1 /*-
2 * Copyright (c) 2008 Yahoo!, Inc.
3 * All rights reserved.
4 * Written by: John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the author nor the names of any co-contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31 */
32 /*-
33 * Copyright (c) 2011-2015 LSI Corp.
34 * Copyright (c) 2013-2016 Avago Technologies
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59 *
60 * $FreeBSD: head/sys/dev/mpr/mpr_user.c 332122 2018-04-06 17:35:35Z brooks $
61 */
62
63 /* TODO Move headers to mprvar */
64 #include <sys/types.h>
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/module.h>
69 #include <sys/bus.h>
70 #include <sys/conf.h>
71 #include <sys/bio.h>
72 #include <sys/malloc.h>
73 #include <sys/uio.h>
74 #include <sys/sysctl.h>
75 #include <sys/ioccom.h>
76 #include <sys/endian.h>
77 #include <sys/queue.h>
78 #include <sys/kthread.h>
79 #include <sys/taskqueue.h>
80 #include <sys/proc.h>
81 #include <sys/sysent.h>
82 #include <sys/device.h>
83 #include <sys/eventhandler.h>
84
85 #include <sys/rman.h>
86
87 #include <bus/cam/cam.h>
88 #include <bus/cam/cam_ccb.h>
89
90 #include <dev/raid/mpr/mpi/mpi2_type.h>
91 #include <dev/raid/mpr/mpi/mpi2.h>
92 #include <dev/raid/mpr/mpi/mpi2_ioc.h>
93 #include <dev/raid/mpr/mpi/mpi2_cnfg.h>
94 #include <dev/raid/mpr/mpi/mpi2_init.h>
95 #include <dev/raid/mpr/mpi/mpi2_tool.h>
96 #include <dev/raid/mpr/mpi/mpi2_pci.h>
97 #include <dev/raid/mpr/mpr_ioctl.h>
98 #include <dev/raid/mpr/mprvar.h>
99 #include <dev/raid/mpr/mpr_table.h>
100 #include <dev/raid/mpr/mpr_sas.h>
101 #include <bus/pci/pcivar.h>
102 #include <bus/pci/pcireg.h>
103
104 static d_open_t mpr_open;
105 static d_close_t mpr_close;
106 static d_ioctl_t mpr_ioctl_devsw;
107
108 static struct dev_ops mpr_ops = {
109 { "mpr", 0, D_MPSAFE },
110 .d_open = mpr_open,
111 .d_close = mpr_close,
112 .d_ioctl = mpr_ioctl_devsw,
113 };
114
115 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
116 static mpr_user_f mpi_pre_ioc_facts;
117 static mpr_user_f mpi_pre_port_facts;
118 static mpr_user_f mpi_pre_fw_download;
119 static mpr_user_f mpi_pre_fw_upload;
120 static mpr_user_f mpi_pre_sata_passthrough;
121 static mpr_user_f mpi_pre_smp_passthrough;
122 static mpr_user_f mpi_pre_config;
123 static mpr_user_f mpi_pre_sas_io_unit_control;
124
125 static int mpr_user_read_cfg_header(struct mpr_softc *,
126 struct mpr_cfg_page_req *);
127 static int mpr_user_read_cfg_page(struct mpr_softc *,
128 struct mpr_cfg_page_req *, void *);
129 static int mpr_user_read_extcfg_header(struct mpr_softc *,
130 struct mpr_ext_cfg_page_req *);
131 static int mpr_user_read_extcfg_page(struct mpr_softc *,
132 struct mpr_ext_cfg_page_req *, void *);
133 static int mpr_user_write_cfg_page(struct mpr_softc *,
134 struct mpr_cfg_page_req *, void *);
135 static int mpr_user_setup_request(struct mpr_command *,
136 struct mpr_usr_command *);
137 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
138
139 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
140 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
141 mpr_adapter_data_t *data);
142 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
143 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
144 uint32_t unique_id);
145 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
146 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
147 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
148 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
149 uint32_t diag_type);
150 static int mpr_diag_register(struct mpr_softc *sc,
151 mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
152 static int mpr_diag_unregister(struct mpr_softc *sc,
153 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
154 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
155 uint32_t *return_code);
156 static int mpr_diag_read_buffer(struct mpr_softc *sc,
157 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
158 uint32_t *return_code);
159 static int mpr_diag_release(struct mpr_softc *sc,
160 mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
161 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
162 uint8_t *diag_action, uint32_t length, uint32_t *return_code);
163 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
164 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
165 static void mpr_user_event_enable(struct mpr_softc *sc,
166 mpr_event_enable_t *data);
167 static int mpr_user_event_report(struct mpr_softc *sc,
168 mpr_event_report_t *data);
169 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
170 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
171
172 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
173
174 /* Macros from compat/freebsd32/freebsd32.h */
175 #define PTRIN(v) (void *)(uintptr_t)(v)
176 #define PTROUT(v) (uint32_t)(uintptr_t)(v)
177
178 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
179 #define PTRIN_CP(src,dst,fld) \
180 do { (dst).fld = PTRIN((src).fld); } while (0)
181 #define PTROUT_CP(src,dst,fld) \
182 do { (dst).fld = PTROUT((src).fld); } while (0)
183
184 /*
185 * MPI functions that support IEEE SGLs for SAS3.
186 */
187 static uint8_t ieee_sgl_func_list[] = {
188 MPI2_FUNCTION_SCSI_IO_REQUEST,
189 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
190 MPI2_FUNCTION_SMP_PASSTHROUGH,
191 MPI2_FUNCTION_SATA_PASSTHROUGH,
192 MPI2_FUNCTION_FW_UPLOAD,
193 MPI2_FUNCTION_FW_DOWNLOAD,
194 MPI2_FUNCTION_TARGET_ASSIST,
195 MPI2_FUNCTION_TARGET_STATUS_SEND,
196 MPI2_FUNCTION_TOOLBOX
197 };
198
199 int
mpr_attach_user(struct mpr_softc * sc)200 mpr_attach_user(struct mpr_softc *sc)
201 {
202 int unit;
203
204 unit = device_get_unit(sc->mpr_dev);
205 sc->mpr_cdev = make_dev(&mpr_ops, unit, UID_ROOT, GID_OPERATOR, 0640,
206 "mpr%d", unit);
207
208 if (sc->mpr_cdev == NULL)
209 return (ENOMEM);
210
211 sc->mpr_cdev->si_drv1 = sc;
212 return (0);
213 }
214
215 void
mpr_detach_user(struct mpr_softc * sc)216 mpr_detach_user(struct mpr_softc *sc)
217 {
218
219 /* XXX: do a purge of pending requests? */
220 if (sc->mpr_cdev != NULL)
221 destroy_dev(sc->mpr_cdev);
222 }
223
224 static int
mpr_open(struct dev_open_args * ap)225 mpr_open(struct dev_open_args *ap)
226 {
227
228 return (0);
229 }
230
231 static int
mpr_close(struct dev_close_args * ap)232 mpr_close(struct dev_close_args *ap)
233 {
234
235 return (0);
236 }
237
238 static int
mpr_user_read_cfg_header(struct mpr_softc * sc,struct mpr_cfg_page_req * page_req)239 mpr_user_read_cfg_header(struct mpr_softc *sc,
240 struct mpr_cfg_page_req *page_req)
241 {
242 MPI2_CONFIG_PAGE_HEADER *hdr;
243 struct mpr_config_params params;
244 int error;
245
246 hdr = ¶ms.hdr.Struct;
247 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
248 params.page_address = le32toh(page_req->page_address);
249 hdr->PageVersion = 0;
250 hdr->PageLength = 0;
251 hdr->PageNumber = page_req->header.PageNumber;
252 hdr->PageType = page_req->header.PageType;
253 params.buffer = NULL;
254 params.length = 0;
255 params.callback = NULL;
256
257 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
258 /*
259 * Leave the request. Without resetting the chip, it's
260 * still owned by it and we'll just get into trouble
261 * freeing it now. Mark it as abandoned so that if it
262 * shows up later it can be freed.
263 */
264 mpr_printf(sc, "read_cfg_header timed out\n");
265 return (ETIMEDOUT);
266 }
267
268 page_req->ioc_status = htole16(params.status);
269 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
270 MPI2_IOCSTATUS_SUCCESS) {
271 bcopy(hdr, &page_req->header, sizeof(page_req->header));
272 }
273
274 return (0);
275 }
276
277 static int
mpr_user_read_cfg_page(struct mpr_softc * sc,struct mpr_cfg_page_req * page_req,void * buf)278 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
279 void *buf)
280 {
281 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
282 struct mpr_config_params params;
283 int error;
284
285 reqhdr = buf;
286 hdr = ¶ms.hdr.Struct;
287 hdr->PageVersion = reqhdr->PageVersion;
288 hdr->PageLength = reqhdr->PageLength;
289 hdr->PageNumber = reqhdr->PageNumber;
290 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
291 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
292 params.page_address = le32toh(page_req->page_address);
293 params.buffer = buf;
294 params.length = le32toh(page_req->len);
295 params.callback = NULL;
296
297 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
298 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
299 return (ETIMEDOUT);
300 }
301
302 page_req->ioc_status = htole16(params.status);
303 return (0);
304 }
305
306 static int
mpr_user_read_extcfg_header(struct mpr_softc * sc,struct mpr_ext_cfg_page_req * ext_page_req)307 mpr_user_read_extcfg_header(struct mpr_softc *sc,
308 struct mpr_ext_cfg_page_req *ext_page_req)
309 {
310 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
311 struct mpr_config_params params;
312 int error;
313
314 hdr = ¶ms.hdr.Ext;
315 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
316 hdr->PageVersion = ext_page_req->header.PageVersion;
317 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
318 hdr->ExtPageLength = 0;
319 hdr->PageNumber = ext_page_req->header.PageNumber;
320 hdr->ExtPageType = ext_page_req->header.ExtPageType;
321 params.page_address = le32toh(ext_page_req->page_address);
322 params.buffer = NULL;
323 params.length = 0;
324 params.callback = NULL;
325
326 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
327 /*
328 * Leave the request. Without resetting the chip, it's
329 * still owned by it and we'll just get into trouble
330 * freeing it now. Mark it as abandoned so that if it
331 * shows up later it can be freed.
