1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
42 #include "target.h"
43
44 /* Simplification and canonicalization of RTL. */
45
46 /* Much code operates on (low, high) pairs; the low value is an
47 unsigned wide int, the high value a signed wide int. We
48 occasionally need to sign extend from low to high as if low were a
49 signed wide int. */
50 #define HWI_SIGN_EXTEND(low) \
51 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
52
53 static rtx neg_const_int (enum machine_mode, rtx);
54 static bool plus_minus_operand_p (rtx);
55 static int simplify_plus_minus_op_data_cmp (const void *, const void *);
56 static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
57 static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
58 unsigned int);
59 static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
60 rtx, rtx);
61 static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
62 enum machine_mode, rtx, rtx);
63 static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
64 static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
65 rtx, rtx, rtx, rtx);
66
67 /* Negate a CONST_INT rtx, truncating (because a conversion from a
68 maximally negative number can overflow). */
69 static rtx
neg_const_int(enum machine_mode mode,rtx i)70 neg_const_int (enum machine_mode mode, rtx i)
71 {
72 return gen_int_mode (- INTVAL (i), mode);
73 }
74
75 /* Test whether expression, X, is an immediate constant that represents
76 the most significant bit of machine mode MODE. */
77
78 bool
mode_signbit_p(enum machine_mode mode,rtx x)79 mode_signbit_p (enum machine_mode mode, rtx x)
80 {
81 unsigned HOST_WIDE_INT val;
82 unsigned int width;
83
84 if (GET_MODE_CLASS (mode) != MODE_INT)
85 return false;
86
87 width = GET_MODE_BITSIZE (mode);
88 if (width == 0)
89 return false;
90
91 if (width <= HOST_BITS_PER_WIDE_INT
92 && GET_CODE (x) == CONST_INT)
93 val = INTVAL (x);
94 else if (width <= 2 * HOST_BITS_PER_WIDE_INT
95 && GET_CODE (x) == CONST_DOUBLE
96 && CONST_DOUBLE_LOW (x) == 0)
97 {
98 val = CONST_DOUBLE_HIGH (x);
99 width -= HOST_BITS_PER_WIDE_INT;
100 }
101 else
102 return false;
103
104 if (width < HOST_BITS_PER_WIDE_INT)
105 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
106 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
107 }
108
109 /* Make a binary operation by properly ordering the operands and
110 seeing if the expression folds. */
111
112 rtx
simplify_gen_binary(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)113 simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
114 rtx op1)
115 {
116 rtx tem;
117
118 /* If this simplifies, do it. */
119 tem = simplify_binary_operation (code, mode, op0, op1);
120 if (tem)
121 return tem;
122
123 /* Put complex operands first and constants second if commutative. */
124 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
125 && swap_commutative_operands_p (op0, op1))
126 tem = op0, op0 = op1, op1 = tem;
127
128 return gen_rtx_fmt_ee (code, mode, op0, op1);
129 }
130
131 /* If X is a MEM referencing the constant pool, return the real value.
132 Otherwise return X. */
133 rtx
avoid_constant_pool_reference(rtx x)134 avoid_constant_pool_reference (rtx x)
135 {
136 rtx c, tmp, addr;
137 enum machine_mode cmode;
138 HOST_WIDE_INT offset = 0;
139
140 switch (GET_CODE (x))
141 {
142 case MEM:
143 break;
144
145 case FLOAT_EXTEND:
146 /* Handle float extensions of constant pool references. */
147 tmp = XEXP (x, 0);
148 c = avoid_constant_pool_reference (tmp);
149 if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
150 {
151 REAL_VALUE_TYPE d;
152
153 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
154 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
155 }
156 return x;
157
158 default:
159 return x;
160 }
161
162 addr = XEXP (x, 0);
163
164 /* Call target hook to avoid the effects of -fpic etc.... */
165 addr = targetm.delegitimize_address (addr);
166
167 /* Split the address into a base and integer offset. */
168 if (GET_CODE (addr) == CONST
169 && GET_CODE (XEXP (addr, 0)) == PLUS
170 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
171 {
172 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
173 addr = XEXP (XEXP (addr, 0), 0);
174 }
175
176 if (GET_CODE (addr) == LO_SUM)
177 addr = XEXP (addr, 1);
178
179 /* If this is a constant pool reference, we can turn it into its
180 constant and hope that simplifications happen. */
181 if (GET_CODE (addr) == SYMBOL_REF
182 && CONSTANT_POOL_ADDRESS_P (addr))
183 {
184 c = get_pool_constant (addr);
185 cmode = get_pool_mode (addr);
186
187 /* If we're accessing the constant in a different mode than it was
188 originally stored, attempt to fix that up via subreg simplifications.
189 If that fails we have no choice but to return the original memory. */
190 if (offset != 0 || cmode != GET_MODE (x))
191 {
192 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
193 if (tem && CONSTANT_P (tem))
194 return tem;
195 }
196 else
197 return c;
198 }
199
200 return x;
201 }
202
203 /* Return true if X is a MEM referencing the constant pool. */
204
205 bool
constant_pool_reference_p(rtx x)206 constant_pool_reference_p (rtx x)
207 {
208 return avoid_constant_pool_reference (x) != x;
209 }
210
211 /* Make a unary operation by first seeing if it folds and otherwise making
212 the specified operation. */
213
214 rtx
simplify_gen_unary(enum rtx_code code,enum machine_mode mode,rtx op,enum machine_mode op_mode)215 simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
216 enum machine_mode op_mode)
217 {
218 rtx tem;
219
220 /* If this simplifies, use it. */
221 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
222 return tem;
223
224 return gen_rtx_fmt_e (code, mode, op);
225 }
226
227 /* Likewise for ternary operations. */
228
229 rtx
simplify_gen_ternary(enum rtx_code code,enum machine_mode mode,enum machine_mode op0_mode,rtx op0,rtx op1,rtx op2)230 simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
231 enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
232 {
233 rtx tem;
234
235 /* If this simplifies, use it. */
236 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
237 op0, op1, op2)))
238 return tem;
239
240 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
241 }
242
243 /* Likewise, for relational operations.
244 CMP_MODE specifies mode comparison is done in. */
245
246 rtx
simplify_gen_relational(enum rtx_code code,enum machine_mode mode,enum machine_mode cmp_mode,rtx op0,rtx op1)247 simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
248 enum machine_mode cmp_mode, rtx op0, rtx op1)
249 {
250 rtx tem;
251
252 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
253 op0, op1)))
254 return tem;
255
256 return gen_rtx_fmt_ee (code, mode, op0, op1);
257 }
258
259 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
260 resulting RTX. Return a new RTX which is as simplified as possible. */
261
262 rtx
simplify_replace_rtx(rtx x,rtx old_rtx,rtx new_rtx)263 simplify_replace_rtx (rtx x, rtx old_rtx, rtx new_rtx)
264 {
265 enum rtx_code code = GET_CODE (x);
266 enum machine_mode mode = GET_MODE (x);
267 enum machine_mode op_mode;
268 rtx op0, op1, op2;
269
270 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
271 to build a new expression substituting recursively. If we can't do
272 anything, return our input. */
273
274 if (x == old_rtx)
275 return new_rtx;
276
277 switch (GET_RTX_CLASS (code))
278 {
279 case RTX_UNARY:
280 op0 = XEXP (x, 0);
281 op_mode = GET_MODE (op0);
282 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
283 if (op0 == XEXP (x, 0))
284 return x;
285 return simplify_gen_unary (code, mode, op0, op_mode);
286
287 case RTX_BIN_ARITH:
288 case RTX_COMM_ARITH:
289 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
290 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
291 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
292 return x;
293 return simplify_gen_binary (code, mode, op0, op1);
294
295 case RTX_COMPARE:
296 case RTX_COMM_COMPARE:
297 op0 = XEXP (x, 0);
298 op1 = XEXP (x, 1);
299 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
300 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
301 op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
302 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
303 return x;
304 return simplify_gen_relational (code, mode, op_mode, op0, op1);
305
306 case RTX_TERNARY:
307 case RTX_BITFIELD_OPS:
308 op0 = XEXP (x, 0);
309 op_mode = GET_MODE (op0);
310 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
311 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
312 op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
313 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
314 return x;
315 if (op_mode == VOIDmode)
316 op_mode = GET_MODE (op0);
317 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
318
319 case RTX_EXTRA:
320 /* The only case we try to handle is a SUBREG. */
321 if (code == SUBREG)
322 {
323 op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
324 if (op0 == SUBREG_REG (x))
325 return x;
326 op0 = simplify_gen_subreg (GET_MODE (x), op0,
327 GET_MODE (SUBREG_REG (x)),
328 SUBREG_BYTE (x));
329 return op0 ? op0 : x;
330 }
331 break;
332
333 case RTX_OBJ:
334 if (code == MEM)
335 {
336 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
337 if (op0 == XEXP (x, 0))
338 return x;
339 return replace_equiv_address_nv (x, op0);
340 }
341 else if (code == LO_SUM)
342 {
343 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
344 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
345
346 /* (lo_sum (high x) x) -> x */
347 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
348 return op1;
349
350 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
351 return x;
352 return gen_rtx_LO_SUM (mode, op0, op1);
353 }
354 else if (code == REG)
355 {
356 if (rtx_equal_p (x, old_rtx))
357 return new_rtx;
358 }
359 break;
360
361 default:
362 break;
363 }
364 return x;
365 }
366
367 /* Try to simplify a unary operation CODE whose output mode is to be
368 MODE with input operand OP whose mode was originally OP_MODE.
369 Return zero if no simplification can be made. */
370 rtx
simplify_unary_operation(enum rtx_code code,enum machine_mode mode,rtx op,enum machine_mode op_mode)371 simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
372 rtx op, enum machine_mode op_mode)
373 {
374 rtx trueop, tem;
375
376 if (GET_CODE (op) == CONST)
377 op = XEXP (op, 0);
378
379 trueop = avoid_constant_pool_reference (op);
380
381 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
382 if (tem)
383 return tem;
384
385 return simplify_unary_operation_1 (code, mode, op);
386 }
387
388 /* Perform some simplifications we can do even if the operands
389 aren't constant. */
390 static rtx
simplify_unary_operation_1(enum rtx_code code,enum machine_mode mode,rtx op)391 simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
392 {
393 enum rtx_code reversed;
394 rtx temp;
395
396 switch (code)
397 {
398 case NOT:
399 /* (not (not X)) == X. */
400 if (GET_CODE (op) == NOT)
401 return XEXP (op, 0);
402
403 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
404 comparison is all ones. */
405 if (COMPARISON_P (op)
406 && (mode == BImode || STORE_FLAG_VALUE == -1)
407 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
408 return simplify_gen_relational (reversed, mode, VOIDmode,
409 XEXP (op, 0), XEXP (op, 1));
410
411 /* (not (plus X -1)) can become (neg X). */
412 if (GET_CODE (op) == PLUS
413 && XEXP (op, 1) == constm1_rtx)
414 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
415
416 /* Similarly, (not (neg X)) is (plus X -1). */
417 if (GET_CODE (op) == NEG)
418 return plus_constant (XEXP (op, 0), -1);
419
420 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
421 if (GET_CODE (op) == XOR
422 && GET_CODE (XEXP (op, 1)) == CONST_INT
423 && (temp = simplify_unary_operation (NOT, mode,
424 XEXP (op, 1), mode)) != 0)
425 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
426
427 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
428 if (GET_CODE (op) == PLUS
429 && GET_CODE (XEXP (op, 1)) == CONST_INT
430 && mode_signbit_p (mode, XEXP (op, 1))
431 && (temp = simplify_unary_operation (NOT, mode,
432 XEXP (op, 1), mode)) != 0)
433 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
434
435
436 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
437 operands other than 1, but that is not valid. We could do a
438 similar simplification for (not (lshiftrt C X)) where C is
439 just the sign bit, but this doesn't seem common enough to
440 bother with. */
441 if (GET_CODE (op) == ASHIFT
442 && XEXP (op, 0) == const1_rtx)
443 {
444 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
445 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
446 }
447
448 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
449 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
450 so we can perform the above simplification. */
451
452 if (STORE_FLAG_VALUE == -1
453 && GET_CODE (op) == ASHIFTRT
454 && GET_CODE (XEXP (op, 1)) == CONST_INT
455 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
456 return simplify_gen_relational (GE, mode, VOIDmode,
457 XEXP (op, 0), const0_rtx);
458
459
460 if (GET_CODE (op) == SUBREG
461 && subreg_lowpart_p (op)
462 && (GET_MODE_SIZE (GET_MODE (op))
463 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
464 && GET_CODE (SUBREG_REG (op)) == ASHIFT
465 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
466 {
467 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
468 rtx x;
469
470 x = gen_rtx_ROTATE (inner_mode,
471 simplify_gen_unary (NOT, inner_mode, const1_rtx,
472 inner_mode),
473 XEXP (SUBREG_REG (op), 1));
474 return rtl_hooks.gen_lowpart_no_emit (mode, x);
475 }
476
477 /* Apply De Morgan's laws to reduce number of patterns for machines
478 with negating logical insns (and-not, nand, etc.). If result has
479 only one NOT, put it first, since that is how the patterns are
480 coded. */
481
482 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
483 {
484 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
485 enum machine_mode op_mode;
486
487 op_mode = GET_MODE (in1);
488 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
489
490 op_mode = GET_MODE (in2);
491 if (op_mode == VOIDmode)
492 op_mode = mode;
493 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
494
495 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
496 {
497 rtx tem = in2;
498 in2 = in1; in1 = tem;
499 }
500
501 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
502 mode, in1, in2);
503 }
504 break;
505
506 case NEG:
507 /* (neg (neg X)) == X. */
508 if (GET_CODE (op) == NEG)
509 return XEXP (op, 0);
510
511 /* (neg (plus X 1)) can become (not X). */
512 if (GET_CODE (op) == PLUS
513 && XEXP (op, 1) == const1_rtx)
514 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
515
516 /* Similarly, (neg (not X)) is (plus X 1). */
517 if (GET_CODE (op) == NOT)
518 return plus_constant (XEXP (op, 0), 1);
519
520 /* (neg (minus X Y)) can become (minus Y X). This transformation
521 isn't safe for modes with signed zeros, since if X and Y are
522 both +0, (minus Y X) is the same as (minus X Y). If the
523 rounding mode is towards +infinity (or -infinity) then the two
524 expressions will be rounded differently. */
525 if (GET_CODE (op) == MINUS
526 && !HONOR_SIGNED_ZEROS (mode)
527 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
528 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
529
530 if (GET_CODE (op) == PLUS
531 && !HONOR_SIGNED_ZEROS (mode)
532 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
533 {
534 /* (neg (plus A C)) is simplified to (minus -C A). */
535 if (GET_CODE (XEXP (op, 1)) == CONST_INT
536 || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
537 {
538 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
539 if (temp)
540 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
541 }
542
543 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
544 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
545 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
546 }
547
548 /* (neg (mult A B)) becomes (mult (neg A) B).
549 This works even for floating-point values. */
550 if (GET_CODE (op) == MULT
551 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
552 {
553 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
554 return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
555 }
556
557 /* NEG commutes with ASHIFT since it is multiplication. Only do
558 this if we can then eliminate the NEG (e.g., if the operand
559 is a constant). */
560 if (GET_CODE (op) == ASHIFT)
561 {
562 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
563 if (temp)
564 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
565 }
566
567 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
568 C is equal to the width of MODE minus 1. */
569 if (GET_CODE (op) == ASHIFTRT
570 && GET_CODE (XEXP (op, 1)) == CONST_INT
571 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
572 return simplify_gen_binary (LSHIFTRT, mode,
573 XEXP (op, 0), XEXP (op, 1));
574
575 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
576 C is equal to the width of MODE minus 1. */
577 if (GET_CODE (op) == LSHIFTRT
578 && GET_CODE (XEXP (op, 1)) == CONST_INT
579 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
580 return simplify_gen_binary (ASHIFTRT, mode,
581 XEXP (op, 0), XEXP (op, 1));
582
583 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
584 if (GET_CODE (op) == XOR
585 && XEXP (op, 1) == const1_rtx
586 && nonzero_bits (XEXP (op, 0), mode) == 1)
587 return plus_constant (XEXP (op, 0), -1);
588
589 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
590 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
591 if (GET_CODE (op) == LT
592 && XEXP (op, 1) == const0_rtx)
593 {
594 enum machine_mode inner = GET_MODE (XEXP (op, 0));
595 int isize = GET_MODE_BITSIZE (inner);
596 if (STORE_FLAG_VALUE == 1)
597 {
598 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
599 GEN_INT (isize - 1));
600 if (mode == inner)
601 return temp;
602 if (GET_MODE_BITSIZE (mode) > isize)
603 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
604 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
605 }
606 else if (STORE_FLAG_VALUE == -1)
607 {
608 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
609 GEN_INT (isize - 1));
610 if (mode == inner)
611 return temp;
612 if (GET_MODE_BITSIZE (mode) > isize)
613 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
614 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
615 }
616 }
617 break;
618
619 case TRUNCATE:
620 /* We can't handle truncation to a partial integer mode here
621 because we don't know the real bitsize of the partial
622 integer mode. */
623 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
624 break;
625
626 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
627 if ((GET_CODE (op) == SIGN_EXTEND
628 || GET_CODE (op) == ZERO_EXTEND)
629 && GET_MODE (XEXP (op, 0)) == mode)
630 return XEXP (op, 0);
631
632 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
633 (OP:SI foo:SI) if OP is NEG or ABS. */
634 if ((GET_CODE (op) == ABS
635 || GET_CODE (op) == NEG)
636 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
637 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
638 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
639 return simplify_gen_unary (GET_CODE (op), mode,
640 XEXP (XEXP (op, 0), 0), mode);
641
642 /* (truncate:A (subreg:B (truncate:C X) 0)) is
643 (truncate:A X). */
644 if (GET_CODE (op) == SUBREG
645 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
646 && subreg_lowpart_p (op))
647 return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
648 GET_MODE (XEXP (SUBREG_REG (op), 0)));
649
650 /* If we know that the value is already truncated, we can
651 replace the TRUNCATE with a SUBREG. Note that this is also
652 valid if TRULY_NOOP_TRUNCATION is false for the corresponding
653 modes we just have to apply a different definition for
654 truncation. But don't do this for an (LSHIFTRT (MULT ...))
655 since this will cause problems with the umulXi3_highpart
656 patterns. */
657 if ((TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
658 GET_MODE_BITSIZE (GET_MODE (op)))
659 ? (num_sign_bit_copies (op, GET_MODE (op))
660 > (unsigned int) (GET_MODE_BITSIZE (GET_MODE (op))
661 - GET_MODE_BITSIZE (mode)))
662 : truncated_to_mode (mode, op))
663 && ! (GET_CODE (op) == LSHIFTRT
664 && GET_CODE (XEXP (op, 0)) == MULT))
665 return rtl_hooks.gen_lowpart_no_emit (mode, op);
666
667 /* A truncate of a comparison can be replaced with a subreg if
668 STORE_FLAG_VALUE permits. This is like the previous test,
669 but it works even if the comparison is done in a mode larger
670 than HOST_BITS_PER_WIDE_INT. */
671 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
672 && COMPARISON_P (op)
673 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
674 return rtl_hooks.gen_lowpart_no_emit (mode, op);
675 break;
676
677 case FLOAT_TRUNCATE:
678 if (DECIMAL_FLOAT_MODE_P (mode))
679 break;
680
681 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
682 if (GET_CODE (op) == FLOAT_EXTEND
683 && GET_MODE (XEXP (op, 0)) == mode)
684 return XEXP (op, 0);
685
686 /* (float_truncate:SF (float_truncate:DF foo:XF))
687 = (float_truncate:SF foo:XF).
