1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/Utils.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <numeric>
37 #include <optional>
38
39 #define DEBUG_TYPE "legalizer"
40
41 using namespace llvm;
42 using namespace LegalizeActions;
43 using namespace MIPatternMatch;
44
45 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
46 ///
47 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
48 /// with any leftover piece as type \p LeftoverTy
49 ///
50 /// Returns -1 in the first element of the pair if the breakdown is not
51 /// satisfiable.
52 static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy,LLT NarrowTy,LLT & LeftoverTy)53 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
54 assert(!LeftoverTy.isValid() && "this is an out argument");
55
56 unsigned Size = OrigTy.getSizeInBits();
57 unsigned NarrowSize = NarrowTy.getSizeInBits();
58 unsigned NumParts = Size / NarrowSize;
59 unsigned LeftoverSize = Size - NumParts * NarrowSize;
60 assert(Size > NarrowSize);
61
62 if (LeftoverSize == 0)
63 return {NumParts, 0};
64
65 if (NarrowTy.isVector()) {
66 unsigned EltSize = OrigTy.getScalarSizeInBits();
67 if (LeftoverSize % EltSize != 0)
68 return {-1, -1};
69 LeftoverTy = LLT::scalarOrVector(
70 ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
71 } else {
72 LeftoverTy = LLT::scalar(LeftoverSize);
73 }
74
75 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
76 return std::make_pair(NumParts, NumLeftover);
77 }
78
getFloatTypeForLLT(LLVMContext & Ctx,LLT Ty)79 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
80
81 if (!Ty.isScalar())
82 return nullptr;
83
84 switch (Ty.getSizeInBits()) {
85 case 16:
86 return Type::getHalfTy(Ctx);
87 case 32:
88 return Type::getFloatTy(Ctx);
89 case 64:
90 return Type::getDoubleTy(Ctx);
91 case 80:
92 return Type::getX86_FP80Ty(Ctx);
93 case 128:
94 return Type::getFP128Ty(Ctx);
95 default:
96 return nullptr;
97 }
98 }
99
LegalizerHelper(MachineFunction & MF,GISelChangeObserver & Observer,MachineIRBuilder & Builder)100 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
101 GISelChangeObserver &Observer,
102 MachineIRBuilder &Builder)
103 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
104 LI(*MF.getSubtarget().getLegalizerInfo()),
105 TLI(*MF.getSubtarget().getTargetLowering()) { }
106
LegalizerHelper(MachineFunction & MF,const LegalizerInfo & LI,GISelChangeObserver & Observer,MachineIRBuilder & B)107 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
108 GISelChangeObserver &Observer,
109 MachineIRBuilder &B)
110 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
111 TLI(*MF.getSubtarget().getTargetLowering()) { }
112
113 LegalizerHelper::LegalizeResult
legalizeInstrStep(MachineInstr & MI,LostDebugLocObserver & LocObserver)114 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
115 LostDebugLocObserver &LocObserver) {
116 LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
117
118 MIRBuilder.setInstrAndDebugLoc(MI);
119
120 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
121 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
122 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
123 auto Step = LI.getAction(MI, MRI);
124 switch (Step.Action) {
125 case Legal:
126 LLVM_DEBUG(dbgs() << ".. Already legal\n");
127 return AlreadyLegal;
128 case Libcall:
129 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
130 return libcall(MI, LocObserver);
131 case NarrowScalar:
132 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
133 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
134 case WidenScalar:
135 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
136 return widenScalar(MI, Step.TypeIdx, Step.NewType);
137 case Bitcast:
138 LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
139 return bitcast(MI, Step.TypeIdx, Step.NewType);
140 case Lower:
141 LLVM_DEBUG(dbgs() << ".. Lower\n");
142 return lower(MI, Step.TypeIdx, Step.NewType);
143 case FewerElements:
144 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
145 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
146 case MoreElements:
147 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
148 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
149 case Custom:
150 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
151 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
152 default:
153 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
154 return UnableToLegalize;
155 }
156 }
157
extractParts(Register Reg,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)158 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
159 SmallVectorImpl<Register> &VRegs) {
160 for (int i = 0; i < NumParts; ++i)
161 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
162 MIRBuilder.buildUnmerge(VRegs, Reg);
163 }
164
extractParts(Register Reg,LLT RegTy,LLT MainTy,LLT & LeftoverTy,SmallVectorImpl<Register> & VRegs,SmallVectorImpl<Register> & LeftoverRegs)165 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
166 LLT MainTy, LLT &LeftoverTy,
167 SmallVectorImpl<Register> &VRegs,
168 SmallVectorImpl<Register> &LeftoverRegs) {
169 assert(!LeftoverTy.isValid() && "this is an out argument");
170
171 unsigned RegSize = RegTy.getSizeInBits();
172 unsigned MainSize = MainTy.getSizeInBits();
173 unsigned NumParts = RegSize / MainSize;
174 unsigned LeftoverSize = RegSize - NumParts * MainSize;
175
176 // Use an unmerge when possible.
177 if (LeftoverSize == 0) {
178 for (unsigned I = 0; I < NumParts; ++I)
179 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
180 MIRBuilder.buildUnmerge(VRegs, Reg);
181 return true;
182 }
183
184 // Perform irregular split. Leftover is last element of RegPieces.
185 if (MainTy.isVector()) {
186 SmallVector<Register, 8> RegPieces;
187 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
188 for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
189 VRegs.push_back(RegPieces[i]);
190 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
191 LeftoverTy = MRI.getType(LeftoverRegs[0]);
192 return true;
193 }
194
195 LeftoverTy = LLT::scalar(LeftoverSize);
196 // For irregular sizes, extract the individual parts.
197 for (unsigned I = 0; I != NumParts; ++I) {
198 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
199 VRegs.push_back(NewReg);
200 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
201 }
202
203 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
204 Offset += LeftoverSize) {
205 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
206 LeftoverRegs.push_back(NewReg);
207 MIRBuilder.buildExtract(NewReg, Reg, Offset);
208 }
209
210 return true;
211 }
212
extractVectorParts(Register Reg,unsigned NumElts,SmallVectorImpl<Register> & VRegs)213 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
214 SmallVectorImpl<Register> &VRegs) {
215 LLT RegTy = MRI.getType(Reg);
216 assert(RegTy.isVector() && "Expected a vector type");
217
218 LLT EltTy = RegTy.getElementType();
219 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
220 unsigned RegNumElts = RegTy.getNumElements();
221 unsigned LeftoverNumElts = RegNumElts % NumElts;
222 unsigned NumNarrowTyPieces = RegNumElts / NumElts;
223
224 // Perfect split without leftover
225 if (LeftoverNumElts == 0)
226 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
227
228 // Irregular split. Provide direct access to all elements for artifact
229 // combiner using unmerge to elements. Then build vectors with NumElts
230 // elements. Remaining element(s) will be (used to build vector) Leftover.
231 SmallVector<Register, 8> Elts;
232 extractParts(Reg, EltTy, RegNumElts, Elts);
233
234 unsigned Offset = 0;
235 // Requested sub-vectors of NarrowTy.
236 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
237 ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
238 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
239 }
240
241 // Leftover element(s).
242 if (LeftoverNumElts == 1) {
243 VRegs.push_back(Elts[Offset]);
244 } else {
245 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
246 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
247 VRegs.push_back(
248 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
249 }
250 }
251
insertParts(Register DstReg,LLT ResultTy,LLT PartTy,ArrayRef<Register> PartRegs,LLT LeftoverTy,ArrayRef<Register> LeftoverRegs)252 void LegalizerHelper::insertParts(Register DstReg,
253 LLT ResultTy, LLT PartTy,
254 ArrayRef<Register> PartRegs,
255 LLT LeftoverTy,
256 ArrayRef<Register> LeftoverRegs) {
257 if (!LeftoverTy.isValid()) {
258 assert(LeftoverRegs.empty());
259
260 if (!ResultTy.isVector()) {
261 MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs);
262 return;
263 }
264
265 if (PartTy.isVector())
266 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
267 else
268 MIRBuilder.buildBuildVector(DstReg, PartRegs);
269 return;
270 }
271
272 // Merge sub-vectors with different number of elements and insert into DstReg.
273 if (ResultTy.isVector()) {
274 assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
275 SmallVector<Register, 8> AllRegs;
276 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
277 AllRegs.push_back(Reg);
278 return mergeMixedSubvectors(DstReg, AllRegs);
279 }
280
281 SmallVector<Register> GCDRegs;
282 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
283 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
284 extractGCDType(GCDRegs, GCDTy, PartReg);
285 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
286 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
287 }
288
appendVectorElts(SmallVectorImpl<Register> & Elts,Register Reg)289 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
290 Register Reg) {
291 LLT Ty = MRI.getType(Reg);
292 SmallVector<Register, 8> RegElts;
293 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
294 Elts.append(RegElts);
295 }
296
297 /// Merge \p PartRegs with different types into \p DstReg.
mergeMixedSubvectors(Register DstReg,ArrayRef<Register> PartRegs)298 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
299 ArrayRef<Register> PartRegs) {
300 SmallVector<Register, 8> AllElts;
301 for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
302 appendVectorElts(AllElts, PartRegs[i]);
303
304 Register Leftover = PartRegs[PartRegs.size() - 1];
305 if (MRI.getType(Leftover).isScalar())
306 AllElts.push_back(Leftover);
307 else
308 appendVectorElts(AllElts, Leftover);
309
310 MIRBuilder.buildMergeLikeInstr(DstReg, AllElts);
311 }
312
313 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
getUnmergeResults(SmallVectorImpl<Register> & Regs,const MachineInstr & MI)314 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
315 const MachineInstr &MI) {
316 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
317
318 const int StartIdx = Regs.size();
319 const int NumResults = MI.getNumOperands() - 1;
320 Regs.resize(Regs.size() + NumResults);
321 for (int I = 0; I != NumResults; ++I)
322 Regs[StartIdx + I] = MI.getOperand(I).getReg();
323 }
324
extractGCDType(SmallVectorImpl<Register> & Parts,LLT GCDTy,Register SrcReg)325 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
326 LLT GCDTy, Register SrcReg) {
327 LLT SrcTy = MRI.getType(SrcReg);
328 if (SrcTy == GCDTy) {
329 // If the source already evenly divides the result type, we don't need to do
330 // anything.
331 Parts.push_back(SrcReg);
332 } else {
333 // Need to split into common type sized pieces.
334 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
335 getUnmergeResults(Parts, *Unmerge);
336 }
337 }
338
extractGCDType(SmallVectorImpl<Register> & Parts,LLT DstTy,LLT NarrowTy,Register SrcReg)339 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
340 LLT NarrowTy, Register SrcReg) {
341 LLT SrcTy = MRI.getType(SrcReg);
342 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
343 extractGCDType(Parts, GCDTy, SrcReg);
344 return GCDTy;
345 }
346
buildLCMMergePieces(LLT DstTy,LLT NarrowTy,LLT GCDTy,SmallVectorImpl<Register> & VRegs,unsigned PadStrategy)347 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
348 SmallVectorImpl<Register> &VRegs,
349 unsigned PadStrategy) {
350 LLT LCMTy = getLCMType(DstTy, NarrowTy);
351
352 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
353 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
354 int NumOrigSrc = VRegs.size();
355
356 Register PadReg;
357
358 // Get a value we can use to pad the source value if the sources won't evenly
359 // cover the result type.
360 if (NumOrigSrc < NumParts * NumSubParts) {
361 if (PadStrategy == TargetOpcode::G_ZEXT)
362 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
363 else if (PadStrategy == TargetOpcode::G_ANYEXT)
364 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
365 else {
366 assert(PadStrategy == TargetOpcode::G_SEXT);
367
368 // Shift the sign bit of the low register through the high register.
369 auto ShiftAmt =
370 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
371 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
372 }
373 }
374
375 // Registers for the final merge to be produced.
376 SmallVector<Register, 4> Remerge(NumParts);
377
378 // Registers needed for intermediate merges, which will be merged into a
379 // source for Remerge.
380 SmallVector<Register, 4> SubMerge(NumSubParts);
381
382 // Once we've fully read off the end of the original source bits, we can reuse
383 // the same high bits for remaining padding elements.
384 Register AllPadReg;
385
386 // Build merges to the LCM type to cover the original result type.
387 for (int I = 0; I != NumParts; ++I) {
388 bool AllMergePartsArePadding = true;
389
390 // Build the requested merges to the requested type.
391 for (int J = 0; J != NumSubParts; ++J) {
392 int Idx = I * NumSubParts + J;
393 if (Idx >= NumOrigSrc) {
394 SubMerge[J] = PadReg;
395 continue;
396 }
397
398 SubMerge[J] = VRegs[Idx];
399
400 // There are meaningful bits here we can't reuse later.
401 AllMergePartsArePadding = false;
402 }
403
404 // If we've filled up a complete piece with padding bits, we can directly
405 // emit the natural sized constant if applicable, rather than a merge of
406 // smaller constants.
407 if (AllMergePartsArePadding && !AllPadReg) {
408 if (PadStrategy == TargetOpcode::G_ANYEXT)
409 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
410 else if (PadStrategy == TargetOpcode::G_ZEXT)
411 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
412
413 // If this is a sign extension, we can't materialize a trivial constant
414 // with the right type and have to produce a merge.
415 }
416
417 if (AllPadReg) {
418 // Avoid creating additional instructions if we're just adding additional
419 // copies of padding bits.
420 Remerge[I] = AllPadReg;
421 continue;
422 }
423
424 if (NumSubParts == 1)
425 Remerge[I] = SubMerge[0];
426 else
427 Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0);
428
429 // In the sign extend padding case, re-use the first all-signbit merge.
430 if (AllMergePartsArePadding && !AllPadReg)
431 AllPadReg = Remerge[I];
432 }
433
434 VRegs = std::move(Remerge);
435 return LCMTy;
436 }
437
buildWidenedRemergeToDst(Register DstReg,LLT LCMTy,ArrayRef<Register> RemergeRegs)438 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
439 ArrayRef<Register> RemergeRegs) {
440 LLT DstTy = MRI.getType(DstReg);
441
442 // Create the merge to the widened source, and extract the relevant bits into
443 // the result.