332 */
333 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
334 return (ETIMEDOUT);
335 }
336
337 ext_page_req->ioc_status = htole16(params.status);
338 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
339 MPI2_IOCSTATUS_SUCCESS) {
340 ext_page_req->header.PageVersion = hdr->PageVersion;
341 ext_page_req->header.PageNumber = hdr->PageNumber;
342 ext_page_req->header.PageType = hdr->PageType;
343 ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
344 ext_page_req->header.ExtPageType = hdr->ExtPageType;
345 }
346
347 return (0);
348 }
349
350 static int
mpr_user_read_extcfg_page(struct mpr_softc * sc,struct mpr_ext_cfg_page_req * ext_page_req,void * buf)351 mpr_user_read_extcfg_page(struct mpr_softc *sc,
352 struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
353 {
354 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
355 struct mpr_config_params params;
356 int error;
357
358 reqhdr = buf;
359 hdr = ¶ms.hdr.Ext;
360 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
361 params.page_address = le32toh(ext_page_req->page_address);
362 hdr->PageVersion = reqhdr->PageVersion;
363 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
364 hdr->PageNumber = reqhdr->PageNumber;
365 hdr->ExtPageType = reqhdr->ExtPageType;
366 hdr->ExtPageLength = reqhdr->ExtPageLength;
367 params.buffer = buf;
368 params.length = le32toh(ext_page_req->len);
369 params.callback = NULL;
370
371 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
372 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
373 return (ETIMEDOUT);
374 }
375
376 ext_page_req->ioc_status = htole16(params.status);
377 return (0);
378 }
379
380 static int
mpr_user_write_cfg_page(struct mpr_softc * sc,struct mpr_cfg_page_req * page_req,void * buf)381 mpr_user_write_cfg_page(struct mpr_softc *sc,
382 struct mpr_cfg_page_req *page_req, void *buf)
383 {
384 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
385 struct mpr_config_params params;
386 u_int hdr_attr;
387 int error;
388
389 reqhdr = buf;
390 hdr = ¶ms.hdr.Struct;
391 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
392 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
393 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
394 mpr_printf(sc, "page type 0x%x not changeable\n",
395 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
396 return (EINVAL);
397 }
398
399 /*
400 * There isn't any point in restoring stripped out attributes
401 * if you then mask them going down to issue the request.
402 */
403
404 hdr->PageVersion = reqhdr->PageVersion;
405 hdr->PageLength = reqhdr->PageLength;
406 hdr->PageNumber = reqhdr->PageNumber;
407 hdr->PageType = reqhdr->PageType;
408 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
409 params.page_address = le32toh(page_req->page_address);
410 params.buffer = buf;
411 params.length = le32toh(page_req->len);
412 params.callback = NULL;
413
414 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) {
415 mpr_printf(sc, "mpr_write_cfg_page timed out\n");
416 return (ETIMEDOUT);
417 }
418
419 page_req->ioc_status = htole16(params.status);
420 return (0);
421 }
422
423 void
mpr_init_sge(struct mpr_command * cm,void * req,void * sge)424 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
425 {
426 int off, space;
427
428 space = (int)cm->cm_sc->reqframesz;
429 off = (uintptr_t)sge - (uintptr_t)req;
430
431 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
432 req, sge, off, space));
433
434 cm->cm_sge = sge;
435 cm->cm_sglsize = space - off;
436 }
437
438 /*
439 * Prepare the mpr_command for an IOC_FACTS request.
440 */
441 static int
mpi_pre_ioc_facts(struct mpr_command * cm,struct mpr_usr_command * cmd)442 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
443 {
444 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
445 MPI2_IOC_FACTS_REPLY *rpl;
446
447 if (cmd->req_len != sizeof *req)
448 return (EINVAL);
449 if (cmd->rpl_len != sizeof *rpl)
450 return (EINVAL);
451
452 cm->cm_sge = NULL;
453 cm->cm_sglsize = 0;
454 return (0);
455 }
456
457 /*
458 * Prepare the mpr_command for a PORT_FACTS request.
459 */
460 static int
mpi_pre_port_facts(struct mpr_command * cm,struct mpr_usr_command * cmd)461 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
462 {
463 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
464 MPI2_PORT_FACTS_REPLY *rpl;
465
466 if (cmd->req_len != sizeof *req)
467 return (EINVAL);
468 if (cmd->rpl_len != sizeof *rpl)
469 return (EINVAL);
470
471 cm->cm_sge = NULL;
472 cm->cm_sglsize = 0;
473 return (0);
474 }
475
476 /*
477 * Prepare the mpr_command for a FW_DOWNLOAD request.
478 */
479 static int
mpi_pre_fw_download(struct mpr_command * cm,struct mpr_usr_command * cmd)480 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
481 {
482 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
483 MPI2_FW_DOWNLOAD_REPLY *rpl;
484 int error;
485
486 if (cmd->req_len != sizeof *req)
487 return (EINVAL);
488 if (cmd->rpl_len != sizeof *rpl)
489 return (EINVAL);
490
491 if (cmd->len == 0)
492 return (EINVAL);
493
494 error = copyin(cmd->buf, cm->cm_data, cmd->len);
495 if (error != 0)
496 return (error);
497
498 mpr_init_sge(cm, req, &req->SGL);
499
500 /*
501 * For now, the F/W image must be provided in a single request.
502 */
503 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
504 return (EINVAL);
505 if (req->TotalImageSize != cmd->len)
506 return (EINVAL);
507
508 req->ImageOffset = 0;
509 req->ImageSize = cmd->len;
510
511 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
512
513 return (mpr_push_ieee_sge(cm, &req->SGL, 0));
514 }
515
516 /*
517 * Prepare the mpr_command for a FW_UPLOAD request.
518 */
519 static int
mpi_pre_fw_upload(struct mpr_command * cm,struct mpr_usr_command * cmd)520 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
521 {
522 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
523 MPI2_FW_UPLOAD_REPLY *rpl;
524
525 if (cmd->req_len != sizeof *req)
526 return (EINVAL);
527 if (cmd->rpl_len != sizeof *rpl)
528 return (EINVAL);
529
530 mpr_init_sge(cm, req, &req->SGL);
531 if (cmd->len == 0) {
532 /* Perhaps just asking what the size of the fw is? */
533 return (0);
534 }
535
536 req->ImageOffset = 0;
537 req->ImageSize = cmd->len;
538
539 cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
540
541 return (mpr_push_ieee_sge(cm, &req->SGL, 0));
542 }
543
544 /*
545 * Prepare the mpr_command for a SATA_PASSTHROUGH request.
546 */
547 static int
mpi_pre_sata_passthrough(struct mpr_command * cm,struct mpr_usr_command * cmd)548 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
549 {
550 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
551 MPI2_SATA_PASSTHROUGH_REPLY *rpl;
552
553 if (cmd->req_len != sizeof *req)
554 return (EINVAL);
555 if (cmd->rpl_len != sizeof *rpl)
556 return (EINVAL);
557
558 mpr_init_sge(cm, req, &req->SGL);
559 return (0);
560 }
561
562 /*
563 * Prepare the mpr_command for a SMP_PASSTHROUGH request.
564 */
565 static int
mpi_pre_smp_passthrough(struct mpr_command * cm,struct mpr_usr_command * cmd)566 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
567 {
568 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
569 MPI2_SMP_PASSTHROUGH_REPLY *rpl;
570
571 if (cmd->req_len != sizeof *req)
572 return (EINVAL);
573 if (cmd->rpl_len != sizeof *rpl)
574 return (EINVAL);
575
576 mpr_init_sge(cm, req, &req->SGL);
577 return (0);
578 }
579
580 /*
581 * Prepare the mpr_command for a CONFIG request.
582 */
583 static int
mpi_pre_config(struct mpr_command * cm,struct mpr_usr_command * cmd)584 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
585 {
586 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
587 MPI2_CONFIG_REPLY *rpl;
588
589 if (cmd->req_len != sizeof *req)
590 return (EINVAL);
591 if (cmd->rpl_len != sizeof *rpl)
592 return (EINVAL);
593
594 mpr_init_sge(cm, req, &req->PageBufferSGE);
595 return (0);
596 }
597
598 /*
599 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
600 */
601 static int
mpi_pre_sas_io_unit_control(struct mpr_command * cm,struct mpr_usr_command * cmd)602 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
603 struct mpr_usr_command *cmd)
604 {
605
606 cm->cm_sge = NULL;
607 cm->cm_sglsize = 0;
608 return (0);
609 }
610
611 /*
612 * A set of functions to prepare an mpr_command for the various
613 * supported requests.
