1 /*
2 * This file is part of mpv.
3 *
4 * mpv is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * mpv is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with mpv. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <limits.h>
19 #include <pthread.h>
20 #include <assert.h>
21
22 #include <libavutil/mem.h>
23 #include <libavutil/common.h>
24 #include <libavutil/bswap.h>
25 #include <libavutil/hwcontext.h>
26 #include <libavutil/intreadwrite.h>
27 #include <libavutil/rational.h>
28 #include <libavcodec/avcodec.h>
29 #include <libavutil/mastering_display_metadata.h>
30
31 #include "mpv_talloc.h"
32
33 #include "config.h"
34 #include "common/av_common.h"
35 #include "common/common.h"
36 #include "hwdec.h"
37 #include "mp_image.h"
38 #include "sws_utils.h"
39 #include "fmt-conversion.h"
40
41 // Determine strides, plane sizes, and total required size for an image
42 // allocation. Returns total size on success, <0 on error. Unused planes
43 // have out_stride/out_plane_size to 0, and out_plane_offset set to -1 up
44 // until MP_MAX_PLANES-1.
mp_image_layout(int imgfmt,int w,int h,int stride_align,int out_stride[MP_MAX_PLANES],int out_plane_offset[MP_MAX_PLANES],int out_plane_size[MP_MAX_PLANES])45 static int mp_image_layout(int imgfmt, int w, int h, int stride_align,
46 int out_stride[MP_MAX_PLANES],
47 int out_plane_offset[MP_MAX_PLANES],
48 int out_plane_size[MP_MAX_PLANES])
49 {
50 struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
51
52 w = MP_ALIGN_UP(w, desc.align_x);
53 h = MP_ALIGN_UP(h, desc.align_y);
54
55 struct mp_image_params params = {.imgfmt = imgfmt, .w = w, .h = h};
56
57 if (!mp_image_params_valid(¶ms) || desc.flags & MP_IMGFLAG_HWACCEL)
58 return -1;
59
60 // Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
61 // top/right border. This is needed for correct handling of such
62 // images in filter and VO code (e.g. vo_vdpau or vo_gpu).
63
64 for (int n = 0; n < MP_MAX_PLANES; n++) {
65 int alloc_w = mp_chroma_div_up(w, desc.xs[n]);
66 int alloc_h = MP_ALIGN_UP(h, 32) >> desc.ys[n];
67 int line_bytes = (alloc_w * desc.bpp[n] + 7) / 8;
68 out_stride[n] = MP_ALIGN_UP(line_bytes, stride_align);
69 out_plane_size[n] = out_stride[n] * alloc_h;
70 }
71 if (desc.flags & MP_IMGFLAG_PAL)
72 out_plane_size[1] = AVPALETTE_SIZE;
73
74 int sum = 0;
75 for (int n = 0; n < MP_MAX_PLANES; n++) {
76 out_plane_offset[n] = out_plane_size[n] ? sum : -1;
77 sum += out_plane_size[n];
78 }
79
80 return sum;
81 }
82
83 // Return the total size needed for an image allocation of the given
84 // configuration (imgfmt, w, h must be set). Returns -1 on error.
85 // Assumes the allocation is already aligned on stride_align (otherwise you
86 // need to add padding yourself).
mp_image_get_alloc_size(int imgfmt,int w,int h,int stride_align)87 int mp_image_get_alloc_size(int imgfmt, int w, int h, int stride_align)
88 {
89 int stride[MP_MAX_PLANES];
90 int plane_offset[MP_MAX_PLANES];
91 int plane_size[MP_MAX_PLANES];
92 return mp_image_layout(imgfmt, w, h, stride_align, stride, plane_offset,
93 plane_size);
94 }
95
96 // Fill the mpi->planes and mpi->stride fields of the given mpi with data
97 // from buffer according to the mpi's w/h/imgfmt fields. See mp_image_from_buffer
98 // aboud remarks how to allocate/use buffer/buffer_size.
99 // This does not free the data. You are expected to setup refcounting by
100 // setting mp_image.bufs before or after this function is called.
101 // Returns true on success, false on failure.
mp_image_fill_alloc(struct mp_image * mpi,int stride_align,void * buffer,int buffer_size)102 static bool mp_image_fill_alloc(struct mp_image *mpi, int stride_align,
103 void *buffer, int buffer_size)
104 {
105 int stride[MP_MAX_PLANES];
106 int plane_offset[MP_MAX_PLANES];
107 int plane_size[MP_MAX_PLANES];
108 int size = mp_image_layout(mpi->imgfmt, mpi->w, mpi->h, stride_align,
109 stride, plane_offset, plane_size);
110 if (size < 0 || size > buffer_size)
111 return false;
112
113 int align = MP_ALIGN_UP((uintptr_t)buffer, stride_align) - (uintptr_t)buffer;
114 if (buffer_size - size < align)
115 return false;
116 uint8_t *s = buffer;
117 s += align;
118
119 for (int n = 0; n < MP_MAX_PLANES; n++) {
120 mpi->planes[n] = plane_offset[n] >= 0 ? s + plane_offset[n] : NULL;
121 mpi->stride[n] = stride[n];
122 }
123
124 return true;
125 }
126
127 // Create a mp_image from the provided buffer. The mp_image is filled according
128 // to the imgfmt/w/h parameters, and respecting the stride_align parameter to
129 // align the plane start pointers and strides. Once the last reference to the
130 // returned image is destroyed, free(free_opaque, buffer) is called. (Be aware
131 // that this can happen from any thread.)
132 // The allocated size of buffer must be given by buffer_size. buffer_size should
133 // be at least the value returned by mp_image_get_alloc_size(). If buffer is not
134 // already aligned to stride_align, the function will attempt to align the
135 // pointer itself by incrementing the buffer pointer until ther alignment is
136 // achieved (if buffer_size is not large enough to allow aligning the buffer
137 // safely, the function fails). To be safe, you may want to overallocate the
138 // buffer by stride_align bytes, and include the overallocation in buffer_size.
