1 /* $NetBSD: nfa.c,v 1.3 2014/10/30 18:44:05 christos Exp $ */
2
3 /* nfa - NFA construction routines */
4
5 /* Copyright (c) 1990 The Regents of the University of California. */
6 /* All rights reserved. */
7
8 /* This code is derived from software contributed to Berkeley by */
9 /* Vern Paxson. */
10
11 /* The United States Government has rights in this work pursuant */
12 /* to contract no. DE-AC03-76SF00098 between the United States */
13 /* Department of Energy and the University of California. */
14
15 /* This file is part of flex. */
16
17 /* Redistribution and use in source and binary forms, with or without */
18 /* modification, are permitted provided that the following conditions */
19 /* are met: */
20
21 /* 1. Redistributions of source code must retain the above copyright */
22 /* notice, this list of conditions and the following disclaimer. */
23 /* 2. Redistributions in binary form must reproduce the above copyright */
24 /* notice, this list of conditions and the following disclaimer in the */
25 /* documentation and/or other materials provided with the distribution. */
26
27 /* Neither the name of the University nor the names of its contributors */
28 /* may be used to endorse or promote products derived from this software */
29 /* without specific prior written permission. */
30
31 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
32 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
33 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
34 /* PURPOSE. */
35 #include "flexdef.h"
36 __RCSID("$NetBSD: nfa.c,v 1.3 2014/10/30 18:44:05 christos Exp $");
37
38
39
40 /* declare functions that have forward references */
41
42 int dupmachine PROTO ((int));
43 void mkxtion PROTO ((int, int));
44
45
46 /* add_accept - add an accepting state to a machine
47 *
48 * accepting_number becomes mach's accepting number.
49 */
50
add_accept(mach,accepting_number)51 void add_accept (mach, accepting_number)
52 int mach, accepting_number;
53 {
54 /* Hang the accepting number off an epsilon state. if it is associated
55 * with a state that has a non-epsilon out-transition, then the state
56 * will accept BEFORE it makes that transition, i.e., one character
57 * too soon.
58 */
59
60 if (transchar[finalst[mach]] == SYM_EPSILON)
61 accptnum[finalst[mach]] = accepting_number;
62
63 else {
64 int astate = mkstate (SYM_EPSILON);
65
66 accptnum[astate] = accepting_number;
67 (void) link_machines (mach, astate);
68 }
69 }
70
71
72 /* copysingl - make a given number of copies of a singleton machine
73 *
74 * synopsis
75 *
76 * newsng = copysingl( singl, num );
77 *
78 * newsng - a new singleton composed of num copies of singl
79 * singl - a singleton machine
80 * num - the number of copies of singl to be present in newsng
81 */
82
copysingl(singl,num)83 int copysingl (singl, num)
84 int singl, num;
85 {
86 int copy, i;
87
88 copy = mkstate (SYM_EPSILON);
89
90 for (i = 1; i <= num; ++i)
91 copy = link_machines (copy, dupmachine (singl));
92
93 return copy;
94 }
95
96
97 /* dumpnfa - debugging routine to write out an nfa */
98
dumpnfa(state1)99 void dumpnfa (state1)
100 int state1;
101
102 {
103 int sym, tsp1, tsp2, anum, ns;
104
105 fprintf (stderr,
106 _
107 ("\n\n********** beginning dump of nfa with start state %d\n"),
108 state1);
109
110 /* We probably should loop starting at firstst[state1] and going to
111 * lastst[state1], but they're not maintained properly when we "or"
112 * all of the rules together. So we use our knowledge that the machine
113 * starts at state 1 and ends at lastnfa.
114 */
115
116 /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
117 for (ns = 1; ns <= lastnfa; ++ns) {
118 fprintf (stderr, _("state # %4d\t"), ns);
119
120 sym = transchar[ns];
121 tsp1 = trans1[ns];
122 tsp2 = trans2[ns];
123 anum = accptnum[ns];
124
125 fprintf (stderr, "%3d: %4d, %4d", sym, tsp1, tsp2);
126
127 if (anum != NIL)
128 fprintf (stderr, " [%d]", anum);
129
130 fprintf (stderr, "\n");
131 }
132
133 fprintf (stderr, _("********** end of dump\n"));
134 }
135
136
137 /* dupmachine - make a duplicate of a given machine
138 *
139 * synopsis
140 *
141 * copy = dupmachine( mach );
142 *
143 * copy - holds duplicate of mach
144 * mach - machine to be duplicated
145 *
146 * note that the copy of mach is NOT an exact duplicate; rather, all the
147 * transition states values are adjusted so that the copy is self-contained,
148 * as the original should have been.
