1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. A natural loop 11 // has exactly one entry-point, which is called the header. Note that natural 12 // loops may actually be several loops that share the same header node. 13 // 14 // This analysis calculates the nesting structure of loops in a function. For 15 // each natural loop identified, this analysis identifies natural loops 16 // contained entirely within the loop and the basic blocks the make up the loop. 17 // 18 // It can calculate on the fly various bits of information, for example: 19 // 20 // * whether there is a preheader for the loop 21 // * the number of back edges to the header 22 // * whether or not a particular block branches out of the loop 23 // * the successor blocks of the loop 24 // * the loop depth 25 // * etc... 26 // 27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs 28 // in the CFG. There can be strongly connected components in the CFG which 29 // this analysis will not recognize and that will not be represented by a Loop 30 // instance. In particular, a Loop might be inside such a non-loop SCC, or a 31 // non-loop SCC might contain a sub-SCC which is a Loop. 32 // 33 // For an overview of terminology used in this API (and thus all of our loop 34 // analyses or transforms), see docs/LoopTerminology.rst. 35 // 36 //===----------------------------------------------------------------------===// 37 38 #ifndef LLVM_ANALYSIS_LOOPINFO_H 39 #define LLVM_ANALYSIS_LOOPINFO_H 40 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/DenseSet.h" 43 #include "llvm/ADT/GraphTraits.h" 44 #include "llvm/ADT/SmallPtrSet.h" 45 #include "llvm/ADT/SmallVector.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Allocator.h" 51 #include <algorithm> 52 #include <optional> 53 #include <utility> 54 55 namespace llvm { 56 57 class DominatorTree; 58 class InductionDescriptor; 59 class Instruction; 60 class LoopInfo; 61 class Loop; 62 class MDNode; 63 class MemorySSAUpdater; 64 class ScalarEvolution; 65 class raw_ostream; 66 template <class N, bool IsPostDom> class DominatorTreeBase; 67 template <class N, class M> class LoopInfoBase; 68 template <class N, class M> class LoopBase; 69 70 //===----------------------------------------------------------------------===// 71 /// Instances of this class are used to represent loops that are detected in the 72 /// flow graph. 73 /// 74 template <class BlockT, class LoopT> class LoopBase { 75 LoopT *ParentLoop; 76 // Loops contained entirely within this one. 77 std::vector<LoopT *> SubLoops; 78 79 // The list of blocks in this loop. First entry is the header node. 80 std::vector<BlockT *> Blocks; 81 82 SmallPtrSet<const BlockT *, 8> DenseBlockSet; 83 84 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 85 /// Indicator that this loop is no longer a valid loop. 86 bool IsInvalid = false; 87 #endif 88 89 LoopBase(const LoopBase<BlockT, LoopT> &) = delete; 90 const LoopBase<BlockT, LoopT> & 91 operator=(const LoopBase<BlockT, LoopT> &) = delete; 92 93 public: 94 /// Return the nesting level of this loop. An outer-most loop has depth 1, 95 /// for consistency with loop depth values used for basic blocks, where depth 96 /// 0 is used for blocks not inside any loops. getLoopDepth()97 unsigned getLoopDepth() const { 98 assert(!isInvalid() && "Loop not in a valid state!"); 99 unsigned D = 1; 100 for (const LoopT *CurLoop = ParentLoop; CurLoop; 101 CurLoop = CurLoop->ParentLoop) 102 ++D; 103 return D; 104 } getHeader()105 BlockT *getHeader() const { return getBlocks().front(); } 106 /// Return the parent loop if it exists or nullptr for top 107 /// level loops. 108 109 /// A loop is either top-level in a function (that is, it is not 110 /// contained in any other loop) or it is entirely enclosed in 111 /// some other loop. 112 /// If a loop is top-level, it has no parent, otherwise its 113 /// parent is the innermost loop in which it is enclosed. getParentLoop()114 LoopT *getParentLoop() const { return ParentLoop; } 115 116 /// Get the outermost loop in which this loop is contained. 117 /// This may be the loop itself, if it already is the outermost loop. getOutermostLoop()118 const LoopT *getOutermostLoop() const { 119 const LoopT *L = static_cast<const LoopT *>(this); 120 while (L->ParentLoop) 121 L = L->ParentLoop; 122 return L; 123 } 124 getOutermostLoop()125 LoopT *getOutermostLoop() { 126 LoopT *L = static_cast<LoopT *>(this); 127 while (L->ParentLoop) 128 L = L->ParentLoop; 129 return L; 130 } 131 132 /// This is a raw interface for bypassing addChildLoop. setParentLoop(LoopT * L)133 void setParentLoop(LoopT *L) { 134 assert(!isInvalid() && "Loop not in a valid state!"); 135 ParentLoop = L; 136 } 137 138 /// Return true if the specified loop is contained within in this loop. contains(const LoopT * L)139 bool contains(const LoopT *L) const { 140 assert(!isInvalid() && "Loop not in a valid state!"); 141 if (L == this) 142 return true; 143 if (!L) 144 return false; 145 return contains(L->getParentLoop()); 146 } 147 148 /// Return true if the specified basic block is in this loop. contains(const BlockT * BB)149 bool contains(const BlockT *BB) const { 150 assert(!isInvalid() && "Loop not in a valid state!"); 151 return DenseBlockSet.count(BB); 152 } 153 154 /// Return true if the specified instruction is in this loop. contains(const InstT * Inst)155 template <class InstT> bool contains(const InstT *Inst) const { 156 return contains(Inst->getParent()); 157 } 158 159 /// Return the loops contained entirely within this loop. getSubLoops()160 const std::vector<LoopT *> &getSubLoops() const { 161 assert(!isInvalid() && "Loop not in a valid state!"); 162 return SubLoops; 163 } getSubLoopsVector()164 std::vector<LoopT *> &getSubLoopsVector() { 165 assert(!isInvalid() && "Loop not in a valid state!"); 166 return SubLoops; 167 } 168 typedef typename std::vector<LoopT *>::const_iterator iterator; 169 typedef 170 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; begin()171 iterator begin() const { return getSubLoops().begin(); } end()172 iterator end() const { return getSubLoops().end(); } rbegin()173 reverse_iterator rbegin() const { return getSubLoops().rbegin(); } rend()174 reverse_iterator rend() const { return getSubLoops().rend(); } 175 176 // LoopInfo does not detect irreducible control flow, just natural 177 // loops. That is, it is possible that there is cyclic control 178 // flow within the "innermost loop" or around the "outermost 179 // loop". 