1 /*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice immediately at the beginning of the file, without modification,
12 * this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 /*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 * substantially similar to the "NO WARRANTY" disclaimer below
39 * ("Disclaimer") and any redistribution must be conditioned upon including
40 * a substantially similar Disclaimer requirement for further binary
41 * redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 * of any contributors may be used to endorse or promote products derived
44 * from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65 /*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 * substantially similar to the "NO WARRANTY" disclaimer below
78 * ("Disclaimer") and any redistribution must be conditioned upon including
79 * a substantially similar Disclaimer requirement for further binary
80 * redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 * of any contributors may be used to endorse or promote products derived
83 * from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 *
97 * $FreeBSD: head/sys/dev/mpt/mpt.c 241874 2012-10-22 10:42:59Z marius $
98 */
99
100 #include <dev/disk/mpt/mpt.h>
101 #include <dev/disk/mpt/mpt_cam.h> /* XXX For static handler registration */
102 #include <dev/disk/mpt/mpt_raid.h> /* XXX For static handler registration */
103
104 #include <dev/disk/mpt/mpilib/mpi.h>
105 #include <dev/disk/mpt/mpilib/mpi_ioc.h>
106 #include <dev/disk/mpt/mpilib/mpi_fc.h>
107 #include <dev/disk/mpt/mpilib/mpi_targ.h>
108
109 #include <sys/sysctl.h>
110
111 #define MPT_MAX_TRYS 3
112 #define MPT_MAX_WAIT 300000
113
114 static int maxwait_ack = 0;
115 static int maxwait_int = 0;
116 static int maxwait_state = 0;
117
118 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
119 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
120
121 static mpt_reply_handler_t mpt_default_reply_handler;
122 static mpt_reply_handler_t mpt_config_reply_handler;
123 static mpt_reply_handler_t mpt_handshake_reply_handler;
124 static mpt_reply_handler_t mpt_event_reply_handler;
125 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
126 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
127 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
128 static int mpt_soft_reset(struct mpt_softc *mpt);
129 static void mpt_hard_reset(struct mpt_softc *mpt);
130 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
131 static void mpt_dma_buf_free(struct mpt_softc *mpt);
132 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
133 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
134
135 /************************* Personality Module Support *************************/
136 /*
137 * We include one extra entry that is guaranteed to be NULL
138 * to simplify our itterator.
139 */
140 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
141 static __inline struct mpt_personality*
142 mpt_pers_find(struct mpt_softc *, u_int);
143 static __inline struct mpt_personality*
144 mpt_pers_find_reverse(struct mpt_softc *, u_int);
145
146 static __inline struct mpt_personality *
mpt_pers_find(struct mpt_softc * mpt,u_int start_at)147 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
148 {
149 KASSERT(start_at <= MPT_MAX_PERSONALITIES,
150 ("mpt_pers_find: starting position out of range"));
151
152 while (start_at < MPT_MAX_PERSONALITIES
153 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
154 start_at++;
155 }
156 return (mpt_personalities[start_at]);
157 }
158
159 /*
160 * Used infrequently, so no need to optimize like a forward
161 * traversal where we use the MAX+1 is guaranteed to be NULL
162 * trick.
163 */
164 static __inline struct mpt_personality *
mpt_pers_find_reverse(struct mpt_softc * mpt,u_int start_at)165 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
166 {
167 while (start_at < MPT_MAX_PERSONALITIES
168 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
169 start_at--;
170 }
171 if (start_at < MPT_MAX_PERSONALITIES)
172 return (mpt_personalities[start_at]);
173 return (NULL);
174 }
175
176 #define MPT_PERS_FOREACH(mpt, pers) \
177 for (pers = mpt_pers_find(mpt, /*start_at*/0); \
178 pers != NULL; \
179 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
180
181 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \
182 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
183 pers != NULL; \
184 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
185
186 static mpt_load_handler_t mpt_stdload;
187 static mpt_probe_handler_t mpt_stdprobe;
188 static mpt_attach_handler_t mpt_stdattach;
189 static mpt_enable_handler_t mpt_stdenable;
190 static mpt_ready_handler_t mpt_stdready;
191 static mpt_event_handler_t mpt_stdevent;
192 static mpt_reset_handler_t mpt_stdreset;
193 static mpt_shutdown_handler_t mpt_stdshutdown;
194 static mpt_detach_handler_t mpt_stddetach;
195 static mpt_unload_handler_t mpt_stdunload;
196 static struct mpt_personality mpt_default_personality =
197 {
198 .load = mpt_stdload,
199 .probe = mpt_stdprobe,
200 .attach = mpt_stdattach,
201 .enable = mpt_stdenable,
202 .ready = mpt_stdready,
203 .event = mpt_stdevent,
204 .reset = mpt_stdreset,
205 .shutdown = mpt_stdshutdown,
206 .detach = mpt_stddetach,
207 .unload = mpt_stdunload
208 };
209
210 static mpt_load_handler_t mpt_core_load;
211 static mpt_attach_handler_t mpt_core_attach;
212 static mpt_enable_handler_t mpt_core_enable;
213 static mpt_reset_handler_t mpt_core_ioc_reset;
214 static mpt_event_handler_t mpt_core_event;
215 static mpt_shutdown_handler_t mpt_core_shutdown;
216 static mpt_shutdown_handler_t mpt_core_detach;
217 static mpt_unload_handler_t mpt_core_unload;
218 static struct mpt_personality mpt_core_personality =
219 {
220 .name = "mpt_core",
221 .load = mpt_core_load,
222 // .attach = mpt_core_attach,
223 // .enable = mpt_core_enable,
224 .event = mpt_core_event,
225 .reset = mpt_core_ioc_reset,
226 .shutdown = mpt_core_shutdown,
227 .detach = mpt_core_detach,
228 .unload = mpt_core_unload,
229 };
230
231 /*
232 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
233 * ordering information. We want the core to always register FIRST.
234 * other modules are set to SI_ORDER_SECOND.
235 */
236 static moduledata_t mpt_core_mod = {
237 "mpt_core", mpt_modevent, &mpt_core_personality
238 };
239 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
240 MODULE_VERSION(mpt_core, 1);
241
242 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
243
244 int
mpt_modevent(module_t mod,int type,void * data)245 mpt_modevent(module_t mod, int type, void *data)
246 {
247 struct mpt_personality *pers;
248 int error;
249
250 pers = (struct mpt_personality *)data;
251
252 error = 0;
253 switch (type) {
254 case MOD_LOAD:
255 {
256 mpt_load_handler_t **def_handler;
257 mpt_load_handler_t **pers_handler;
258 int i;
259
260 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
261 if (mpt_personalities[i] == NULL)
262 break;
263 }
264 if (i >= MPT_MAX_PERSONALITIES) {
265 error = ENOMEM;
266 break;
267 }
268 pers->id = i;
269 mpt_personalities[i] = pers;
270
271 /* Install standard/noop handlers for any NULL entries. */
272 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
273 pers_handler = MPT_PERS_FIRST_HANDLER(pers);
274 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
275 if (*pers_handler == NULL)
276 *pers_handler = *def_handler;
277 pers_handler++;
278 def_handler++;
279 }
280
281 error = (pers->load(pers));
282 if (error != 0)
283 mpt_personalities[i] = NULL;
284 break;
285 }
286 case MOD_SHUTDOWN:
287 break;
288 case MOD_UNLOAD:
289 error = pers->unload(pers);
290 mpt_personalities[pers->id] = NULL;
291 break;
292 default:
293 error = EINVAL;
294 break;
295 }
296 return (error);
297 }
298
299 static int
mpt_stdload(struct mpt_personality * pers)300 mpt_stdload(struct mpt_personality *pers)
301 {
302
303 /* Load is always successful. */
304 return (0);
305 }
306
307 static int
mpt_stdprobe(struct mpt_softc * mpt)308 mpt_stdprobe(struct mpt_softc *mpt)
309 {
310
311 /* Probe is always successful. */
312 return (0);
313 }
314
315 static int
mpt_stdattach(struct mpt_softc * mpt)316 mpt_stdattach(struct mpt_softc *mpt)
317 {
318
319 /* Attach is always successful. */
320 return (0);
321 }
322
323 static int
mpt_stdenable(struct mpt_softc * mpt)324 mpt_stdenable(struct mpt_softc *mpt)
325 {
326
327 /* Enable is always successful. */
328 return (0);
329 }
330
331 static void
mpt_stdready(struct mpt_softc * mpt)332 mpt_stdready(struct mpt_softc *mpt)
333 {
334
335 }
336
337 static int
mpt_stdevent(struct mpt_softc * mpt,request_t * req,MSG_EVENT_NOTIFY_REPLY * msg)338 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
339 {
340
341 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
342 /* Event was not for us. */
343 return (0);
344 }
345
346 static void
mpt_stdreset(struct mpt_softc * mpt,int type)347 mpt_stdreset(struct mpt_softc *mpt, int type)
348 {
349
350 }
351
352 static void
mpt_stdshutdown(struct mpt_softc * mpt)353 mpt_stdshutdown(struct mpt_softc *mpt)
354 {
355
356 }
357
358 static void
mpt_stddetach(struct mpt_softc * mpt)359 mpt_stddetach(struct mpt_softc *mpt)
360 {
361
362 }
363
364 static int
mpt_stdunload(struct mpt_personality * pers)365 mpt_stdunload(struct mpt_personality *pers)
366 {
367
368 /* Unload is always successful. */
369 return (0);
370 }
371
372 /*
373 * Post driver attachment, we may want to perform some global actions.
374 * Here is the hook to do so.
375 */
376
377 static void
mpt_postattach(void * unused)378 mpt_postattach(void *unused)
379 {
380 struct mpt_softc *mpt;
381 struct mpt_personality *pers;
382
383 TAILQ_FOREACH(mpt, &mpt_tailq, links) {
384 MPT_PERS_FOREACH(mpt, pers)
385 pers->ready(mpt);
386 }
387 }
388 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
389
390 /******************************* Bus DMA Support ******************************/
391 void
mpt_map_rquest(void * arg,bus_dma_segment_t * segs,int nseg,int error)392 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
393 {
394 struct mpt_map_info *map_info;
395
396 map_info = (struct mpt_map_info *)arg;
397 map_info->error = error;
398 map_info->phys = segs->ds_addr;
399 }
400
401 /**************************** Reply/Event Handling ****************************/
402 int
mpt_register_handler(struct mpt_softc * mpt,mpt_handler_type type,mpt_handler_t handler,uint32_t * phandler_id)403 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
404 mpt_handler_t handler, uint32_t *phandler_id)
405 {
406
407 switch (type) {
408 case MPT_HANDLER_REPLY:
409 {
410 u_int cbi;
411 u_int free_cbi;
412
413 if (phandler_id == NULL)
414 return (EINVAL);
415
416 free_cbi = MPT_HANDLER_ID_NONE;
417 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
418 /*
419 * If the same handler is registered multiple
420 * times, don't error out. Just return the
421 * index of the original registration.
422 */
423 if (mpt_reply_handlers[cbi] == handler.reply_handler) {
424 *phandler_id = MPT_CBI_TO_HID(cbi);
425 return (0);
426 }
427
428 /*
429 * Fill from the front in the hope that
430 * all registered handlers consume only a
431 * single cache line.
432 *
433 * We don't break on the first empty slot so
434 * that the full table is checked to see if
435 * this handler was previously registered.