444
445 if (DstTy == LCMTy) {
446 MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs);
447 return;
448 }
449
450 auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs);
451 if (DstTy.isScalar() && LCMTy.isScalar()) {
452 MIRBuilder.buildTrunc(DstReg, Remerge);
453 return;
454 }
455
456 if (LCMTy.isVector()) {
457 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
458 SmallVector<Register, 8> UnmergeDefs(NumDefs);
459 UnmergeDefs[0] = DstReg;
460 for (unsigned I = 1; I != NumDefs; ++I)
461 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
462
463 MIRBuilder.buildUnmerge(UnmergeDefs,
464 MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs));
465 return;
466 }
467
468 llvm_unreachable("unhandled case");
469 }
470
getRTLibDesc(unsigned Opcode,unsigned Size)471 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
472 #define RTLIBCASE_INT(LibcallPrefix) \
473 do { \
474 switch (Size) { \
475 case 32: \
476 return RTLIB::LibcallPrefix##32; \
477 case 64: \
478 return RTLIB::LibcallPrefix##64; \
479 case 128: \
480 return RTLIB::LibcallPrefix##128; \
481 default: \
482 llvm_unreachable("unexpected size"); \
483 } \
484 } while (0)
485
486 #define RTLIBCASE(LibcallPrefix) \
487 do { \
488 switch (Size) { \
489 case 32: \
490 return RTLIB::LibcallPrefix##32; \
491 case 64: \
492 return RTLIB::LibcallPrefix##64; \
493 case 80: \
494 return RTLIB::LibcallPrefix##80; \
495 case 128: \
496 return RTLIB::LibcallPrefix##128; \
497 default: \
498 llvm_unreachable("unexpected size"); \
499 } \
500 } while (0)
501
502 switch (Opcode) {
503 case TargetOpcode::G_MUL:
504 RTLIBCASE_INT(MUL_I);
505 case TargetOpcode::G_SDIV:
506 RTLIBCASE_INT(SDIV_I);
507 case TargetOpcode::G_UDIV:
508 RTLIBCASE_INT(UDIV_I);
509 case TargetOpcode::G_SREM:
510 RTLIBCASE_INT(SREM_I);
511 case TargetOpcode::G_UREM:
512 RTLIBCASE_INT(UREM_I);
513 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
514 RTLIBCASE_INT(CTLZ_I);
515 case TargetOpcode::G_FADD:
516 RTLIBCASE(ADD_F);
517 case TargetOpcode::G_FSUB:
518 RTLIBCASE(SUB_F);
519 case TargetOpcode::G_FMUL:
520 RTLIBCASE(MUL_F);
521 case TargetOpcode::G_FDIV:
522 RTLIBCASE(DIV_F);
523 case TargetOpcode::G_FEXP:
524 RTLIBCASE(EXP_F);
525 case TargetOpcode::G_FEXP2:
526 RTLIBCASE(EXP2_F);
527 case TargetOpcode::G_FREM:
528 RTLIBCASE(REM_F);
529 case TargetOpcode::G_FPOW:
530 RTLIBCASE(POW_F);
531 case TargetOpcode::G_FMA:
532 RTLIBCASE(FMA_F);
533 case TargetOpcode::G_FSIN:
534 RTLIBCASE(SIN_F);
535 case TargetOpcode::G_FCOS:
536 RTLIBCASE(COS_F);
537 case TargetOpcode::G_FLOG10:
538 RTLIBCASE(LOG10_F);
539 case TargetOpcode::G_FLOG:
540 RTLIBCASE(LOG_F);
541 case TargetOpcode::G_FLOG2:
542 RTLIBCASE(LOG2_F);
543 case TargetOpcode::G_FCEIL:
544 RTLIBCASE(CEIL_F);
545 case TargetOpcode::G_FFLOOR:
546 RTLIBCASE(FLOOR_F);
547 case TargetOpcode::G_FMINNUM:
548 RTLIBCASE(FMIN_F);
549 case TargetOpcode::G_FMAXNUM:
550 RTLIBCASE(FMAX_F);
551 case TargetOpcode::G_FSQRT:
552 RTLIBCASE(SQRT_F);
553 case TargetOpcode::G_FRINT:
554 RTLIBCASE(RINT_F);
555 case TargetOpcode::G_FNEARBYINT:
556 RTLIBCASE(NEARBYINT_F);
557 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
558 RTLIBCASE(ROUNDEVEN_F);
559 }
560 llvm_unreachable("Unknown libcall function");
561 }
562
563 /// True if an instruction is in tail position in its caller. Intended for
564 /// legalizing libcalls as tail calls when possible.
isLibCallInTailPosition(MachineInstr & MI,const TargetInstrInfo & TII,MachineRegisterInfo & MRI)565 static bool isLibCallInTailPosition(MachineInstr &MI,
566 const TargetInstrInfo &TII,
567 MachineRegisterInfo &MRI) {
568 MachineBasicBlock &MBB = *MI.getParent();
569 const Function &F = MBB.getParent()->getFunction();
570
571 // Conservatively require the attributes of the call to match those of
572 // the return. Ignore NoAlias and NonNull because they don't affect the
573 // call sequence.
574 AttributeList CallerAttrs = F.getAttributes();
575 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
576 .removeAttribute(Attribute::NoAlias)
577 .removeAttribute(Attribute::NonNull)
578 .hasAttributes())
579 return false;
580
581 // It's not safe to eliminate the sign / zero extension of the return value.
582 if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
583 CallerAttrs.hasRetAttr(Attribute::SExt))
584 return false;
585
586 // Only tail call if the following instruction is a standard return or if we
587 // have a `thisreturn` callee, and a sequence like:
588 //
589 // G_MEMCPY %0, %1, %2
590 // $x0 = COPY %0
591 // RET_ReallyLR implicit $x0
592 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
593 if (Next != MBB.instr_end() && Next->isCopy()) {
594 switch (MI.getOpcode()) {
595 default:
596 llvm_unreachable("unsupported opcode");
597 case TargetOpcode::G_BZERO:
598 return false;
599 case TargetOpcode::G_MEMCPY:
600 case TargetOpcode::G_MEMMOVE:
601 case TargetOpcode::G_MEMSET:
602 break;
603 }
604
605 Register VReg = MI.getOperand(0).getReg();
606 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
607 return false;
608
609 Register PReg = Next->getOperand(0).getReg();
610 if (!PReg.isPhysical())
611 return false;
612
613 auto Ret = next_nodbg(Next, MBB.instr_end());
614 if (Ret == MBB.instr_end() || !Ret->isReturn())
615 return false;
616
617 if (Ret->getNumImplicitOperands() != 1)
618 return false;
619
620 if (PReg != Ret->getOperand(0).getReg())
621 return false;
622
623 // Skip over the COPY that we just validated.
624 Next = Ret;
625 }
626
627 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
628 return false;
629
630 return true;
631 }
632
633 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,const char * Name,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,const CallingConv::ID CC)634 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
635 const CallLowering::ArgInfo &Result,
636 ArrayRef<CallLowering::ArgInfo> Args,
637 const CallingConv::ID CC) {
638 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
639
640 CallLowering::CallLoweringInfo Info;
641 Info.CallConv = CC;
642 Info.Callee = MachineOperand::CreateES(Name);
643 Info.OrigRet = Result;
644 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
645 if (!CLI.lowerCall(MIRBuilder, Info))
646 return LegalizerHelper::UnableToLegalize;
647
648 return LegalizerHelper::Legalized;
649 }
650
651 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,RTLIB::Libcall Libcall,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args)652 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
653 const CallLowering::ArgInfo &Result,
654 ArrayRef<CallLowering::ArgInfo> Args) {
655 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
656 const char *Name = TLI.getLibcallName(Libcall);
657 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
658 return createLibcall(MIRBuilder, Name, Result, Args, CC);
659 }
660
661 // Useful for libcalls where all operands have the same type.
662 static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,unsigned Size,Type * OpType)663 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
664 Type *OpType) {
665 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
666
667 // FIXME: What does the original arg index mean here?
668 SmallVector<CallLowering::ArgInfo, 3> Args;
669 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
670 Args.push_back({MO.getReg(), OpType, 0});
671 return createLibcall(MIRBuilder, Libcall,
672 {MI.getOperand(0).getReg(), OpType, 0}, Args);
673 }
674
675 LegalizerHelper::LegalizeResult
createMemLibcall(MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI,MachineInstr & MI,LostDebugLocObserver & LocObserver)676 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
677 MachineInstr &MI, LostDebugLocObserver &LocObserver) {
678 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
679
680 SmallVector<CallLowering::ArgInfo, 3> Args;
681 // Add all the args, except for the last which is an imm denoting 'tail'.
682 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
683 Register Reg = MI.getOperand(i).getReg();
684
685 // Need derive an IR type for call lowering.
686 LLT OpLLT = MRI.getType(Reg);
687 Type *OpTy = nullptr;
688 if (OpLLT.isPointer())
689 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
690 else
691 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
692 Args.push_back({Reg, OpTy, 0});
693 }
694
695 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
696 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
697 RTLIB::Libcall RTLibcall;
698 unsigned Opc = MI.getOpcode();
699 switch (Opc) {
700 case TargetOpcode::G_BZERO:
701 RTLibcall = RTLIB::BZERO;
702 break;
703 case TargetOpcode::G_MEMCPY:
704 RTLibcall = RTLIB::MEMCPY;
705 Args[0].Flags[0].setReturned();
706 break;
707 case TargetOpcode::G_MEMMOVE:
708 RTLibcall = RTLIB::MEMMOVE;
709 Args[0].Flags[0].setReturned();
710 break;
711 case TargetOpcode::G_MEMSET:
712 RTLibcall = RTLIB::MEMSET;
713 Args[0].Flags[0].setReturned();
714 break;
715 default:
716 llvm_unreachable("unsupported opcode");
717 }
718 const char *Name = TLI.getLibcallName(RTLibcall);
719
720 // Unsupported libcall on the target.
721 if (!Name) {
722 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
723 << MIRBuilder.getTII().getName(Opc) << "\n");
724 return LegalizerHelper::UnableToLegalize;
725 }
726
727 CallLowering::CallLoweringInfo Info;
728 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
729 Info.Callee = MachineOperand::CreateES(Name);
730 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
731 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
732 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
733
734 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
735 if (!CLI.lowerCall(MIRBuilder, Info))
736 return LegalizerHelper::UnableToLegalize;
737
738 if (Info.LoweredTailCall) {
739 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
740
741 // Check debug locations before removing the return.
742 LocObserver.checkpoint(true);
743
744 // We must have a return following the call (or debug insts) to get past
745 // isLibCallInTailPosition.
746 do {
747 MachineInstr *Next = MI.getNextNode();
748 assert(Next &&
749 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
750 "Expected instr following MI to be return or debug inst?");
751 // We lowered a tail call, so the call is now the return from the block.
752 // Delete the old return.
753 Next->eraseFromParent();
754 } while (MI.getNextNode());
755
756 // We expect to lose the debug location from the return.
757 LocObserver.checkpoint(false);
758 }
759
760 return LegalizerHelper::Legalized;
761 }
762
getConvRTLibDesc(unsigned Opcode,Type * ToType,Type * FromType)763 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
764 Type *FromType) {
765 auto ToMVT = MVT::getVT(ToType);
766 auto FromMVT = MVT::getVT(FromType);
767
768 switch (Opcode) {
769 case TargetOpcode::G_FPEXT:
770 return RTLIB::getFPEXT(FromMVT, ToMVT);
771 case TargetOpcode::G_FPTRUNC:
772 return RTLIB::getFPROUND(FromMVT, ToMVT);
773 case TargetOpcode::G_FPTOSI:
774 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
775 case TargetOpcode::G_FPTOUI:
776 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
777 case TargetOpcode::G_SITOFP:
778 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
779 case TargetOpcode::G_UITOFP:
780 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
781 }
782 llvm_unreachable("Unsupported libcall function");
783 }
784
785 static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,Type * ToType,Type * FromType)786 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
787 Type *FromType) {
788 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
789 return createLibcall(MIRBuilder, Libcall,
790 {MI.getOperand(0).getReg(), ToType, 0},
791 {{MI.getOperand(1).getReg(), FromType, 0}});
792 }
793
794 LegalizerHelper::LegalizeResult
libcall(MachineInstr & MI,LostDebugLocObserver & LocObserver)795 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
796 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
797 unsigned Size = LLTy.getSizeInBits();
798 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
799
800 switch (MI.getOpcode()) {
801 default:
802 return UnableToLegalize;
803 case TargetOpcode::G_MUL:
804 case TargetOpcode::G_SDIV:
805 case TargetOpcode::G_UDIV:
806 case TargetOpcode::G_SREM:
807 case TargetOpcode::G_UREM:
808 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
809 Type *HLTy = IntegerType::get(Ctx, Size);
810 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
811 if (Status != Legalized)
812 return Status;
813 break;
814 }
815 case TargetOpcode::G_FADD:
816 case TargetOpcode::G_FSUB:
817 case TargetOpcode::G_FMUL:
818 case TargetOpcode::G_FDIV:
819 case TargetOpcode::G_FMA:
820 case TargetOpcode::G_FPOW:
821 case TargetOpcode::G_FREM:
822 case TargetOpcode::G_FCOS:
823 case TargetOpcode::G_FSIN:
824 case TargetOpcode::G_FLOG10:
825 case TargetOpcode::G_FLOG:
826 case TargetOpcode::G_FLOG2:
827 case TargetOpcode::G_FEXP:
828 case TargetOpcode::G_FEXP2:
829 case TargetOpcode::G_FCEIL:
830 case TargetOpcode::G_FFLOOR:
831 case TargetOpcode::G_FMINNUM:
832 case TargetOpcode::G_FMAXNUM:
833 case TargetOpcode::G_FSQRT:
834 case TargetOpcode::G_FRINT:
835 case TargetOpcode::G_FNEARBYINT:
836 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
837 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
838 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
839 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
840 return UnableToLegalize;
841 }
842 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
843 if (Status != Legalized)
844 return Status;
845 break;
846 }
847 case TargetOpcode::G_FPEXT:
848 case TargetOpcode::G_FPTRUNC: {
849 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
850 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
851 if (!FromTy || !ToTy)
852 return UnableToLegalize;
853 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
854 if (Status != Legalized)
855 return Status;
856 break;
857 }
858 case TargetOpcode::G_FPTOSI:
859 case TargetOpcode::G_FPTOUI: {
860 // FIXME: Support other types
861 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
862 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
863 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
864 return UnableToLegalize;
865 LegalizeResult Status = conversionLibcall(
866 MI, MIRBuilder,
867 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
868 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
869 if (Status != Legalized)
870 return Status;
871 break;
872 }
873 case TargetOpcode::G_SITOFP:
874 case TargetOpcode::G_UITOFP: {
875 // FIXME: Support other types
876 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
877 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
878 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
879 return UnableToLegalize;
880 LegalizeResult Status = conversionLibcall(
881 MI, MIRBuilder,
882 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
883 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
884 if (Status != Legalized)
885 return Status;
886 break;
887 }
888 case TargetOpcode::G_BZERO:
889 case TargetOpcode::G_MEMCPY:
890 case TargetOpcode::G_MEMMOVE:
891 case TargetOpcode::G_MEMSET: {
892 LegalizeResult Result =
893 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
894 if (Result != Legalized)
895 return Result;
896 MI.eraseFromParent();
897 return Result;
898 }
899 }
900
901 MI.eraseFromParent();
902 return Legalized;
903 }
904
narrowScalar(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)905 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
906 unsigned TypeIdx,
907 LLT NarrowTy) {
908 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
909 uint64_t NarrowSize = NarrowTy.getSizeInBits();
910
911 switch (MI.getOpcode()) {
912 default:
913 return UnableToLegalize;
914 case TargetOpcode::G_IMPLICIT_DEF: {
915 Register DstReg = MI.getOperand(0).getReg();
916 LLT DstTy = MRI.getType(DstReg);
917
918 // If SizeOp0 is not an exact multiple of NarrowSize, emit
919 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
920 // FIXME: Although this would also be legal for the general case, it causes
921 // a lot of regressions in the emitted code (superfluous COPYs, artifact
922 // combines not being hit). This seems to be a problem related to the
923 // artifact combiner.