180 181 /// Return true if the loop does not contain any (natural) loops. isInnermost()182 bool isInnermost() const { return getSubLoops().empty(); } 183 /// Return true if the loop does not have a parent (natural) loop 184 // (i.e. it is outermost, which is the same as top-level). isOutermost()185 bool isOutermost() const { return getParentLoop() == nullptr; } 186 187 /// Get a list of the basic blocks which make up this loop. getBlocks()188 ArrayRef<BlockT *> getBlocks() const { 189 assert(!isInvalid() && "Loop not in a valid state!"); 190 return Blocks; 191 } 192 typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; block_begin()193 block_iterator block_begin() const { return getBlocks().begin(); } block_end()194 block_iterator block_end() const { return getBlocks().end(); } blocks()195 inline iterator_range<block_iterator> blocks() const { 196 assert(!isInvalid() && "Loop not in a valid state!"); 197 return make_range(block_begin(), block_end()); 198 } 199 200 /// Get the number of blocks in this loop in constant time. 201 /// Invalidate the loop, indicating that it is no longer a loop. getNumBlocks()202 unsigned getNumBlocks() const { 203 assert(!isInvalid() && "Loop not in a valid state!"); 204 return Blocks.size(); 205 } 206 207 /// Return a direct, mutable handle to the blocks vector so that we can 208 /// mutate it efficiently with techniques like `std::remove`. getBlocksVector()209 std::vector<BlockT *> &getBlocksVector() { 210 assert(!isInvalid() && "Loop not in a valid state!"); 211 return Blocks; 212 } 213 /// Return a direct, mutable handle to the blocks set so that we can 214 /// mutate it efficiently. getBlocksSet()215 SmallPtrSetImpl<const BlockT *> &getBlocksSet() { 216 assert(!isInvalid() && "Loop not in a valid state!"); 217 return DenseBlockSet; 218 } 219 220 /// Return a direct, immutable handle to the blocks set. getBlocksSet()221 const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { 222 assert(!isInvalid() && "Loop not in a valid state!"); 223 return DenseBlockSet; 224 } 225 226 /// Return true if this loop is no longer valid. The only valid use of this 227 /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to 228 /// true by the destructor. In other words, if this accessor returns true, 229 /// the caller has already triggered UB by calling this accessor; and so it 230 /// can only be called in a context where a return value of true indicates a 231 /// programmer error. isInvalid()232 bool isInvalid() const { 233 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 234 return IsInvalid; 235 #else 236 return false; 237 #endif 238 } 239 240 /// True if terminator in the block can branch to another block that is 241 /// outside of the current loop. \p BB must be inside the loop. isLoopExiting(const BlockT * BB)242 bool isLoopExiting(const BlockT *BB) const { 243 assert(!isInvalid() && "Loop not in a valid state!"); 244 assert(contains(BB) && "Exiting block must be part of the loop"); 245 for (const auto *Succ : children<const BlockT *>(BB)) { 246 if (!contains(Succ)) 247 return true; 248 } 249 return false; 250 } 251 252 /// Returns true if \p BB is a loop-latch. 253 /// A latch block is a block that contains a branch back to the header. 254 /// This function is useful when there are multiple latches in a loop 255 /// because \fn getLoopLatch will return nullptr in that case. isLoopLatch(const BlockT * BB)256 bool isLoopLatch(const BlockT *BB) const { 257 assert(!isInvalid() && "Loop not in a valid state!"); 258 assert(contains(BB) && "block does not belong to the loop"); 259 260 BlockT *Header = getHeader(); 261 auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); 262 auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); 263 return std::find(PredBegin, PredEnd, BB) != PredEnd; 264 } 265 266 /// Calculate the number of back edges to the loop header. getNumBackEdges()267 unsigned getNumBackEdges() const { 268 assert(!isInvalid() && "Loop not in a valid state!"); 269 unsigned NumBackEdges = 0; 270 BlockT *H = getHeader(); 271 272 for (const auto Pred : children<Inverse<BlockT *>>(H)) 273 if (contains(Pred)) 274 ++NumBackEdges; 275 276 return NumBackEdges; 277 } 278 279 //===--------------------------------------------------------------------===// 280 // APIs for simple analysis of the loop. 281 // 282 // Note that all of these methods can fail on general loops (ie, there may not 283 // be a preheader, etc). For best success, the loop simplification and 284 // induction variable canonicalization pass should be used to normalize loops 285 // for easy analysis. These methods assume canonical loops. 286 287 /// Return all blocks inside the loop that have successors outside of the 288 /// loop. These are the blocks _inside of the current loop_ which branch out. 289 /// The returned list is always unique. 290 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 291 292 /// If getExitingBlocks would return exactly one block, return that block. 293 /// Otherwise return null. 294 BlockT *getExitingBlock() const; 295 296 /// Return all of the successor blocks of this loop. These are the blocks 297 /// _outside of the current loop_ which are branched to. 298 void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 299 300 /// If getExitBlocks would return exactly one block, return that block. 301 /// Otherwise return null. 302 BlockT *getExitBlock() const; 303 304 /// Return true if no exit block for the loop has a predecessor that is 305 /// outside the loop. 306 bool hasDedicatedExits() const; 307 308 /// Return all unique successor blocks of this loop. 309 /// These are the blocks _outside of the current loop_ which are branched to. 310 void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 311 312 /// Return all unique successor blocks of this loop except successors from 313 /// Latch block are not considered. If the exit comes from Latch has also 314 /// non Latch predecessor in a loop it will be added to ExitBlocks. 315 /// These are the blocks _outside of the current loop_ which are branched to. 316 void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 317 318 /// If getUniqueExitBlocks would return exactly one block, return that block. 319 /// Otherwise return null. 320 BlockT *getUniqueExitBlock() const; 321 322 /// Return true if this loop does not have any exit blocks. 323 bool hasNoExitBlocks() const; 324 325 /// Edge type. 326 typedef std::pair<BlockT *, BlockT *> Edge; 327 328 /// Return all pairs of (_inside_block_,_outside_block_). 329 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 330 331 /// If there is a preheader for this loop, return it. A loop has a preheader 332 /// if there is only one edge to the header of the loop from outside of the 333 /// loop. If this is the case, the block branching to the header of the loop 334 /// is the preheader node. 335 /// 336 /// This method returns null if there is no preheader for the loop. 337 BlockT *getLoopPreheader() const; 338 339 /// If the given loop's header has exactly one unique predecessor outside the 340 /// loop, return it. Otherwise return null. 341 /// This is less strict that the loop "preheader" concept, which requires 342 /// the predecessor to have exactly one successor. 343 BlockT *getLoopPredecessor() const; 344 345 /// If there is a single latch block for this loop, return it. 346 /// A latch block is a block that contains a branch back to the header. 