1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * folio_lock
54 */
55
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 #include <linux/oom.h>
79
80 #include <asm/tlbflush.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/tlb.h>
84 #include <trace/events/migrate.h>
85
86 #include "internal.h"
87
88 static struct kmem_cache *anon_vma_cachep;
89 static struct kmem_cache *anon_vma_chain_cachep;
90
anon_vma_alloc(void)91 static inline struct anon_vma *anon_vma_alloc(void)
92 {
93 struct anon_vma *anon_vma;
94
95 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
96 if (anon_vma) {
97 atomic_set(&anon_vma->refcount, 1);
98 anon_vma->num_children = 0;
99 anon_vma->num_active_vmas = 0;
100 anon_vma->parent = anon_vma;
101 /*
102 * Initialise the anon_vma root to point to itself. If called
103 * from fork, the root will be reset to the parents anon_vma.
104 */
105 anon_vma->root = anon_vma;
106 }
107
108 return anon_vma;
109 }
110
anon_vma_free(struct anon_vma * anon_vma)111 static inline void anon_vma_free(struct anon_vma *anon_vma)
112 {
113 VM_BUG_ON(atomic_read(&anon_vma->refcount));
114
115 /*
116 * Synchronize against folio_lock_anon_vma_read() such that
117 * we can safely hold the lock without the anon_vma getting
118 * freed.
119 *
120 * Relies on the full mb implied by the atomic_dec_and_test() from
121 * put_anon_vma() against the acquire barrier implied by
122 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
123 *
124 * folio_lock_anon_vma_read() VS put_anon_vma()
125 * down_read_trylock() atomic_dec_and_test()
126 * LOCK MB
127 * atomic_read() rwsem_is_locked()
128 *
129 * LOCK should suffice since the actual taking of the lock must
130 * happen _before_ what follows.
131 */
132 might_sleep();
133 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
134 anon_vma_lock_write(anon_vma);
135 anon_vma_unlock_write(anon_vma);
136 }
137
138 kmem_cache_free(anon_vma_cachep, anon_vma);
139 }
140
anon_vma_chain_alloc(gfp_t gfp)141 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
142 {
143 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
144 }
145
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)146 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
147 {
148 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
149 }
150
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)151 static void anon_vma_chain_link(struct vm_area_struct *vma,
152 struct anon_vma_chain *avc,
153 struct anon_vma *anon_vma)
154 {
155 avc->vma = vma;
156 avc->anon_vma = anon_vma;
157 list_add(&avc->same_vma, &vma->anon_vma_chain);
158 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
159 }
160
161 /**
162 * __anon_vma_prepare - attach an anon_vma to a memory region
163 * @vma: the memory region in question
164 *
165 * This makes sure the memory mapping described by 'vma' has
166 * an 'anon_vma' attached to it, so that we can associate the
167 * anonymous pages mapped into it with that anon_vma.
168 *
169 * The common case will be that we already have one, which
170 * is handled inline by anon_vma_prepare(). But if
171 * not we either need to find an adjacent mapping that we
172 * can re-use the anon_vma from (very common when the only
173 * reason for splitting a vma has been mprotect()), or we
174 * allocate a new one.
175 *
176 * Anon-vma allocations are very subtle, because we may have
177 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
178 * and that may actually touch the rwsem even in the newly
179 * allocated vma (it depends on RCU to make sure that the
180 * anon_vma isn't actually destroyed).
181 *
182 * As a result, we need to do proper anon_vma locking even
183 * for the new allocation. At the same time, we do not want
184 * to do any locking for the common case of already having
185 * an anon_vma.
186 */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
192
193 mmap_assert_locked(mm);
194 might_sleep();
195
196 avc = anon_vma_chain_alloc(GFP_KERNEL);
197 if (!avc)
198 goto out_enomem;
199
200 anon_vma = find_mergeable_anon_vma(vma);
201 allocated = NULL;
202 if (!anon_vma) {
203 anon_vma = anon_vma_alloc();
204 if (unlikely(!anon_vma))
205 goto out_enomem_free_avc;
206 anon_vma->num_children++; /* self-parent link for new root */
207 allocated = anon_vma;
208 }
209
210 anon_vma_lock_write(anon_vma);
211 /* page_table_lock to protect against threads */
212 spin_lock(&mm->page_table_lock);
213 if (likely(!vma->anon_vma)) {
214 vma->anon_vma = anon_vma;
215 anon_vma_chain_link(vma, avc, anon_vma);
216 anon_vma->num_active_vmas++;
217 allocated = NULL;
218 avc = NULL;
219 }
220 spin_unlock(&mm->page_table_lock);
221 anon_vma_unlock_write(anon_vma);
222
223 if (unlikely(allocated))
224 put_anon_vma(allocated);
225 if (unlikely(avc))
226 anon_vma_chain_free(avc);
227
228 return 0;
229
230 out_enomem_free_avc:
231 anon_vma_chain_free(avc);
232 out_enomem:
233 return -ENOMEM;
234 }
235
236 /*
237 * This is a useful helper function for locking the anon_vma root as
238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239 * have the same vma.
240 *
241 * Such anon_vma's should have the same root, so you'd expect to see
242 * just a single mutex_lock for the whole traversal.
243 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 struct anon_vma *new_root = anon_vma->root;
247 if (new_root != root) {
248 if (WARN_ON_ONCE(root))
249 up_write(&root->rwsem);
250 root = new_root;
251 down_write(&root->rwsem);
252 }
253 return root;
254 }
255
unlock_anon_vma_root(struct anon_vma * root)256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 if (root)
259 up_write(&root->rwsem);
260 }
261
262 /*
263 * Attach the anon_vmas from src to dst.
264 * Returns 0 on success, -ENOMEM on failure.
265 *
266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270 * call, we can identify this case by checking (!dst->anon_vma &&
271 * src->anon_vma).
272 *
273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275 * This prevents degradation of anon_vma hierarchy to endless linear chain in
276 * case of constantly forking task. On the other hand, an anon_vma with more
277 * than one child isn't reused even if there was no alive vma, thus rmap
278 * walker has a good chance of avoiding scanning the whole hierarchy when it
279 * searches where page is mapped.
280 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 struct anon_vma_chain *avc, *pavc;
284 struct anon_vma *root = NULL;
285
286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 struct anon_vma *anon_vma;
288
289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 if (unlikely(!avc)) {
291 unlock_anon_vma_root(root);
292 root = NULL;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto enomem_failure;
296 }
297 anon_vma = pavc->anon_vma;
298 root = lock_anon_vma_root(root, anon_vma);
299 anon_vma_chain_link(dst, avc, anon_vma);
300
301 /*
302 * Reuse existing anon_vma if it has no vma and only one
303 * anon_vma child.
304 *
305 * Root anon_vma is never reused:
306 * it has self-parent reference and at least one child.
307 */
308 if (!dst->anon_vma && src->anon_vma &&
309 anon_vma->num_children < 2 &&
310 anon_vma->num_active_vmas == 0)
311 dst->anon_vma = anon_vma;
312 }
313 if (dst->anon_vma)
314 dst->anon_vma->num_active_vmas++;
315 unlock_anon_vma_root(root);
316 return 0;
317
318 enomem_failure:
319 /*
320 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 * be incorrectly decremented in unlink_anon_vmas().
322 * We can safely do this because callers of anon_vma_clone() don't care
323 * about dst->anon_vma if anon_vma_clone() failed.
324 */
325 dst->anon_vma = NULL;
326 unlink_anon_vmas(dst);
327 return -ENOMEM;
328 }
329
330 /*
331 * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 * the corresponding VMA in the parent process is attached to.
333 * Returns 0 on success, non-zero on failure.
334 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 struct anon_vma_chain *avc;
338 struct anon_vma *anon_vma;
339 int error;
340
341 /* Don't bother if the parent process has no anon_vma here. */
342 if (!pvma->anon_vma)
343 return 0;
344
345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 vma->anon_vma = NULL;
347
348 /*
349 * First, attach the new VMA to the parent VMA's anon_vmas,
350 * so rmap can find non-COWed pages in child processes.
351 */
352 error = anon_vma_clone(vma, pvma);
353 if (error)
354 return error;
355
356 /* An existing anon_vma has been reused, all done then. */
357 if (vma->anon_vma)
358 return 0;
359
360 /* Then add our own anon_vma. */
361 anon_vma = anon_vma_alloc();
362 if (!anon_vma)
363 goto out_error;
364 anon_vma->num_active_vmas++;
365 avc = anon_vma_chain_alloc(GFP_KERNEL);
366 if (!avc)
367 goto out_error_free_anon_vma;
368
369 /*
370 * The root anon_vma's rwsem is the lock actually used when we
371 * lock any of the anon_vmas in this anon_vma tree.
372 */
373 anon_vma->root = pvma->anon_vma->root;
374 anon_vma->parent = pvma->anon_vma;
375 /*
376 * With refcounts, an anon_vma can stay around longer than the
377 * process it belongs to. The root anon_vma needs to be pinned until
378 * this anon_vma is freed, because the lock lives in the root.
379 */
380 get_anon_vma(anon_vma->root);
381 /* Mark this anon_vma as the one where our new (COWed) pages go. */
382 vma->anon_vma = anon_vma;
383 anon_vma_lock_write(anon_vma);
384 anon_vma_chain_link(vma, avc, anon_vma);
385 anon_vma->parent->num_children++;
386 anon_vma_unlock_write(anon_vma);
387
388 return 0;
389
390 out_error_free_anon_vma:
391 put_anon_vma(anon_vma);
392 out_error:
393 unlink_anon_vmas(vma);
394 return -ENOMEM;
395 }
396
unlink_anon_vmas(struct vm_area_struct * vma)397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 struct anon_vma_chain *avc, *next;
400 struct anon_vma *root = NULL;
401
402 /*
403 * Unlink each anon_vma chained to the VMA. This list is ordered
404 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 */
406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 struct anon_vma *anon_vma = avc->anon_vma;
408
409 root = lock_anon_vma_root(root, anon_vma);
410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411
412 /*
413 * Leave empty anon_vmas on the list - we'll need
414 * to free them outside the lock.
415 */
416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 anon_vma->parent->num_children--;
418 continue;
419 }
420
421 list_del(&avc->same_vma);
422 anon_vma_chain_free(avc);
423 }
424 if (vma->anon_vma) {
425 vma->anon_vma->num_active_vmas--;
426
427 /*
428 * vma would still be needed after unlink, and anon_vma will be prepared
429 * when handle fault.