139 // Returns NULL on failure. On failure, the free() callback is not called.
mp_image_from_buffer(int imgfmt,int w,int h,int stride_align,uint8_t * buffer,int buffer_size,void * free_opaque,void (* free)(void * opaque,uint8_t * data))140 struct mp_image *mp_image_from_buffer(int imgfmt, int w, int h, int stride_align,
141 uint8_t *buffer, int buffer_size,
142 void *free_opaque,
143 void (*free)(void *opaque, uint8_t *data))
144 {
145 struct mp_image *mpi = mp_image_new_dummy_ref(NULL);
146 mp_image_setfmt(mpi, imgfmt);
147 mp_image_set_size(mpi, w, h);
148
149 if (!mp_image_fill_alloc(mpi, stride_align, buffer, buffer_size))
150 goto fail;
151
152 mpi->bufs[0] = av_buffer_create(buffer, buffer_size, free, free_opaque, 0);
153 if (!mpi->bufs[0])
154 goto fail;
155
156 return mpi;
157
158 fail:
159 talloc_free(mpi);
160 return NULL;
161 }
162
mp_image_alloc_planes(struct mp_image * mpi)163 static bool mp_image_alloc_planes(struct mp_image *mpi)
164 {
165 assert(!mpi->planes[0]);
166 assert(!mpi->bufs[0]);
167
168 int align = MP_IMAGE_BYTE_ALIGN;
169
170 int size = mp_image_get_alloc_size(mpi->imgfmt, mpi->w, mpi->h, align);
171 if (size < 0)
172 return false;
173
174 // Note: mp_image_pool assumes this creates only 1 AVBufferRef.
175 mpi->bufs[0] = av_buffer_alloc(size + align);
176 if (!mpi->bufs[0])
177 return false;
178
179 if (!mp_image_fill_alloc(mpi, align, mpi->bufs[0]->data, mpi->bufs[0]->size)) {
180 av_buffer_unref(&mpi->bufs[0]);
181 return false;
182 }
183
184 return true;
185 }
186
mp_image_setfmt(struct mp_image * mpi,int out_fmt)187 void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
188 {
189 struct mp_image_params params = mpi->params;
190 struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
191 params.imgfmt = fmt.id;
192 mpi->fmt = fmt;
193 mpi->imgfmt = fmt.id;
194 mpi->num_planes = fmt.num_planes;
195 mpi->params = params;
196 }
197
mp_image_destructor(void * ptr)198 static void mp_image_destructor(void *ptr)
199 {
200 mp_image_t *mpi = ptr;
201 for (int p = 0; p < MP_MAX_PLANES; p++)
202 av_buffer_unref(&mpi->bufs[p]);
203 av_buffer_unref(&mpi->hwctx);
204 av_buffer_unref(&mpi->icc_profile);
205 av_buffer_unref(&mpi->a53_cc);
206 for (int n = 0; n < mpi->num_ff_side_data; n++)
207 av_buffer_unref(&mpi->ff_side_data[n].buf);
208 talloc_free(mpi->ff_side_data);
209 }
210
mp_chroma_div_up(int size,int shift)211 int mp_chroma_div_up(int size, int shift)
212 {
213 return (size + (1 << shift) - 1) >> shift;
214 }
215
216 // Return the storage width in pixels of the given plane.
mp_image_plane_w(struct mp_image * mpi,int plane)217 int mp_image_plane_w(struct mp_image *mpi, int plane)
218 {
219 return mp_chroma_div_up(MP_ALIGN_UP(mpi->w, mpi->fmt.align_x),
220 mpi->fmt.xs[plane]);
221 }
222
223 // Return the storage height in pixels of the given plane.
mp_image_plane_h(struct mp_image * mpi,int plane)224 int mp_image_plane_h(struct mp_image *mpi, int plane)
225 {
226 return mp_chroma_div_up(MP_ALIGN_UP(mpi->h, mpi->fmt.align_y),
227 mpi->fmt.ys[plane]);
228 }
229
230 // Caller has to make sure this doesn't exceed the allocated plane data/strides.
mp_image_set_size(struct mp_image * mpi,int w,int h)231 void mp_image_set_size(struct mp_image *mpi, int w, int h)
232 {
233 assert(w >= 0 && h >= 0);
234 mpi->w = mpi->params.w = w;
235 mpi->h = mpi->params.h = h;
236 }
237
mp_image_set_params(struct mp_image * image,const struct mp_image_params * params)238 void mp_image_set_params(struct mp_image *image,
239 const struct mp_image_params *params)
240 {
241 // possibly initialize other stuff
242 mp_image_setfmt(image, params->imgfmt);
243 mp_image_set_size(image, params->w, params->h);
244 image->params = *params;
245 }
246
mp_image_alloc(int imgfmt,int w,int h)247 struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
248 {
249 struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
250 talloc_set_destructor(mpi, mp_image_destructor);
251
252 mp_image_set_size(mpi, w, h);
253 mp_image_setfmt(mpi, imgfmt);
254 if (!mp_image_alloc_planes(mpi)) {
255 talloc_free(mpi);
256 return NULL;
257 }
258 return mpi;
259 }
260
mp_image_approx_byte_size(struct mp_image * img)261 int mp_image_approx_byte_size(struct mp_image *img)
262 {
263 int total = sizeof(*img);
264
265 for (int n = 0; n < MP_MAX_PLANES; n++) {
266 struct AVBufferRef *buf = img->bufs[n];
267 if (buf)
268 total += buf->size;
269 }
270
271 return total;
272 }
273
mp_image_new_copy(struct mp_image * img)274 struct mp_image *mp_image_new_copy(struct mp_image *img)
275 {
276 struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
277 if (!new)
278 return NULL;
279 mp_image_copy(new, img);
280 mp_image_copy_attributes(new, img);
281 return new;
282 }
283
284 // Make dst take over the image data of src, and free src.
285 // This is basically a safe version of *dst = *src; free(src);
286 // Only works with ref-counted images, and can't change image size/format.
mp_image_steal_data(struct mp_image * dst,struct mp_image * src)287 void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
288 {
289 assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
290 assert(dst->bufs[0] && src->bufs[0]);
291
292 mp_image_destructor(dst); // unref old
293 talloc_free_children(dst);
294
295 *dst = *src;
296
297 *src = (struct mp_image){0};
298 talloc_free(src);
299 }
300
301 // Unref most data buffer (and clear the data array), but leave other fields
302 // allocated. In particular, mp_image.hwctx is preserved.
mp_image_unref_data(struct mp_image * img)303 void mp_image_unref_data(struct mp_image *img)
304 {
305 for (int n = 0; n < MP_MAX_PLANES; n++) {
306 img->planes[n] = NULL;
307 img->stride[n] = 0;
308 av_buffer_unref(&img->bufs[n]);
309 }
310 }
311
ref_buffer(bool * ok,AVBufferRef ** dst)312 static void ref_buffer(bool *ok, AVBufferRef **dst)
313 {
314 if (*dst) {
315 *dst = av_buffer_ref(*dst);
316 if (!*dst)
317 *ok = false;
318 }
319 }
320
321 // Return a new reference to img. The returned reference is owned by the caller,
322 // while img is left untouched.