347 BlockT *getLoopLatch() const; 348 349 /// Return all loop latch blocks of this loop. A latch block is a block that 350 /// contains a branch back to the header. getLoopLatches(SmallVectorImpl<BlockT * > & LoopLatches)351 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 352 assert(!isInvalid() && "Loop not in a valid state!"); 353 BlockT *H = getHeader(); 354 for (const auto Pred : children<Inverse<BlockT *>>(H)) 355 if (contains(Pred)) 356 LoopLatches.push_back(Pred); 357 } 358 359 /// Return all inner loops in the loop nest rooted by the loop in preorder, 360 /// with siblings in forward program order. 361 template <class Type> getInnerLoopsInPreorder(const LoopT & L,SmallVectorImpl<Type> & PreOrderLoops)362 static void getInnerLoopsInPreorder(const LoopT &L, 363 SmallVectorImpl<Type> &PreOrderLoops) { 364 SmallVector<LoopT *, 4> PreOrderWorklist; 365 PreOrderWorklist.append(L.rbegin(), L.rend()); 366 367 while (!PreOrderWorklist.empty()) { 368 LoopT *L = PreOrderWorklist.pop_back_val(); 369 // Sub-loops are stored in forward program order, but will process the 370 // worklist backwards so append them in reverse order. 371 PreOrderWorklist.append(L->rbegin(), L->rend()); 372 PreOrderLoops.push_back(L); 373 } 374 } 375 376 /// Return all loops in the loop nest rooted by the loop in preorder, with 377 /// siblings in forward program order. getLoopsInPreorder()378 SmallVector<const LoopT *, 4> getLoopsInPreorder() const { 379 SmallVector<const LoopT *, 4> PreOrderLoops; 380 const LoopT *CurLoop = static_cast<const LoopT *>(this); 381 PreOrderLoops.push_back(CurLoop); 382 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 383 return PreOrderLoops; 384 } getLoopsInPreorder()385 SmallVector<LoopT *, 4> getLoopsInPreorder() { 386 SmallVector<LoopT *, 4> PreOrderLoops; 387 LoopT *CurLoop = static_cast<LoopT *>(this); 388 PreOrderLoops.push_back(CurLoop); 389 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 390 return PreOrderLoops; 391 } 392 393 //===--------------------------------------------------------------------===// 394 // APIs for updating loop information after changing the CFG 395 // 396 397 /// This method is used by other analyses to update loop information. 398 /// NewBB is set to be a new member of the current loop. 399 /// Because of this, it is added as a member of all parent loops, and is added 400 /// to the specified LoopInfo object as being in the current basic block. It 401 /// is not valid to replace the loop header with this method. 402 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 403 404 /// This is used when splitting loops up. It replaces the OldChild entry in 405 /// our children list with NewChild, and updates the parent pointer of 406 /// OldChild to be null and the NewChild to be this loop. 407 /// This updates the loop depth of the new child. 408 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 409 410 /// Add the specified loop to be a child of this loop. 411 /// This updates the loop depth of the new child. addChildLoop(LoopT * NewChild)412 void addChildLoop(LoopT *NewChild) { 413 assert(!isInvalid() && "Loop not in a valid state!"); 414 assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 415 NewChild->ParentLoop = static_cast<LoopT *>(this); 416 SubLoops.push_back(NewChild); 417 } 418 419 /// This removes the specified child from being a subloop of this loop. The 420 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(iterator I)421 LoopT *removeChildLoop(iterator I) { 422 assert(!isInvalid() && "Loop not in a valid state!"); 423 assert(I != SubLoops.end() && "Cannot remove end iterator!"); 424 LoopT *Child = *I; 425 assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 426 SubLoops.erase(SubLoops.begin() + (I - begin())); 427 Child->ParentLoop = nullptr; 428 return Child; 429 } 430 431 /// This removes the specified child from being a subloop of this loop. The 432 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(LoopT * Child)433 LoopT *removeChildLoop(LoopT *Child) { 434 return removeChildLoop(llvm::find(*this, Child)); 435 } 436 437 /// This adds a basic block directly to the basic block list. 438 /// This should only be used by transformations that create new loops. Other 439 /// transformations should use addBasicBlockToLoop. addBlockEntry(BlockT * BB)440 void addBlockEntry(BlockT *BB) { 441 assert(!isInvalid() && "Loop not in a valid state!"); 442 Blocks.push_back(BB); 443 DenseBlockSet.insert(BB); 444 } 445 446 /// interface to reverse Blocks[from, end of loop] in this loop reverseBlock(unsigned from)447 void reverseBlock(unsigned from) { 448 assert(!isInvalid() && "Loop not in a valid state!"); 449 std::reverse(Blocks.begin() + from, Blocks.end()); 450 } 451 452 /// interface to do reserve() for Blocks reserveBlocks(unsigned size)453 void reserveBlocks(unsigned size) { 454 assert(!isInvalid() && "Loop not in a valid state!"); 455 Blocks.reserve(size); 456 } 457 458 /// This method is used to move BB (which must be part of this loop) to be the 459 /// loop header of the loop (the block that dominates all others). moveToHeader(BlockT * BB)460 void moveToHeader(BlockT *BB) { 461 assert(!isInvalid() && "Loop not in a valid state!"); 462 if (Blocks[0] == BB) 463 return; 464 for (unsigned i = 0;; ++i) { 465 assert(i != Blocks.size() && "Loop does not contain BB!"); 466 if (Blocks[i] == BB) { 467 Blocks[i] = Blocks[0]; 468 Blocks[0] = BB; 469 return; 470 } 471 } 472 } 473 474 /// This removes the specified basic block from the current loop, updating the 475 /// Blocks as appropriate. This does not update the mapping in the LoopInfo 476 /// class. removeBlockFromLoop(BlockT * BB)477 void removeBlockFromLoop(BlockT *BB) { 478 assert(!isInvalid() && "Loop not in a valid state!"); 479 auto I = find(Blocks, BB); 480 assert(I != Blocks.end() && "N is not in this list!"); 481 Blocks.erase(I); 482 483 DenseBlockSet.erase(BB); 484 } 485 486 /// Verify loop structure 487 void verifyLoop() const; 488 489 /// Verify loop structure of this loop and all nested loops. 490 void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; 491 492 /// Returns true if the loop is annotated parallel. 493 /// 494 /// Derived classes can override this method using static template 495 /// polymorphism. isAnnotatedParallel()496 bool isAnnotatedParallel() const { return false; } 497 498 /// Print loop with all the BBs inside it. 499 void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true, 500 unsigned Depth = 0) const; 501 502 protected: 503 friend class LoopInfoBase<BlockT, LoopT>; 504 505 /// This creates an empty loop. LoopBase()506 LoopBase() : ParentLoop(nullptr) {} 507 LoopBase(BlockT * BB)508 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 509 Blocks.push_back(BB); 510 DenseBlockSet.insert(BB); 511 } 512 513 // Since loop passes like SCEV are allowed to key analysis results off of 514 // `Loop` pointers, we cannot re-use pointers within a loop pass manager. 