614 */
615 struct mpr_user_func {
616 U8 Function;
617 mpr_user_f *f_pre;
618 } mpr_user_func_list[] = {
619 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts },
620 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts },
621 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download },
622 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload },
623 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough },
624 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough},
625 { MPI2_FUNCTION_CONFIG, mpi_pre_config},
626 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control },
627 { 0xFF, NULL } /* list end */
628 };
629
630 static int
mpr_user_setup_request(struct mpr_command * cm,struct mpr_usr_command * cmd)631 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
632 {
633 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
634 struct mpr_user_func *f;
635
636 for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
637 if (hdr->Function == f->Function)
638 return (f->f_pre(cm, cmd));
639 }
640 return (EINVAL);
641 }
642
643 static int
mpr_user_command(struct mpr_softc * sc,struct mpr_usr_command * cmd)644 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
645 {
646 MPI2_REQUEST_HEADER *hdr;
647 MPI2_DEFAULT_REPLY *rpl = NULL;
648 void *buf = NULL;
649 struct mpr_command *cm = NULL;
650 int err = 0;
651 int sz;
652
653 mpr_lock(sc);
654 cm = mpr_alloc_command(sc);
655
656 if (cm == NULL) {
657 mpr_printf(sc, "%s: no mpr requests\n", __func__);
658 err = ENOMEM;
659 goto RetFree;
660 }
661 mpr_unlock(sc);
662
663 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
664
665 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__,
666 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
667
668 if (cmd->req_len > (int)sc->reqframesz) {
669 err = EINVAL;
670 goto RetFreeUnlocked;
671 }
672 err = copyin(cmd->req, hdr, cmd->req_len);
673 if (err != 0)
674 goto RetFreeUnlocked;
675
676 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
677 hdr->Function, hdr->MsgFlags);
678
679 if (cmd->len > 0) {
680 buf = kmalloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
681 cm->cm_data = buf;
682 cm->cm_length = cmd->len;
683 } else {
684 cm->cm_data = NULL;
685 cm->cm_length = 0;
686 }
687
688 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
689 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
690
691 err = mpr_user_setup_request(cm, cmd);
692 if (err == EINVAL) {
693 mpr_printf(sc, "%s: unsupported parameter or unsupported "
694 "function in request (function = 0x%X)\n", __func__,
695 hdr->Function);
696 }
697 if (err != 0)
698 goto RetFreeUnlocked;
699
700 mpr_lock(sc);
701 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
702
703 if (err || (cm == NULL)) {
704 mpr_printf(sc, "%s: invalid request: error %d\n",
705 __func__, err);
706 goto RetFree;
707 }
708
709 if (cm != NULL)
710 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
711 if (rpl != NULL)
712 sz = rpl->MsgLength * 4;
713 else
714 sz = 0;
715
716 if (sz > cmd->rpl_len) {
717 mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
718 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
719 sz = cmd->rpl_len;
720 }
721
722 mpr_unlock(sc);
723 copyout(rpl, cmd->rpl, sz);
724 if (buf != NULL)
725 copyout(buf, cmd->buf, cmd->len);
726 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
727
728 RetFreeUnlocked:
729 mpr_lock(sc);
730 RetFree:
731 if (cm != NULL)
732 mpr_free_command(sc, cm);
733 mpr_unlock(sc);
734 if (buf != NULL)
735 kfree(buf, M_MPRUSER);
736 return (err);
737 }
738
739 static int
mpr_user_pass_thru(struct mpr_softc * sc,mpr_pass_thru_t * data)740 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
741 {
742 MPI2_REQUEST_HEADER *hdr, tmphdr;
743 MPI2_DEFAULT_REPLY *rpl;
744 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
745 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
746 struct mpr_command *cm = NULL;
747 int i, err = 0, dir = 0, sz;
748 uint8_t tool, function = 0;
749 u_int sense_len;
750 struct mprsas_target *targ = NULL;
751
752 /*
753 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY
754 * bit to denote that a passthru is being processed.
755 */
756 mpr_lock(sc);
757 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
758 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
759 "allowed at a single time.", __func__);
760 mpr_unlock(sc);
761 return (EBUSY);
762 }
763 sc->mpr_flags |= MPR_FLAGS_BUSY;
764 mpr_unlock(sc);
765
766 /*
767 * Do some validation on data direction. Valid cases are:
768 * 1) DataSize is 0 and direction is NONE
769 * 2) DataSize is non-zero and one of:
770 * a) direction is READ or
771 * b) direction is WRITE or
772 * c) direction is BOTH and DataOutSize is non-zero
773 * If valid and the direction is BOTH, change the direction to READ.
774 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
775 */
776 if (((data->DataSize == 0) &&
777 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
778 ((data->DataSize != 0) &&
779 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
780 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
781 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
782 (data->DataOutSize != 0))))) {
783 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
784 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
785 else
786 data->DataOutSize = 0;
787 } else
788 return (EINVAL);
789
790 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d "
791 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
792 data->PtrRequest, data->RequestSize, data->PtrReply,
793 data->ReplySize, data->PtrData, data->DataSize,
794 data->PtrDataOut, data->DataOutSize, data->DataDirection);
795
796 /*
797 * copy in the header so we know what we're dealing with before we
798 * commit to allocating a command for it.
799 */
800 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
801 if (err != 0)
802 goto RetFreeUnlocked;
803
804 if (data->RequestSize > (int)sc->reqframesz) {
805 err = EINVAL;
806 goto RetFreeUnlocked;
807 }
808
809 function = tmphdr.Function;
810 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
811 function, tmphdr.MsgFlags);
812
813 /*
814 * Handle a passthru TM request.
815 */
816 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
817 MPI2_SCSI_TASK_MANAGE_REQUEST *task;
818
819 mpr_lock(sc);
820 cm = mprsas_alloc_tm(sc);
821 if (cm == NULL) {
822 err = EINVAL;
823 goto Ret;
824 }
825
826 /* Copy the header in. Only a small fixup is needed. */
827 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
828 bcopy(&tmphdr, task, data->RequestSize);
829 task->TaskMID = cm->cm_desc.Default.SMID;
830
831 cm->cm_data = NULL;
832 cm->cm_desc.HighPriority.RequestFlags =
833 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
834 cm->cm_complete = NULL;
835 cm->cm_complete_data = NULL;
836
837 targ = mprsas_find_target_by_handle(sc->sassc, 0,
838 task->DevHandle);
839 if (targ == NULL) {
840 mpr_dprint(sc, MPR_INFO,
841 "%s %d : invalid handle for requested TM 0x%x \n",
842 __func__, __LINE__, task->DevHandle);
843 err = 1;
844 } else {
845 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
846 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
847 }
848
849 if (err != 0) {
850 err = EIO;
851 mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
852 __func__);
853 }
854 /*
855 * Copy the reply data and sense data to user space.
856 */
857 if ((cm != NULL) && (cm->cm_reply != NULL)) {
858 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
859 sz = rpl->MsgLength * 4;
860
861 if (sz > data->ReplySize) {
862 mpr_printf(sc, "%s: user reply buffer (%d) "
863 "smaller than returned buffer (%d)\n",
864 __func__, data->ReplySize, sz);
865 }
866 mpr_unlock(sc);
867 copyout(cm->cm_reply, PTRIN(data->PtrReply),
868 data->ReplySize);
869 mpr_lock(sc);
870 }
871 mprsas_free_tm(sc, cm);
872 goto Ret;
873 }
874
875 mpr_lock(sc);
876 cm = mpr_alloc_command(sc);
877
878 if (cm == NULL) {
879 mpr_printf(sc, "%s: no mpr requests\n", __func__);
880 err = ENOMEM;
881 goto Ret;
882 }
883 mpr_unlock(sc);
884
885 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
886 bcopy(&tmphdr, hdr, data->RequestSize);
887
888 /*
889 * Do some checking to make sure the IOCTL request contains a valid
890 * request. Then set the SGL info.
891 */
892 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
893
894 /*
895 * Set up for read, write or both. From check above, DataOutSize will
896 * be 0 if direction is READ or WRITE, but it will have some non-zero
897 * value if the direction is BOTH. So, just use the biggest size to get
898 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set
899 * up; the first is for the request and the second will contain the
900 * response data. cm_out_len needs to be set here and this will be used
901 * when the SGLs are set up.
902 */
903 cm->cm_data = NULL;
904 cm->cm_length = MAX(data->DataSize, data->DataOutSize);
905 cm->cm_out_len = data->DataOutSize;
906 cm->cm_flags = 0;
907 if (cm->cm_length != 0) {
908 cm->cm_data = kmalloc(cm->cm_length, M_MPRUSER, M_WAITOK |
909 M_ZERO);
910 cm->cm_flags = MPR_CM_FLAGS_DATAIN;
911 if (data->DataOutSize) {
912 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
913 err = copyin(PTRIN(data->PtrDataOut),
914 cm->cm_data, data->DataOutSize);
915 } else if (data->DataDirection ==
916 MPR_PASS_THRU_DIRECTION_WRITE) {
917 cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
918 err = copyin(PTRIN(data->PtrData),
919 cm->cm_data, data->DataSize);
920 }
921 if (err != 0)
922 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
923 "data from user space\n", __func__);
924 }
925 /*
926 * Set this flag only if processing a command that does not need an
927 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear
928 * the flag only for that tool if processing a Toolbox function.
929 */
930 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
931 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
932 if (function == ieee_sgl_func_list[i]) {
933 if (function == MPI2_FUNCTION_TOOLBOX)
934 {
935 tool = (uint8_t)hdr->FunctionDependent1;
936 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
937 break;
938 }
939 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
940 break;
941 }
942 }
943 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
944
945 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
946 nvme_encap_request =
947 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
948 cm->cm_desc.Default.RequestFlags =
949 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
950
951 /*
952 * Get the Physical Address of the sense buffer.
953 * Save the user's Error Response buffer address and use that
954 * field to hold the sense buffer address.
955 * Clear the internal sense buffer, which will potentially hold
956 * the Completion Queue Entry on return, or 0 if no Entry.
957 * Build the PRPs and set direction bits.
958 * Send the request.
959 */
960 cm->nvme_error_response =
961 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
962 ErrorResponseBaseAddress.High << 32) |
963 (uint64_t)nvme_encap_request->
964 ErrorResponseBaseAddress.Low);
965 nvme_encap_request->ErrorResponseBaseAddress.High =
966 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
967 nvme_encap_request->ErrorResponseBaseAddress.Low =
968 htole32(cm->cm_sense_busaddr);
969 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
970 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
971 data->DataSize, data->DataOutSize);
972 }
973
974 /*
975 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request
976 * uses SCSI IO or Fast Path SCSI IO descriptor.
977 */
978 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
979 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
980 MPI2_SCSI_IO_REQUEST *scsi_io_req;
981
982 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
983 /*
984 * Put SGE for data and data_out buffer at the end of
985 * scsi_io_request message header (64 bytes in total).
986 * Following above SGEs, the residual space will be used by
987 * sense data.
988 */
989 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
990 64);
991 scsi_io_req->SenseBufferLowAddress =
992 htole32(cm->cm_sense_busaddr);
993
994 /*
995 * Set SGLOffset0 value. This is the number of dwords that SGL
996 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
997 */
998 scsi_io_req->SGLOffset0 = 24;
999
1000 /*
1001 * Setup descriptor info. RAID passthrough must use the
1002 * default request descriptor which is already set, so if this
1003 * is a SCSI IO request, change the descriptor to SCSI IO or
1004 * Fast Path SCSI IO. Also, if this is a SCSI IO request,
1005 * handle the reply in the mprsas_scsio_complete function.