924 if (SizeOp0 % NarrowSize != 0) {
925 LLT ImplicitTy = NarrowTy;
926 if (DstTy.isVector())
927 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
928
929 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
930 MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
931
932 MI.eraseFromParent();
933 return Legalized;
934 }
935
936 int NumParts = SizeOp0 / NarrowSize;
937
938 SmallVector<Register, 2> DstRegs;
939 for (int i = 0; i < NumParts; ++i)
940 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
941
942 if (DstTy.isVector())
943 MIRBuilder.buildBuildVector(DstReg, DstRegs);
944 else
945 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
946 MI.eraseFromParent();
947 return Legalized;
948 }
949 case TargetOpcode::G_CONSTANT: {
950 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
951 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
952 unsigned TotalSize = Ty.getSizeInBits();
953 unsigned NarrowSize = NarrowTy.getSizeInBits();
954 int NumParts = TotalSize / NarrowSize;
955
956 SmallVector<Register, 4> PartRegs;
957 for (int I = 0; I != NumParts; ++I) {
958 unsigned Offset = I * NarrowSize;
959 auto K = MIRBuilder.buildConstant(NarrowTy,
960 Val.lshr(Offset).trunc(NarrowSize));
961 PartRegs.push_back(K.getReg(0));
962 }
963
964 LLT LeftoverTy;
965 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
966 SmallVector<Register, 1> LeftoverRegs;
967 if (LeftoverBits != 0) {
968 LeftoverTy = LLT::scalar(LeftoverBits);
969 auto K = MIRBuilder.buildConstant(
970 LeftoverTy,
971 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
972 LeftoverRegs.push_back(K.getReg(0));
973 }
974
975 insertParts(MI.getOperand(0).getReg(),
976 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
977
978 MI.eraseFromParent();
979 return Legalized;
980 }
981 case TargetOpcode::G_SEXT:
982 case TargetOpcode::G_ZEXT:
983 case TargetOpcode::G_ANYEXT:
984 return narrowScalarExt(MI, TypeIdx, NarrowTy);
985 case TargetOpcode::G_TRUNC: {
986 if (TypeIdx != 1)
987 return UnableToLegalize;
988
989 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
990 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
991 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
992 return UnableToLegalize;
993 }
994
995 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
996 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
997 MI.eraseFromParent();
998 return Legalized;
999 }
1000
1001 case TargetOpcode::G_FREEZE: {
1002 if (TypeIdx != 0)
1003 return UnableToLegalize;
1004
1005 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1006 // Should widen scalar first
1007 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1008 return UnableToLegalize;
1009
1010 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1011 SmallVector<Register, 8> Parts;
1012 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1013 Parts.push_back(
1014 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1015 }
1016
1017 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts);
1018 MI.eraseFromParent();
1019 return Legalized;
1020 }
1021 case TargetOpcode::G_ADD:
1022 case TargetOpcode::G_SUB:
1023 case TargetOpcode::G_SADDO:
1024 case TargetOpcode::G_SSUBO:
1025 case TargetOpcode::G_SADDE:
1026 case TargetOpcode::G_SSUBE:
1027 case TargetOpcode::G_UADDO:
1028 case TargetOpcode::G_USUBO:
1029 case TargetOpcode::G_UADDE:
1030 case TargetOpcode::G_USUBE:
1031 return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1032 case TargetOpcode::G_MUL:
1033 case TargetOpcode::G_UMULH:
1034 return narrowScalarMul(MI, NarrowTy);
1035 case TargetOpcode::G_EXTRACT:
1036 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1037 case TargetOpcode::G_INSERT:
1038 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1039 case TargetOpcode::G_LOAD: {
1040 auto &LoadMI = cast<GLoad>(MI);
1041 Register DstReg = LoadMI.getDstReg();
1042 LLT DstTy = MRI.getType(DstReg);
1043 if (DstTy.isVector())
1044 return UnableToLegalize;
1045
1046 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1047 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1048 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1049 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1050 LoadMI.eraseFromParent();
1051 return Legalized;
1052 }
1053
1054 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1055 }
1056 case TargetOpcode::G_ZEXTLOAD:
1057 case TargetOpcode::G_SEXTLOAD: {
1058 auto &LoadMI = cast<GExtLoad>(MI);
1059 Register DstReg = LoadMI.getDstReg();
1060 Register PtrReg = LoadMI.getPointerReg();
1061
1062 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1063 auto &MMO = LoadMI.getMMO();
1064 unsigned MemSize = MMO.getSizeInBits();
1065
1066 if (MemSize == NarrowSize) {
1067 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1068 } else if (MemSize < NarrowSize) {
1069 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1070 } else if (MemSize > NarrowSize) {
1071 // FIXME: Need to split the load.
1072 return UnableToLegalize;
1073 }
1074
1075 if (isa<GZExtLoad>(LoadMI))
1076 MIRBuilder.buildZExt(DstReg, TmpReg);
1077 else
1078 MIRBuilder.buildSExt(DstReg, TmpReg);
1079
1080 LoadMI.eraseFromParent();
1081 return Legalized;
1082 }
1083 case TargetOpcode::G_STORE: {
1084 auto &StoreMI = cast<GStore>(MI);
1085
1086 Register SrcReg = StoreMI.getValueReg();
1087 LLT SrcTy = MRI.getType(SrcReg);
1088 if (SrcTy.isVector())
1089 return UnableToLegalize;
1090
1091 int NumParts = SizeOp0 / NarrowSize;
1092 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1093 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1094 if (SrcTy.isVector() && LeftoverBits != 0)
1095 return UnableToLegalize;
1096
1097 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1098 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1099 MIRBuilder.buildTrunc(TmpReg, SrcReg);
1100 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1101 StoreMI.eraseFromParent();
1102 return Legalized;
1103 }
1104
1105 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1106 }
1107 case TargetOpcode::G_SELECT:
1108 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1109 case TargetOpcode::G_AND:
1110 case TargetOpcode::G_OR:
1111 case TargetOpcode::G_XOR: {
1112 // Legalize bitwise operation:
1113 // A = BinOp<Ty> B, C
1114 // into:
1115 // B1, ..., BN = G_UNMERGE_VALUES B
1116 // C1, ..., CN = G_UNMERGE_VALUES C
1117 // A1 = BinOp<Ty/N> B1, C2
1118 // ...
1119 // AN = BinOp<Ty/N> BN, CN
1120 // A = G_MERGE_VALUES A1, ..., AN
1121 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1122 }
1123 case TargetOpcode::G_SHL:
1124 case TargetOpcode::G_LSHR:
1125 case TargetOpcode::G_ASHR:
1126 return narrowScalarShift(MI, TypeIdx, NarrowTy);
1127 case TargetOpcode::G_CTLZ:
1128 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1129 case TargetOpcode::G_CTTZ:
1130 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1131 case TargetOpcode::G_CTPOP:
1132 if (TypeIdx == 1)
1133 switch (MI.getOpcode()) {
1134 case TargetOpcode::G_CTLZ:
1135 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1136 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1137 case TargetOpcode::G_CTTZ:
1138 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1139 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1140 case TargetOpcode::G_CTPOP:
1141 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1142 default:
1143 return UnableToLegalize;
1144 }
1145
1146 Observer.changingInstr(MI);
1147 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1148 Observer.changedInstr(MI);
1149 return Legalized;
1150 case TargetOpcode::G_INTTOPTR:
1151 if (TypeIdx != 1)
1152 return UnableToLegalize;
1153
1154 Observer.changingInstr(MI);
1155 narrowScalarSrc(MI, NarrowTy, 1);
1156 Observer.changedInstr(MI);
1157 return Legalized;
1158 case TargetOpcode::G_PTRTOINT:
1159 if (TypeIdx != 0)
1160 return UnableToLegalize;
1161
1162 Observer.changingInstr(MI);
1163 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1164 Observer.changedInstr(MI);
1165 return Legalized;
1166 case TargetOpcode::G_PHI: {
1167 // FIXME: add support for when SizeOp0 isn't an exact multiple of
1168 // NarrowSize.
1169 if (SizeOp0 % NarrowSize != 0)
1170 return UnableToLegalize;
1171
1172 unsigned NumParts = SizeOp0 / NarrowSize;
1173 SmallVector<Register, 2> DstRegs(NumParts);
1174 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1175 Observer.changingInstr(MI);
1176 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1177 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1178 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
1179 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1180 SrcRegs[i / 2]);
1181 }
1182 MachineBasicBlock &MBB = *MI.getParent();
1183 MIRBuilder.setInsertPt(MBB, MI);
1184 for (unsigned i = 0; i < NumParts; ++i) {
1185 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1186 MachineInstrBuilder MIB =
1187 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1188 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1189 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1190 }
1191 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1192 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs);
1193 Observer.changedInstr(MI);
1194 MI.eraseFromParent();
1195 return Legalized;
1196 }
1197 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1198 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1199 if (TypeIdx != 2)
1200 return UnableToLegalize;
1201
1202 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1203 Observer.changingInstr(MI);
1204 narrowScalarSrc(MI, NarrowTy, OpIdx);
1205 Observer.changedInstr(MI);
1206 return Legalized;
1207 }
1208 case TargetOpcode::G_ICMP: {
1209 Register LHS = MI.getOperand(2).getReg();
1210 LLT SrcTy = MRI.getType(LHS);
1211 uint64_t SrcSize = SrcTy.getSizeInBits();
1212 CmpInst::Predicate Pred =
1213 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1214
1215 // TODO: Handle the non-equality case for weird sizes.
1216 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1217 return UnableToLegalize;
1218
1219 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1220 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1221 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1222 LHSLeftoverRegs))
1223 return UnableToLegalize;
1224
1225 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1226 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1227 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1228 RHSPartRegs, RHSLeftoverRegs))
1229 return UnableToLegalize;
1230
1231 // We now have the LHS and RHS of the compare split into narrow-type
1232 // registers, plus potentially some leftover type.
1233 Register Dst = MI.getOperand(0).getReg();
1234 LLT ResTy = MRI.getType(Dst);
1235 if (ICmpInst::isEquality(Pred)) {
1236 // For each part on the LHS and RHS, keep track of the result of XOR-ing
1237 // them together. For each equal part, the result should be all 0s. For
1238 // each non-equal part, we'll get at least one 1.
1239 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1240 SmallVector<Register, 4> Xors;
1241 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1242 auto LHS = std::get<0>(LHSAndRHS);
1243 auto RHS = std::get<1>(LHSAndRHS);
1244 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1245 Xors.push_back(Xor);
1246 }
1247
1248 // Build a G_XOR for each leftover register. Each G_XOR must be widened
1249 // to the desired narrow type so that we can OR them together later.
1250 SmallVector<Register, 4> WidenedXors;
1251 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1252 auto LHS = std::get<0>(LHSAndRHS);
1253 auto RHS = std::get<1>(LHSAndRHS);
1254 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1255 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1256 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1257 /* PadStrategy = */ TargetOpcode::G_ZEXT);
1258 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1259 }
1260
1261 // Now, for each part we broke up, we know if they are equal/not equal
1262 // based off the G_XOR. We can OR these all together and compare against
1263 // 0 to get the result.
1264 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1265 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1266 for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1267 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1268 MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1269 } else {
1270 // TODO: Handle non-power-of-two types.
1271 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1272 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1273 Register LHSL = LHSPartRegs[0];
1274 Register LHSH = LHSPartRegs[1];
1275 Register RHSL = RHSPartRegs[0];
1276 Register RHSH = RHSPartRegs[1];
1277 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1278 MachineInstrBuilder CmpHEQ =
1279 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1280 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1281 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1282 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1283 }
1284 MI.eraseFromParent();
1285 return Legalized;
1286 }
1287 case TargetOpcode::G_SEXT_INREG: {
1288 if (TypeIdx != 0)
1289 return UnableToLegalize;
1290
1291 int64_t SizeInBits = MI.getOperand(2).getImm();
1292
1293 // So long as the new type has more bits than the bits we're extending we
1294 // don't need to break it apart.
1295 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1296 Observer.changingInstr(MI);
1297 // We don't lose any non-extension bits by truncating the src and
1298 // sign-extending the dst.
1299 MachineOperand &MO1 = MI.getOperand(1);
1300 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1301 MO1.setReg(TruncMIB.getReg(0));
1302
1303 MachineOperand &MO2 = MI.getOperand(0);
1304 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1305 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1306 MIRBuilder.buildSExt(MO2, DstExt);
1307 MO2.setReg(DstExt);
1308 Observer.changedInstr(MI);
1309 return Legalized;
1310 }
1311
1312 // Break it apart. Components below the extension point are unmodified. The
1313 // component containing the extension point becomes a narrower SEXT_INREG.
1314 // Components above it are ashr'd from the component containing the
1315 // extension point.