436 */
437 if (free_cbi == MPT_HANDLER_ID_NONE &&
438 (mpt_reply_handlers[cbi]
439 == mpt_default_reply_handler))
440 free_cbi = cbi;
441 }
442 if (free_cbi == MPT_HANDLER_ID_NONE) {
443 return (ENOMEM);
444 }
445 mpt_reply_handlers[free_cbi] = handler.reply_handler;
446 *phandler_id = MPT_CBI_TO_HID(free_cbi);
447 break;
448 }
449 default:
450 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
451 return (EINVAL);
452 }
453 return (0);
454 }
455
456 int
mpt_deregister_handler(struct mpt_softc * mpt,mpt_handler_type type,mpt_handler_t handler,uint32_t handler_id)457 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
458 mpt_handler_t handler, uint32_t handler_id)
459 {
460
461 switch (type) {
462 case MPT_HANDLER_REPLY:
463 {
464 u_int cbi;
465
466 cbi = MPT_CBI(handler_id);
467 if (cbi >= MPT_NUM_REPLY_HANDLERS
468 || mpt_reply_handlers[cbi] != handler.reply_handler)
469 return (ENOENT);
470 mpt_reply_handlers[cbi] = mpt_default_reply_handler;
471 break;
472 }
473 default:
474 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
475 return (EINVAL);
476 }
477 return (0);
478 }
479
480 static int
mpt_default_reply_handler(struct mpt_softc * mpt,request_t * req,uint32_t reply_desc,MSG_DEFAULT_REPLY * reply_frame)481 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
482 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
483 {
484
485 mpt_prt(mpt,
486 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
487 req, req->serno, reply_desc, reply_frame);
488
489 if (reply_frame != NULL)
490 mpt_dump_reply_frame(mpt, reply_frame);
491
492 mpt_prt(mpt, "Reply Frame Ignored\n");
493
494 return (/*free_reply*/TRUE);
495 }
496
497 static int
mpt_config_reply_handler(struct mpt_softc * mpt,request_t * req,uint32_t reply_desc,MSG_DEFAULT_REPLY * reply_frame)498 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
499 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
500 {
501
502 if (req != NULL) {
503 if (reply_frame != NULL) {
504 MSG_CONFIG *cfgp;
505 MSG_CONFIG_REPLY *reply;
506
507 cfgp = (MSG_CONFIG *)req->req_vbuf;
508 reply = (MSG_CONFIG_REPLY *)reply_frame;
509 req->IOCStatus = le16toh(reply_frame->IOCStatus);
510 bcopy(&reply->Header, &cfgp->Header,
511 sizeof(cfgp->Header));
512 cfgp->ExtPageLength = reply->ExtPageLength;
513 cfgp->ExtPageType = reply->ExtPageType;
514 }
515 req->state &= ~REQ_STATE_QUEUED;
516 req->state |= REQ_STATE_DONE;
517 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
518 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
519 wakeup(req);
520 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
521 /*
522 * Whew- we can free this request (late completion)
523 */
524 mpt_free_request(mpt, req);
525 }
526 }
527
528 return (TRUE);
529 }
530
531 static int
mpt_handshake_reply_handler(struct mpt_softc * mpt,request_t * req,uint32_t reply_desc,MSG_DEFAULT_REPLY * reply_frame)532 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
533 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
534 {
535
536 /* Nothing to be done. */
537 return (TRUE);
538 }
539
540 static int
mpt_event_reply_handler(struct mpt_softc * mpt,request_t * req,uint32_t reply_desc,MSG_DEFAULT_REPLY * reply_frame)541 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
542 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
543 {
544 int free_reply;
545
546 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
547 KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
548
549 free_reply = TRUE;
550 switch (reply_frame->Function) {
551 case MPI_FUNCTION_EVENT_NOTIFICATION:
552 {
553 MSG_EVENT_NOTIFY_REPLY *msg;
554 struct mpt_personality *pers;
555 u_int handled;
556
557 handled = 0;
558 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
559 msg->EventDataLength = le16toh(msg->EventDataLength);
560 msg->IOCStatus = le16toh(msg->IOCStatus);
561 msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
562 msg->Event = le32toh(msg->Event);
563 MPT_PERS_FOREACH(mpt, pers)
564 handled += pers->event(mpt, req, msg);
565
566 if (handled == 0 && mpt->mpt_pers_mask == 0) {
567 mpt_lprt(mpt, MPT_PRT_INFO,
568 "No Handlers For Any Event Notify Frames. "
569 "Event %#x (ACK %sequired).\n",
570 msg->Event, msg->AckRequired? "r" : "not r");
571 } else if (handled == 0) {
572 mpt_lprt(mpt,
573 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
574 "Unhandled Event Notify Frame. Event %#x "
575 "(ACK %sequired).\n",
576 msg->Event, msg->AckRequired? "r" : "not r");
577 }
578
579 if (msg->AckRequired) {
580 request_t *ack_req;
581 uint32_t context;
582
583 context = req->index | MPT_REPLY_HANDLER_EVENTS;
584 ack_req = mpt_get_request(mpt, FALSE);
585 if (ack_req == NULL) {
586 struct mpt_evtf_record *evtf;
587
588 evtf = (struct mpt_evtf_record *)reply_frame;
589 evtf->context = context;
590 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
591 free_reply = FALSE;
592 break;
593 }
594 mpt_send_event_ack(mpt, ack_req, msg, context);
595 /*
596 * Don't check for CONTINUATION_REPLY here
597 */
598 return (free_reply);
599 }
600 break;
601 }
602 case MPI_FUNCTION_PORT_ENABLE:
603 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
604 break;
605 case MPI_FUNCTION_EVENT_ACK:
606 break;
607 default:
608 mpt_prt(mpt, "unknown event function: %x\n",
609 reply_frame->Function);
610 break;
611 }
612
613 /*
614 * I'm not sure that this continuation stuff works as it should.
615 *
616 * I've had FC async events occur that free the frame up because
617 * the continuation bit isn't set, and then additional async events
618 * then occur using the same context. As you might imagine, this
619 * leads to Very Bad Thing.
620 *
621 * Let's just be safe for now and not free them up until we figure
622 * out what's actually happening here.
623 */
624 #if 0
625 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
626 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
627 mpt_free_request(mpt, req);
628 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
629 reply_frame->Function, req, req->serno);
630 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
631 MSG_EVENT_NOTIFY_REPLY *msg =
632 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
633 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
634 msg->Event, msg->AckRequired);
635 }
636 } else {
637 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
638 reply_frame->Function, req, req->serno);
639 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
640 MSG_EVENT_NOTIFY_REPLY *msg =
641 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
642 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
643 msg->Event, msg->AckRequired);
644 }
645 mpt_prtc(mpt, "\n");
646 }
647 #endif
648 return (free_reply);
649 }
650
651 /*
652 * Process an asynchronous event from the IOC.
653 */
654 static int
mpt_core_event(struct mpt_softc * mpt,request_t * req,MSG_EVENT_NOTIFY_REPLY * msg)655 mpt_core_event(struct mpt_softc *mpt, request_t *req,
656 MSG_EVENT_NOTIFY_REPLY *msg)
657 {
658
659 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
660 msg->Event & 0xFF);
661 switch(msg->Event & 0xFF) {
662 case MPI_EVENT_NONE:
663 break;
664 case MPI_EVENT_LOG_DATA:
665 {
666 int i;
667
668 /* Some error occurred that LSI wants logged */
669 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
670 msg->IOCLogInfo);
671 mpt_prt(mpt, "\tEvtLogData: Event Data:");
672 for (i = 0; i < msg->EventDataLength; i++)
673 mpt_prtc(mpt, " %08x", msg->Data[i]);
674 mpt_prtc(mpt, "\n");
675 break;
676 }
677 case MPI_EVENT_EVENT_CHANGE:
678 /*
679 * This is just an acknowledgement
680 * of our mpt_send_event_request.
681 */
682 break;
683 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
684 break;
685 default:
686 return (0);
687 break;
688 }
689 return (1);
690 }
691
692 static void
mpt_send_event_ack(struct mpt_softc * mpt,request_t * ack_req,MSG_EVENT_NOTIFY_REPLY * msg,uint32_t context)693 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
694 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
695 {
696 MSG_EVENT_ACK *ackp;
697
698 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
699 memset(ackp, 0, sizeof (*ackp));
700 ackp->Function = MPI_FUNCTION_EVENT_ACK;
701 ackp->Event = htole32(msg->Event);
702 ackp->EventContext = htole32(msg->EventContext);
703 ackp->MsgContext = htole32(context);
704 mpt_check_doorbell(mpt);
705 mpt_send_cmd(mpt, ack_req);
706 }
707
708 /***************************** Interrupt Handling *****************************/
709 void
mpt_intr(void * arg)710 mpt_intr(void *arg)
711 {
712 struct mpt_softc *mpt;
713 uint32_t reply_desc;
714 int ntrips = 0;
715
716 mpt = (struct mpt_softc *)arg;
717 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
718 MPT_LOCK_ASSERT(mpt);
719
720 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
721 request_t *req;
722 MSG_DEFAULT_REPLY *reply_frame;
723 uint32_t reply_baddr;
724 uint32_t ctxt_idx;
725 u_int cb_index;
726 u_int req_index;
727 u_int offset;
728 int free_rf;
729
730 req = NULL;
731 reply_frame = NULL;
732 reply_baddr = 0;
733 offset = 0;
734 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
735 /*
736 * Ensure that the reply frame is coherent.
737 */
738 reply_baddr = MPT_REPLY_BADDR(reply_desc);
739 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
740 bus_dmamap_sync_range(mpt->reply_dmat,
741 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
742 BUS_DMASYNC_POSTREAD);
743 reply_frame = MPT_REPLY_OTOV(mpt, offset);
744 ctxt_idx = le32toh(reply_frame->MsgContext);
745 } else {
746 uint32_t type;
747
748 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
749 ctxt_idx = reply_desc;
750 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
751 reply_desc);
752
753 switch (type) {
754 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
755 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
756 break;
757 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
758 ctxt_idx = GET_IO_INDEX(reply_desc);
759 if (mpt->tgt_cmd_ptrs == NULL) {
760 mpt_prt(mpt,
761 "mpt_intr: no target cmd ptrs\n");
762 reply_desc = MPT_REPLY_EMPTY;
763 break;
764 }
765 if (ctxt_idx >= mpt->tgt_cmds_allocated) {
766 mpt_prt(mpt,
767 "mpt_intr: bad tgt cmd ctxt %u\n",
768 ctxt_idx);
769 reply_desc = MPT_REPLY_EMPTY;
770 ntrips = 1000;
771 break;
772 }
773 req = mpt->tgt_cmd_ptrs[ctxt_idx];
774 if (req == NULL) {
775 mpt_prt(mpt, "no request backpointer "
776 "at index %u", ctxt_idx);
777 reply_desc = MPT_REPLY_EMPTY;
778 ntrips = 1000;
779 break;
780 }
781 /*
782 * Reformulate ctxt_idx to be just as if
783 * it were another type of context reply
784 * so the code below will find the request
785 * via indexing into the pool.
