoison_page(struct page *page)
1491 {
1492 	struct folio *folio = page_folio(page);
1493 	int ret = 0;
1494 	bool hugetlb = false;
1495 
1496 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1497 	if (hugetlb) {
1498 		/* Make sure hugetlb demotion did not happen from under us. */
1499 		if (folio == page_folio(page))
1500 			return ret;
1501 		if (ret > 0)
1502 			folio_put(folio);
1503 	}
1504 
1505 	/*
1506 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507 	 * but also isolated from buddy freelist, so need to identify the
1508 	 * state and have to cancel both operations to unpoison.
1509 	 */
1510 	if (PageHWPoisonTakenOff(page))
1511 		return -EHWPOISON;
1512 
1513 	return get_page_unless_zero(page) ? 1 : 0;
1514 }
1515 
1516 /**
1517  * get_hwpoison_page() - Get refcount for memory error handling
1518  * @p:		Raw error page (hit by memory error)
1519  * @flags:	Flags controlling behavior of error handling
1520  *
1521  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522  * error on it, after checking that the error page is in a well-defined state
1523  * (defined as a page-type we can successfully handle the memory error on it,
1524  * such as LRU page and hugetlb page).
1525  *
1526  * Memory error handling could be triggered at any time on any type of page,
1527  * so it's prone to race with typical memory management lifecycle (like
1528  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1529  * extra care for the error page's state (as done in __get_hwpoison_page()),
1530  * and has some retry logic in get_any_page().
1531  *
1532  * When called from unpoison_memory(), the caller should already ensure that
1533  * the given page has PG_hwpoison. So it's never reused for other page
1534  * allocations, and __get_unpoison_page() never races with them.
1535  *
1536  * Return: 0 on failure or free buddy (hugetlb) page,
1537  *         1 on success for in-use pages in a well-defined state,
1538  *         -EIO for pages on which we can not handle memory errors,
1539  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540  *         operations like allocation and free,
1541  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1542  */
get_hwpoison_page(struct page * p,unsigned long flags)1543 static int get_hwpoison_page(struct page *p, unsigned long flags)
1544 {
1545 	int ret;
1546 
1547 	zone_pcp_disable(page_zone(p));
1548 	if (flags & MF_UNPOISON)
1549 		ret = __get_unpoison_page(p);
1550 	else
1551 		ret = get_any_page(p, flags);
1552 	zone_pcp_enable(page_zone(p));
1553 
1554 	return ret;
1555 }
1556 
unmap_poisoned_folio(struct folio * folio,enum ttu_flags ttu)1557 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1558 {
1559 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1560 		struct address_space *mapping;
1561 
1562 		/*
1563 		 * For hugetlb folios in shared mappings, try_to_unmap
1564 		 * could potentially call huge_pmd_unshare.  Because of
1565 		 * this, take semaphore in write mode here and set
1566 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1567 		 * at this higher level.
1568 		 */
1569 		mapping = hugetlb_folio_mapping_lock_write(folio);
1570 		if (!mapping) {
1571 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1572 				folio_pfn(folio));
1573 			return;
1574 		}
1575 
1576 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1577 		i_mmap_unlock_write(mapping);
1578 	} else {
1579 		try_to_unmap(folio, ttu);
1580 	}
1581 }
1582 
1583 /*
1584  * Do all that is necessary to remove user space mappings. Unmap
1585  * the pages and send SIGBUS to the processes if the data was dirty.
1586  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1587 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1588 		unsigned long pfn, int flags)
1589 {
1590 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1591 	struct address_space *mapping;
1592 	LIST_HEAD(tokill);
1593 	bool unmap_success;
1594 	int forcekill;
1595 	bool mlocked = folio_test_mlocked(folio);
1596 
1597 	/*
1598 	 * Here we are interested only in user-mapped pages, so skip any
1599 	 * other types of pages.
1600 	 */
1601 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1602 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1603 		return true;
1604 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1605 		return true;
1606 
1607 	/*
1608 	 * This check implies we don't kill processes if their pages
1609 	 * are in the swap cache early. Those are always late kills.
1610 	 */
1611 	if (!folio_mapped(folio))
1612 		return true;
1613 
1614 	if (folio_test_swapcache(folio)) {
1615 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1616 		ttu &= ~TTU_HWPOISON;
1617 	}
1618 
1619 	/*
1620 	 * Propagate the dirty bit from PTEs to struct page first, because we
1621 	 * need this to decide if we should kill or just drop the page.
1622 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1623 	 * be called inside page lock (it's recommended but not enforced).
1624 	 */
1625 	mapping = folio_mapping(folio);
1626 	if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1627 	    mapping_can_writeback(mapping)) {
1628 		if (folio_mkclean(folio)) {
1629 			folio_set_dirty(folio);
1630 		} else {
1631 			ttu &= ~TTU_HWPOISON;
1632 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1633 				pfn);
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * First collect all the processes that have the page
1639 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1640 	 * because ttu takes the rmap data structures down.
1641 	 */
1642 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1643 
1644 	unmap_poisoned_folio(folio, ttu);
1645 
1646 	unmap_success = !folio_mapped(folio);
1647 	if (!unmap_success)
1648 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1649 		       pfn, folio_mapcount(folio));
1650 
1651 	/*
1652 	 * try_to_unmap() might put mlocked page in lru cache, so call
1653 	 * shake_page() again to ensure that it's flushed.