mp_image_new_ref(struct mp_image * img)323 struct mp_image *mp_image_new_ref(struct mp_image *img)
324 {
325 if (!img)
326 return NULL;
327
328 if (!img->bufs[0])
329 return mp_image_new_copy(img);
330
331 struct mp_image *new = talloc_ptrtype(NULL, new);
332 talloc_set_destructor(new, mp_image_destructor);
333 *new = *img;
334
335 bool ok = true;
336 for (int p = 0; p < MP_MAX_PLANES; p++)
337 ref_buffer(&ok, &new->bufs[p]);
338
339 ref_buffer(&ok, &new->hwctx);
340 ref_buffer(&ok, &new->icc_profile);
341 ref_buffer(&ok, &new->a53_cc);
342
343 new->ff_side_data = talloc_memdup(NULL, new->ff_side_data,
344 new->num_ff_side_data * sizeof(new->ff_side_data[0]));
345 for (int n = 0; n < new->num_ff_side_data; n++)
346 ref_buffer(&ok, &new->ff_side_data[n].buf);
347
348 if (ok)
349 return new;
350
351 // Do this after _all_ bufs were changed; we don't want it to free bufs
352 // from the original image if this fails.
353 talloc_free(new);
354 return NULL;
355 }
356
357 struct free_args {
358 void *arg;
359 void (*free)(void *arg);
360 };
361
call_free(void * opaque,uint8_t * data)362 static void call_free(void *opaque, uint8_t *data)
363 {
364 struct free_args *args = opaque;
365 args->free(args->arg);
366 talloc_free(args);
367 }
368
369 // Create a new mp_image based on img, but don't set any buffers.
370 // Using this is only valid until the original img is unreferenced (including
371 // implicit unreferencing of the data by mp_image_make_writeable()), unless
372 // a new reference is set.
mp_image_new_dummy_ref(struct mp_image * img)373 struct mp_image *mp_image_new_dummy_ref(struct mp_image *img)
374 {
375 struct mp_image *new = talloc_ptrtype(NULL, new);
376 talloc_set_destructor(new, mp_image_destructor);
377 *new = img ? *img : (struct mp_image){0};
378 for (int p = 0; p < MP_MAX_PLANES; p++)
379 new->bufs[p] = NULL;
380 new->hwctx = NULL;
381 new->icc_profile = NULL;
382 new->a53_cc = NULL;
383 new->num_ff_side_data = 0;
384 new->ff_side_data = NULL;
385 return new;
386 }
387
388 // Return a reference counted reference to img. If the reference count reaches
389 // 0, call free(free_arg). The data passed by img must not be free'd before
390 // that. The new reference will be writeable.
391 // On allocation failure, unref the frame and return NULL.
392 // This is only used for hw decoding; this is important, because libav* expects
393 // all plane data to be accounted for by AVBufferRefs.
mp_image_new_custom_ref(struct mp_image * img,void * free_arg,void (* free)(void * arg))394 struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
395 void (*free)(void *arg))
396 {
397 struct mp_image *new = mp_image_new_dummy_ref(img);
398
399 struct free_args *args = talloc_ptrtype(NULL, args);
400 *args = (struct free_args){free_arg, free};
401 new->bufs[0] = av_buffer_create(NULL, 0, call_free, args,
402 AV_BUFFER_FLAG_READONLY);
403 if (new->bufs[0])
404 return new;
405 talloc_free(new);
406 return NULL;
407 }
408
mp_image_is_writeable(struct mp_image * img)409 bool mp_image_is_writeable(struct mp_image *img)
410 {
411 if (!img->bufs[0])
412 return true; // not ref-counted => always considered writeable
413 for (int p = 0; p < MP_MAX_PLANES; p++) {
414 if (!img->bufs[p])
415 break;
416 if (!av_buffer_is_writable(img->bufs[p]))
417 return false;
418 }
419 return true;
420 }
421
422 // Make the image data referenced by img writeable. This allocates new data
423 // if the data wasn't already writeable, and img->planes[] and img->stride[]
424 // will be set to the copy.
425 // Returns success; if false is returned, the image could not be made writeable.
mp_image_make_writeable(struct mp_image * img)426 bool mp_image_make_writeable(struct mp_image *img)
427 {
428 if (mp_image_is_writeable(img))
429 return true;
430
431 struct mp_image *new = mp_image_new_copy(img);
432 if (!new)
433 return false;
434 mp_image_steal_data(img, new);
435 assert(mp_image_is_writeable(img));
436 return true;
437 }
438
439 // Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
440 // Only unrefs *p_img and sets it to NULL if out of memory.