515 // This means loop passes should not be `delete` ing `Loop` objects directly 516 // (and risk a later `Loop` allocation re-using the address of a previous one) 517 // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` 518 // pointer till the end of the lifetime of the `LoopInfo` object. 519 // 520 // To make it easier to follow this rule, we mark the destructor as 521 // non-public. ~LoopBase()522 ~LoopBase() { 523 for (auto *SubLoop : SubLoops) 524 SubLoop->~LoopT(); 525 526 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 527 IsInvalid = true; 528 #endif 529 SubLoops.clear(); 530 Blocks.clear(); 531 DenseBlockSet.clear(); 532 ParentLoop = nullptr; 533 } 534 }; 535 536 template <class BlockT, class LoopT> 537 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 538 Loop.print(OS); 539 return OS; 540 } 541 542 // Implementation in LoopInfoImpl.h 543 extern template class LoopBase<BasicBlock, Loop>; 544 545 /// Represents a single loop in the control flow graph. Note that not all SCCs 546 /// in the CFG are necessarily loops. 547 class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> { 548 public: 549 /// A range representing the start and end location of a loop. 550 class LocRange { 551 DebugLoc Start; 552 DebugLoc End; 553 554 public: 555 LocRange() = default; LocRange(DebugLoc Start)556 LocRange(DebugLoc Start) : Start(Start), End(Start) {} LocRange(DebugLoc Start,DebugLoc End)557 LocRange(DebugLoc Start, DebugLoc End) 558 : Start(std::move(Start)), End(std::move(End)) {} 559 getStart()560 const DebugLoc &getStart() const { return Start; } getEnd()561 const DebugLoc &getEnd() const { return End; } 562 563 /// Check for null. 564 /// 565 explicit operator bool() const { return Start && End; } 566 }; 567 568 /// Return true if the specified value is loop invariant. 569 bool isLoopInvariant(const Value *V) const; 570 571 /// Return true if all the operands of the specified instruction are loop 572 /// invariant. 573 bool hasLoopInvariantOperands(const Instruction *I) const; 574 575 /// If the given value is an instruction inside of the loop and it can be 576 /// hoisted, do so to make it trivially loop-invariant. 577 /// Return true if \c V is already loop-invariant, and false if \c V can't 578 /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is 579 /// set to true. This function can be used as a slightly more aggressive 580 /// replacement for isLoopInvariant. 581 /// 582 /// If InsertPt is specified, it is the point to hoist instructions to. 583 /// If null, the terminator of the loop preheader is used. 584 /// 585 bool makeLoopInvariant(Value *V, bool &Changed, 586 Instruction *InsertPt = nullptr, 587 MemorySSAUpdater *MSSAU = nullptr, 588 ScalarEvolution *SE = nullptr) const; 589 590 /// If the given instruction is inside of the loop and it can be hoisted, do 591 /// so to make it trivially loop-invariant. 592 /// Return true if \c I is already loop-invariant, and false if \c I can't 593 /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is 594 /// set to true. This function can be used as a slightly more aggressive 595 /// replacement for isLoopInvariant. 596 /// 597 /// If InsertPt is specified, it is the point to hoist instructions to. 598 /// If null, the terminator of the loop preheader is used. 599 /// 600 bool makeLoopInvariant(Instruction *I, bool &Changed, 601 Instruction *InsertPt = nullptr, 602 MemorySSAUpdater *MSSAU = nullptr, 603 ScalarEvolution *SE = nullptr) const; 604 605 /// Check to see if the loop has a canonical induction variable: an integer 606 /// recurrence that starts at 0 and increments by one each time through the 607 /// loop. If so, return the phi node that corresponds to it. 608 /// 609 /// The IndVarSimplify pass transforms loops to have a canonical induction 610 /// variable. 611 /// 612 PHINode *getCanonicalInductionVariable() const; 613 614 /// Get the latch condition instruction. 615 ICmpInst *getLatchCmpInst() const; 616 617 /// Obtain the unique incoming and back edge. Return false if they are 618 /// non-unique or the loop is dead; otherwise, return true. 619 bool getIncomingAndBackEdge(BasicBlock *&Incoming, 620 BasicBlock *&Backedge) const; 621 622 /// Below are some utilities to get the loop guard, loop bounds and induction 623 /// variable, and to check if a given phinode is an auxiliary induction 624 /// variable, if the loop is guarded, and if the loop is canonical. 625 /// 626 /// Here is an example: 627 /// \code 628 /// for (int i = lb; i < ub; i+=step) 629 /// <loop body> 630 /// --- pseudo LLVMIR --- 631 /// beforeloop: 632 /// guardcmp = (lb < ub) 633 /// if (guardcmp) goto preheader; else goto afterloop 634 /// preheader: 635 /// loop: 636 /// i_1 = phi[{lb, preheader}, {i_2, latch}] 637 /// <loop body> 638 /// i_2 = i_1 + step 639 /// latch: 640 /// cmp = (i_2 < ub) 641 /// if (cmp) goto loop 642 /// exit: 643 /// afterloop: 644 /// \endcode 645 /// 646 /// - getBounds 647 /// - getInitialIVValue --> lb 648 /// - getStepInst --> i_2 = i_1 + step 649 /// - getStepValue --> step 650 /// - getFinalIVValue --> ub 651 /// - getCanonicalPredicate --> '<' 652 /// - getDirection --> Increasing 653 /// 654 /// - getInductionVariable --> i_1 655 /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 656 /// - getLoopGuardBranch() 657 /// --> `if (guardcmp) goto preheader; else goto afterloop` 658 /// - isGuarded() --> true 659 /// - isCanonical --> false 660 struct LoopBounds { 661 /// Return the LoopBounds object if 662 /// - the given \p IndVar is an induction variable 663 /// - the initial value of the induction variable can be found 664 /// - the step instruction of the induction variable can be found 665 /// - the final value of the induction variable can be found 666 /// 667 /// Else None. 668 static std::optional<Loop::LoopBounds> 669 getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE); 670 671 /// Get the initial value of the loop induction variable. getInitialIVValueLoopBounds672 Value &getInitialIVValue() const { return InitialIVValue; } 673 674 /// Get the instruction that updates the loop induction variable. getStepInstLoopBounds675 Instruction &getStepInst() const { return StepInst; } 676 677 /// Get the step that the loop induction variable gets updated by in each 678 /// loop iteration. Return nullptr if not found. getStepValueLoopBounds679 Value *getStepValue() const { return StepValue; } 680 681 /// Get the final value of the loop induction variable. getFinalIVValueLoopBounds682 Value &getFinalIVValue() const { return FinalIVValue; } 683 684 /// Return the canonical predicate for the latch compare instruction, if 685 /// able to be calcuated. Else BAD_ICMP_PREDICATE. 686 /// 687 /// A predicate is considered as canonical if requirements below are all 688 /// satisfied: 689 /// 1. The first successor of the latch branch is the loop header 690 /// If not, inverse the predicate. 