430 */
431 vma->anon_vma = NULL;
432 }
433 unlock_anon_vma_root(root);
434
435 /*
436 * Iterate the list once more, it now only contains empty and unlinked
437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 * needing to write-acquire the anon_vma->root->rwsem.
439 */
440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 struct anon_vma *anon_vma = avc->anon_vma;
442
443 VM_WARN_ON(anon_vma->num_children);
444 VM_WARN_ON(anon_vma->num_active_vmas);
445 put_anon_vma(anon_vma);
446
447 list_del(&avc->same_vma);
448 anon_vma_chain_free(avc);
449 }
450 }
451
anon_vma_ctor(void * data)452 static void anon_vma_ctor(void *data)
453 {
454 struct anon_vma *anon_vma = data;
455
456 init_rwsem(&anon_vma->rwsem);
457 atomic_set(&anon_vma->refcount, 0);
458 anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460
anon_vma_init(void)461 void __init anon_vma_init(void)
462 {
463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 anon_vma_ctor);
466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 SLAB_PANIC|SLAB_ACCOUNT);
468 }
469
470 /*
471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 *
473 * Since there is no serialization what so ever against folio_remove_rmap_*()
474 * the best this function can do is return a refcount increased anon_vma
475 * that might have been relevant to this page.
476 *
477 * The page might have been remapped to a different anon_vma or the anon_vma
478 * returned may already be freed (and even reused).
479 *
480 * In case it was remapped to a different anon_vma, the new anon_vma will be a
481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482 * ensure that any anon_vma obtained from the page will still be valid for as
483 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 *
485 * All users of this function must be very careful when walking the anon_vma
486 * chain and verify that the page in question is indeed mapped in it
487 * [ something equivalent to page_mapped_in_vma() ].
488 *
489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
491 * if there is a mapcount, we can dereference the anon_vma after observing
492 * those.
493 *
494 * NOTE: the caller should normally hold folio lock when calling this. If
495 * not, the caller needs to double check the anon_vma didn't change after
496 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
497 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
498 * which has already covered that, and comment above remap_pages().
499 */
folio_get_anon_vma(struct folio * folio)500 struct anon_vma *folio_get_anon_vma(struct folio *folio)
501 {
502 struct anon_vma *anon_vma = NULL;
503 unsigned long anon_mapping;
504
505 rcu_read_lock();
506 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
507 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
508 goto out;
509 if (!folio_mapped(folio))
510 goto out;
511
512 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
513 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
514 anon_vma = NULL;
515 goto out;
516 }
517
518 /*
519 * If this folio is still mapped, then its anon_vma cannot have been
520 * freed. But if it has been unmapped, we have no security against the
521 * anon_vma structure being freed and reused (for another anon_vma:
522 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
523 * above cannot corrupt).
524 */
525 if (!folio_mapped(folio)) {
526 rcu_read_unlock();
527 put_anon_vma(anon_vma);
528 return NULL;
529 }
530 out:
531 rcu_read_unlock();
532
533 return anon_vma;
534 }
535
536 /*
537 * Similar to folio_get_anon_vma() except it locks the anon_vma.
538 *
539 * Its a little more complex as it tries to keep the fast path to a single
540 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
541 * reference like with folio_get_anon_vma() and then block on the mutex
542 * on !rwc->try_lock case.
543 */
folio_lock_anon_vma_read(struct folio * folio,struct rmap_walk_control * rwc)544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
545 struct rmap_walk_control *rwc)
546 {
547 struct anon_vma *anon_vma = NULL;
548 struct anon_vma *root_anon_vma;
549 unsigned long anon_mapping;
550
551 retry:
552 rcu_read_lock();
553 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
554 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
555 goto out;
556 if (!folio_mapped(folio))
557 goto out;
558
559 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
560 root_anon_vma = READ_ONCE(anon_vma->root);
561 if (down_read_trylock(&root_anon_vma->rwsem)) {
562 /*
563 * folio_move_anon_rmap() might have changed the anon_vma as we
564 * might not hold the folio lock here.
565 */
566 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
567 anon_mapping)) {
568 up_read(&root_anon_vma->rwsem);
569 rcu_read_unlock();
570 goto retry;
571 }
572
573 /*
574 * If the folio is still mapped, then this anon_vma is still
575 * its anon_vma, and holding the mutex ensures that it will
576 * not go away, see anon_vma_free().
577 */
578 if (!folio_mapped(folio)) {
579 up_read(&root_anon_vma->rwsem);
580 anon_vma = NULL;
581 }
582 goto out;
583 }
584
585 if (rwc && rwc->try_lock) {
586 anon_vma = NULL;
587 rwc->contended = true;
588 goto out;
589 }
590
591 /* trylock failed, we got to sleep */
592 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
593 anon_vma = NULL;
594 goto out;
595 }
596
597 if (!folio_mapped(folio)) {
598 rcu_read_unlock();
599 put_anon_vma(anon_vma);
600 return NULL;
601 }
602
603 /* we pinned the anon_vma, its safe to sleep */
604 rcu_read_unlock();
605 anon_vma_lock_read(anon_vma);
606
607 /*
608 * folio_move_anon_rmap() might have changed the anon_vma as we might
609 * not hold the folio lock here.
610 */
611 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
612 anon_mapping)) {
613 anon_vma_unlock_read(anon_vma);
614 put_anon_vma(anon_vma);
615 anon_vma = NULL;
616 goto retry;
617 }
618
619 if (atomic_dec_and_test(&anon_vma->refcount)) {
620 /*
621 * Oops, we held the last refcount, release the lock
622 * and bail -- can't simply use put_anon_vma() because
623 * we'll deadlock on the anon_vma_lock_write() recursion.
624 */
625 anon_vma_unlock_read(anon_vma);
626 __put_anon_vma(anon_vma);
627 anon_vma = NULL;
628 }
629
630 return anon_vma;
631
632 out:
633 rcu_read_unlock();
634 return anon_vma;
635 }
636
637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
638 /*
639 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
640 * important if a PTE was dirty when it was unmapped that it's flushed
641 * before any IO is initiated on the page to prevent lost writes. Similarly,
642 * it must be flushed before freeing to prevent data leakage.
643 */
try_to_unmap_flush(void)644 void try_to_unmap_flush(void)
645 {
646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
647
648 if (!tlb_ubc->flush_required)
649 return;
650
651 arch_tlbbatch_flush(&tlb_ubc->arch);
652 tlb_ubc->flush_required = false;
653 tlb_ubc->writable = false;
654 }
655
656 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)657 void try_to_unmap_flush_dirty(void)
658 {
659 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
660
661 if (tlb_ubc->writable)
662 try_to_unmap_flush();
663 }
664
665 /*
666 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
667 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
668 */
669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
670 #define TLB_FLUSH_BATCH_PENDING_MASK \
671 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
672 #define TLB_FLUSH_BATCH_PENDING_LARGE \
673 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
674
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long uaddr)675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
676 unsigned long uaddr)
677 {
678 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
679 int batch;
680 bool writable = pte_dirty(pteval);
681
682 if (!pte_accessible(mm, pteval))
683 return;
684
685 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
686 tlb_ubc->flush_required = true;
687
688 /*
689 * Ensure compiler does not re-order the setting of tlb_flush_batched
690 * before the PTE is cleared.
691 */
692 barrier();
693 batch = atomic_read(&mm->tlb_flush_batched);
694 retry:
695 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
696 /*
697 * Prevent `pending' from catching up with `flushed' because of
698 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
699 * `pending' becomes large.
700 */
701 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
702 goto retry;
703 } else {
704 atomic_inc(&mm->tlb_flush_batched);
705 }
706
707 /*
708 * If the PTE was dirty then it's best to assume it's writable. The
709 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
710 * before the page is queued for IO.
711 */
712 if (writable)
713 tlb_ubc->writable = true;
714 }
715
716 /*
717 * Returns true if the TLB flush should be deferred to the end of a batch of
718 * unmap operations to reduce IPIs.
719 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
721 {
722 if (!(flags & TTU_BATCH_FLUSH))
723 return false;
724
725 return arch_tlbbatch_should_defer(mm);
726 }
727
728 /*
729 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
730 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
731 * operation such as mprotect or munmap to race between reclaim unmapping
732 * the page and flushing the page. If this race occurs, it potentially allows
733 * access to data via a stale TLB entry. Tracking all mm's that have TLB
734 * batching in flight would be expensive during reclaim so instead track
735 * whether TLB batching occurred in the past and if so then do a flush here
736 * if required. This will cost one additional flush per reclaim cycle paid
737 * by the first operation at risk such as mprotect and mumap.
738 *
739 * This must be called under the PTL so that an access to tlb_flush_batched
740 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
741 * via the PTL.
742 */
flush_tlb_batched_pending(struct mm_struct * mm)743 void flush_tlb_batched_pending(struct mm_struct *mm)
744 {
745 int batch = atomic_read(&mm->tlb_flush_batched);
746 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
747 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
748
749 if (pending != flushed) {
750 arch_flush_tlb_batched_pending(mm);
751 /*
752 * If the new TLB flushing is pending during flushing, leave
753 * mm->tlb_flush_batched as is, to avoid losing flushing.
754 */
755 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
756 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
757 }
758 }
759 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long uaddr)760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
761 unsigned long uaddr)
762 {
763 }
764
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
766 {
767 return false;
768 }
769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
770
771 /*
772 * At what user virtual address is page expected in vma?
773 * Caller should check the page is actually part of the vma.
774 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
776 {
777 struct folio *folio = page_folio(page);
778 pgoff_t pgoff;
779
780 if (folio_test_anon(folio)) {
781 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
782 /*
783 * Note: swapoff's unuse_vma() is more efficient with this
784 * check, and needs it to match anon_vma when KSM is active.
785 */
786 if (!vma->anon_vma || !page__anon_vma ||
787 vma->anon_vma->root != page__anon_vma->root)
788 return -EFAULT;
789 } else if (!vma->vm_file) {
790 return -EFAULT;
791 } else if (vma->vm_file->f_mapping != folio->mapping) {
792 return -EFAULT;
793 }
794
795 /* The !page__anon_vma above handles KSM folios */
796 pgoff = folio->index + folio_page_idx(folio, page);
797 return vma_address(vma, pgoff, 1);
798 }
799
800 /*
801 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
802 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
803 * represents.