786 */
787 ctxt_idx =
788 req->index | mpt->scsi_tgt_handler_id;
789 req = NULL;
790 break;
791 case MPI_CONTEXT_REPLY_TYPE_LAN:
792 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
793 reply_desc);
794 reply_desc = MPT_REPLY_EMPTY;
795 break;
796 default:
797 mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
798 reply_desc = MPT_REPLY_EMPTY;
799 break;
800 }
801 if (reply_desc == MPT_REPLY_EMPTY) {
802 if (ntrips++ > 1000) {
803 break;
804 }
805 continue;
806 }
807 }
808
809 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
810 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
811 if (req_index < MPT_MAX_REQUESTS(mpt)) {
812 req = &mpt->request_pool[req_index];
813 } else {
814 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
815 " 0x%x)\n", req_index, reply_desc);
816 }
817
818 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
819 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
820 free_rf = mpt_reply_handlers[cb_index](mpt, req,
821 reply_desc, reply_frame);
822
823 if (reply_frame != NULL && free_rf) {
824 bus_dmamap_sync_range(mpt->reply_dmat,
825 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
826 BUS_DMASYNC_PREREAD);
827 mpt_free_reply(mpt, reply_baddr);
828 }
829
830 /*
831 * If we got ourselves disabled, don't get stuck in a loop
832 */
833 if (mpt->disabled) {
834 mpt_disable_ints(mpt);
835 break;
836 }
837 if (ntrips++ > 1000) {
838 break;
839 }
840 }
841 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
842 }
843
844 /******************************* Error Recovery *******************************/
845 void
mpt_complete_request_chain(struct mpt_softc * mpt,struct req_queue * chain,u_int iocstatus)846 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
847 u_int iocstatus)
848 {
849 MSG_DEFAULT_REPLY ioc_status_frame;
850 request_t *req;
851
852 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
853 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
854 ioc_status_frame.IOCStatus = iocstatus;
855 while((req = TAILQ_FIRST(chain)) != NULL) {
856 MSG_REQUEST_HEADER *msg_hdr;
857 u_int cb_index;
858
859 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
860 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
861 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
862 ioc_status_frame.Function = msg_hdr->Function;
863 ioc_status_frame.MsgContext = msg_hdr->MsgContext;
864 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
865 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
866 &ioc_status_frame);
867 if (mpt_req_on_pending_list(mpt, req) != 0)
868 TAILQ_REMOVE(chain, req, links);
869 }
870 }
871
872 /********************************* Diagnostics ********************************/
873 /*
874 * Perform a diagnostic dump of a reply frame.
875 */
876 void
mpt_dump_reply_frame(struct mpt_softc * mpt,MSG_DEFAULT_REPLY * reply_frame)877 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
878 {
879
880 mpt_prt(mpt, "Address Reply:\n");
881 mpt_print_reply(reply_frame);
882 }
883
884 /******************************* Doorbell Access ******************************/
885 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
886 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt);
887
888 static __inline uint32_t
mpt_rd_db(struct mpt_softc * mpt)889 mpt_rd_db(struct mpt_softc *mpt)
890 {
891
892 return mpt_read(mpt, MPT_OFFSET_DOORBELL);
893 }
894
895 static __inline uint32_t
mpt_rd_intr(struct mpt_softc * mpt)896 mpt_rd_intr(struct mpt_softc *mpt)
897 {
898
899 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
900 }
901
902 /* Busy wait for a door bell to be read by IOC */
903 static int
mpt_wait_db_ack(struct mpt_softc * mpt)904 mpt_wait_db_ack(struct mpt_softc *mpt)
905 {
906 int i;
907
908 for (i=0; i < MPT_MAX_WAIT; i++) {
909 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
910 maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
911 return (MPT_OK);
912 }
913 DELAY(200);
914 }
915 return (MPT_FAIL);
916 }
917
918 /* Busy wait for a door bell interrupt */
919 static int
mpt_wait_db_int(struct mpt_softc * mpt)920 mpt_wait_db_int(struct mpt_softc *mpt)
921 {
922 int i;
923
924 for (i = 0; i < MPT_MAX_WAIT; i++) {
925 if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
926 maxwait_int = i > maxwait_int ? i : maxwait_int;
927 return MPT_OK;
928 }
929 DELAY(100);
930 }
931 return (MPT_FAIL);
932 }
933
934 /* Wait for IOC to transition to a give state */
935 void
mpt_check_doorbell(struct mpt_softc * mpt)936 mpt_check_doorbell(struct mpt_softc *mpt)
937 {
938 uint32_t db = mpt_rd_db(mpt);
939
940 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
941 mpt_prt(mpt, "Device not running\n");
942 mpt_print_db(db);
943 }
944 }
945
946 /* Wait for IOC to transition to a give state */
947 static int
mpt_wait_state(struct mpt_softc * mpt,enum DB_STATE_BITS state)948 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
949 {
950 int i;
951
952 for (i = 0; i < MPT_MAX_WAIT; i++) {
953 uint32_t db = mpt_rd_db(mpt);
954 if (MPT_STATE(db) == state) {
955 maxwait_state = i > maxwait_state ? i : maxwait_state;
956 return (MPT_OK);
957 }
958 DELAY(100);
959 }
960 return (MPT_FAIL);
961 }
962
963
964 /************************* Intialization/Configuration ************************/
965 static int mpt_download_fw(struct mpt_softc *mpt);
966
967 /* Issue the reset COMMAND to the IOC */
968 static int
mpt_soft_reset(struct mpt_softc * mpt)969 mpt_soft_reset(struct mpt_softc *mpt)
970 {
971
972 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
973
974 /* Have to use hard reset if we are not in Running state */
975 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
976 mpt_prt(mpt, "soft reset failed: device not running\n");
977 return (MPT_FAIL);
978 }
979
980 /* If door bell is in use we don't have a chance of getting
981 * a word in since the IOC probably crashed in message
982 * processing. So don't waste our time.
983 */
984 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
985 mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
986 return (MPT_FAIL);
987 }
988
989 /* Send the reset request to the IOC */
990 mpt_write(mpt, MPT_OFFSET_DOORBELL,
991 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
992 if (mpt_wait_db_ack(mpt) != MPT_OK) {
993 mpt_prt(mpt, "soft reset failed: ack timeout\n");
994 return (MPT_FAIL);
995 }
996
997 /* Wait for the IOC to reload and come out of reset state */
998 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
999 mpt_prt(mpt, "soft reset failed: device did not restart\n");
1000 return (MPT_FAIL);
1001 }
1002
1003 return MPT_OK;
1004 }
1005
1006 static int
mpt_enable_diag_mode(struct mpt_softc * mpt)1007 mpt_enable_diag_mode(struct mpt_softc *mpt)
1008 {
1009 int try;
1010
1011 try = 20;
1012 while (--try) {
1013
1014 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1015 break;
1016
1017 /* Enable diagnostic registers */
1018 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1019 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1020 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1021 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1022 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1024
1025 DELAY(100000);
1026 }
1027 if (try == 0)
1028 return (EIO);
1029 return (0);
1030 }
1031
1032 static void
mpt_disable_diag_mode(struct mpt_softc * mpt)1033 mpt_disable_diag_mode(struct mpt_softc *mpt)
1034 {
1035
1036 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1037 }
1038
1039 /* This is a magic diagnostic reset that resets all the ARM
1040 * processors in the chip.
1041 */
1042 static void
mpt_hard_reset(struct mpt_softc * mpt)1043 mpt_hard_reset(struct mpt_softc *mpt)
1044 {
1045 int error;
1046 int wait;
1047 uint32_t diagreg;
1048
1049 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1050
1051 if (mpt->is_1078) {
1052 mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1053 DELAY(1000);
1054 return;
1055 }
1056
1057 error = mpt_enable_diag_mode(mpt);
1058 if (error) {
1059 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1060 mpt_prt(mpt, "Trying to reset anyway.\n");
1061 }
1062
1063 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1064
1065 /*
1066 * This appears to be a workaround required for some
1067 * firmware or hardware revs.
1068 */
1069 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1070 DELAY(1000);
1071
1072 /* Diag. port is now active so we can now hit the reset bit */
1073 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1074
1075 /*
1076 * Ensure that the reset has finished. We delay 1ms
1077 * prior to reading the register to make sure the chip
1078 * has sufficiently completed its reset to handle register
1079 * accesses.
1080 */
1081 wait = 5000;
1082 do {
1083 DELAY(1000);
1084 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1085 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1086
1087 if (wait == 0) {
1088 mpt_prt(mpt, "WARNING - Failed hard reset! "
1089 "Trying to initialize anyway.\n");
1090 }
1091
1092 /*
1093 * If we have firmware to download, it must be loaded before
1094 * the controller will become operational. Do so now.
1095 */
1096 if (mpt->fw_image != NULL) {
1097
1098 error = mpt_download_fw(mpt);
1099
1100 if (error) {
1101 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1102 mpt_prt(mpt, "Trying to initialize anyway.\n");
1103 }
1104 }
1105
1106 /*
1107 * Reseting the controller should have disabled write
1108 * access to the diagnostic registers, but disable
1109 * manually to be sure.
1110 */
1111 mpt_disable_diag_mode(mpt);
1112 }
1113
1114 static void
mpt_core_ioc_reset(struct mpt_softc * mpt,int type)1115 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1116 {
1117
1118 /*
1119 * Complete all pending requests with a status
1120 * appropriate for an IOC reset.
1121 */
1122 mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1123 MPI_IOCSTATUS_INVALID_STATE);
1124 }
1125
1126 /*
1127 * Reset the IOC when needed. Try software command first then if needed
1128 * poke at the magic diagnostic reset. Note that a hard reset resets
1129 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1130 * fouls up the PCI configuration registers.
1131 */
1132 int
mpt_reset(struct mpt_softc * mpt,int reinit)1133 mpt_reset(struct mpt_softc *mpt, int reinit)
1134 {
1135 struct mpt_personality *pers;
1136 int ret;
1137 int retry_cnt = 0;
1138
1139 /*
1140 * Try a soft reset. If that fails, get out the big hammer.
1141 */
1142 again:
1143 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1144 int cnt;
1145 for (cnt = 0; cnt < 5; cnt++) {
1146 /* Failed; do a hard reset */
1147 mpt_hard_reset(mpt);
1148
1149 /*
1150 * Wait for the IOC to reload
1151 * and come out of reset state
1152 */
1153 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1154 if (ret == MPT_OK) {
1155 break;
1156 }
1157 /*
1158 * Okay- try to check again...
1159 */
1160 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1161 if (ret == MPT_OK) {
1162 break;
1163 }
1164 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1165 retry_cnt, cnt);
1166 }
1167 }
1168
1169 if (retry_cnt == 0) {
1170 /*
1171 * Invoke reset handlers. We bump the reset count so
1172 * that mpt_wait_req() understands that regardless of
1173 * the specified wait condition, it should stop its wait.
1174 */
1175 mpt->reset_cnt++;
1176 MPT_PERS_FOREACH(mpt, pers)
1177 pers->reset(mpt, ret);
1178 }
1179
1180 if (reinit) {
1181 ret = mpt_enable_ioc(mpt, 1);
1182 if (ret == MPT_OK) {
1183 mpt_enable_ints(mpt);
1184 }
1185 }
1186 if (ret != MPT_OK && retry_cnt++ < 2) {
1187 goto again;
1188 }
1189 return ret;
1190 }
1191
1192 /* Return a command buffer to the free queue */
1193 void
mpt_free_request(struct mpt_softc * mpt,request_t * req)1194 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1195 {
1196 request_t *nxt;
1197 struct mpt_evtf_record *record;
1198 uint32_t offset, reply_baddr;
1199
1200 if (req == NULL || req != &mpt->request_pool[req->index]) {
1201 panic("mpt_free_request: bad req ptr");
1202 }
1203 if ((nxt = req->chain) != NULL) {
1204 req->chain = NULL;
1205 mpt_free_request(mpt, nxt); /* NB: recursion */
1206 }
1207 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1208 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1209 MPT_LOCK_ASSERT(mpt);
1210 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1211 ("mpt_free_request: req %p:%u func %x already on freelist",
1212 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1213 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1214 ("mpt_free_request: req %p:%u func %x on pending list",
1215 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216 #ifdef INVARIANTS
1217 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1218 #endif
1219
1220 req->ccb = NULL;
1221 if (LIST_EMPTY(&mpt->ack_frames)) {
1222 /*
1223 * Insert free ones at the tail
1224 */
1225 req->serno = 0;
1226 req->state = REQ_STATE_FREE;
1227 #ifdef INVARIANTS
1228 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1229 #endif
1230 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1231 if (mpt->getreqwaiter != 0) {
1232 mpt->getreqwaiter = 0;
1233 wakeup(&mpt->request_free_list);
1234 }
1235 return;
1236 }
1237
1238 /*
1239 * Process an ack frame deferred due to resource shortage.