1006 */
1007 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1008 targ = mprsas_find_target_by_handle(sc->sassc, 0,
1009 scsi_io_req->DevHandle);
1010
1011 if (!targ) {
1012 kprintf("No Target found for handle %d\n",
1013 scsi_io_req->DevHandle);
1014 err = EINVAL;
1015 goto RetFreeUnlocked;
1016 }
1017
1018 if (targ->scsi_req_desc_type ==
1019 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1020 cm->cm_desc.FastPathSCSIIO.RequestFlags =
1021 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1022 if (!sc->atomic_desc_capable) {
1023 cm->cm_desc.FastPathSCSIIO.DevHandle =
1024 scsi_io_req->DevHandle;
1025 }
1026 scsi_io_req->IoFlags |=
1027 MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1028 } else {
1029 cm->cm_desc.SCSIIO.RequestFlags =
1030 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1031 if (!sc->atomic_desc_capable) {
1032 cm->cm_desc.SCSIIO.DevHandle =
1033 scsi_io_req->DevHandle;
1034 }
1035 }
1036
1037 /*
1038 * Make sure the DevHandle is not 0 because this is a
1039 * likely error.
1040 */
1041 if (scsi_io_req->DevHandle == 0) {
1042 err = EINVAL;
1043 goto RetFreeUnlocked;
1044 }
1045 }
1046 }
1047
1048 mpr_lock(sc);
1049
1050 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1051
1052 if (err || (cm == NULL)) {
1053 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1054 err);
1055 goto RetFree;
1056 }
1057
1058 /*
1059 * Sync the DMA data, if any. Then copy the data to user space.
1060 */
1061 if (cm->cm_data != NULL) {
1062 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1063 dir = BUS_DMASYNC_POSTREAD;
1064 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1065 dir = BUS_DMASYNC_POSTWRITE;
1066 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1067 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1068
1069 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1070 mpr_unlock(sc);
1071 err = copyout(cm->cm_data,
1072 PTRIN(data->PtrData), data->DataSize);
1073 mpr_lock(sc);
1074 if (err != 0)
1075 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1076 "IOCTL data to user space\n", __func__);
1077 }
1078 }
1079
1080 /*
1081 * Copy the reply data and sense data to user space.
1082 */
1083 if (cm->cm_reply != NULL) {
1084 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1085 sz = rpl->MsgLength * 4;
1086
1087 if (sz > data->ReplySize) {
1088 mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1089 "than returned buffer (%d)\n", __func__,
1090 data->ReplySize, sz);
1091 }
1092 mpr_unlock(sc);
1093 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1094 mpr_lock(sc);
1095
1096 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1097 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1098 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1099 MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1100 sense_len =
1101 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1102 SenseCount)), sizeof(struct
1103 scsi_sense_data));
1104 mpr_unlock(sc);
1105 copyout(cm->cm_sense, cm->cm_req + 64,
1106 sense_len);
1107 mpr_lock(sc);
1108 }
1109 }
1110
1111 /*
1112 * Copy out the NVMe Error Reponse to user. The Error Response
1113 * buffer is given by the user, but a sense buffer is used to
1114 * get that data from the IOC. The user's
1115 * ErrorResponseBaseAddress is saved in the
1116 * 'nvme_error_response' field before the command because that
1117 * field is set to a sense buffer. When the command is
1118 * complete, the Error Response data from the IOC is copied to
1119 * that user address after it is checked for validity.
1120 * Also note that 'sense' buffers are not defined for
1121 * NVMe commands. Sense terminalogy is only used here so that
1122 * the same IOCTL structure and sense buffers can be used for
1123 * NVMe.
1124 */
1125 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1126 if (cm->nvme_error_response == NULL) {
1127 mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1128 "buffer is NULL. Response data will not be "
1129 "returned.\n");
1130 mpr_unlock(sc);
1131 goto RetFreeUnlocked;
1132 }
1133
1134 nvme_error_reply =
1135 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1136 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1137 NVME_ERROR_RESPONSE_SIZE);
1138 mpr_unlock(sc);
1139 copyout(cm->cm_sense, cm->nvme_error_response, sz);
1140 mpr_lock(sc);
1141 }
1142 }
1143 mpr_unlock(sc);
1144
1145 RetFreeUnlocked:
1146 mpr_lock(sc);
1147
1148 RetFree:
1149 if (cm != NULL) {
1150 if (cm->cm_data)
1151 kfree(cm->cm_data, M_MPRUSER);
1152 mpr_free_command(sc, cm);
1153 }
1154 Ret:
1155 sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1156 mpr_unlock(sc);
1157
1158 return (err);
1159 }
1160
1161 static void
mpr_user_get_adapter_data(struct mpr_softc * sc,mpr_adapter_data_t * data)1162 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1163 {
1164 Mpi2ConfigReply_t mpi_reply;
1165 Mpi2BiosPage3_t config_page;
1166
1167 /*
1168 * Use the PCI interface functions to get the Bus, Device, and Function
1169 * information.
1170 */
1171 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1172 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1173 data->PciInformation.u.bits.FunctionNumber =
1174 pci_get_function(sc->mpr_dev);
1175
1176 /*
1177 * Get the FW version that should already be saved in IOC Facts.
1178 */
1179 data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1180
1181 /*
1182 * General device info.
1183 */
1184 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1185 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1186 else
1187 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1188 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1189 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1190 data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1191 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1192
1193 /*
1194 * Get the driver version.
1195 */
1196 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1197
1198 /*
1199 * Need to get BIOS Config Page 3 for the BIOS Version.
1200 */
1201 data->BiosVersion = 0;
1202 mpr_lock(sc);
1203 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1204 kprintf("%s: Error while retrieving BIOS Version\n", __func__);
1205 else
1206 data->BiosVersion = config_page.BiosVersion;
1207 mpr_unlock(sc);
1208 }
1209
1210 static void
mpr_user_read_pci_info(struct mpr_softc * sc,mpr_pci_info_t * data)1211 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1212 {
1213 int i;
1214
1215 /*
1216 * Use the PCI interface functions to get the Bus, Device, and Function
1217 * information.
1218 */
1219 data->BusNumber = pci_get_bus(sc->mpr_dev);
1220 data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1221 data->FunctionNumber = pci_get_function(sc->mpr_dev);
1222
1223 /*
1224 * Now get the interrupt vector and the pci header. The vector can
1225 * only be 0 right now. The header is the first 256 bytes of config
1226 * space.
1227 */
1228 data->InterruptVector = 0;
1229 for (i = 0; i < sizeof (data->PciHeader); i++) {
1230 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1231 }
1232 }
1233
1234 static uint8_t
mpr_get_fw_diag_buffer_number(struct mpr_softc * sc,uint32_t unique_id)1235 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1236 {
1237 uint8_t index;
1238
1239 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1240 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1241 return (index);
1242 }
1243 }
1244
1245 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1246 }
1247
1248 static int
mpr_post_fw_diag_buffer(struct mpr_softc * sc,mpr_fw_diagnostic_buffer_t * pBuffer,uint32_t * return_code)1249 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1250 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1251 {
1252 MPI2_DIAG_BUFFER_POST_REQUEST *req;
1253 MPI2_DIAG_BUFFER_POST_REPLY *reply;
1254 struct mpr_command *cm = NULL;
1255 int i, status;
1256
1257 /*
1258 * If buffer is not enabled, just leave.
1259 */
1260 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1261 if (!pBuffer->enabled) {
1262 return (MPR_DIAG_FAILURE);
1263 }
1264
1265 /*
1266 * Clear some flags initially.
1267 */
1268 pBuffer->force_release = FALSE;
1269 pBuffer->valid_data = FALSE;
1270 pBuffer->owned_by_firmware = FALSE;
1271
1272 /*
1273 * Get a command.
1274 */
1275 cm = mpr_alloc_command(sc);
1276 if (cm == NULL) {
1277 mpr_printf(sc, "%s: no mpr requests\n", __func__);
1278 return (MPR_DIAG_FAILURE);
1279 }
1280
1281 /*
1282 * Build the request for releasing the FW Diag Buffer and send it.
1283 */
1284 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1285 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1286 req->BufferType = pBuffer->buffer_type;
1287 req->ExtendedType = pBuffer->extended_type;
1288 req->BufferLength = pBuffer->size;
1289 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1290 req->ProductSpecific[i] = pBuffer->product_specific[i];
1291 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1292 cm->cm_data = NULL;
1293 cm->cm_length = 0;
1294 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1295 cm->cm_complete_data = NULL;
1296
1297 /*
1298 * Send command synchronously.
1299 */
1300 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1301 if (status || (cm == NULL)) {
1302 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1303 status);
1304 status = MPR_DIAG_FAILURE;
1305 goto done;
1306 }
1307
1308 /*
1309 * Process POST reply.
1310 */
1311 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1312 if (reply == NULL) {
1313 mpr_printf(sc, "%s: reply is NULL, probably due to "
1314 "reinitialization", __func__);
1315 status = MPR_DIAG_FAILURE;
1316 goto done;
1317 }
1318
1319 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1320 MPI2_IOCSTATUS_SUCCESS) {
1321 status = MPR_DIAG_FAILURE;
1322 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed "
1323 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1324 "TransferLength = 0x%x\n", __func__,
1325 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1326 le32toh(reply->TransferLength));
1327 goto done;
1328 }
1329
1330 /*
1331 * Post was successful.
1332 */
1333 pBuffer->valid_data = TRUE;
1334 pBuffer->owned_by_firmware = TRUE;
1335 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1336 status = MPR_DIAG_SUCCESS;
1337
1338 done:
1339 if (cm != NULL)
1340 mpr_free_command(sc, cm);
1341 return (status);
1342 }
1343
1344 static int
mpr_release_fw_diag_buffer(struct mpr_softc * sc,mpr_fw_diagnostic_buffer_t * pBuffer,uint32_t * return_code,uint32_t diag_type)1345 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1346 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1347 uint32_t diag_type)
1348 {
1349 MPI2_DIAG_RELEASE_REQUEST *req;
1350 MPI2_DIAG_RELEASE_REPLY *reply;
1351 struct mpr_command *cm = NULL;
1352 int status;
1353
1354 /*
1355 * If buffer is not enabled, just leave.