804 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
806 {
807 pgd_t *pgd;
808 p4d_t *p4d;
809 pud_t *pud;
810 pmd_t *pmd = NULL;
811
812 pgd = pgd_offset(mm, address);
813 if (!pgd_present(*pgd))
814 goto out;
815
816 p4d = p4d_offset(pgd, address);
817 if (!p4d_present(*p4d))
818 goto out;
819
820 pud = pud_offset(p4d, address);
821 if (!pud_present(*pud))
822 goto out;
823
824 pmd = pmd_offset(pud, address);
825 out:
826 return pmd;
827 }
828
829 struct folio_referenced_arg {
830 int mapcount;
831 int referenced;
832 unsigned long vm_flags;
833 struct mem_cgroup *memcg;
834 };
835
836 /*
837 * arg: folio_referenced_arg will be passed
838 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)839 static bool folio_referenced_one(struct folio *folio,
840 struct vm_area_struct *vma, unsigned long address, void *arg)
841 {
842 struct folio_referenced_arg *pra = arg;
843 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
844 int referenced = 0;
845 unsigned long start = address, ptes = 0;
846
847 while (page_vma_mapped_walk(&pvmw)) {
848 address = pvmw.address;
849
850 if (vma->vm_flags & VM_LOCKED) {
851 if (!folio_test_large(folio) || !pvmw.pte) {
852 /* Restore the mlock which got missed */
853 mlock_vma_folio(folio, vma);
854 page_vma_mapped_walk_done(&pvmw);
855 pra->vm_flags |= VM_LOCKED;
856 return false; /* To break the loop */
857 }
858 /*
859 * For large folio fully mapped to VMA, will
860 * be handled after the pvmw loop.
861 *
862 * For large folio cross VMA boundaries, it's
863 * expected to be picked by page reclaim. But
864 * should skip reference of pages which are in
865 * the range of VM_LOCKED vma. As page reclaim
866 * should just count the reference of pages out
867 * the range of VM_LOCKED vma.
868 */
869 ptes++;
870 pra->mapcount--;
871 continue;
872 }
873
874 /*
875 * Skip the non-shared swapbacked folio mapped solely by
876 * the exiting or OOM-reaped process. This avoids redundant
877 * swap-out followed by an immediate unmap.
878 */
879 if ((!atomic_read(&vma->vm_mm->mm_users) ||
880 check_stable_address_space(vma->vm_mm)) &&
881 folio_test_anon(folio) && folio_test_swapbacked(folio) &&
882 !folio_likely_mapped_shared(folio)) {
883 pra->referenced = -1;
884 page_vma_mapped_walk_done(&pvmw);
885 return false;
886 }
887
888 if (lru_gen_enabled() && pvmw.pte) {
889 if (lru_gen_look_around(&pvmw))
890 referenced++;
891 } else if (pvmw.pte) {
892 if (ptep_clear_flush_young_notify(vma, address,
893 pvmw.pte))
894 referenced++;
895 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
896 if (pmdp_clear_flush_young_notify(vma, address,
897 pvmw.pmd))
898 referenced++;
899 } else {
900 /* unexpected pmd-mapped folio? */
901 WARN_ON_ONCE(1);
902 }
903
904 pra->mapcount--;
905 }
906
907 if ((vma->vm_flags & VM_LOCKED) &&
908 folio_test_large(folio) &&
909 folio_within_vma(folio, vma)) {
910 unsigned long s_align, e_align;
911
912 s_align = ALIGN_DOWN(start, PMD_SIZE);
913 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
914
915 /* folio doesn't cross page table boundary and fully mapped */
916 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
917 /* Restore the mlock which got missed */
918 mlock_vma_folio(folio, vma);
919 pra->vm_flags |= VM_LOCKED;
920 return false; /* To break the loop */
921 }
922 }
923
924 if (referenced)
925 folio_clear_idle(folio);
926 if (folio_test_clear_young(folio))
927 referenced++;
928
929 if (referenced) {
930 pra->referenced++;
931 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
932 }
933
934 if (!pra->mapcount)
935 return false; /* To break the loop */
936
937 return true;
938 }
939
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)940 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
941 {
942 struct folio_referenced_arg *pra = arg;
943 struct mem_cgroup *memcg = pra->memcg;
944
945 /*
946 * Ignore references from this mapping if it has no recency. If the
947 * folio has been used in another mapping, we will catch it; if this
948 * other mapping is already gone, the unmap path will have set the
949 * referenced flag or activated the folio in zap_pte_range().
950 */
951 if (!vma_has_recency(vma))
952 return true;
953
954 /*
955 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
956 * of references from different cgroups.
957 */
958 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
959 return true;
960
961 return false;
962 }
963
964 /**
965 * folio_referenced() - Test if the folio was referenced.
966 * @folio: The folio to test.
967 * @is_locked: Caller holds lock on the folio.
968 * @memcg: target memory cgroup
969 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
970 *
971 * Quick test_and_clear_referenced for all mappings of a folio,
972 *
973 * Return: The number of mappings which referenced the folio. Return -1 if
974 * the function bailed out due to rmap lock contention.
975 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)976 int folio_referenced(struct folio *folio, int is_locked,
977 struct mem_cgroup *memcg, unsigned long *vm_flags)
978 {
979 bool we_locked = false;
980 struct folio_referenced_arg pra = {
981 .mapcount = folio_mapcount(folio),
982 .memcg = memcg,
983 };
984 struct rmap_walk_control rwc = {
985 .rmap_one = folio_referenced_one,
986 .arg = (void *)&pra,
987 .anon_lock = folio_lock_anon_vma_read,
988 .try_lock = true,
989 .invalid_vma = invalid_folio_referenced_vma,
990 };
991
992 *vm_flags = 0;
993 if (!pra.mapcount)
994 return 0;
995
996 if (!folio_raw_mapping(folio))
997 return 0;
998
999 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1000 we_locked = folio_trylock(folio);
1001 if (!we_locked)
1002 return 1;
1003 }
1004
1005 rmap_walk(folio, &rwc);
1006 *vm_flags = pra.vm_flags;
1007
1008 if (we_locked)
1009 folio_unlock(folio);
1010
1011 return rwc.contended ? -1 : pra.referenced;
1012 }
1013
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1014 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1015 {
1016 int cleaned = 0;
1017 struct vm_area_struct *vma = pvmw->vma;
1018 struct mmu_notifier_range range;
1019 unsigned long address = pvmw->address;
1020
1021 /*
1022 * We have to assume the worse case ie pmd for invalidation. Note that
1023 * the folio can not be freed from this function.
1024 */
1025 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1026 vma->vm_mm, address, vma_address_end(pvmw));
1027 mmu_notifier_invalidate_range_start(&range);
1028
1029 while (page_vma_mapped_walk(pvmw)) {
1030 int ret = 0;
1031
1032 address = pvmw->address;
1033 if (pvmw->pte) {
1034 pte_t *pte = pvmw->pte;
1035 pte_t entry = ptep_get(pte);
1036
1037 if (!pte_dirty(entry) && !pte_write(entry))
1038 continue;
1039
1040 flush_cache_page(vma, address, pte_pfn(entry));
1041 entry = ptep_clear_flush(vma, address, pte);
1042 entry = pte_wrprotect(entry);
1043 entry = pte_mkclean(entry);
1044 set_pte_at(vma->vm_mm, address, pte, entry);
1045 ret = 1;
1046 } else {
1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1048 pmd_t *pmd = pvmw->pmd;
1049 pmd_t entry;
1050
1051 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1052 continue;
1053
1054 flush_cache_range(vma, address,
1055 address + HPAGE_PMD_SIZE);
1056 entry = pmdp_invalidate(vma, address, pmd);
1057 entry = pmd_wrprotect(entry);
1058 entry = pmd_mkclean(entry);
1059 set_pmd_at(vma->vm_mm, address, pmd, entry);
1060 ret = 1;
1061 #else
1062 /* unexpected pmd-mapped folio? */
1063 WARN_ON_ONCE(1);
1064 #endif
1065 }
1066
1067 if (ret)
1068 cleaned++;
1069 }
1070
1071 mmu_notifier_invalidate_range_end(&range);
1072
1073 return cleaned;
1074 }
1075
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1076 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1077 unsigned long address, void *arg)
1078 {
1079 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1080 int *cleaned = arg;
1081
1082 *cleaned += page_vma_mkclean_one(&pvmw);
1083
1084 return true;
1085 }
1086
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1087 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1088 {
1089 if (vma->vm_flags & VM_SHARED)
1090 return false;
1091
1092 return true;
1093 }
1094
folio_mkclean(struct folio * folio)1095 int folio_mkclean(struct folio *folio)
1096 {
1097 int cleaned = 0;
1098 struct address_space *mapping;
1099 struct rmap_walk_control rwc = {
1100 .arg = (void *)&cleaned,
1101 .rmap_one = page_mkclean_one,
1102 .invalid_vma = invalid_mkclean_vma,
1103 };
1104
1105 BUG_ON(!folio_test_locked(folio));
1106
1107 if (!folio_mapped(folio))
1108 return 0;
1109
1110 mapping = folio_mapping(folio);
1111 if (!mapping)
1112 return 0;
1113
1114 rmap_walk(folio, &rwc);
1115
1116 return cleaned;
1117 }
1118 EXPORT_SYMBOL_GPL(folio_mkclean);
1119
1120 /**
1121 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1122 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1123 * within the @vma of shared mappings. And since clean PTEs
1124 * should also be readonly, write protects them too.
1125 * @pfn: start pfn.
1126 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1127 * @pgoff: page offset that the @pfn mapped with.
1128 * @vma: vma that @pfn mapped within.
1129 *
1130 * Returns the number of cleaned PTEs (including PMDs).