mp_image_setrefp(struct mp_image ** p_img,struct mp_image * new_value)441 void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
442 {
443 if (*p_img != new_value) {
444 talloc_free(*p_img);
445 *p_img = new_value ? mp_image_new_ref(new_value) : NULL;
446 }
447 }
448
449 // Mere helper function (mp_image can be directly free'd with talloc_free)
mp_image_unrefp(struct mp_image ** p_img)450 void mp_image_unrefp(struct mp_image **p_img)
451 {
452 talloc_free(*p_img);
453 *p_img = NULL;
454 }
455
memcpy_pic(void * dst,const void * src,int bytesPerLine,int height,int dstStride,int srcStride)456 void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
457 int dstStride, int srcStride)
458 {
459 if (bytesPerLine == dstStride && dstStride == srcStride && height) {
460 if (srcStride < 0) {
461 src = (uint8_t*)src + (height - 1) * srcStride;
462 dst = (uint8_t*)dst + (height - 1) * dstStride;
463 srcStride = -srcStride;
464 }
465
466 memcpy(dst, src, srcStride * (height - 1) + bytesPerLine);
467 } else {
468 for (int i = 0; i < height; i++) {
469 memcpy(dst, src, bytesPerLine);
470 src = (uint8_t*)src + srcStride;
471 dst = (uint8_t*)dst + dstStride;
472 }
473 }
474 }
475
mp_image_copy(struct mp_image * dst,struct mp_image * src)476 void mp_image_copy(struct mp_image *dst, struct mp_image *src)
477 {
478 assert(dst->imgfmt == src->imgfmt);
479 assert(dst->w == src->w && dst->h == src->h);
480 assert(mp_image_is_writeable(dst));
481 for (int n = 0; n < dst->num_planes; n++) {
482 int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
483 int plane_h = mp_image_plane_h(dst, n);
484 memcpy_pic(dst->planes[n], src->planes[n], line_bytes, plane_h,
485 dst->stride[n], src->stride[n]);
486 }
487 if (dst->fmt.flags & MP_IMGFLAG_PAL)
488 memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
489 }
490
mp_image_params_get_forced_csp(struct mp_image_params * params)491 static enum mp_csp mp_image_params_get_forced_csp(struct mp_image_params *params)
492 {
493 int imgfmt = params->hw_subfmt ? params->hw_subfmt : params->imgfmt;
494 return mp_imgfmt_get_forced_csp(imgfmt);
495 }
496
assign_bufref(AVBufferRef ** dst,AVBufferRef * new)497 static void assign_bufref(AVBufferRef **dst, AVBufferRef *new)
498 {
499 av_buffer_unref(dst);
500 if (new) {
501 *dst = av_buffer_ref(new);
502 MP_HANDLE_OOM(*dst);
503 }
504 }
505
mp_image_copy_attributes(struct mp_image * dst,struct mp_image * src)506 void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
507 {
508 dst->pict_type = src->pict_type;
509 dst->fields = src->fields;
510 dst->pts = src->pts;
511 dst->dts = src->dts;
512 dst->pkt_duration = src->pkt_duration;
513 dst->params.rotate = src->params.rotate;
514 dst->params.stereo3d = src->params.stereo3d;
515 dst->params.p_w = src->params.p_w;
516 dst->params.p_h = src->params.p_h;
517 dst->params.color = src->params.color;
518 dst->params.chroma_location = src->params.chroma_location;
519 dst->params.alpha = src->params.alpha;
520 dst->nominal_fps = src->nominal_fps;
521 // ensure colorspace consistency
522 if (mp_image_params_get_forced_csp(&dst->params) !=
523 mp_image_params_get_forced_csp(&src->params))
524 dst->params.color = (struct mp_colorspace){0};
525 if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
526 if (dst->planes[1] && src->planes[1]) {
527 if (mp_image_make_writeable(dst))
528 memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
529 }
530 }
531 assign_bufref(&dst->icc_profile, src->icc_profile);
532 assign_bufref(&dst->a53_cc, src->a53_cc);
533 }
534
535 // Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
536 // x0/y0 must be naturally aligned.
mp_image_crop(struct mp_image * img,int x0,int y0,int x1,int y1)537 void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
538 {
539 assert(x0 >= 0 && y0 >= 0);
540 assert(x0 <= x1 && y0 <= y1);
541 assert(x1 <= img->w && y1 <= img->h);
542 assert(!(x0 & (img->fmt.align_x - 1)));
543 assert(!(y0 & (img->fmt.align_y - 1)));
544
545 for (int p = 0; p < img->num_planes; ++p) {
546 img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
547 (x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
548 }
549 mp_image_set_size(img, x1 - x0, y1 - y0);
550 }
551
mp_image_crop_rc(struct mp_image * img,struct mp_rect rc)552 void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
553 {
554 mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
555 }
556
557 // Repeatedly write count patterns of src[0..src_size] to p.
memset_pattern(void * p,size_t count,uint8_t * src,size_t src_size)558 static void memset_pattern(void *p, size_t count, uint8_t *src, size_t src_size)
559 {
560 assert(src_size >= 1);
561
562 if (src_size == 1) {
563 memset(p, src[0], count);
564 } else if (src_size == 2) { // >8 bit YUV => common, be slightly less naive
565 uint16_t val;
566 memcpy(&val, src, 2);
567 uint16_t *p16 = p;
568 while (count--)
569 *p16++ = val;
570 } else {
571 while (count--) {
572 memcpy(p, src, src_size);
573 p = (char *)p + src_size;
574 }
575 }
576 }
577
endian_swap_bytes(void * d,size_t bytes,size_t word_size)578 static bool endian_swap_bytes(void *d, size_t bytes, size_t word_size)
579 {
580 if (word_size != 2 && word_size != 4)
581 return false;
582
583 size_t num_words = bytes / word_size;
584 uint8_t *ud = d;
585
586 switch (word_size) {
587 case 2:
588 for (size_t x = 0; x < num_words; x++)
589 AV_WL16(ud + x * 2, AV_RB16(ud + x * 2));
590 break;
591 case 4:
592 for (size_t x = 0; x < num_words; x++)
593 AV_WL32(ud + x * 2, AV_RB32(ud + x * 2));
594 break;
595 default:
596 assert(0);
597 }
598
599 return true;
600 }
601
602 // Bottom/right border is allowed not to be aligned, but it might implicitly
603 // overwrite pixel data until the alignment (align_x/align_y) is reached.
604 // Alpha is cleared to 0 (fully transparent).
mp_image_clear(struct mp_image * img,int x0,int y0,int x1,int y1)605 void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
606 {
607 assert(x0 >= 0 && y0 >= 0);
608 assert(x0 <= x1 && y0 <= y1);
609 assert(x1 <= img->w && y1 <= img->h);
610 assert(!(x0 & (img->fmt.align_x - 1)));
611 assert(!(y0 & (img->fmt.align_y - 1)));
612
613 struct mp_image area = *img;
614 struct mp_imgfmt_desc *fmt = &area.fmt;
615 mp_image_crop(&area, x0, y0, x1, y1);
616
617 // "Black" color for each plane.
618 uint8_t plane_clear[MP_MAX_PLANES][8] = {0};
619 int plane_size[MP_MAX_PLANES] = {0};
620 int misery = 1; // pixel group width
621
622 // YUV integer chroma needs special consideration, and technically luma is
623 // usually not 0 either.
624 if ((fmt->flags & (MP_IMGFLAG_HAS_COMPS | MP_IMGFLAG_PACKED_SS_YUV)) &&
625 (fmt->flags & MP_IMGFLAG_TYPE_MASK) == MP_IMGFLAG_TYPE_UINT &&
626 (fmt->flags & MP_IMGFLAG_COLOR_MASK) == MP_IMGFLAG_COLOR_YUV)
627 {
628 uint64_t plane_clear_i[MP_MAX_PLANES] = {0};
629
630 // Need to handle "multiple" pixels with packed YUV.