1316 if (SizeOp0 % NarrowSize != 0)
1317 return UnableToLegalize;
1318 int NumParts = SizeOp0 / NarrowSize;
1319
1320 // List the registers where the destination will be scattered.
1321 SmallVector<Register, 2> DstRegs;
1322 // List the registers where the source will be split.
1323 SmallVector<Register, 2> SrcRegs;
1324
1325 // Create all the temporary registers.
1326 for (int i = 0; i < NumParts; ++i) {
1327 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1328
1329 SrcRegs.push_back(SrcReg);
1330 }
1331
1332 // Explode the big arguments into smaller chunks.
1333 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1334
1335 Register AshrCstReg =
1336 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1337 .getReg(0);
1338 Register FullExtensionReg = 0;
1339 Register PartialExtensionReg = 0;
1340
1341 // Do the operation on each small part.
1342 for (int i = 0; i < NumParts; ++i) {
1343 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1344 DstRegs.push_back(SrcRegs[i]);
1345 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1346 assert(PartialExtensionReg &&
1347 "Expected to visit partial extension before full");
1348 if (FullExtensionReg) {
1349 DstRegs.push_back(FullExtensionReg);
1350 continue;
1351 }
1352 DstRegs.push_back(
1353 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1354 .getReg(0));
1355 FullExtensionReg = DstRegs.back();
1356 } else {
1357 DstRegs.push_back(
1358 MIRBuilder
1359 .buildInstr(
1360 TargetOpcode::G_SEXT_INREG, {NarrowTy},
1361 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1362 .getReg(0));
1363 PartialExtensionReg = DstRegs.back();
1364 }
1365 }
1366
1367 // Gather the destination registers into the final destination.
1368 Register DstReg = MI.getOperand(0).getReg();
1369 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
1370 MI.eraseFromParent();
1371 return Legalized;
1372 }
1373 case TargetOpcode::G_BSWAP:
1374 case TargetOpcode::G_BITREVERSE: {
1375 if (SizeOp0 % NarrowSize != 0)
1376 return UnableToLegalize;
1377
1378 Observer.changingInstr(MI);
1379 SmallVector<Register, 2> SrcRegs, DstRegs;
1380 unsigned NumParts = SizeOp0 / NarrowSize;
1381 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1382
1383 for (unsigned i = 0; i < NumParts; ++i) {
1384 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1385 {SrcRegs[NumParts - 1 - i]});
1386 DstRegs.push_back(DstPart.getReg(0));
1387 }
1388
1389 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs);
1390
1391 Observer.changedInstr(MI);
1392 MI.eraseFromParent();
1393 return Legalized;
1394 }
1395 case TargetOpcode::G_PTR_ADD:
1396 case TargetOpcode::G_PTRMASK: {
1397 if (TypeIdx != 1)
1398 return UnableToLegalize;
1399 Observer.changingInstr(MI);
1400 narrowScalarSrc(MI, NarrowTy, 2);
1401 Observer.changedInstr(MI);
1402 return Legalized;
1403 }
1404 case TargetOpcode::G_FPTOUI:
1405 case TargetOpcode::G_FPTOSI:
1406 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1407 case TargetOpcode::G_FPEXT:
1408 if (TypeIdx != 0)
1409 return UnableToLegalize;
1410 Observer.changingInstr(MI);
1411 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1412 Observer.changedInstr(MI);
1413 return Legalized;
1414 }
1415 }
1416
coerceToScalar(Register Val)1417 Register LegalizerHelper::coerceToScalar(Register Val) {
1418 LLT Ty = MRI.getType(Val);
1419 if (Ty.isScalar())
1420 return Val;
1421
1422 const DataLayout &DL = MIRBuilder.getDataLayout();
1423 LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1424 if (Ty.isPointer()) {
1425 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1426 return Register();
1427 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1428 }
1429
1430 Register NewVal = Val;
1431
1432 assert(Ty.isVector());
1433 LLT EltTy = Ty.getElementType();
1434 if (EltTy.isPointer())
1435 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1436 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1437 }
1438
widenScalarSrc(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned ExtOpcode)1439 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1440 unsigned OpIdx, unsigned ExtOpcode) {
1441 MachineOperand &MO = MI.getOperand(OpIdx);
1442 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1443 MO.setReg(ExtB.getReg(0));
1444 }
1445
narrowScalarSrc(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx)1446 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1447 unsigned OpIdx) {
1448 MachineOperand &MO = MI.getOperand(OpIdx);
1449 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1450 MO.setReg(ExtB.getReg(0));
1451 }
1452
widenScalarDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned TruncOpcode)1453 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1454 unsigned OpIdx, unsigned TruncOpcode) {
1455 MachineOperand &MO = MI.getOperand(OpIdx);
1456 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1457 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1458 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1459 MO.setReg(DstExt);
1460 }
1461
narrowScalarDst(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx,unsigned ExtOpcode)1462 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1463 unsigned OpIdx, unsigned ExtOpcode) {
1464 MachineOperand &MO = MI.getOperand(OpIdx);
1465 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1466 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1467 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1468 MO.setReg(DstTrunc);
1469 }
1470
moreElementsVectorDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx)1471 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1472 unsigned OpIdx) {
1473 MachineOperand &MO = MI.getOperand(OpIdx);
1474 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1475 Register Dst = MO.getReg();
1476 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1477 MO.setReg(DstExt);
1478 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1479 }
1480
moreElementsVectorSrc(MachineInstr & MI,LLT MoreTy,unsigned OpIdx)1481 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1482 unsigned OpIdx) {
1483 MachineOperand &MO = MI.getOperand(OpIdx);
1484 SmallVector<Register, 8> Regs;
1485 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1486 }
1487
bitcastSrc(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1488 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1489 MachineOperand &Op = MI.getOperand(OpIdx);
1490 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1491 }
1492
bitcastDst(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1493 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1494 MachineOperand &MO = MI.getOperand(OpIdx);
1495 Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1496 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1497 MIRBuilder.buildBitcast(MO, CastDst);
1498 MO.setReg(CastDst);
1499 }
1500
1501 LegalizerHelper::LegalizeResult
widenScalarMergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1502 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1503 LLT WideTy) {
1504 if (TypeIdx != 1)
1505 return UnableToLegalize;
1506
1507 Register DstReg = MI.getOperand(0).getReg();
1508 LLT DstTy = MRI.getType(DstReg);
1509 if (DstTy.isVector())
1510 return UnableToLegalize;
1511
1512 Register Src1 = MI.getOperand(1).getReg();
1513 LLT SrcTy = MRI.getType(Src1);
1514 const int DstSize = DstTy.getSizeInBits();
1515 const int SrcSize = SrcTy.getSizeInBits();
1516 const int WideSize = WideTy.getSizeInBits();
1517 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1518
1519 unsigned NumOps = MI.getNumOperands();
1520 unsigned NumSrc = MI.getNumOperands() - 1;
1521 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1522
1523 if (WideSize >= DstSize) {
1524 // Directly pack the bits in the target type.
1525 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1526
1527 for (unsigned I = 2; I != NumOps; ++I) {
1528 const unsigned Offset = (I - 1) * PartSize;
1529
1530 Register SrcReg = MI.getOperand(I).getReg();
1531 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1532
1533 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1534
1535 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1536 MRI.createGenericVirtualRegister(WideTy);
1537
1538 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1539 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1540 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1541 ResultReg = NextResult;
1542 }
1543
1544 if (WideSize > DstSize)
1545 MIRBuilder.buildTrunc(DstReg, ResultReg);
1546 else if (DstTy.isPointer())
1547 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1548
1549 MI.eraseFromParent();
1550 return Legalized;
1551 }
1552
1553 // Unmerge the original values to the GCD type, and recombine to the next
1554 // multiple greater than the original type.
1555 //
1556 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1557 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1558 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1559 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1560 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1561 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1562 // %12:_(s12) = G_MERGE_VALUES %10, %11
1563 //
1564 // Padding with undef if necessary:
1565 //
1566 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1567 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1568 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1569 // %7:_(s2) = G_IMPLICIT_DEF
1570 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1571 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1572 // %10:_(s12) = G_MERGE_VALUES %8, %9
1573
1574 const int GCD = std::gcd(SrcSize, WideSize);
1575 LLT GCDTy = LLT::scalar(GCD);
1576
1577 SmallVector<Register, 8> Parts;
1578 SmallVector<Register, 8> NewMergeRegs;
1579 SmallVector<Register, 8> Unmerges;
1580 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1581
1582 // Decompose the original operands if they don't evenly divide.
1583 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1584 Register SrcReg = MO.getReg();
1585 if (GCD == SrcSize) {
1586 Unmerges.push_back(SrcReg);
1587 } else {
1588 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1589 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1590 Unmerges.push_back(Unmerge.getReg(J));
1591 }
1592 }
1593
1594 // Pad with undef to the next size that is a multiple of the requested size.
1595 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1596 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1597 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1598 Unmerges.push_back(UndefReg);
1599 }
1600
1601 const int PartsPerGCD = WideSize / GCD;
1602
1603 // Build merges of each piece.
1604 ArrayRef<Register> Slicer(Unmerges);
1605 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1606 auto Merge =
1607 MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD));
1608 NewMergeRegs.push_back(Merge.getReg(0));
1609 }
1610
1611 // A truncate may be necessary if the requested type doesn't evenly divide the
1612 // original result type.
1613 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1614 MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs);
1615 } else {
1616 auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs);
1617 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1618 }
1619
1620 MI.eraseFromParent();
1621 return Legalized;
1622 }
1623
1624 LegalizerHelper::LegalizeResult
widenScalarUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1625 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1626 LLT WideTy) {
1627 if (TypeIdx != 0)
1628 return UnableToLegalize;
1629
1630 int NumDst = MI.getNumOperands() - 1;
1631 Register SrcReg = MI.getOperand(NumDst).getReg();
1632 LLT SrcTy = MRI.getType(SrcReg);
1633 if (SrcTy.isVector())
1634 return UnableToLegalize;
1635
1636 Register Dst0Reg = MI.getOperand(0).getReg();
1637 LLT DstTy = MRI.getType(Dst0Reg);
1638 if (!DstTy.isScalar())
1639 return UnableToLegalize;
1640
1641 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1642 if (SrcTy.isPointer()) {
1643 const DataLayout &DL = MIRBuilder.getDataLayout();
1644 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1645 LLVM_DEBUG(
1646 dbgs() << "Not casting non-integral address space integer\n");
1647 return UnableToLegalize;
1648 }
1649
1650 SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1651 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1652 }
1653
1654 // Widen SrcTy to WideTy. This does not affect the result, but since the
1655 // user requested this size, it is probably better handled than SrcTy and
1656 // should reduce the total number of legalization artifacts.
1657 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1658 SrcTy = WideTy;
1659 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1660 }
1661
1662 // Theres no unmerge type to target. Directly extract the bits from the
1663 // source type
1664 unsigned DstSize = DstTy.getSizeInBits();
1665
1666 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1667 for (int I = 1; I != NumDst; ++I) {
1668 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1669 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1670 MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1671 }
1672
1673 MI.eraseFromParent();
1674 return Legalized;
1675 }
1676
1677 // Extend the source to a wider type.
1678 LLT LCMTy = getLCMType(SrcTy, WideTy);
1679
1680 Register WideSrc = SrcReg;
1681 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1682 // TODO: If this is an integral address space, cast to integer and anyext.
1683 if (SrcTy.isPointer()) {
1684 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1685 return UnableToLegalize;
1686 }
1687
1688 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1689 }
1690
1691 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1692
1693 // Create a sequence of unmerges and merges to the original results. Since we
1694 // may have widened the source, we will need to pad the results with dead defs
1695 // to cover the source register.
1696 // e.g. widen s48 to s64:
1697 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1698 //
1699 // =>
1700 // %4:_(s192) = G_ANYEXT %0:_(s96)
1701 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1702 // ; unpack to GCD type, with extra dead defs
1703 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1704 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1705 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1706 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
1707 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1708 const LLT GCDTy = getGCDType(WideTy, DstTy);
1709 const int NumUnmerge = Unmerge->getNumOperands() - 1;
1710 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1711
1712 // Directly unmerge to the destination without going through a GCD type
1713 // if possible
1714 if (PartsPerRemerge == 1) {
1715 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1716
1717 for (int I = 0; I != NumUnmerge; ++I) {
1718 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1719
1720 for (int J = 0; J != PartsPerUnmerge; ++J) {
1721 int Idx = I * PartsPerUnmerge + J;
1722 if (Idx < NumDst)
1723 MIB.addDef(MI.getOperand(Idx).getReg());
1724 else {
1725 // Create dead def for excess components.
1726 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1727 }
1728 }
1729
1730 MIB.addUse(Unmerge.getReg(I));
1731 }
1732 } else {
1733 SmallVector<Register, 16> Parts;
1734 for (int J = 0; J != NumUnmerge; ++J)
1735 extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1736
1737 SmallVector<Register, 8> RemergeParts;
1738 for (int I = 0; I != NumDst; ++I) {
1739 for (int J = 0; J < PartsPerRemerge; ++J) {
1740 const int Idx = I * PartsPerRemerge + J;
1741 RemergeParts.emplace_back(Parts[Idx]);
1742 }
1743
1744 MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts);
1745 RemergeParts.clear();
1746 }
1747 }
1748
1749 MI.eraseFromParent();
1750 return Legalized;
1751 }
1752
1753 LegalizerHelper::LegalizeResult
widenScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1754 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1755 LLT WideTy) {
1756 Register DstReg = MI.getOperand(0).getReg();
1757 Register SrcReg = MI.getOperand(1).getReg();
1758 LLT SrcTy = MRI.getType(SrcReg);
1759
1760 LLT DstTy = MRI.getType(DstReg);
1761 unsigned Offset = MI.getOperand(2).getImm();
1762
1763 if (TypeIdx == 0) {
1764 if (SrcTy.isVector() || DstTy.isVector())
1765 return UnableToLegalize;
1766
1767 SrcOp Src(SrcReg);
1768 if (SrcTy.isPointer()) {
1769 // Extracts from pointers can be handled only if they are really just
1770 // simple integers.
1771 const DataLayout &DL = MIRBuilder.getDataLayout();
1772 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1773 return UnableToLegalize;
1774
1775 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1776 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1777 SrcTy = SrcAsIntTy;
1778 }
1779
1780 if (DstTy.isPointer())
1781 return UnableToLegalize;
1782
1783 if (Offset == 0) {
1784 // Avoid a shift in the degenerate case.