149 *
150 * also note that the original MUST be contiguous, with its low and high
151 * states accessible by the arrays firstst and lastst
152 */
153
dupmachine(mach)154 int dupmachine (mach)
155 int mach;
156 {
157 int i, init, state_offset;
158 int state = 0;
159 int last = lastst[mach];
160
161 for (i = firstst[mach]; i <= last; ++i) {
162 state = mkstate (transchar[i]);
163
164 if (trans1[i] != NO_TRANSITION) {
165 mkxtion (finalst[state], trans1[i] + state - i);
166
167 if (transchar[i] == SYM_EPSILON &&
168 trans2[i] != NO_TRANSITION)
169 mkxtion (finalst[state],
170 trans2[i] + state - i);
171 }
172
173 accptnum[state] = accptnum[i];
174 }
175
176 if (state == 0)
177 flexfatal (_("empty machine in dupmachine()"));
178
179 state_offset = state - i + 1;
180
181 init = mach + state_offset;
182 firstst[init] = firstst[mach] + state_offset;
183 finalst[init] = finalst[mach] + state_offset;
184 lastst[init] = lastst[mach] + state_offset;
185
186 return init;
187 }
188
189
190 /* finish_rule - finish up the processing for a rule
191 *
192 * An accepting number is added to the given machine. If variable_trail_rule
193 * is true then the rule has trailing context and both the head and trail
194 * are variable size. Otherwise if headcnt or trailcnt is non-zero then
195 * the machine recognizes a pattern with trailing context and headcnt is
196 * the number of characters in the matched part of the pattern, or zero
197 * if the matched part has variable length. trailcnt is the number of
198 * trailing context characters in the pattern, or zero if the trailing
199 * context has variable length.
200 */
201
finish_rule(mach,variable_trail_rule,headcnt,trailcnt,pcont_act)202 void finish_rule (mach, variable_trail_rule, headcnt, trailcnt,
203 pcont_act)
204 int mach, variable_trail_rule, headcnt, trailcnt, pcont_act;
205 {
206 char action_text[MAXLINE];
207
208 add_accept (mach, num_rules);
209
210 /* We did this in new_rule(), but it often gets the wrong
211 * number because we do it before we start parsing the current rule.
212 */
213 rule_linenum[num_rules] = linenum;
214
215 /* If this is a continued action, then the line-number has already
216 * been updated, giving us the wrong number.
217 */
218 if (continued_action)
219 --rule_linenum[num_rules];
220
221
222 /* If the previous rule was continued action, then we inherit the
223 * previous newline flag, possibly overriding the current one.
224 */
225 if (pcont_act && rule_has_nl[num_rules - 1])
226 rule_has_nl[num_rules] = true;
227
228 snprintf (action_text, sizeof(action_text), "case %d:\n", num_rules);
229 add_action (action_text);
230 if (rule_has_nl[num_rules]) {
231 snprintf (action_text, sizeof(action_text), "/* rule %d can match eol */\n",
232 num_rules);
233 add_action (action_text);
234 }
235
236
237 if (variable_trail_rule) {
238 rule_type[num_rules] = RULE_VARIABLE;
239
240 if (performance_report > 0)
241 fprintf (stderr,
242 _
243 ("Variable trailing context rule at line %d\n"),
244 rule_linenum[num_rules]);
245
246 variable_trailing_context_rules = true;
247 }
248
249 else {
250 rule_type[num_rules] = RULE_NORMAL;
251
252 if (headcnt > 0 || trailcnt > 0) {
253 /* Do trailing context magic to not match the trailing
254 * characters.