688 This may eliminate double rounding, so it is unsafe.
689
690 (float_truncate:SF (float_extend:XF foo:DF))
691 = (float_truncate:SF foo:DF).
692
693 (float_truncate:DF (float_extend:XF foo:SF))
694 = (float_extend:SF foo:DF). */
695 if ((GET_CODE (op) == FLOAT_TRUNCATE
696 && flag_unsafe_math_optimizations)
697 || GET_CODE (op) == FLOAT_EXTEND)
698 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
699 0)))
700 > GET_MODE_SIZE (mode)
701 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
702 mode,
703 XEXP (op, 0), mode);
704
705 /* (float_truncate (float x)) is (float x) */
706 if (GET_CODE (op) == FLOAT
707 && (flag_unsafe_math_optimizations
708 || ((unsigned)significand_size (GET_MODE (op))
709 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
710 - num_sign_bit_copies (XEXP (op, 0),
711 GET_MODE (XEXP (op, 0)))))))
712 return simplify_gen_unary (FLOAT, mode,
713 XEXP (op, 0),
714 GET_MODE (XEXP (op, 0)));
715
716 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
717 (OP:SF foo:SF) if OP is NEG or ABS. */
718 if ((GET_CODE (op) == ABS
719 || GET_CODE (op) == NEG)
720 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
721 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
722 return simplify_gen_unary (GET_CODE (op), mode,
723 XEXP (XEXP (op, 0), 0), mode);
724
725 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
726 is (float_truncate:SF x). */
727 if (GET_CODE (op) == SUBREG
728 && subreg_lowpart_p (op)
729 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
730 return SUBREG_REG (op);
731 break;
732
733 case FLOAT_EXTEND:
734 if (DECIMAL_FLOAT_MODE_P (mode))
735 break;
736
737 /* (float_extend (float_extend x)) is (float_extend x)
738
739 (float_extend (float x)) is (float x) assuming that double
740 rounding can't happen.
741 */
742 if (GET_CODE (op) == FLOAT_EXTEND
743 || (GET_CODE (op) == FLOAT
744 && ((unsigned)significand_size (GET_MODE (op))
745 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
746 - num_sign_bit_copies (XEXP (op, 0),
747 GET_MODE (XEXP (op, 0)))))))
748 return simplify_gen_unary (GET_CODE (op), mode,
749 XEXP (op, 0),
750 GET_MODE (XEXP (op, 0)));
751
752 break;
753
754 case ABS:
755 /* (abs (neg <foo>)) -> (abs <foo>) */
756 if (GET_CODE (op) == NEG)
757 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
758 GET_MODE (XEXP (op, 0)));
759
760 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
761 do nothing. */
762 if (GET_MODE (op) == VOIDmode)
763 break;
764
765 /* If operand is something known to be positive, ignore the ABS. */
766 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
767 || ((GET_MODE_BITSIZE (GET_MODE (op))
768 <= HOST_BITS_PER_WIDE_INT)
769 && ((nonzero_bits (op, GET_MODE (op))
770 & ((HOST_WIDE_INT) 1
771 << (GET_MODE_BITSIZE (GET_MODE (op)) - 1)))
772 == 0)))
773 return op;
774
775 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
776 if (num_sign_bit_copies (op, mode) == GET_MODE_BITSIZE (mode))
777 return gen_rtx_NEG (mode, op);
778
779 break;
780
781 case FFS:
782 /* (ffs (*_extend <X>)) = (ffs <X>) */
783 if (GET_CODE (op) == SIGN_EXTEND
784 || GET_CODE (op) == ZERO_EXTEND)
785 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
786 GET_MODE (XEXP (op, 0)));
787 break;
788
789 case POPCOUNT:
790 case PARITY:
791 /* (pop* (zero_extend <X>)) = (pop* <X>) */
792 if (GET_CODE (op) == ZERO_EXTEND)
793 return simplify_gen_unary (code, mode, XEXP (op, 0),
794 GET_MODE (XEXP (op, 0)));
795 break;
796
797 case FLOAT:
798 /* (float (sign_extend <X>)) = (float <X>). */
799 if (GET_CODE (op) == SIGN_EXTEND)
800 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
801 GET_MODE (XEXP (op, 0)));
802 break;
803
804 case SIGN_EXTEND:
805 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
806 becomes just the MINUS if its mode is MODE. This allows
807 folding switch statements on machines using casesi (such as
808 the VAX). */
809 if (GET_CODE (op) == TRUNCATE
810 && GET_MODE (XEXP (op, 0)) == mode
811 && GET_CODE (XEXP (op, 0)) == MINUS
812 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
813 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
814 return XEXP (op, 0);
815
816 /* Check for a sign extension of a subreg of a promoted
817 variable, where the promotion is sign-extended, and the
818 target mode is the same as the variable's promotion. */
819 if (GET_CODE (op) == SUBREG
820 && SUBREG_PROMOTED_VAR_P (op)
821 && ! SUBREG_PROMOTED_UNSIGNED_P (op)
822 && GET_MODE (XEXP (op, 0)) == mode)
823 return XEXP (op, 0);
824
825 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
826 if (! POINTERS_EXTEND_UNSIGNED
827 && mode == Pmode && GET_MODE (op) == ptr_mode
828 && (CONSTANT_P (op)
829 || (GET_CODE (op) == SUBREG
830 && REG_P (SUBREG_REG (op))
831 && REG_POINTER (SUBREG_REG (op))
832 && GET_MODE (SUBREG_REG (op)) == Pmode)))
833 return convert_memory_address (Pmode, op);
834 #endif
835 break;
836
837 case ZERO_EXTEND:
838 /* Check for a zero extension of a subreg of a promoted
839 variable, where the promotion is zero-extended, and the
840 target mode is the same as the variable's promotion. */
841 if (GET_CODE (op) == SUBREG
842 && SUBREG_PROMOTED_VAR_P (op)
843 && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
844 && GET_MODE (XEXP (op, 0)) == mode)
845 return XEXP (op, 0);
846
847 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
848 if (POINTERS_EXTEND_UNSIGNED > 0
849 && mode == Pmode && GET_MODE (op) == ptr_mode
850 && (CONSTANT_P (op)
851 || (GET_CODE (op) == SUBREG
852 && REG_P (SUBREG_REG (op))
853 && REG_POINTER (SUBREG_REG (op))
854 && GET_MODE (SUBREG_REG (op)) == Pmode)))
855 return convert_memory_address (Pmode, op);
856 #endif
857 break;
858
859 default:
860 break;
861 }
862
863 return 0;
864 }
865
866 /* Try to compute the value of a unary operation CODE whose output mode is to
867 be MODE with input operand OP whose mode was originally OP_MODE.
868 Return zero if the value cannot be computed. */
869 rtx
simplify_const_unary_operation(enum rtx_code code,enum machine_mode mode,rtx op,enum machine_mode op_mode)870 simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
871 rtx op, enum machine_mode op_mode)
872 {
873 unsigned int width = GET_MODE_BITSIZE (mode);
874
875 if (code == VEC_DUPLICATE)
876 {
877 gcc_assert (VECTOR_MODE_P (mode));
878 if (GET_MODE (op) != VOIDmode)
879 {
880 if (!VECTOR_MODE_P (GET_MODE (op)))
881 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
882 else
883 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
884 (GET_MODE (op)));
885 }
886 if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
887 || GET_CODE (op) == CONST_VECTOR)
888 {
889 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
890 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
891 rtvec v = rtvec_alloc (n_elts);
892 unsigned int i;
893
894 if (GET_CODE (op) != CONST_VECTOR)
895 for (i = 0; i < n_elts; i++)
896 RTVEC_ELT (v, i) = op;
897 else
898 {
899 enum machine_mode inmode = GET_MODE (op);
900 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
901 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
902
903 gcc_assert (in_n_elts < n_elts);
904 gcc_assert ((n_elts % in_n_elts) == 0);
905 for (i = 0; i < n_elts; i++)
906 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
907 }
908 return gen_rtx_CONST_VECTOR (mode, v);
909 }
910 }
911
912 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
913 {
914 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
915 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
916 enum machine_mode opmode = GET_MODE (op);
917 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
918 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
919 rtvec v = rtvec_alloc (n_elts);
920 unsigned int i;
921
922 gcc_assert (op_n_elts == n_elts);
923 for (i = 0; i < n_elts; i++)
924 {
925 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
926 CONST_VECTOR_ELT (op, i),
927 GET_MODE_INNER (opmode));
928 if (!x)
929 return 0;
930 RTVEC_ELT (v, i) = x;
931 }
932 return gen_rtx_CONST_VECTOR (mode, v);
933 }
934
935 /* The order of these tests is critical so that, for example, we don't
936 check the wrong mode (input vs. output) for a conversion operation,
937 such as FIX. At some point, this should be simplified. */
938
939 if (code == FLOAT && GET_MODE (op) == VOIDmode
940 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
941 {
942 HOST_WIDE_INT hv, lv;
943 REAL_VALUE_TYPE d;
944
945 if (GET_CODE (op) == CONST_INT)
946 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
947 else
948 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
949
950 REAL_VALUE_FROM_INT (d, lv, hv, mode);
951 d = real_value_truncate (mode, d);
952 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
953 }
954 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
955 && (GET_CODE (op) == CONST_DOUBLE
956 || GET_CODE (op) == CONST_INT))
957 {
958 HOST_WIDE_INT hv, lv;
959 REAL_VALUE_TYPE d;
960
961 if (GET_CODE (op) == CONST_INT)
962 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
963 else
964 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
965
966 if (op_mode == VOIDmode)
967 {
968 /* We don't know how to interpret negative-looking numbers in
969 this case, so don't try to fold those. */
970 if (hv < 0)
971 return 0;
972 }
973 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
974 ;
975 else
976 hv = 0, lv &= GET_MODE_MASK (op_mode);
977
978 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
979 d = real_value_truncate (mode, d);
980 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
981 }
982
983 if (GET_CODE (op) == CONST_INT
984 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
985 {
986 HOST_WIDE_INT arg0 = INTVAL (op);
987 HOST_WIDE_INT val;
988
989 switch (code)
990 {
991 case NOT:
992 val = ~ arg0;
993 break;
994
995 case NEG:
996 val = - arg0;
997 break;
998
999 case ABS:
1000 val = (arg0 >= 0 ? arg0 : - arg0);
1001 break;
1002
1003 case FFS:
1004 /* Don't use ffs here. Instead, get low order bit and then its
1005 number. If arg0 is zero, this will return 0, as desired. */
1006 arg0 &= GET_MODE_MASK (mode);
1007 val = exact_log2 (arg0 & (- arg0)) + 1;
1008 break;
1009
1010 case CLZ:
1011 arg0 &= GET_MODE_MASK (mode);
1012 if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
1013 ;
1014 else
1015 val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
1016 break;
1017
1018 case CTZ:
1019 arg0 &= GET_MODE_MASK (mode);
1020 if (arg0 == 0)
1021 {
1022 /* Even if the value at zero is undefined, we have to come
1023 up with some replacement. Seems good enough. */
1024 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
1025 val = GET_MODE_BITSIZE (mode);
1026 }
1027 else
1028 val = exact_log2 (arg0 & -arg0);
1029 break;
1030
1031 case POPCOUNT:
1032 arg0 &= GET_MODE_MASK (mode);
1033 val = 0;
1034 while (arg0)
1035 val++, arg0 &= arg0 - 1;
1036 break;
1037
1038 case PARITY:
1039 arg0 &= GET_MODE_MASK (mode);
1040 val = 0;
1041 while (arg0)
1042 val++, arg0 &= arg0 - 1;
1043 val &= 1;
1044 break;
1045
1046 case TRUNCATE:
1047 val = arg0;
1048 break;
1049
1050 case ZERO_EXTEND:
1051 /* When zero-extending a CONST_INT, we need to know its
1052 original mode. */
1053 gcc_assert (op_mode != VOIDmode);
1054 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1055 {
1056 /* If we were really extending the mode,
1057 we would have to distinguish between zero-extension
1058 and sign-extension. */
1059 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1060 val = arg0;
1061 }
1062 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1063 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1064 else
1065 return 0;
1066 break;
1067
1068 case SIGN_EXTEND:
1069 if (op_mode == VOIDmode)
1070 op_mode = mode;
1071 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1072 {
1073 /* If we were really extending the mode,
1074 we would have to distinguish between zero-extension
1075 and sign-extension. */
1076 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1077 val = arg0;
1078 }
1079 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1080 {
1081 val
1082 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1083 if (val
1084 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
1085 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1086 }
1087 else
1088 return 0;
1089 break;
1090
1091 case SQRT:
1092 case FLOAT_EXTEND:
1093 case FLOAT_TRUNCATE:
1094 case SS_TRUNCATE:
1095 case US_TRUNCATE:
1096 case SS_NEG:
1097 return 0;
1098
1099 default:
1100 gcc_unreachable ();
1101 }
1102
1103 return gen_int_mode (val, mode);
1104 }
1105
1106 /* We can do some operations on integer CONST_DOUBLEs. Also allow
1107 for a DImode operation on a CONST_INT. */
1108 else if (GET_MODE (op) == VOIDmode
1109 && width <= HOST_BITS_PER_WIDE_INT * 2
1110 && (GET_CODE (op) == CONST_DOUBLE
1111 || GET_CODE (op) == CONST_INT))
1112 {
1113 unsigned HOST_WIDE_INT l1, lv;
1114 HOST_WIDE_INT h1, hv;
1115
1116 if (GET_CODE (op) == CONST_DOUBLE)
1117 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
1118 else
1119 l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
1120
1121 switch (code)
1122 {
1123 case NOT:
1124 lv = ~ l1;
1125 hv = ~ h1;
1126 break;
1127
1128 case NEG:
1129 neg_double (l1, h1, &lv, &hv);
1130 break;
1131
1132 case ABS:
1133 if (h1 < 0)
1134 neg_double (l1, h1, &lv, &hv);
1135 else
1136 lv = l1, hv = h1;
1137 break;
1138
1139 case FFS:
1140 hv = 0;
1141 if (l1 == 0)
1142 {
1143 if (h1 == 0)
1144 lv = 0;
1145 else
1146 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
1147 }
1148 else
1149 lv = exact_log2 (l1 & -l1) + 1;
1150 break;
1151
1152 case CLZ:
1153 hv = 0;
1154 if (h1 != 0)
1155 lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
1156 - HOST_BITS_PER_WIDE_INT;
1157 else if (l1 != 0)
1158 lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
1159 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1160 lv = GET_MODE_BITSIZE (mode);
1161 break;
1162
1163 case CTZ:
1164 hv = 0;
1165 if (l1 != 0)
1166 lv = exact_log2 (l1 & -l1);
1167 else if (h1 != 0)
1168 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
1169 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1170 lv = GET_MODE_BITSIZE (mode);
1171 break;
1172
1173 case POPCOUNT:
1174 hv = 0;
1175 lv = 0;
1176 while (l1)
1177 lv++, l1 &= l1 - 1;
1178 while (h1)
1179 lv++, h1 &= h1 - 1;
1180 break;
1181
1182 case PARITY:
1183 hv = 0;
1184 lv = 0;
1185 while (l1)
1186 lv++, l1 &= l1 - 1;
1187 while (h1)
1188 lv++, h1 &= h1 - 1;
1189 lv &= 1;
1190 break;
1191
1192 case TRUNCATE:
1193 /* This is just a change-of-mode, so do nothing. */
1194 lv = l1, hv = h1;
1195 break;
1196
1197 case ZERO_EXTEND:
1198 gcc_assert (op_mode != VOIDmode);
1199
1200 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1201 return 0;
1202
1203 hv = 0;
1204 lv = l1 & GET_MODE_MASK (op_mode);
1205 break;
1206
1207 case SIGN_EXTEND:
1208 if (op_mode == VOIDmode
1209 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1210 return 0;
1211 else
1212 {
1213 lv = l1 & GET_MODE_MASK (op_mode);
1214 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
1215 && (lv & ((HOST_WIDE_INT) 1
1216 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
1217 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1218
1219 hv = HWI_SIGN_EXTEND (lv);
1220 }
1221 break;
1222
1223 case SQRT:
1224 return 0;
1225
1226 default:
1227 return 0;
1228 }
1229
1230 return immed_double_const (lv, hv, mode);
1231 }
1232
1233 else if (GET_CODE (op) == CONST_DOUBLE
1234 && SCALAR_FLOAT_MODE_P (mode))
1235 {
1236 REAL_VALUE_TYPE d, t;
1237 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1238
1239 switch (code)
1240 {
1241 case SQRT:
1242 if (HONOR_SNANS (mode) && real_isnan (&d))
1243 return 0;
1244 real_sqrt (&t, mode, &d);
1245 d = t;
1246 break;
1247 case ABS:
1248 d = REAL_VALUE_ABS (d);
1249 break;
1250 case NEG:
1251 d = REAL_VALUE_NEGATE (d);
1252 break;
1253 case FLOAT_TRUNCATE:
1254 d = real_value_truncate (mode, d);
1255 break;
1256 case FLOAT_EXTEND:
1257 /* All this does is change the mode. */
1258 break;
1259 case FIX:
1260 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1261 break;
1262 case NOT:
1263 {
1264 long tmp[4];
1265 int i;
1266
1267 real_to_target (tmp, &d, GET_MODE (op));
1268 for (i = 0; i < 4; i++)
1269 tmp[i] = ~tmp[i];
1270 real_from_target (&d, tmp, mode);
1271 break;
1272 }
1273 default:
1274 gcc_unreachable ();
1275 }
1276 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1277 }
1278
1279 else if (GET_CODE (op) == CONST_DOUBLE
1280 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1281 && GET_MODE_CLASS (mode) == MODE_INT
1282 && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
1283 {
1284 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1285 operators are intentionally left unspecified (to ease implementation
1286 by target backends), for consistency, this routine implements the
1287 same semantics for constant folding as used by the middle-end. */
1288
1289 /* This was formerly used only for non-IEEE float.