1356 */
1357 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1358 if (!pBuffer->enabled) {
1359 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1360 "supported by the IOC", __func__);
1361 return (MPR_DIAG_FAILURE);
1362 }
1363
1364 /*
1365 * Clear some flags initially.
1366 */
1367 pBuffer->force_release = FALSE;
1368 pBuffer->valid_data = FALSE;
1369 pBuffer->owned_by_firmware = FALSE;
1370
1371 /*
1372 * Get a command.
1373 */
1374 cm = mpr_alloc_command(sc);
1375 if (cm == NULL) {
1376 mpr_printf(sc, "%s: no mpr requests\n", __func__);
1377 return (MPR_DIAG_FAILURE);
1378 }
1379
1380 /*
1381 * Build the request for releasing the FW Diag Buffer and send it.
1382 */
1383 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1384 req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1385 req->BufferType = pBuffer->buffer_type;
1386 cm->cm_data = NULL;
1387 cm->cm_length = 0;
1388 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1389 cm->cm_complete_data = NULL;
1390
1391 /*
1392 * Send command synchronously.
1393 */
1394 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1395 if (status || (cm == NULL)) {
1396 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1397 status);
1398 status = MPR_DIAG_FAILURE;
1399 goto done;
1400 }
1401
1402 /*
1403 * Process RELEASE reply.
1404 */
1405 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1406 if (reply == NULL) {
1407 mpr_printf(sc, "%s: reply is NULL, probably due to "
1408 "reinitialization", __func__);
1409 status = MPR_DIAG_FAILURE;
1410 goto done;
1411 }
1412 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1413 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1414 status = MPR_DIAG_FAILURE;
1415 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1416 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1417 __func__, le16toh(reply->IOCStatus),
1418 le32toh(reply->IOCLogInfo));
1419 goto done;
1420 }
1421
1422 /*
1423 * Release was successful.
1424 */
1425 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1426 status = MPR_DIAG_SUCCESS;
1427
1428 /*
1429 * If this was for an UNREGISTER diag type command, clear the unique ID.
1430 */
1431 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1432 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1433 }
1434
1435 done:
1436 if (cm != NULL)
1437 mpr_free_command(sc, cm);
1438
1439 return (status);
1440 }
1441
1442 static int
mpr_diag_register(struct mpr_softc * sc,mpr_fw_diag_register_t * diag_register,uint32_t * return_code)1443 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1444 uint32_t *return_code)
1445 {
1446 mpr_fw_diagnostic_buffer_t *pBuffer;
1447 struct mpr_busdma_context *ctx;
1448 uint8_t extended_type, buffer_type, i;
1449 uint32_t buffer_size;
1450 uint32_t unique_id;
1451 int status;
1452 int error;
1453
1454 extended_type = diag_register->ExtendedType;
1455 buffer_type = diag_register->BufferType;
1456 buffer_size = diag_register->RequestedBufferSize;
1457 unique_id = diag_register->UniqueId;
1458 ctx = NULL;
1459 error = 0;
1460
1461 /*
1462 * Check for valid buffer type
1463 */
1464 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1465 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1466 return (MPR_DIAG_FAILURE);
1467 }
1468
1469 /*
1470 * Get the current buffer and look up the unique ID. The unique ID
1471 * should not be found. If it is, the ID is already in use.
1472 */
1473 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1474 pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1475 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1476 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1477 return (MPR_DIAG_FAILURE);
1478 }
1479
1480 /*
1481 * The buffer's unique ID should not be registered yet, and the given
1482 * unique ID cannot be 0.
1483 */
1484 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1485 (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1486 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1487 return (MPR_DIAG_FAILURE);
1488 }
1489
1490 /*
1491 * If this buffer is already posted as immediate, just change owner.
1492 */
1493 if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1494 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1495 pBuffer->immediate = FALSE;
1496 pBuffer->unique_id = unique_id;
1497 return (MPR_DIAG_SUCCESS);
1498 }
1499
1500 /*
1501 * Post a new buffer after checking if it's enabled. The DMA buffer
1502 * that is allocated will be contiguous (nsegments = 1).
1503 */
1504 if (!pBuffer->enabled) {
1505 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1506 return (MPR_DIAG_FAILURE);
1507 }
1508 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1509 1, 0, /* algnmnt, boundary */
1510 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1511 BUS_SPACE_MAXADDR, /* highaddr */
1512 buffer_size, /* maxsize */
1513 1, /* nsegments */
1514 buffer_size, /* maxsegsize */
1515 0, /* flags */
1516 &sc->fw_diag_dmat)) {
1517 mpr_dprint(sc, MPR_ERROR,
1518 "Cannot allocate FW diag buffer DMA tag\n");
1519 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1520 status = MPR_DIAG_FAILURE;
1521 goto bailout;
1522 }
1523 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1524 BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1525 mpr_dprint(sc, MPR_ERROR,
1526 "Cannot allocate FW diag buffer memory\n");
1527 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1528 status = MPR_DIAG_FAILURE;
1529 goto bailout;
1530 }
1531 bzero(sc->fw_diag_buffer, buffer_size);
1532
1533 ctx = kmalloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1534 if (ctx == NULL) {
1535 device_printf(sc->mpr_dev, "%s: context kmalloc failed\n",
1536 __func__);
1537 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1538 status = MPR_DIAG_FAILURE;
1539 goto bailout;
1540 }
1541 ctx->addr = &sc->fw_diag_busaddr;
1542 ctx->buffer_dmat = sc->fw_diag_dmat;
1543 ctx->buffer_dmamap = sc->fw_diag_map;
1544 ctx->softc = sc;
1545 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1546 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1547 ctx, 0);
1548 if (error == EINPROGRESS) {
1549
1550 /* XXX KDM */
1551 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1552 __func__);
1553 /*
1554 * Wait for the load to complete. If we're interrupted,
1555 * bail out.
1556 */
1557 mpr_lock(sc);
1558 if (ctx->completed == 0) {
1559 error = lksleep(ctx, &sc->mpr_lock, PCATCH, "mprwait", 0);
1560 if (error != 0) {
1561 /*
1562 * We got an error from msleep(9). This is
1563 * most likely due to a signal. Tell
1564 * mpr_memaddr_wait_cb() that we've abandoned
1565 * the context, so it needs to clean up when
1566 * it is called.
1567 */
1568 ctx->abandoned = 1;
1569
1570 /* The callback will free this memory */
1571 ctx = NULL;
1572 mpr_unlock(sc);
1573
1574 device_printf(sc->mpr_dev, "Cannot "
1575 "bus_dmamap_load FW diag buffer, error = "
1576 "%d returned from lksleep\n", error);
1577 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1578 status = MPR_DIAG_FAILURE;
1579 goto bailout;
1580 }
1581 }
1582 mpr_unlock(sc);
1583 }
1584
1585 if ((error != 0) || (ctx->error != 0)) {
1586 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1587 "buffer, %serror = %d\n", error ? "" : "callback ",
1588 error ? error : ctx->error);
1589 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1590 status = MPR_DIAG_FAILURE;
1591 goto bailout;
1592 }
1593
1594 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1595
1596 pBuffer->size = buffer_size;
1597
1598 /*
1599 * Copy the given info to the diag buffer and post the buffer.
1600 */
1601 pBuffer->buffer_type = buffer_type;
1602 pBuffer->immediate = FALSE;
1603 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1604 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1605 i++) {
1606 pBuffer->product_specific[i] =
1607 diag_register->ProductSpecific[i];
1608 }
1609 }
1610 pBuffer->extended_type = extended_type;
1611 pBuffer->unique_id = unique_id;
1612 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1613
1614 bailout:
1615
1616 /*
1617 * In case there was a failure, free the DMA buffer.
1618 */
1619 if (status == MPR_DIAG_FAILURE) {
1620 if (sc->fw_diag_busaddr != 0) {
1621 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1622 sc->fw_diag_busaddr = 0;
1623 }
1624 if (sc->fw_diag_buffer != NULL) {
1625 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1626 sc->fw_diag_map);
1627 sc->fw_diag_buffer = NULL;
1628 }
1629 if (sc->fw_diag_dmat != NULL) {
1630 bus_dma_tag_destroy(sc->fw_diag_dmat);
1631 sc->fw_diag_dmat = NULL;
1632 }
1633 }
1634
1635 if (ctx != NULL)
1636 kfree(ctx, M_MPR);
1637
1638 return (status);
1639 }
1640
1641 static int
mpr_diag_unregister(struct mpr_softc * sc,mpr_fw_diag_unregister_t * diag_unregister,uint32_t * return_code)1642 mpr_diag_unregister(struct mpr_softc *sc,
1643 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1644 {
1645 mpr_fw_diagnostic_buffer_t *pBuffer;
1646 uint8_t i;
1647 uint32_t unique_id;
1648 int status;
1649
1650 unique_id = diag_unregister->UniqueId;
1651
1652 /*
1653 * Get the current buffer and look up the unique ID. The unique ID
1654 * should be there.
1655 */
1656 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1657 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1658 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1659 return (MPR_DIAG_FAILURE);
1660 }
1661
1662 pBuffer = &sc->fw_diag_buffer_list[i];
1663
1664 /*
1665 * Try to release the buffer from FW before freeing it. If release
1666 * fails, don't free the DMA buffer in case FW tries to access it
1667 * later. If buffer is not owned by firmware, can't release it.
1668 */
1669 if (!pBuffer->owned_by_firmware) {
1670 status = MPR_DIAG_SUCCESS;
1671 } else {
1672 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1673 MPR_FW_DIAG_TYPE_UNREGISTER);
1674 }
1675
1676 /*
1677 * At this point, return the current status no matter what happens with
1678 * the DMA buffer.