1240 */
1241 record = LIST_FIRST(&mpt->ack_frames);
1242 LIST_REMOVE(record, links);
1243 req->state = REQ_STATE_ALLOCATED;
1244 mpt_assign_serno(mpt, req);
1245 mpt_send_event_ack(mpt, req, &record->reply, record->context);
1246 offset = (uint32_t)((uint8_t *)record - mpt->reply);
1247 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1248 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1249 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1250 mpt_free_reply(mpt, reply_baddr);
1251 }
1252
1253 /* Get a command buffer from the free queue */
1254 request_t *
mpt_get_request(struct mpt_softc * mpt,int sleep_ok)1255 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1256 {
1257 request_t *req;
1258
1259 retry:
1260 MPT_LOCK_ASSERT(mpt);
1261 req = TAILQ_FIRST(&mpt->request_free_list);
1262 if (req != NULL) {
1263 KASSERT(req == &mpt->request_pool[req->index],
1264 ("mpt_get_request: corrupted request free list"));
1265 KASSERT(req->state == REQ_STATE_FREE,
1266 ("req %p:%u not free on free list %x index %d function %x",
1267 req, req->serno, req->state, req->index,
1268 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1269 TAILQ_REMOVE(&mpt->request_free_list, req, links);
1270 req->state = REQ_STATE_ALLOCATED;
1271 req->chain = NULL;
1272 mpt_assign_serno(mpt, req);
1273 } else if (sleep_ok != 0) {
1274 mpt->getreqwaiter = 1;
1275 mpt_sleep(mpt, &mpt->request_free_list, 0, "mptgreq", 0);
1276 goto retry;
1277 }
1278 return (req);
1279 }
1280
1281 /* Pass the command to the IOC */
1282 void
mpt_send_cmd(struct mpt_softc * mpt,request_t * req)1283 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1284 {
1285
1286 if (mpt->verbose > MPT_PRT_DEBUG2) {
1287 mpt_dump_request(mpt, req);
1288 }
1289 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1290 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1291 req->state |= REQ_STATE_QUEUED;
1292 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1293 ("req %p:%u func %x on freelist list in mpt_send_cmd",
1294 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1295 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1296 ("req %p:%u func %x already on pending list in mpt_send_cmd",
1297 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1299 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1300 }
1301
1302 /*
1303 * Wait for a request to complete.
1304 *
1305 * Inputs:
1306 * mpt softc of controller executing request
1307 * req request to wait for
1308 * sleep_ok nonzero implies may sleep in this context
1309 * time_ms timeout in ms. 0 implies no timeout.
1310 *
1311 * Return Values:
1312 * 0 Request completed
1313 * non-0 Timeout fired before request completion.
1314 */
1315 int
mpt_wait_req(struct mpt_softc * mpt,request_t * req,mpt_req_state_t state,mpt_req_state_t mask,int sleep_ok,int time_ms)1316 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1317 mpt_req_state_t state, mpt_req_state_t mask,
1318 int sleep_ok, int time_ms)
1319 {
1320 int error;
1321 int timeout;
1322 u_int saved_cnt;
1323
1324 /*
1325 * timeout is in ms. 0 indicates infinite wait.
1326 * Convert to ticks or 500us units depending on
1327 * our sleep mode.
1328 */
1329 if (sleep_ok != 0) {
1330 timeout = (time_ms * hz) / 1000;
1331 } else {
1332 timeout = time_ms * 2;
1333 }
1334 req->state |= REQ_STATE_NEED_WAKEUP;
1335 mask &= ~REQ_STATE_NEED_WAKEUP;
1336 saved_cnt = mpt->reset_cnt;
1337 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1338 if (sleep_ok != 0) {
1339 error = mpt_sleep(mpt, req, 0, "mptreq", timeout);
1340 if (error == EWOULDBLOCK) {
1341 timeout = 0;
1342 break;
1343 }
1344 } else {
1345 if (time_ms != 0 && --timeout == 0) {
1346 break;
1347 }
1348 DELAY(500);
1349 mpt_intr(mpt);
1350 }
1351 }
1352 req->state &= ~REQ_STATE_NEED_WAKEUP;
1353 if (mpt->reset_cnt != saved_cnt) {
1354 return (EIO);
1355 }
1356 if (time_ms && timeout <= 0) {
1357 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1358 req->state |= REQ_STATE_TIMEDOUT;
1359 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1360 return (ETIMEDOUT);
1361 }
1362 return (0);
1363 }
1364
1365 /*
1366 * Send a command to the IOC via the handshake register.
1367 *
1368 * Only done at initialization time and for certain unusual
1369 * commands such as device/bus reset as specified by LSI.
1370 */
1371 int
mpt_send_handshake_cmd(struct mpt_softc * mpt,size_t len,void * cmd)1372 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1373 {
1374 int i;
1375 uint32_t data, *data32;
1376
1377 /* Check condition of the IOC */
1378 data = mpt_rd_db(mpt);
1379 if ((MPT_STATE(data) != MPT_DB_STATE_READY
1380 && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1381 && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1382 || MPT_DB_IS_IN_USE(data)) {
1383 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1384 mpt_print_db(data);
1385 return (EBUSY);
1386 }
1387
1388 /* We move things in 32 bit chunks */
1389 len = (len + 3) >> 2;
1390 data32 = cmd;
1391
1392 /* Clear any left over pending doorbell interrupts */
1393 if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1394 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1395
1396 /*
1397 * Tell the handshake reg. we are going to send a command
1398 * and how long it is going to be.
1399 */
1400 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1401 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1402 mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1403
1404 /* Wait for the chip to notice */
1405 if (mpt_wait_db_int(mpt) != MPT_OK) {
1406 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1407 return (ETIMEDOUT);
1408 }
1409
1410 /* Clear the interrupt */
1411 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1412
1413 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1414 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1415 return (ETIMEDOUT);
1416 }
1417
1418 /* Send the command */
1419 for (i = 0; i < len; i++) {
1420 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1421 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1422 mpt_prt(mpt,
1423 "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1424 return (ETIMEDOUT);
1425 }
1426 }
1427 return MPT_OK;
1428 }
1429
1430 /* Get the response from the handshake register */
1431 int
mpt_recv_handshake_reply(struct mpt_softc * mpt,size_t reply_len,void * reply)1432 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1433 {
1434 int left, reply_left;
1435 u_int16_t *data16;
1436 uint32_t data;
1437 MSG_DEFAULT_REPLY *hdr;
1438
1439 /* We move things out in 16 bit chunks */
1440 reply_len >>= 1;
1441 data16 = (u_int16_t *)reply;
1442
1443 hdr = (MSG_DEFAULT_REPLY *)reply;
1444
1445 /* Get first word */
1446 if (mpt_wait_db_int(mpt) != MPT_OK) {
1447 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1448 return ETIMEDOUT;
1449 }
1450 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1451 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1452 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1453
1454 /* Get Second Word */
1455 if (mpt_wait_db_int(mpt) != MPT_OK) {
1456 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1457 return ETIMEDOUT;
1458 }
1459 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1460 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1461 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1462
1463 /*
1464 * With the second word, we can now look at the length.
1465 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1466 */
1467 if ((reply_len >> 1) != hdr->MsgLength &&
1468 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1469 mpt_prt(mpt, "reply length does not match message length: "
1470 "got %x; expected %zx for function %x\n",
1471 hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1472 }
1473
1474 /* Get rest of the reply; but don't overflow the provided buffer */
1475 left = (hdr->MsgLength << 1) - 2;
1476 reply_left = reply_len - 2;
1477 while (left--) {
1478 u_int16_t datum;
1479
1480 if (mpt_wait_db_int(mpt) != MPT_OK) {
1481 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1482 return ETIMEDOUT;
1483 }
1484 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1485 datum = le16toh(data & MPT_DB_DATA_MASK);
1486
1487 if (reply_left-- > 0)
1488 *data16++ = datum;
1489
1490 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1491 }
1492
1493 /* One more wait & clear at the end */
1494 if (mpt_wait_db_int(mpt) != MPT_OK) {
1495 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1496 return ETIMEDOUT;
1497 }
1498 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1499
1500 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1501 if (mpt->verbose >= MPT_PRT_TRACE)
1502 mpt_print_reply(hdr);
1503 return (MPT_FAIL | hdr->IOCStatus);
1504 }
1505
1506 return (0);
1507 }
1508
1509 static int
mpt_get_iocfacts(struct mpt_softc * mpt,MSG_IOC_FACTS_REPLY * freplp)1510 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1511 {
1512 MSG_IOC_FACTS f_req;
1513 int error;
1514
1515 memset(&f_req, 0, sizeof f_req);
1516 f_req.Function = MPI_FUNCTION_IOC_FACTS;
1517 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1518 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1519 if (error) {
1520 return(error);
1521 }
1522 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1523 return (error);
1524 }
1525
1526 static int
mpt_get_portfacts(struct mpt_softc * mpt,U8 port,MSG_PORT_FACTS_REPLY * freplp)1527 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1528 {
1529 MSG_PORT_FACTS f_req;
1530 int error;
1531
1532 memset(&f_req, 0, sizeof f_req);
1533 f_req.Function = MPI_FUNCTION_PORT_FACTS;
1534 f_req.PortNumber = port;
1535 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1536 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1537 if (error) {
1538 return(error);
1539 }
1540 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1541 return (error);
1542 }
1543
1544 /*
1545 * Send the initialization request. This is where we specify how many
1546 * SCSI busses and how many devices per bus we wish to emulate.
1547 * This is also the command that specifies the max size of the reply
1548 * frames from the IOC that we will be allocating.