1290 eggert@twinsun.com says it is safe for IEEE also. */
1291 HOST_WIDE_INT xh, xl, th, tl;
1292 REAL_VALUE_TYPE x, t;
1293 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1294 switch (code)
1295 {
1296 case FIX:
1297 if (REAL_VALUE_ISNAN (x))
1298 return const0_rtx;
1299
1300 /* Test against the signed upper bound. */
1301 if (width > HOST_BITS_PER_WIDE_INT)
1302 {
1303 th = ((unsigned HOST_WIDE_INT) 1
1304 << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
1305 tl = -1;
1306 }
1307 else
1308 {
1309 th = 0;
1310 tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
1311 }
1312 real_from_integer (&t, VOIDmode, tl, th, 0);
1313 if (REAL_VALUES_LESS (t, x))
1314 {
1315 xh = th;
1316 xl = tl;
1317 break;
1318 }
1319
1320 /* Test against the signed lower bound. */
1321 if (width > HOST_BITS_PER_WIDE_INT)
1322 {
1323 th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
1324 tl = 0;
1325 }
1326 else
1327 {
1328 th = -1;
1329 tl = (HOST_WIDE_INT) -1 << (width - 1);
1330 }
1331 real_from_integer (&t, VOIDmode, tl, th, 0);
1332 if (REAL_VALUES_LESS (x, t))
1333 {
1334 xh = th;
1335 xl = tl;
1336 break;
1337 }
1338 REAL_VALUE_TO_INT (&xl, &xh, x);
1339 break;
1340
1341 case UNSIGNED_FIX:
1342 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1343 return const0_rtx;
1344
1345 /* Test against the unsigned upper bound. */
1346 if (width == 2*HOST_BITS_PER_WIDE_INT)
1347 {
1348 th = -1;
1349 tl = -1;
1350 }
1351 else if (width >= HOST_BITS_PER_WIDE_INT)
1352 {
1353 th = ((unsigned HOST_WIDE_INT) 1
1354 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
1355 tl = -1;
1356 }
1357 else
1358 {
1359 th = 0;
1360 tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
1361 }
1362 real_from_integer (&t, VOIDmode, tl, th, 1);
1363 if (REAL_VALUES_LESS (t, x))
1364 {
1365 xh = th;
1366 xl = tl;
1367 break;
1368 }
1369
1370 REAL_VALUE_TO_INT (&xl, &xh, x);
1371 break;
1372
1373 default:
1374 gcc_unreachable ();
1375 }
1376 return immed_double_const (xl, xh, mode);
1377 }
1378
1379 return NULL_RTX;
1380 }
1381
1382 /* Subroutine of simplify_binary_operation to simplify a commutative,
1383 associative binary operation CODE with result mode MODE, operating
1384 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1385 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1386 canonicalization is possible. */
1387
1388 static rtx
simplify_associative_operation(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)1389 simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
1390 rtx op0, rtx op1)
1391 {
1392 rtx tem;
1393
1394 /* Linearize the operator to the left. */
1395 if (GET_CODE (op1) == code)
1396 {
1397 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1398 if (GET_CODE (op0) == code)
1399 {
1400 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1401 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1402 }
1403
1404 /* "a op (b op c)" becomes "(b op c) op a". */
1405 if (! swap_commutative_operands_p (op1, op0))
1406 return simplify_gen_binary (code, mode, op1, op0);
1407
1408 tem = op0;
1409 op0 = op1;
1410 op1 = tem;
1411 }
1412
1413 if (GET_CODE (op0) == code)
1414 {
1415 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1416 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1417 {
1418 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1419 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1420 }
1421
1422 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1423 tem = swap_commutative_operands_p (XEXP (op0, 1), op1)
1424 ? simplify_binary_operation (code, mode, op1, XEXP (op0, 1))
1425 : simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1426 if (tem != 0)
1427 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1428
1429 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1430 tem = swap_commutative_operands_p (XEXP (op0, 0), op1)
1431 ? simplify_binary_operation (code, mode, op1, XEXP (op0, 0))
1432 : simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1433 if (tem != 0)
1434 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1435 }
1436
1437 return 0;
1438 }
1439
1440
1441 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1442 and OP1. Return 0 if no simplification is possible.
1443
1444 Don't use this for relational operations such as EQ or LT.
1445 Use simplify_relational_operation instead. */
1446 rtx
simplify_binary_operation(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)1447 simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
1448 rtx op0, rtx op1)
1449 {
1450 rtx trueop0, trueop1;
1451 rtx tem;
1452
1453 /* Relational operations don't work here. We must know the mode
1454 of the operands in order to do the comparison correctly.
1455 Assuming a full word can give incorrect results.
1456 Consider comparing 128 with -128 in QImode. */
1457 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1458 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1459
1460 /* Make sure the constant is second. */
1461 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1462 && swap_commutative_operands_p (op0, op1))
1463 {
1464 tem = op0, op0 = op1, op1 = tem;
1465 }
1466
1467 trueop0 = avoid_constant_pool_reference (op0);
1468 trueop1 = avoid_constant_pool_reference (op1);
1469
1470 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1471 if (tem)
1472 return tem;
1473 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1474 }
1475
1476 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1477 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1478 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1479 actual constants. */
1480
1481 static rtx
simplify_binary_operation_1(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1,rtx trueop0,rtx trueop1)1482 simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
1483 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
1484 {
1485 rtx tem, reversed, opleft, opright;
1486 HOST_WIDE_INT val;
1487 unsigned int width = GET_MODE_BITSIZE (mode);
1488
1489 /* Even if we can't compute a constant result,
1490 there are some cases worth simplifying. */
1491
1492 switch (code)
1493 {
1494 case PLUS:
1495 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1496 when x is NaN, infinite, or finite and nonzero. They aren't
1497 when x is -0 and the rounding mode is not towards -infinity,
1498 since (-0) + 0 is then 0. */
1499 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1500 return op0;
1501
1502 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1503 transformations are safe even for IEEE. */
1504 if (GET_CODE (op0) == NEG)
1505 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1506 else if (GET_CODE (op1) == NEG)
1507 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1508
1509 /* (~a) + 1 -> -a */
1510 if (INTEGRAL_MODE_P (mode)
1511 && GET_CODE (op0) == NOT
1512 && trueop1 == const1_rtx)
1513 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
1514
1515 /* Handle both-operands-constant cases. We can only add
1516 CONST_INTs to constants since the sum of relocatable symbols
1517 can't be handled by most assemblers. Don't add CONST_INT
1518 to CONST_INT since overflow won't be computed properly if wider
1519 than HOST_BITS_PER_WIDE_INT. */
1520
1521 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
1522 && GET_CODE (op1) == CONST_INT)
1523 return plus_constant (op0, INTVAL (op1));
1524 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
1525 && GET_CODE (op0) == CONST_INT)
1526 return plus_constant (op1, INTVAL (op0));
1527
1528 /* See if this is something like X * C - X or vice versa or
1529 if the multiplication is written as a shift. If so, we can
1530 distribute and make a new multiply, shift, or maybe just
1531 have X (if C is 2 in the example above). But don't make
1532 something more expensive than we had before. */
1533
1534 if (SCALAR_INT_MODE_P (mode))
1535 {
1536 HOST_WIDE_INT coeff0h = 0, coeff1h = 0;
1537 unsigned HOST_WIDE_INT coeff0l = 1, coeff1l = 1;
1538 rtx lhs = op0, rhs = op1;
1539
1540 if (GET_CODE (lhs) == NEG)
1541 {
1542 coeff0l = -1;
1543 coeff0h = -1;
1544 lhs = XEXP (lhs, 0);
1545 }
1546 else if (GET_CODE (lhs) == MULT
1547 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1548 {
1549 coeff0l = INTVAL (XEXP (lhs, 1));
1550 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1551 lhs = XEXP (lhs, 0);
1552 }
1553 else if (GET_CODE (lhs) == ASHIFT
1554 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1555 && INTVAL (XEXP (lhs, 1)) >= 0
1556 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1557 {
1558 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1559 coeff0h = 0;
1560 lhs = XEXP (lhs, 0);
1561 }
1562
1563 if (GET_CODE (rhs) == NEG)
1564 {
1565 coeff1l = -1;
1566 coeff1h = -1;
1567 rhs = XEXP (rhs, 0);
1568 }
1569 else if (GET_CODE (rhs) == MULT
1570 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1571 {
1572 coeff1l = INTVAL (XEXP (rhs, 1));
1573 coeff1h = INTVAL (XEXP (rhs, 1)) < 0 ? -1 : 0;
1574 rhs = XEXP (rhs, 0);
1575 }
1576 else if (GET_CODE (rhs) == ASHIFT
1577 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1578 && INTVAL (XEXP (rhs, 1)) >= 0
1579 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1580 {
1581 coeff1l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
1582 coeff1h = 0;
1583 rhs = XEXP (rhs, 0);
1584 }
1585
1586 if (rtx_equal_p (lhs, rhs))
1587 {
1588 rtx orig = gen_rtx_PLUS (mode, op0, op1);
1589 rtx coeff;
1590 unsigned HOST_WIDE_INT l;
1591 HOST_WIDE_INT h;
1592
1593 add_double (coeff0l, coeff0h, coeff1l, coeff1h, &l, &h);
1594 coeff = immed_double_const (l, h, mode);
1595
1596 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1597 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1598 ? tem : 0;
1599 }
1600 }
1601
1602 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
1603 if ((GET_CODE (op1) == CONST_INT
1604 || GET_CODE (op1) == CONST_DOUBLE)
1605 && GET_CODE (op0) == XOR
1606 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
1607 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
1608 && mode_signbit_p (mode, op1))
1609 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
1610 simplify_gen_binary (XOR, mode, op1,
1611 XEXP (op0, 1)));
1612
1613 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
1614 if (GET_CODE (op0) == MULT
1615 && GET_CODE (XEXP (op0, 0)) == NEG)
1616 {
1617 rtx in1, in2;
1618
1619 in1 = XEXP (XEXP (op0, 0), 0);
1620 in2 = XEXP (op0, 1);
1621 return simplify_gen_binary (MINUS, mode, op1,
1622 simplify_gen_binary (MULT, mode,
1623 in1, in2));
1624 }
1625
1626 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
1627 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
1628 is 1. */
1629 if (COMPARISON_P (op0)
1630 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
1631 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
1632 && (reversed = reversed_comparison (op0, mode)))
1633 return
1634 simplify_gen_unary (NEG, mode, reversed, mode);
1635
1636 /* If one of the operands is a PLUS or a MINUS, see if we can
1637 simplify this by the associative law.
1638 Don't use the associative law for floating point.
1639 The inaccuracy makes it nonassociative,
1640 and subtle programs can break if operations are associated. */
1641
1642 if (INTEGRAL_MODE_P (mode)
1643 && (plus_minus_operand_p (op0)
1644 || plus_minus_operand_p (op1))
1645 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1646 return tem;
1647
1648 /* Reassociate floating point addition only when the user
1649 specifies unsafe math optimizations. */
1650 if (FLOAT_MODE_P (mode)
1651 && flag_unsafe_math_optimizations)
1652 {
1653 tem = simplify_associative_operation (code, mode, op0, op1);
1654 if (tem)
1655 return tem;
1656 }
1657 break;
1658
1659 case COMPARE:
1660 #ifdef HAVE_cc0
1661 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
1662 using cc0, in which case we want to leave it as a COMPARE
1663 so we can distinguish it from a register-register-copy.
1664
1665 In IEEE floating point, x-0 is not the same as x. */
1666
1667 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1668 || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
1669 && trueop1 == CONST0_RTX (mode))
1670 return op0;
1671 #endif
1672
1673 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1674 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
1675 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
1676 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
1677 {
1678 rtx xop00 = XEXP (op0, 0);
1679 rtx xop10 = XEXP (op1, 0);
1680
1681 #ifdef HAVE_cc0
1682 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
1683 #else
1684 if (REG_P (xop00) && REG_P (xop10)
1685 && GET_MODE (xop00) == GET_MODE (xop10)
1686 && REGNO (xop00) == REGNO (xop10)
1687 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
1688 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
1689 #endif
1690 return xop00;
1691 }
1692 break;
1693
1694 case MINUS:
1695 /* We can't assume x-x is 0 even with non-IEEE floating point,
1696 but since it is zero except in very strange circumstances, we
1697 will treat it as zero with -funsafe-math-optimizations. */
1698 if (rtx_equal_p (trueop0, trueop1)
1699 && ! side_effects_p (op0)
1700 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
1701 return CONST0_RTX (mode);
1702
1703 /* Change subtraction from zero into negation. (0 - x) is the
1704 same as -x when x is NaN, infinite, or finite and nonzero.
1705 But if the mode has signed zeros, and does not round towards
1706 -infinity, then 0 - 0 is 0, not -0. */
1707 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
1708 return simplify_gen_unary (NEG, mode, op1, mode);
1709
1710 /* (-1 - a) is ~a. */
1711 if (trueop0 == constm1_rtx)
1712 return simplify_gen_unary (NOT, mode, op1, mode);
1713
1714 /* Subtracting 0 has no effect unless the mode has signed zeros
1715 and supports rounding towards -infinity. In such a case,
1716 0 - 0 is -0. */
1717 if (!(HONOR_SIGNED_ZEROS (mode)
1718 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1719 && trueop1 == CONST0_RTX (mode))
1720 return op0;
1721
1722 /* See if this is something like X * C - X or vice versa or
1723 if the multiplication is written as a shift. If so, we can
1724 distribute and make a new multiply, shift, or maybe just
1725 have X (if C is 2 in the example above). But don't make
1726 something more expensive than we had before. */
1727
1728 if (SCALAR_INT_MODE_P (mode))
1729 {
1730 HOST_WIDE_INT coeff0h = 0, negcoeff1h = -1;
1731 unsigned HOST_WIDE_INT coeff0l = 1, negcoeff1l = -1;
1732 rtx lhs = op0, rhs = op1;
1733
1734 if (GET_CODE (lhs) == NEG)
1735 {
1736 coeff0l = -1;
1737 coeff0h = -1;
1738 lhs = XEXP (lhs, 0);
1739 }
1740 else if (GET_CODE (lhs) == MULT
1741 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1742 {
1743 coeff0l = INTVAL (XEXP (lhs, 1));
1744 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1745 lhs = XEXP (lhs, 0);
1746 }
1747 else if (GET_CODE (lhs) == ASHIFT
1748 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1749 && INTVAL (XEXP (lhs, 1)) >= 0
1750 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1751 {
1752 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1753 coeff0h = 0;
1754 lhs = XEXP (lhs, 0);
1755 }
1756
1757 if (GET_CODE (rhs) == NEG)
1758 {
1759 negcoeff1l = 1;
1760 negcoeff1h = 0;
1761 rhs = XEXP (rhs, 0);
1762 }
1763 else if (GET_CODE (rhs) == MULT
1764 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1765 {
1766 negcoeff1l = -INTVAL (XEXP (rhs, 1));
1767 negcoeff1h = INTVAL (XEXP (rhs, 1)) <= 0 ? 0 : -1;
1768 rhs = XEXP (rhs, 0);
1769 }
1770 else if (GET_CODE (rhs) == ASHIFT
1771 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1772 && INTVAL (XEXP (rhs, 1)) >= 0
1773 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1774 {
1775 negcoeff1l = -(((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1)));
1776 negcoeff1h = -1;
1777 rhs = XEXP (rhs, 0);
1778 }
1779
1780 if (rtx_equal_p (lhs, rhs))
1781 {
1782 rtx orig = gen_rtx_MINUS (mode, op0, op1);
1783 rtx coeff;
1784 unsigned HOST_WIDE_INT l;
1785 HOST_WIDE_INT h;
1786
1787 add_double (coeff0l, coeff0h, negcoeff1l, negcoeff1h, &l, &h);
1788 coeff = immed_double_const (l, h, mode);
1789
1790 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1791 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1792 ? tem : 0;
1793 }
1794 }
1795
1796 /* (a - (-b)) -> (a + b). True even for IEEE. */
1797 if (GET_CODE (op1) == NEG)
1798 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
1799
1800 /* (-x - c) may be simplified as (-c - x). */
1801 if (GET_CODE (op0) == NEG
1802 && (GET_CODE (op1) == CONST_INT
1803 || GET_CODE (op1) == CONST_DOUBLE))
1804 {
1805 tem = simplify_unary_operation (NEG, mode, op1, mode);
1806 if (tem)
1807 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
1808 }
1809
1810 /* Don't let a relocatable value get a negative coeff. */
1811 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
1812 return simplify_gen_binary (PLUS, mode,
1813 op0,
1814 neg_const_int (mode, op1));
1815
1816 /* (x - (x & y)) -> (x & ~y) */
1817 if (GET_CODE (op1) == AND)
1818 {
1819 if (rtx_equal_p (op0, XEXP (op1, 0)))
1820 {
1821 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
1822 GET_MODE (XEXP (op1, 1)));
1823 return simplify_gen_binary (AND, mode, op0, tem);
1824 }
1825 if (rtx_equal_p (op0, XEXP (op1, 1)))
1826 {
1827 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
1828 GET_MODE (XEXP (op1, 0)));
1829 return simplify_gen_binary (AND, mode, op0, tem);
1830 }
1831 }
1832
1833 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
1834 by reversing the comparison code if valid. */
1835 if (STORE_FLAG_VALUE == 1
1836 && trueop0 == const1_rtx
1837 && COMPARISON_P (op1)
1838 && (reversed = reversed_comparison (op1, mode)))
1839 return reversed;
1840
1841 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
1842 if (GET_CODE (op1) == MULT
1843 && GET_CODE (XEXP (op1, 0)) == NEG)
1844 {
1845 rtx in1, in2;
1846
1847 in1 = XEXP (XEXP (op1, 0), 0);
1848 in2 = XEXP (op1, 1);
1849 return simplify_gen_binary (PLUS, mode,
1850 simplify_gen_binary (MULT, mode,
1851 in1, in2),
1852 op0);
1853 }
1854
1855 /* Canonicalize (minus (neg A) (mult B C)) to
1856 (minus (mult (neg B) C) A). */
1857 if (GET_CODE (op1) == MULT
1858 && GET_CODE (op0) == NEG)
1859 {
1860 rtx in1, in2;
1861
1862 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
1863 in2 = XEXP (op1, 1);