691 /// 2. One of the operands of the latch comparison is StepInst 692 /// If not, and 693 /// - if the current calcuated predicate is not ne or eq, flip the 694 /// predicate. 695 /// - else if the loop is increasing, return slt 696 /// (notice that it is safe to change from ne or eq to sign compare) 697 /// - else if the loop is decreasing, return sgt 698 /// (notice that it is safe to change from ne or eq to sign compare) 699 /// 700 /// Here is an example when both (1) and (2) are not satisfied: 701 /// \code 702 /// loop.header: 703 /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] 704 /// %inc = add %iv, %step 705 /// %cmp = slt %iv, %finaliv 706 /// br %cmp, %loop.exit, %loop.header 707 /// loop.exit: 708 /// \endcode 709 /// - The second successor of the latch branch is the loop header instead 710 /// of the first successor (slt -> sge) 711 /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) 712 /// instead of the StepInst (%inc) (sge -> sgt) 713 /// 714 /// The predicate would be sgt if both (1) and (2) are satisfied. 715 /// getCanonicalPredicate() returns sgt for this example. 716 /// Note: The IR is not changed. 717 ICmpInst::Predicate getCanonicalPredicate() const; 718 719 /// An enum for the direction of the loop 720 /// - for (int i = 0; i < ub; ++i) --> Increasing 721 /// - for (int i = ub; i > 0; --i) --> Descresing 722 /// - for (int i = x; i != y; i+=z) --> Unknown 723 enum class Direction { Increasing, Decreasing, Unknown }; 724 725 /// Get the direction of the loop. 726 Direction getDirection() const; 727 728 private: LoopBoundsLoopBounds729 LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, 730 ScalarEvolution &SE) 731 : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), 732 FinalIVValue(F), SE(SE) {} 733 734 const Loop &L; 735 736 // The initial value of the loop induction variable 737 Value &InitialIVValue; 738 739 // The instruction that updates the loop induction variable 740 Instruction &StepInst; 741 742 // The value that the loop induction variable gets updated by in each loop 743 // iteration 744 Value *StepValue; 745 746 // The final value of the loop induction variable 747 Value &FinalIVValue; 748 749 ScalarEvolution &SE; 750 }; 751 752 /// Return the struct LoopBounds collected if all struct members are found, 753 /// else std::nullopt. 754 std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const; 755 756 /// Return the loop induction variable if found, else return nullptr. 757 /// An instruction is considered as the loop induction variable if 758 /// - it is an induction variable of the loop; and 759 /// - it is used to determine the condition of the branch in the loop latch 760 /// 761 /// Note: the induction variable doesn't need to be canonical, i.e. starts at 762 /// zero and increments by one each time through the loop (but it can be). 763 PHINode *getInductionVariable(ScalarEvolution &SE) const; 764 765 /// Get the loop induction descriptor for the loop induction variable. Return 766 /// true if the loop induction variable is found. 767 bool getInductionDescriptor(ScalarEvolution &SE, 768 InductionDescriptor &IndDesc) const; 769 770 /// Return true if the given PHINode \p AuxIndVar is 771 /// - in the loop header 772 /// - not used outside of the loop 773 /// - incremented by a loop invariant step for each loop iteration 774 /// - step instruction opcode should be add or sub 775 /// Note: auxiliary induction variable is not required to be used in the 776 /// conditional branch in the loop latch. (but it can be) 777 bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, 778 ScalarEvolution &SE) const; 779 780 /// Return the loop guard branch, if it exists. 781 /// 782 /// This currently only works on simplified loop, as it requires a preheader 783 /// and a latch to identify the guard. It will work on loops of the form: 784 /// \code 785 /// GuardBB: 786 /// br cond1, Preheader, ExitSucc <== GuardBranch 787 /// Preheader: 788 /// br Header 789 /// Header: 790 /// ... 791 /// br Latch 792 /// Latch: 793 /// br cond2, Header, ExitBlock 794 /// ExitBlock: 795 /// br ExitSucc 796 /// ExitSucc: 797 /// \endcode 798 BranchInst *getLoopGuardBranch() const; 799 800 /// Return true iff the loop is 801 /// - in simplify rotated form, and 802 /// - guarded by a loop guard branch. isGuarded()803 bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } 804 805 /// Return true if the loop is in rotated form. 806 /// 807 /// This does not check if the loop was rotated by loop rotation, instead it 808 /// only checks if the loop is in rotated form (has a valid latch that exists 809 /// the loop). isRotatedForm()810 bool isRotatedForm() const { 811 assert(!isInvalid() && "Loop not in a valid state!"); 812 BasicBlock *Latch = getLoopLatch(); 813 return Latch && isLoopExiting(Latch); 814 } 815 816 /// Return true if the loop induction variable starts at zero and increments 817 /// by one each time through the loop. 818 bool isCanonical(ScalarEvolution &SE) const; 819 820 /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to 821 /// true, token values defined inside loop are allowed to violate LCSSA form. 822 bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const; 823 824 /// Return true if this Loop and all inner subloops are in LCSSA form. If \p 825 /// IgnoreTokens is set to true, token values defined inside loop are allowed 826 /// to violate LCSSA form. 827 bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, 828 bool IgnoreTokens = true) const; 829 830 /// Return true if the Loop is in the form that the LoopSimplify form 831 /// transforms loops to, which is sometimes called normal form. 832 bool isLoopSimplifyForm() const; 833 834 /// Return true if the loop body is safe to clone in practice. 835 bool isSafeToClone() const; 836 837 /// Returns true if the loop is annotated parallel. 838 /// 839 /// A parallel loop can be assumed to not contain any dependencies between 840 /// iterations by the compiler. That is, any loop-carried dependency checking 841 /// can be skipped completely when parallelizing the loop on the target 842 /// machine. Thus, if the parallel loop information originates from the 843 /// programmer, e.g. via the OpenMP parallel for pragma, it is the 844 /// programmer's responsibility to ensure there are no loop-carried 845 /// dependencies. The final execution order of the instructions across 846 /// iterations is not guaranteed, thus, the end result might or might not 847 /// implement actual concurrent execution of instructions across multiple 848 /// iterations. 849 bool isAnnotatedParallel() const; 850 851 /// Return the llvm.loop loop id metadata node for this loop if it is present. 852 /// 853 /// If this loop contains the same llvm.loop metadata on each branch to the 854 /// header then the node is returned. If any latch instruction does not 855 /// contain llvm.loop or if multiple latches contain different nodes then 856 /// 0 is returned. 