631 uint8_t luma_offsets[4] = {0};
632 if (fmt->flags & MP_IMGFLAG_PACKED_SS_YUV) {
633 misery = fmt->align_x;
634 if (misery <= MP_ARRAY_SIZE(luma_offsets)) // ignore if out of bounds
635 mp_imgfmt_get_packed_yuv_locations(fmt->id, luma_offsets);
636 }
637
638 for (int c = 0; c < 4; c++) {
639 struct mp_imgfmt_comp_desc *cd = &fmt->comps[c];
640 int plane_bits = fmt->bpp[cd->plane] * misery;
641 if (plane_bits <= 64 && plane_bits % 8u == 0 && cd->size) {
642 plane_size[cd->plane] = plane_bits / 8u;
643 int depth = cd->size + MPMIN(cd->pad, 0);
644 double m, o;
645 mp_get_csp_uint_mul(area.params.color.space,
646 area.params.color.levels,
647 depth, c + 1, &m, &o);
648 uint64_t val = MPCLAMP(lrint((0 - o) / m), 0, 1ull << depth);
649 plane_clear_i[cd->plane] |= val << cd->offset;
650 for (int x = 1; x < (c ? 0 : misery); x++)
651 plane_clear_i[cd->plane] |= val << luma_offsets[x];
652 }
653 }
654
655 for (int p = 0; p < MP_MAX_PLANES; p++) {
656 if (!plane_clear_i[p])
657 plane_size[p] = 0;
658 memcpy(&plane_clear[p][0], &plane_clear_i[p], 8); // endian dependent
659
660 if (fmt->endian_shift) {
661 endian_swap_bytes(&plane_clear[p][0], plane_size[p],
662 1 << fmt->endian_shift);
663 }
664 }
665 }
666
667 for (int p = 0; p < area.num_planes; p++) {
668 int p_h = mp_image_plane_h(&area, p);
669 int p_w = mp_image_plane_w(&area, p);
670 for (int y = 0; y < p_h; y++) {
671 void *ptr = area.planes[p] + (ptrdiff_t)area.stride[p] * y;
672 if (plane_size[p] && plane_clear[p]) {
673 memset_pattern(ptr, p_w / misery, plane_clear[p], plane_size[p]);
674 } else {
675 memset(ptr, 0, mp_image_plane_bytes(&area, p, 0, area.w));
676 }
677 }
678 }
679 }
680
mp_image_clear_rc(struct mp_image * mpi,struct mp_rect rc)681 void mp_image_clear_rc(struct mp_image *mpi, struct mp_rect rc)
682 {
683 mp_image_clear(mpi, rc.x0, rc.y0, rc.x1, rc.y1);
684 }
685
686 // Clear the are of the image _not_ covered by rc.
mp_image_clear_rc_inv(struct mp_image * mpi,struct mp_rect rc)687 void mp_image_clear_rc_inv(struct mp_image *mpi, struct mp_rect rc)
688 {
689 struct mp_rect clr[4];
690 int cnt = mp_rect_subtract(&(struct mp_rect){0, 0, mpi->w, mpi->h}, &rc, clr);
691 for (int n = 0; n < cnt; n++)
692 mp_image_clear_rc(mpi, clr[n]);
693 }
694
mp_image_vflip(struct mp_image * img)695 void mp_image_vflip(struct mp_image *img)
696 {
697 for (int p = 0; p < img->num_planes; p++) {
698 int plane_h = mp_image_plane_h(img, p);
699 img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
700 img->stride[p] = -img->stride[p];
701 }
702 }
703
704 // Display size derived from image size and pixel aspect ratio.
mp_image_params_get_dsize(const struct mp_image_params * p,int * d_w,int * d_h)705 void mp_image_params_get_dsize(const struct mp_image_params *p,
706 int *d_w, int *d_h)
707 {
708 *d_w = p->w;
709 *d_h = p->h;
710 if (p->p_w > p->p_h && p->p_h >= 1)
711 *d_w = MPCLAMP(*d_w * (int64_t)p->p_w / p->p_h, 1, INT_MAX);
712 if (p->p_h > p->p_w && p->p_w >= 1)
713 *d_h = MPCLAMP(*d_h * (int64_t)p->p_h / p->p_w, 1, INT_MAX);
714 }
715
mp_image_params_set_dsize(struct mp_image_params * p,int d_w,int d_h)716 void mp_image_params_set_dsize(struct mp_image_params *p, int d_w, int d_h)
717 {
718 AVRational ds = av_div_q((AVRational){d_w, d_h}, (AVRational){p->w, p->h});
719 p->p_w = ds.num;
720 p->p_h = ds.den;
721 }
722
mp_image_params_to_str_buf(char * b,size_t bs,const struct mp_image_params * p)723 char *mp_image_params_to_str_buf(char *b, size_t bs,
724 const struct mp_image_params *p)
725 {
726 if (p && p->imgfmt) {
727 snprintf(b, bs, "%dx%d", p->w, p->h);
728 if (p->p_w != p->p_h || !p->p_w)
729 mp_snprintf_cat(b, bs, " [%d:%d]", p->p_w, p->p_h);
730 mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
731 if (p->hw_subfmt)
732 mp_snprintf_cat(b, bs, "[%s]", mp_imgfmt_to_name(p->hw_subfmt));
733 mp_snprintf_cat(b, bs, " %s/%s/%s/%s/%s",
734 m_opt_choice_str(mp_csp_names, p->color.space),
735 m_opt_choice_str(mp_csp_prim_names, p->color.primaries),
736 m_opt_choice_str(mp_csp_trc_names, p->color.gamma),
737 m_opt_choice_str(mp_csp_levels_names, p->color.levels),
738 m_opt_choice_str(mp_csp_light_names, p->color.light));
739 if (p->color.sig_peak)
740 mp_snprintf_cat(b, bs, " SP=%f", p->color.sig_peak);
741 mp_snprintf_cat(b, bs, " CL=%s",
742 m_opt_choice_str(mp_chroma_names, p->chroma_location));
743 if (p->rotate)
744 mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
745 if (p->stereo3d > 0) {
746 mp_snprintf_cat(b, bs, " stereo=%s",
747 MP_STEREO3D_NAME_DEF(p->stereo3d, "?"));
748 }
749 if (p->alpha) {
750 mp_snprintf_cat(b, bs, " A=%s",
751 m_opt_choice_str(mp_alpha_names, p->alpha));
752 }
753 } else {
754 snprintf(b, bs, "???");
755 }
756 return b;
757 }
758
759 // Return whether the image parameters are valid.
760 // Some non-essential fields are allowed to be unset (like colorspace flags).
mp_image_params_valid(const struct mp_image_params * p)761 bool mp_image_params_valid(const struct mp_image_params *p)
762 {
763 // av_image_check_size has similar checks and triggers around 16000*16000
764 // It's mostly needed to deal with the fact that offsets are sometimes
765 // ints. We also should (for now) do the same as FFmpeg, to be sure large
766 // images don't crash with libswscale or when wrapping with AVFrame and
767 // passing the result to filters.