1654 	 */
1655 	if (mlocked)
1656 		shake_folio(folio);
1657 
1658 	/*
1659 	 * Now that the dirty bit has been propagated to the
1660 	 * struct page and all unmaps done we can decide if
1661 	 * killing is needed or not.  Only kill when the page
1662 	 * was dirty or the process is not restartable,
1663 	 * otherwise the tokill list is merely
1664 	 * freed.  When there was a problem unmapping earlier
1665 	 * use a more force-full uncatchable kill to prevent
1666 	 * any accesses to the poisoned memory.
1667 	 */
1668 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1669 		    !unmap_success;
1670 	kill_procs(&tokill, forcekill, pfn, flags);
1671 
1672 	return unmap_success;
1673 }
1674 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1675 static int identify_page_state(unsigned long pfn, struct page *p,
1676 				unsigned long page_flags)
1677 {
1678 	struct page_state *ps;
1679 
1680 	/*
1681 	 * The first check uses the current page flags which may not have any
1682 	 * relevant information. The second check with the saved page flags is
1683 	 * carried out only if the first check can't determine the page status.
1684 	 */
1685 	for (ps = error_states;; ps++)
1686 		if ((p->flags & ps->mask) == ps->res)
1687 			break;
1688 
1689 	page_flags |= (p->flags & (1UL << PG_dirty));
1690 
1691 	if (!ps->mask)
1692 		for (ps = error_states;; ps++)
1693 			if ((page_flags & ps->mask) == ps->res)
1694 				break;
1695 	return page_action(ps, p, pfn);
1696 }
1697 
1698 /*
1699  * When 'release' is 'false', it means that if thp split has failed,
1700  * there is still more to do, hence the page refcount we took earlier
1701  * is still needed.
1702  */
try_to_split_thp_page(struct page * page,bool release)1703 static int try_to_split_thp_page(struct page *page, bool release)
1704 {
1705 	int ret;
1706 
1707 	lock_page(page);
1708 	ret = split_huge_page(page);
1709 	unlock_page(page);
1710 
1711 	if (ret && release)
1712 		put_page(page);
1713 
1714 	return ret;
1715 }
1716 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1717 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1718 		struct address_space *mapping, pgoff_t index, int flags)
1719 {
1720 	struct to_kill *tk;
1721 	unsigned long size = 0;
1722 
1723 	list_for_each_entry(tk, to_kill, nd)
1724 		if (tk->size_shift)
1725 			size = max(size, 1UL << tk->size_shift);
1726 
1727 	if (size) {
1728 		/*
1729 		 * Unmap the largest mapping to avoid breaking up device-dax
1730 		 * mappings which are constant size. The actual size of the
1731 		 * mapping being torn down is communicated in siginfo, see
1732 		 * kill_proc()
1733 		 */
1734 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1735 
1736 		unmap_mapping_range(mapping, start, size, 0);
1737 	}
1738 
1739 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1740 }
1741 
1742 /*
1743  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1744  * either do not claim or fails to claim a hwpoison event, or devdax.
1745  * The fsdax pages are initialized per base page, and the devdax pages
1746  * could be initialized either as base pages, or as compound pages with
1747  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1748  * hwpoison, such that, if a subpage of a compound page is poisoned,
1749  * simply mark the compound head page is by far sufficient.
1750  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1751 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1752 		struct dev_pagemap *pgmap)
1753 {
1754 	struct folio *folio = pfn_folio(pfn);
1755 	LIST_HEAD(to_kill);
1756 	dax_entry_t cookie;
1757 	int rc = 0;
1758 
1759 	/*
1760 	 * Prevent the inode from being freed while we are interrogating
1761 	 * the address_space, typically this would be handled by
1762 	 * lock_page(), but dax pages do not use the page lock. This
1763 	 * also prevents changes to the mapping of this pfn until
1764 	 * poison signaling is complete.
1765 	 */
1766 	cookie = dax_lock_folio(folio);
1767 	if (!cookie)
1768 		return -EBUSY;
1769 
1770 	if (hwpoison_filter(&folio->page)) {
1771 		rc = -EOPNOTSUPP;
1772 		goto unlock;
1773 	}
1774 
1775 	switch (pgmap->type) {
1776 	case MEMORY_DEVICE_PRIVATE:
1777 	case MEMORY_DEVICE_COHERENT:
1778 		/*
1779 		 * TODO: Handle device pages which may need coordination
1780 		 * with device-side memory.
1781 		 */
1782 		rc = -ENXIO;
1783 		goto unlock;
1784 	default:
1785 		break;
1786 	}
1787 
1788 	/*
1789 	 * Use this flag as an indication that the dax page has been
1790 	 * remapped UC to prevent speculative consumption of poison.