1785 MIRBuilder.buildTrunc(DstReg,
1786 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1787 MI.eraseFromParent();
1788 return Legalized;
1789 }
1790
1791 // Do a shift in the source type.
1792 LLT ShiftTy = SrcTy;
1793 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1794 Src = MIRBuilder.buildAnyExt(WideTy, Src);
1795 ShiftTy = WideTy;
1796 }
1797
1798 auto LShr = MIRBuilder.buildLShr(
1799 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1800 MIRBuilder.buildTrunc(DstReg, LShr);
1801 MI.eraseFromParent();
1802 return Legalized;
1803 }
1804
1805 if (SrcTy.isScalar()) {
1806 Observer.changingInstr(MI);
1807 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1808 Observer.changedInstr(MI);
1809 return Legalized;
1810 }
1811
1812 if (!SrcTy.isVector())
1813 return UnableToLegalize;
1814
1815 if (DstTy != SrcTy.getElementType())
1816 return UnableToLegalize;
1817
1818 if (Offset % SrcTy.getScalarSizeInBits() != 0)
1819 return UnableToLegalize;
1820
1821 Observer.changingInstr(MI);
1822 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1823
1824 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1825 Offset);
1826 widenScalarDst(MI, WideTy.getScalarType(), 0);
1827 Observer.changedInstr(MI);
1828 return Legalized;
1829 }
1830
1831 LegalizerHelper::LegalizeResult
widenScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1832 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1833 LLT WideTy) {
1834 if (TypeIdx != 0 || WideTy.isVector())
1835 return UnableToLegalize;
1836 Observer.changingInstr(MI);
1837 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1838 widenScalarDst(MI, WideTy);
1839 Observer.changedInstr(MI);
1840 return Legalized;
1841 }
1842
1843 LegalizerHelper::LegalizeResult
widenScalarAddSubOverflow(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1844 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1845 LLT WideTy) {
1846 unsigned Opcode;
1847 unsigned ExtOpcode;
1848 std::optional<Register> CarryIn;
1849 switch (MI.getOpcode()) {
1850 default:
1851 llvm_unreachable("Unexpected opcode!");
1852 case TargetOpcode::G_SADDO:
1853 Opcode = TargetOpcode::G_ADD;
1854 ExtOpcode = TargetOpcode::G_SEXT;
1855 break;
1856 case TargetOpcode::G_SSUBO:
1857 Opcode = TargetOpcode::G_SUB;
1858 ExtOpcode = TargetOpcode::G_SEXT;
1859 break;
1860 case TargetOpcode::G_UADDO:
1861 Opcode = TargetOpcode::G_ADD;
1862 ExtOpcode = TargetOpcode::G_ZEXT;
1863 break;
1864 case TargetOpcode::G_USUBO:
1865 Opcode = TargetOpcode::G_SUB;
1866 ExtOpcode = TargetOpcode::G_ZEXT;
1867 break;
1868 case TargetOpcode::G_SADDE:
1869 Opcode = TargetOpcode::G_UADDE;
1870 ExtOpcode = TargetOpcode::G_SEXT;
1871 CarryIn = MI.getOperand(4).getReg();
1872 break;
1873 case TargetOpcode::G_SSUBE:
1874 Opcode = TargetOpcode::G_USUBE;
1875 ExtOpcode = TargetOpcode::G_SEXT;
1876 CarryIn = MI.getOperand(4).getReg();
1877 break;
1878 case TargetOpcode::G_UADDE:
1879 Opcode = TargetOpcode::G_UADDE;
1880 ExtOpcode = TargetOpcode::G_ZEXT;
1881 CarryIn = MI.getOperand(4).getReg();
1882 break;
1883 case TargetOpcode::G_USUBE:
1884 Opcode = TargetOpcode::G_USUBE;
1885 ExtOpcode = TargetOpcode::G_ZEXT;
1886 CarryIn = MI.getOperand(4).getReg();
1887 break;
1888 }
1889
1890 if (TypeIdx == 1) {
1891 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false);
1892
1893 Observer.changingInstr(MI);
1894 if (CarryIn)
1895 widenScalarSrc(MI, WideTy, 4, BoolExtOp);
1896 widenScalarDst(MI, WideTy, 1);
1897
1898 Observer.changedInstr(MI);
1899 return Legalized;
1900 }
1901
1902 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1903 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1904 // Do the arithmetic in the larger type.
1905 Register NewOp;
1906 if (CarryIn) {
1907 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1908 NewOp = MIRBuilder
1909 .buildInstr(Opcode, {WideTy, CarryOutTy},
1910 {LHSExt, RHSExt, *CarryIn})
1911 .getReg(0);
1912 } else {
1913 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1914 }
1915 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1916 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1917 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1918 // There is no overflow if the ExtOp is the same as NewOp.
1919 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1920 // Now trunc the NewOp to the original result.
1921 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1922 MI.eraseFromParent();
1923 return Legalized;
1924 }
1925
1926 LegalizerHelper::LegalizeResult
widenScalarAddSubShlSat(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1927 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1928 LLT WideTy) {
1929 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1930 MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1931 MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1932 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1933 MI.getOpcode() == TargetOpcode::G_USHLSAT;
1934 // We can convert this to:
1935 // 1. Any extend iN to iM
1936 // 2. SHL by M-N
1937 // 3. [US][ADD|SUB|SHL]SAT
1938 // 4. L/ASHR by M-N
1939 //
1940 // It may be more efficient to lower this to a min and a max operation in
1941 // the higher precision arithmetic if the promoted operation isn't legal,
1942 // but this decision is up to the target's lowering request.
1943 Register DstReg = MI.getOperand(0).getReg();
1944
1945 unsigned NewBits = WideTy.getScalarSizeInBits();
1946 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1947
1948 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1949 // must not left shift the RHS to preserve the shift amount.
1950 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1951 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1952 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1953 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1954 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1955 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1956
1957 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1958 {ShiftL, ShiftR}, MI.getFlags());
1959
1960 // Use a shift that will preserve the number of sign bits when the trunc is
1961 // folded away.
1962 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1963 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1964
1965 MIRBuilder.buildTrunc(DstReg, Result);
1966 MI.eraseFromParent();
1967 return Legalized;
1968 }
1969
1970 LegalizerHelper::LegalizeResult
widenScalarMulo(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1971 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1972 LLT WideTy) {
1973 if (TypeIdx == 1) {
1974 Observer.changingInstr(MI);
1975 widenScalarDst(MI, WideTy, 1);
1976 Observer.changedInstr(MI);
1977 return Legalized;
1978 }
1979
1980 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1981 Register Result = MI.getOperand(0).getReg();
1982 Register OriginalOverflow = MI.getOperand(1).getReg();
1983 Register LHS = MI.getOperand(2).getReg();
1984 Register RHS = MI.getOperand(3).getReg();
1985 LLT SrcTy = MRI.getType(LHS);
1986 LLT OverflowTy = MRI.getType(OriginalOverflow);
1987 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1988
1989 // To determine if the result overflowed in the larger type, we extend the
1990 // input to the larger type, do the multiply (checking if it overflows),
1991 // then also check the high bits of the result to see if overflow happened
1992 // there.
1993 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1994 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1995 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1996
1997 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1998 {LeftOperand, RightOperand});
1999 auto Mul = Mulo->getOperand(0);
2000 MIRBuilder.buildTrunc(Result, Mul);
2001
2002 MachineInstrBuilder ExtResult;
2003 // Overflow occurred if it occurred in the larger type, or if the high part
2004 // of the result does not zero/sign-extend the low part. Check this second
2005 // possibility first.
2006 if (IsSigned) {
2007 // For signed, overflow occurred when the high part does not sign-extend
2008 // the low part.
2009 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2010 } else {
2011 // Unsigned overflow occurred when the high part does not zero-extend the
2012 // low part.
2013 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2014 }
2015
2016 // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2017 // so we don't need to check the overflow result of larger type Mulo.
2018 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2019 auto Overflow =
2020 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2021 // Finally check if the multiplication in the larger type itself overflowed.
2022 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2023 } else {
2024 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2025 }
2026 MI.eraseFromParent();
2027 return Legalized;
2028 }
2029
2030 LegalizerHelper::LegalizeResult
widenScalar(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)2031 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2032 switch (MI.getOpcode()) {
2033 default:
2034 return UnableToLegalize;
2035 case TargetOpcode::G_ATOMICRMW_XCHG:
2036 case TargetOpcode::G_ATOMICRMW_ADD:
2037 case TargetOpcode::G_ATOMICRMW_SUB:
2038 case TargetOpcode::G_ATOMICRMW_AND:
2039 case TargetOpcode::G_ATOMICRMW_OR:
2040 case TargetOpcode::G_ATOMICRMW_XOR:
2041 case TargetOpcode::G_ATOMICRMW_MIN:
2042 case TargetOpcode::G_ATOMICRMW_MAX:
2043 case TargetOpcode::G_ATOMICRMW_UMIN:
2044 case TargetOpcode::G_ATOMICRMW_UMAX:
2045 assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2046 Observer.changingInstr(MI);
2047 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2048 widenScalarDst(MI, WideTy, 0);
2049 Observer.changedInstr(MI);
2050 return Legalized;
2051 case TargetOpcode::G_ATOMIC_CMPXCHG:
2052 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2053 Observer.changingInstr(MI);
2054 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2055 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2056 widenScalarDst(MI, WideTy, 0);
2057 Observer.changedInstr(MI);
2058 return Legalized;
2059 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2060 if (TypeIdx == 0) {
2061 Observer.changingInstr(MI);
2062 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2063 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2064 widenScalarDst(MI, WideTy, 0);
2065 Observer.changedInstr(MI);
2066 return Legalized;
2067 }
2068 assert(TypeIdx == 1 &&
2069 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2070 Observer.changingInstr(MI);
2071 widenScalarDst(MI, WideTy, 1);
2072 Observer.changedInstr(MI);
2073 return Legalized;
2074 case TargetOpcode::G_EXTRACT:
2075 return widenScalarExtract(MI, TypeIdx, WideTy);
2076 case TargetOpcode::G_INSERT:
2077 return widenScalarInsert(MI, TypeIdx, WideTy);
2078 case TargetOpcode::G_MERGE_VALUES:
2079 return widenScalarMergeValues(MI, TypeIdx, WideTy);
2080 case TargetOpcode::G_UNMERGE_VALUES:
2081 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2082 case TargetOpcode::G_SADDO:
2083 case TargetOpcode::G_SSUBO:
2084 case TargetOpcode::G_UADDO:
2085 case TargetOpcode::G_USUBO:
2086 case TargetOpcode::G_SADDE:
2087 case TargetOpcode::G_SSUBE:
2088 case TargetOpcode::G_UADDE:
2089 case TargetOpcode::G_USUBE:
2090 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2091 case TargetOpcode::G_UMULO:
2092 case TargetOpcode::G_SMULO:
2093 return widenScalarMulo(MI, TypeIdx, WideTy);
2094 case TargetOpcode::G_SADDSAT:
2095 case TargetOpcode::G_SSUBSAT:
2096 case TargetOpcode::G_SSHLSAT:
2097 case TargetOpcode::G_UADDSAT:
2098 case TargetOpcode::G_USUBSAT:
2099 case TargetOpcode::G_USHLSAT:
2100 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2101 case TargetOpcode::G_CTTZ:
2102 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2103 case TargetOpcode::G_CTLZ:
2104 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2105 case TargetOpcode::G_CTPOP: {
2106 if (TypeIdx == 0) {
2107 Observer.changingInstr(MI);
2108 widenScalarDst(MI, WideTy, 0);
2109 Observer.changedInstr(MI);
2110 return Legalized;
2111 }
2112
2113 Register SrcReg = MI.getOperand(1).getReg();
2114
2115 // First extend the input.
2116 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2117 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2118 ? TargetOpcode::G_ANYEXT
2119 : TargetOpcode::G_ZEXT;
2120 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2121 LLT CurTy = MRI.getType(SrcReg);
2122 unsigned NewOpc = MI.getOpcode();
2123 if (NewOpc == TargetOpcode::G_CTTZ) {
2124 // The count is the same in the larger type except if the original
2125 // value was zero. This can be handled by setting the bit just off
2126 // the top of the original type.
2127 auto TopBit =
2128 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2129 MIBSrc = MIRBuilder.buildOr(
2130 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2131 // Now we know the operand is non-zero, use the more relaxed opcode.
2132 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2133 }
2134
2135 // Perform the operation at the larger size.
2136 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2137 // This is already the correct result for CTPOP and CTTZs
2138 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2139 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2140 // The correct result is NewOp - (Difference in widety and current ty).
2141 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2142 MIBNewOp = MIRBuilder.buildSub(
2143 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2144 }
2145
2146 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2147 MI.eraseFromParent();
2148 return Legalized;
2149 }
2150 case TargetOpcode::G_BSWAP: {
2151 Observer.changingInstr(MI);
2152 Register DstReg = MI.getOperand(0).getReg();
2153
2154 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2155 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2156 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2157 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2158
2159 MI.getOperand(0).setReg(DstExt);
2160
2161 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2162
2163 LLT Ty = MRI.getType(DstReg);
2164 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2165 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2166 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2167
2168 MIRBuilder.buildTrunc(DstReg, ShrReg);
2169 Observer.changedInstr(MI);
2170 return Legalized;
2171 }
2172 case TargetOpcode::G_BITREVERSE: {
2173 Observer.changingInstr(MI);
2174
2175 Register DstReg = MI.getOperand(0).getReg();
2176 LLT Ty = MRI.getType(DstReg);
2177 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2178
2179 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2180 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2181 MI.getOperand(0).setReg(DstExt);
2182 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2183
2184 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2185 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2186 MIRBuilder.buildTrunc(DstReg, Shift);
2187 Observer.changedInstr(MI);
2188 return Legalized;
2189 }
2190 case TargetOpcode::G_FREEZE:
2191 Observer.changingInstr(MI);
2192 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2193 widenScalarDst(MI, WideTy);
2194 Observer.changedInstr(MI);
2195 return Legalized;
2196
2197 case TargetOpcode::G_ABS:
2198 Observer.changingInstr(MI);
2199 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2200 widenScalarDst(MI, WideTy);
2201 Observer.changedInstr(MI);
2202 return Legalized;
2203
2204 case TargetOpcode::G_ADD:
2205 case TargetOpcode::G_AND:
2206 case TargetOpcode::G_MUL:
2207 case TargetOpcode::G_OR:
2208 case TargetOpcode::G_XOR:
2209 case TargetOpcode::G_SUB:
2210 // Perform operation at larger width (any extension is fines here, high bits
2211 // don't affect the result) and then truncate the result back to the
2212 // original type.