768 if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
769 return false;
770
771 if (p->p_w < 0 || p->p_h < 0)
772 return false;
773
774 if (p->rotate < 0 || p->rotate >= 360)
775 return false;
776
777 struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
778 if (!desc.id)
779 return false;
780
781 if (p->hw_subfmt && !(desc.flags & MP_IMGFLAG_HWACCEL))
782 return false;
783
784 return true;
785 }
786
mp_image_params_equal(const struct mp_image_params * p1,const struct mp_image_params * p2)787 bool mp_image_params_equal(const struct mp_image_params *p1,
788 const struct mp_image_params *p2)
789 {
790 return p1->imgfmt == p2->imgfmt &&
791 p1->hw_subfmt == p2->hw_subfmt &&
792 p1->w == p2->w && p1->h == p2->h &&
793 p1->p_w == p2->p_w && p1->p_h == p2->p_h &&
794 mp_colorspace_equal(p1->color, p2->color) &&
795 p1->chroma_location == p2->chroma_location &&
796 p1->rotate == p2->rotate &&
797 p1->stereo3d == p2->stereo3d &&
798 p1->alpha == p2->alpha;
799 }
800
801 // Set most image parameters, but not image format or size.
802 // Display size is used to set the PAR.
mp_image_set_attributes(struct mp_image * image,const struct mp_image_params * params)803 void mp_image_set_attributes(struct mp_image *image,
804 const struct mp_image_params *params)
805 {
806 struct mp_image_params nparams = *params;
807 nparams.imgfmt = image->imgfmt;
808 nparams.w = image->w;
809 nparams.h = image->h;
810 if (nparams.imgfmt != params->imgfmt)
811 nparams.color = (struct mp_colorspace){0};
812 mp_image_set_params(image, &nparams);
813 }
814
815 // If details like params->colorspace/colorlevels are missing, guess them from
816 // the other settings. Also, even if they are set, make them consistent with
817 // the colorspace as implied by the pixel format.
mp_image_params_guess_csp(struct mp_image_params * params)818 void mp_image_params_guess_csp(struct mp_image_params *params)
819 {
820 enum mp_csp forced_csp = mp_image_params_get_forced_csp(params);
821 if (forced_csp == MP_CSP_AUTO) { // YUV/other
822 if (params->color.space != MP_CSP_BT_601 &&
823 params->color.space != MP_CSP_BT_709 &&
824 params->color.space != MP_CSP_BT_2020_NC &&
825 params->color.space != MP_CSP_BT_2020_C &&
826 params->color.space != MP_CSP_SMPTE_240M &&
827 params->color.space != MP_CSP_YCGCO)
828 {
829 // Makes no sense, so guess instead
830 // YCGCO should be separate, but libavcodec disagrees
831 params->color.space = MP_CSP_AUTO;
832 }
833 if (params->color.space == MP_CSP_AUTO)
834 params->color.space = mp_csp_guess_colorspace(params->w, params->h);
835 if (params->color.levels == MP_CSP_LEVELS_AUTO) {
836 if (params->color.gamma == MP_CSP_TRC_V_LOG) {
837 params->color.levels = MP_CSP_LEVELS_PC;
838 } else {
839 params->color.levels = MP_CSP_LEVELS_TV;
840 }
841 }
842 if (params->color.primaries == MP_CSP_PRIM_AUTO) {
843 // Guess based on the colormatrix as a first priority
844 if (params->color.space == MP_CSP_BT_2020_NC ||
845 params->color.space == MP_CSP_BT_2020_C) {
846 params->color.primaries = MP_CSP_PRIM_BT_2020;
847 } else if (params->color.space == MP_CSP_BT_709) {
848 params->color.primaries = MP_CSP_PRIM_BT_709;
849 } else {
850 // Ambiguous colormatrix for BT.601, guess based on res
851 params->color.primaries = mp_csp_guess_primaries(params->w, params->h);
852 }
853 }
854 if (params->color.gamma == MP_CSP_TRC_AUTO)
855 params->color.gamma = MP_CSP_TRC_BT_1886;
856 } else if (forced_csp == MP_CSP_RGB) {
857 params->color.space = MP_CSP_RGB;
858 params->color.levels = MP_CSP_LEVELS_PC;
859
860 // The majority of RGB content is either sRGB or (rarely) some other
861 // color space which we don't even handle, like AdobeRGB or
862 // ProPhotoRGB. The only reasonable thing we can do is assume it's
863 // sRGB and hope for the best, which should usually just work out fine.
864 // Note: sRGB primaries = BT.709 primaries
865 if (params->color.primaries == MP_CSP_PRIM_AUTO)
866 params->color.primaries = MP_CSP_PRIM_BT_709;
867 if (params->color.gamma == MP_CSP_TRC_AUTO)
868 params->color.gamma = MP_CSP_TRC_SRGB;
869 } else if (forced_csp == MP_CSP_XYZ) {
870 params->color.space = MP_CSP_XYZ;
871 params->color.levels = MP_CSP_LEVELS_PC;
872
873 // In theory, XYZ data does not really need a concept of 'primaries' to
874 // function, but this field can still be relevant for guiding gamut
875 // mapping optimizations, and it's also used by `mp_get_csp_matrix`
876 // when deciding what RGB space to map XYZ to for VOs that don't want
877 // to directly ingest XYZ into their color pipeline. BT.709 would be a
878 // sane default here, but it runs the risk of clipping any wide gamut
879 // content, so we pick BT.2020 instead to be on the safer side.
880 if (params->color.primaries == MP_CSP_PRIM_AUTO)
881 params->color.primaries = MP_CSP_PRIM_BT_2020;
882 if (params->color.gamma == MP_CSP_TRC_AUTO)
883 params->color.gamma = MP_CSP_TRC_LINEAR;
884 } else {
885 // We have no clue.