857 MDNode *getLoopID() const; 858 /// Set the llvm.loop loop id metadata for this loop. 859 /// 860 /// The LoopID metadata node will be added to each terminator instruction in 861 /// the loop that branches to the loop header. 862 /// 863 /// The LoopID metadata node should have one or more operands and the first 864 /// operand should be the node itself. 865 void setLoopID(MDNode *LoopID) const; 866 867 /// Add llvm.loop.unroll.disable to this loop's loop id metadata. 868 /// 869 /// Remove existing unroll metadata and add unroll disable metadata to 870 /// indicate the loop has already been unrolled. This prevents a loop 871 /// from being unrolled more than is directed by a pragma if the loop 872 /// unrolling pass is run more than once (which it generally is). 873 void setLoopAlreadyUnrolled(); 874 875 /// Add llvm.loop.mustprogress to this loop's loop id metadata. 876 void setLoopMustProgress(); 877 878 void dump() const; 879 void dumpVerbose() const; 880 881 /// Return the debug location of the start of this loop. 882 /// This looks for a BB terminating instruction with a known debug 883 /// location by looking at the preheader and header blocks. If it 884 /// cannot find a terminating instruction with location information, 885 /// it returns an unknown location. 886 DebugLoc getStartLoc() const; 887 888 /// Return the source code span of the loop. 889 LocRange getLocRange() const; 890 getName()891 StringRef getName() const { 892 if (BasicBlock *Header = getHeader()) 893 if (Header->hasName()) 894 return Header->getName(); 895 return "<unnamed loop>"; 896 } 897 898 private: 899 Loop() = default; 900 901 friend class LoopInfoBase<BasicBlock, Loop>; 902 friend class LoopBase<BasicBlock, Loop>; Loop(BasicBlock * BB)903 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 904 ~Loop() = default; 905 }; 906 907 //===----------------------------------------------------------------------===// 908 /// This class builds and contains all of the top-level loop 909 /// structures in the specified function. 910 /// 911 912 template <class BlockT, class LoopT> class LoopInfoBase { 913 // BBMap - Mapping of basic blocks to the inner most loop they occur in 914 DenseMap<const BlockT *, LoopT *> BBMap; 915 std::vector<LoopT *> TopLevelLoops; 916 BumpPtrAllocator LoopAllocator; 917 918 friend class LoopBase<BlockT, LoopT>; 919 friend class LoopInfo; 920 921 void operator=(const LoopInfoBase &) = delete; 922 LoopInfoBase(const LoopInfoBase &) = delete; 923 924 public: 925 LoopInfoBase() = default; ~LoopInfoBase()926 ~LoopInfoBase() { releaseMemory(); } 927 LoopInfoBase(LoopInfoBase && Arg)928 LoopInfoBase(LoopInfoBase &&Arg) 929 : BBMap(std::move(Arg.BBMap)), 930 TopLevelLoops(std::move(Arg.TopLevelLoops)), 931 LoopAllocator(std::move(Arg.LoopAllocator)) { 932 // We have to clear the arguments top level loops as we've taken ownership. 933 Arg.TopLevelLoops.clear(); 934 } 935 LoopInfoBase &operator=(LoopInfoBase &&RHS) { 936 BBMap = std::move(RHS.BBMap); 937 938 for (auto *L : TopLevelLoops) 939 L->~LoopT(); 940 941 TopLevelLoops = std::move(RHS.TopLevelLoops); 942 LoopAllocator = std::move(RHS.LoopAllocator); 943 RHS.TopLevelLoops.clear(); 944 return *this; 945 } 946 releaseMemory()947 void releaseMemory() { 948 BBMap.clear(); 949 950 for (auto *L : TopLevelLoops) 951 L->~LoopT(); 952 TopLevelLoops.clear(); 953 LoopAllocator.Reset(); 954 } 955 AllocateLoop(ArgsTy &&...Args)956 template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { 957 LoopT *Storage = LoopAllocator.Allocate<LoopT>(); 958 return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); 959 } 960 961 /// iterator/begin/end - The interface to the top-level loops in the current 962 /// function. 963 /// 964 typedef typename std::vector<LoopT *>::const_iterator iterator; 965 typedef 966 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; begin()967 iterator begin() const { return TopLevelLoops.begin(); } end()968 iterator end() const { return TopLevelLoops.end(); } rbegin()969 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } rend()970 reverse_iterator rend() const { return TopLevelLoops.rend(); } empty()971 bool empty() const { return TopLevelLoops.empty(); } 972 973 /// Return all of the loops in the function in preorder across the loop 974 /// nests, with siblings in forward program order. 975 /// 976 /// Note that because loops form a forest of trees, preorder is equivalent to 977 /// reverse postorder. 978 SmallVector<LoopT *, 4> getLoopsInPreorder() const; 979 980 /// Return all of the loops in the function in preorder across the loop 981 /// nests, with siblings in *reverse* program order. 982 /// 983 /// Note that because loops form a forest of trees, preorder is equivalent to 984 /// reverse postorder. 985 /// 986 /// Also note that this is *not* a reverse preorder. Only the siblings are in 987 /// reverse program order. 988 SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const; 989 990 /// Return the inner most loop that BB lives in. If a basic block is in no 991 /// loop (for example the entry node), null is returned. getLoopFor(const BlockT * BB)992 LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } 993 994 /// Same as getLoopFor. 995 const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } 996 997 /// Return the loop nesting level of the specified block. A depth of 0 means 998 /// the block is not inside any loop. getLoopDepth(const BlockT * BB)999 unsigned getLoopDepth(const BlockT *BB) const { 1000 const LoopT *L = getLoopFor(BB); 1001 return L ? L->getLoopDepth() : 0; 1002 } 1003 1004 // True if the block is a loop header node isLoopHeader(const BlockT * BB)1005 bool isLoopHeader(const BlockT *BB) const { 1006 const LoopT *L = getLoopFor(BB); 1007 return L && L->getHeader() == BB; 1008 } 1009 1010 /// Return the top-level loops. getTopLevelLoops()1011 const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; } 1012 1013 /// Return the top-level loops. getTopLevelLoopsVector()1014 std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; } 1015 1016 /// This removes the specified top-level loop from this loop info object. 