1864 return simplify_gen_binary (MINUS, mode,
1865 simplify_gen_binary (MULT, mode,
1866 in1, in2),
1867 XEXP (op0, 0));
1868 }
1869
1870 /* If one of the operands is a PLUS or a MINUS, see if we can
1871 simplify this by the associative law. This will, for example,
1872 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
1873 Don't use the associative law for floating point.
1874 The inaccuracy makes it nonassociative,
1875 and subtle programs can break if operations are associated. */
1876
1877 if (INTEGRAL_MODE_P (mode)
1878 && (plus_minus_operand_p (op0)
1879 || plus_minus_operand_p (op1))
1880 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1881 return tem;
1882 break;
1883
1884 case MULT:
1885 if (trueop1 == constm1_rtx)
1886 return simplify_gen_unary (NEG, mode, op0, mode);
1887
1888 /* Maybe simplify x * 0 to 0. The reduction is not valid if
1889 x is NaN, since x * 0 is then also NaN. Nor is it valid
1890 when the mode has signed zeros, since multiplying a negative
1891 number by 0 will give -0, not 0. */
1892 if (!HONOR_NANS (mode)
1893 && !HONOR_SIGNED_ZEROS (mode)
1894 && trueop1 == CONST0_RTX (mode)
1895 && ! side_effects_p (op0))
1896 return op1;
1897
1898 /* In IEEE floating point, x*1 is not equivalent to x for
1899 signalling NaNs. */
1900 if (!HONOR_SNANS (mode)
1901 && trueop1 == CONST1_RTX (mode))
1902 return op0;
1903
1904 /* Convert multiply by constant power of two into shift unless
1905 we are still generating RTL. This test is a kludge. */
1906 if (GET_CODE (trueop1) == CONST_INT
1907 && (val = exact_log2 (INTVAL (trueop1))) >= 0
1908 /* If the mode is larger than the host word size, and the
1909 uppermost bit is set, then this isn't a power of two due
1910 to implicit sign extension. */
1911 && (width <= HOST_BITS_PER_WIDE_INT
1912 || val != HOST_BITS_PER_WIDE_INT - 1))
1913 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
1914
1915 /* Likewise for multipliers wider than a word. */
1916 if (GET_CODE (trueop1) == CONST_DOUBLE
1917 && (GET_MODE (trueop1) == VOIDmode
1918 || GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
1919 && GET_MODE (op0) == mode
1920 && CONST_DOUBLE_LOW (trueop1) == 0
1921 && (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
1922 return simplify_gen_binary (ASHIFT, mode, op0,
1923 GEN_INT (val + HOST_BITS_PER_WIDE_INT));
1924
1925 /* x*2 is x+x and x*(-1) is -x */
1926 if (GET_CODE (trueop1) == CONST_DOUBLE
1927 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
1928 && GET_MODE (op0) == mode)
1929 {
1930 REAL_VALUE_TYPE d;
1931 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
1932
1933 if (REAL_VALUES_EQUAL (d, dconst2))
1934 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
1935
1936 if (!HONOR_SNANS (mode)
1937 && REAL_VALUES_EQUAL (d, dconstm1))
1938 return simplify_gen_unary (NEG, mode, op0, mode);
1939 }
1940
1941 /* Optimize -x * -x as x * x. */
1942 if (FLOAT_MODE_P (mode)
1943 && GET_CODE (op0) == NEG
1944 && GET_CODE (op1) == NEG
1945 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
1946 && !side_effects_p (XEXP (op0, 0)))
1947 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
1948
1949 /* Likewise, optimize abs(x) * abs(x) as x * x. */
1950 if (SCALAR_FLOAT_MODE_P (mode)
1951 && GET_CODE (op0) == ABS
1952 && GET_CODE (op1) == ABS
1953 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
1954 && !side_effects_p (XEXP (op0, 0)))
1955 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
1956
1957 /* Reassociate multiplication, but for floating point MULTs
1958 only when the user specifies unsafe math optimizations. */
1959 if (! FLOAT_MODE_P (mode)
1960 || flag_unsafe_math_optimizations)
1961 {
1962 tem = simplify_associative_operation (code, mode, op0, op1);
1963 if (tem)
1964 return tem;
1965 }
1966 break;
1967
1968 case IOR:
1969 if (trueop1 == const0_rtx)
1970 return op0;
1971 if (GET_CODE (trueop1) == CONST_INT
1972 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
1973 == GET_MODE_MASK (mode)))
1974 return op1;
1975 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1976 return op0;
1977 /* A | (~A) -> -1 */
1978 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
1979 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
1980 && ! side_effects_p (op0)
1981 && SCALAR_INT_MODE_P (mode))
1982 return constm1_rtx;
1983
1984 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
1985 if (GET_CODE (op1) == CONST_INT
1986 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
1987 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
1988 return op1;
1989
1990 /* Convert (A & B) | A to A. */
1991 if (GET_CODE (op0) == AND
1992 && (rtx_equal_p (XEXP (op0, 0), op1)
1993 || rtx_equal_p (XEXP (op0, 1), op1))
1994 && ! side_effects_p (XEXP (op0, 0))
1995 && ! side_effects_p (XEXP (op0, 1)))
1996 return op1;
1997
1998 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
1999 mode size to (rotate A CX). */
2000
2001 if (GET_CODE (op1) == ASHIFT
2002 || GET_CODE (op1) == SUBREG)
2003 {
2004 opleft = op1;
2005 opright = op0;
2006 }
2007 else
2008 {
2009 opright = op1;
2010 opleft = op0;
2011 }
2012
2013 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
2014 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
2015 && GET_CODE (XEXP (opleft, 1)) == CONST_INT
2016 && GET_CODE (XEXP (opright, 1)) == CONST_INT
2017 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
2018 == GET_MODE_BITSIZE (mode)))
2019 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
2020
2021 /* Same, but for ashift that has been "simplified" to a wider mode
2022 by simplify_shift_const. */
2023
2024 if (GET_CODE (opleft) == SUBREG
2025 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2026 && GET_CODE (opright) == LSHIFTRT
2027 && GET_CODE (XEXP (opright, 0)) == SUBREG
2028 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2029 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2030 && (GET_MODE_SIZE (GET_MODE (opleft))
2031 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2032 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2033 SUBREG_REG (XEXP (opright, 0)))
2034 && GET_CODE (XEXP (SUBREG_REG (opleft), 1)) == CONST_INT
2035 && GET_CODE (XEXP (opright, 1)) == CONST_INT
2036 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2037 == GET_MODE_BITSIZE (mode)))
2038 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2039 XEXP (SUBREG_REG (opleft), 1));
2040
2041 /* If we have (ior (and (X C1) C2)), simplify this by making
2042 C1 as small as possible if C1 actually changes. */
2043 if (GET_CODE (op1) == CONST_INT
2044 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2045 || INTVAL (op1) > 0)
2046 && GET_CODE (op0) == AND
2047 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2048 && GET_CODE (op1) == CONST_INT
2049 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
2050 return simplify_gen_binary (IOR, mode,
2051 simplify_gen_binary
2052 (AND, mode, XEXP (op0, 0),
2053 GEN_INT (INTVAL (XEXP (op0, 1))
2054 & ~INTVAL (op1))),
2055 op1);
2056
2057 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2058 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2059 the PLUS does not affect any of the bits in OP1: then we can do
2060 the IOR as a PLUS and we can associate. This is valid if OP1
2061 can be safely shifted left C bits. */
2062 if (GET_CODE (trueop1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
2063 && GET_CODE (XEXP (op0, 0)) == PLUS
2064 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
2065 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2066 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2067 {
2068 int count = INTVAL (XEXP (op0, 1));
2069 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2070
2071 if (mask >> count == INTVAL (trueop1)
2072 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2073 return simplify_gen_binary (ASHIFTRT, mode,
2074 plus_constant (XEXP (op0, 0), mask),
2075 XEXP (op0, 1));
2076 }
2077
2078 tem = simplify_associative_operation (code, mode, op0, op1);
2079 if (tem)
2080 return tem;
2081 break;
2082
2083 case XOR:
2084 if (trueop1 == const0_rtx)
2085 return op0;
2086 if (GET_CODE (trueop1) == CONST_INT
2087 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2088 == GET_MODE_MASK (mode)))
2089 return simplify_gen_unary (NOT, mode, op0, mode);
2090 if (rtx_equal_p (trueop0, trueop1)
2091 && ! side_effects_p (op0)
2092 && GET_MODE_CLASS (mode) != MODE_CC)
2093 return CONST0_RTX (mode);
2094
2095 /* Canonicalize XOR of the most significant bit to PLUS. */
2096 if ((GET_CODE (op1) == CONST_INT
2097 || GET_CODE (op1) == CONST_DOUBLE)
2098 && mode_signbit_p (mode, op1))
2099 return simplify_gen_binary (PLUS, mode, op0, op1);
2100 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2101 if ((GET_CODE (op1) == CONST_INT
2102 || GET_CODE (op1) == CONST_DOUBLE)
2103 && GET_CODE (op0) == PLUS
2104 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
2105 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
2106 && mode_signbit_p (mode, XEXP (op0, 1)))
2107 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2108 simplify_gen_binary (XOR, mode, op1,
2109 XEXP (op0, 1)));
2110
2111 /* If we are XORing two things that have no bits in common,
2112 convert them into an IOR. This helps to detect rotation encoded
2113 using those methods and possibly other simplifications. */
2114
2115 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2116 && (nonzero_bits (op0, mode)
2117 & nonzero_bits (op1, mode)) == 0)
2118 return (simplify_gen_binary (IOR, mode, op0, op1));
2119
2120 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2121 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2122 (NOT y). */
2123 {
2124 int num_negated = 0;
2125
2126 if (GET_CODE (op0) == NOT)
2127 num_negated++, op0 = XEXP (op0, 0);
2128 if (GET_CODE (op1) == NOT)
2129 num_negated++, op1 = XEXP (op1, 0);
2130
2131 if (num_negated == 2)
2132 return simplify_gen_binary (XOR, mode, op0, op1);
2133 else if (num_negated == 1)
2134 return simplify_gen_unary (NOT, mode,
2135 simplify_gen_binary (XOR, mode, op0, op1),
2136 mode);
2137 }
2138
2139 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2140 correspond to a machine insn or result in further simplifications
2141 if B is a constant. */
2142
2143 if (GET_CODE (op0) == AND
2144 && rtx_equal_p (XEXP (op0, 1), op1)
2145 && ! side_effects_p (op1))
2146 return simplify_gen_binary (AND, mode,
2147 simplify_gen_unary (NOT, mode,
2148 XEXP (op0, 0), mode),
2149 op1);
2150
2151 else if (GET_CODE (op0) == AND
2152 && rtx_equal_p (XEXP (op0, 0), op1)
2153 && ! side_effects_p (op1))
2154 return simplify_gen_binary (AND, mode,
2155 simplify_gen_unary (NOT, mode,
2156 XEXP (op0, 1), mode),
2157 op1);
2158
2159 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2160 comparison if STORE_FLAG_VALUE is 1. */
2161 if (STORE_FLAG_VALUE == 1
2162 && trueop1 == const1_rtx
2163 && COMPARISON_P (op0)
2164 && (reversed = reversed_comparison (op0, mode)))
2165 return reversed;
2166
2167 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2168 is (lt foo (const_int 0)), so we can perform the above
2169 simplification if STORE_FLAG_VALUE is 1. */
2170
2171 if (STORE_FLAG_VALUE == 1
2172 && trueop1 == const1_rtx
2173 && GET_CODE (op0) == LSHIFTRT
2174 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2175 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
2176 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2177
2178 /* (xor (comparison foo bar) (const_int sign-bit))
2179 when STORE_FLAG_VALUE is the sign bit. */
2180 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2181 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
2182 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
2183 && trueop1 == const_true_rtx
2184 && COMPARISON_P (op0)
2185 && (reversed = reversed_comparison (op0, mode)))
2186 return reversed;
2187
2188 break;
2189
2190 tem = simplify_associative_operation (code, mode, op0, op1);
2191 if (tem)
2192 return tem;
2193 break;
2194
2195 case AND:
2196 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2197 return trueop1;
2198 /* If we are turning off bits already known off in OP0, we need
2199 not do an AND. */
2200 if (GET_CODE (trueop1) == CONST_INT
2201 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2202 && (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
2203 return op0;
2204 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2205 && GET_MODE_CLASS (mode) != MODE_CC)
2206 return op0;
2207 /* A & (~A) -> 0 */
2208 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2209 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2210 && ! side_effects_p (op0)
2211 && GET_MODE_CLASS (mode) != MODE_CC)
2212 return CONST0_RTX (mode);
2213
2214 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2215 there are no nonzero bits of C outside of X's mode. */
2216 if ((GET_CODE (op0) == SIGN_EXTEND
2217 || GET_CODE (op0) == ZERO_EXTEND)
2218 && GET_CODE (trueop1) == CONST_INT
2219 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2220 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2221 & INTVAL (trueop1)) == 0)
2222 {
2223 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2224 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2225 gen_int_mode (INTVAL (trueop1),
2226 imode));
2227 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2228 }
2229
2230 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2231 insn (and may simplify more). */
2232 if (GET_CODE (op0) == XOR
2233 && rtx_equal_p (XEXP (op0, 0), op1)
2234 && ! side_effects_p (op1))
2235 return simplify_gen_binary (AND, mode,
2236 simplify_gen_unary (NOT, mode,
2237 XEXP (op0, 1), mode),
2238 op1);
2239
2240 if (GET_CODE (op0) == XOR
2241 && rtx_equal_p (XEXP (op0, 1), op1)
2242 && ! side_effects_p (op1))
2243 return simplify_gen_binary (AND, mode,
2244 simplify_gen_unary (NOT, mode,
2245 XEXP (op0, 0), mode),
2246 op1);
2247
2248 /* Similarly for (~(A ^ B)) & A. */
2249 if (GET_CODE (op0) == NOT
2250 && GET_CODE (XEXP (op0, 0)) == XOR
2251 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2252 && ! side_effects_p (op1))
2253 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2254
2255 if (GET_CODE (op0) == NOT
2256 && GET_CODE (XEXP (op0, 0)) == XOR
2257 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2258 && ! side_effects_p (op1))
2259 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2260
2261 /* Convert (A | B) & A to A. */
2262 if (GET_CODE (op0) == IOR
2263 && (rtx_equal_p (XEXP (op0, 0), op1)
2264 || rtx_equal_p (XEXP (op0, 1), op1))
2265 && ! side_effects_p (XEXP (op0, 0))
2266 && ! side_effects_p (XEXP (op0, 1)))
2267 return op1;
2268
2269 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2270 ((A & N) + B) & M -> (A + B) & M
2271 Similarly if (N & M) == 0,
2272 ((A | N) + B) & M -> (A + B) & M
2273 and for - instead of + and/or ^ instead of |. */
2274 if (GET_CODE (trueop1) == CONST_INT
2275 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2276 && ~INTVAL (trueop1)
2277 && (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
2278 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2279 {
2280 rtx pmop[2];
2281 int which;
2282
2283 pmop[0] = XEXP (op0, 0);
2284 pmop[1] = XEXP (op0, 1);
2285
2286 for (which = 0; which < 2; which++)
2287 {
2288 tem = pmop[which];
2289 switch (GET_CODE (tem))
2290 {
2291 case AND:
2292 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2293 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
2294 == INTVAL (trueop1))
2295 pmop[which] = XEXP (tem, 0);
2296 break;
2297 case IOR:
2298 case XOR:
2299 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2300 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
2301 pmop[which] = XEXP (tem, 0);
2302 break;
2303 default:
2304 break;
2305 }
2306 }
2307
2308 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
2309 {
2310 tem = simplify_gen_binary (GET_CODE (op0), mode,
2311 pmop[0], pmop[1]);
2312 return simplify_gen_binary (code, mode, tem, op1);
2313 }
2314 }
2315 tem = simplify_associative_operation (code, mode, op0, op1);
2316 if (tem)
2317 return tem;
2318 break;
2319
2320 case UDIV:
2321 /* 0/x is 0 (or x&0 if x has side-effects). */
2322 if (trueop0 == CONST0_RTX (mode))
2323 {
2324 if (side_effects_p (op1))
2325 return simplify_gen_binary (AND, mode, op1, trueop0);
2326 return trueop0;
2327 }
2328 /* x/1 is x. */
2329 if (trueop1 == CONST1_RTX (mode))
2330 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2331 /* Convert divide by power of two into shift. */
2332 if (GET_CODE (trueop1) == CONST_INT
2333 && (val = exact_log2 (INTVAL (trueop1))) > 0)
2334 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
2335 break;
2336
2337 case DIV:
2338 /* Handle floating point and integers separately. */
2339 if (SCALAR_FLOAT_MODE_P (mode))
2340 {
2341 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2342 safe for modes with NaNs, since 0.0 / 0.0 will then be
2343 NaN rather than 0.0. Nor is it safe for modes with signed
2344 zeros, since dividing 0 by a negative number gives -0.0 */
2345 if (trueop0 == CONST0_RTX (mode)
2346 && !HONOR_NANS (mode)
2347 && !HONOR_SIGNED_ZEROS (mode)
2348 && ! side_effects_p (op1))
2349 return op0;
2350 /* x/1.0 is x. */
2351 if (trueop1 == CONST1_RTX (mode)
2352 && !HONOR_SNANS (mode))
2353 return op0;
2354
2355 if (GET_CODE (trueop1) == CONST_DOUBLE
2356 && trueop1 != CONST0_RTX (mode))
2357 {
2358 REAL_VALUE_TYPE d;
2359 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2360
2361 /* x/-1.0 is -x. */
2362 if (REAL_VALUES_EQUAL (d, dconstm1)
2363 && !HONOR_SNANS (mode))
2364 return simplify_gen_unary (NEG, mode, op0, mode);
2365
2366 /* Change FP division by a constant into multiplication.