886 params->color.space = MP_CSP_AUTO;
887 params->color.levels = MP_CSP_LEVELS_AUTO;
888 params->color.primaries = MP_CSP_PRIM_AUTO;
889 params->color.gamma = MP_CSP_TRC_AUTO;
890 }
891
892 if (!params->color.sig_peak) {
893 if (params->color.gamma == MP_CSP_TRC_HLG) {
894 params->color.sig_peak = 1000 / MP_REF_WHITE; // reference display
895 } else {
896 // If the signal peak is unknown, we're forced to pick the TRC's
897 // nominal range as the signal peak to prevent clipping
898 params->color.sig_peak = mp_trc_nom_peak(params->color.gamma);
899 }
900 }
901
902 if (!mp_trc_is_hdr(params->color.gamma)) {
903 // Some clips have leftover HDR metadata after conversion to SDR, so to
904 // avoid blowing up the tone mapping code, strip/sanitize it
905 params->color.sig_peak = 1.0;
906 }
907
908 if (params->chroma_location == MP_CHROMA_AUTO) {
909 if (params->color.levels == MP_CSP_LEVELS_TV)
910 params->chroma_location = MP_CHROMA_LEFT;
911 if (params->color.levels == MP_CSP_LEVELS_PC)
912 params->chroma_location = MP_CHROMA_CENTER;
913 }
914
915 if (params->color.light == MP_CSP_LIGHT_AUTO) {
916 // HLG is always scene-referred (using its own OOTF), everything else
917 // we assume is display-refered by default.
918 if (params->color.gamma == MP_CSP_TRC_HLG) {
919 params->color.light = MP_CSP_LIGHT_SCENE_HLG;
920 } else {
921 params->color.light = MP_CSP_LIGHT_DISPLAY;
922 }
923 }
924 }
925
926 // Create a new mp_image reference to av_frame.
mp_image_from_av_frame(struct AVFrame * src)927 struct mp_image *mp_image_from_av_frame(struct AVFrame *src)
928 {
929 struct mp_image *dst = &(struct mp_image){0};
930 AVFrameSideData *sd;
931
932 for (int p = 0; p < MP_MAX_PLANES; p++)
933 dst->bufs[p] = src->buf[p];
934
935 dst->hwctx = src->hw_frames_ctx;
936
937 mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
938 mp_image_set_size(dst, src->width, src->height);
939
940 dst->params.p_w = src->sample_aspect_ratio.num;
941 dst->params.p_h = src->sample_aspect_ratio.den;
942
943 for (int i = 0; i < 4; i++) {
944 dst->planes[i] = src->data[i];
945 dst->stride[i] = src->linesize[i];
946 }
947
948 dst->pict_type = src->pict_type;
949
950 dst->fields = 0;
951 if (src->interlaced_frame)
952 dst->fields |= MP_IMGFIELD_INTERLACED;
953 if (src->top_field_first)
954 dst->fields |= MP_IMGFIELD_TOP_FIRST;
955 if (src->repeat_pict == 1)
956 dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
957
958 dst->params.color = (struct mp_colorspace){
959 .space = avcol_spc_to_mp_csp(src->colorspace),
960 .levels = avcol_range_to_mp_csp_levels(src->color_range),
961 .primaries = avcol_pri_to_mp_csp_prim(src->color_primaries),
962 .gamma = avcol_trc_to_mp_csp_trc(src->color_trc),
963 };
964
965 dst->params.chroma_location = avchroma_location_to_mp(src->chroma_location);
966
967 if (src->opaque_ref) {
968 struct mp_image_params *p = (void *)src->opaque_ref->data;
969 dst->params.rotate = p->rotate;
970 dst->params.stereo3d = p->stereo3d;
971 // Might be incorrect if colorspace changes.
972 dst->params.color.light = p->color.light;
973 dst->params.alpha = p->alpha;
974 }
975
976 sd = av_frame_get_side_data(src, AV_FRAME_DATA_ICC_PROFILE);
977 if (sd)
978 dst->icc_profile = sd->buf;
979
980 // Get the content light metadata if available
981 sd = av_frame_get_side_data(src, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL);
982 if (sd) {
983 AVContentLightMetadata *clm = (AVContentLightMetadata *)sd->data;
984 dst->params.color.sig_peak = clm->MaxCLL / MP_REF_WHITE;
985 }
986
987 // Otherwise, try getting the mastering metadata if available
988 sd = av_frame_get_side_data(src, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA);
989 if (!dst->params.color.sig_peak && sd) {
990 AVMasteringDisplayMetadata *mdm = (AVMasteringDisplayMetadata *)sd->data;
991 if (mdm->has_luminance)
992 dst->params.color.sig_peak = av_q2d(mdm->max_luminance) / MP_REF_WHITE;
993 }
994
995 sd = av_frame_get_side_data(src, AV_FRAME_DATA_A53_CC);
996 if (sd)
997 dst->a53_cc = sd->buf;
998
999 for (int n = 0; n < src->nb_side_data; n++) {
1000 sd = src->side_data[n];
1001 struct mp_ff_side_data mpsd = {
1002 .type = sd->type,
1003 .buf = sd->buf,
1004 };
1005 MP_TARRAY_APPEND(NULL, dst->ff_side_data, dst->num_ff_side_data, mpsd);
1006 }
1007
1008 if (dst->hwctx) {
1009 AVHWFramesContext *fctx = (void *)dst->hwctx->data;
1010 dst->params.hw_subfmt = pixfmt2imgfmt(fctx->sw_format);
1011 }
1012
1013 struct mp_image *res = mp_image_new_ref(dst);
1014
1015 // Allocated, but non-refcounted data.
1016 talloc_free(dst->ff_side_data);
1017
1018 return res;
1019 }
1020
1021
1022 // Convert the mp_image reference to a AVFrame reference.