1791 	 */
1792 	SetPageHWPoison(&folio->page);
1793 
1794 	/*
1795 	 * Unlike System-RAM there is no possibility to swap in a
1796 	 * different physical page at a given virtual address, so all
1797 	 * userspace consumption of ZONE_DEVICE memory necessitates
1798 	 * SIGBUS (i.e. MF_MUST_KILL)
1799 	 */
1800 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1801 	collect_procs(folio, &folio->page, &to_kill, true);
1802 
1803 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1804 unlock:
1805 	dax_unlock_folio(folio, cookie);
1806 	return rc;
1807 }
1808 
1809 #ifdef CONFIG_FS_DAX
1810 /**
1811  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1812  * @mapping:	address_space of the file in use
1813  * @index:	start pgoff of the range within the file
1814  * @count:	length of the range, in unit of PAGE_SIZE
1815  * @mf_flags:	memory failure flags
1816  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1817 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1818 		unsigned long count, int mf_flags)
1819 {
1820 	LIST_HEAD(to_kill);
1821 	dax_entry_t cookie;
1822 	struct page *page;
1823 	size_t end = index + count;
1824 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1825 
1826 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1827 
1828 	for (; index < end; index++) {
1829 		page = NULL;
1830 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1831 		if (!cookie)
1832 			return -EBUSY;
1833 		if (!page)
1834 			goto unlock;
1835 
1836 		if (!pre_remove)
1837 			SetPageHWPoison(page);
1838 
1839 		/*
1840 		 * The pre_remove case is revoking access, the memory is still
1841 		 * good and could theoretically be put back into service.
1842 		 */
1843 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1844 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1845 				index, mf_flags);
1846 unlock:
1847 		dax_unlock_mapping_entry(mapping, index, cookie);
1848 	}
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1852 #endif /* CONFIG_FS_DAX */
1853 
1854 #ifdef CONFIG_HUGETLB_PAGE
1855 
1856 /*
1857  * Struct raw_hwp_page represents information about "raw error page",
1858  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1859  */
1860 struct raw_hwp_page {
1861 	struct llist_node node;
1862 	struct page *page;
1863 };
1864 
raw_hwp_list_head(struct folio * folio)1865 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1866 {
1867 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1868 }
1869 
is_raw_hwpoison_page_in_hugepage(struct page * page)1870 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1871 {
1872 	struct llist_head *raw_hwp_head;
1873 	struct raw_hwp_page *p;
1874 	struct folio *folio = page_folio(page);
1875 	bool ret = false;
1876 
1877 	if (!folio_test_hwpoison(folio))
1878 		return false;
1879 
1880 	if (!folio_test_hugetlb(folio))
1881 		return PageHWPoison(page);
1882 
1883 	/*
1884 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1885 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1886 	 */
1887 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1888 		return true;
1889 
1890 	mutex_lock(&mf_mutex);
1891 
1892 	raw_hwp_head = raw_hwp_list_head(folio);
1893 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1894 		if (page == p->page) {
1895 			ret = true;
1896 			break;
1897 		}
1898 	}
1899 
1900 	mutex_unlock(&mf_mutex);
1901 
1902 	return ret;
1903 }
1904 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1905 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1906 {
1907 	struct llist_node *head;
1908 	struct raw_hwp_page *p, *next;
1909 	unsigned long count = 0;
1910 
1911 	head = llist_del_all(raw_hwp_list_head(folio));
1912 	llist_for_each_entry_safe(p, next, head, node) {
1913 		if (move_flag)
1914 			SetPageHWPoison(p->page);
1915 		else
1916 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1917 		kfree(p);
1918 		count++;
1919 	}
1920 	return count;
1921 }
1922 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1923 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1924 {
1925 	struct llist_head *head;
1926 	struct raw_hwp_page *raw_hwp;
1927 	struct raw_hwp_page *p;
1928 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1929 
1930 	/*
1931 	 * Once the hwpoison hugepage has lost reliable raw error info,
1932 	 * there is little meaning to keep additional error info precisely,
1933 	 * so skip to add additional raw error info.
1934 	 */
1935 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1936 		return -EHWPOISON;
1937 	head = raw_hwp_list_head(folio);
1938 	llist_for_each_entry(p, head->first, node) {
1939 		if (p->page == page)
1940 			return -EHWPOISON;
1941 	}
1942 
1943 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1944 	if (raw_hwp) {
1945 		raw_hwp->page = page;
1946 		llist_add(&raw_hwp->node, head);
1947 		/* the first error event will be counted in action_result(). */
1948 		if (ret)
1949 			num_poisoned_pages_inc(page_to_pfn(page));
1950 	} else {
1951 		/*
1952 		 * Failed to save raw error info.  We no longer trace all
1953 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1954 		 * this hwpoisoned hugepage.
1955 		 */
1956 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1957 		/*
1958 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1959 		 * used any more, so free it.
1960 		 */
1961 		__folio_free_raw_hwp(folio, false);
1962 	}
1963 	return ret;
1964 }
1965 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1966 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1967 {
1968 	/*
1969 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1970 	 * pages for tail pages are required but they don't exist.
1971 	 */
1972 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1973 		return 0;
1974 
1975 	/*
1976 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1977 	 * definition.
1978 	 */
1979 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1980 		return 0;
1981 
1982 	return __folio_free_raw_hwp(folio, move_flag);
1983 }
1984 
folio_clear_hugetlb_hwpoison(struct folio * folio)1985 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1986 {
1987 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1988 		return;
1989 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1990 		return;
1991 	folio_clear_hwpoison(folio);
1992 	folio_free_raw_hwp(folio, true);
1993 }
1994 
1995 /*
1996  * Called from hugetlb code with hugetlb_lock held.