2213 Observer.changingInstr(MI);
2214 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2215 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2216 widenScalarDst(MI, WideTy);
2217 Observer.changedInstr(MI);
2218 return Legalized;
2219
2220 case TargetOpcode::G_SBFX:
2221 case TargetOpcode::G_UBFX:
2222 Observer.changingInstr(MI);
2223
2224 if (TypeIdx == 0) {
2225 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2226 widenScalarDst(MI, WideTy);
2227 } else {
2228 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2229 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2230 }
2231
2232 Observer.changedInstr(MI);
2233 return Legalized;
2234
2235 case TargetOpcode::G_SHL:
2236 Observer.changingInstr(MI);
2237
2238 if (TypeIdx == 0) {
2239 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2240 widenScalarDst(MI, WideTy);
2241 } else {
2242 assert(TypeIdx == 1);
2243 // The "number of bits to shift" operand must preserve its value as an
2244 // unsigned integer:
2245 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2246 }
2247
2248 Observer.changedInstr(MI);
2249 return Legalized;
2250
2251 case TargetOpcode::G_SDIV:
2252 case TargetOpcode::G_SREM:
2253 case TargetOpcode::G_SMIN:
2254 case TargetOpcode::G_SMAX:
2255 Observer.changingInstr(MI);
2256 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2257 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2258 widenScalarDst(MI, WideTy);
2259 Observer.changedInstr(MI);
2260 return Legalized;
2261
2262 case TargetOpcode::G_SDIVREM:
2263 Observer.changingInstr(MI);
2264 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2265 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2266 widenScalarDst(MI, WideTy);
2267 widenScalarDst(MI, WideTy, 1);
2268 Observer.changedInstr(MI);
2269 return Legalized;
2270
2271 case TargetOpcode::G_ASHR:
2272 case TargetOpcode::G_LSHR:
2273 Observer.changingInstr(MI);
2274
2275 if (TypeIdx == 0) {
2276 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2277 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2278
2279 widenScalarSrc(MI, WideTy, 1, CvtOp);
2280 widenScalarDst(MI, WideTy);
2281 } else {
2282 assert(TypeIdx == 1);
2283 // The "number of bits to shift" operand must preserve its value as an
2284 // unsigned integer:
2285 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2286 }
2287
2288 Observer.changedInstr(MI);
2289 return Legalized;
2290 case TargetOpcode::G_UDIV:
2291 case TargetOpcode::G_UREM:
2292 case TargetOpcode::G_UMIN:
2293 case TargetOpcode::G_UMAX:
2294 Observer.changingInstr(MI);
2295 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2297 widenScalarDst(MI, WideTy);
2298 Observer.changedInstr(MI);
2299 return Legalized;
2300
2301 case TargetOpcode::G_UDIVREM:
2302 Observer.changingInstr(MI);
2303 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2304 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2305 widenScalarDst(MI, WideTy);
2306 widenScalarDst(MI, WideTy, 1);
2307 Observer.changedInstr(MI);
2308 return Legalized;
2309
2310 case TargetOpcode::G_SELECT:
2311 Observer.changingInstr(MI);
2312 if (TypeIdx == 0) {
2313 // Perform operation at larger width (any extension is fine here, high
2314 // bits don't affect the result) and then truncate the result back to the
2315 // original type.
2316 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2317 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2318 widenScalarDst(MI, WideTy);
2319 } else {
2320 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2321 // Explicit extension is required here since high bits affect the result.
2322 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2323 }
2324 Observer.changedInstr(MI);
2325 return Legalized;
2326
2327 case TargetOpcode::G_FPTOSI:
2328 case TargetOpcode::G_FPTOUI:
2329 Observer.changingInstr(MI);
2330
2331 if (TypeIdx == 0)
2332 widenScalarDst(MI, WideTy);
2333 else
2334 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2335
2336 Observer.changedInstr(MI);
2337 return Legalized;
2338 case TargetOpcode::G_SITOFP:
2339 Observer.changingInstr(MI);
2340
2341 if (TypeIdx == 0)
2342 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2343 else
2344 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2345
2346 Observer.changedInstr(MI);
2347 return Legalized;
2348 case TargetOpcode::G_UITOFP:
2349 Observer.changingInstr(MI);
2350
2351 if (TypeIdx == 0)
2352 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2353 else
2354 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2355
2356 Observer.changedInstr(MI);
2357 return Legalized;
2358 case TargetOpcode::G_LOAD:
2359 case TargetOpcode::G_SEXTLOAD:
2360 case TargetOpcode::G_ZEXTLOAD:
2361 Observer.changingInstr(MI);
2362 widenScalarDst(MI, WideTy);
2363 Observer.changedInstr(MI);
2364 return Legalized;
2365
2366 case TargetOpcode::G_STORE: {
2367 if (TypeIdx != 0)
2368 return UnableToLegalize;
2369
2370 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2371 if (!Ty.isScalar())
2372 return UnableToLegalize;
2373
2374 Observer.changingInstr(MI);
2375
2376 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2377 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2378 widenScalarSrc(MI, WideTy, 0, ExtType);
2379
2380 Observer.changedInstr(MI);
2381 return Legalized;
2382 }
2383 case TargetOpcode::G_CONSTANT: {
2384 MachineOperand &SrcMO = MI.getOperand(1);
2385 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2386 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2387 MRI.getType(MI.getOperand(0).getReg()));
2388 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2389 ExtOpc == TargetOpcode::G_ANYEXT) &&
2390 "Illegal Extend");
2391 const APInt &SrcVal = SrcMO.getCImm()->getValue();
2392 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2393 ? SrcVal.sext(WideTy.getSizeInBits())
2394 : SrcVal.zext(WideTy.getSizeInBits());
2395 Observer.changingInstr(MI);
2396 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2397
2398 widenScalarDst(MI, WideTy);
2399 Observer.changedInstr(MI);
2400 return Legalized;
2401 }
2402 case TargetOpcode::G_FCONSTANT: {
2403 // To avoid changing the bits of the constant due to extension to a larger
2404 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT.
2405 MachineOperand &SrcMO = MI.getOperand(1);
2406 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt();
2407 MIRBuilder.setInstrAndDebugLoc(MI);
2408 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val);
2409 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC);
2410 MI.eraseFromParent();
2411 return Legalized;
2412 }
2413 case TargetOpcode::G_IMPLICIT_DEF: {
2414 Observer.changingInstr(MI);
2415 widenScalarDst(MI, WideTy);
2416 Observer.changedInstr(MI);
2417 return Legalized;
2418 }
2419 case TargetOpcode::G_BRCOND:
2420 Observer.changingInstr(MI);
2421 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2422 Observer.changedInstr(MI);
2423 return Legalized;
2424
2425 case TargetOpcode::G_FCMP:
2426 Observer.changingInstr(MI);
2427 if (TypeIdx == 0)
2428 widenScalarDst(MI, WideTy);
2429 else {
2430 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2431 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2432 }
2433 Observer.changedInstr(MI);
2434 return Legalized;
2435
2436 case TargetOpcode::G_ICMP:
2437 Observer.changingInstr(MI);
2438 if (TypeIdx == 0)
2439 widenScalarDst(MI, WideTy);
2440 else {
2441 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2442 MI.getOperand(1).getPredicate()))
2443 ? TargetOpcode::G_SEXT
2444 : TargetOpcode::G_ZEXT;
2445 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2446 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2447 }
2448 Observer.changedInstr(MI);
2449 return Legalized;
2450
2451 case TargetOpcode::G_PTR_ADD:
2452 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2453 Observer.changingInstr(MI);
2454 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2455 Observer.changedInstr(MI);
2456 return Legalized;
2457
2458 case TargetOpcode::G_PHI: {
2459 assert(TypeIdx == 0 && "Expecting only Idx 0");
2460
2461 Observer.changingInstr(MI);
2462 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2463 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2464 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
2465 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2466 }
2467
2468 MachineBasicBlock &MBB = *MI.getParent();
2469 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2470 widenScalarDst(MI, WideTy);
2471 Observer.changedInstr(MI);
2472 return Legalized;
2473 }
2474 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2475 if (TypeIdx == 0) {
2476 Register VecReg = MI.getOperand(1).getReg();
2477 LLT VecTy = MRI.getType(VecReg);
2478 Observer.changingInstr(MI);
2479
2480 widenScalarSrc(
2481 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2482 TargetOpcode::G_ANYEXT);
2483
2484 widenScalarDst(MI, WideTy, 0);
2485 Observer.changedInstr(MI);
2486 return Legalized;
2487 }
2488
2489 if (TypeIdx != 2)
2490 return UnableToLegalize;
2491 Observer.changingInstr(MI);
2492 // TODO: Probably should be zext
2493 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2494 Observer.changedInstr(MI);
2495 return Legalized;
2496 }
2497 case TargetOpcode::G_INSERT_VECTOR_ELT: {
2498 if (TypeIdx == 1) {
2499 Observer.changingInstr(MI);
2500
2501 Register VecReg = MI.getOperand(1).getReg();
2502 LLT VecTy = MRI.getType(VecReg);
2503 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2504
2505 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2506 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2507 widenScalarDst(MI, WideVecTy, 0);
2508 Observer.changedInstr(MI);
2509 return Legalized;
2510 }
2511
2512 if (TypeIdx == 2) {
2513 Observer.changingInstr(MI);
2514 // TODO: Probably should be zext
2515 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2516 Observer.changedInstr(MI);
2517 return Legalized;
2518 }
2519
2520 return UnableToLegalize;
2521 }
2522 case TargetOpcode::G_FADD:
2523 case TargetOpcode::G_FMUL:
2524 case TargetOpcode::G_FSUB:
2525 case TargetOpcode::G_FMA:
2526 case TargetOpcode::G_FMAD:
2527 case TargetOpcode::G_FNEG:
2528 case TargetOpcode::G_FABS:
2529 case TargetOpcode::G_FCANONICALIZE:
2530 case TargetOpcode::G_FMINNUM:
2531 case TargetOpcode::G_FMAXNUM:
2532 case TargetOpcode::G_FMINNUM_IEEE:
2533 case TargetOpcode::G_FMAXNUM_IEEE:
2534 case TargetOpcode::G_FMINIMUM:
2535 case TargetOpcode::G_FMAXIMUM:
2536 case TargetOpcode::G_FDIV:
2537 case TargetOpcode::G_FREM:
2538 case TargetOpcode::G_FCEIL:
2539 case TargetOpcode::G_FFLOOR:
2540 case TargetOpcode::G_FCOS:
2541 case TargetOpcode::G_FSIN:
2542 case TargetOpcode::G_FLOG10:
2543 case TargetOpcode::G_FLOG:
2544 case TargetOpcode::G_FLOG2:
2545 case TargetOpcode::G_FRINT:
2546 case TargetOpcode::G_FNEARBYINT:
2547 case TargetOpcode::G_FSQRT:
2548 case TargetOpcode::G_FEXP:
2549 case TargetOpcode::G_FEXP2:
2550 case TargetOpcode::G_FPOW:
2551 case TargetOpcode::G_INTRINSIC_TRUNC:
2552 case TargetOpcode::G_INTRINSIC_ROUND:
2553 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2554 assert(TypeIdx == 0);
2555 Observer.changingInstr(MI);
2556
2557 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2558 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2559
2560 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2561 Observer.changedInstr(MI);
2562 return Legalized;
2563 case TargetOpcode::G_FPOWI: {
2564 if (TypeIdx != 0)
2565 return UnableToLegalize;
2566 Observer.changingInstr(MI);
2567 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2568 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2569 Observer.changedInstr(MI);
2570 return Legalized;
2571 }
2572 case TargetOpcode::G_INTTOPTR:
2573 if (TypeIdx != 1)
2574 return UnableToLegalize;
2575
2576 Observer.changingInstr(MI);
2577 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2578 Observer.changedInstr(MI);
2579 return Legalized;
2580 case TargetOpcode::G_PTRTOINT:
2581 if (TypeIdx != 0)
2582 return UnableToLegalize;
2583
2584 Observer.changingInstr(MI);
2585 widenScalarDst(MI, WideTy, 0);
2586 Observer.changedInstr(MI);
2587 return Legalized;
2588 case TargetOpcode::G_BUILD_VECTOR: {
2589 Observer.changingInstr(MI);
2590
2591 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2592 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2593 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2594
2595 // Avoid changing the result vector type if the source element type was
2596 // requested.
2597 if (TypeIdx == 1) {
2598 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2599 } else {
2600 widenScalarDst(MI, WideTy, 0);
2601 }
2602
2603 Observer.changedInstr(MI);
2604 return Legalized;
2605 }
2606 case TargetOpcode::G_SEXT_INREG:
2607 if (TypeIdx != 0)
2608 return UnableToLegalize;
2609
2610 Observer.changingInstr(MI);
2611 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2612 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2613 Observer.changedInstr(MI);
2614 return Legalized;
2615 case TargetOpcode::G_PTRMASK: {
2616 if (TypeIdx != 1)
2617 return UnableToLegalize;
2618 Observer.changingInstr(MI);
2619 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2620 Observer.changedInstr(MI);
2621 return Legalized;
2622 }
2623 }
2624 }
2625
getUnmergePieces(SmallVectorImpl<Register> & Pieces,MachineIRBuilder & B,Register Src,LLT Ty)2626 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2627 MachineIRBuilder &B, Register Src, LLT Ty) {
2628 auto Unmerge = B.buildUnmerge(Ty, Src);
2629 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2630 Pieces.push_back(Unmerge.getReg(I));
2631 }
2632
2633 LegalizerHelper::LegalizeResult
lowerBitcast(MachineInstr & MI)2634 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2635 Register Dst = MI.getOperand(0).getReg();
2636 Register Src = MI.getOperand(1).getReg();
2637 LLT DstTy = MRI.getType(Dst);
2638 LLT SrcTy = MRI.getType(Src);
2639
2640 if (SrcTy.isVector()) {
2641 LLT SrcEltTy = SrcTy.getElementType();
2642 SmallVector<Register, 8> SrcRegs;
2643
2644 if (DstTy.isVector()) {
2645 int NumDstElt = DstTy.getNumElements();
2646 int NumSrcElt = SrcTy.getNumElements();
2647
2648 LLT DstEltTy = DstTy.getElementType();
2649 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2650 LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2651
2652 // If there's an element size mismatch, insert intermediate casts to match
2653 // the result element type.