1017 /// The loop is not deleted, as it will presumably be inserted into 1018 /// another loop. removeLoop(iterator I)1019 LoopT *removeLoop(iterator I) { 1020 assert(I != end() && "Cannot remove end iterator!"); 1021 LoopT *L = *I; 1022 assert(L->isOutermost() && "Not a top-level loop!"); 1023 TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); 1024 return L; 1025 } 1026 1027 /// Change the top-level loop that contains BB to the specified loop. 1028 /// This should be used by transformations that restructure the loop hierarchy 1029 /// tree. changeLoopFor(BlockT * BB,LoopT * L)1030 void changeLoopFor(BlockT *BB, LoopT *L) { 1031 if (!L) { 1032 BBMap.erase(BB); 1033 return; 1034 } 1035 BBMap[BB] = L; 1036 } 1037 1038 /// Replace the specified loop in the top-level loops list with the indicated 1039 /// loop. changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)1040 void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { 1041 auto I = find(TopLevelLoops, OldLoop); 1042 assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 1043 *I = NewLoop; 1044 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 1045 "Loops already embedded into a subloop!"); 1046 } 1047 1048 /// This adds the specified loop to the collection of top-level loops. addTopLevelLoop(LoopT * New)1049 void addTopLevelLoop(LoopT *New) { 1050 assert(New->isOutermost() && "Loop already in subloop!"); 1051 TopLevelLoops.push_back(New); 1052 } 1053 1054 /// This method completely removes BB from all data structures, 1055 /// including all of the Loop objects it is nested in and our mapping from 1056 /// BasicBlocks to loops. removeBlock(BlockT * BB)1057 void removeBlock(BlockT *BB) { 1058 auto I = BBMap.find(BB); 1059 if (I != BBMap.end()) { 1060 for (LoopT *L = I->second; L; L = L->getParentLoop()) 1061 L->removeBlockFromLoop(BB); 1062 1063 BBMap.erase(I); 1064 } 1065 } 1066 1067 // Internals 1068 isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)1069 static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 1070 const LoopT *ParentLoop) { 1071 if (!SubLoop) 1072 return true; 1073 if (SubLoop == ParentLoop) 1074 return false; 1075 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 1076 } 1077 1078 /// Create the loop forest using a stable algorithm. 1079 void analyze(const DominatorTreeBase<BlockT, false> &DomTree); 1080 1081 // Debugging 1082 void print(raw_ostream &OS) const; 1083 1084 void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; 1085 1086 /// Destroy a loop that has been removed from the `LoopInfo` nest. 1087 /// 1088 /// This runs the destructor of the loop object making it invalid to 1089 /// reference afterward. The memory is retained so that the *pointer* to the 1090 /// loop remains valid. 1091 /// 1092 /// The caller is responsible for removing this loop from the loop nest and 1093 /// otherwise disconnecting it from the broader `LoopInfo` data structures. 1094 /// Callers that don't naturally handle this themselves should probably call 1095 /// `erase' instead. destroy(LoopT * L)1096 void destroy(LoopT *L) { 1097 L->~LoopT(); 1098 1099 // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons 1100 // \c L, but the pointer remains valid for non-dereferencing uses. 1101 LoopAllocator.Deallocate(L); 1102 } 1103 }; 1104 1105 // Implementation in LoopInfoImpl.h 1106 extern template class LoopInfoBase<BasicBlock, Loop>; 1107 1108 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { 1109 typedef LoopInfoBase<BasicBlock, Loop> BaseT; 1110 1111 friend class LoopBase<BasicBlock, Loop>; 1112 1113 void operator=(const LoopInfo &) = delete; 1114 LoopInfo(const LoopInfo &) = delete; 1115 1116 public: 1117 LoopInfo() = default; 1118 explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); 1119 LoopInfo(LoopInfo && Arg)1120 LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} 1121 LoopInfo &operator=(LoopInfo &&RHS) { 1122 BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); 1123 return *this; 1124 } 1125 1126 /// Handle invalidation explicitly. 1127 bool invalidate(Function &F, const PreservedAnalyses &PA, 1128 FunctionAnalysisManager::Invalidator &); 1129 1130 // Most of the public interface is provided via LoopInfoBase. 1131 1132 /// Update LoopInfo after removing the last backedge from a loop. This updates 1133 /// the loop forest and parent loops for each block so that \c L is no longer 1134 /// referenced, but does not actually delete \c L immediately. The pointer 1135 /// will remain valid until this LoopInfo's memory is released. 1136 void erase(Loop *L); 1137 1138 /// Returns true if replacing From with To everywhere is guaranteed to 1139 /// preserve LCSSA form. replacementPreservesLCSSAForm(Instruction * From,Value * To)1140 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 1141 // Preserving LCSSA form is only problematic if the replacing value is an 1142 // instruction. 1143 Instruction *I = dyn_cast<Instruction>(To); 1144 if (!I) 1145 return true; 1146 // If both instructions are defined in the same basic block then replacement 1147 // cannot break LCSSA form. 1148 if (I->getParent() == From->getParent()) 1149 return true; 1150 // If the instruction is not defined in a loop then it can safely replace 1151 // anything. 1152 Loop *ToLoop = getLoopFor(I->getParent()); 1153 if (!ToLoop) 1154 return true; 1155 // If the replacing instruction is defined in the same loop as the original 1156 // instruction, or in a loop that contains it as an inner loop, then using 1157 // it as a replacement will not break LCSSA form. 1158 return ToLoop->contains(getLoopFor(From->getParent())); 1159 } 1160 1161 /// Checks if moving a specific instruction can break LCSSA in any loop. 1162 /// 1163 /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, 1164 /// assuming that the function containing \p Inst and \p NewLoc is currently 1165 /// in LCSSA form. movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)1166 bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { 1167 assert(Inst->getFunction() == NewLoc->getFunction() && 1168 "Can't reason about IPO!"); 1169 1170 auto *OldBB = Inst->getParent(); 1171 auto *NewBB = NewLoc->getParent(); 1172 1173 // Movement within the same loop does not break LCSSA (the equality check is 1174 // to avoid doing a hashtable lookup in case of intra-block movement). 1175 if (OldBB == NewBB) 1176 return true; 1177 1178 auto *OldLoop = getLoopFor(OldBB); 1179 auto *NewLoop = getLoopFor(NewBB); 1180 1181 if (OldLoop == NewLoop) 1182 return true; 1183 1184 // Check if Outer contains Inner; with the null loop counting as the 1185 // "outermost" loop. 1186 auto Contains = [](const Loop *Outer, const Loop *Inner) { 1187 return !Outer || Outer->contains(Inner); 1188 }; 1189 1190 // To check that the movement of Inst to before NewLoc does not break LCSSA, 1191 // we need to check two sets of uses for possible LCSSA violations at 1192 // NewLoc: the users of NewInst, and the operands of NewInst. 1193 1194 // If we know we're hoisting Inst out of an inner loop to an outer loop, 1195 // then the uses *of* Inst don't need to be checked. 1196 1197 if (!Contains(NewLoop, OldLoop)) { 1198 for (Use &U : Inst->uses()) { 1199 auto *UI = cast<Instruction>(U.getUser()); 1200 auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) 1201 : UI->getParent(); 1202 if (UBB != NewBB && getLoopFor(UBB) != NewLoop) 1203 return false; 1204 } 1205 } 1206 1207 // If we know we're sinking Inst from an outer loop into an inner loop, then 1208 // the *operands* of Inst don't need to be checked. 1209 1210 if (!Contains(OldLoop, NewLoop)) { 1211 // See below on why we can't handle phi nodes here. 1212 if (isa<PHINode>(Inst)) 1213 return false; 1214 1215 for (Use &U : Inst->operands()) { 1216 auto *DefI = dyn_cast<Instruction>(U.get()); 1217 if (!DefI) 1218 return false; 1219 1220 // This would need adjustment if we allow Inst to be a phi node -- the 1221 // new use block won't simply be NewBB. 