1131 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1132 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1133 struct vm_area_struct *vma)
1134 {
1135 struct page_vma_mapped_walk pvmw = {
1136 .pfn = pfn,
1137 .nr_pages = nr_pages,
1138 .pgoff = pgoff,
1139 .vma = vma,
1140 .flags = PVMW_SYNC,
1141 };
1142
1143 if (invalid_mkclean_vma(vma, NULL))
1144 return 0;
1145
1146 pvmw.address = vma_address(vma, pgoff, nr_pages);
1147 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1148
1149 return page_vma_mkclean_one(&pvmw);
1150 }
1151
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,enum rmap_level level,int * nr_pmdmapped)1152 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1153 struct page *page, int nr_pages, enum rmap_level level,
1154 int *nr_pmdmapped)
1155 {
1156 atomic_t *mapped = &folio->_nr_pages_mapped;
1157 const int orig_nr_pages = nr_pages;
1158 int first = 0, nr = 0;
1159
1160 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1161
1162 switch (level) {
1163 case RMAP_LEVEL_PTE:
1164 if (!folio_test_large(folio)) {
1165 nr = atomic_inc_and_test(&folio->_mapcount);
1166 break;
1167 }
1168
1169 do {
1170 first += atomic_inc_and_test(&page->_mapcount);
1171 } while (page++, --nr_pages > 0);
1172
1173 if (first &&
1174 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1175 nr = first;
1176
1177 atomic_add(orig_nr_pages, &folio->_large_mapcount);
1178 break;
1179 case RMAP_LEVEL_PMD:
1180 first = atomic_inc_and_test(&folio->_entire_mapcount);
1181 if (first) {
1182 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1183 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1184 *nr_pmdmapped = folio_nr_pages(folio);
1185 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1186 /* Raced ahead of a remove and another add? */
1187 if (unlikely(nr < 0))
1188 nr = 0;
1189 } else {
1190 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1191 nr = 0;
1192 }
1193 }
1194 atomic_inc(&folio->_large_mapcount);
1195 break;
1196 }
1197 return nr;
1198 }
1199
1200 /**
1201 * folio_move_anon_rmap - move a folio to our anon_vma
1202 * @folio: The folio to move to our anon_vma
1203 * @vma: The vma the folio belongs to
1204 *
1205 * When a folio belongs exclusively to one process after a COW event,
1206 * that folio can be moved into the anon_vma that belongs to just that
1207 * process, so the rmap code will not search the parent or sibling processes.
1208 */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1209 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1210 {
1211 void *anon_vma = vma->anon_vma;
1212
1213 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1214 VM_BUG_ON_VMA(!anon_vma, vma);
1215
1216 anon_vma += PAGE_MAPPING_ANON;
1217 /*
1218 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1219 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1220 * folio_test_anon()) will not see one without the other.
1221 */
1222 WRITE_ONCE(folio->mapping, anon_vma);
1223 }
1224
1225 /**
1226 * __folio_set_anon - set up a new anonymous rmap for a folio
1227 * @folio: The folio to set up the new anonymous rmap for.
1228 * @vma: VM area to add the folio to.
1229 * @address: User virtual address of the mapping
1230 * @exclusive: Whether the folio is exclusive to the process.
1231 */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1232 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1233 unsigned long address, bool exclusive)
1234 {
1235 struct anon_vma *anon_vma = vma->anon_vma;
1236
1237 BUG_ON(!anon_vma);
1238
1239 /*
1240 * If the folio isn't exclusive to this vma, we must use the _oldest_
1241 * possible anon_vma for the folio mapping!
1242 */
1243 if (!exclusive)
1244 anon_vma = anon_vma->root;
1245
1246 /*
1247 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1248 * Make sure the compiler doesn't split the stores of anon_vma and
1249 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1250 * could mistake the mapping for a struct address_space and crash.
1251 */
1252 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1253 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1254 folio->index = linear_page_index(vma, address);
1255 }
1256
1257 /**
1258 * __page_check_anon_rmap - sanity check anonymous rmap addition
1259 * @folio: The folio containing @page.
1260 * @page: the page to check the mapping of
1261 * @vma: the vm area in which the mapping is added
1262 * @address: the user virtual address mapped
1263 */
__page_check_anon_rmap(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address)1264 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1265 struct vm_area_struct *vma, unsigned long address)
1266 {
1267 /*
1268 * The page's anon-rmap details (mapping and index) are guaranteed to
1269 * be set up correctly at this point.
1270 *
1271 * We have exclusion against folio_add_anon_rmap_*() because the caller
1272 * always holds the page locked.
1273 *
1274 * We have exclusion against folio_add_new_anon_rmap because those pages
1275 * are initially only visible via the pagetables, and the pte is locked
1276 * over the call to folio_add_new_anon_rmap.
1277 */
1278 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1279 folio);
1280 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1281 page);
1282 }
1283
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1284 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1285 {
1286 int idx;
1287
1288 if (nr) {
1289 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1290 __lruvec_stat_mod_folio(folio, idx, nr);
1291 }
1292 if (nr_pmdmapped) {
1293 if (folio_test_anon(folio)) {
1294 idx = NR_ANON_THPS;
1295 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1296 } else {
1297 /* NR_*_PMDMAPPED are not maintained per-memcg */
1298 idx = folio_test_swapbacked(folio) ?
1299 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1300 __mod_node_page_state(folio_pgdat(folio), idx,
1301 nr_pmdmapped);
1302 }
1303 }
1304 }
1305
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum rmap_level level)1306 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1307 struct page *page, int nr_pages, struct vm_area_struct *vma,
1308 unsigned long address, rmap_t flags, enum rmap_level level)
1309 {
1310 int i, nr, nr_pmdmapped = 0;
1311
1312 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1313
1314 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1315
1316 if (likely(!folio_test_ksm(folio)))
1317 __page_check_anon_rmap(folio, page, vma, address);
1318
1319 __folio_mod_stat(folio, nr, nr_pmdmapped);
1320
1321 if (flags & RMAP_EXCLUSIVE) {
1322 switch (level) {
1323 case RMAP_LEVEL_PTE:
1324 for (i = 0; i < nr_pages; i++)
1325 SetPageAnonExclusive(page + i);
1326 break;
1327 case RMAP_LEVEL_PMD:
1328 SetPageAnonExclusive(page);
1329 break;
1330 }
1331 }
1332 for (i = 0; i < nr_pages; i++) {
1333 struct page *cur_page = page + i;
1334
1335 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1336 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1337 (folio_test_large(folio) &&
1338 folio_entire_mapcount(folio) > 1)) &&
1339 PageAnonExclusive(cur_page), folio);
1340 }
1341
1342 /*
1343 * For large folio, only mlock it if it's fully mapped to VMA. It's
1344 * not easy to check whether the large folio is fully mapped to VMA
1345 * here. Only mlock normal 4K folio and leave page reclaim to handle
1346 * large folio.
1347 */
1348 if (!folio_test_large(folio))
1349 mlock_vma_folio(folio, vma);
1350 }
1351
1352 /**
1353 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1354 * @folio: The folio to add the mappings to
1355 * @page: The first page to add
1356 * @nr_pages: The number of pages which will be mapped
1357 * @vma: The vm area in which the mappings are added
1358 * @address: The user virtual address of the first page to map
1359 * @flags: The rmap flags
1360 *
1361 * The page range of folio is defined by [first_page, first_page + nr_pages)
1362 *
1363 * The caller needs to hold the page table lock, and the page must be locked in
1364 * the anon_vma case: to serialize mapping,index checking after setting,
1365 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1366 * (but KSM folios are never downgraded).
1367 */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1368 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1369 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1370 rmap_t flags)
1371 {
1372 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1373 RMAP_LEVEL_PTE);
1374 }
1375
1376 /**
1377 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1378 * @folio: The folio to add the mapping to
1379 * @page: The first page to add
1380 * @vma: The vm area in which the mapping is added
1381 * @address: The user virtual address of the first page to map
1382 * @flags: The rmap flags
1383 *
1384 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1385 *
1386 * The caller needs to hold the page table lock, and the page must be locked in
1387 * the anon_vma case: to serialize mapping,index checking after setting.
1388 */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1389 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1390 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1391 {
1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1393 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1394 RMAP_LEVEL_PMD);
1395 #else
1396 WARN_ON_ONCE(true);
1397 #endif
1398 }
1399
1400 /**
1401 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1402 * @folio: The folio to add the mapping to.
1403 * @vma: the vm area in which the mapping is added
1404 * @address: the user virtual address mapped
1405 * @flags: The rmap flags
1406 *
1407 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1408 * This means the inc-and-test can be bypassed.
1409 * The folio doesn't necessarily need to be locked while it's exclusive
1410 * unless two threads map it concurrently. However, the folio must be
1411 * locked if it's shared.
1412 *
1413 * If the folio is pmd-mappable, it is accounted as a THP.
1414 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1415 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1416 unsigned long address, rmap_t flags)
1417 {
1418 const int nr = folio_nr_pages(folio);
1419 const bool exclusive = flags & RMAP_EXCLUSIVE;
1420 int nr_pmdmapped = 0;
1421
1422 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1423 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1424 VM_BUG_ON_VMA(address < vma->vm_start ||
1425 address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1426
1427 /*
1428 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1429 * under memory pressure.
1430 */
1431 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1432 __folio_set_swapbacked(folio);
1433 __folio_set_anon(folio, vma, address, exclusive);
1434
1435 if (likely(!folio_test_large(folio))) {
1436 /* increment count (starts at -1) */
1437 atomic_set(&folio->_mapcount, 0);
1438 if (exclusive)
1439 SetPageAnonExclusive(&folio->page);
1440 } else if (!folio_test_pmd_mappable(folio)) {
1441 int i;
1442
1443 for (i = 0; i < nr; i++) {
1444 struct page *page = folio_page(folio, i);
1445
1446 /* increment count (starts at -1) */
1447 atomic_set(&page->_mapcount, 0);
1448 if (exclusive)
1449 SetPageAnonExclusive(page);
1450 }
1451
1452 /* increment count (starts at -1) */
1453 atomic_set(&folio->_large_mapcount, nr - 1);
1454 atomic_set(&folio->_nr_pages_mapped, nr);
1455 } else {
1456 /* increment count (starts at -1) */
1457 atomic_set(&folio->_entire_mapcount, 0);
1458 /* increment count (starts at -1) */
1459 atomic_set(&folio->_large_mapcount, 0);
1460 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1461 if (exclusive)
1462 SetPageAnonExclusive(&folio->page);
1463 nr_pmdmapped = nr;
1464 }
1465
1466 __folio_mod_stat(folio, nr, nr_pmdmapped);
1467 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1468 }
1469
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1470 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1471 struct page *page, int nr_pages, struct vm_area_struct *vma,
1472 enum rmap_level level)
1473 {
1474 int nr, nr_pmdmapped = 0;
1475
1476 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1477
1478 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1479 __folio_mod_stat(folio, nr, nr_pmdmapped);
1480
1481 /* See comments in folio_add_anon_rmap_*() */
1482 if (!folio_test_large(folio))
1483 mlock_vma_folio(folio, vma);
1484 }
1485
1486 /**
1487 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1488 * @folio: The folio to add the mappings to
1489 * @page: The first page to add
1490 * @nr_pages: The number of pages that will be mapped using PTEs
1491 * @vma: The vm area in which the mappings are added
1492 *
1493 * The page range of the folio is defined by [page, page + nr_pages)
1494 *
1495 * The caller needs to hold the page table lock.