2654 if (NumSrcElt < NumDstElt) { // Source element type is larger.
2655 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2656 //
2657 // =>
2658 //
2659 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2660 // %3:_(<2 x s8>) = G_BITCAST %2
2661 // %4:_(<2 x s8>) = G_BITCAST %3
2662 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2663 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2664 SrcPartTy = SrcEltTy;
2665 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2666 //
2667 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2668 //
2669 // =>
2670 //
2671 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2672 // %3:_(s16) = G_BITCAST %2
2673 // %4:_(s16) = G_BITCAST %3
2674 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2675 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2676 DstCastTy = DstEltTy;
2677 }
2678
2679 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2680 for (Register &SrcReg : SrcRegs)
2681 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2682 } else
2683 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2684
2685 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs);
2686 MI.eraseFromParent();
2687 return Legalized;
2688 }
2689
2690 if (DstTy.isVector()) {
2691 SmallVector<Register, 8> SrcRegs;
2692 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2693 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs);
2694 MI.eraseFromParent();
2695 return Legalized;
2696 }
2697
2698 return UnableToLegalize;
2699 }
2700
2701 /// Figure out the bit offset into a register when coercing a vector index for
2702 /// the wide element type. This is only for the case when promoting vector to
2703 /// one with larger elements.
2704 //
2705 ///
2706 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2707 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
getBitcastWiderVectorElementOffset(MachineIRBuilder & B,Register Idx,unsigned NewEltSize,unsigned OldEltSize)2708 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2709 Register Idx,
2710 unsigned NewEltSize,
2711 unsigned OldEltSize) {
2712 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2713 LLT IdxTy = B.getMRI()->getType(Idx);
2714
2715 // Now figure out the amount we need to shift to get the target bits.
2716 auto OffsetMask = B.buildConstant(
2717 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2718 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2719 return B.buildShl(IdxTy, OffsetIdx,
2720 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2721 }
2722
2723 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2724 /// is casting to a vector with a smaller element size, perform multiple element
2725 /// extracts and merge the results. If this is coercing to a vector with larger
2726 /// elements, index the bitcasted vector and extract the target element with bit
2727 /// operations. This is intended to force the indexing in the native register
2728 /// size for architectures that can dynamically index the register file.
2729 LegalizerHelper::LegalizeResult
bitcastExtractVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2730 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2731 LLT CastTy) {
2732 if (TypeIdx != 1)
2733 return UnableToLegalize;
2734
2735 Register Dst = MI.getOperand(0).getReg();
2736 Register SrcVec = MI.getOperand(1).getReg();
2737 Register Idx = MI.getOperand(2).getReg();
2738 LLT SrcVecTy = MRI.getType(SrcVec);
2739 LLT IdxTy = MRI.getType(Idx);
2740
2741 LLT SrcEltTy = SrcVecTy.getElementType();
2742 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2743 unsigned OldNumElts = SrcVecTy.getNumElements();
2744
2745 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2746 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2747
2748 const unsigned NewEltSize = NewEltTy.getSizeInBits();
2749 const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2750 if (NewNumElts > OldNumElts) {
2751 // Decreasing the vector element size
2752 //
2753 // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2754 // =>
2755 // v4i32:castx = bitcast x:v2i64
2756 //
2757 // i64 = bitcast
2758 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2759 // (i32 (extract_vector_elt castx, (2 * y + 1)))
2760 //
2761 if (NewNumElts % OldNumElts != 0)
2762 return UnableToLegalize;
2763
2764 // Type of the intermediate result vector.
2765 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2766 LLT MidTy =
2767 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2768
2769 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2770
2771 SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2772 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2773
2774 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2775 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2776 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2777 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2778 NewOps[I] = Elt.getReg(0);
2779 }
2780
2781 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2782 MIRBuilder.buildBitcast(Dst, NewVec);
2783 MI.eraseFromParent();
2784 return Legalized;
2785 }
2786
2787 if (NewNumElts < OldNumElts) {
2788 if (NewEltSize % OldEltSize != 0)
2789 return UnableToLegalize;
2790
2791 // This only depends on powers of 2 because we use bit tricks to figure out
2792 // the bit offset we need to shift to get the target element. A general
2793 // expansion could emit division/multiply.
2794 if (!isPowerOf2_32(NewEltSize / OldEltSize))
2795 return UnableToLegalize;
2796
2797 // Increasing the vector element size.
2798 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2799 //
2800 // =>
2801 //
2802 // %cast = G_BITCAST %vec
2803 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2804 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2805 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2806 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2807 // %elt_bits = G_LSHR %wide_elt, %offset_bits
2808 // %elt = G_TRUNC %elt_bits
2809
2810 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2811 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2812
2813 // Divide to get the index in the wider element type.
2814 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2815
2816 Register WideElt = CastVec;
2817 if (CastTy.isVector()) {
2818 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2819 ScaledIdx).getReg(0);
2820 }
2821
2822 // Compute the bit offset into the register of the target element.
2823 Register OffsetBits = getBitcastWiderVectorElementOffset(
2824 MIRBuilder, Idx, NewEltSize, OldEltSize);
2825
2826 // Shift the wide element to get the target element.
2827 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2828 MIRBuilder.buildTrunc(Dst, ExtractedBits);
2829 MI.eraseFromParent();
2830 return Legalized;
2831 }
2832
2833 return UnableToLegalize;
2834 }
2835
2836 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2837 /// TargetReg, while preserving other bits in \p TargetReg.
2838 ///
2839 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
buildBitFieldInsert(MachineIRBuilder & B,Register TargetReg,Register InsertReg,Register OffsetBits)2840 static Register buildBitFieldInsert(MachineIRBuilder &B,
2841 Register TargetReg, Register InsertReg,
2842 Register OffsetBits) {
2843 LLT TargetTy = B.getMRI()->getType(TargetReg);
2844 LLT InsertTy = B.getMRI()->getType(InsertReg);
2845 auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2846 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2847
2848 // Produce a bitmask of the value to insert
2849 auto EltMask = B.buildConstant(
2850 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2851 InsertTy.getSizeInBits()));
2852 // Shift it into position
2853 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2854 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2855
2856 // Clear out the bits in the wide element
2857 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2858
2859 // The value to insert has all zeros already, so stick it into the masked
2860 // wide element.
2861 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2862 }
2863
2864 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2865 /// is increasing the element size, perform the indexing in the target element
2866 /// type, and use bit operations to insert at the element position. This is
2867 /// intended for architectures that can dynamically index the register file and
2868 /// want to force indexing in the native register size.
2869 LegalizerHelper::LegalizeResult
bitcastInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2870 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2871 LLT CastTy) {
2872 if (TypeIdx != 0)
2873 return UnableToLegalize;
2874
2875 Register Dst = MI.getOperand(0).getReg();
2876 Register SrcVec = MI.getOperand(1).getReg();
2877 Register Val = MI.getOperand(2).getReg();
2878 Register Idx = MI.getOperand(3).getReg();
2879
2880 LLT VecTy = MRI.getType(Dst);
2881 LLT IdxTy = MRI.getType(Idx);
2882
2883 LLT VecEltTy = VecTy.getElementType();
2884 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2885 const unsigned NewEltSize = NewEltTy.getSizeInBits();
2886 const unsigned OldEltSize = VecEltTy.getSizeInBits();
2887
2888 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2889 unsigned OldNumElts = VecTy.getNumElements();
2890
2891 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2892 if (NewNumElts < OldNumElts) {
2893 if (NewEltSize % OldEltSize != 0)
2894 return UnableToLegalize;
2895
2896 // This only depends on powers of 2 because we use bit tricks to figure out
2897 // the bit offset we need to shift to get the target element. A general
2898 // expansion could emit division/multiply.
2899 if (!isPowerOf2_32(NewEltSize / OldEltSize))
2900 return UnableToLegalize;
2901
2902 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2903 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2904
2905 // Divide to get the index in the wider element type.
2906 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2907
2908 Register ExtractedElt = CastVec;
2909 if (CastTy.isVector()) {
2910 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2911 ScaledIdx).getReg(0);
2912 }
2913
2914 // Compute the bit offset into the register of the target element.
2915 Register OffsetBits = getBitcastWiderVectorElementOffset(
2916 MIRBuilder, Idx, NewEltSize, OldEltSize);
2917
2918 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2919 Val, OffsetBits);
2920 if (CastTy.isVector()) {
2921 InsertedElt = MIRBuilder.buildInsertVectorElement(
2922 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2923 }
2924
2925 MIRBuilder.buildBitcast(Dst, InsertedElt);
2926 MI.eraseFromParent();
2927 return Legalized;
2928 }
2929
2930 return UnableToLegalize;
2931 }
2932
lowerLoad(GAnyLoad & LoadMI)2933 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2934 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2935 Register DstReg = LoadMI.getDstReg();
2936 Register PtrReg = LoadMI.getPointerReg();
2937 LLT DstTy = MRI.getType(DstReg);
2938 MachineMemOperand &MMO = LoadMI.getMMO();
2939 LLT MemTy = MMO.getMemoryType();
2940 MachineFunction &MF = MIRBuilder.getMF();
2941
2942 unsigned MemSizeInBits = MemTy.getSizeInBits();
2943 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2944
2945 if (MemSizeInBits != MemStoreSizeInBits) {
2946 if (MemTy.isVector())
2947 return UnableToLegalize;
2948
2949 // Promote to a byte-sized load if not loading an integral number of
2950 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2951 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2952 MachineMemOperand *NewMMO =
2953 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2954
2955 Register LoadReg = DstReg;
2956 LLT LoadTy = DstTy;
2957
2958 // If this wasn't already an extending load, we need to widen the result
2959 // register to avoid creating a load with a narrower result than the source.
2960 if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2961 LoadTy = WideMemTy;
2962 LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2963 }
2964
2965 if (isa<GSExtLoad>(LoadMI)) {
2966 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2967 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2968 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
2969 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2970 // The extra bits are guaranteed to be zero, since we stored them that
2971 // way. A zext load from Wide thus automatically gives zext from MemVT.
2972 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2973 } else {
2974 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2975 }
2976
2977 if (DstTy != LoadTy)
2978 MIRBuilder.buildTrunc(DstReg, LoadReg);
2979
2980 LoadMI.eraseFromParent();
2981 return Legalized;
2982 }
2983
2984 // Big endian lowering not implemented.
2985 if (MIRBuilder.getDataLayout().isBigEndian())
2986 return UnableToLegalize;
2987
2988 // This load needs splitting into power of 2 sized loads.
2989 //
2990 // Our strategy here is to generate anyextending loads for the smaller
2991 // types up to next power-2 result type, and then combine the two larger
2992 // result values together, before truncating back down to the non-pow-2
2993 // type.
2994 // E.g. v1 = i24 load =>
2995 // v2 = i32 zextload (2 byte)
2996 // v3 = i32 load (1 byte)
2997 // v4 = i32 shl v3, 16
2998 // v5 = i32 or v4, v2
2999 // v1 = i24 trunc v5
3000 // By doing this we generate the correct truncate which should get
3001 // combined away as an artifact with a matching extend.
3002
3003 uint64_t LargeSplitSize, SmallSplitSize;
3004
3005 if (!isPowerOf2_32(MemSizeInBits)) {
3006 // This load needs splitting into power of 2 sized loads.
3007 LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3008 SmallSplitSize = MemSizeInBits - LargeSplitSize;
3009 } else {
3010 // This is already a power of 2, but we still need to split this in half.
3011 //
3012 // Assume we're being asked to decompose an unaligned load.
3013 // TODO: If this requires multiple splits, handle them all at once.
3014 auto &Ctx = MF.getFunction().getContext();
3015 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3016 return UnableToLegalize;
3017
3018 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3019 }
3020
3021 if (MemTy.isVector()) {
3022 // TODO: Handle vector extloads
3023 if (MemTy != DstTy)
3024 return UnableToLegalize;
3025
3026 // TODO: We can do better than scalarizing the vector and at least split it
3027 // in half.
3028 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3029 }
3030
3031 MachineMemOperand *LargeMMO =
3032 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3033 MachineMemOperand *SmallMMO =
3034 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3035
3036 LLT PtrTy = MRI.getType(PtrReg);
3037 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3038 LLT AnyExtTy = LLT::scalar(AnyExtSize);
3039 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3040 PtrReg, *LargeMMO);
3041
3042 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3043 LargeSplitSize / 8);
3044 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3045 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3046 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3047 SmallPtr, *SmallMMO);
3048
3049 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3050 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3051
3052 if (AnyExtTy == DstTy)
3053 MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3054 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3055 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3056 MIRBuilder.buildTrunc(DstReg, {Or});
3057 } else {
3058 assert(DstTy.isPointer() && "expected pointer");
3059 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3060
3061 // FIXME: We currently consider this to be illegal for non-integral address
3062 // spaces, but we need still need a way to reinterpret the bits.
3063 MIRBuilder.buildIntToPtr(DstReg, Or);
3064 }
3065
3066 LoadMI.eraseFromParent();
3067 return Legalized;
3068 }
3069
lowerStore(GStore & StoreMI)3070 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3071 // Lower a non-power of 2 store into multiple pow-2 stores.
3072 // E.g. split an i24 store into an i16 store + i8 store.
3073 // We do this by first extending the stored value to the next largest power
3074 // of 2 type, and then using truncating stores to store the components.
3075 // By doing this, likewise with G_LOAD, generate an extend that can be
3076 // artifact-combined away instead of leaving behind extracts.
3077 Register SrcReg = StoreMI.getValueReg();
3078 Register PtrReg = StoreMI.getPointerReg();
3079 LLT SrcTy = MRI.getType(SrcReg);
3080 MachineFunction &MF = MIRBuilder.getMF();
3081 MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3082 LLT MemTy = MMO.getMemoryType();
3083
3084 unsigned StoreWidth = MemTy.getSizeInBits();
3085 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3086
3087 if (StoreWidth != StoreSizeInBits) {
3088 if (SrcTy.isVector())
3089 return UnableToLegalize;
3090
3091 // Promote to a byte-sized store with upper bits zero if not
3092 // storing an integral number of bytes. For example, promote
3093 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3094 LLT WideTy = LLT::scalar(StoreSizeInBits);
3095
3096 if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3097 // Avoid creating a store with a narrower source than result.