1679 */
1680 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1681 if (status == MPR_DIAG_SUCCESS) {
1682 if (sc->fw_diag_busaddr != 0) {
1683 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1684 sc->fw_diag_busaddr = 0;
1685 }
1686 if (sc->fw_diag_buffer != NULL) {
1687 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1688 sc->fw_diag_map);
1689 sc->fw_diag_buffer = NULL;
1690 }
1691 if (sc->fw_diag_dmat != NULL) {
1692 bus_dma_tag_destroy(sc->fw_diag_dmat);
1693 sc->fw_diag_dmat = NULL;
1694 }
1695 }
1696
1697 return (status);
1698 }
1699
1700 static int
mpr_diag_query(struct mpr_softc * sc,mpr_fw_diag_query_t * diag_query,uint32_t * return_code)1701 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1702 uint32_t *return_code)
1703 {
1704 mpr_fw_diagnostic_buffer_t *pBuffer;
1705 uint8_t i;
1706 uint32_t unique_id;
1707
1708 unique_id = diag_query->UniqueId;
1709
1710 /*
1711 * If ID is valid, query on ID.
1712 * If ID is invalid, query on buffer type.
1713 */
1714 if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1715 i = diag_query->BufferType;
1716 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1717 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1718 return (MPR_DIAG_FAILURE);
1719 }
1720 } else {
1721 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1722 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1723 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1724 return (MPR_DIAG_FAILURE);
1725 }
1726 }
1727
1728 /*
1729 * Fill query structure with the diag buffer info.
1730 */
1731 pBuffer = &sc->fw_diag_buffer_list[i];
1732 diag_query->BufferType = pBuffer->buffer_type;
1733 diag_query->ExtendedType = pBuffer->extended_type;
1734 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1735 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1736 i++) {
1737 diag_query->ProductSpecific[i] =
1738 pBuffer->product_specific[i];
1739 }
1740 }
1741 diag_query->TotalBufferSize = pBuffer->size;
1742 diag_query->DriverAddedBufferSize = 0;
1743 diag_query->UniqueId = pBuffer->unique_id;
1744 diag_query->ApplicationFlags = 0;
1745 diag_query->DiagnosticFlags = 0;
1746
1747 /*
1748 * Set/Clear application flags
1749 */
1750 if (pBuffer->immediate) {
1751 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1752 } else {
1753 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1754 }
1755 if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1756 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1757 } else {
1758 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1759 }
1760 if (pBuffer->owned_by_firmware) {
1761 diag_query->ApplicationFlags |=
1762 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1763 } else {
1764 diag_query->ApplicationFlags &=
1765 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1766 }
1767
1768 return (MPR_DIAG_SUCCESS);
1769 }
1770
1771 static int
mpr_diag_read_buffer(struct mpr_softc * sc,mpr_diag_read_buffer_t * diag_read_buffer,uint8_t * ioctl_buf,uint32_t * return_code)1772 mpr_diag_read_buffer(struct mpr_softc *sc,
1773 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1774 uint32_t *return_code)
1775 {
1776 mpr_fw_diagnostic_buffer_t *pBuffer;
1777 uint8_t i, *pData;
1778 uint32_t unique_id;
1779 int status;
1780
1781 unique_id = diag_read_buffer->UniqueId;
1782
1783 /*
1784 * Get the current buffer and look up the unique ID. The unique ID
1785 * should be there.
1786 */
1787 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1788 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1789 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1790 return (MPR_DIAG_FAILURE);
1791 }
1792
1793 pBuffer = &sc->fw_diag_buffer_list[i];
1794
1795 /*
1796 * Make sure requested read is within limits
1797 */
1798 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1799 pBuffer->size) {
1800 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1801 return (MPR_DIAG_FAILURE);
1802 }
1803
1804 /* Sync the DMA map before we copy to userland. */
1805 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1806 BUS_DMASYNC_POSTREAD);
1807
1808 /*
1809 * Copy the requested data from DMA to the diag_read_buffer. The DMA
1810 * buffer that was allocated is one contiguous buffer.
1811 */
1812 pData = (uint8_t *)(sc->fw_diag_buffer +
1813 diag_read_buffer->StartingOffset);
1814 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1815 return (MPR_DIAG_FAILURE);
1816 diag_read_buffer->Status = 0;
1817
1818 /*
1819 * Set or clear the Force Release flag.
1820 */
1821 if (pBuffer->force_release) {
1822 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1823 } else {
1824 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1825 }
1826
1827 /*
1828 * If buffer is to be reregistered, make sure it's not already owned by
1829 * firmware first.
1830 */
1831 status = MPR_DIAG_SUCCESS;
1832 if (!pBuffer->owned_by_firmware) {
1833 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1834 status = mpr_post_fw_diag_buffer(sc, pBuffer,
1835 return_code);
1836 }
1837 }
1838
1839 return (status);
1840 }
1841
1842 static int
mpr_diag_release(struct mpr_softc * sc,mpr_fw_diag_release_t * diag_release,uint32_t * return_code)1843 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1844 uint32_t *return_code)
1845 {
1846 mpr_fw_diagnostic_buffer_t *pBuffer;
1847 uint8_t i;
1848 uint32_t unique_id;
1849 int status;
1850
1851 unique_id = diag_release->UniqueId;
1852
1853 /*
1854 * Get the current buffer and look up the unique ID. The unique ID
1855 * should be there.
1856 */
1857 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1858 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1859 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1860 return (MPR_DIAG_FAILURE);
1861 }
1862
1863 pBuffer = &sc->fw_diag_buffer_list[i];
1864
1865 /*
1866 * If buffer is not owned by firmware, it's already been released.
1867 */
1868 if (!pBuffer->owned_by_firmware) {
1869 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1870 return (MPR_DIAG_FAILURE);
1871 }
1872
1873 /*
1874 * Release the buffer.
1875 */
1876 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1877 MPR_FW_DIAG_TYPE_RELEASE);
1878 return (status);
1879 }
1880
1881 static int
mpr_do_diag_action(struct mpr_softc * sc,uint32_t action,uint8_t * diag_action,uint32_t length,uint32_t * return_code)1882 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1883 uint32_t length, uint32_t *return_code)
1884 {
1885 mpr_fw_diag_register_t diag_register;
1886 mpr_fw_diag_unregister_t diag_unregister;
1887 mpr_fw_diag_query_t diag_query;
1888 mpr_diag_read_buffer_t diag_read_buffer;
1889 mpr_fw_diag_release_t diag_release;
1890 int status = MPR_DIAG_SUCCESS;
1891 uint32_t original_return_code;
1892
1893 original_return_code = *return_code;
1894 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1895
1896 switch (action) {
1897 case MPR_FW_DIAG_TYPE_REGISTER:
1898 if (!length) {
1899 *return_code =
1900 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1901 status = MPR_DIAG_FAILURE;
1902 break;
1903 }
1904 if (copyin(diag_action, &diag_register,
1905 sizeof(diag_register)) != 0)
1906 return (MPR_DIAG_FAILURE);
1907 status = mpr_diag_register(sc, &diag_register,
1908 return_code);
1909 break;
1910
1911 case MPR_FW_DIAG_TYPE_UNREGISTER:
1912 if (length < sizeof(diag_unregister)) {
1913 *return_code =
1914 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1915 status = MPR_DIAG_FAILURE;
1916 break;
1917 }
1918 if (copyin(diag_action, &diag_unregister,
1919 sizeof(diag_unregister)) != 0)
1920 return (MPR_DIAG_FAILURE);
1921 status = mpr_diag_unregister(sc, &diag_unregister,
1922 return_code);
1923 break;
1924
1925 case MPR_FW_DIAG_TYPE_QUERY:
1926 if (length < sizeof (diag_query)) {
1927 *return_code =
1928 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1929 status = MPR_DIAG_FAILURE;
1930 break;
1931 }
1932 if (copyin(diag_action, &diag_query, sizeof(diag_query))
1933 != 0)
1934 return (MPR_DIAG_FAILURE);
1935 status = mpr_diag_query(sc, &diag_query, return_code);
1936 if (status == MPR_DIAG_SUCCESS)
1937 if (copyout(&diag_query, diag_action,
1938 sizeof (diag_query)) != 0)
1939 return (MPR_DIAG_FAILURE);
1940 break;
1941
1942 case MPR_FW_DIAG_TYPE_READ_BUFFER:
1943 if (copyin(diag_action, &diag_read_buffer,
1944 sizeof(diag_read_buffer)) != 0)
1945 return (MPR_DIAG_FAILURE);
1946 if (length < diag_read_buffer.BytesToRead) {
1947 *return_code =
1948 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1949 status = MPR_DIAG_FAILURE;
1950 break;
1951 }
1952 status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1953 PTRIN(diag_read_buffer.PtrDataBuffer),
1954 return_code);
1955 if (status == MPR_DIAG_SUCCESS) {
1956 if (copyout(&diag_read_buffer, diag_action,
1957 sizeof(diag_read_buffer) -
1958 sizeof(diag_read_buffer.PtrDataBuffer)) !=
1959 0)
1960 return (MPR_DIAG_FAILURE);
1961 }
1962 break;
1963
1964 case MPR_FW_DIAG_TYPE_RELEASE:
1965 if (length < sizeof(diag_release)) {
1966 *return_code =
1967 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1968 status = MPR_DIAG_FAILURE;
1969 break;
1970 }
1971 if (copyin(diag_action, &diag_release,
1972 sizeof(diag_release)) != 0)
1973 return (MPR_DIAG_FAILURE);
1974 status = mpr_diag_release(sc, &diag_release,
1975 return_code);
1976 break;
1977
1978 default:
1979 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1980 status = MPR_DIAG_FAILURE;
1981 break;
1982 }
1983
1984 if ((status == MPR_DIAG_FAILURE) &&
1985 (original_return_code == MPR_FW_DIAG_NEW) &&
1986 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1987 status = MPR_DIAG_SUCCESS;
1988
1989 return (status);
1990 }
1991
1992 static int
mpr_user_diag_action(struct mpr_softc * sc,mpr_diag_action_t * data)1993 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1994 {
1995 int status;
1996
1997 /*
1998 * Only allow one diag action at one time.