2367 Only do this with -funsafe-math-optimizations. */
2368 if (flag_unsafe_math_optimizations
2369 && !REAL_VALUES_EQUAL (d, dconst0))
2370 {
2371 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
2372 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2373 return simplify_gen_binary (MULT, mode, op0, tem);
2374 }
2375 }
2376 }
2377 else
2378 {
2379 /* 0/x is 0 (or x&0 if x has side-effects). */
2380 if (trueop0 == CONST0_RTX (mode))
2381 {
2382 if (side_effects_p (op1))
2383 return simplify_gen_binary (AND, mode, op1, trueop0);
2384 return trueop0;
2385 }
2386 /* x/1 is x. */
2387 if (trueop1 == CONST1_RTX (mode))
2388 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2389 /* x/-1 is -x. */
2390 if (trueop1 == constm1_rtx)
2391 {
2392 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
2393 return simplify_gen_unary (NEG, mode, x, mode);
2394 }
2395 }
2396 break;
2397
2398 case UMOD:
2399 /* 0%x is 0 (or x&0 if x has side-effects). */
2400 if (trueop0 == CONST0_RTX (mode))
2401 {
2402 if (side_effects_p (op1))
2403 return simplify_gen_binary (AND, mode, op1, trueop0);
2404 return trueop0;
2405 }
2406 /* x%1 is 0 (of x&0 if x has side-effects). */
2407 if (trueop1 == CONST1_RTX (mode))
2408 {
2409 if (side_effects_p (op0))
2410 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2411 return CONST0_RTX (mode);
2412 }
2413 /* Implement modulus by power of two as AND. */
2414 if (GET_CODE (trueop1) == CONST_INT
2415 && exact_log2 (INTVAL (trueop1)) > 0)
2416 return simplify_gen_binary (AND, mode, op0,
2417 GEN_INT (INTVAL (op1) - 1));
2418 break;
2419
2420 case MOD:
2421 /* 0%x is 0 (or x&0 if x has side-effects). */
2422 if (trueop0 == CONST0_RTX (mode))
2423 {
2424 if (side_effects_p (op1))
2425 return simplify_gen_binary (AND, mode, op1, trueop0);
2426 return trueop0;
2427 }
2428 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
2429 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
2430 {
2431 if (side_effects_p (op0))
2432 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2433 return CONST0_RTX (mode);
2434 }
2435 break;
2436
2437 case ROTATERT:
2438 case ROTATE:
2439 case ASHIFTRT:
2440 if (trueop1 == CONST0_RTX (mode))
2441 return op0;
2442 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2443 return op0;
2444 /* Rotating ~0 always results in ~0. */
2445 if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
2446 && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
2447 && ! side_effects_p (op1))
2448 return op0;
2449 break;
2450
2451 case ASHIFT:
2452 case SS_ASHIFT:
2453 if (trueop1 == CONST0_RTX (mode))
2454 return op0;
2455 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2456 return op0;
2457 break;
2458
2459 case LSHIFTRT:
2460 if (trueop1 == CONST0_RTX (mode))
2461 return op0;
2462 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2463 return op0;
2464 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
2465 if (GET_CODE (op0) == CLZ
2466 && GET_CODE (trueop1) == CONST_INT
2467 && STORE_FLAG_VALUE == 1
2468 && INTVAL (trueop1) < (HOST_WIDE_INT)width)
2469 {
2470 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2471 unsigned HOST_WIDE_INT zero_val = 0;
2472
2473 if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
2474 && zero_val == GET_MODE_BITSIZE (imode)
2475 && INTVAL (trueop1) == exact_log2 (zero_val))
2476 return simplify_gen_relational (EQ, mode, imode,
2477 XEXP (op0, 0), const0_rtx);
2478 }
2479 break;
2480
2481 case SMIN:
2482 if (width <= HOST_BITS_PER_WIDE_INT
2483 && GET_CODE (trueop1) == CONST_INT
2484 && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
2485 && ! side_effects_p (op0))
2486 return op1;
2487 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2488 return op0;
2489 tem = simplify_associative_operation (code, mode, op0, op1);
2490 if (tem)
2491 return tem;
2492 break;
2493
2494 case SMAX:
2495 if (width <= HOST_BITS_PER_WIDE_INT
2496 && GET_CODE (trueop1) == CONST_INT
2497 && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
2498 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
2499 && ! side_effects_p (op0))
2500 return op1;
2501 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2502 return op0;
2503 tem = simplify_associative_operation (code, mode, op0, op1);
2504 if (tem)
2505 return tem;
2506 break;
2507
2508 case UMIN:
2509 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2510 return op1;
2511 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2512 return op0;
2513 tem = simplify_associative_operation (code, mode, op0, op1);
2514 if (tem)
2515 return tem;
2516 break;
2517
2518 case UMAX:
2519 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
2520 return op1;
2521 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2522 return op0;
2523 tem = simplify_associative_operation (code, mode, op0, op1);
2524 if (tem)
2525 return tem;
2526 break;
2527
2528 case SS_PLUS:
2529 case US_PLUS:
2530 case SS_MINUS:
2531 case US_MINUS:
2532 /* ??? There are simplifications that can be done. */
2533 return 0;
2534
2535 case VEC_SELECT:
2536 if (!VECTOR_MODE_P (mode))
2537 {
2538 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2539 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
2540 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2541 gcc_assert (XVECLEN (trueop1, 0) == 1);
2542 gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
2543
2544 if (GET_CODE (trueop0) == CONST_VECTOR)
2545 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
2546 (trueop1, 0, 0)));
2547 }
2548 else
2549 {
2550 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2551 gcc_assert (GET_MODE_INNER (mode)
2552 == GET_MODE_INNER (GET_MODE (trueop0)));
2553 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2554
2555 if (GET_CODE (trueop0) == CONST_VECTOR)
2556 {
2557 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2558 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2559 rtvec v = rtvec_alloc (n_elts);
2560 unsigned int i;
2561
2562 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
2563 for (i = 0; i < n_elts; i++)
2564 {
2565 rtx x = XVECEXP (trueop1, 0, i);
2566
2567 gcc_assert (GET_CODE (x) == CONST_INT);
2568 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
2569 INTVAL (x));
2570 }
2571
2572 return gen_rtx_CONST_VECTOR (mode, v);
2573 }
2574 }
2575
2576 if (XVECLEN (trueop1, 0) == 1
2577 && GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT
2578 && GET_CODE (trueop0) == VEC_CONCAT)
2579 {
2580 rtx vec = trueop0;
2581 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
2582
2583 /* Try to find the element in the VEC_CONCAT. */
2584 while (GET_MODE (vec) != mode
2585 && GET_CODE (vec) == VEC_CONCAT)
2586 {
2587 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
2588 if (offset < vec_size)
2589 vec = XEXP (vec, 0);
2590 else
2591 {
2592 offset -= vec_size;
2593 vec = XEXP (vec, 1);
2594 }
2595 vec = avoid_constant_pool_reference (vec);
2596 }
2597
2598 if (GET_MODE (vec) == mode)
2599 return vec;
2600 }
2601
2602 return 0;
2603 case VEC_CONCAT:
2604 {
2605 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
2606 ? GET_MODE (trueop0)
2607 : GET_MODE_INNER (mode));
2608 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
2609 ? GET_MODE (trueop1)
2610 : GET_MODE_INNER (mode));
2611
2612 gcc_assert (VECTOR_MODE_P (mode));
2613 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
2614 == GET_MODE_SIZE (mode));
2615
2616 if (VECTOR_MODE_P (op0_mode))
2617 gcc_assert (GET_MODE_INNER (mode)
2618 == GET_MODE_INNER (op0_mode));
2619 else
2620 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
2621
2622 if (VECTOR_MODE_P (op1_mode))
2623 gcc_assert (GET_MODE_INNER (mode)
2624 == GET_MODE_INNER (op1_mode));
2625 else
2626 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
2627
2628 if ((GET_CODE (trueop0) == CONST_VECTOR
2629 || GET_CODE (trueop0) == CONST_INT
2630 || GET_CODE (trueop0) == CONST_DOUBLE)
2631 && (GET_CODE (trueop1) == CONST_VECTOR
2632 || GET_CODE (trueop1) == CONST_INT
2633 || GET_CODE (trueop1) == CONST_DOUBLE))
2634 {
2635 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2636 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2637 rtvec v = rtvec_alloc (n_elts);
2638 unsigned int i;
2639 unsigned in_n_elts = 1;
2640
2641 if (VECTOR_MODE_P (op0_mode))
2642 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
2643 for (i = 0; i < n_elts; i++)
2644 {
2645 if (i < in_n_elts)
2646 {
2647 if (!VECTOR_MODE_P (op0_mode))
2648 RTVEC_ELT (v, i) = trueop0;
2649 else
2650 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
2651 }
2652 else
2653 {
2654 if (!VECTOR_MODE_P (op1_mode))
2655 RTVEC_ELT (v, i) = trueop1;
2656 else
2657 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
2658 i - in_n_elts);
2659 }
2660 }
2661
2662 return gen_rtx_CONST_VECTOR (mode, v);
2663 }
2664 }
2665 return 0;
2666
2667 default:
2668 gcc_unreachable ();
2669 }
2670
2671 return 0;
2672 }
2673
2674 rtx
simplify_const_binary_operation(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)2675 simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
2676 rtx op0, rtx op1)
2677 {
2678 HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
2679 HOST_WIDE_INT val;
2680 unsigned int width = GET_MODE_BITSIZE (mode);
2681
2682 if (VECTOR_MODE_P (mode)
2683 && code != VEC_CONCAT
2684 && GET_CODE (op0) == CONST_VECTOR
2685 && GET_CODE (op1) == CONST_VECTOR)
2686 {
2687 unsigned n_elts = GET_MODE_NUNITS (mode);
2688 enum machine_mode op0mode = GET_MODE (op0);
2689 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
2690 enum machine_mode op1mode = GET_MODE (op1);
2691 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
2692 rtvec v = rtvec_alloc (n_elts);
2693 unsigned int i;
2694
2695 gcc_assert (op0_n_elts == n_elts);
2696 gcc_assert (op1_n_elts == n_elts);
2697 for (i = 0; i < n_elts; i++)
2698 {
2699 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
2700 CONST_VECTOR_ELT (op0, i),
2701 CONST_VECTOR_ELT (op1, i));
2702 if (!x)
2703 return 0;
2704 RTVEC_ELT (v, i) = x;
2705 }
2706
2707 return gen_rtx_CONST_VECTOR (mode, v);
2708 }
2709
2710 if (VECTOR_MODE_P (mode)
2711 && code == VEC_CONCAT
2712 && CONSTANT_P (op0) && CONSTANT_P (op1))
2713 {
2714 unsigned n_elts = GET_MODE_NUNITS (mode);
2715 rtvec v = rtvec_alloc (n_elts);
2716
2717 gcc_assert (n_elts >= 2);
2718 if (n_elts == 2)
2719 {
2720 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
2721 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
2722
2723 RTVEC_ELT (v, 0) = op0;
2724 RTVEC_ELT (v, 1) = op1;
2725 }
2726 else
2727 {
2728 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
2729 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
2730 unsigned i;
2731
2732 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
2733 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
2734 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
2735
2736 for (i = 0; i < op0_n_elts; ++i)
2737 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
2738 for (i = 0; i < op1_n_elts; ++i)
2739 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
2740 }
2741
2742 return gen_rtx_CONST_VECTOR (mode, v);
2743 }
2744
2745 if (SCALAR_FLOAT_MODE_P (mode)
2746 && GET_CODE (op0) == CONST_DOUBLE
2747 && GET_CODE (op1) == CONST_DOUBLE
2748 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
2749 {
2750 if (code == AND
2751 || code == IOR
2752 || code == XOR)
2753 {
2754 long tmp0[4];
2755 long tmp1[4];
2756 REAL_VALUE_TYPE r;
2757 int i;
2758
2759 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
2760 GET_MODE (op0));
2761 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
2762 GET_MODE (op1));
2763 for (i = 0; i < 4; i++)
2764 {
2765 switch (code)
2766 {
2767 case AND:
2768 tmp0[i] &= tmp1[i];
2769 break;
2770 case IOR:
2771 tmp0[i] |= tmp1[i];
2772 break;
2773 case XOR:
2774 tmp0[i] ^= tmp1[i];
2775 break;
2776 default:
2777 gcc_unreachable ();
2778 }
2779 }
2780 real_from_target (&r, tmp0, mode);
2781 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
2782 }
2783 else
2784 {
2785 REAL_VALUE_TYPE f0, f1, value, result;
2786 bool inexact;
2787
2788 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
2789 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
2790 real_convert (&f0, mode, &f0);
2791 real_convert (&f1, mode, &f1);
2792
2793 if (HONOR_SNANS (mode)
2794 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
2795 return 0;
2796
2797 if (code == DIV
2798 && REAL_VALUES_EQUAL (f1, dconst0)
2799 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
2800 return 0;
2801
2802 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
2803 && flag_trapping_math
2804 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
2805 {
2806 int s0 = REAL_VALUE_NEGATIVE (f0);
2807 int s1 = REAL_VALUE_NEGATIVE (f1);
2808
2809 switch (code)
2810 {
2811 case PLUS:
2812 /* Inf + -Inf = NaN plus exception. */
2813 if (s0 != s1)
2814 return 0;
2815 break;
2816 case MINUS:
2817 /* Inf - Inf = NaN plus exception. */
2818 if (s0 == s1)
2819 return 0;
2820 break;
2821 case DIV:
2822 /* Inf / Inf = NaN plus exception. */
2823 return 0;
2824 default:
2825 break;
2826 }
2827 }
2828
2829 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
2830 && flag_trapping_math
2831 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
2832 || (REAL_VALUE_ISINF (f1)
2833 && REAL_VALUES_EQUAL (f0, dconst0))))
2834 /* Inf * 0 = NaN plus exception. */
2835 return 0;
2836
2837 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
2838 &f0, &f1);
2839 real_convert (&result, mode, &value);
2840
2841 /* Don't constant fold this floating point operation if
2842 the result has overflowed and flag_trapping_math. */
2843
2844 if (flag_trapping_math
2845 && MODE_HAS_INFINITIES (mode)
2846 && REAL_VALUE_ISINF (result)
2847 && !REAL_VALUE_ISINF (f0)
2848 && !REAL_VALUE_ISINF (f1))
2849 /* Overflow plus exception. */
2850 return 0;
2851
2852 /* Don't constant fold this floating point operation if the
2853 result may dependent upon the run-time rounding mode and
2854 flag_rounding_math is set, or if GCC's software emulation
2855 is unable to accurately represent the result. */
2856
2857 if ((flag_rounding_math
2858 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
2859 && !flag_unsafe_math_optimizations))
2860 && (inexact || !real_identical (&result, &value)))
2861 return NULL_RTX;
2862
2863 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
2864 }
2865 }
2866
2867 /* We can fold some multi-word operations. */
2868 if (GET_MODE_CLASS (mode) == MODE_INT
2869 && width == HOST_BITS_PER_WIDE_INT * 2
2870 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
2871 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
2872 {
2873 unsigned HOST_WIDE_INT l1, l2, lv, lt;
2874 HOST_WIDE_INT h1, h2, hv, ht;
2875
2876 if (GET_CODE (op0) == CONST_DOUBLE)
2877 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
2878 else
2879 l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
2880
2881 if (GET_CODE (op1) == CONST_DOUBLE)
2882 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
2883 else
2884 l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
2885
2886 switch (code)
2887 {
2888 case MINUS:
2889 /* A - B == A + (-B). */
2890 neg_double (l2, h2, &lv, &hv);
2891 l2 = lv, h2 = hv;
2892
2893 /* Fall through.... */
2894
2895 case PLUS:
2896 add_double (l1, h1, l2, h2, &lv, &hv);
2897 break;
2898
2899 case MULT:
2900 mul_double (l1, h1, l2, h2, &lv, &hv);
2901 break;
2902
2903 case DIV:
2904 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
2905 &lv, &hv, <, &ht))
2906 return 0;
2907 break;
2908
2909 case MOD:
2910 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
2911 <, &ht, &lv, &hv))
2912 return 0;
2913 break;
2914
2915 case UDIV:
2916 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
2917 &lv, &hv, <, &ht))
2918 return 0;
2919 break;
2920
2921 case UMOD:
2922 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
2923 <, &ht, &lv, &hv))
2924 return 0;
2925 break;
2926
2927 case AND:
2928 lv = l1 & l2, hv = h1 & h2;
2929 break;
2930
2931 case IOR:
2932 lv = l1 | l2, hv = h1 | h2;
2933 break;
2934
2935 case XOR:
2936 lv = l1 ^ l2, hv = h1 ^ h2;
2937 break;
2938
2939 case SMIN:
2940 if (h1 < h2
2941 || (h1 == h2
2942 && ((unsigned HOST_WIDE_INT) l1
2943 < (unsigned HOST_WIDE_INT) l2)))
2944 lv = l1, hv = h1;
2945 else
2946 lv = l2, hv = h2;
2947 break;
2948
2949 case SMAX:
2950 if (h1 > h2
2951 || (h1 == h2
2952 && ((unsigned HOST_WIDE_INT) l1
2953 > (unsigned HOST_WIDE_INT) l2)))
2954 lv = l1, hv = h1;
2955 else
2956 lv = l2, hv = h2;
2957 break;
2958
2959 case UMIN:
2960 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
2961 || (h1 == h2
2962 && ((unsigned HOST_WIDE_INT) l1
2963 < (unsigned HOST_WIDE_INT) l2)))
2964 lv = l1, hv = h1;
2965 else
2966 lv = l2, hv = h2;
2967 break;
2968
2969 case UMAX:
2970 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
2971 || (h1 == h2
2972 && ((unsigned HOST_WIDE_INT) l1
2973 > (unsigned HOST_WIDE_INT) l2)))
2974 lv = l1, hv = h1;
2975 else
2976 lv = l2, hv = h2;
2977 break;
2978
2979 case LSHIFTRT: case ASHIFTRT:
2980 case ASHIFT:
2981 case ROTATE: case ROTATERT:
2982 if (SHIFT_COUNT_TRUNCATED)
2983 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
2984
2985 if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
2986 return 0;
2987
2988 if (code == LSHIFTRT || code == ASHIFTRT)
2989 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
2990 code == ASHIFTRT);
2991 else if (code == ASHIFT)
2992 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
2993 else if (code == ROTATE)
2994 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
2995 else /* code == ROTATERT */
2996 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
2997 break;
2998
2999 default:
3000 return 0;
3001 }
3002
3003 return immed_double_const (lv, hv, mode);
3004 }
3005
3006 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
3007 && width <= HOST_BITS_PER_WIDE_INT && width != 0)
3008 {
3009 /* Get the integer argument values in two forms:
3010 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3011
3012 arg0 = INTVAL (op0);
3013 arg1 = INTVAL (op1);
3014
3015 if (width < HOST_BITS_PER_WIDE_INT)
3016 {
3017 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
3018 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
3019
3020 arg0s = arg0;
3021 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3022 arg0s |= ((HOST_WIDE_INT) (-1) << width);
3023
3024 arg1s = arg1;
3025 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3026 arg1s |= ((HOST_WIDE_INT) (-1) << width);
3027 }
3028 else
3029 {
3030 arg0s = arg0;
3031 arg1s = arg1;
3032 }
3033
3034 /* Compute the value of the arithmetic. */
3035
3036 switch (code)
3037 {
3038 case PLUS:
3039 val = arg0s + arg1s;
3040 break;
3041
3042 case MINUS:
3043 val = arg0s - arg1s;
3044 break;
3045
3046 case MULT:
3047 val = arg0s * arg1s;
3048 break;
3049
3050 case DIV:
3051 if (arg1s == 0
3052 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3053 && arg1s == -1))
3054 return 0;
3055 val = arg0s / arg1s;
3056 break;
3057
3058 case MOD:
3059 if (arg1s == 0
3060 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3061 && arg1s == -1))
3062 return 0;
3063 val = arg0s % arg1s;
3064 break;
3065
3066 case UDIV:
3067 if (arg1 == 0
3068 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3069 && arg1s == -1))
3070 return 0;
3071 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3072 break;
3073
3074 case UMOD:
3075 if (arg1 == 0
3076 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3077 && arg1s == -1))
3078 return 0;
3079 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3080 break;
3081
3082 case AND:
3083 val = arg0 & arg1;
3084 break;
3085
3086 case IOR:
3087 val = arg0 | arg1;
3088 break;
3089
3090 case XOR:
3091 val = arg0 ^ arg1;
3092 break;
3093
3094 case LSHIFTRT:
3095 case ASHIFT:
3096 case ASHIFTRT:
3097 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
3098 the value is in range. We can't return any old value for
3099 out-of-range arguments because either the middle-end (via
3100 shift_truncation_mask) or the back-end might be relying on
3101 target-specific knowledge. Nor can we rely on
3102 shift_truncation_mask, since the shift might not be part of an
3103 ashlM3, lshrM3 or ashrM3 instruction. */
3104 if (SHIFT_COUNT_TRUNCATED)
3105 arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
3106 else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
3107 return 0;
3108
3109 val = (code == ASHIFT
3110 ? ((unsigned HOST_WIDE_INT) arg0) << arg1
3111 : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
3112
3113 /* Sign-extend the result for arithmetic right shifts. */
3114 if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
3115 val |= ((HOST_WIDE_INT) -1) << (width - arg1);
3116 break;
3117
3118 case ROTATERT:
3119 if (arg1 < 0)
3120 return 0;
3121
3122 arg1 %= width;
3123 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3124 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3125 break;
3126
3127 case ROTATE:
3128 if (arg1 < 0)
3129 return 0;
3130
3131 arg1 %= width;
3132 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3133 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3134 break;
3135
3136 case COMPARE:
3137 /* Do nothing here. */
3138 return 0;
3139
3140 case SMIN:
3141 val = arg0s <= arg1s ? arg0s : arg1s;
3142 break;
3143
3144 case UMIN:
3145 val = ((unsigned HOST_WIDE_INT) arg0
3146 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3147 break;
3148
3149 case SMAX:
3150 val = arg0s > arg1s ? arg0s : arg1s;
3151 break;
3152
3153 case UMAX:
3154 val = ((unsigned HOST_WIDE_INT) arg0
3155 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3156 break;
3157
3158 case SS_PLUS:
3159 case US_PLUS:
3160 case SS_MINUS:
3161 case US_MINUS:
3162 case SS_ASHIFT:
3163 /* ??? There are simplifications that can be done. */
3164 return 0;
3165
3166 default:
3167 gcc_unreachable ();
3168 }
3169
3170 return gen_int_mode (val, mode);
3171 }
3172
3173 return NULL_RTX;
3174 }
3175
3176
3177
3178 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3179 PLUS or MINUS.