1549 */
1550 static int
mpt_send_ioc_init(struct mpt_softc * mpt,uint32_t who)1551 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1552 {
1553 int error = 0;
1554 MSG_IOC_INIT init;
1555 MSG_IOC_INIT_REPLY reply;
1556
1557 memset(&init, 0, sizeof init);
1558 init.WhoInit = who;
1559 init.Function = MPI_FUNCTION_IOC_INIT;
1560 init.MaxDevices = 0; /* at least 256 devices per bus */
1561 init.MaxBuses = 16; /* at least 16 busses */
1562
1563 init.MsgVersion = htole16(MPI_VERSION);
1564 init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1565 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1566 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1567
1568 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1569 return(error);
1570 }
1571
1572 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1573 return (error);
1574 }
1575
1576
1577 /*
1578 * Utiltity routine to read configuration headers and pages
1579 */
1580 int
mpt_issue_cfg_req(struct mpt_softc * mpt,request_t * req,cfgparms_t * params,bus_addr_t addr,bus_size_t len,int sleep_ok,int timeout_ms)1581 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1582 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1583 {
1584 MSG_CONFIG *cfgp;
1585 SGE_SIMPLE32 *se;
1586
1587 cfgp = req->req_vbuf;
1588 memset(cfgp, 0, sizeof *cfgp);
1589 cfgp->Action = params->Action;
1590 cfgp->Function = MPI_FUNCTION_CONFIG;
1591 cfgp->Header.PageVersion = params->PageVersion;
1592 cfgp->Header.PageNumber = params->PageNumber;
1593 cfgp->PageAddress = htole32(params->PageAddress);
1594 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1595 MPI_CONFIG_PAGETYPE_EXTENDED) {
1596 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1597 cfgp->Header.PageLength = 0;
1598 cfgp->ExtPageLength = htole16(params->ExtPageLength);
1599 cfgp->ExtPageType = params->ExtPageType;
1600 } else {
1601 cfgp->Header.PageType = params->PageType;
1602 cfgp->Header.PageLength = params->PageLength;
1603 }
1604 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1605 se->Address = htole32(addr);
1606 MPI_pSGE_SET_LENGTH(se, len);
1607 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1608 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1609 MPI_SGE_FLAGS_END_OF_LIST |
1610 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1611 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1612 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1613 se->FlagsLength = htole32(se->FlagsLength);
1614 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1615
1616 mpt_check_doorbell(mpt);
1617 mpt_send_cmd(mpt, req);
1618 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1619 sleep_ok, timeout_ms));
1620 }
1621
1622 int
mpt_read_extcfg_header(struct mpt_softc * mpt,int PageVersion,int PageNumber,uint32_t PageAddress,int ExtPageType,CONFIG_EXTENDED_PAGE_HEADER * rslt,int sleep_ok,int timeout_ms)1623 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1624 uint32_t PageAddress, int ExtPageType,
1625 CONFIG_EXTENDED_PAGE_HEADER *rslt,
1626 int sleep_ok, int timeout_ms)
1627 {
1628 request_t *req;
1629 cfgparms_t params;
1630 MSG_CONFIG_REPLY *cfgp;
1631 int error;
1632
1633 req = mpt_get_request(mpt, sleep_ok);
1634 if (req == NULL) {
1635 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1636 return (ENOMEM);
1637 }
1638
1639 bzero(¶ms, sizeof(params));
1640 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1641 params.PageVersion = PageVersion;
1642 params.PageLength = 0;
1643 params.PageNumber = PageNumber;
1644 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1645 params.PageAddress = PageAddress;
1646 params.ExtPageType = ExtPageType;
1647 params.ExtPageLength = 0;
1648 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0,
1649 sleep_ok, timeout_ms);
1650 if (error != 0) {
1651 /*
1652 * Leave the request. Without resetting the chip, it's
1653 * still owned by it and we'll just get into trouble
1654 * freeing it now. Mark it as abandoned so that if it
1655 * shows up later it can be freed.
1656 */
1657 mpt_prt(mpt, "read_extcfg_header timed out\n");
1658 return (ETIMEDOUT);
1659 }
1660
1661 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1662 case MPI_IOCSTATUS_SUCCESS:
1663 cfgp = req->req_vbuf;
1664 rslt->PageVersion = cfgp->Header.PageVersion;
1665 rslt->PageNumber = cfgp->Header.PageNumber;
1666 rslt->PageType = cfgp->Header.PageType;
1667 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1668 rslt->ExtPageType = cfgp->ExtPageType;
1669 error = 0;
1670 break;
1671 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1672 mpt_lprt(mpt, MPT_PRT_DEBUG,
1673 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1674 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1675 error = EINVAL;
1676 break;
1677 default:
1678 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1679 req->IOCStatus);
1680 error = EIO;
1681 break;
1682 }
1683 mpt_free_request(mpt, req);
1684 return (error);
1685 }
1686
1687 int
mpt_read_extcfg_page(struct mpt_softc * mpt,int Action,uint32_t PageAddress,CONFIG_EXTENDED_PAGE_HEADER * hdr,void * buf,size_t len,int sleep_ok,int timeout_ms)1688 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1689 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1690 int sleep_ok, int timeout_ms)
1691 {
1692 request_t *req;
1693 cfgparms_t params;
1694 int error;
1695
1696 req = mpt_get_request(mpt, sleep_ok);
1697 if (req == NULL) {
1698 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1699 return (-1);
1700 }
1701
1702 params.Action = Action;
1703 params.PageVersion = hdr->PageVersion;
1704 params.PageLength = 0;
1705 params.PageNumber = hdr->PageNumber;
1706 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1707 params.PageAddress = PageAddress;
1708 params.ExtPageType = hdr->ExtPageType;
1709 params.ExtPageLength = hdr->ExtPageLength;
1710 error = mpt_issue_cfg_req(mpt, req, ¶ms,
1711 req->req_pbuf + MPT_RQSL(mpt),
1712 len, sleep_ok, timeout_ms);
1713 if (error != 0) {
1714 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1715 return (-1);
1716 }
1717
1718 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1719 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1720 req->IOCStatus);
1721 mpt_free_request(mpt, req);
1722 return (-1);
1723 }
1724 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1725 mpt_free_request(mpt, req);
1726 return (0);
1727 }
1728
1729 int
mpt_read_cfg_header(struct mpt_softc * mpt,int PageType,int PageNumber,uint32_t PageAddress,CONFIG_PAGE_HEADER * rslt,int sleep_ok,int timeout_ms)1730 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1731 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1732 int sleep_ok, int timeout_ms)
1733 {
1734 request_t *req;
1735 cfgparms_t params;
1736 MSG_CONFIG *cfgp;
1737 int error;
1738
1739 req = mpt_get_request(mpt, sleep_ok);
1740 if (req == NULL) {
1741 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1742 return (ENOMEM);
1743 }
1744
1745 bzero(¶ms, sizeof(params));
1746 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1747 params.PageVersion = 0;
1748 params.PageLength = 0;
1749 params.PageNumber = PageNumber;
1750 params.PageType = PageType;
1751 params.PageAddress = PageAddress;
1752 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0,
1753 sleep_ok, timeout_ms);
1754 if (error != 0) {
1755 /*
1756 * Leave the request. Without resetting the chip, it's
1757 * still owned by it and we'll just get into trouble
1758 * freeing it now. Mark it as abandoned so that if it
1759 * shows up later it can be freed.
1760 */
1761 mpt_prt(mpt, "read_cfg_header timed out\n");
1762 return (ETIMEDOUT);
1763 }
1764
1765 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1766 case MPI_IOCSTATUS_SUCCESS:
1767 cfgp = req->req_vbuf;
1768 bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1769 error = 0;
1770 break;
1771 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1772 mpt_lprt(mpt, MPT_PRT_DEBUG,
1773 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1774 PageType, PageNumber, PageAddress);
1775 error = EINVAL;
1776 break;
1777 default:
1778 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1779 req->IOCStatus);
1780 error = EIO;
1781 break;
1782 }
1783 mpt_free_request(mpt, req);
1784 return (error);
1785 }
1786
1787 int
mpt_read_cfg_page(struct mpt_softc * mpt,int Action,uint32_t PageAddress,CONFIG_PAGE_HEADER * hdr,size_t len,int sleep_ok,int timeout_ms)1788 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1789 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1790 int timeout_ms)
1791 {
1792 request_t *req;
1793 cfgparms_t params;
1794 int error;
1795
1796 req = mpt_get_request(mpt, sleep_ok);
1797 if (req == NULL) {
1798 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1799 return (-1);
1800 }
1801
1802 bzero(¶ms, sizeof(params));
1803 params.Action = Action;
1804 params.PageVersion = hdr->PageVersion;
1805 params.PageLength = hdr->PageLength;
1806 params.PageNumber = hdr->PageNumber;
1807 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1808 params.PageAddress = PageAddress;
1809 error = mpt_issue_cfg_req(mpt, req, ¶ms,
1810 req->req_pbuf + MPT_RQSL(mpt),
1811 len, sleep_ok, timeout_ms);
1812 if (error != 0) {
1813 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1814 return (-1);
1815 }
1816
1817 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1818 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1819 req->IOCStatus);
1820 mpt_free_request(mpt, req);
1821 return (-1);
1822 }
1823 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1824 mpt_free_request(mpt, req);
1825 return (0);
1826 }
1827
1828 int
mpt_write_cfg_page(struct mpt_softc * mpt,int Action,uint32_t PageAddress,CONFIG_PAGE_HEADER * hdr,size_t len,int sleep_ok,int timeout_ms)1829 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1830 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1831 int timeout_ms)
1832 {
1833 request_t *req;
1834 cfgparms_t params;
1835 u_int hdr_attr;
1836 int error;
1837
1838 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1839 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1840 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1841 mpt_prt(mpt, "page type 0x%x not changeable\n",
1842 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1843 return (-1);
1844 }
1845
1846 #if 0
1847 /*
1848 * We shouldn't mask off other bits here.
1849 */
1850 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1851 #endif
1852
1853 req = mpt_get_request(mpt, sleep_ok);
1854 if (req == NULL)
1855 return (-1);
1856
1857 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1858
1859 /*
1860 * There isn't any point in restoring stripped out attributes
1861 * if you then mask them going down to issue the request.
1862 */
1863
1864 bzero(¶ms, sizeof(params));
1865 params.Action = Action;
1866 params.PageVersion = hdr->PageVersion;
1867 params.PageLength = hdr->PageLength;
1868 params.PageNumber = hdr->PageNumber;
1869 params.PageAddress = PageAddress;
1870 #if 0
1871 /* Restore stripped out attributes */
1872 hdr->PageType |= hdr_attr;
1873 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1874 #else
1875 params.PageType = hdr->PageType;
1876 #endif
1877 error = mpt_issue_cfg_req(mpt, req, ¶ms,
1878 req->req_pbuf + MPT_RQSL(mpt),
1879 len, sleep_ok, timeout_ms);
1880 if (error != 0) {
1881 mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1882 return (-1);
1883 }
1884
1885 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1886 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1887 req->IOCStatus);
1888 mpt_free_request(mpt, req);
1889 return (-1);
1890 }
1891 mpt_free_request(mpt, req);
1892 return (0);
1893 }
1894
1895 /*
1896 * Read IOC configuration information
1897 */
1898 static int
mpt_read_config_info_ioc(struct mpt_softc * mpt)1899 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1900 {
1901 CONFIG_PAGE_HEADER hdr;
1902 struct mpt_raid_volume *mpt_raid;
1903 int rv;
1904 int i;
1905 size_t len;
1906
1907 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1908 2, 0, &hdr, FALSE, 5000);
1909 /*
1910 * If it's an invalid page, so what? Not a supported function....
1911 */
1912 if (rv == EINVAL) {
1913 return (0);
1914 }
1915 if (rv) {
1916 return (rv);
1917 }
1918
1919 mpt_lprt(mpt, MPT_PRT_DEBUG,
1920 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1921 hdr.PageVersion, hdr.PageLength << 2,
1922 hdr.PageNumber, hdr.PageType);
1923
1924 len = hdr.PageLength * sizeof(uint32_t);
1925 mpt->ioc_page2 = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1926 if (mpt->ioc_page2 == NULL) {
1927 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1928 mpt_raid_free_mem(mpt);
1929 return (ENOMEM);
1930 }
1931 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1932 rv = mpt_read_cur_cfg_page(mpt, 0,
1933 &mpt->ioc_page2->Header, len, FALSE, 5000);
1934 if (rv) {
1935 mpt_prt(mpt, "failed to read IOC Page 2\n");
1936 mpt_raid_free_mem(mpt);
1937 return (EIO);
1938 }
1939 mpt2host_config_page_ioc2(mpt->ioc_page2);
1940
1941 if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1942 uint32_t mask;
1943
1944 mpt_prt(mpt, "Capabilities: (");
1945 for (mask = 1; mask != 0; mask <<= 1) {
1946 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1947 continue;
1948 }
1949 switch (mask) {
1950 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1951 mpt_prtc(mpt, " RAID-0");
1952 break;
1953 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1954 mpt_prtc(mpt, " RAID-1E");
1955 break;
1956 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1957 mpt_prtc(mpt, " RAID-1");
1958 break;
1959 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1960 mpt_prtc(mpt, " SES");
1961 break;
1962 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1963 mpt_prtc(mpt, " SAFTE");
1964 break;
1965 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1966 mpt_prtc(mpt, " Multi-Channel-Arrays");
1967 default:
1968 break;
1969 }
1970 }
1971 mpt_prtc(mpt, " )\n");
1972 if ((mpt->ioc_page2->CapabilitiesFlags
1973 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1974 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1975 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1976 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1977 mpt->ioc_page2->NumActiveVolumes,
1978 mpt->ioc_page2->NumActiveVolumes != 1
1979 ? "s " : " ",
1980 mpt->ioc_page2->MaxVolumes);
1981 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1982 mpt->ioc_page2->NumActivePhysDisks,
1983 mpt->ioc_page2->NumActivePhysDisks != 1
1984 ? "s " : " ",
1985 mpt->ioc_page2->MaxPhysDisks);
1986 }
1987 }
1988
1989 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1990 mpt->raid_volumes = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1991 if (mpt->raid_volumes == NULL) {
1992 mpt_prt(mpt, "Could not allocate RAID volume data\n");
1993 mpt_raid_free_mem(mpt);
1994 return (ENOMEM);
1995 }
1996
1997 /*
1998 * Copy critical data out of ioc_page2 so that we can
1999 * safely refresh the page without windows of unreliable
2000 * data.