1997  *
1998  * Return values:
1999  *   0             - free hugepage
2000  *   1             - in-use hugepage
2001  *   2             - not a hugepage
2002  *   -EBUSY        - the hugepage is busy (try to retry)
2003  *   -EHWPOISON    - the hugepage is already hwpoisoned
2004  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2005 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2006 				 bool *migratable_cleared)
2007 {
2008 	struct page *page = pfn_to_page(pfn);
2009 	struct folio *folio = page_folio(page);
2010 	int ret = 2;	/* fallback to normal page handling */
2011 	bool count_increased = false;
2012 
2013 	if (!folio_test_hugetlb(folio))
2014 		goto out;
2015 
2016 	if (flags & MF_COUNT_INCREASED) {
2017 		ret = 1;
2018 		count_increased = true;
2019 	} else if (folio_test_hugetlb_freed(folio)) {
2020 		ret = 0;
2021 	} else if (folio_test_hugetlb_migratable(folio)) {
2022 		ret = folio_try_get(folio);
2023 		if (ret)
2024 			count_increased = true;
2025 	} else {
2026 		ret = -EBUSY;
2027 		if (!(flags & MF_NO_RETRY))
2028 			goto out;
2029 	}
2030 
2031 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2032 		ret = -EHWPOISON;
2033 		goto out;
2034 	}
2035 
2036 	/*
2037 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2038 	 * from being migrated by memory hotremove.
2039 	 */
2040 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2041 		folio_clear_hugetlb_migratable(folio);
2042 		*migratable_cleared = true;
2043 	}
2044 
2045 	return ret;
2046 out:
2047 	if (count_increased)
2048 		folio_put(folio);
2049 	return ret;
2050 }
2051 
2052 /*
2053  * Taking refcount of hugetlb pages needs extra care about race conditions
2054  * with basic operations like hugepage allocation/free/demotion.
2055  * So some of prechecks for hwpoison (pinning, and testing/setting
2056  * PageHWPoison) should be done in single hugetlb_lock range.
2057  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2058 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2059 {
2060 	int res;
2061 	struct page *p = pfn_to_page(pfn);
2062 	struct folio *folio;
2063 	unsigned long page_flags;
2064 	bool migratable_cleared = false;
2065 
2066 	*hugetlb = 1;
2067 retry:
2068 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2069 	if (res == 2) { /* fallback to normal page handling */
2070 		*hugetlb = 0;
2071 		return 0;
2072 	} else if (res == -EHWPOISON) {
2073 		pr_err("%#lx: already hardware poisoned\n", pfn);
2074 		if (flags & MF_ACTION_REQUIRED) {
2075 			folio = page_folio(p);
2076 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2077 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2078 		}
2079 		return res;
2080 	} else if (res == -EBUSY) {
2081 		if (!(flags & MF_NO_RETRY)) {
2082 			flags |= MF_NO_RETRY;
2083 			goto retry;
2084 		}
2085 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2086 	}
2087 
2088 	folio = page_folio(p);
2089 	folio_lock(folio);
2090 
2091 	if (hwpoison_filter(p)) {
2092 		folio_clear_hugetlb_hwpoison(folio);
2093 		if (migratable_cleared)
2094 			folio_set_hugetlb_migratable(folio);
2095 		folio_unlock(folio);
2096 		if (res == 1)
2097 			folio_put(folio);
2098 		return -EOPNOTSUPP;
2099 	}
2100 
2101 	/*
2102 	 * Handling free hugepage.  The possible race with hugepage allocation
2103 	 * or demotion can be prevented by PageHWPoison flag.
2104 	 */
2105 	if (res == 0) {
2106 		folio_unlock(folio);
2107 		if (__page_handle_poison(p) > 0) {
2108 			page_ref_inc(p);
2109 			res = MF_RECOVERED;
2110 		} else {
2111 			res = MF_FAILED;
2112 		}
2113 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2114 	}
2115 
2116 	page_flags = folio->flags;
2117 
2118 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2119 		folio_unlock(folio);
2120 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2121 	}
2122 
2123 	return identify_page_state(pfn, p, page_flags);
2124 }
2125 
2126 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2127 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2128 {
2129 	return 0;
2130 }
2131 
folio_free_raw_hwp(struct folio * folio,bool flag)2132 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2133 {
2134 	return 0;
2135 }
2136 #endif	/* CONFIG_HUGETLB_PAGE */
2137 
2138 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2139 static void put_ref_page(unsigned long pfn, int flags)
2140 {
2141 	if (!(flags & MF_COUNT_INCREASED))
2142 		return;
2143 
2144 	put_page(pfn_to_page(pfn));
2145 }
2146 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2147 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2148 		struct dev_pagemap *pgmap)
2149 {
2150 	int rc = -ENXIO;
2151 
2152 	/* device metadata space is not recoverable */
2153 	if (!pgmap_pfn_valid(pgmap, pfn))
2154 		goto out;
2155 
2156 	/*
2157 	 * Call driver's implementation to handle the memory failure, otherwise
2158 	 * fall back to generic handler.
2159 	 */
2160 	if (pgmap_has_memory_failure(pgmap)) {
2161 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2162 		/*
2163 		 * Fall back to generic handler too if operation is not
2164 		 * supported inside the driver/device/filesystem.
2165 		 */
2166 		if (rc != -EOPNOTSUPP)
2167 			goto out;
2168 	}
2169 
2170 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2171 out:
2172 	/* drop pgmap ref acquired in caller */
2173 	put_dev_pagemap(pgmap);
2174 	if (rc != -EOPNOTSUPP)
2175 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2176 	return rc;
2177 }
2178 
2179 /*
2180  * The calling condition is as such: thp split failed, page might have
2181  * been RDMA pinned, not much can be done for recovery.
2182  * But a SIGBUS should be delivered with vaddr provided so that the user
2183  * application has a chance to recover. Also, application processes'
2184  * election for MCE early killed will be honored.