1496 */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1497 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1498 int nr_pages, struct vm_area_struct *vma)
1499 {
1500 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1501 }
1502
1503 /**
1504 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1505 * @folio: The folio to add the mapping to
1506 * @page: The first page to add
1507 * @vma: The vm area in which the mapping is added
1508 *
1509 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1510 *
1511 * The caller needs to hold the page table lock.
1512 */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1513 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1514 struct vm_area_struct *vma)
1515 {
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1518 #else
1519 WARN_ON_ONCE(true);
1520 #endif
1521 }
1522
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1523 static __always_inline void __folio_remove_rmap(struct folio *folio,
1524 struct page *page, int nr_pages, struct vm_area_struct *vma,
1525 enum rmap_level level)
1526 {
1527 atomic_t *mapped = &folio->_nr_pages_mapped;
1528 int last = 0, nr = 0, nr_pmdmapped = 0;
1529 bool partially_mapped = false;
1530
1531 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1532
1533 switch (level) {
1534 case RMAP_LEVEL_PTE:
1535 if (!folio_test_large(folio)) {
1536 nr = atomic_add_negative(-1, &folio->_mapcount);
1537 break;
1538 }
1539
1540 atomic_sub(nr_pages, &folio->_large_mapcount);
1541 do {
1542 last += atomic_add_negative(-1, &page->_mapcount);
1543 } while (page++, --nr_pages > 0);
1544
1545 if (last &&
1546 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1547 nr = last;
1548
1549 partially_mapped = nr && atomic_read(mapped);
1550 break;
1551 case RMAP_LEVEL_PMD:
1552 atomic_dec(&folio->_large_mapcount);
1553 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1554 if (last) {
1555 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1556 if (likely(nr < ENTIRELY_MAPPED)) {
1557 nr_pmdmapped = folio_nr_pages(folio);
1558 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1559 /* Raced ahead of another remove and an add? */
1560 if (unlikely(nr < 0))
1561 nr = 0;
1562 } else {
1563 /* An add of ENTIRELY_MAPPED raced ahead */
1564 nr = 0;
1565 }
1566 }
1567
1568 partially_mapped = nr && nr < nr_pmdmapped;
1569 break;
1570 }
1571
1572 /*
1573 * Queue anon large folio for deferred split if at least one page of
1574 * the folio is unmapped and at least one page is still mapped.
1575 *
1576 * Check partially_mapped first to ensure it is a large folio.
1577 */
1578 if (partially_mapped && folio_test_anon(folio) &&
1579 !folio_test_partially_mapped(folio))
1580 deferred_split_folio(folio, true);
1581
1582 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1583
1584 /*
1585 * It would be tidy to reset folio_test_anon mapping when fully
1586 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1587 * which increments mapcount after us but sets mapping before us:
1588 * so leave the reset to free_pages_prepare, and remember that
1589 * it's only reliable while mapped.
1590 */
1591
1592 munlock_vma_folio(folio, vma);
1593 }
1594
1595 /**
1596 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1597 * @folio: The folio to remove the mappings from
1598 * @page: The first page to remove
1599 * @nr_pages: The number of pages that will be removed from the mapping
1600 * @vma: The vm area from which the mappings are removed
1601 *
1602 * The page range of the folio is defined by [page, page + nr_pages)
1603 *
1604 * The caller needs to hold the page table lock.
1605 */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1606 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1607 int nr_pages, struct vm_area_struct *vma)
1608 {
1609 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1610 }
1611
1612 /**
1613 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1614 * @folio: The folio to remove the mapping from
1615 * @page: The first page to remove
1616 * @vma: The vm area from which the mapping is removed
1617 *
1618 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1619 *
1620 * The caller needs to hold the page table lock.
1621 */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1622 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1623 struct vm_area_struct *vma)
1624 {
1625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1626 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1627 #else
1628 WARN_ON_ONCE(true);
1629 #endif
1630 }
1631
1632 /*
1633 * @arg: enum ttu_flags will be passed to this argument
1634 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1635 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1636 unsigned long address, void *arg)
1637 {
1638 struct mm_struct *mm = vma->vm_mm;
1639 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1640 pte_t pteval;
1641 struct page *subpage;
1642 bool anon_exclusive, ret = true;
1643 struct mmu_notifier_range range;
1644 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1645 unsigned long pfn;
1646 unsigned long hsz = 0;
1647
1648 /*
1649 * When racing against e.g. zap_pte_range() on another cpu,
1650 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1651 * try_to_unmap() may return before page_mapped() has become false,
1652 * if page table locking is skipped: use TTU_SYNC to wait for that.
1653 */
1654 if (flags & TTU_SYNC)
1655 pvmw.flags = PVMW_SYNC;
1656
1657 /*
1658 * For THP, we have to assume the worse case ie pmd for invalidation.
1659 * For hugetlb, it could be much worse if we need to do pud
1660 * invalidation in the case of pmd sharing.
1661 *
1662 * Note that the folio can not be freed in this function as call of
1663 * try_to_unmap() must hold a reference on the folio.
1664 */
1665 range.end = vma_address_end(&pvmw);
1666 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1667 address, range.end);
1668 if (folio_test_hugetlb(folio)) {
1669 /*
1670 * If sharing is possible, start and end will be adjusted
1671 * accordingly.
1672 */
1673 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1674 &range.end);
1675
1676 /* We need the huge page size for set_huge_pte_at() */
1677 hsz = huge_page_size(hstate_vma(vma));
1678 }
1679 mmu_notifier_invalidate_range_start(&range);
1680
1681 while (page_vma_mapped_walk(&pvmw)) {
1682 /*
1683 * If the folio is in an mlock()d vma, we must not swap it out.
1684 */
1685 if (!(flags & TTU_IGNORE_MLOCK) &&
1686 (vma->vm_flags & VM_LOCKED)) {
1687 /* Restore the mlock which got missed */
1688 if (!folio_test_large(folio))
1689 mlock_vma_folio(folio, vma);
1690 goto walk_abort;
1691 }
1692
1693 if (!pvmw.pte) {
1694 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1695 folio))
1696 goto walk_done;
1697
1698 if (flags & TTU_SPLIT_HUGE_PMD) {
1699 /*
1700 * We temporarily have to drop the PTL and
1701 * restart so we can process the PTE-mapped THP.
1702 */
1703 split_huge_pmd_locked(vma, pvmw.address,
1704 pvmw.pmd, false, folio);
1705 flags &= ~TTU_SPLIT_HUGE_PMD;
1706 page_vma_mapped_walk_restart(&pvmw);
1707 continue;
1708 }
1709 }
1710
1711 /* Unexpected PMD-mapped THP? */
1712 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1713
1714 pfn = pte_pfn(ptep_get(pvmw.pte));
1715 subpage = folio_page(folio, pfn - folio_pfn(folio));
1716 address = pvmw.address;
1717 anon_exclusive = folio_test_anon(folio) &&
1718 PageAnonExclusive(subpage);
1719
1720 if (folio_test_hugetlb(folio)) {
1721 bool anon = folio_test_anon(folio);
1722
1723 /*
1724 * The try_to_unmap() is only passed a hugetlb page
1725 * in the case where the hugetlb page is poisoned.
1726 */
1727 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1728 /*
1729 * huge_pmd_unshare may unmap an entire PMD page.
1730 * There is no way of knowing exactly which PMDs may
1731 * be cached for this mm, so we must flush them all.
1732 * start/end were already adjusted above to cover this
1733 * range.
1734 */
1735 flush_cache_range(vma, range.start, range.end);
1736
1737 /*
1738 * To call huge_pmd_unshare, i_mmap_rwsem must be
1739 * held in write mode. Caller needs to explicitly
1740 * do this outside rmap routines.
1741 *
1742 * We also must hold hugetlb vma_lock in write mode.
1743 * Lock order dictates acquiring vma_lock BEFORE
1744 * i_mmap_rwsem. We can only try lock here and fail
1745 * if unsuccessful.
1746 */
1747 if (!anon) {
1748 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1749 if (!hugetlb_vma_trylock_write(vma))
1750 goto walk_abort;
1751 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1752 hugetlb_vma_unlock_write(vma);
1753 flush_tlb_range(vma,
1754 range.start, range.end);
1755 /*
1756 * The ref count of the PMD page was
1757 * dropped which is part of the way map
1758 * counting is done for shared PMDs.
1759 * Return 'true' here. When there is
1760 * no other sharing, huge_pmd_unshare
1761 * returns false and we will unmap the
1762 * actual page and drop map count
1763 * to zero.
1764 */
1765 goto walk_done;
1766 }
1767 hugetlb_vma_unlock_write(vma);
1768 }
1769 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1770 } else {
1771 flush_cache_page(vma, address, pfn);
1772 /* Nuke the page table entry. */
1773 if (should_defer_flush(mm, flags)) {
1774 /*
1775 * We clear the PTE but do not flush so potentially
1776 * a remote CPU could still be writing to the folio.
1777 * If the entry was previously clean then the
1778 * architecture must guarantee that a clear->dirty
1779 * transition on a cached TLB entry is written through
1780 * and traps if the PTE is unmapped.
1781 */
1782 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1783
1784 set_tlb_ubc_flush_pending(mm, pteval, address);
1785 } else {
1786 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1787 }
1788 }
1789
1790 /*
1791 * Now the pte is cleared. If this pte was uffd-wp armed,
1792 * we may want to replace a none pte with a marker pte if
1793 * it's file-backed, so we don't lose the tracking info.
1794 */
1795 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1796
1797 /* Set the dirty flag on the folio now the pte is gone. */
1798 if (pte_dirty(pteval))
1799 folio_mark_dirty(folio);
1800
1801 /* Update high watermark before we lower rss */
1802 update_hiwater_rss(mm);
1803
1804 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1805 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1806 if (folio_test_hugetlb(folio)) {
1807 hugetlb_count_sub(folio_nr_pages(folio), mm);
1808 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1809 hsz);
1810 } else {
1811 dec_mm_counter(mm, mm_counter(folio));
1812 set_pte_at(mm, address, pvmw.pte, pteval);
1813 }
1814
1815 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1816 /*
1817 * The guest indicated that the page content is of no
1818 * interest anymore. Simply discard the pte, vmscan
1819 * will take care of the rest.