2001 */
2002 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes;
2003
2004 len = sizeof(*mpt->raid_volumes->config_page) +
2005 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2006 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2007 mpt_raid = &mpt->raid_volumes[i];
2008 mpt_raid->config_page =
2009 kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2010 if (mpt_raid->config_page == NULL) {
2011 mpt_prt(mpt, "Could not allocate RAID page data\n");
2012 mpt_raid_free_mem(mpt);
2013 return (ENOMEM);
2014 }
2015 }
2016 mpt->raid_page0_len = len;
2017
2018 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2019 mpt->raid_disks = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2020 if (mpt->raid_disks == NULL) {
2021 mpt_prt(mpt, "Could not allocate RAID disk data\n");
2022 mpt_raid_free_mem(mpt);
2023 return (ENOMEM);
2024 }
2025 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks;
2026
2027 /*
2028 * Load page 3.
2029 */
2030 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2031 3, 0, &hdr, FALSE, 5000);
2032 if (rv) {
2033 mpt_raid_free_mem(mpt);
2034 return (EIO);
2035 }
2036
2037 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2038 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2039
2040 len = hdr.PageLength * sizeof(uint32_t);
2041 mpt->ioc_page3 = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2042 if (mpt->ioc_page3 == NULL) {
2043 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2044 mpt_raid_free_mem(mpt);
2045 return (ENOMEM);
2046 }
2047 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2048 rv = mpt_read_cur_cfg_page(mpt, 0,
2049 &mpt->ioc_page3->Header, len, FALSE, 5000);
2050 if (rv) {
2051 mpt_raid_free_mem(mpt);
2052 return (EIO);
2053 }
2054 mpt2host_config_page_ioc3(mpt->ioc_page3);
2055 mpt_raid_wakeup(mpt);
2056 return (0);
2057 }
2058
2059 /*
2060 * Enable IOC port
2061 */
2062 static int
mpt_send_port_enable(struct mpt_softc * mpt,int port)2063 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2064 {
2065 request_t *req;
2066 MSG_PORT_ENABLE *enable_req;
2067 int error;
2068
2069 req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2070 if (req == NULL)
2071 return (-1);
2072
2073 enable_req = req->req_vbuf;
2074 memset(enable_req, 0, MPT_RQSL(mpt));
2075
2076 enable_req->Function = MPI_FUNCTION_PORT_ENABLE;
2077 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2078 enable_req->PortNumber = port;
2079
2080 mpt_check_doorbell(mpt);
2081 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2082
2083 mpt_send_cmd(mpt, req);
2084 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2085 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2086 if (error != 0) {
2087 mpt_prt(mpt, "port %d enable timed out\n", port);
2088 return (-1);
2089 }
2090 mpt_free_request(mpt, req);
2091 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2092 return (0);
2093 }
2094
2095 /*
2096 * Enable/Disable asynchronous event reporting.
2097 */
2098 static int
mpt_send_event_request(struct mpt_softc * mpt,int onoff)2099 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2100 {
2101 request_t *req;
2102 MSG_EVENT_NOTIFY *enable_req;
2103
2104 req = mpt_get_request(mpt, FALSE);
2105 if (req == NULL) {
2106 return (ENOMEM);
2107 }
2108 enable_req = req->req_vbuf;
2109 memset(enable_req, 0, sizeof *enable_req);
2110
2111 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION;
2112 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2113 enable_req->Switch = onoff;
2114
2115 mpt_check_doorbell(mpt);
2116 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2117 onoff ? "en" : "dis");
2118 /*
2119 * Send the command off, but don't wait for it.
2120 */
2121 mpt_send_cmd(mpt, req);
2122 return (0);
2123 }
2124
2125 /*
2126 * Un-mask the interrupts on the chip.
2127 */
2128 void
mpt_enable_ints(struct mpt_softc * mpt)2129 mpt_enable_ints(struct mpt_softc *mpt)
2130 {
2131
2132 /* Unmask every thing except door bell int */
2133 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2134 }
2135
2136 /*
2137 * Mask the interrupts on the chip.
2138 */
2139 void
mpt_disable_ints(struct mpt_softc * mpt)2140 mpt_disable_ints(struct mpt_softc *mpt)
2141 {
2142
2143 /* Mask all interrupts */
2144 mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2145 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2146 }
2147
2148 static void
mpt_sysctl_attach(struct mpt_softc * mpt)2149 mpt_sysctl_attach(struct mpt_softc *mpt)
2150 {
2151 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2152 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2153
2154 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2155 "debug", CTLFLAG_RW, &mpt->verbose, 0,
2156 "Debugging/Verbose level");
2157 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2158 "role", CTLFLAG_RD, &mpt->role, 0,
2159 "HBA role");
2160 #ifdef MPT_TEST_MULTIPATH
2161 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2162 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2163 "Next Target to Fail");
2164 #endif
2165 }
2166
2167 int
mpt_attach(struct mpt_softc * mpt)2168 mpt_attach(struct mpt_softc *mpt)
2169 {
2170 struct mpt_personality *pers;
2171 int i;
2172 int error;
2173
2174 mpt_core_attach(mpt);
2175 mpt_core_enable(mpt);
2176
2177 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2178 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2179 pers = mpt_personalities[i];
2180 if (pers == NULL) {
2181 continue;
2182 }
2183 if (pers->probe(mpt) == 0) {
2184 error = pers->attach(mpt);
2185 if (error != 0) {
2186 mpt_detach(mpt);
2187 return (error);
2188 }
2189 mpt->mpt_pers_mask |= (0x1 << pers->id);
2190 pers->use_count++;
2191 }
2192 }
2193
2194 /*
2195 * Now that we've attached everything, do the enable function
2196 * for all of the personalities. This allows the personalities
2197 * to do setups that are appropriate for them prior to enabling
2198 * any ports.
2199 */
2200 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2201 pers = mpt_personalities[i];
2202 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2203 error = pers->enable(mpt);
2204 if (error != 0) {
2205 mpt_prt(mpt, "personality %s attached but would"
2206 " not enable (%d)\n", pers->name, error);
2207 mpt_detach(mpt);
2208 return (error);
2209 }
2210 }
2211 }
2212 return (0);
2213 }
2214
2215 int
mpt_shutdown(struct mpt_softc * mpt)2216 mpt_shutdown(struct mpt_softc *mpt)
2217 {
2218 struct mpt_personality *pers;
2219
2220 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2221 pers->shutdown(mpt);
2222 }
2223 return (0);
2224 }
2225
2226 int
mpt_detach(struct mpt_softc * mpt)2227 mpt_detach(struct mpt_softc *mpt)
2228 {
2229 struct mpt_personality *pers;
2230
2231 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2232 pers->detach(mpt);
2233 mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2234 pers->use_count--;
2235 }
2236 TAILQ_REMOVE(&mpt_tailq, mpt, links);
2237 return (0);
2238 }
2239
2240 static int
mpt_core_load(struct mpt_personality * pers)2241 mpt_core_load(struct mpt_personality *pers)
2242 {
2243 int i;
2244
2245 /*
2246 * Setup core handlers and insert the default handler
2247 * into all "empty slots".
2248 */
2249 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2250 mpt_reply_handlers[i] = mpt_default_reply_handler;
2251 }
2252
2253 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2254 mpt_event_reply_handler;
2255 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2256 mpt_config_reply_handler;
2257 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2258 mpt_handshake_reply_handler;
2259 return (0);
2260 }
2261
2262 /*
2263 * Initialize per-instance driver data and perform
2264 * initial controller configuration.
2265 */
2266 static int
mpt_core_attach(struct mpt_softc * mpt)2267 mpt_core_attach(struct mpt_softc *mpt)
2268 {
2269 int val, error;
2270
2271 LIST_INIT(&mpt->ack_frames);
2272 /* Put all request buffers on the free list */
2273 TAILQ_INIT(&mpt->request_pending_list);
2274 TAILQ_INIT(&mpt->request_free_list);
2275 TAILQ_INIT(&mpt->request_timeout_list);
2276 for (val = 0; val < MPT_MAX_LUNS; val++) {
2277 STAILQ_INIT(&mpt->trt[val].atios);
2278 STAILQ_INIT(&mpt->trt[val].inots);
2279 }
2280 STAILQ_INIT(&mpt->trt_wildcard.atios);
2281 STAILQ_INIT(&mpt->trt_wildcard.inots);
2282 #ifdef MPT_TEST_MULTIPATH
2283 mpt->failure_id = -1;
2284 #endif
2285 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2286 mpt_sysctl_attach(mpt);
2287 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2288 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2289
2290 MPT_LOCK(mpt);
2291 error = mpt_configure_ioc(mpt, 0, 0);
2292 MPT_UNLOCK(mpt);
2293
2294 return (error);
2295 }
2296
2297 static int
mpt_core_enable(struct mpt_softc * mpt)2298 mpt_core_enable(struct mpt_softc *mpt)
2299 {
2300
2301 /*
2302 * We enter with the IOC enabled, but async events
2303 * not enabled, ports not enabled and interrupts
2304 * not enabled.
2305 */
2306 MPT_LOCK(mpt);
2307
2308 /*
2309 * Enable asynchronous event reporting- all personalities
2310 * have attached so that they should be able to now field
2311 * async events.
2312 */
2313 mpt_send_event_request(mpt, 1);
2314
2315 /*
2316 * Catch any pending interrupts
2317 *
2318 * This seems to be crucial- otherwise
2319 * the portenable below times out.
2320 */
2321 mpt_intr(mpt);
2322
2323 /*
2324 * Enable Interrupts
2325 */
2326 mpt_enable_ints(mpt);
2327
2328 /*
2329 * Catch any pending interrupts
2330 *
2331 * This seems to be crucial- otherwise
2332 * the portenable below times out.
2333 */
2334 mpt_intr(mpt);
2335
2336 /*
2337 * Enable the port.