1222 1223 auto *DefBlock = DefI->getParent(); 1224 if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) 1225 return false; 1226 } 1227 } 1228 1229 return true; 1230 } 1231 1232 // Return true if a new use of V added in ExitBB would require an LCSSA PHI 1233 // to be inserted at the begining of the block. Note that V is assumed to 1234 // dominate ExitBB, and ExitBB must be the exit block of some loop. The 1235 // IR is assumed to be in LCSSA form before the planned insertion. 1236 bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, 1237 const BasicBlock *ExitBB) const; 1238 1239 }; 1240 1241 /// Enable verification of loop info. 1242 /// 1243 /// The flag enables checks which are expensive and are disabled by default 1244 /// unless the `EXPENSIVE_CHECKS` macro is defined. The `-verify-loop-info` 1245 /// flag allows the checks to be enabled selectively without re-compilation. 1246 extern bool VerifyLoopInfo; 1247 1248 // Allow clients to walk the list of nested loops... 1249 template <> struct GraphTraits<const Loop *> { 1250 typedef const Loop *NodeRef; 1251 typedef LoopInfo::iterator ChildIteratorType; 1252 1253 static NodeRef getEntryNode(const Loop *L) { return L; } 1254 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 1255 static ChildIteratorType child_end(NodeRef N) { return N->end(); } 1256 }; 1257 1258 template <> struct GraphTraits<Loop *> { 1259 typedef Loop *NodeRef; 1260 typedef LoopInfo::iterator ChildIteratorType; 1261 1262 static NodeRef getEntryNode(Loop *L) { return L; } 1263 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 1264 static ChildIteratorType child_end(NodeRef N) { return N->end(); } 1265 }; 1266 1267 /// Analysis pass that exposes the \c LoopInfo for a function. 1268 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { 1269 friend AnalysisInfoMixin<LoopAnalysis>; 1270 static AnalysisKey Key; 1271 1272 public: 1273 typedef LoopInfo Result; 1274 1275 LoopInfo run(Function &F, FunctionAnalysisManager &AM); 1276 }; 1277 1278 /// Printer pass for the \c LoopAnalysis results. 1279 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { 1280 raw_ostream &OS; 1281 1282 public: 1283 explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} 1284 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 1285 }; 1286 1287 /// Verifier pass for the \c LoopAnalysis results. 1288 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { 1289 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 1290 }; 1291 1292 /// The legacy pass manager's analysis pass to compute loop information. 1293 class LoopInfoWrapperPass : public FunctionPass { 1294 LoopInfo LI; 1295 1296 public: 1297 static char ID; // Pass identification, replacement for typeid 1298 1299 LoopInfoWrapperPass(); 1300 1301 LoopInfo &getLoopInfo() { return LI; } 1302 const LoopInfo &getLoopInfo() const { return LI; } 1303 1304 /// Calculate the natural loop information for a given function. 1305 bool runOnFunction(Function &F) override; 1306 1307 void verifyAnalysis() const override; 1308 1309 void releaseMemory() override { LI.releaseMemory(); } 1310 1311 void print(raw_ostream &O, const Module *M = nullptr) const override; 1312 1313 void getAnalysisUsage(AnalysisUsage &AU) const override; 1314 }; 1315 1316 /// Function to print a loop's contents as LLVM's text IR assembly. 1317 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); 1318 1319 /// Find and return the loop attribute node for the attribute @p Name in 1320 /// @p LoopID. Return nullptr if there is no such attribute. 1321 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); 1322 1323 /// Find string metadata for a loop. 1324 /// 1325 /// Returns the MDNode where the first operand is the metadata's name. The 1326 /// following operands are the metadata's values. If no metadata with @p Name is 1327 /// found, return nullptr. 1328 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); 1329 1330 std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 1331 StringRef Name); 1332 1333 /// Returns true if Name is applied to TheLoop and enabled. 1334 bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name); 1335 1336 /// Find named metadata for a loop with an integer value. 1337 std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop, 1338 StringRef Name); 1339 1340 /// Find named metadata for a loop with an integer value. Return \p Default if 1341 /// not set. 1342 int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0); 1343 1344 /// Find string metadata for loop 1345 /// 1346 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1347 /// operand or null otherwise. If the string metadata is not found return 1348 /// Optional's not-a-value. 1349 std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop, 1350 StringRef Name); 1351 1352 /// Look for the loop attribute that requires progress within the loop. 1353 /// Note: Most consumers probably want "isMustProgress" which checks 1354 /// the containing function attribute too. 1355 bool hasMustProgress(const Loop *L); 1356 1357 /// Return true if this loop can be assumed to make progress. (i.e. can't 1358 /// be infinite without side effects without also being undefined) 1359 bool isMustProgress(const Loop *L); 1360 1361 /// Return true if this loop can be assumed to run for a finite number of 1362 /// iterations. 1363 bool isFinite(const Loop *L); 1364 1365 /// Return whether an MDNode might represent an access group. 1366 /// 1367 /// Access group metadata nodes have to be distinct and empty. Being 1368 /// always-empty ensures that it never needs to be changed (which -- because 1369 /// MDNodes are designed immutable -- would require creating a new MDNode). Note 1370 /// that this is not a sufficient condition: not every distinct and empty NDNode 1371 /// is representing an access group. 1372 bool isValidAsAccessGroup(MDNode *AccGroup); 1373 1374 /// Create a new LoopID after the loop has been transformed. 1375 /// 1376 /// This can be used when no follow-up loop attributes are defined 1377 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be 1378 /// applied again. 1379 /// 1380 /// @param Context The LLVMContext in which to create the new LoopID. 1381 /// @param OrigLoopID The original LoopID; can be nullptr if the original 1382 /// loop has no LoopID. 1383 /// @param RemovePrefixes Remove all loop attributes that have these prefixes. 1384 /// Use to remove metadata of the transformation that has 1385 /// been applied. 1386 /// @param AddAttrs Add these loop attributes to the new LoopID. 1387 /// 1388 /// @return A new LoopID that can be applied using Loop::setLoopID(). 1389 llvm::MDNode * 1390 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, 1391 llvm::ArrayRef<llvm::StringRef> RemovePrefixes, 1392 llvm::ArrayRef<llvm::MDNode *> AddAttrs); 1393 1394 } // End llvm namespace 1395 1396 #endif 1397