1820 * A future reference will then fault in a new zero
1821 * page. When userfaultfd is active, we must not drop
1822 * this page though, as its main user (postcopy
1823 * migration) will not expect userfaults on already
1824 * copied pages.
1825 */
1826 dec_mm_counter(mm, mm_counter(folio));
1827 } else if (folio_test_anon(folio)) {
1828 swp_entry_t entry = page_swap_entry(subpage);
1829 pte_t swp_pte;
1830 /*
1831 * Store the swap location in the pte.
1832 * See handle_pte_fault() ...
1833 */
1834 if (unlikely(folio_test_swapbacked(folio) !=
1835 folio_test_swapcache(folio))) {
1836 WARN_ON_ONCE(1);
1837 goto walk_abort;
1838 }
1839
1840 /* MADV_FREE page check */
1841 if (!folio_test_swapbacked(folio)) {
1842 int ref_count, map_count;
1843
1844 /*
1845 * Synchronize with gup_pte_range():
1846 * - clear PTE; barrier; read refcount
1847 * - inc refcount; barrier; read PTE
1848 */
1849 smp_mb();
1850
1851 ref_count = folio_ref_count(folio);
1852 map_count = folio_mapcount(folio);
1853
1854 /*
1855 * Order reads for page refcount and dirty flag
1856 * (see comments in __remove_mapping()).
1857 */
1858 smp_rmb();
1859
1860 /*
1861 * The only page refs must be one from isolation
1862 * plus the rmap(s) (dropped by discard:).
1863 */
1864 if (ref_count == 1 + map_count &&
1865 (!folio_test_dirty(folio) ||
1866 /*
1867 * Unlike MADV_FREE mappings, VM_DROPPABLE
1868 * ones can be dropped even if they've
1869 * been dirtied.
1870 */
1871 (vma->vm_flags & VM_DROPPABLE))) {
1872 dec_mm_counter(mm, MM_ANONPAGES);
1873 goto discard;
1874 }
1875
1876 /*
1877 * If the folio was redirtied, it cannot be
1878 * discarded. Remap the page to page table.
1879 */
1880 set_pte_at(mm, address, pvmw.pte, pteval);
1881 /*
1882 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1883 * never get swap backed on failure to drop.
1884 */
1885 if (!(vma->vm_flags & VM_DROPPABLE))
1886 folio_set_swapbacked(folio);
1887 goto walk_abort;
1888 }
1889
1890 if (swap_duplicate(entry) < 0) {
1891 set_pte_at(mm, address, pvmw.pte, pteval);
1892 goto walk_abort;
1893 }
1894 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1895 swap_free(entry);
1896 set_pte_at(mm, address, pvmw.pte, pteval);
1897 goto walk_abort;
1898 }
1899
1900 /* See folio_try_share_anon_rmap(): clear PTE first. */
1901 if (anon_exclusive &&
1902 folio_try_share_anon_rmap_pte(folio, subpage)) {
1903 swap_free(entry);
1904 set_pte_at(mm, address, pvmw.pte, pteval);
1905 goto walk_abort;
1906 }
1907 if (list_empty(&mm->mmlist)) {
1908 spin_lock(&mmlist_lock);
1909 if (list_empty(&mm->mmlist))
1910 list_add(&mm->mmlist, &init_mm.mmlist);
1911 spin_unlock(&mmlist_lock);
1912 }
1913 dec_mm_counter(mm, MM_ANONPAGES);
1914 inc_mm_counter(mm, MM_SWAPENTS);
1915 swp_pte = swp_entry_to_pte(entry);
1916 if (anon_exclusive)
1917 swp_pte = pte_swp_mkexclusive(swp_pte);
1918 if (pte_soft_dirty(pteval))
1919 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1920 if (pte_uffd_wp(pteval))
1921 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1922 set_pte_at(mm, address, pvmw.pte, swp_pte);
1923 } else {
1924 /*
1925 * This is a locked file-backed folio,
1926 * so it cannot be removed from the page
1927 * cache and replaced by a new folio before
1928 * mmu_notifier_invalidate_range_end, so no
1929 * concurrent thread might update its page table
1930 * to point at a new folio while a device is
1931 * still using this folio.
1932 *
1933 * See Documentation/mm/mmu_notifier.rst
1934 */
1935 dec_mm_counter(mm, mm_counter_file(folio));
1936 }
1937 discard:
1938 if (unlikely(folio_test_hugetlb(folio)))
1939 hugetlb_remove_rmap(folio);
1940 else
1941 folio_remove_rmap_pte(folio, subpage, vma);
1942 if (vma->vm_flags & VM_LOCKED)
1943 mlock_drain_local();
1944 folio_put(folio);
1945 continue;
1946 walk_abort:
1947 ret = false;
1948 walk_done:
1949 page_vma_mapped_walk_done(&pvmw);
1950 break;
1951 }
1952
1953 mmu_notifier_invalidate_range_end(&range);
1954
1955 return ret;
1956 }
1957
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1958 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1959 {
1960 return vma_is_temporary_stack(vma);
1961 }
1962
folio_not_mapped(struct folio * folio)1963 static int folio_not_mapped(struct folio *folio)
1964 {
1965 return !folio_mapped(folio);
1966 }
1967
1968 /**
1969 * try_to_unmap - Try to remove all page table mappings to a folio.
1970 * @folio: The folio to unmap.
1971 * @flags: action and flags
1972 *
1973 * Tries to remove all the page table entries which are mapping this
1974 * folio. It is the caller's responsibility to check if the folio is
1975 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1976 *
1977 * Context: Caller must hold the folio lock.
1978 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)1979 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1980 {
1981 struct rmap_walk_control rwc = {
1982 .rmap_one = try_to_unmap_one,
1983 .arg = (void *)flags,
1984 .done = folio_not_mapped,
1985 .anon_lock = folio_lock_anon_vma_read,
1986 };
1987
1988 if (flags & TTU_RMAP_LOCKED)
1989 rmap_walk_locked(folio, &rwc);
1990 else
1991 rmap_walk(folio, &rwc);
1992 }
1993
1994 /*
1995 * @arg: enum ttu_flags will be passed to this argument.
1996 *
1997 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1998 * containing migration entries.
1999 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2000 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2001 unsigned long address, void *arg)
2002 {
2003 struct mm_struct *mm = vma->vm_mm;
2004 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2005 pte_t pteval;
2006 struct page *subpage;
2007 bool anon_exclusive, ret = true;
2008 struct mmu_notifier_range range;
2009 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2010 unsigned long pfn;
2011 unsigned long hsz = 0;
2012
2013 /*
2014 * When racing against e.g. zap_pte_range() on another cpu,
2015 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2016 * try_to_migrate() may return before page_mapped() has become false,
2017 * if page table locking is skipped: use TTU_SYNC to wait for that.
2018 */
2019 if (flags & TTU_SYNC)
2020 pvmw.flags = PVMW_SYNC;
2021
2022 /*
2023 * unmap_page() in mm/huge_memory.c is the only user of migration with
2024 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2025 */
2026 if (flags & TTU_SPLIT_HUGE_PMD)
2027 split_huge_pmd_address(vma, address, true, folio);
2028
2029 /*
2030 * For THP, we have to assume the worse case ie pmd for invalidation.
2031 * For hugetlb, it could be much worse if we need to do pud
2032 * invalidation in the case of pmd sharing.
2033 *
2034 * Note that the page can not be free in this function as call of
2035 * try_to_unmap() must hold a reference on the page.
2036 */
2037 range.end = vma_address_end(&pvmw);
2038 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2039 address, range.end);
2040 if (folio_test_hugetlb(folio)) {
2041 /*
2042 * If sharing is possible, start and end will be adjusted
2043 * accordingly.
2044 */
2045 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2046 &range.end);
2047
2048 /* We need the huge page size for set_huge_pte_at() */
2049 hsz = huge_page_size(hstate_vma(vma));
2050 }
2051 mmu_notifier_invalidate_range_start(&range);
2052
2053 while (page_vma_mapped_walk(&pvmw)) {
2054 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2055 /* PMD-mapped THP migration entry */
2056 if (!pvmw.pte) {
2057 subpage = folio_page(folio,
2058 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2059 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2060 !folio_test_pmd_mappable(folio), folio);
2061
2062 if (set_pmd_migration_entry(&pvmw, subpage)) {
2063 ret = false;
2064 page_vma_mapped_walk_done(&pvmw);
2065 break;
2066 }
2067 continue;
2068 }
2069 #endif
2070
2071 /* Unexpected PMD-mapped THP? */
2072 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2073
2074 pfn = pte_pfn(ptep_get(pvmw.pte));
2075
2076 if (folio_is_zone_device(folio)) {
2077 /*
2078 * Our PTE is a non-present device exclusive entry and
2079 * calculating the subpage as for the common case would
2080 * result in an invalid pointer.
2081 *
2082 * Since only PAGE_SIZE pages can currently be
2083 * migrated, just set it to page. This will need to be
2084 * changed when hugepage migrations to device private
2085 * memory are supported.
2086 */
2087 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2088 subpage = &folio->page;
2089 } else {
2090 subpage = folio_page(folio, pfn - folio_pfn(folio));
2091 }
2092 address = pvmw.address;
2093 anon_exclusive = folio_test_anon(folio) &&
2094 PageAnonExclusive(subpage);
2095
2096 if (folio_test_hugetlb(folio)) {
2097 bool anon = folio_test_anon(folio);
2098
2099 /*
2100 * huge_pmd_unshare may unmap an entire PMD page.
2101 * There is no way of knowing exactly which PMDs may
2102 * be cached for this mm, so we must flush them all.
2103 * start/end were already adjusted above to cover this
2104 * range.
2105 */
2106 flush_cache_range(vma, range.start, range.end);
2107
2108 /*
2109 * To call huge_pmd_unshare, i_mmap_rwsem must be
2110 * held in write mode. Caller needs to explicitly
2111 * do this outside rmap routines.
2112 *
2113 * We also must hold hugetlb vma_lock in write mode.
2114 * Lock order dictates acquiring vma_lock BEFORE
2115 * i_mmap_rwsem. We can only try lock here and
2116 * fail if unsuccessful.