255 */
256 char *scanner_cp = "YY_G(yy_c_buf_p) = yy_cp";
257 char *scanner_bp = "yy_bp";
258
259 add_action
260 ("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */\n");
261
262 if (headcnt > 0) {
263 if (rule_has_nl[num_rules]) {
264 snprintf (action_text, sizeof(action_text),
265 "YY_LINENO_REWIND_TO(%s + %d);\n", scanner_bp, headcnt);
266 add_action (action_text);
267 }
268 snprintf (action_text, sizeof(action_text), "%s = %s + %d;\n",
269 scanner_cp, scanner_bp, headcnt);
270 add_action (action_text);
271 }
272
273 else {
274 if (rule_has_nl[num_rules]) {
275 snprintf (action_text, sizeof(action_text),
276 "YY_LINENO_REWIND_TO(yy_cp - %d);\n", trailcnt);
277 add_action (action_text);
278 }
279
280 snprintf (action_text, sizeof(action_text), "%s -= %d;\n",
281 scanner_cp, trailcnt);
282 add_action (action_text);
283 }
284
285 add_action
286 ("YY_DO_BEFORE_ACTION; /* set up yytext again */\n");
287 }
288 }
289
290 /* Okay, in the action code at this point yytext and yyleng have
291 * their proper final values for this rule, so here's the point
292 * to do any user action. But don't do it for continued actions,
293 * as that'll result in multiple YY_RULE_SETUP's.
294 */
295 if (!continued_action)
296 add_action ("YY_RULE_SETUP\n");
297
298 line_directive_out ((FILE *) 0, 1);
299 }
300
301
302 /* link_machines - connect two machines together
303 *
304 * synopsis
305 *
306 * new = link_machines( first, last );
307 *
308 * new - a machine constructed by connecting first to last
309 * first - the machine whose successor is to be last
310 * last - the machine whose predecessor is to be first
311 *
312 * note: this routine concatenates the machine first with the machine
313 * last to produce a machine new which will pattern-match first first
314 * and then last, and will fail if either of the sub-patterns fails.
315 * FIRST is set to new by the operation. last is unmolested.
316 */
317
link_machines(first,last)318 int link_machines (first, last)
319 int first, last;
320 {
321 if (first == NIL)
322 return last;
323
324 else if (last == NIL)
325 return first;
326
327 else {
328 mkxtion (finalst[first], last);
329 finalst[first] = finalst[last];
330 lastst[first] = MAX (lastst[first], lastst[last]);
331 firstst[first] = MIN (firstst[first], firstst[last]);
332
333 return first;
334 }
335 }
336
337
338 /* mark_beginning_as_normal - mark each "beginning" state in a machine
339 * as being a "normal" (i.e., not trailing context-
340 * associated) states
341 *
342 * The "beginning" states are the epsilon closure of the first state
343 */
344
mark_beginning_as_normal(mach)345 void mark_beginning_as_normal (mach)
346 register int mach;
347 {
348 switch (state_type[mach]) {
349 case STATE_NORMAL:
350 /* Oh, we've already visited here. */
351 return;
352
353 case STATE_TRAILING_CONTEXT:
354 state_type[mach] = STATE_NORMAL;
355
356 if (transchar[mach] == SYM_EPSILON) {
357 if (trans1[mach] != NO_TRANSITION)
358 mark_beginning_as_normal (trans1[mach]);
359
360 if (trans2[mach] != NO_TRANSITION)
361 mark_beginning_as_normal (trans2[mach]);
362 }
363 break;
364
365 default:
366 flexerror (_
367 ("bad state type in mark_beginning_as_normal()"));
368 break;
369 }
370 }
371
372
373 /* mkbranch - make a machine that branches to two machines
374 *
375 * synopsis
376 *
377 * branch = mkbranch( first, second );
378 *
379 * branch - a machine which matches either first's pattern or second's
380 * first, second - machines whose patterns are to be or'ed (the | operator)
381 *
382 * Note that first and second are NEITHER destroyed by the operation. Also,
383 * the resulting machine CANNOT be used with any other "mk" operation except
384 * more mkbranch's. Compare with mkor()
385 */
386
mkbranch(first,second)387 int mkbranch (first, second)
388 int first, second;
389 {
390 int eps;
391
392 if (first == NO_TRANSITION)
393 return second;
394
395 else if (second == NO_TRANSITION)
396 return first;
397
398 eps = mkstate (SYM_EPSILON);
399
400 mkxtion (eps, first);
401 mkxtion (eps, second);
402
403 return eps;
404 }
405
406
407 /* mkclos - convert a machine into a closure
408 *
409 * synopsis
410 * new = mkclos( state );
411 *
412 * new - a new state which matches the closure of "state"
413 */
414
mkclos(state)415 int mkclos (state)
416 int state;
417 {
418 return mkopt (mkposcl (state));
419 }
420
421
422 /* mkopt - make a machine optional
423 *
424 * synopsis
425 *
426 * new = mkopt( mach );
427 *
428 * new - a machine which optionally matches whatever mach matched
429 * mach - the machine to make optional
430 *
431 * notes:
432 * 1. mach must be the last machine created
433 * 2. mach is destroyed by the call
434 */
435
mkopt(mach)436 int mkopt (mach)
437 int mach;
438 {
439 int eps;
440
441 if (!SUPER_FREE_EPSILON (finalst[mach])) {
442 eps = mkstate (SYM_EPSILON);
443 mach = link_machines (mach, eps);
444 }
445
446 /* Can't skimp on the following if FREE_EPSILON(mach) is true because
447 * some state interior to "mach" might point back to the beginning
448 * for a closure.