2185  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2186 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2187 				struct folio *folio)
2188 {
2189 	LIST_HEAD(tokill);
2190 
2191 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2192 	kill_procs(&tokill, true, pfn, flags);
2193 }
2194 
2195 /**
2196  * memory_failure - Handle memory failure of a page.
2197  * @pfn: Page Number of the corrupted page
2198  * @flags: fine tune action taken
2199  *
2200  * This function is called by the low level machine check code
2201  * of an architecture when it detects hardware memory corruption
2202  * of a page. It tries its best to recover, which includes
2203  * dropping pages, killing processes etc.
2204  *
2205  * The function is primarily of use for corruptions that
2206  * happen outside the current execution context (e.g. when
2207  * detected by a background scrubber)
2208  *
2209  * Must run in process context (e.g. a work queue) with interrupts
2210  * enabled and no spinlocks held.
2211  *
2212  * Return: 0 for successfully handled the memory error,
2213  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2214  *         < 0(except -EOPNOTSUPP) on failure.
2215  */
memory_failure(unsigned long pfn,int flags)2216 int memory_failure(unsigned long pfn, int flags)
2217 {
2218 	struct page *p;
2219 	struct folio *folio;
2220 	struct dev_pagemap *pgmap;
2221 	int res = 0;
2222 	unsigned long page_flags;
2223 	bool retry = true;
2224 	int hugetlb = 0;
2225 
2226 	if (!sysctl_memory_failure_recovery)
2227 		panic("Memory failure on page %lx", pfn);
2228 
2229 	mutex_lock(&mf_mutex);
2230 
2231 	if (!(flags & MF_SW_SIMULATED))
2232 		hw_memory_failure = true;
2233 
2234 	p = pfn_to_online_page(pfn);
2235 	if (!p) {
2236 		res = arch_memory_failure(pfn, flags);
2237 		if (res == 0)
2238 			goto unlock_mutex;
2239 
2240 		if (pfn_valid(pfn)) {
2241 			pgmap = get_dev_pagemap(pfn, NULL);
2242 			put_ref_page(pfn, flags);
2243 			if (pgmap) {
2244 				res = memory_failure_dev_pagemap(pfn, flags,
2245 								 pgmap);
2246 				goto unlock_mutex;
2247 			}
2248 		}
2249 		pr_err("%#lx: memory outside kernel control\n", pfn);
2250 		res = -ENXIO;
2251 		goto unlock_mutex;
2252 	}
2253 
2254 try_again:
2255 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2256 	if (hugetlb)
2257 		goto unlock_mutex;
2258 
2259 	if (TestSetPageHWPoison(p)) {
2260 		pr_err("%#lx: already hardware poisoned\n", pfn);
2261 		res = -EHWPOISON;
2262 		if (flags & MF_ACTION_REQUIRED)
2263 			res = kill_accessing_process(current, pfn, flags);
2264 		if (flags & MF_COUNT_INCREASED)
2265 			put_page(p);
2266 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2267 		goto unlock_mutex;
2268 	}
2269 
2270 	/*
2271 	 * We need/can do nothing about count=0 pages.
2272 	 * 1) it's a free page, and therefore in safe hand:
2273 	 *    check_new_page() will be the gate keeper.
2274 	 * 2) it's part of a non-compound high order page.
2275 	 *    Implies some kernel user: cannot stop them from
2276 	 *    R/W the page; let's pray that the page has been
2277 	 *    used and will be freed some time later.
2278 	 * In fact it's dangerous to directly bump up page count from 0,
2279 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2280 	 */
2281 	if (!(flags & MF_COUNT_INCREASED)) {
2282 		res = get_hwpoison_page(p, flags);
2283 		if (!res) {
2284 			if (is_free_buddy_page(p)) {
2285 				if (take_page_off_buddy(p)) {
2286 					page_ref_inc(p);
2287 					res = MF_RECOVERED;
2288 				} else {
2289 					/* We lost the race, try again */
2290 					if (retry) {
2291 						ClearPageHWPoison(p);
2292 						retry = false;
2293 						goto try_again;
2294 					}
2295 					res = MF_FAILED;
2296 				}
2297 				res = action_result(pfn, MF_MSG_BUDDY, res);
2298 			} else {
2299 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2300 			}
2301 			goto unlock_mutex;
2302 		} else if (res < 0) {
2303 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2304 			goto unlock_mutex;
2305 		}
2306 	}
2307 
2308 	folio = page_folio(p);
2309 
2310 	/* filter pages that are protected from hwpoison test by users */
2311 	folio_lock(folio);
2312 	if (hwpoison_filter(p)) {
2313 		ClearPageHWPoison(p);
2314 		folio_unlock(folio);
2315 		folio_put(folio);
2316 		res = -EOPNOTSUPP;
2317 		goto unlock_mutex;
2318 	}
2319 	folio_unlock(folio);
2320 
2321 	if (folio_test_large(folio)) {
2322 		/*
2323 		 * The flag must be set after the refcount is bumped
2324 		 * otherwise it may race with THP split.
2325 		 * And the flag can't be set in get_hwpoison_page() since
2326 		 * it is called by soft offline too and it is just called
2327 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2328 		 * place.
2329 		 *
2330 		 * Don't need care about the above error handling paths for
2331 		 * get_hwpoison_page() since they handle either free page
2332 		 * or unhandlable page.  The refcount is bumped iff the
2333 		 * page is a valid handlable page.