1999 */
2000 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2001 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2002 "allowed at a single time.", __func__);
2003 return (EBUSY);
2004 }
2005 sc->mpr_flags |= MPR_FLAGS_BUSY;
2006
2007 /*
2008 * Send diag action request
2009 */
2010 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2011 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2012 data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2013 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2014 data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2015 status = mpr_do_diag_action(sc, data->Action,
2016 PTRIN(data->PtrDiagAction), data->Length,
2017 &data->ReturnCode);
2018 } else
2019 status = EINVAL;
2020
2021 sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2022 return (status);
2023 }
2024
2025 /*
2026 * Copy the event recording mask and the event queue size out. For
2027 * clarification, the event recording mask (events_to_record) is not the same
2028 * thing as the event mask (event_mask). events_to_record has a bit set for
2029 * every event type that is to be recorded by the driver, and event_mask has a
2030 * bit cleared for every event that is allowed into the driver from the IOC.
2031 * They really have nothing to do with each other.
2032 */
2033 static void
mpr_user_event_query(struct mpr_softc * sc,mpr_event_query_t * data)2034 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2035 {
2036 uint8_t i;
2037
2038 mpr_lock(sc);
2039 data->Entries = MPR_EVENT_QUEUE_SIZE;
2040
2041 for (i = 0; i < 4; i++) {
2042 data->Types[i] = sc->events_to_record[i];
2043 }
2044 mpr_unlock(sc);
2045 }
2046
2047 /*
2048 * Set the driver's event mask according to what's been given. See
2049 * mpr_user_event_query for explanation of the event recording mask and the IOC
2050 * event mask. It's the app's responsibility to enable event logging by setting
2051 * the bits in events_to_record. Initially, no events will be logged.
2052 */
2053 static void
mpr_user_event_enable(struct mpr_softc * sc,mpr_event_enable_t * data)2054 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2055 {
2056 uint8_t i;
2057
2058 mpr_lock(sc);
2059 for (i = 0; i < 4; i++) {
2060 sc->events_to_record[i] = data->Types[i];
2061 }
2062 mpr_unlock(sc);
2063 }
2064
2065 /*
2066 * Copy out the events that have been recorded, up to the max events allowed.
2067 */
2068 static int
mpr_user_event_report(struct mpr_softc * sc,mpr_event_report_t * data)2069 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2070 {
2071 int status = 0;
2072 uint32_t size;
2073
2074 mpr_lock(sc);
2075 size = data->Size;
2076 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2077 mpr_unlock(sc);
2078 if (copyout((void *)sc->recorded_events,
2079 PTRIN(data->PtrEvents), size) != 0)
2080 status = EFAULT;
2081 mpr_lock(sc);
2082 } else {
2083 /*
2084 * data->Size value is not large enough to copy event data.
2085 */
2086 status = EFAULT;
2087 }
2088
2089 /*
2090 * Change size value to match the number of bytes that were copied.
2091 */
2092 if (status == 0)
2093 data->Size = sizeof(sc->recorded_events);
2094 mpr_unlock(sc);
2095
2096 return (status);
2097 }
2098
2099 /*
2100 * Record events into the driver from the IOC if they are not masked.
2101 */
2102 void
mprsas_record_event(struct mpr_softc * sc,MPI2_EVENT_NOTIFICATION_REPLY * event_reply)2103 mprsas_record_event(struct mpr_softc *sc,
2104 MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2105 {
2106 uint32_t event;
2107 int i, j;
2108 uint16_t event_data_len;
2109 boolean_t sendAEN = FALSE;
2110
2111 event = event_reply->Event;
2112
2113 /*
2114 * Generate a system event to let anyone who cares know that a
2115 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the
2116 * event mask is set to.
2117 */
2118 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2119 sendAEN = TRUE;
2120 }
2121
2122 /*
2123 * Record the event only if its corresponding bit is set in
2124 * events_to_record. event_index is the index into recorded_events and
2125 * event_number is the overall number of an event being recorded since
2126 * start-of-day. event_index will roll over; event_number will never
2127 * roll over.
2128 */
2129 i = (uint8_t)(event / 32);
2130 j = (uint8_t)(event % 32);
2131 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2132 i = sc->event_index;
2133 sc->recorded_events[i].Type = event;
2134 sc->recorded_events[i].Number = ++sc->event_number;
2135 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2136 4);
2137 event_data_len = event_reply->EventDataLength;
2138
2139 if (event_data_len > 0) {
2140 /*
2141 * Limit data to size in m_event entry
2142 */
2143 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2144 event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2145 }
2146 for (j = 0; j < event_data_len; j++) {
2147 sc->recorded_events[i].Data[j] =
2148 event_reply->EventData[j];
2149 }
2150
2151 /*
2152 * check for index wrap-around
2153 */
2154 if (++i == MPR_EVENT_QUEUE_SIZE) {
2155 i = 0;
2156 }
2157 sc->event_index = (uint8_t)i;
2158
2159 /*
2160 * Set flag to send the event.
2161 */
2162 sendAEN = TRUE;
2163 }
2164 }
2165
2166 /*
2167 * Generate a system event if flag is set to let anyone who cares know
2168 * that an event has occurred.
2169 */
2170 if (sendAEN) {
2171 //SLM-how to send a system event (see kqueue, kevent)
2172 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2173 // "SAS", NULL, NULL, DDI_NOSLEEP);
2174 }
2175 }
2176
2177 static int
mpr_user_reg_access(struct mpr_softc * sc,mpr_reg_access_t * data)2178 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2179 {
2180 int status = 0;
2181
2182 switch (data->Command) {
2183 /*
2184 * IO access is not supported.
2185 */
2186 case REG_IO_READ:
2187 case REG_IO_WRITE:
2188 mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2189 "Use memory access.");
2190 status = EINVAL;
2191 break;
2192
2193 case REG_MEM_READ:
2194 data->RegData = mpr_regread(sc, data->RegOffset);
2195 break;
2196
2197 case REG_MEM_WRITE:
2198 mpr_regwrite(sc, data->RegOffset, data->RegData);
2199 break;
2200
2201 default:
2202 status = EINVAL;
2203 break;
2204 }
2205
2206 return (status);
2207 }
2208
2209 static int
mpr_user_btdh(struct mpr_softc * sc,mpr_btdh_mapping_t * data)2210 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2211 {
2212 uint8_t bt2dh = FALSE;
2213 uint8_t dh2bt = FALSE;
2214 uint16_t dev_handle, bus, target;
2215
2216 bus = data->Bus;
2217 target = data->TargetID;
2218 dev_handle = data->DevHandle;
2219
2220 /*
2221 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2222 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is
2223 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is
2224 * invalid.
2225 */
2226 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2227 dh2bt = TRUE;
2228 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2229 bt2dh = TRUE;
2230 if (!dh2bt && !bt2dh)
2231 return (EINVAL);
2232
2233 /*
2234 * Only handle bus of 0. Make sure target is within range.
2235 */
2236 if (bt2dh) {
2237 if (bus != 0)
2238 return (EINVAL);
2239
2240 if (target > sc->max_devices) {
2241 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2242 "for Bus/Target to DevHandle mapping.");
2243 return (EINVAL);
2244 }
2245 dev_handle = sc->mapping_table[target].dev_handle;
2246 if (dev_handle)
2247 data->DevHandle = dev_handle;
2248 } else {
2249 bus = 0;
2250 target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2251 data->Bus = bus;
2252 data->TargetID = target;
2253 }
2254
2255 return (0);
2256 }
2257
2258 static int
mpr_ioctl(struct cdev * dev,u_long cmd,void * arg,int flag)2259 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag)
2260 {
2261 struct mpr_softc *sc;
2262 struct mpr_cfg_page_req *page_req;
2263 struct mpr_ext_cfg_page_req *ext_page_req;
2264 void *mpr_page;
2265 int error, msleep_ret;
2266
2267 mpr_page = NULL;
2268 sc = dev->si_drv1;
2269 page_req = (void *)arg;
2270 ext_page_req = (void *)arg;
2271
2272 switch (cmd) {
2273 case MPRIO_READ_CFG_HEADER:
2274 mpr_lock(sc);
2275 error = mpr_user_read_cfg_header(sc, page_req);
2276 mpr_unlock(sc);
2277 break;
2278 case MPRIO_READ_CFG_PAGE:
2279 mpr_page = kmalloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2280 error = copyin(page_req->buf, mpr_page,
2281 sizeof(MPI2_CONFIG_PAGE_HEADER));
2282 if (error)
2283 break;
2284 mpr_lock(sc);
2285 error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2286 mpr_unlock(sc);
2287 if (error)
2288 break;
2289 error = copyout(mpr_page, page_req->buf, page_req->len);
2290 break;
2291 case MPRIO_READ_EXT_CFG_HEADER:
2292 mpr_lock(sc);
2293 error = mpr_user_read_extcfg_header(sc, ext_page_req);
2294 mpr_unlock(sc);
2295 break;
2296 case MPRIO_READ_EXT_CFG_PAGE:
2297 mpr_page = kmalloc(ext_page_req->len, M_MPRUSER,
2298 M_WAITOK | M_ZERO);
2299 error = copyin(ext_page_req->buf, mpr_page,
2300 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2301 if (error)
2302 break;
2303 mpr_lock(sc);
2304 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2305 mpr_unlock(sc);
2306 if (error)
2307 break;
2308 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2309 break;
2310 case MPRIO_WRITE_CFG_PAGE:
2311 mpr_page = kmalloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2312 error = copyin(page_req->buf, mpr_page, page_req->len);
2313 if (error)
2314 break;
2315 mpr_lock(sc);
2316 error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2317 mpr_unlock(sc);
2318 break;
2319 case MPRIO_MPR_COMMAND:
2320 error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2321 break;
2322 case MPTIOCTL_PASS_THRU:
2323 /*
2324 * The user has requested to pass through a command to be
2325 * executed by the MPT firmware. Call our routine which does
2326 * this. Only allow one passthru IOCTL at one time.
2327 */
2328 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2329 break;
2330 case MPTIOCTL_GET_ADAPTER_DATA:
2331 /*
2332 * The user has requested to read adapter data. Call our
2333 * routine which does this.
2334 */
2335 error = 0;
2336 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2337 break;
2338 case MPTIOCTL_GET_PCI_INFO:
2339 /*
2340 * The user has requested to read pci info. Call
2341 * our routine which does this.