449 */
450 eps = mkstate (SYM_EPSILON);
451 mach = link_machines (eps, mach);
452
453 mkxtion (mach, finalst[mach]);
454
455 return mach;
456 }
457
458
459 /* mkor - make a machine that matches either one of two machines
460 *
461 * synopsis
462 *
463 * new = mkor( first, second );
464 *
465 * new - a machine which matches either first's pattern or second's
466 * first, second - machines whose patterns are to be or'ed (the | operator)
467 *
468 * note that first and second are both destroyed by the operation
469 * the code is rather convoluted because an attempt is made to minimize
470 * the number of epsilon states needed
471 */
472
mkor(first,second)473 int mkor (first, second)
474 int first, second;
475 {
476 int eps, orend;
477
478 if (first == NIL)
479 return second;
480
481 else if (second == NIL)
482 return first;
483
484 else {
485 /* See comment in mkopt() about why we can't use the first
486 * state of "first" or "second" if they satisfy "FREE_EPSILON".
487 */
488 eps = mkstate (SYM_EPSILON);
489
490 first = link_machines (eps, first);
491
492 mkxtion (first, second);
493
494 if (SUPER_FREE_EPSILON (finalst[first]) &&
495 accptnum[finalst[first]] == NIL) {
496 orend = finalst[first];
497 mkxtion (finalst[second], orend);
498 }
499
500 else if (SUPER_FREE_EPSILON (finalst[second]) &&
501 accptnum[finalst[second]] == NIL) {
502 orend = finalst[second];
503 mkxtion (finalst[first], orend);
504 }
505
506 else {
507 eps = mkstate (SYM_EPSILON);
508
509 first = link_machines (first, eps);
510 orend = finalst[first];
511
512 mkxtion (finalst[second], orend);
513 }
514 }
515
516 finalst[first] = orend;
517 return first;
518 }
519
520
521 /* mkposcl - convert a machine into a positive closure
522 *
523 * synopsis
524 * new = mkposcl( state );
525 *
526 * new - a machine matching the positive closure of "state"
527 */
528
mkposcl(state)529 int mkposcl (state)
530 int state;
531 {
532 int eps;
533
534 if (SUPER_FREE_EPSILON (finalst[state])) {
535 mkxtion (finalst[state], state);
536 return state;
537 }
538
539 else {
540 eps = mkstate (SYM_EPSILON);
541 mkxtion (eps, state);
542 return link_machines (state, eps);
543 }
544 }
545
546
547 /* mkrep - make a replicated machine
548 *
549 * synopsis
550 * new = mkrep( mach, lb, ub );
551 *
552 * new - a machine that matches whatever "mach" matched from "lb"
553 * number of times to "ub" number of times
554 *
555 * note
556 * if "ub" is INFINITE_REPEAT then "new" matches "lb" or more occurrences of "mach"
557 */
558
mkrep(mach,lb,ub)559 int mkrep (mach, lb, ub)
560 int mach, lb, ub;
561 {
562 int base_mach, tail, copy, i;
563
564 base_mach = copysingl (mach, lb - 1);
565
566 if (ub == INFINITE_REPEAT) {
567 copy = dupmachine (mach);
568 mach = link_machines (mach,
569 link_machines (base_mach,
570 mkclos (copy)));
571 }
572
573 else {
574 tail = mkstate (SYM_EPSILON);
575
576 for (i = lb; i < ub; ++i) {
577 copy = dupmachine (mach);
578 tail = mkopt (link_machines (copy, tail));
579 }
580
581 mach =
582 link_machines (mach,
583 link_machines (base_mach, tail));
584 }
585
586 return mach;
587 }
588
589
590 /* mkstate - create a state with a transition on a given symbol
591 *
592 * synopsis
593 *
594 * state = mkstate( sym );
595 *
596 * state - a new state matching sym
597 * sym - the symbol the new state is to have an out-transition on
598 *
599 * note that this routine makes new states in ascending order through the
600 * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
601 * relies on machines being made in ascending order and that they are
602 * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