2338 */
2339 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2340 mpt_prt(mpt, "failed to enable port 0\n");
2341 MPT_UNLOCK(mpt);
2342 return (ENXIO);
2343 }
2344 MPT_UNLOCK(mpt);
2345 return (0);
2346 }
2347
2348 static void
mpt_core_shutdown(struct mpt_softc * mpt)2349 mpt_core_shutdown(struct mpt_softc *mpt)
2350 {
2351
2352 mpt_disable_ints(mpt);
2353 }
2354
2355 static void
mpt_core_detach(struct mpt_softc * mpt)2356 mpt_core_detach(struct mpt_softc *mpt)
2357 {
2358 int val;
2359
2360 /*
2361 * XXX: FREE MEMORY
2362 */
2363 mpt_disable_ints(mpt);
2364
2365 /* Make sure no request has pending timeouts. */
2366 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2367 request_t *req = &mpt->request_pool[val];
2368 mpt_callout_drain(mpt, &req->callout);
2369 }
2370
2371 mpt_dma_buf_free(mpt);
2372 }
2373
2374 static int
mpt_core_unload(struct mpt_personality * pers)2375 mpt_core_unload(struct mpt_personality *pers)
2376 {
2377
2378 /* Unload is always successful. */
2379 return (0);
2380 }
2381
2382 #define FW_UPLOAD_REQ_SIZE \
2383 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \
2384 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2385
2386 static int
mpt_upload_fw(struct mpt_softc * mpt)2387 mpt_upload_fw(struct mpt_softc *mpt)
2388 {
2389 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2390 MSG_FW_UPLOAD_REPLY fw_reply;
2391 MSG_FW_UPLOAD *fw_req;
2392 FW_UPLOAD_TCSGE *tsge;
2393 SGE_SIMPLE32 *sge;
2394 uint32_t flags;
2395 int error;
2396
2397 memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2398 fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2399 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2400 fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2401 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2402 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2403 tsge->DetailsLength = 12;
2404 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2405 tsge->ImageSize = htole32(mpt->fw_image_size);
2406 sge = (SGE_SIMPLE32 *)(tsge + 1);
2407 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2408 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2409 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2410 flags <<= MPI_SGE_FLAGS_SHIFT;
2411 sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2412 sge->Address = htole32(mpt->fw_phys);
2413 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2414 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2415 if (error)
2416 return(error);
2417 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2418 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2419 return (error);
2420 }
2421
2422 static void
mpt_diag_outsl(struct mpt_softc * mpt,uint32_t addr,uint32_t * data,bus_size_t len)2423 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2424 uint32_t *data, bus_size_t len)
2425 {
2426 uint32_t *data_end;
2427
2428 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2429 if (mpt->is_sas) {
2430 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2431 }
2432 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2433 while (data != data_end) {
2434 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2435 data++;
2436 }
2437 if (mpt->is_sas) {
2438 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2439 }
2440 }
2441
2442 static int
mpt_download_fw(struct mpt_softc * mpt)2443 mpt_download_fw(struct mpt_softc *mpt)
2444 {
2445 MpiFwHeader_t *fw_hdr;
2446 int error;
2447 uint32_t ext_offset;
2448 uint32_t data;
2449
2450 if (mpt->pci_pio_reg == NULL) {
2451 mpt_prt(mpt, "No PIO resource!\n");
2452 return (ENXIO);
2453 }
2454
2455 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2456 mpt->fw_image_size);
2457
2458 error = mpt_enable_diag_mode(mpt);
2459 if (error != 0) {
2460 mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2461 return (EIO);
2462 }
2463
2464 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2465 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2466
2467 fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2468 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2469 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2470 fw_hdr->ImageSize);
2471 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2472
2473 ext_offset = fw_hdr->NextImageHeaderOffset;
2474 while (ext_offset != 0) {
2475 MpiExtImageHeader_t *ext;
2476
2477 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2478 ext_offset = ext->NextImageHeaderOffset;
2479 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2480 BUS_DMASYNC_PREWRITE);
2481 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2482 ext->ImageSize);
2483 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2484 BUS_DMASYNC_POSTWRITE);
2485 }
2486
2487 if (mpt->is_sas) {
2488 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2489 }
2490 /* Setup the address to jump to on reset. */
2491 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2492 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2493
2494 /*
2495 * The controller sets the "flash bad" status after attempting
2496 * to auto-boot from flash. Clear the status so that the controller
2497 * will continue the boot process with our newly installed firmware.
2498 */
2499 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2500 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2501 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2502 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2503
2504 if (mpt->is_sas) {
2505 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2506 }
2507
2508 /*
2509 * Re-enable the processor and clear the boot halt flag.
2510 */
2511 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2512 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2513 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2514
2515 mpt_disable_diag_mode(mpt);
2516 return (0);
2517 }
2518
2519 static int
mpt_dma_buf_alloc(struct mpt_softc * mpt)2520 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2521 {
2522 struct mpt_map_info mi;
2523 uint8_t *vptr;
2524 uint32_t pptr, end;
2525 int i, error;
2526
2527 /* Create a child tag for data buffers */
2528 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2529 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2530 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2531 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2532 &mpt->buffer_dmat) != 0) {
2533 mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2534 return (1);
2535 }
2536
2537 /* Create a child tag for request buffers */
2538 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2539 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2540 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2541 &mpt->request_dmat) != 0) {
2542 mpt_prt(mpt, "cannot create a dma tag for requests\n");
2543 return (1);
2544 }
2545
2546 /* Allocate some DMA accessible memory for requests */
2547 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2548 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2549 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2550 MPT_REQ_MEM_SIZE(mpt));
2551 return (1);
2552 }
2553
2554 mi.mpt = mpt;
2555 mi.error = 0;
2556
2557 /* Load and lock it into "bus space" */
2558 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2559 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2560
2561 if (mi.error) {
2562 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2563 mi.error);
2564 return (1);
2565 }
2566 mpt->request_phys = mi.phys;
2567
2568 /*
2569 * Now create per-request dma maps
2570 */
2571 i = 0;
2572 pptr = mpt->request_phys;
2573 vptr = mpt->request;
2574 end = pptr + MPT_REQ_MEM_SIZE(mpt);
2575 while(pptr < end) {
2576 request_t *req = &mpt->request_pool[i];
2577 req->index = i++;
2578
2579 /* Store location of Request Data */
2580 req->req_pbuf = pptr;
2581 req->req_vbuf = vptr;
2582
2583 pptr += MPT_REQUEST_AREA;
2584 vptr += MPT_REQUEST_AREA;
2585
2586 req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2587 req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2588
2589 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2590 if (error) {
2591 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2592 error);
2593 return (1);
2594 }
2595 }
2596
2597 return (0);
2598 }
2599
2600 static void
mpt_dma_buf_free(struct mpt_softc * mpt)2601 mpt_dma_buf_free(struct mpt_softc *mpt)
2602 {
2603 int i;
2604
2605 if (mpt->request_dmat == 0) {
2606 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2607 return;
2608 }
2609 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2610 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2611 }
2612 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2613 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2614 bus_dma_tag_destroy(mpt->request_dmat);
2615 mpt->request_dmat = 0;
2616 bus_dma_tag_destroy(mpt->buffer_dmat);
2617 }
2618
2619 /*
2620 * Allocate/Initialize data structures for the controller. Called
2621 * once at instance startup.
2622 */
2623 static int
mpt_configure_ioc(struct mpt_softc * mpt,int tn,int needreset)2624 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2625 {
2626 PTR_MSG_PORT_FACTS_REPLY pfp;
2627 int error, port, val;
2628 size_t len;
2629
2630 if (tn == MPT_MAX_TRYS) {
2631 return (-1);
2632 }
2633
2634 /*
2635 * No need to reset if the IOC is already in the READY state.
2636 *
2637 * Force reset if initialization failed previously.
2638 * Note that a hard_reset of the second channel of a '929
2639 * will stop operation of the first channel. Hopefully, if the
2640 * first channel is ok, the second will not require a hard
2641 * reset.
2642 */
2643 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2644 if (mpt_reset(mpt, FALSE) != MPT_OK) {
2645 return (mpt_configure_ioc(mpt, tn++, 1));
2646 }
2647 needreset = 0;
2648 }
2649
2650 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2651 mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2652 return (mpt_configure_ioc(mpt, tn++, 1));
2653 }
2654 mpt2host_iocfacts_reply(&mpt->ioc_facts);
2655
2656 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2657 mpt->ioc_facts.MsgVersion >> 8,
2658 mpt->ioc_facts.MsgVersion & 0xFF,
2659 mpt->ioc_facts.HeaderVersion >> 8,
2660 mpt->ioc_facts.HeaderVersion & 0xFF);
2661
2662 /*
2663 * Now that we know request frame size, we can calculate
2664 * the actual (reasonable) segment limit for read/write I/O.
2665 *
2666 * This limit is constrained by:
2667 *
2668 * + The size of each area we allocate per command (and how
2669 * many chain segments we can fit into it).
2670 * + The total number of areas we've set up.
2671 * + The actual chain depth the card will allow.
2672 *
2673 * The first area's segment count is limited by the I/O request
2674 * at the head of it. We cannot allocate realistically more
2675 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2676 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2677 *
2678 */
2679 /* total number of request areas we (can) allocate */
2680 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2681
2682 /* converted to the number of chain areas possible */
2683 mpt->max_seg_cnt *= MPT_NRFM(mpt);
2684
2685 /* limited by the number of chain areas the card will support */
2686 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2687 mpt_lprt(mpt, MPT_PRT_INFO,
2688 "chain depth limited to %u (from %u)\n",
2689 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2690 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2691 }
2692
2693 /* converted to the number of simple sges in chain segments. */
2694 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2695
2696 /*
2697 * Use this as the basis for reporting the maximum I/O size to CAM.
2698 */
2699 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2700
2701 error = mpt_dma_buf_alloc(mpt);
2702 if (error != 0) {
2703 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2704 return (EIO);
2705 }
2706
2707 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2708 request_t *req = &mpt->request_pool[val];
2709 req->state = REQ_STATE_ALLOCATED;
2710 mpt_callout_init(mpt, &req->callout);
2711 mpt_free_request(mpt, req);
2712 }
2713
2714 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2715 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2716 mpt->max_cam_seg_cnt);
2717
2718 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2719 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2720 mpt_lprt(mpt, MPT_PRT_INFO,
2721 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2722 "Request Frame Size %u bytes Max Chain Depth %u\n",
2723 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2724 mpt->ioc_facts.RequestFrameSize << 2,
2725 mpt->ioc_facts.MaxChainDepth);
2726 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2727 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2728 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2729
2730 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2731 mpt->port_facts = kmalloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2732 if (mpt->port_facts == NULL) {
2733 mpt_prt(mpt, "unable to allocate memory for port facts\n");
2734 return (ENOMEM);
2735 }
2736
2737
2738 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2739 (mpt->fw_uploaded == 0)) {
2740 struct mpt_map_info mi;
2741
2742 /*
2743 * In some configurations, the IOC's firmware is
2744 * stored in a shared piece of system NVRAM that
2745 * is only accessible via the BIOS. In this
2746 * case, the firmware keeps a copy of firmware in
2747 * RAM until the OS driver retrieves it. Once
2748 * retrieved, we are responsible for re-downloading
2749 * the firmware after any hard-reset.