2342 */
2343 mpr_lock(sc);
2344 error = 0;
2345 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2346 mpr_unlock(sc);
2347 break;
2348 case MPTIOCTL_RESET_ADAPTER:
2349 mpr_lock(sc);
2350 sc->port_enable_complete = 0;
2351 uint32_t reinit_start = time_uptime;
2352 error = mpr_reinit(sc);
2353 /* Sleep for 300 second. */
2354 msleep_ret = lksleep(&sc->port_enable_complete, &sc->mpr_lock,
2355 0, "mpr_porten", 300 * hz);
2356 mpr_unlock(sc);
2357 if (msleep_ret)
2358 kprintf("Port Enable did not complete after Diag "
2359 "Reset lksleep error %d.\n", msleep_ret);
2360 else
2361 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2362 "completed in %d seconds.\n",
2363 (uint32_t)(time_uptime - reinit_start));
2364 break;
2365 case MPTIOCTL_DIAG_ACTION:
2366 /*
2367 * The user has done a diag buffer action. Call our routine
2368 * which does this. Only allow one diag action at one time.
2369 */
2370 mpr_lock(sc);
2371 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2372 mpr_unlock(sc);
2373 break;
2374 case MPTIOCTL_EVENT_QUERY:
2375 /*
2376 * The user has done an event query. Call our routine which does
2377 * this.
2378 */
2379 error = 0;
2380 mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2381 break;
2382 case MPTIOCTL_EVENT_ENABLE:
2383 /*
2384 * The user has done an event enable. Call our routine which
2385 * does this.
2386 */
2387 error = 0;
2388 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2389 break;
2390 case MPTIOCTL_EVENT_REPORT:
2391 /*
2392 * The user has done an event report. Call our routine which
2393 * does this.
2394 */
2395 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2396 break;
2397 case MPTIOCTL_REG_ACCESS:
2398 /*
2399 * The user has requested register access. Call our routine
2400 * which does this.
2401 */
2402 mpr_lock(sc);
2403 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2404 mpr_unlock(sc);
2405 break;
2406 case MPTIOCTL_BTDH_MAPPING:
2407 /*
2408 * The user has requested to translate a bus/target to a
2409 * DevHandle or a DevHandle to a bus/target. Call our routine
2410 * which does this.
2411 */
2412 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2413 break;
2414 default:
2415 error = ENOIOCTL;
2416 break;
2417 }
2418
2419 if (mpr_page != NULL)
2420 kfree(mpr_page, M_MPRUSER);
2421
2422 return (error);
2423 }
2424
2425 #ifdef COMPAT_FREEBSD32
2426
2427 struct mpr_cfg_page_req32 {
2428 MPI2_CONFIG_PAGE_HEADER header;
2429 uint32_t page_address;
2430 uint32_t buf;
2431 int len;
2432 uint16_t ioc_status;
2433 };
2434
2435 struct mpr_ext_cfg_page_req32 {
2436 MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2437 uint32_t page_address;
2438 uint32_t buf;
2439 int len;
2440 uint16_t ioc_status;
2441 };
2442
2443 struct mpr_raid_action32 {
2444 uint8_t action;
2445 uint8_t volume_bus;
2446 uint8_t volume_id;
2447 uint8_t phys_disk_num;
2448 uint32_t action_data_word;
2449 uint32_t buf;
2450 int len;
2451 uint32_t volume_status;
2452 uint32_t action_data[4];
2453 uint16_t action_status;
2454 uint16_t ioc_status;
2455 uint8_t write;
2456 };
2457
2458 struct mpr_usr_command32 {
2459 uint32_t req;
2460 uint32_t req_len;
2461 uint32_t rpl;
2462 uint32_t rpl_len;
2463 uint32_t buf;
2464 int len;
2465 uint32_t flags;
2466 };
2467
2468 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32)
2469 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32)
2470 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2471 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2472 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32)
2473 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32)
2474 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32)
2475
2476 static int
mpr_ioctl32(struct cdev * dev,u_long cmd32,void * _arg,int flag,struct thread * td)2477 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2478 struct thread *td)
2479 {
2480 struct mpr_cfg_page_req32 *page32 = _arg;
2481 struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2482 struct mpr_raid_action32 *raid32 = _arg;
2483 struct mpr_usr_command32 *user32 = _arg;
2484 union {
2485 struct mpr_cfg_page_req page;
2486 struct mpr_ext_cfg_page_req ext;
2487 struct mpr_raid_action raid;
2488 struct mpr_usr_command user;
2489 } arg;
2490 u_long cmd;
2491 int error;
2492
2493 switch (cmd32) {
2494 case MPRIO_READ_CFG_HEADER32:
2495 case MPRIO_READ_CFG_PAGE32:
2496 case MPRIO_WRITE_CFG_PAGE32:
2497 if (cmd32 == MPRIO_READ_CFG_HEADER32)
2498 cmd = MPRIO_READ_CFG_HEADER;
2499 else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2500 cmd = MPRIO_READ_CFG_PAGE;
2501 else
2502 cmd = MPRIO_WRITE_CFG_PAGE;
2503 CP(*page32, arg.page, header);
2504 CP(*page32, arg.page, page_address);
2505 PTRIN_CP(*page32, arg.page, buf);
2506 CP(*page32, arg.page, len);
2507 CP(*page32, arg.page, ioc_status);
2508 break;
2509
2510 case MPRIO_READ_EXT_CFG_HEADER32:
2511 case MPRIO_READ_EXT_CFG_PAGE32:
2512 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2513 cmd = MPRIO_READ_EXT_CFG_HEADER;
2514 else
2515 cmd = MPRIO_READ_EXT_CFG_PAGE;
2516 CP(*ext32, arg.ext, header);
2517 CP(*ext32, arg.ext, page_address);
2518 PTRIN_CP(*ext32, arg.ext, buf);
2519 CP(*ext32, arg.ext, len);
2520 CP(*ext32, arg.ext, ioc_status);
2521 break;
2522
2523 case MPRIO_RAID_ACTION32:
2524 cmd = MPRIO_RAID_ACTION;
2525 CP(*raid32, arg.raid, action);
2526 CP(*raid32, arg.raid, volume_bus);
2527 CP(*raid32, arg.raid, volume_id);
2528 CP(*raid32, arg.raid, phys_disk_num);
2529 CP(*raid32, arg.raid, action_data_word);
2530 PTRIN_CP(*raid32, arg.raid, buf);
2531 CP(*raid32, arg.raid, len);
2532 CP(*raid32, arg.raid, volume_status);
2533 bcopy(raid32->action_data, arg.raid.action_data,
2534 sizeof arg.raid.action_data);
2535 CP(*raid32, arg.raid, ioc_status);
2536 CP(*raid32, arg.raid, write);
2537 break;
2538
2539 case MPRIO_MPR_COMMAND32:
2540 cmd = MPRIO_MPR_COMMAND;
2541 PTRIN_CP(*user32, arg.user, req);
2542 CP(*user32, arg.user, req_len);
2543 PTRIN_CP(*user32, arg.user, rpl);
2544 CP(*user32, arg.user, rpl_len);
2545 PTRIN_CP(*user32, arg.user, buf);
2546 CP(*user32, arg.user, len);
2547 CP(*user32, arg.user, flags);
2548 break;
2549 default:
2550 return (ENOIOCTL);
2551 }
2552
2553 error = mpr_ioctl(dev, cmd, &arg, flag, td);
2554 if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2555 switch (cmd32) {
2556 case MPRIO_READ_CFG_HEADER32:
2557 case MPRIO_READ_CFG_PAGE32:
2558 case MPRIO_WRITE_CFG_PAGE32:
2559 CP(arg.page, *page32, header);
2560 CP(arg.page, *page32, page_address);
2561 PTROUT_CP(arg.page, *page32, buf);
2562 CP(arg.page, *page32, len);
2563 CP(arg.page, *page32, ioc_status);
2564 break;
2565
2566 case MPRIO_READ_EXT_CFG_HEADER32:
2567 case MPRIO_READ_EXT_CFG_PAGE32:
2568 CP(arg.ext, *ext32, header);
2569 CP(arg.ext, *ext32, page_address);
2570 PTROUT_CP(arg.ext, *ext32, buf);
2571 CP(arg.ext, *ext32, len);
2572 CP(arg.ext, *ext32, ioc_status);
2573 break;
2574
2575 case MPRIO_RAID_ACTION32:
2576 CP(arg.raid, *raid32, action);
2577 CP(arg.raid, *raid32, volume_bus);
2578 CP(arg.raid, *raid32, volume_id);
2579 CP(arg.raid, *raid32, phys_disk_num);
2580 CP(arg.raid, *raid32, action_data_word);
2581 PTROUT_CP(arg.raid, *raid32, buf);
2582 CP(arg.raid, *raid32, len);
2583 CP(arg.raid, *raid32, volume_status);
2584 bcopy(arg.raid.action_data, raid32->action_data,
2585 sizeof arg.raid.action_data);
2586 CP(arg.raid, *raid32, ioc_status);
2587 CP(arg.raid, *raid32, write);
2588 break;
2589
2590 case MPRIO_MPR_COMMAND32:
2591 PTROUT_CP(arg.user, *user32, req);
2592 CP(arg.user, *user32, req_len);
2593 PTROUT_CP(arg.user, *user32, rpl);
2594 CP(arg.user, *user32, rpl_len);
2595 PTROUT_CP(arg.user, *user32, buf);
2596 CP(arg.user, *user32, len);
2597 CP(arg.user, *user32, flags);
2598 break;
2599 }
2600 }
2601
2602 return (error);
2603 }
2604 #endif /* COMPAT_FREEBSD32 */
2605
2606 static int
mpr_ioctl_devsw(struct dev_ioctl_args * ap)2607 mpr_ioctl_devsw(struct dev_ioctl_args *ap)
2608 {
2609 cdev_t dev = ap->a_head.a_dev;
2610 u_long cmd = ap->a_cmd;
2611 int flag = ap->a_fflag;
2612 caddr_t arg = ap->a_data;
2613
2614 #ifdef COMPAT_FREEBSD32
2615 if (SV_CURPROC_FLAG(SV_ILP32))
2616 return (mpr_ioctl32(dev, com, arg, flag, td));
2617 #endif
2618 return (mpr_ioctl(dev, cmd, arg, flag));
2619 }
2620