2117 */
2118 if (!anon) {
2119 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2120 if (!hugetlb_vma_trylock_write(vma)) {
2121 page_vma_mapped_walk_done(&pvmw);
2122 ret = false;
2123 break;
2124 }
2125 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2126 hugetlb_vma_unlock_write(vma);
2127 flush_tlb_range(vma,
2128 range.start, range.end);
2129
2130 /*
2131 * The ref count of the PMD page was
2132 * dropped which is part of the way map
2133 * counting is done for shared PMDs.
2134 * Return 'true' here. When there is
2135 * no other sharing, huge_pmd_unshare
2136 * returns false and we will unmap the
2137 * actual page and drop map count
2138 * to zero.
2139 */
2140 page_vma_mapped_walk_done(&pvmw);
2141 break;
2142 }
2143 hugetlb_vma_unlock_write(vma);
2144 }
2145 /* Nuke the hugetlb page table entry */
2146 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2147 } else {
2148 flush_cache_page(vma, address, pfn);
2149 /* Nuke the page table entry. */
2150 if (should_defer_flush(mm, flags)) {
2151 /*
2152 * We clear the PTE but do not flush so potentially
2153 * a remote CPU could still be writing to the folio.
2154 * If the entry was previously clean then the
2155 * architecture must guarantee that a clear->dirty
2156 * transition on a cached TLB entry is written through
2157 * and traps if the PTE is unmapped.
2158 */
2159 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2160
2161 set_tlb_ubc_flush_pending(mm, pteval, address);
2162 } else {
2163 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2164 }
2165 }
2166
2167 /* Set the dirty flag on the folio now the pte is gone. */
2168 if (pte_dirty(pteval))
2169 folio_mark_dirty(folio);
2170
2171 /* Update high watermark before we lower rss */
2172 update_hiwater_rss(mm);
2173
2174 if (folio_is_device_private(folio)) {
2175 unsigned long pfn = folio_pfn(folio);
2176 swp_entry_t entry;
2177 pte_t swp_pte;
2178
2179 if (anon_exclusive)
2180 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2181 subpage));
2182
2183 /*
2184 * Store the pfn of the page in a special migration
2185 * pte. do_swap_page() will wait until the migration
2186 * pte is removed and then restart fault handling.
2187 */
2188 entry = pte_to_swp_entry(pteval);
2189 if (is_writable_device_private_entry(entry))
2190 entry = make_writable_migration_entry(pfn);
2191 else if (anon_exclusive)
2192 entry = make_readable_exclusive_migration_entry(pfn);
2193 else
2194 entry = make_readable_migration_entry(pfn);
2195 swp_pte = swp_entry_to_pte(entry);
2196
2197 /*
2198 * pteval maps a zone device page and is therefore
2199 * a swap pte.
2200 */
2201 if (pte_swp_soft_dirty(pteval))
2202 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2203 if (pte_swp_uffd_wp(pteval))
2204 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2205 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2206 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2207 folio_order(folio));
2208 /*
2209 * No need to invalidate here it will synchronize on
2210 * against the special swap migration pte.
2211 */
2212 } else if (PageHWPoison(subpage)) {
2213 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2214 if (folio_test_hugetlb(folio)) {
2215 hugetlb_count_sub(folio_nr_pages(folio), mm);
2216 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2217 hsz);
2218 } else {
2219 dec_mm_counter(mm, mm_counter(folio));
2220 set_pte_at(mm, address, pvmw.pte, pteval);
2221 }
2222
2223 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2224 /*
2225 * The guest indicated that the page content is of no
2226 * interest anymore. Simply discard the pte, vmscan
2227 * will take care of the rest.
2228 * A future reference will then fault in a new zero
2229 * page. When userfaultfd is active, we must not drop
2230 * this page though, as its main user (postcopy
2231 * migration) will not expect userfaults on already
2232 * copied pages.
2233 */
2234 dec_mm_counter(mm, mm_counter(folio));
2235 } else {
2236 swp_entry_t entry;
2237 pte_t swp_pte;
2238
2239 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2240 if (folio_test_hugetlb(folio))
2241 set_huge_pte_at(mm, address, pvmw.pte,
2242 pteval, hsz);
2243 else
2244 set_pte_at(mm, address, pvmw.pte, pteval);
2245 ret = false;
2246 page_vma_mapped_walk_done(&pvmw);
2247 break;
2248 }
2249 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2250 !anon_exclusive, subpage);
2251
2252 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2253 if (folio_test_hugetlb(folio)) {
2254 if (anon_exclusive &&
2255 hugetlb_try_share_anon_rmap(folio)) {
2256 set_huge_pte_at(mm, address, pvmw.pte,
2257 pteval, hsz);
2258 ret = false;
2259 page_vma_mapped_walk_done(&pvmw);
2260 break;
2261 }
2262 } else if (anon_exclusive &&
2263 folio_try_share_anon_rmap_pte(folio, subpage)) {
2264 set_pte_at(mm, address, pvmw.pte, pteval);
2265 ret = false;
2266 page_vma_mapped_walk_done(&pvmw);
2267 break;
2268 }
2269
2270 /*
2271 * Store the pfn of the page in a special migration
2272 * pte. do_swap_page() will wait until the migration
2273 * pte is removed and then restart fault handling.
2274 */
2275 if (pte_write(pteval))
2276 entry = make_writable_migration_entry(
2277 page_to_pfn(subpage));
2278 else if (anon_exclusive)
2279 entry = make_readable_exclusive_migration_entry(
2280 page_to_pfn(subpage));
2281 else
2282 entry = make_readable_migration_entry(
2283 page_to_pfn(subpage));
2284 if (pte_young(pteval))
2285 entry = make_migration_entry_young(entry);
2286 if (pte_dirty(pteval))
2287 entry = make_migration_entry_dirty(entry);
2288 swp_pte = swp_entry_to_pte(entry);
2289 if (pte_soft_dirty(pteval))
2290 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2291 if (pte_uffd_wp(pteval))
2292 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2293 if (folio_test_hugetlb(folio))
2294 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2295 hsz);
2296 else
2297 set_pte_at(mm, address, pvmw.pte, swp_pte);
2298 trace_set_migration_pte(address, pte_val(swp_pte),
2299 folio_order(folio));
2300 /*
2301 * No need to invalidate here it will synchronize on
2302 * against the special swap migration pte.
2303 */
2304 }
2305
2306 if (unlikely(folio_test_hugetlb(folio)))
2307 hugetlb_remove_rmap(folio);
2308 else
2309 folio_remove_rmap_pte(folio, subpage, vma);
2310 if (vma->vm_flags & VM_LOCKED)
2311 mlock_drain_local();
2312 folio_put(folio);
2313 }
2314
2315 mmu_notifier_invalidate_range_end(&range);
2316
2317 return ret;
2318 }
2319
2320 /**
2321 * try_to_migrate - try to replace all page table mappings with swap entries
2322 * @folio: the folio to replace page table entries for
2323 * @flags: action and flags
2324 *
2325 * Tries to remove all the page table entries which are mapping this folio and
2326 * replace them with special swap entries. Caller must hold the folio lock.
2327 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2328 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2329 {
2330 struct rmap_walk_control rwc = {
2331 .rmap_one = try_to_migrate_one,
2332 .arg = (void *)flags,
2333 .done = folio_not_mapped,
2334 .anon_lock = folio_lock_anon_vma_read,
2335 };
2336
2337 /*
2338 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2339 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2340 */
2341 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2342 TTU_SYNC | TTU_BATCH_FLUSH)))
2343 return;
2344
2345 if (folio_is_zone_device(folio) &&
2346 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2347 return;
2348
2349 /*
2350 * During exec, a temporary VMA is setup and later moved.
2351 * The VMA is moved under the anon_vma lock but not the
2352 * page tables leading to a race where migration cannot
2353 * find the migration ptes. Rather than increasing the
2354 * locking requirements of exec(), migration skips
2355 * temporary VMAs until after exec() completes.
2356 */
2357 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2358 rwc.invalid_vma = invalid_migration_vma;
2359
2360 if (flags & TTU_RMAP_LOCKED)
2361 rmap_walk_locked(folio, &rwc);
2362 else
2363 rmap_walk(folio, &rwc);
2364 }
2365
2366 #ifdef CONFIG_DEVICE_PRIVATE
2367 struct make_exclusive_args {
2368 struct mm_struct *mm;
2369 unsigned long address;
2370 void *owner;
2371 bool valid;
2372 };
2373
page_make_device_exclusive_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * priv)2374 static bool page_make_device_exclusive_one(struct folio *folio,
2375 struct vm_area_struct *vma, unsigned long address, void *priv)
2376 {
2377 struct mm_struct *mm = vma->vm_mm;
2378 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2379 struct make_exclusive_args *args = priv;
2380 pte_t pteval;
2381 struct page *subpage;
2382 bool ret = true;
2383 struct mmu_notifier_range range;
2384 swp_entry_t entry;
2385 pte_t swp_pte;
2386 pte_t ptent;
2387
2388 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2389 vma->vm_mm, address, min(vma->vm_end,
2390 address + folio_size(folio)),
2391 args->owner);
2392 mmu_notifier_invalidate_range_start(&range);
2393
2394 while (page_vma_mapped_walk(&pvmw)) {
2395 /* Unexpected PMD-mapped THP? */
2396 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2397
2398 ptent = ptep_get(pvmw.pte);
2399 if (!pte_present(ptent)) {
2400 ret = false;
2401 page_vma_mapped_walk_done(&pvmw);
2402 break;
2403 }
2404
2405 subpage = folio_page(folio,
2406 pte_pfn(ptent) - folio_pfn(folio));
2407 address = pvmw.address;
2408
2409 /* Nuke the page table entry. */
2410 flush_cache_page(vma, address, pte_pfn(ptent));
2411 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2412
2413 /* Set the dirty flag on the folio now the pte is gone. */
2414 if (pte_dirty(pteval))
2415 folio_mark_dirty(folio);
2416
2417 /*
2418 * Check that our target page is still mapped at the expected
2419 * address.
2420 */
2421 if (args->mm == mm && args->address == address &&
2422 pte_write(pteval))
2423 args->valid = true;
2424
2425 /*
2426 * Store the pfn of the page in a special migration
2427 * pte. do_swap_page() will wait until the migration
2428 * pte is removed and then restart fault handling.