mp_image_to_av_frame(struct mp_image * src)1023 struct AVFrame *mp_image_to_av_frame(struct mp_image *src)
1024 {
1025 struct mp_image *new_ref = mp_image_new_ref(src);
1026 AVFrame *dst = av_frame_alloc();
1027 if (!dst || !new_ref) {
1028 talloc_free(new_ref);
1029 av_frame_free(&dst);
1030 return NULL;
1031 }
1032
1033 for (int p = 0; p < MP_MAX_PLANES; p++) {
1034 dst->buf[p] = new_ref->bufs[p];
1035 new_ref->bufs[p] = NULL;
1036 }
1037
1038 dst->hw_frames_ctx = new_ref->hwctx;
1039 new_ref->hwctx = NULL;
1040
1041 dst->format = imgfmt2pixfmt(src->imgfmt);
1042 dst->width = src->w;
1043 dst->height = src->h;
1044
1045 dst->sample_aspect_ratio.num = src->params.p_w;
1046 dst->sample_aspect_ratio.den = src->params.p_h;
1047
1048 for (int i = 0; i < 4; i++) {
1049 dst->data[i] = src->planes[i];
1050 dst->linesize[i] = src->stride[i];
1051 }
1052 dst->extended_data = dst->data;
1053
1054 dst->pict_type = src->pict_type;
1055 if (src->fields & MP_IMGFIELD_INTERLACED)
1056 dst->interlaced_frame = 1;
1057 if (src->fields & MP_IMGFIELD_TOP_FIRST)
1058 dst->top_field_first = 1;
1059 if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
1060 dst->repeat_pict = 1;
1061
1062 dst->colorspace = mp_csp_to_avcol_spc(src->params.color.space);
1063 dst->color_range = mp_csp_levels_to_avcol_range(src->params.color.levels);
1064 dst->color_primaries =
1065 mp_csp_prim_to_avcol_pri(src->params.color.primaries);
1066 dst->color_trc = mp_csp_trc_to_avcol_trc(src->params.color.gamma);
1067
1068 dst->chroma_location = mp_chroma_location_to_av(src->params.chroma_location);
1069
1070 dst->opaque_ref = av_buffer_alloc(sizeof(struct mp_image_params));
1071 if (!dst->opaque_ref)
1072 abort();
1073 *(struct mp_image_params *)dst->opaque_ref->data = src->params;
1074
1075 if (src->icc_profile) {
1076 AVFrameSideData *sd =
1077 av_frame_new_side_data_from_buf(dst, AV_FRAME_DATA_ICC_PROFILE,
1078 new_ref->icc_profile);
1079 if (!sd)
1080 abort();
1081 new_ref->icc_profile = NULL;
1082 }
1083
1084 if (src->params.color.sig_peak) {
1085 AVContentLightMetadata *clm =
1086 av_content_light_metadata_create_side_data(dst);
1087 if (!clm)
1088 abort();
1089 clm->MaxCLL = src->params.color.sig_peak * MP_REF_WHITE;
1090 }
1091
1092 // Add back side data, but only for types which are not specially handled
1093 // above. Keep in mind that the types above will be out of sync anyway.
1094 for (int n = 0; n < new_ref->num_ff_side_data; n++) {
1095 struct mp_ff_side_data *mpsd = &new_ref->ff_side_data[n];
1096 if (!av_frame_get_side_data(dst, mpsd->type)) {
1097 AVFrameSideData *sd = av_frame_new_side_data_from_buf(dst, mpsd->type,
1098 mpsd->buf);
1099 if (!sd)
1100 abort();
1101 mpsd->buf = NULL;
1102 }
1103 }
1104
1105 talloc_free(new_ref);
1106
1107 if (dst->format == AV_PIX_FMT_NONE)
1108 av_frame_free(&dst);
1109 return dst;
1110 }
1111
1112 // Same as mp_image_to_av_frame(), but unref img. (It does so even on failure.)
mp_image_to_av_frame_and_unref(struct mp_image * img)1113 struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
1114 {
1115 AVFrame *frame = mp_image_to_av_frame(img);
1116 talloc_free(img);
1117 return frame;
1118 }
1119
memset_pic(void * dst,int fill,int bytesPerLine,int height,int stride)1120 void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
1121 {
1122 if (bytesPerLine == stride && height) {
1123 memset(dst, fill, stride * (height - 1) + bytesPerLine);
1124 } else {
1125 for (int i = 0; i < height; i++) {
1126 memset(dst, fill, bytesPerLine);
1127 dst = (uint8_t *)dst + stride;
1128 }
1129 }
1130 }
1131
memset16_pic(void * dst,int fill,int unitsPerLine,int height,int stride)1132 void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
1133 {
1134 if (fill == 0) {
1135 memset_pic(dst, 0, unitsPerLine * 2, height, stride);
1136 } else {
1137 for (int i = 0; i < height; i++) {
1138 uint16_t *line = dst;
1139 uint16_t *end = line + unitsPerLine;
1140 while (line < end)
1141 *line++ = fill;
1142 dst = (uint8_t *)dst + stride;
1143 }
1144 }
1145 }
1146
1147 // Pixel at the given luma position on the given plane. x/y always refer to
1148 // non-subsampled coordinates (even if plane is chroma).
1149 // The coordinates must be aligned to mp_imgfmt_desc.align_x/y (these are byte
1150 // and chroma boundaries).
1151 // You cannot access e.g. individual luma pixels on the luma plane with yuv420p.
mp_image_pixel_ptr(struct mp_image * img,int plane,int x,int y)1152 void *mp_image_pixel_ptr(struct mp_image *img, int plane, int x, int y)
1153 {
1154 assert(MP_IS_ALIGNED(x, img->fmt.align_x));
1155 assert(MP_IS_ALIGNED(y, img->fmt.align_y));
1156 return mp_image_pixel_ptr_ny(img, plane, x, y);
1157 }
1158
1159 // Like mp_image_pixel_ptr(), but do not require alignment on Y coordinates if
1160 // the plane does not require it. Use with care.
1161 // Useful for addressing luma rows.
mp_image_pixel_ptr_ny(struct mp_image * img,int plane,int x,int y)1162 void *mp_image_pixel_ptr_ny(struct mp_image *img, int plane, int x, int y)
1163 {
1164 assert(MP_IS_ALIGNED(x, img->fmt.align_x));
1165 assert(MP_IS_ALIGNED(y, 1 << img->fmt.ys[plane]));
1166 return img->planes[plane] +
1167 img->stride[plane] * (ptrdiff_t)(y >> img->fmt.ys[plane]) +
1168 (x >> img->fmt.xs[plane]) * (size_t)img->fmt.bpp[plane] / 8;
1169 }
1170
1171 // Return size of pixels [x0, x0+w-1] in bytes. The coordinates refer to non-
1172 // subsampled pixels (basically plane 0), and the size is rounded to chroma
1173 // and byte alignment boundaries for the entire image, even if plane!=0.
1174 // x0!=0 is useful for rounding (e.g. 8 bpp, x0=7, w=7 => 0..15 => 2 bytes).
mp_image_plane_bytes(struct mp_image * img,int plane,int x0,int w)1175 size_t mp_image_plane_bytes(struct mp_image *img, int plane, int x0, int w)
1176 {
1177 int x1 = MP_ALIGN_UP(x0 + w, img->fmt.align_x);
1178 x0 = MP_ALIGN_DOWN(x0, img->fmt.align_x);
1179 size_t bpp = img->fmt.bpp[plane];
1180 int xs = img->fmt.xs[plane];
1181 return (x1 >> xs) * bpp / 8 - (x0 >> xs) * bpp / 8;
1182 }
1183