3180
3181 Rather than test for specific case, we do this by a brute-force method
3182 and do all possible simplifications until no more changes occur. Then
3183 we rebuild the operation. */
3184
3185 struct simplify_plus_minus_op_data
3186 {
3187 rtx op;
3188 short neg;
3189 };
3190
3191 static int
simplify_plus_minus_op_data_cmp(const void * p1,const void * p2)3192 simplify_plus_minus_op_data_cmp (const void *p1, const void *p2)
3193 {
3194 const struct simplify_plus_minus_op_data *d1 = p1;
3195 const struct simplify_plus_minus_op_data *d2 = p2;
3196 int result;
3197
3198 result = (commutative_operand_precedence (d2->op)
3199 - commutative_operand_precedence (d1->op));
3200 if (result)
3201 return result;
3202
3203 /* Group together equal REGs to do more simplification. */
3204 if (REG_P (d1->op) && REG_P (d2->op))
3205 return REGNO (d1->op) - REGNO (d2->op);
3206 else
3207 return 0;
3208 }
3209
3210 static rtx
simplify_plus_minus(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)3211 simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
3212 rtx op1)
3213 {
3214 struct simplify_plus_minus_op_data ops[8];
3215 rtx result, tem;
3216 int n_ops = 2, input_ops = 2;
3217 int changed, n_constants = 0, canonicalized = 0;
3218 int i, j;
3219
3220 memset (ops, 0, sizeof ops);
3221
3222 /* Set up the two operands and then expand them until nothing has been
3223 changed. If we run out of room in our array, give up; this should
3224 almost never happen. */
3225
3226 ops[0].op = op0;
3227 ops[0].neg = 0;
3228 ops[1].op = op1;
3229 ops[1].neg = (code == MINUS);
3230
3231 do
3232 {
3233 changed = 0;
3234
3235 for (i = 0; i < n_ops; i++)
3236 {
3237 rtx this_op = ops[i].op;
3238 int this_neg = ops[i].neg;
3239 enum rtx_code this_code = GET_CODE (this_op);
3240
3241 switch (this_code)
3242 {
3243 case PLUS:
3244 case MINUS:
3245 if (n_ops == 7)
3246 return NULL_RTX;
3247
3248 ops[n_ops].op = XEXP (this_op, 1);
3249 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
3250 n_ops++;
3251
3252 ops[i].op = XEXP (this_op, 0);
3253 input_ops++;
3254 changed = 1;
3255 canonicalized |= this_neg;
3256 break;
3257
3258 case NEG:
3259 ops[i].op = XEXP (this_op, 0);
3260 ops[i].neg = ! this_neg;
3261 changed = 1;
3262 canonicalized = 1;
3263 break;
3264
3265 case CONST:
3266 if (n_ops < 7
3267 && GET_CODE (XEXP (this_op, 0)) == PLUS
3268 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
3269 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
3270 {
3271 ops[i].op = XEXP (XEXP (this_op, 0), 0);
3272 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
3273 ops[n_ops].neg = this_neg;
3274 n_ops++;
3275 changed = 1;
3276 canonicalized = 1;
3277 }
3278 break;
3279
3280 case NOT:
3281 /* ~a -> (-a - 1) */
3282 if (n_ops != 7)
3283 {
3284 ops[n_ops].op = constm1_rtx;
3285 ops[n_ops++].neg = this_neg;
3286 ops[i].op = XEXP (this_op, 0);
3287 ops[i].neg = !this_neg;
3288 changed = 1;
3289 canonicalized = 1;
3290 }
3291 break;
3292
3293 case CONST_INT:
3294 n_constants++;
3295 if (this_neg)
3296 {
3297 ops[i].op = neg_const_int (mode, this_op);
3298 ops[i].neg = 0;
3299 changed = 1;
3300 canonicalized = 1;
3301 }
3302 break;
3303
3304 default:
3305 break;
3306 }
3307 }
3308 }
3309 while (changed);
3310
3311 if (n_constants > 1)
3312 canonicalized = 1;
3313
3314 gcc_assert (n_ops >= 2);
3315
3316 /* If we only have two operands, we can avoid the loops. */
3317 if (n_ops == 2)
3318 {
3319 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
3320 rtx lhs, rhs;
3321
3322 /* Get the two operands. Be careful with the order, especially for
3323 the cases where code == MINUS. */
3324 if (ops[0].neg && ops[1].neg)
3325 {
3326 lhs = gen_rtx_NEG (mode, ops[0].op);
3327 rhs = ops[1].op;
3328 }
3329 else if (ops[0].neg)
3330 {
3331 lhs = ops[1].op;
3332 rhs = ops[0].op;
3333 }
3334 else
3335 {
3336 lhs = ops[0].op;
3337 rhs = ops[1].op;
3338 }
3339
3340 return simplify_const_binary_operation (code, mode, lhs, rhs);
3341 }
3342
3343 /* Now simplify each pair of operands until nothing changes. */
3344 do
3345 {
3346 /* Insertion sort is good enough for an eight-element array. */
3347 for (i = 1; i < n_ops; i++)
3348 {
3349 struct simplify_plus_minus_op_data save;
3350 j = i - 1;
3351 if (simplify_plus_minus_op_data_cmp (&ops[j], &ops[i]) < 0)
3352 continue;
3353
3354 canonicalized = 1;
3355 save = ops[i];
3356 do
3357 ops[j + 1] = ops[j];
3358 while (j-- && simplify_plus_minus_op_data_cmp (&ops[j], &save) > 0);
3359 ops[j + 1] = save;
3360 }
3361
3362 /* This is only useful the first time through. */
3363 if (!canonicalized)
3364 return NULL_RTX;
3365
3366 changed = 0;
3367 for (i = n_ops - 1; i > 0; i--)
3368 for (j = i - 1; j >= 0; j--)
3369 {
3370 rtx lhs = ops[j].op, rhs = ops[i].op;
3371 int lneg = ops[j].neg, rneg = ops[i].neg;
3372
3373 if (lhs != 0 && rhs != 0)
3374 {
3375 enum rtx_code ncode = PLUS;
3376
3377 if (lneg != rneg)
3378 {
3379 ncode = MINUS;
3380 if (lneg)
3381 tem = lhs, lhs = rhs, rhs = tem;
3382 }
3383 else if (swap_commutative_operands_p (lhs, rhs))
3384 tem = lhs, lhs = rhs, rhs = tem;
3385
3386 if ((GET_CODE (lhs) == CONST || GET_CODE (lhs) == CONST_INT)
3387 && (GET_CODE (rhs) == CONST || GET_CODE (rhs) == CONST_INT))
3388 {
3389 rtx tem_lhs, tem_rhs;
3390
3391 tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
3392 tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
3393 tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
3394
3395 if (tem && !CONSTANT_P (tem))
3396 tem = gen_rtx_CONST (GET_MODE (tem), tem);
3397 }
3398 else
3399 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
3400
3401 /* Reject "simplifications" that just wrap the two
3402 arguments in a CONST. Failure to do so can result
3403 in infinite recursion with simplify_binary_operation
3404 when it calls us to simplify CONST operations. */
3405 if (tem
3406 && ! (GET_CODE (tem) == CONST
3407 && GET_CODE (XEXP (tem, 0)) == ncode
3408 && XEXP (XEXP (tem, 0), 0) == lhs
3409 && XEXP (XEXP (tem, 0), 1) == rhs))
3410 {
3411 lneg &= rneg;
3412 if (GET_CODE (tem) == NEG)
3413 tem = XEXP (tem, 0), lneg = !lneg;
3414 if (GET_CODE (tem) == CONST_INT && lneg)
3415 tem = neg_const_int (mode, tem), lneg = 0;
3416
3417 ops[i].op = tem;
3418 ops[i].neg = lneg;
3419 ops[j].op = NULL_RTX;
3420 changed = 1;
3421 }
3422 }
3423 }
3424
3425 /* Pack all the operands to the lower-numbered entries. */
3426 for (i = 0, j = 0; j < n_ops; j++)
3427 if (ops[j].op)
3428 {
3429 ops[i] = ops[j];
3430 i++;
3431 }
3432 n_ops = i;
3433 }
3434 while (changed);
3435
3436 /* Create (minus -C X) instead of (neg (const (plus X C))). */
3437 if (n_ops == 2
3438 && GET_CODE (ops[1].op) == CONST_INT
3439 && CONSTANT_P (ops[0].op)
3440 && ops[0].neg)
3441 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
3442
3443 /* We suppressed creation of trivial CONST expressions in the
3444 combination loop to avoid recursion. Create one manually now.
3445 The combination loop should have ensured that there is exactly
3446 one CONST_INT, and the sort will have ensured that it is last
3447 in the array and that any other constant will be next-to-last. */
3448
3449 if (n_ops > 1
3450 && GET_CODE (ops[n_ops - 1].op) == CONST_INT
3451 && CONSTANT_P (ops[n_ops - 2].op))
3452 {
3453 rtx value = ops[n_ops - 1].op;
3454 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
3455 value = neg_const_int (mode, value);
3456 ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
3457 n_ops--;
3458 }
3459
3460 /* Put a non-negated operand first, if possible. */
3461
3462 for (i = 0; i < n_ops && ops[i].neg; i++)
3463 continue;
3464 if (i == n_ops)
3465 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
3466 else if (i != 0)
3467 {
3468 tem = ops[0].op;
3469 ops[0] = ops[i];
3470 ops[i].op = tem;
3471 ops[i].neg = 1;
3472 }
3473
3474 /* Now make the result by performing the requested operations. */
3475 result = ops[0].op;
3476 for (i = 1; i < n_ops; i++)
3477 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
3478 mode, result, ops[i].op);
3479
3480 return result;
3481 }
3482
3483 /* Check whether an operand is suitable for calling simplify_plus_minus. */
3484 static bool
plus_minus_operand_p(rtx x)3485 plus_minus_operand_p (rtx x)
3486 {
3487 return GET_CODE (x) == PLUS
3488 || GET_CODE (x) == MINUS
3489 || (GET_CODE (x) == CONST
3490 && GET_CODE (XEXP (x, 0)) == PLUS
3491 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
3492 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
3493 }
3494
3495 /* Like simplify_binary_operation except used for relational operators.
3496 MODE is the mode of the result. If MODE is VOIDmode, both operands must
3497 not also be VOIDmode.
3498
3499 CMP_MODE specifies in which mode the comparison is done in, so it is
3500 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
3501 the operands or, if both are VOIDmode, the operands are compared in
3502 "infinite precision". */
3503 rtx
simplify_relational_operation(enum rtx_code code,enum machine_mode mode,enum machine_mode cmp_mode,rtx op0,rtx op1)3504 simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
3505 enum machine_mode cmp_mode, rtx op0, rtx op1)
3506 {
3507 rtx tem, trueop0, trueop1;
3508
3509 if (cmp_mode == VOIDmode)
3510 cmp_mode = GET_MODE (op0);
3511 if (cmp_mode == VOIDmode)
3512 cmp_mode = GET_MODE (op1);
3513
3514 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
3515 if (tem)
3516 {
3517 if (SCALAR_FLOAT_MODE_P (mode))
3518 {
3519 if (tem == const0_rtx)
3520 return CONST0_RTX (mode);
3521 #ifdef FLOAT_STORE_FLAG_VALUE
3522 {
3523 REAL_VALUE_TYPE val;
3524 val = FLOAT_STORE_FLAG_VALUE (mode);
3525 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
3526 }
3527 #else
3528 return NULL_RTX;
3529 #endif
3530 }
3531 if (VECTOR_MODE_P (mode))
3532 {
3533 if (tem == const0_rtx)
3534 return CONST0_RTX (mode);
3535 #ifdef VECTOR_STORE_FLAG_VALUE
3536 {
3537 int i, units;
3538 rtvec v;
3539
3540 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
3541 if (val == NULL_RTX)
3542 return NULL_RTX;
3543 if (val == const1_rtx)
3544 return CONST1_RTX (mode);
3545
3546 units = GET_MODE_NUNITS (mode);
3547 v = rtvec_alloc (units);
3548 for (i = 0; i < units; i++)
3549 RTVEC_ELT (v, i) = val;
3550 return gen_rtx_raw_CONST_VECTOR (mode, v);
3551 }
3552 #else
3553 return NULL_RTX;
3554 #endif
3555 }
3556
3557 return tem;
3558 }
3559
3560 /* For the following tests, ensure const0_rtx is op1. */
3561 if (swap_commutative_operands_p (op0, op1)
3562 || (op0 == const0_rtx && op1 != const0_rtx))
3563 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
3564
3565 /* If op0 is a compare, extract the comparison arguments from it. */
3566 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3567 return simplify_relational_operation (code, mode, VOIDmode,
3568 XEXP (op0, 0), XEXP (op0, 1));
3569
3570 if (GET_MODE_CLASS (cmp_mode) == MODE_CC
3571 || CC0_P (op0))
3572 return NULL_RTX;
3573
3574 trueop0 = avoid_constant_pool_reference (op0);
3575 trueop1 = avoid_constant_pool_reference (op1);
3576 return simplify_relational_operation_1 (code, mode, cmp_mode,
3577 trueop0, trueop1);
3578 }
3579
3580 /* This part of simplify_relational_operation is only used when CMP_MODE
3581 is not in class MODE_CC (i.e. it is a real comparison).
3582
3583 MODE is the mode of the result, while CMP_MODE specifies in which
3584 mode the comparison is done in, so it is the mode of the operands. */
3585
3586 static rtx
simplify_relational_operation_1(enum rtx_code code,enum machine_mode mode,enum machine_mode cmp_mode,rtx op0,rtx op1)3587 simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
3588 enum machine_mode cmp_mode, rtx op0, rtx op1)
3589 {
3590 enum rtx_code op0code = GET_CODE (op0);
3591
3592 if (GET_CODE (op1) == CONST_INT)
3593 {
3594 if (INTVAL (op1) == 0 && COMPARISON_P (op0))
3595 {
3596 /* If op0 is a comparison, extract the comparison arguments
3597 from it. */
3598 if (code == NE)
3599 {
3600 if (GET_MODE (op0) == mode)
3601 return simplify_rtx (op0);
3602 else
3603 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
3604 XEXP (op0, 0), XEXP (op0, 1));
3605 }
3606 else if (code == EQ)
3607 {
3608 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
3609 if (new_code != UNKNOWN)
3610 return simplify_gen_relational (new_code, mode, VOIDmode,
3611 XEXP (op0, 0), XEXP (op0, 1));
3612 }
3613 }
3614 }
3615
3616 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
3617 if ((code == EQ || code == NE)
3618 && (op0code == PLUS || op0code == MINUS)
3619 && CONSTANT_P (op1)
3620 && CONSTANT_P (XEXP (op0, 1))
3621 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
3622 {
3623 rtx x = XEXP (op0, 0);
3624 rtx c = XEXP (op0, 1);
3625
3626 c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
3627 cmp_mode, op1, c);
3628 return simplify_gen_relational (code, mode, cmp_mode, x, c);
3629 }
3630
3631 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
3632 the same as (zero_extract:SI FOO (const_int 1) BAR). */
3633 if (code == NE
3634 && op1 == const0_rtx
3635 && GET_MODE_CLASS (mode) == MODE_INT
3636 && cmp_mode != VOIDmode
3637 /* ??? Work-around BImode bugs in the ia64 backend. */
3638 && mode != BImode
3639 && cmp_mode != BImode
3640 && nonzero_bits (op0, cmp_mode) == 1
3641 && STORE_FLAG_VALUE == 1)
3642 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
3643 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
3644 : lowpart_subreg (mode, op0, cmp_mode);
3645
3646 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
3647 if ((code == EQ || code == NE)
3648 && op1 == const0_rtx
3649 && op0code == XOR)
3650 return simplify_gen_relational (code, mode, cmp_mode,
3651 XEXP (op0, 0), XEXP (op0, 1));
3652
3653 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
3654 if ((code == EQ || code == NE)
3655 && op0code == XOR
3656 && rtx_equal_p (XEXP (op0, 0), op1)
3657 && !side_effects_p (XEXP (op0, 0)))
3658 return simplify_gen_relational (code, mode, cmp_mode,
3659 XEXP (op0, 1), const0_rtx);
3660
3661 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
3662 if ((code == EQ || code == NE)
3663 && op0code == XOR
3664 && rtx_equal_p (XEXP (op0, 1), op1)
3665 && !side_effects_p (XEXP (op0, 1)))
3666 return simplify_gen_relational (code, mode, cmp_mode,
3667 XEXP (op0, 0), const0_rtx);
3668
3669 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
3670 if ((code == EQ || code == NE)
3671 && op0code == XOR
3672 && (GET_CODE (op1) == CONST_INT
3673 || GET_CODE (op1) == CONST_DOUBLE)
3674 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
3675 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
3676 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
3677 simplify_gen_binary (XOR, cmp_mode,
3678 XEXP (op0, 1), op1));
3679
3680 return NULL_RTX;
3681 }
3682
3683 /* Check if the given comparison (done in the given MODE) is actually a
3684 tautology or a contradiction.
3685 If no simplification is possible, this function returns zero.
3686 Otherwise, it returns either const_true_rtx or const0_rtx. */
3687
3688 rtx
simplify_const_relational_operation(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1)3689 simplify_const_relational_operation (enum rtx_code code,
3690 enum machine_mode mode,
3691 rtx op0, rtx op1)
3692 {
3693 int equal, op0lt, op0ltu, op1lt, op1ltu;
3694 rtx tem;
3695 rtx trueop0;
3696 rtx trueop1;
3697
3698 gcc_assert (mode != VOIDmode
3699 || (GET_MODE (op0) == VOIDmode
3700 && GET_MODE (op1) == VOIDmode));
3701
3702 /* If op0 is a compare, extract the comparison arguments from it. */
3703 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3704 {
3705 op1 = XEXP (op0, 1);
3706 op0 = XEXP (op0, 0);
3707
3708 if (GET_MODE (op0) != VOIDmode)
3709 mode = GET_MODE (op0);
3710 else if (GET_MODE (op1) != VOIDmode)
3711 mode = GET_MODE (op1);
3712 else
3713 return 0;
3714 }
3715
3716 /* We can't simplify MODE_CC values since we don't know what the
3717 actual comparison is. */
3718 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
3719 return 0;
3720
3721 /* Make sure the constant is second. */
3722 if (swap_commutative_operands_p (op0, op1))
3723 {
3724 tem = op0, op0 = op1, op1 = tem;
3725 code = swap_condition (code);
3726 }
3727
3728 trueop0 = avoid_constant_pool_reference (op0);
3729 trueop1 = avoid_constant_pool_reference (op1);
3730
3731 /* For integer comparisons of A and B maybe we can simplify A - B and can
3732 then simplify a comparison of that with zero. If A and B are both either
3733 a register or a CONST_INT, this can't help; testing for these cases will
3734 prevent infinite recursion here and speed things up.