2334 		 */
2335 		folio_set_has_hwpoisoned(folio);
2336 		if (try_to_split_thp_page(p, false) < 0) {
2337 			res = -EHWPOISON;
2338 			kill_procs_now(p, pfn, flags, folio);
2339 			put_page(p);
2340 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2341 			goto unlock_mutex;
2342 		}
2343 		VM_BUG_ON_PAGE(!page_count(p), p);
2344 		folio = page_folio(p);
2345 	}
2346 
2347 	/*
2348 	 * We ignore non-LRU pages for good reasons.
2349 	 * - PG_locked is only well defined for LRU pages and a few others
2350 	 * - to avoid races with __SetPageLocked()
2351 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2352 	 * The check (unnecessarily) ignores LRU pages being isolated and
2353 	 * walked by the page reclaim code, however that's not a big loss.
2354 	 */
2355 	shake_folio(folio);
2356 
2357 	folio_lock(folio);
2358 
2359 	/*
2360 	 * We're only intended to deal with the non-Compound page here.
2361 	 * The page cannot become compound pages again as folio has been
2362 	 * splited and extra refcnt is held.
2363 	 */
2364 	WARN_ON(folio_test_large(folio));
2365 
2366 	/*
2367 	 * We use page flags to determine what action should be taken, but
2368 	 * the flags can be modified by the error containment action.  One
2369 	 * example is an mlocked page, where PG_mlocked is cleared by
2370 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2371 	 * status correctly, we save a copy of the page flags at this time.
2372 	 */
2373 	page_flags = folio->flags;
2374 
2375 	/*
2376 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2377 	 * the folio lock. We need to wait for writeback completion for this
2378 	 * folio or it may trigger a vfs BUG while evicting inode.
2379 	 */
2380 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2381 		goto identify_page_state;
2382 
2383 	/*
2384 	 * It's very difficult to mess with pages currently under IO
2385 	 * and in many cases impossible, so we just avoid it here.
2386 	 */
2387 	folio_wait_writeback(folio);
2388 
2389 	/*
2390 	 * Now take care of user space mappings.
2391 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2392 	 */
2393 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2394 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2395 		goto unlock_page;
2396 	}
2397 
2398 	/*
2399 	 * Torn down by someone else?
2400 	 */
2401 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2402 	    folio->mapping == NULL) {
2403 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2404 		goto unlock_page;
2405 	}
2406 
2407 identify_page_state:
2408 	res = identify_page_state(pfn, p, page_flags);
2409 	mutex_unlock(&mf_mutex);
2410 	return res;
2411 unlock_page:
2412 	folio_unlock(folio);
2413 unlock_mutex:
2414 	mutex_unlock(&mf_mutex);
2415 	return res;
2416 }
2417 EXPORT_SYMBOL_GPL(memory_failure);
2418 
2419 #define MEMORY_FAILURE_FIFO_ORDER	4
2420 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2421 
2422 struct memory_failure_entry {
2423 	unsigned long pfn;
2424 	int flags;
2425 };
2426 
2427 struct memory_failure_cpu {
2428 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2429 		      MEMORY_FAILURE_FIFO_SIZE);
2430 	raw_spinlock_t lock;
2431 	struct work_struct work;
2432 };
2433 
2434 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2435 
2436 /**
2437  * memory_failure_queue - Schedule handling memory failure of a page.
2438  * @pfn: Page Number of the corrupted page
2439  * @flags: Flags for memory failure handling
2440  *
2441  * This function is called by the low level hardware error handler
2442  * when it detects hardware memory corruption of a page. It schedules
2443  * the recovering of error page, including dropping pages, killing
2444  * processes etc.
2445  *
2446  * The function is primarily of use for corruptions that
2447  * happen outside the current execution context (e.g. when
2448  * detected by a background scrubber)
2449  *
2450  * Can run in IRQ context.
2451  */
memory_failure_queue(unsigned long pfn,int flags)2452 void memory_failure_queue(unsigned long pfn, int flags)
2453 {
2454 	struct memory_failure_cpu *mf_cpu;
2455 	unsigned long proc_flags;
2456 	bool buffer_overflow;
2457 	struct memory_failure_entry entry = {
2458 		.pfn =		pfn,
2459 		.flags =	flags,
2460 	};
2461 
2462 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2463 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2464 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2465 	if (!buffer_overflow)
2466 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2467 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468 	put_cpu_var(memory_failure_cpu);
2469 	if (buffer_overflow)
2470 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2471 		       pfn);
2472 }
2473 EXPORT_SYMBOL_GPL(memory_failure_queue);
2474 
memory_failure_work_func(struct work_struct * work)2475 static void memory_failure_work_func(struct work_struct *work)
2476 {
2477 	struct memory_failure_cpu *mf_cpu;
2478 	struct memory_failure_entry entry = { 0, };
2479 	unsigned long proc_flags;
2480 	int gotten;
2481 
2482 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2483 	for (;;) {
2484 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2485 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2486 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2487 		if (!gotten)
2488 			break;
2489 		if (entry.flags & MF_SOFT_OFFLINE)
2490 			soft_offline_page(entry.pfn, entry.flags);
2491 		else
2492 			memory_failure(entry.pfn, entry.flags);
2493 	}
2494 }
2495 
2496 /*
2497  * Process memory_failure work queued on the specified CPU.