2750 */
2751 mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2752 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2753 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2754 mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2755 &mpt->fw_dmat);
2756 if (error != 0) {
2757 mpt_prt(mpt, "cannot create firmware dma tag\n");
2758 return (ENOMEM);
2759 }
2760 error = bus_dmamem_alloc(mpt->fw_dmat,
2761 (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2762 BUS_DMA_COHERENT, &mpt->fw_dmap);
2763 if (error != 0) {
2764 mpt_prt(mpt, "cannot allocate firmware memory\n");
2765 bus_dma_tag_destroy(mpt->fw_dmat);
2766 return (ENOMEM);
2767 }
2768 mi.mpt = mpt;
2769 mi.error = 0;
2770 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2771 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2772 mpt->fw_phys = mi.phys;
2773
2774 error = mpt_upload_fw(mpt);
2775 if (error != 0) {
2776 mpt_prt(mpt, "firmware upload failed.\n");
2777 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2778 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2779 mpt->fw_dmap);
2780 bus_dma_tag_destroy(mpt->fw_dmat);
2781 mpt->fw_image = NULL;
2782 return (EIO);
2783 }
2784 mpt->fw_uploaded = 1;
2785 }
2786
2787 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2788 pfp = &mpt->port_facts[port];
2789 error = mpt_get_portfacts(mpt, 0, pfp);
2790 if (error != MPT_OK) {
2791 mpt_prt(mpt,
2792 "mpt_get_portfacts on port %d failed\n", port);
2793 kfree(mpt->port_facts, M_DEVBUF);
2794 mpt->port_facts = NULL;
2795 return (mpt_configure_ioc(mpt, tn++, 1));
2796 }
2797 mpt2host_portfacts_reply(pfp);
2798
2799 if (port > 0) {
2800 error = MPT_PRT_INFO;
2801 } else {
2802 error = MPT_PRT_DEBUG;
2803 }
2804 mpt_lprt(mpt, error,
2805 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2806 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2807 pfp->MaxDevices);
2808
2809 }
2810
2811 /*
2812 * XXX: Not yet supporting more than port 0
2813 */
2814 pfp = &mpt->port_facts[0];
2815 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2816 mpt->is_fc = 1;
2817 mpt->is_sas = 0;
2818 mpt->is_spi = 0;
2819 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2820 mpt->is_fc = 0;
2821 mpt->is_sas = 1;
2822 mpt->is_spi = 0;
2823 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2824 mpt->is_fc = 0;
2825 mpt->is_sas = 0;
2826 mpt->is_spi = 1;
2827 if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2828 mpt->mpt_ini_id = pfp->PortSCSIID;
2829 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2830 mpt_prt(mpt, "iSCSI not supported yet\n");
2831 return (ENXIO);
2832 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2833 mpt_prt(mpt, "Inactive Port\n");
2834 return (ENXIO);
2835 } else {
2836 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2837 return (ENXIO);
2838 }
2839
2840 /*
2841 * Set our role with what this port supports.
2842 *
2843 * Note this might be changed later in different modules
2844 * if this is different from what is wanted.
2845 */
2846 mpt->role = MPT_ROLE_NONE;
2847 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2848 mpt->role |= MPT_ROLE_INITIATOR;
2849 }
2850 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2851 mpt->role |= MPT_ROLE_TARGET;
2852 }
2853
2854 /*
2855 * Enable the IOC
2856 */
2857 if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2858 mpt_prt(mpt, "unable to initialize IOC\n");
2859 return (ENXIO);
2860 }
2861
2862 /*
2863 * Read IOC configuration information.
2864 *
2865 * We need this to determine whether or not we have certain
2866 * settings for Integrated Mirroring (e.g.).
2867 */
2868 mpt_read_config_info_ioc(mpt);
2869
2870 return (0);
2871 }
2872
2873 static int
mpt_enable_ioc(struct mpt_softc * mpt,int portenable)2874 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2875 {
2876 uint32_t pptr;
2877 int val;
2878
2879 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2880 mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2881 return (EIO);
2882 }
2883
2884 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2885
2886 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2887 mpt_prt(mpt, "IOC failed to go to run state\n");
2888 return (ENXIO);
2889 }
2890 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2891
2892 /*
2893 * Give it reply buffers
2894 *
2895 * Do *not* exceed global credits.
2896 */
2897 for (val = 0, pptr = mpt->reply_phys;
2898 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2899 pptr += MPT_REPLY_SIZE) {
2900 mpt_free_reply(mpt, pptr);
2901 if (++val == mpt->ioc_facts.GlobalCredits - 1)
2902 break;
2903 }
2904
2905
2906 /*
2907 * Enable the port if asked. This is only done if we're resetting
2908 * the IOC after initial startup.
2909 */
2910 if (portenable) {
2911 /*
2912 * Enable asynchronous event reporting
2913 */
2914 mpt_send_event_request(mpt, 1);
2915
2916 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2917 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2918 return (ENXIO);
2919 }
2920 }
2921 return (MPT_OK);
2922 }
2923
2924 /*
2925 * Endian Conversion Functions- only used on Big Endian machines
2926 */
2927 #if _BYTE_ORDER == _BIG_ENDIAN
2928 void
mpt2host_sge_simple_union(SGE_SIMPLE_UNION * sge)2929 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2930 {
2931
2932 MPT_2_HOST32(sge, FlagsLength);
2933 MPT_2_HOST32(sge, u.Address64.Low);
2934 MPT_2_HOST32(sge, u.Address64.High);
2935 }
2936
2937 void
mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY * rp)2938 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2939 {
2940
2941 MPT_2_HOST16(rp, MsgVersion);
2942 MPT_2_HOST16(rp, HeaderVersion);
2943 MPT_2_HOST32(rp, MsgContext);
2944 MPT_2_HOST16(rp, IOCExceptions);
2945 MPT_2_HOST16(rp, IOCStatus);
2946 MPT_2_HOST32(rp, IOCLogInfo);
2947 MPT_2_HOST16(rp, ReplyQueueDepth);
2948 MPT_2_HOST16(rp, RequestFrameSize);
2949 MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2950 MPT_2_HOST16(rp, ProductID);
2951 MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2952 MPT_2_HOST16(rp, GlobalCredits);
2953 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2954 MPT_2_HOST16(rp, CurReplyFrameSize);
2955 MPT_2_HOST32(rp, FWImageSize);
2956 MPT_2_HOST32(rp, IOCCapabilities);
2957 MPT_2_HOST32(rp, FWVersion.Word);
2958 MPT_2_HOST16(rp, HighPriorityQueueDepth);
2959 MPT_2_HOST16(rp, Reserved2);
2960 mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2961 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2962 }
2963
2964 void
mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY * pfp)2965 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2966 {
2967
2968 MPT_2_HOST16(pfp, Reserved);
2969 MPT_2_HOST16(pfp, Reserved1);
2970 MPT_2_HOST32(pfp, MsgContext);
2971 MPT_2_HOST16(pfp, Reserved2);
2972 MPT_2_HOST16(pfp, IOCStatus);
2973 MPT_2_HOST32(pfp, IOCLogInfo);
2974 MPT_2_HOST16(pfp, MaxDevices);
2975 MPT_2_HOST16(pfp, PortSCSIID);
2976 MPT_2_HOST16(pfp, ProtocolFlags);
2977 MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2978 MPT_2_HOST16(pfp, MaxPersistentIDs);
2979 MPT_2_HOST16(pfp, MaxLanBuckets);
2980 MPT_2_HOST16(pfp, Reserved4);
2981 MPT_2_HOST32(pfp, Reserved5);
2982 }
2983
2984 void
mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 * ioc2)2985 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2986 {
2987 int i;
2988
2989 MPT_2_HOST32(ioc2, CapabilitiesFlags);
2990 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2991 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2992 }
2993 }
2994
2995 void
mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 * ioc3)2996 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2997 {
2998
2999 MPT_2_HOST16(ioc3, Reserved2);
3000 }
3001
3002 void
mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 * sp0)3003 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3004 {
3005
3006 MPT_2_HOST32(sp0, Capabilities);
3007 MPT_2_HOST32(sp0, PhysicalInterface);
3008 }
3009
3010 void
mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 * sp1)3011 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3012 {
3013
3014 MPT_2_HOST32(sp1, Configuration);
3015 MPT_2_HOST32(sp1, OnBusTimerValue);
3016 MPT_2_HOST16(sp1, IDConfig);
3017 }
3018
3019 void
host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 * sp1)3020 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3021 {
3022
3023 HOST_2_MPT32(sp1, Configuration);
3024 HOST_2_MPT32(sp1, OnBusTimerValue);
3025 HOST_2_MPT16(sp1, IDConfig);
3026 }
3027
3028 void
mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 * sp2)3029 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3030 {
3031 int i;
3032
3033 MPT_2_HOST32(sp2, PortFlags);
3034 MPT_2_HOST32(sp2, PortSettings);
3035 for (i = 0; i < sizeof(sp2->DeviceSettings) /
3036 sizeof(*sp2->DeviceSettings); i++) {
3037 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3038 }
3039 }
3040
3041 void
mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 * sd0)3042 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3043 {
3044
3045 MPT_2_HOST32(sd0, NegotiatedParameters);
3046 MPT_2_HOST32(sd0, Information);
3047 }
3048
3049 void
mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 * sd1)3050 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3051 {
3052
3053 MPT_2_HOST32(sd1, RequestedParameters);
3054 MPT_2_HOST32(sd1, Reserved);
3055 MPT_2_HOST32(sd1, Configuration);
3056 }
3057
3058 void
host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 * sd1)3059 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3060 {
3061
3062 HOST_2_MPT32(sd1, RequestedParameters);
3063 HOST_2_MPT32(sd1, Reserved);
3064 HOST_2_MPT32(sd1, Configuration);
3065 }
3066
3067 void
mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 * fp0)3068 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3069 {
3070
3071 MPT_2_HOST32(fp0, Flags);
3072 MPT_2_HOST32(fp0, PortIdentifier);
3073 MPT_2_HOST32(fp0, WWNN.Low);
3074 MPT_2_HOST32(fp0, WWNN.High);
3075 MPT_2_HOST32(fp0, WWPN.Low);
3076 MPT_2_HOST32(fp0, WWPN.High);
3077 MPT_2_HOST32(fp0, SupportedServiceClass);
3078 MPT_2_HOST32(fp0, SupportedSpeeds);
3079 MPT_2_HOST32(fp0, CurrentSpeed);
3080 MPT_2_HOST32(fp0, MaxFrameSize);
3081 MPT_2_HOST32(fp0, FabricWWNN.Low);
3082 MPT_2_HOST32(fp0, FabricWWNN.High);
3083 MPT_2_HOST32(fp0, FabricWWPN.Low);
3084 MPT_2_HOST32(fp0, FabricWWPN.High);
3085 MPT_2_HOST32(fp0, DiscoveredPortsCount);
3086 MPT_2_HOST32(fp0, MaxInitiators);
3087 }
3088
3089 void
mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 * fp1)3090 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3091 {
3092
3093 MPT_2_HOST32(fp1, Flags);
3094 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3095 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3096 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3097 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3098 }
3099
3100 void
host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 * fp1)3101 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3102 {
3103
3104 HOST_2_MPT32(fp1, Flags);
3105 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3106 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3107 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3108 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3109 }
3110
3111 void
mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 * volp)3112 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3113 {
3114 int i;
3115
3116 MPT_2_HOST16(volp, VolumeStatus.Reserved);
3117 MPT_2_HOST16(volp, VolumeSettings.Settings);
3118 MPT_2_HOST32(volp, MaxLBA);
3119 MPT_2_HOST32(volp, MaxLBAHigh);
3120 MPT_2_HOST32(volp, StripeSize);
3121 MPT_2_HOST32(volp, Reserved2);
3122 MPT_2_HOST32(volp, Reserved3);
3123 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3124 MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3125 }
3126 }
3127
3128 void
mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 * rpd0)3129 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3130 {
3131
3132 MPT_2_HOST32(rpd0, Reserved1);
3133 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3134 MPT_2_HOST32(rpd0, MaxLBA);
3135 MPT_2_HOST16(rpd0, ErrorData.Reserved);
3136 MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3137 MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3138 }
3139
3140 void
mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR * vi)3141 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3142 {
3143
3144 MPT_2_HOST16(vi, TotalBlocks.High);
3145 MPT_2_HOST16(vi, TotalBlocks.Low);
3146 MPT_2_HOST16(vi, BlocksRemaining.High);
3147 MPT_2_HOST16(vi, BlocksRemaining.Low);
3148 }
3149 #endif
3150