3735
3736 We can only do this for EQ and NE comparisons as otherwise we may
3737 lose or introduce overflow which we cannot disregard as undefined as
3738 we do not know the signedness of the operation on either the left or
3739 the right hand side of the comparison. */
3740
3741 if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
3742 && (code == EQ || code == NE)
3743 && ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
3744 && (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
3745 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
3746 /* We cannot do this if tem is a nonzero address. */
3747 && ! nonzero_address_p (tem))
3748 return simplify_const_relational_operation (signed_condition (code),
3749 mode, tem, const0_rtx);
3750
3751 if (! HONOR_NANS (mode) && code == ORDERED)
3752 return const_true_rtx;
3753
3754 if (! HONOR_NANS (mode) && code == UNORDERED)
3755 return const0_rtx;
3756
3757 /* For modes without NaNs, if the two operands are equal, we know the
3758 result except if they have side-effects. */
3759 if (! HONOR_NANS (GET_MODE (trueop0))
3760 && rtx_equal_p (trueop0, trueop1)
3761 && ! side_effects_p (trueop0))
3762 equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
3763
3764 /* If the operands are floating-point constants, see if we can fold
3765 the result. */
3766 else if (GET_CODE (trueop0) == CONST_DOUBLE
3767 && GET_CODE (trueop1) == CONST_DOUBLE
3768 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
3769 {
3770 REAL_VALUE_TYPE d0, d1;
3771
3772 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
3773 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
3774
3775 /* Comparisons are unordered iff at least one of the values is NaN. */
3776 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
3777 switch (code)
3778 {
3779 case UNEQ:
3780 case UNLT:
3781 case UNGT:
3782 case UNLE:
3783 case UNGE:
3784 case NE:
3785 case UNORDERED:
3786 return const_true_rtx;
3787 case EQ:
3788 case LT:
3789 case GT:
3790 case LE:
3791 case GE:
3792 case LTGT:
3793 case ORDERED:
3794 return const0_rtx;
3795 default:
3796 return 0;
3797 }
3798
3799 equal = REAL_VALUES_EQUAL (d0, d1);
3800 op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
3801 op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
3802 }
3803
3804 /* Otherwise, see if the operands are both integers. */
3805 else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
3806 && (GET_CODE (trueop0) == CONST_DOUBLE
3807 || GET_CODE (trueop0) == CONST_INT)
3808 && (GET_CODE (trueop1) == CONST_DOUBLE
3809 || GET_CODE (trueop1) == CONST_INT))
3810 {
3811 int width = GET_MODE_BITSIZE (mode);
3812 HOST_WIDE_INT l0s, h0s, l1s, h1s;
3813 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
3814
3815 /* Get the two words comprising each integer constant. */
3816 if (GET_CODE (trueop0) == CONST_DOUBLE)
3817 {
3818 l0u = l0s = CONST_DOUBLE_LOW (trueop0);
3819 h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
3820 }
3821 else
3822 {
3823 l0u = l0s = INTVAL (trueop0);
3824 h0u = h0s = HWI_SIGN_EXTEND (l0s);
3825 }
3826
3827 if (GET_CODE (trueop1) == CONST_DOUBLE)
3828 {
3829 l1u = l1s = CONST_DOUBLE_LOW (trueop1);
3830 h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
3831 }
3832 else
3833 {
3834 l1u = l1s = INTVAL (trueop1);
3835 h1u = h1s = HWI_SIGN_EXTEND (l1s);
3836 }
3837
3838 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
3839 we have to sign or zero-extend the values. */
3840 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
3841 {
3842 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
3843 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
3844
3845 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3846 l0s |= ((HOST_WIDE_INT) (-1) << width);
3847
3848 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3849 l1s |= ((HOST_WIDE_INT) (-1) << width);
3850 }
3851 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
3852 h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
3853
3854 equal = (h0u == h1u && l0u == l1u);
3855 op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
3856 op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
3857 op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
3858 op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
3859 }
3860
3861 /* Otherwise, there are some code-specific tests we can make. */
3862 else
3863 {
3864 /* Optimize comparisons with upper and lower bounds. */
3865 if (SCALAR_INT_MODE_P (mode)
3866 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3867 {
3868 rtx mmin, mmax;
3869 int sign;
3870
3871 if (code == GEU
3872 || code == LEU
3873 || code == GTU
3874 || code == LTU)
3875 sign = 0;
3876 else
3877 sign = 1;
3878
3879 get_mode_bounds (mode, sign, mode, &mmin, &mmax);
3880
3881 tem = NULL_RTX;
3882 switch (code)
3883 {
3884 case GEU:
3885 case GE:
3886 /* x >= min is always true. */
3887 if (rtx_equal_p (trueop1, mmin))
3888 tem = const_true_rtx;
3889 else
3890 break;
3891
3892 case LEU:
3893 case LE:
3894 /* x <= max is always true. */
3895 if (rtx_equal_p (trueop1, mmax))
3896 tem = const_true_rtx;
3897 break;
3898
3899 case GTU:
3900 case GT:
3901 /* x > max is always false. */
3902 if (rtx_equal_p (trueop1, mmax))
3903 tem = const0_rtx;
3904 break;
3905
3906 case LTU:
3907 case LT:
3908 /* x < min is always false. */
3909 if (rtx_equal_p (trueop1, mmin))
3910 tem = const0_rtx;
3911 break;
3912
3913 default:
3914 break;
3915 }
3916 if (tem == const0_rtx
3917 || tem == const_true_rtx)
3918 return tem;
3919 }
3920
3921 switch (code)
3922 {
3923 case EQ:
3924 if (trueop1 == const0_rtx && nonzero_address_p (op0))
3925 return const0_rtx;
3926 break;
3927
3928 case NE:
3929 if (trueop1 == const0_rtx && nonzero_address_p (op0))
3930 return const_true_rtx;
3931 break;
3932
3933 case LT:
3934 /* Optimize abs(x) < 0.0. */
3935 if (trueop1 == CONST0_RTX (mode)
3936 && !HONOR_SNANS (mode)
3937 && (!INTEGRAL_MODE_P (mode)
3938 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
3939 {
3940 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3941 : trueop0;
3942 if (GET_CODE (tem) == ABS)
3943 {
3944 if (INTEGRAL_MODE_P (mode)
3945 && (issue_strict_overflow_warning
3946 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
3947 warning (OPT_Wstrict_overflow,
3948 ("assuming signed overflow does not occur when "
3949 "assuming abs (x) < 0 is false"));
3950 return const0_rtx;
3951 }
3952 }
3953 break;
3954
3955 case GE:
3956 /* Optimize abs(x) >= 0.0. */
3957 if (trueop1 == CONST0_RTX (mode)
3958 && !HONOR_NANS (mode)
3959 && (!INTEGRAL_MODE_P (mode)
3960 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
3961 {
3962 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3963 : trueop0;
3964 if (GET_CODE (tem) == ABS)
3965 {
3966 if (INTEGRAL_MODE_P (mode)
3967 && (issue_strict_overflow_warning
3968 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
3969 warning (OPT_Wstrict_overflow,
3970 ("assuming signed overflow does not occur when "
3971 "assuming abs (x) >= 0 is true"));
3972 return const_true_rtx;
3973 }
3974 }
3975 break;
3976
3977 case UNGE:
3978 /* Optimize ! (abs(x) < 0.0). */
3979 if (trueop1 == CONST0_RTX (mode))
3980 {
3981 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3982 : trueop0;
3983 if (GET_CODE (tem) == ABS)
3984 return const_true_rtx;
3985 }
3986 break;
3987
3988 default:
3989 break;
3990 }
3991
3992 return 0;
3993 }
3994
3995 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
3996 as appropriate. */
3997 switch (code)
3998 {
3999 case EQ:
4000 case UNEQ:
4001 return equal ? const_true_rtx : const0_rtx;
4002 case NE:
4003 case LTGT:
4004 return ! equal ? const_true_rtx : const0_rtx;
4005 case LT:
4006 case UNLT:
4007 return op0lt ? const_true_rtx : const0_rtx;
4008 case GT:
4009 case UNGT:
4010 return op1lt ? const_true_rtx : const0_rtx;
4011 case LTU:
4012 return op0ltu ? const_true_rtx : const0_rtx;
4013 case GTU:
4014 return op1ltu ? const_true_rtx : const0_rtx;
4015 case LE:
4016 case UNLE:
4017 return equal || op0lt ? const_true_rtx : const0_rtx;
4018 case GE:
4019 case UNGE:
4020 return equal || op1lt ? const_true_rtx : const0_rtx;
4021 case LEU:
4022 return equal || op0ltu ? const_true_rtx : const0_rtx;
4023 case GEU:
4024 return equal || op1ltu ? const_true_rtx : const0_rtx;
4025 case ORDERED:
4026 return const_true_rtx;
4027 case UNORDERED:
4028 return const0_rtx;
4029 default:
4030 gcc_unreachable ();
4031 }
4032 }
4033
4034 /* Simplify CODE, an operation with result mode MODE and three operands,
4035 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4036 a constant. Return 0 if no simplifications is possible. */
4037
4038 rtx
simplify_ternary_operation(enum rtx_code code,enum machine_mode mode,enum machine_mode op0_mode,rtx op0,rtx op1,rtx op2)4039 simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
4040 enum machine_mode op0_mode, rtx op0, rtx op1,
4041 rtx op2)
4042 {
4043 unsigned int width = GET_MODE_BITSIZE (mode);
4044
4045 /* VOIDmode means "infinite" precision. */
4046 if (width == 0)
4047 width = HOST_BITS_PER_WIDE_INT;
4048
4049 switch (code)
4050 {
4051 case SIGN_EXTRACT:
4052 case ZERO_EXTRACT:
4053 if (GET_CODE (op0) == CONST_INT
4054 && GET_CODE (op1) == CONST_INT
4055 && GET_CODE (op2) == CONST_INT
4056 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
4057 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
4058 {
4059 /* Extracting a bit-field from a constant */
4060 HOST_WIDE_INT val = INTVAL (op0);
4061
4062 if (BITS_BIG_ENDIAN)
4063 val >>= (GET_MODE_BITSIZE (op0_mode)
4064 - INTVAL (op2) - INTVAL (op1));
4065 else
4066 val >>= INTVAL (op2);
4067
4068 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4069 {
4070 /* First zero-extend. */
4071 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4072 /* If desired, propagate sign bit. */
4073 if (code == SIGN_EXTRACT
4074 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4075 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4076 }
4077
4078 /* Clear the bits that don't belong in our mode,
4079 unless they and our sign bit are all one.
4080 So we get either a reasonable negative value or a reasonable
4081 unsigned value for this mode. */
4082 if (width < HOST_BITS_PER_WIDE_INT
4083 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4084 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4085 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4086
4087 return gen_int_mode (val, mode);
4088 }
4089 break;
4090
4091 case IF_THEN_ELSE:
4092 if (GET_CODE (op0) == CONST_INT)
4093 return op0 != const0_rtx ? op1 : op2;
4094
4095 /* Convert c ? a : a into "a". */
4096 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
4097 return op1;
4098
4099 /* Convert a != b ? a : b into "a". */
4100 if (GET_CODE (op0) == NE
4101 && ! side_effects_p (op0)
4102 && ! HONOR_NANS (mode)
4103 && ! HONOR_SIGNED_ZEROS (mode)
4104 && ((rtx_equal_p (XEXP (op0, 0), op1)
4105 && rtx_equal_p (XEXP (op0, 1), op2))
4106 || (rtx_equal_p (XEXP (op0, 0), op2)
4107 && rtx_equal_p (XEXP (op0, 1), op1))))
4108 return op1;
4109
4110 /* Convert a == b ? a : b into "b". */
4111 if (GET_CODE (op0) == EQ
4112 && ! side_effects_p (op0)
4113 && ! HONOR_NANS (mode)
4114 && ! HONOR_SIGNED_ZEROS (mode)
4115 && ((rtx_equal_p (XEXP (op0, 0), op1)
4116 && rtx_equal_p (XEXP (op0, 1), op2))
4117 || (rtx_equal_p (XEXP (op0, 0), op2)
4118 && rtx_equal_p (XEXP (op0, 1), op1))))
4119 return op2;
4120
4121 if (COMPARISON_P (op0) && ! side_effects_p (op0))
4122 {
4123 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
4124 ? GET_MODE (XEXP (op0, 1))
4125 : GET_MODE (XEXP (op0, 0)));
4126 rtx temp;
4127
4128 /* Look for happy constants in op1 and op2. */
4129 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
4130 {
4131 HOST_WIDE_INT t = INTVAL (op1);
4132 HOST_WIDE_INT f = INTVAL (op2);
4133
4134 if (t == STORE_FLAG_VALUE && f == 0)
4135 code = GET_CODE (op0);
4136 else if (t == 0 && f == STORE_FLAG_VALUE)
4137 {
4138 enum rtx_code tmp;
4139 tmp = reversed_comparison_code (op0, NULL_RTX);
4140 if (tmp == UNKNOWN)
4141 break;
4142 code = tmp;
4143 }
4144 else
4145 break;
4146
4147 return simplify_gen_relational (code, mode, cmp_mode,
4148 XEXP (op0, 0), XEXP (op0, 1));
4149 }
4150
4151 if (cmp_mode == VOIDmode)
4152 cmp_mode = op0_mode;
4153 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4154 cmp_mode, XEXP (op0, 0),
4155 XEXP (op0, 1));
4156
4157 /* See if any simplifications were possible. */
4158 if (temp)
4159 {
4160 if (GET_CODE (temp) == CONST_INT)
4161 return temp == const0_rtx ? op2 : op1;
4162 else if (temp)
4163 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
4164 }
4165 }
4166 break;
4167
4168 case VEC_MERGE:
4169 gcc_assert (GET_MODE (op0) == mode);
4170 gcc_assert (GET_MODE (op1) == mode);
4171 gcc_assert (VECTOR_MODE_P (mode));
4172 op2 = avoid_constant_pool_reference (op2);
4173 if (GET_CODE (op2) == CONST_INT)
4174 {
4175 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
4176 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
4177 int mask = (1 << n_elts) - 1;
4178
4179 if (!(INTVAL (op2) & mask))
4180 return op1;
4181 if ((INTVAL (op2) & mask) == mask)
4182 return op0;
4183
4184 op0 = avoid_constant_pool_reference (op0);
4185 op1 = avoid_constant_pool_reference (op1);
4186 if (GET_CODE (op0) == CONST_VECTOR
4187 && GET_CODE (op1) == CONST_VECTOR)
4188 {
4189 rtvec v = rtvec_alloc (n_elts);
4190 unsigned int i;
4191
4192 for (i = 0; i < n_elts; i++)
4193 RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
4194 ? CONST_VECTOR_ELT (op0, i)
4195 : CONST_VECTOR_ELT (op1, i));
4196 return gen_rtx_CONST_VECTOR (mode, v);
4197 }
4198 }
4199 break;
4200
4201 default:
4202 gcc_unreachable ();
4203 }
4204
4205 return 0;
4206 }
4207
4208 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
4209 returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
4210
4211 Works by unpacking OP into a collection of 8-bit values
4212 represented as a little-endian array of 'unsigned char', selecting by BYTE,
4213 and then repacking them again for OUTERMODE. */
4214
4215 static rtx
simplify_immed_subreg(enum machine_mode outermode,rtx op,enum machine_mode innermode,unsigned int byte)4216 simplify_immed_subreg (enum machine_mode outermode, rtx op,
4217 enum machine_mode innermode, unsigned int byte)
4218 {
4219 /* We support up to 512-bit values (for V8DFmode). */
4220 enum {
4221 max_bitsize = 512,
4222 value_bit = 8,
4223 value_mask = (1 << value_bit) - 1
4224 };
4225 unsigned char value[max_bitsize / value_bit];
4226 int value_start;
4227 int i;
4228 int elem;
4229
4230 int num_elem;
4231 rtx * elems;
4232 int elem_bitsize;
4233 rtx result_s;
4234 rtvec result_v = NULL;
4235 enum mode_class outer_class;
4236 enum machine_mode outer_submode;
4237
4238 /* Some ports misuse CCmode. */
4239 if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
4240 return op;
4241
4242 /* We have no way to represent a complex constant at the rtl level. */
4243 if (COMPLEX_MODE_P (outermode))
4244 return NULL_RTX;
4245
4246 /* Unpack the value. */
4247
4248 if (GET_CODE (op) == CONST_VECTOR)
4249 {
4250 num_elem = CONST_VECTOR_NUNITS (op);
4251 elems = &CONST_VECTOR_ELT (op, 0);
4252 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
4253 }
4254 else
4255 {
4256 num_elem = 1;
4257 elems = &op;
4258 elem_bitsize = max_bitsize;
4259 }
4260 /* If this asserts, it is too complicated; reducing value_bit may help. */
4261 gcc_assert (BITS_PER_UNIT % value_bit == 0);
4262 /* I don't know how to handle endianness of sub-units. */
4263 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
4264
4265 for (elem = 0; elem < num_elem; elem++)
4266 {
4267 unsigned char * vp;
4268 rtx el = elems[elem];
4269
4270 /* Vectors are kept in target memory order. (This is probably
4271 a mistake.) */
4272 {
4273 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4274 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4275 / BITS_PER_UNIT);
4276 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4277 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4278 unsigned bytele = (subword_byte % UNITS_PER_WORD
4279 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4280 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
4281 }
4282
4283 switch (GET_CODE (el))
4284 {
4285 case CONST_INT:
4286 for (i = 0;
4287 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4288 i += value_bit)
4289 *vp++ = INTVAL (el) >> i;
4290 /* CONST_INTs are always logically sign-extended. */
4291 for (; i < elem_bitsize; i += value_bit)
4292 *vp++ = INTVAL (el) < 0 ? -1 : 0;
4293 break;
4294
4295 case CONST_DOUBLE:
4296 if (GET_MODE (el) == VOIDmode)
4297 {
4298 /* If this triggers, someone should have generated a
4299 CONST_INT instead. */
4300 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
4301
4302 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4303 *vp++ = CONST_DOUBLE_LOW (el) >> i;
4304 while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
4305 {
4306 *vp++
4307 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
4308 i += value_bit;
4309 }
4310 /* It shouldn't matter what's done here, so fill it with
4311 zero. */
4312 for (; i < elem_bitsize; i += value_bit)
4313 *vp++ = 0;
4314 }
4315 else
4316 {
4317 long tmp[max_bitsize / 32];
4318 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
4319
4320 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
4321 gcc_assert (bitsize <= elem_bitsize);
4322 gcc_assert (bitsize % value_bit == 0);
4323
4324 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
4325 GET_MODE (el));
4326
4327 /* real_to_target produces its result in words affected by
4328 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4329 and use WORDS_BIG_ENDIAN instead; see the documentation
4330 of SUBREG in rtl.texi. */
4331 for (i = 0; i < bitsize; i += value_bit)
4332 {
4333 int ibase;
4334 if (WORDS_BIG_ENDIAN)
4335 ibase = bitsize - 1 - i;
4336 else
4337 ibase = i;
4338 *vp++ = tmp[ibase / 32] >> i % 32;
4339 }
4340
4341 /* It shouldn't matter what's done here, so fill it with
4342 zero. */
4343 for (; i < elem_bitsize; i += value_bit)
4344 *vp++ = 0;
4345 }
4346 break;
4347
4348 default:
4349 gcc_unreachable ();
4350 }
4351 }
4352
4353 /* Now, pick the right byte to start with. */
4354 /* Renumber BYTE so that the least-significant byte is byte 0. A special
4355 case is paradoxical SUBREGs, which shouldn't be adjusted since they
4356 will already have offset 0. */
4357 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
4358 {
4359 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
4360 - byte);
4361 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4362 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4363 byte = (subword_byte % UNITS_PER_WORD
4364 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4365 }