603 * that it admittedly is)
604 */
605
mkstate(sym)606 int mkstate (sym)
607 int sym;
608 {
609 if (++lastnfa >= current_mns) {
610 if ((current_mns += MNS_INCREMENT) >= maximum_mns)
611 lerrif (_
612 ("input rules are too complicated (>= %d NFA states)"),
613 current_mns);
614
615 ++num_reallocs;
616
617 firstst = reallocate_integer_array (firstst, current_mns);
618 lastst = reallocate_integer_array (lastst, current_mns);
619 finalst = reallocate_integer_array (finalst, current_mns);
620 transchar =
621 reallocate_integer_array (transchar, current_mns);
622 trans1 = reallocate_integer_array (trans1, current_mns);
623 trans2 = reallocate_integer_array (trans2, current_mns);
624 accptnum =
625 reallocate_integer_array (accptnum, current_mns);
626 assoc_rule =
627 reallocate_integer_array (assoc_rule, current_mns);
628 state_type =
629 reallocate_integer_array (state_type, current_mns);
630 }
631
632 firstst[lastnfa] = lastnfa;
633 finalst[lastnfa] = lastnfa;
634 lastst[lastnfa] = lastnfa;
635 transchar[lastnfa] = sym;
636 trans1[lastnfa] = NO_TRANSITION;
637 trans2[lastnfa] = NO_TRANSITION;
638 accptnum[lastnfa] = NIL;
639 assoc_rule[lastnfa] = num_rules;
640 state_type[lastnfa] = current_state_type;
641
642 /* Fix up equivalence classes base on this transition. Note that any
643 * character which has its own transition gets its own equivalence
644 * class. Thus only characters which are only in character classes
645 * have a chance at being in the same equivalence class. E.g. "a|b"
646 * puts 'a' and 'b' into two different equivalence classes. "[ab]"
647 * puts them in the same equivalence class (barring other differences
648 * elsewhere in the input).
649 */
650
651 if (sym < 0) {
652 /* We don't have to update the equivalence classes since
653 * that was already done when the ccl was created for the
654 * first time.
655 */
656 }
657
658 else if (sym == SYM_EPSILON)
659 ++numeps;
660
661 else {
662 check_char (sym);
663
664 if (useecs)
665 /* Map NUL's to csize. */
666 mkechar (sym ? sym : csize, nextecm, ecgroup);
667 }
668
669 return lastnfa;
670 }
671
672
673 /* mkxtion - make a transition from one state to another
674 *
675 * synopsis
676 *
677 * mkxtion( statefrom, stateto );
678 *
679 * statefrom - the state from which the transition is to be made
680 * stateto - the state to which the transition is to be made
681 */
682
mkxtion(statefrom,stateto)683 void mkxtion (statefrom, stateto)
684 int statefrom, stateto;
685 {
686 if (trans1[statefrom] == NO_TRANSITION)
687 trans1[statefrom] = stateto;
688
689 else if ((transchar[statefrom] != SYM_EPSILON) ||
690 (trans2[statefrom] != NO_TRANSITION))
691 flexfatal (_("found too many transitions in mkxtion()"));
692
693 else { /* second out-transition for an epsilon state */
694 ++eps2;
695 trans2[statefrom] = stateto;
696 }
697 }
698
699 /* new_rule - initialize for a new rule */
700
new_rule()701 void new_rule ()
702 {
703 if (++num_rules >= current_max_rules) {
704 ++num_reallocs;
705 current_max_rules += MAX_RULES_INCREMENT;
706 rule_type = reallocate_integer_array (rule_type,
707 current_max_rules);
708 rule_linenum = reallocate_integer_array (rule_linenum,
709 current_max_rules);
710 rule_useful = reallocate_integer_array (rule_useful,
711 current_max_rules);
712 rule_has_nl = reallocate_bool_array (rule_has_nl,
713 current_max_rules);
714 }
715
716 if (num_rules > MAX_RULE)
717 lerrif (_("too many rules (> %d)!"), MAX_RULE);
718
719 rule_linenum[num_rules] = linenum;
720 rule_useful[num_rules] = false;
721 rule_has_nl[num_rules] = false;
722 }
723