2498  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2499  */
memory_failure_queue_kick(int cpu)2500 void memory_failure_queue_kick(int cpu)
2501 {
2502 	struct memory_failure_cpu *mf_cpu;
2503 
2504 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2505 	cancel_work_sync(&mf_cpu->work);
2506 	memory_failure_work_func(&mf_cpu->work);
2507 }
2508 
memory_failure_init(void)2509 static int __init memory_failure_init(void)
2510 {
2511 	struct memory_failure_cpu *mf_cpu;
2512 	int cpu;
2513 
2514 	for_each_possible_cpu(cpu) {
2515 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2516 		raw_spin_lock_init(&mf_cpu->lock);
2517 		INIT_KFIFO(mf_cpu->fifo);
2518 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2519 	}
2520 
2521 	register_sysctl_init("vm", memory_failure_table);
2522 
2523 	return 0;
2524 }
2525 core_initcall(memory_failure_init);
2526 
2527 #undef pr_fmt
2528 #define pr_fmt(fmt)	"Unpoison: " fmt
2529 #define unpoison_pr_info(fmt, pfn, rs)			\
2530 ({							\
2531 	if (__ratelimit(rs))				\
2532 		pr_info(fmt, pfn);			\
2533 })
2534 
2535 /**
2536  * unpoison_memory - Unpoison a previously poisoned page
2537  * @pfn: Page number of the to be unpoisoned page
2538  *
2539  * Software-unpoison a page that has been poisoned by
2540  * memory_failure() earlier.
2541  *
2542  * This is only done on the software-level, so it only works
2543  * for linux injected failures, not real hardware failures
2544  *
2545  * Returns 0 for success, otherwise -errno.
2546  */
unpoison_memory(unsigned long pfn)2547 int unpoison_memory(unsigned long pfn)
2548 {
2549 	struct folio *folio;
2550 	struct page *p;
2551 	int ret = -EBUSY, ghp;
2552 	unsigned long count;
2553 	bool huge = false;
2554 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2555 					DEFAULT_RATELIMIT_BURST);
2556 
2557 	if (!pfn_valid(pfn))
2558 		return -ENXIO;
2559 
2560 	p = pfn_to_page(pfn);
2561 	folio = page_folio(p);
2562 
2563 	mutex_lock(&mf_mutex);
2564 
2565 	if (hw_memory_failure) {
2566 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2567 				 pfn, &unpoison_rs);
2568 		ret = -EOPNOTSUPP;
2569 		goto unlock_mutex;
2570 	}
2571 
2572 	if (is_huge_zero_folio(folio)) {
2573 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2574 				 pfn, &unpoison_rs);
2575 		ret = -EOPNOTSUPP;
2576 		goto unlock_mutex;
2577 	}
2578 
2579 	if (!PageHWPoison(p)) {
2580 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2581 				 pfn, &unpoison_rs);
2582 		goto unlock_mutex;
2583 	}
2584 
2585 	if (folio_ref_count(folio) > 1) {
2586 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2587 				 pfn, &unpoison_rs);
2588 		goto unlock_mutex;
2589 	}
2590 
2591 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2592 	    folio_test_reserved(folio) || folio_test_offline(folio))
2593 		goto unlock_mutex;
2594 
2595 	if (folio_mapped(folio)) {
2596 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2597 				 pfn, &unpoison_rs);
2598 		goto unlock_mutex;
2599 	}
2600 
2601 	if (folio_mapping(folio)) {
2602 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2603 				 pfn, &unpoison_rs);
2604 		goto unlock_mutex;
2605 	}
2606 
2607 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2608 	if (!ghp) {
2609 		if (folio_test_hugetlb(folio)) {
2610 			huge = true;
2611 			count = folio_free_raw_hwp(folio, false);
2612 			if (count == 0)
2613 				goto unlock_mutex;
2614 		}
2615 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2616 	} else if (ghp < 0) {
2617 		if (ghp == -EHWPOISON) {
2618 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2619 		} else {
2620 			ret = ghp;
2621 			unpoison_pr_info("%#lx: failed to grab page\n",
2622 					 pfn, &unpoison_rs);
2623 		}
2624 	} else {
2625 		if (folio_test_hugetlb(folio)) {
2626 			huge = true;
2627 			count = folio_free_raw_hwp(folio, false);
2628 			if (count == 0) {
2629 				folio_put(folio);
2630 				goto unlock_mutex;
2631 			}
2632 		}
2633 
2634 		folio_put(folio);
2635 		if (TestClearPageHWPoison(p)) {
2636 			folio_put(folio);
2637 			ret = 0;
2638 		}
2639 	}
2640 
2641 unlock_mutex:
2642 	mutex_unlock(&mf_mutex);
2643 	if (!ret) {
2644 		if (!huge)
2645 			num_poisoned_pages_sub(pfn, 1);
2646 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2647 				 page_to_pfn(p), &unpoison_rs);
2648 	}
2649 	return ret;
2650 }
2651 EXPORT_SYMBOL(unpoison_memory);
2652 
2653 #undef pr_fmt
2654 #define pr_fmt(fmt) "Soft offline: " fmt
2655 
2656 /*
2657  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2658  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2659  * If the page is mapped, it migrates the contents over.