4366
4367 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
4368 so if it's become negative it will instead be very large.) */
4369 gcc_assert (byte < GET_MODE_SIZE (innermode));
4370
4371 /* Convert from bytes to chunks of size value_bit. */
4372 value_start = byte * (BITS_PER_UNIT / value_bit);
4373
4374 /* Re-pack the value. */
4375
4376 if (VECTOR_MODE_P (outermode))
4377 {
4378 num_elem = GET_MODE_NUNITS (outermode);
4379 result_v = rtvec_alloc (num_elem);
4380 elems = &RTVEC_ELT (result_v, 0);
4381 outer_submode = GET_MODE_INNER (outermode);
4382 }
4383 else
4384 {
4385 num_elem = 1;
4386 elems = &result_s;
4387 outer_submode = outermode;
4388 }
4389
4390 outer_class = GET_MODE_CLASS (outer_submode);
4391 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
4392
4393 gcc_assert (elem_bitsize % value_bit == 0);
4394 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
4395
4396 for (elem = 0; elem < num_elem; elem++)
4397 {
4398 unsigned char *vp;
4399
4400 /* Vectors are stored in target memory order. (This is probably
4401 a mistake.) */
4402 {
4403 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4404 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4405 / BITS_PER_UNIT);
4406 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4407 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4408 unsigned bytele = (subword_byte % UNITS_PER_WORD
4409 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4410 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
4411 }
4412
4413 switch (outer_class)
4414 {
4415 case MODE_INT:
4416 case MODE_PARTIAL_INT:
4417 {
4418 unsigned HOST_WIDE_INT hi = 0, lo = 0;
4419
4420 for (i = 0;
4421 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4422 i += value_bit)
4423 lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
4424 for (; i < elem_bitsize; i += value_bit)
4425 hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
4426 << (i - HOST_BITS_PER_WIDE_INT));
4427
4428 /* immed_double_const doesn't call trunc_int_for_mode. I don't
4429 know why. */
4430 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
4431 elems[elem] = gen_int_mode (lo, outer_submode);
4432 else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
4433 elems[elem] = immed_double_const (lo, hi, outer_submode);
4434 else
4435 return NULL_RTX;
4436 }
4437 break;
4438
4439 case MODE_FLOAT:
4440 case MODE_DECIMAL_FLOAT:
4441 {
4442 REAL_VALUE_TYPE r;
4443 long tmp[max_bitsize / 32];
4444
4445 /* real_from_target wants its input in words affected by
4446 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4447 and use WORDS_BIG_ENDIAN instead; see the documentation
4448 of SUBREG in rtl.texi. */
4449 for (i = 0; i < max_bitsize / 32; i++)
4450 tmp[i] = 0;
4451 for (i = 0; i < elem_bitsize; i += value_bit)
4452 {
4453 int ibase;
4454 if (WORDS_BIG_ENDIAN)
4455 ibase = elem_bitsize - 1 - i;
4456 else
4457 ibase = i;
4458 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
4459 }
4460
4461 real_from_target (&r, tmp, outer_submode);
4462 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
4463 }
4464 break;
4465
4466 default:
4467 gcc_unreachable ();
4468 }
4469 }
4470 if (VECTOR_MODE_P (outermode))
4471 return gen_rtx_CONST_VECTOR (outermode, result_v);
4472 else
4473 return result_s;
4474 }
4475
4476 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
4477 Return 0 if no simplifications are possible. */
4478 rtx
simplify_subreg(enum machine_mode outermode,rtx op,enum machine_mode innermode,unsigned int byte)4479 simplify_subreg (enum machine_mode outermode, rtx op,
4480 enum machine_mode innermode, unsigned int byte)
4481 {
4482 /* Little bit of sanity checking. */
4483 gcc_assert (innermode != VOIDmode);
4484 gcc_assert (outermode != VOIDmode);
4485 gcc_assert (innermode != BLKmode);
4486 gcc_assert (outermode != BLKmode);
4487
4488 gcc_assert (GET_MODE (op) == innermode
4489 || GET_MODE (op) == VOIDmode);
4490
4491 gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
4492 gcc_assert (byte < GET_MODE_SIZE (innermode));
4493
4494 if (outermode == innermode && !byte)
4495 return op;
4496
4497 if (GET_CODE (op) == CONST_INT
4498 || GET_CODE (op) == CONST_DOUBLE
4499 || GET_CODE (op) == CONST_VECTOR)
4500 return simplify_immed_subreg (outermode, op, innermode, byte);
4501
4502 /* Changing mode twice with SUBREG => just change it once,
4503 or not at all if changing back op starting mode. */
4504 if (GET_CODE (op) == SUBREG)
4505 {
4506 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4507 int final_offset = byte + SUBREG_BYTE (op);
4508 rtx newx;
4509
4510 if (outermode == innermostmode
4511 && byte == 0 && SUBREG_BYTE (op) == 0)
4512 return SUBREG_REG (op);
4513
4514 /* The SUBREG_BYTE represents offset, as if the value were stored
4515 in memory. Irritating exception is paradoxical subreg, where
4516 we define SUBREG_BYTE to be 0. On big endian machines, this
4517 value should be negative. For a moment, undo this exception. */
4518 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
4519 {
4520 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
4521 if (WORDS_BIG_ENDIAN)
4522 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4523 if (BYTES_BIG_ENDIAN)
4524 final_offset += difference % UNITS_PER_WORD;
4525 }
4526 if (SUBREG_BYTE (op) == 0
4527 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
4528 {
4529 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
4530 if (WORDS_BIG_ENDIAN)
4531 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4532 if (BYTES_BIG_ENDIAN)
4533 final_offset += difference % UNITS_PER_WORD;
4534 }
4535
4536 /* See whether resulting subreg will be paradoxical. */
4537 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
4538 {
4539 /* In nonparadoxical subregs we can't handle negative offsets. */
4540 if (final_offset < 0)
4541 return NULL_RTX;
4542 /* Bail out in case resulting subreg would be incorrect. */
4543 if (final_offset % GET_MODE_SIZE (outermode)
4544 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
4545 return NULL_RTX;
4546 }
4547 else
4548 {
4549 int offset = 0;
4550 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
4551
4552 /* In paradoxical subreg, see if we are still looking on lower part.
4553 If so, our SUBREG_BYTE will be 0. */
4554 if (WORDS_BIG_ENDIAN)
4555 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4556 if (BYTES_BIG_ENDIAN)
4557 offset += difference % UNITS_PER_WORD;
4558 if (offset == final_offset)
4559 final_offset = 0;
4560 else
4561 return NULL_RTX;
4562 }
4563
4564 /* Recurse for further possible simplifications. */
4565 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
4566 final_offset);
4567 if (newx)
4568 return newx;
4569 if (validate_subreg (outermode, innermostmode,
4570 SUBREG_REG (op), final_offset))
4571 return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
4572 return NULL_RTX;
4573 }
4574
4575 /* Merge implicit and explicit truncations. */
4576
4577 if (GET_CODE (op) == TRUNCATE
4578 && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
4579 && subreg_lowpart_offset (outermode, innermode) == byte)
4580 return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
4581 GET_MODE (XEXP (op, 0)));
4582
4583 /* SUBREG of a hard register => just change the register number
4584 and/or mode. If the hard register is not valid in that mode,
4585 suppress this simplification. If the hard register is the stack,
4586 frame, or argument pointer, leave this as a SUBREG. */
4587
4588 if (REG_P (op)
4589 && REGNO (op) < FIRST_PSEUDO_REGISTER
4590 #ifdef CANNOT_CHANGE_MODE_CLASS
4591 && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
4592 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
4593 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
4594 #endif
4595 && ((reload_completed && !frame_pointer_needed)
4596 || (REGNO (op) != FRAME_POINTER_REGNUM
4597 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4598 && REGNO (op) != HARD_FRAME_POINTER_REGNUM
4599 #endif
4600 ))
4601 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4602 && REGNO (op) != ARG_POINTER_REGNUM
4603 #endif
4604 && REGNO (op) != STACK_POINTER_REGNUM
4605 && subreg_offset_representable_p (REGNO (op), innermode,
4606 byte, outermode))
4607 {
4608 unsigned int regno = REGNO (op);
4609 unsigned int final_regno
4610 = regno + subreg_regno_offset (regno, innermode, byte, outermode);
4611
4612 /* ??? We do allow it if the current REG is not valid for
4613 its mode. This is a kludge to work around how float/complex
4614 arguments are passed on 32-bit SPARC and should be fixed. */
4615 if (HARD_REGNO_MODE_OK (final_regno, outermode)
4616 || ! HARD_REGNO_MODE_OK (regno, innermode))
4617 {
4618 rtx x;
4619 int final_offset = byte;
4620
4621 /* Adjust offset for paradoxical subregs. */
4622 if (byte == 0
4623 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
4624 {
4625 int difference = (GET_MODE_SIZE (innermode)
4626 - GET_MODE_SIZE (outermode));
4627 if (WORDS_BIG_ENDIAN)
4628 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4629 if (BYTES_BIG_ENDIAN)
4630 final_offset += difference % UNITS_PER_WORD;
4631 }
4632
4633 x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
4634
4635 /* Propagate original regno. We don't have any way to specify
4636 the offset inside original regno, so do so only for lowpart.
4637 The information is used only by alias analysis that can not
4638 grog partial register anyway. */
4639
4640 if (subreg_lowpart_offset (outermode, innermode) == byte)
4641 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
4642 return x;
4643 }
4644 }
4645
4646 /* If we have a SUBREG of a register that we are replacing and we are
4647 replacing it with a MEM, make a new MEM and try replacing the
4648 SUBREG with it. Don't do this if the MEM has a mode-dependent address
4649 or if we would be widening it. */
4650
4651 if (MEM_P (op)
4652 && ! mode_dependent_address_p (XEXP (op, 0))
4653 /* Allow splitting of volatile memory references in case we don't
4654 have instruction to move the whole thing. */
4655 && (! MEM_VOLATILE_P (op)
4656 || ! have_insn_for (SET, innermode))
4657 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
4658 return adjust_address_nv (op, outermode, byte);
4659
4660 /* Handle complex values represented as CONCAT
4661 of real and imaginary part. */
4662 if (GET_CODE (op) == CONCAT)
4663 {
4664 unsigned int inner_size, final_offset;
4665 rtx part, res;
4666
4667 inner_size = GET_MODE_UNIT_SIZE (innermode);
4668 part = byte < inner_size ? XEXP (op, 0) : XEXP (op, 1);
4669 final_offset = byte % inner_size;
4670 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
4671 return NULL_RTX;
4672
4673 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
4674 if (res)
4675 return res;
4676 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
4677 return gen_rtx_SUBREG (outermode, part, final_offset);
4678 return NULL_RTX;
4679 }
4680
4681 /* Optimize SUBREG truncations of zero and sign extended values. */
4682 if ((GET_CODE (op) == ZERO_EXTEND
4683 || GET_CODE (op) == SIGN_EXTEND)
4684 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
4685 {
4686 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
4687
4688 /* If we're requesting the lowpart of a zero or sign extension,
4689 there are three possibilities. If the outermode is the same
4690 as the origmode, we can omit both the extension and the subreg.
4691 If the outermode is not larger than the origmode, we can apply
4692 the truncation without the extension. Finally, if the outermode
4693 is larger than the origmode, but both are integer modes, we
4694 can just extend to the appropriate mode. */
4695 if (bitpos == 0)
4696 {
4697 enum machine_mode origmode = GET_MODE (XEXP (op, 0));
4698 if (outermode == origmode)
4699 return XEXP (op, 0);
4700 if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
4701 return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
4702 subreg_lowpart_offset (outermode,
4703 origmode));
4704 if (SCALAR_INT_MODE_P (outermode))
4705 return simplify_gen_unary (GET_CODE (op), outermode,
4706 XEXP (op, 0), origmode);
4707 }
4708
4709 /* A SUBREG resulting from a zero extension may fold to zero if
4710 it extracts higher bits that the ZERO_EXTEND's source bits. */
4711 if (GET_CODE (op) == ZERO_EXTEND
4712 && bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
4713 return CONST0_RTX (outermode);
4714 }
4715
4716 /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
4717 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
4718 the outer subreg is effectively a truncation to the original mode. */
4719 if ((GET_CODE (op) == LSHIFTRT
4720 || GET_CODE (op) == ASHIFTRT)
4721 && SCALAR_INT_MODE_P (outermode)
4722 /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
4723 to avoid the possibility that an outer LSHIFTRT shifts by more
4724 than the sign extension's sign_bit_copies and introduces zeros
4725 into the high bits of the result. */
4726 && (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
4727 && GET_CODE (XEXP (op, 1)) == CONST_INT
4728 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
4729 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4730 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4731 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4732 return simplify_gen_binary (ASHIFTRT, outermode,
4733 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4734
4735 /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
4736 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
4737 the outer subreg is effectively a truncation to the original mode. */
4738 if ((GET_CODE (op) == LSHIFTRT
4739 || GET_CODE (op) == ASHIFTRT)
4740 && SCALAR_INT_MODE_P (outermode)
4741 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
4742 && GET_CODE (XEXP (op, 1)) == CONST_INT
4743 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
4744 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4745 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4746 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4747 return simplify_gen_binary (LSHIFTRT, outermode,
4748 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4749
4750 /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
4751 to (ashift:QI (x:QI) C), where C is a suitable small constant and
4752 the outer subreg is effectively a truncation to the original mode. */
4753 if (GET_CODE (op) == ASHIFT
4754 && SCALAR_INT_MODE_P (outermode)
4755 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
4756 && GET_CODE (XEXP (op, 1)) == CONST_INT
4757 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
4758 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
4759 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4760 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4761 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4762 return simplify_gen_binary (ASHIFT, outermode,
4763 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4764
4765 return NULL_RTX;
4766 }
4767
4768 /* Make a SUBREG operation or equivalent if it folds. */
4769
4770 rtx
simplify_gen_subreg(enum machine_mode outermode,rtx op,enum machine_mode innermode,unsigned int byte)4771 simplify_gen_subreg (enum machine_mode outermode, rtx op,
4772 enum machine_mode innermode, unsigned int byte)
4773 {
4774 rtx newx;
4775
4776 newx = simplify_subreg (outermode, op, innermode, byte);
4777 if (newx)
4778 return newx;
4779
4780 if (GET_CODE (op) == SUBREG
4781 || GET_CODE (op) == CONCAT
4782 || GET_MODE (op) == VOIDmode)
4783 return NULL_RTX;
4784
4785 if (validate_subreg (outermode, innermode, op, byte))
4786 return gen_rtx_SUBREG (outermode, op, byte);
4787
4788 return NULL_RTX;
4789 }
4790
4791 /* Simplify X, an rtx expression.
4792
4793 Return the simplified expression or NULL if no simplifications
4794 were possible.
4795
4796 This is the preferred entry point into the simplification routines;
4797 however, we still allow passes to call the more specific routines.
4798
4799 Right now GCC has three (yes, three) major bodies of RTL simplification
4800 code that need to be unified.
4801
4802 1. fold_rtx in cse.c. This code uses various CSE specific
4803 information to aid in RTL simplification.
4804
4805 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
4806 it uses combine specific information to aid in RTL
4807 simplification.
4808
4809 3. The routines in this file.
4810
4811
4812 Long term we want to only have one body of simplification code; to
4813 get to that state I recommend the following steps:
4814
4815 1. Pour over fold_rtx & simplify_rtx and move any simplifications
4816 which are not pass dependent state into these routines.
4817
4818 2. As code is moved by #1, change fold_rtx & simplify_rtx to
4819 use this routine whenever possible.
4820
4821 3. Allow for pass dependent state to be provided to these
4822 routines and add simplifications based on the pass dependent
4823 state. Remove code from cse.c & combine.c that becomes
4824 redundant/dead.
4825
4826 It will take time, but ultimately the compiler will be easier to
4827 maintain and improve. It's totally silly that when we add a
4828 simplification that it needs to be added to 4 places (3 for RTL
4829 simplification and 1 for tree simplification. */
4830
4831 rtx
simplify_rtx(rtx x)4832 simplify_rtx (rtx x)
4833 {
4834 enum rtx_code code = GET_CODE (x);
4835 enum machine_mode mode = GET_MODE (x);
4836
4837 switch (GET_RTX_CLASS (code))
4838 {
4839 case RTX_UNARY:
4840 return simplify_unary_operation (code, mode,
4841 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
4842 case RTX_COMM_ARITH:
4843 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4844 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
4845
4846 /* Fall through.... */
4847
4848 case RTX_BIN_ARITH:
4849 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4850
4851 case RTX_TERNARY:
4852 case RTX_BITFIELD_OPS:
4853 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
4854 XEXP (x, 0), XEXP (x, 1),
4855 XEXP (x, 2));
4856
4857 case RTX_COMPARE:
4858 case RTX_COMM_COMPARE:
4859 return simplify_relational_operation (code, mode,
4860 ((GET_MODE (XEXP (x, 0))
4861 != VOIDmode)
4862 ? GET_MODE (XEXP (x, 0))
4863 : GET_MODE (XEXP (x, 1))),
4864 XEXP (x, 0),
4865 XEXP (x, 1));
4866
4867 case RTX_EXTRA:
4868 if (code == SUBREG)
4869 return simplify_gen_subreg (mode, SUBREG_REG (x),
4870 GET_MODE (SUBREG_REG (x)),
4871 SUBREG_BYTE (x));
4872 break;
4873
4874 case RTX_OBJ:
4875 if (code == LO_SUM)
4876 {
4877 /* Convert (lo_sum (high FOO) FOO) to FOO. */
4878 if (GET_CODE (XEXP (x, 0)) == HIGH
4879 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4880 return XEXP (x, 1);
4881 }
4882 break;
4883
4884 default:
4885 break;
4886 }
4887 return NULL;
4888 }
4889
4890