2429 */
2430 if (pte_write(pteval))
2431 entry = make_writable_device_exclusive_entry(
2432 page_to_pfn(subpage));
2433 else
2434 entry = make_readable_device_exclusive_entry(
2435 page_to_pfn(subpage));
2436 swp_pte = swp_entry_to_pte(entry);
2437 if (pte_soft_dirty(pteval))
2438 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2439 if (pte_uffd_wp(pteval))
2440 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2441
2442 set_pte_at(mm, address, pvmw.pte, swp_pte);
2443
2444 /*
2445 * There is a reference on the page for the swap entry which has
2446 * been removed, so shouldn't take another.
2447 */
2448 folio_remove_rmap_pte(folio, subpage, vma);
2449 }
2450
2451 mmu_notifier_invalidate_range_end(&range);
2452
2453 return ret;
2454 }
2455
2456 /**
2457 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2458 * @folio: The folio to replace page table entries for.
2459 * @mm: The mm_struct where the folio is expected to be mapped.
2460 * @address: Address where the folio is expected to be mapped.
2461 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2462 *
2463 * Tries to remove all the page table entries which are mapping this
2464 * folio and replace them with special device exclusive swap entries to
2465 * grant a device exclusive access to the folio.
2466 *
2467 * Context: Caller must hold the folio lock.
2468 * Return: false if the page is still mapped, or if it could not be unmapped
2469 * from the expected address. Otherwise returns true (success).
2470 */
folio_make_device_exclusive(struct folio * folio,struct mm_struct * mm,unsigned long address,void * owner)2471 static bool folio_make_device_exclusive(struct folio *folio,
2472 struct mm_struct *mm, unsigned long address, void *owner)
2473 {
2474 struct make_exclusive_args args = {
2475 .mm = mm,
2476 .address = address,
2477 .owner = owner,
2478 .valid = false,
2479 };
2480 struct rmap_walk_control rwc = {
2481 .rmap_one = page_make_device_exclusive_one,
2482 .done = folio_not_mapped,
2483 .anon_lock = folio_lock_anon_vma_read,
2484 .arg = &args,
2485 };
2486
2487 /*
2488 * Restrict to anonymous folios for now to avoid potential writeback
2489 * issues.
2490 */
2491 if (!folio_test_anon(folio))
2492 return false;
2493
2494 rmap_walk(folio, &rwc);
2495
2496 return args.valid && !folio_mapcount(folio);
2497 }
2498
2499 /**
2500 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2501 * @mm: mm_struct of associated target process
2502 * @start: start of the region to mark for exclusive device access
2503 * @end: end address of region
2504 * @pages: returns the pages which were successfully marked for exclusive access
2505 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2506 *
2507 * Returns: number of pages found in the range by GUP. A page is marked for
2508 * exclusive access only if the page pointer is non-NULL.
2509 *
2510 * This function finds ptes mapping page(s) to the given address range, locks
2511 * them and replaces mappings with special swap entries preventing userspace CPU
2512 * access. On fault these entries are replaced with the original mapping after
2513 * calling MMU notifiers.
2514 *
2515 * A driver using this to program access from a device must use a mmu notifier
2516 * critical section to hold a device specific lock during programming. Once
2517 * programming is complete it should drop the page lock and reference after
2518 * which point CPU access to the page will revoke the exclusive access.
2519 */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2520 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2521 unsigned long end, struct page **pages,
2522 void *owner)
2523 {
2524 long npages = (end - start) >> PAGE_SHIFT;
2525 long i;
2526
2527 npages = get_user_pages_remote(mm, start, npages,
2528 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2529 pages, NULL);
2530 if (npages < 0)
2531 return npages;
2532
2533 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2534 struct folio *folio = page_folio(pages[i]);
2535 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2536 folio_put(folio);
2537 pages[i] = NULL;
2538 continue;
2539 }
2540
2541 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2542 folio_unlock(folio);
2543 folio_put(folio);
2544 pages[i] = NULL;
2545 }
2546 }
2547
2548 return npages;
2549 }
2550 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2551 #endif
2552
__put_anon_vma(struct anon_vma * anon_vma)2553 void __put_anon_vma(struct anon_vma *anon_vma)
2554 {
2555 struct anon_vma *root = anon_vma->root;
2556
2557 anon_vma_free(anon_vma);
2558 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2559 anon_vma_free(root);
2560 }
2561
rmap_walk_anon_lock(struct folio * folio,struct rmap_walk_control * rwc)2562 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2563 struct rmap_walk_control *rwc)
2564 {
2565 struct anon_vma *anon_vma;
2566
2567 if (rwc->anon_lock)
2568 return rwc->anon_lock(folio, rwc);
2569
2570 /*
2571 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2572 * because that depends on page_mapped(); but not all its usages
2573 * are holding mmap_lock. Users without mmap_lock are required to
2574 * take a reference count to prevent the anon_vma disappearing
2575 */
2576 anon_vma = folio_anon_vma(folio);
2577 if (!anon_vma)
2578 return NULL;
2579
2580 if (anon_vma_trylock_read(anon_vma))
2581 goto out;
2582
2583 if (rwc->try_lock) {
2584 anon_vma = NULL;
2585 rwc->contended = true;
2586 goto out;
2587 }
2588
2589 anon_vma_lock_read(anon_vma);
2590 out:
2591 return anon_vma;
2592 }
2593
2594 /*
2595 * rmap_walk_anon - do something to anonymous page using the object-based
2596 * rmap method
2597 * @folio: the folio to be handled
2598 * @rwc: control variable according to each walk type
2599 * @locked: caller holds relevant rmap lock
2600 *
2601 * Find all the mappings of a folio using the mapping pointer and the vma
2602 * chains contained in the anon_vma struct it points to.
2603 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2604 static void rmap_walk_anon(struct folio *folio,
2605 struct rmap_walk_control *rwc, bool locked)
2606 {
2607 struct anon_vma *anon_vma;
2608 pgoff_t pgoff_start, pgoff_end;
2609 struct anon_vma_chain *avc;
2610
2611 if (locked) {
2612 anon_vma = folio_anon_vma(folio);
2613 /* anon_vma disappear under us? */
2614 VM_BUG_ON_FOLIO(!anon_vma, folio);
2615 } else {
2616 anon_vma = rmap_walk_anon_lock(folio, rwc);
2617 }
2618 if (!anon_vma)
2619 return;
2620
2621 pgoff_start = folio_pgoff(folio);
2622 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2623 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2624 pgoff_start, pgoff_end) {
2625 struct vm_area_struct *vma = avc->vma;
2626 unsigned long address = vma_address(vma, pgoff_start,
2627 folio_nr_pages(folio));
2628
2629 VM_BUG_ON_VMA(address == -EFAULT, vma);
2630 cond_resched();
2631
2632 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2633 continue;
2634
2635 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2636 break;
2637 if (rwc->done && rwc->done(folio))
2638 break;
2639 }
2640
2641 if (!locked)
2642 anon_vma_unlock_read(anon_vma);
2643 }
2644
2645 /*
2646 * rmap_walk_file - do something to file page using the object-based rmap method
2647 * @folio: the folio to be handled
2648 * @rwc: control variable according to each walk type
2649 * @locked: caller holds relevant rmap lock
2650 *
2651 * Find all the mappings of a folio using the mapping pointer and the vma chains
2652 * contained in the address_space struct it points to.
2653 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2654 static void rmap_walk_file(struct folio *folio,
2655 struct rmap_walk_control *rwc, bool locked)
2656 {
2657 struct address_space *mapping = folio_mapping(folio);
2658 pgoff_t pgoff_start, pgoff_end;
2659 struct vm_area_struct *vma;
2660
2661 /*
2662 * The page lock not only makes sure that page->mapping cannot
2663 * suddenly be NULLified by truncation, it makes sure that the
2664 * structure at mapping cannot be freed and reused yet,
2665 * so we can safely take mapping->i_mmap_rwsem.
2666 */
2667 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2668
2669 if (!mapping)
2670 return;
2671
2672 pgoff_start = folio_pgoff(folio);
2673 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2674 if (!locked) {
2675 if (i_mmap_trylock_read(mapping))
2676 goto lookup;
2677
2678 if (rwc->try_lock) {
2679 rwc->contended = true;
2680 return;
2681 }
2682
2683 i_mmap_lock_read(mapping);
2684 }
2685 lookup:
2686 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2687 pgoff_start, pgoff_end) {
2688 unsigned long address = vma_address(vma, pgoff_start,
2689 folio_nr_pages(folio));
2690
2691 VM_BUG_ON_VMA(address == -EFAULT, vma);
2692 cond_resched();
2693
2694 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2695 continue;
2696
2697 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2698 goto done;
2699 if (rwc->done && rwc->done(folio))
2700 goto done;
2701 }
2702
2703 done:
2704 if (!locked)
2705 i_mmap_unlock_read(mapping);
2706 }
2707
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2708 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2709 {
2710 if (unlikely(folio_test_ksm(folio)))
2711 rmap_walk_ksm(folio, rwc);
2712 else if (folio_test_anon(folio))
2713 rmap_walk_anon(folio, rwc, false);
2714 else
2715 rmap_walk_file(folio, rwc, false);
2716 }
2717
2718 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2719 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2720 {
2721 /* no ksm support for now */
2722 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2723 if (folio_test_anon(folio))
2724 rmap_walk_anon(folio, rwc, true);
2725 else
2726 rmap_walk_file(folio, rwc, true);
2727 }
2728
2729 #ifdef CONFIG_HUGETLB_PAGE
2730 /*
2731 * The following two functions are for anonymous (private mapped) hugepages.
2732 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2733 * and no lru code, because we handle hugepages differently from common pages.
2734 */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2735 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2736 unsigned long address, rmap_t flags)
2737 {
2738 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2739 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2740
2741 atomic_inc(&folio->_entire_mapcount);
2742 atomic_inc(&folio->_large_mapcount);
2743 if (flags & RMAP_EXCLUSIVE)
2744 SetPageAnonExclusive(&folio->page);
2745 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2746 PageAnonExclusive(&folio->page), folio);
2747 }
2748
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2749 void hugetlb_add_new_anon_rmap(struct folio *folio,
2750 struct vm_area_struct *vma, unsigned long address)
2751 {
2752 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2753
2754 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2755 /* increment count (starts at -1) */
2756 atomic_set(&folio->_entire_mapcount, 0);
2757 atomic_set(&folio->_large_mapcount, 0);
2758 folio_clear_hugetlb_restore_reserve(folio);
2759 __folio_set_anon(folio, vma, address, true);
2760 SetPageAnonExclusive(&folio->page);
2761 }
2762 #endif /* CONFIG_HUGETLB_PAGE */
2763