2660  */
soft_offline_in_use_page(struct page * page)2661 static int soft_offline_in_use_page(struct page *page)
2662 {
2663 	long ret = 0;
2664 	unsigned long pfn = page_to_pfn(page);
2665 	struct folio *folio = page_folio(page);
2666 	char const *msg_page[] = {"page", "hugepage"};
2667 	bool huge = folio_test_hugetlb(folio);
2668 	bool isolated;
2669 	LIST_HEAD(pagelist);
2670 	struct migration_target_control mtc = {
2671 		.nid = NUMA_NO_NODE,
2672 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2673 		.reason = MR_MEMORY_FAILURE,
2674 	};
2675 
2676 	if (!huge && folio_test_large(folio)) {
2677 		if (try_to_split_thp_page(page, true)) {
2678 			pr_info("%#lx: thp split failed\n", pfn);
2679 			return -EBUSY;
2680 		}
2681 		folio = page_folio(page);
2682 	}
2683 
2684 	folio_lock(folio);
2685 	if (!huge)
2686 		folio_wait_writeback(folio);
2687 	if (PageHWPoison(page)) {
2688 		folio_unlock(folio);
2689 		folio_put(folio);
2690 		pr_info("%#lx: page already poisoned\n", pfn);
2691 		return 0;
2692 	}
2693 
2694 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2695 		/*
2696 		 * Try to invalidate first. This should work for
2697 		 * non dirty unmapped page cache pages.
2698 		 */
2699 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2700 	folio_unlock(folio);
2701 
2702 	if (ret) {
2703 		pr_info("%#lx: invalidated\n", pfn);
2704 		page_handle_poison(page, false, true);
2705 		return 0;
2706 	}
2707 
2708 	isolated = isolate_folio_to_list(folio, &pagelist);
2709 
2710 	/*
2711 	 * If we succeed to isolate the folio, we grabbed another refcount on
2712 	 * the folio, so we can safely drop the one we got from get_any_page().
2713 	 * If we failed to isolate the folio, it means that we cannot go further
2714 	 * and we will return an error, so drop the reference we got from
2715 	 * get_any_page() as well.
2716 	 */
2717 	folio_put(folio);
2718 
2719 	if (isolated) {
2720 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2721 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2722 		if (!ret) {
2723 			bool release = !huge;
2724 
2725 			if (!page_handle_poison(page, huge, release))
2726 				ret = -EBUSY;
2727 		} else {
2728 			if (!list_empty(&pagelist))
2729 				putback_movable_pages(&pagelist);
2730 
2731 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2732 				pfn, msg_page[huge], ret, &page->flags);
2733 			if (ret > 0)
2734 				ret = -EBUSY;
2735 		}
2736 	} else {
2737 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2738 			pfn, msg_page[huge], page_count(page), &page->flags);
2739 		ret = -EBUSY;
2740 	}
2741 	return ret;
2742 }
2743 
2744 /**
2745  * soft_offline_page - Soft offline a page.
2746  * @pfn: pfn to soft-offline
2747  * @flags: flags. Same as memory_failure().
2748  *
2749  * Returns 0 on success,
2750  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2751  *         disabled by /proc/sys/vm/enable_soft_offline,
2752  *         < 0 otherwise negated errno.
2753  *
2754  * Soft offline a page, by migration or invalidation,
2755  * without killing anything. This is for the case when
2756  * a page is not corrupted yet (so it's still valid to access),
2757  * but has had a number of corrected errors and is better taken
2758  * out.
2759  *
2760  * The actual policy on when to do that is maintained by
2761  * user space.
2762  *
2763  * This should never impact any application or cause data loss,
2764  * however it might take some time.
2765  *
2766  * This is not a 100% solution for all memory, but tries to be
2767  * ``good enough'' for the majority of memory.
2768  */
soft_offline_page(unsigned long pfn,int flags)2769 int soft_offline_page(unsigned long pfn, int flags)
2770 {
2771 	int ret;
2772 	bool try_again = true;
2773 	struct page *page;
2774 
2775 	if (!pfn_valid(pfn)) {
2776 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2777 		return -ENXIO;
2778 	}
2779 
2780 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2781 	page = pfn_to_online_page(pfn);
2782 	if (!page) {
2783 		put_ref_page(pfn, flags);
2784 		return -EIO;
2785 	}
2786 
2787 	if (!sysctl_enable_soft_offline) {
2788 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2789 		put_ref_page(pfn, flags);
2790 		return -EOPNOTSUPP;
2791 	}
2792 
2793 	mutex_lock(&mf_mutex);
2794 
2795 	if (PageHWPoison(page)) {
2796 		pr_info("%#lx: page already poisoned\n", pfn);
2797 		put_ref_page(pfn, flags);
2798 		mutex_unlock(&mf_mutex);
2799 		return 0;
2800 	}
2801 
2802 retry:
2803 	get_online_mems();
2804 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2805 	put_online_mems();
2806 
2807 	if (hwpoison_filter(page)) {
2808 		if (ret > 0)
2809 			put_page(page);
2810 
2811 		mutex_unlock(&mf_mutex);
2812 		return -EOPNOTSUPP;
2813 	}
2814 
2815 	if (ret > 0) {
2816 		ret = soft_offline_in_use_page(page);
2817 	} else if (ret == 0) {
2818 		if (!page_handle_poison(page, true, false)) {
2819 			if (try_again) {
2820 				try_again = false;
2821 				flags &= ~MF_COUNT_INCREASED;
2822 				goto retry;
2823 			}
2824 			ret = -EBUSY;
2825 		}
2826 	}
2827 
2828 	mutex_unlock(&mf_mutex);
2829 
2830 	return ret;
2831 }
2832