3098 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3099 SrcTy = WideTy;
3100 }
3101
3102 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3103
3104 MachineMemOperand *NewMMO =
3105 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3106 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3107 StoreMI.eraseFromParent();
3108 return Legalized;
3109 }
3110
3111 if (MemTy.isVector()) {
3112 // TODO: Handle vector trunc stores
3113 if (MemTy != SrcTy)
3114 return UnableToLegalize;
3115
3116 // TODO: We can do better than scalarizing the vector and at least split it
3117 // in half.
3118 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3119 }
3120
3121 unsigned MemSizeInBits = MemTy.getSizeInBits();
3122 uint64_t LargeSplitSize, SmallSplitSize;
3123
3124 if (!isPowerOf2_32(MemSizeInBits)) {
3125 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3126 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3127 } else {
3128 auto &Ctx = MF.getFunction().getContext();
3129 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3130 return UnableToLegalize; // Don't know what we're being asked to do.
3131
3132 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3133 }
3134
3135 // Extend to the next pow-2. If this store was itself the result of lowering,
3136 // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3137 // that's wider than the stored size.
3138 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3139 const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3140
3141 if (SrcTy.isPointer()) {
3142 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3143 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3144 }
3145
3146 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3147
3148 // Obtain the smaller value by shifting away the larger value.
3149 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3150 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3151
3152 // Generate the PtrAdd and truncating stores.
3153 LLT PtrTy = MRI.getType(PtrReg);
3154 auto OffsetCst = MIRBuilder.buildConstant(
3155 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3156 auto SmallPtr =
3157 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3158
3159 MachineMemOperand *LargeMMO =
3160 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3161 MachineMemOperand *SmallMMO =
3162 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3163 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3164 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3165 StoreMI.eraseFromParent();
3166 return Legalized;
3167 }
3168
3169 LegalizerHelper::LegalizeResult
bitcast(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)3170 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3171 switch (MI.getOpcode()) {
3172 case TargetOpcode::G_LOAD: {
3173 if (TypeIdx != 0)
3174 return UnableToLegalize;
3175 MachineMemOperand &MMO = **MI.memoperands_begin();
3176
3177 // Not sure how to interpret a bitcast of an extending load.
3178 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3179 return UnableToLegalize;
3180
3181 Observer.changingInstr(MI);
3182 bitcastDst(MI, CastTy, 0);
3183 MMO.setType(CastTy);
3184 Observer.changedInstr(MI);
3185 return Legalized;
3186 }
3187 case TargetOpcode::G_STORE: {
3188 if (TypeIdx != 0)
3189 return UnableToLegalize;
3190
3191 MachineMemOperand &MMO = **MI.memoperands_begin();
3192
3193 // Not sure how to interpret a bitcast of a truncating store.
3194 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3195 return UnableToLegalize;
3196
3197 Observer.changingInstr(MI);
3198 bitcastSrc(MI, CastTy, 0);
3199 MMO.setType(CastTy);
3200 Observer.changedInstr(MI);
3201 return Legalized;
3202 }
3203 case TargetOpcode::G_SELECT: {
3204 if (TypeIdx != 0)
3205 return UnableToLegalize;
3206
3207 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3208 LLVM_DEBUG(
3209 dbgs() << "bitcast action not implemented for vector select\n");
3210 return UnableToLegalize;
3211 }
3212
3213 Observer.changingInstr(MI);
3214 bitcastSrc(MI, CastTy, 2);
3215 bitcastSrc(MI, CastTy, 3);
3216 bitcastDst(MI, CastTy, 0);
3217 Observer.changedInstr(MI);
3218 return Legalized;
3219 }
3220 case TargetOpcode::G_AND:
3221 case TargetOpcode::G_OR:
3222 case TargetOpcode::G_XOR: {
3223 Observer.changingInstr(MI);
3224 bitcastSrc(MI, CastTy, 1);
3225 bitcastSrc(MI, CastTy, 2);
3226 bitcastDst(MI, CastTy, 0);
3227 Observer.changedInstr(MI);
3228 return Legalized;
3229 }
3230 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3231 return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3232 case TargetOpcode::G_INSERT_VECTOR_ELT:
3233 return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3234 default:
3235 return UnableToLegalize;
3236 }
3237 }
3238
3239 // Legalize an instruction by changing the opcode in place.
changeOpcode(MachineInstr & MI,unsigned NewOpcode)3240 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3241 Observer.changingInstr(MI);
3242 MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3243 Observer.changedInstr(MI);
3244 }
3245
3246 LegalizerHelper::LegalizeResult
lower(MachineInstr & MI,unsigned TypeIdx,LLT LowerHintTy)3247 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3248 using namespace TargetOpcode;
3249
3250 switch(MI.getOpcode()) {
3251 default:
3252 return UnableToLegalize;
3253 case TargetOpcode::G_BITCAST:
3254 return lowerBitcast(MI);
3255 case TargetOpcode::G_SREM:
3256 case TargetOpcode::G_UREM: {
3257 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3258 auto Quot =
3259 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3260 {MI.getOperand(1), MI.getOperand(2)});
3261
3262 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3263 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3264 MI.eraseFromParent();
3265 return Legalized;
3266 }
3267 case TargetOpcode::G_SADDO:
3268 case TargetOpcode::G_SSUBO:
3269 return lowerSADDO_SSUBO(MI);
3270 case TargetOpcode::G_UMULH:
3271 case TargetOpcode::G_SMULH:
3272 return lowerSMULH_UMULH(MI);
3273 case TargetOpcode::G_SMULO:
3274 case TargetOpcode::G_UMULO: {
3275 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3276 // result.
3277 Register Res = MI.getOperand(0).getReg();
3278 Register Overflow = MI.getOperand(1).getReg();
3279 Register LHS = MI.getOperand(2).getReg();
3280 Register RHS = MI.getOperand(3).getReg();
3281 LLT Ty = MRI.getType(Res);
3282
3283 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3284 ? TargetOpcode::G_SMULH
3285 : TargetOpcode::G_UMULH;
3286
3287 Observer.changingInstr(MI);
3288 const auto &TII = MIRBuilder.getTII();
3289 MI.setDesc(TII.get(TargetOpcode::G_MUL));
3290 MI.removeOperand(1);
3291 Observer.changedInstr(MI);
3292
3293 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3294 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3295
3296 // Move insert point forward so we can use the Res register if needed.
3297 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3298
3299 // For *signed* multiply, overflow is detected by checking:
3300 // (hi != (lo >> bitwidth-1))
3301 if (Opcode == TargetOpcode::G_SMULH) {
3302 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3303 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3304 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3305 } else {
3306 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3307 }
3308 return Legalized;
3309 }
3310 case TargetOpcode::G_FNEG: {
3311 Register Res = MI.getOperand(0).getReg();
3312 LLT Ty = MRI.getType(Res);
3313
3314 // TODO: Handle vector types once we are able to
3315 // represent them.
3316 if (Ty.isVector())
3317 return UnableToLegalize;
3318 auto SignMask =
3319 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3320 Register SubByReg = MI.getOperand(1).getReg();
3321 MIRBuilder.buildXor(Res, SubByReg, SignMask);
3322 MI.eraseFromParent();
3323 return Legalized;
3324 }
3325 case TargetOpcode::G_FSUB:
3326 case TargetOpcode::G_STRICT_FSUB: {
3327 Register Res = MI.getOperand(0).getReg();
3328 LLT Ty = MRI.getType(Res);
3329
3330 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3331 // First, check if G_FNEG is marked as Lower. If so, we may
3332 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3333 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3334 return UnableToLegalize;
3335 Register LHS = MI.getOperand(1).getReg();
3336 Register RHS = MI.getOperand(2).getReg();
3337 auto Neg = MIRBuilder.buildFNeg(Ty, RHS);
3338
3339 if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB)
3340 MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags());
3341 else
3342 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3343
3344 MI.eraseFromParent();
3345 return Legalized;
3346 }
3347 case TargetOpcode::G_FMAD:
3348 return lowerFMad(MI);
3349 case TargetOpcode::G_FFLOOR:
3350 return lowerFFloor(MI);
3351 case TargetOpcode::G_INTRINSIC_ROUND:
3352 return lowerIntrinsicRound(MI);
3353 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3354 // Since round even is the assumed rounding mode for unconstrained FP
3355 // operations, rint and roundeven are the same operation.
3356 changeOpcode(MI, TargetOpcode::G_FRINT);
3357 return Legalized;
3358 }
3359 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3360 Register OldValRes = MI.getOperand(0).getReg();
3361 Register SuccessRes = MI.getOperand(1).getReg();
3362 Register Addr = MI.getOperand(2).getReg();
3363 Register CmpVal = MI.getOperand(3).getReg();
3364 Register NewVal = MI.getOperand(4).getReg();
3365 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3366 **MI.memoperands_begin());
3367 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3368 MI.eraseFromParent();
3369 return Legalized;
3370 }
3371 case TargetOpcode::G_LOAD:
3372 case TargetOpcode::G_SEXTLOAD:
3373 case TargetOpcode::G_ZEXTLOAD:
3374 return lowerLoad(cast<GAnyLoad>(MI));
3375 case TargetOpcode::G_STORE:
3376 return lowerStore(cast<GStore>(MI));
3377 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3378 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3379 case TargetOpcode::G_CTLZ:
3380 case TargetOpcode::G_CTTZ:
3381 case TargetOpcode::G_CTPOP:
3382 return lowerBitCount(MI);
3383 case G_UADDO: {
3384 Register Res = MI.getOperand(0).getReg();
3385 Register CarryOut = MI.getOperand(1).getReg();
3386 Register LHS = MI.getOperand(2).getReg();
3387 Register RHS = MI.getOperand(3).getReg();
3388
3389 MIRBuilder.buildAdd(Res, LHS, RHS);
3390 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3391
3392 MI.eraseFromParent();
3393 return Legalized;
3394 }
3395 case G_UADDE: {
3396 Register Res = MI.getOperand(0).getReg();
3397 Register CarryOut = MI.getOperand(1).getReg();
3398 Register LHS = MI.getOperand(2).getReg();
3399 Register RHS = MI.getOperand(3).getReg();
3400 Register CarryIn = MI.getOperand(4).getReg();
3401 LLT Ty = MRI.getType(Res);
3402
3403 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3404 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3405 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3406 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3407
3408 MI.eraseFromParent();
3409 return Legalized;
3410 }
3411 case G_USUBO: {
3412 Register Res = MI.getOperand(0).getReg();
3413 Register BorrowOut = MI.getOperand(1).getReg();
3414 Register LHS = MI.getOperand(2).getReg();
3415 Register RHS = MI.getOperand(3).getReg();
3416
3417 MIRBuilder.buildSub(Res, LHS, RHS);
3418 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3419
3420 MI.eraseFromParent();
3421 return Legalized;
3422 }
3423 case G_USUBE: {
3424 Register Res = MI.getOperand(0).getReg();
3425 Register BorrowOut = MI.getOperand(1).getReg();
3426 Register LHS = MI.getOperand(2).getReg();
3427 Register RHS = MI.getOperand(3).getReg();
3428 Register BorrowIn = MI.getOperand(4).getReg();
3429 const LLT CondTy = MRI.getType(BorrowOut);
3430 const LLT Ty = MRI.getType(Res);
3431
3432 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3433 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3434 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3435
3436 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3437 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3438 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3439
3440 MI.eraseFromParent();
3441 return Legalized;
3442 }
3443 case G_UITOFP:
3444 return lowerUITOFP(MI);
3445 case G_SITOFP:
3446 return lowerSITOFP(MI);
3447 case G_FPTOUI:
3448 return lowerFPTOUI(MI);
3449 case G_FPTOSI:
3450 return lowerFPTOSI(MI);
3451 case G_FPTRUNC:
3452 return lowerFPTRUNC(MI);
3453 case G_FPOWI:
3454 return lowerFPOWI(MI);
3455 case G_SMIN:
3456 case G_SMAX:
3457 case G_UMIN:
3458 case G_UMAX:
3459 return lowerMinMax(MI);
3460 case G_FCOPYSIGN:
3461 return lowerFCopySign(MI);
3462 case G_FMINNUM:
3463 case G_FMAXNUM:
3464 return lowerFMinNumMaxNum(MI);
3465 case G_MERGE_VALUES:
3466 return lowerMergeValues(MI);
3467 case G_UNMERGE_VALUES:
3468 return lowerUnmergeValues(MI);
3469 case TargetOpcode::G_SEXT_INREG: {
3470 assert(MI.getOperand(2).isImm() && "Expected immediate");
3471 int64_t SizeInBits = MI.getOperand(2).getImm();
3472
3473 Register DstReg = MI.getOperand(0).getReg();
3474 Register SrcReg = MI.getOperand(1).getReg();
3475 LLT DstTy = MRI.getType(DstReg);
3476 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3477
3478 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3479 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3480 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3481 MI.eraseFromParent();
3482 return Legalized;
3483 }
3484 case G_EXTRACT_VECTOR_ELT:
3485 case G_INSERT_VECTOR_ELT:
3486 return lowerExtractInsertVectorElt(MI);
3487 case G_SHUFFLE_VECTOR:
3488 return lowerShuffleVector(MI);
3489 case G_DYN_STACKALLOC:
3490 return lowerDynStackAlloc(MI);
3491 case G_EXTRACT:
3492 return lowerExtract(MI);
3493 case G_INSERT:
3494 return lowerInsert(MI);
3495 case G_BSWAP:
3496 return lowerBswap(MI);
3497 case G_BITREVERSE:
3498 return lowerBitreverse(MI);
3499 case G_READ_REGISTER:
3500 case G_WRITE_REGISTER:
3501 return lowerReadWriteRegister(MI);
3502 case G_UADDSAT:
3503 case G_USUBSAT: {
3504 // Try to make a reasonable guess about which lowering strategy to use. The
3505 // target can override this with custom lowering and calling the
3506 // implementation functions.
3507 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3508 if (LI.isLegalOrCustom({G_UMIN, Ty}))
3509 return lowerAddSubSatToMinMax(MI);
3510 return lowerAddSubSatToAddoSubo(MI);
3511 }
3512 case G_SADDSAT:
3513 case G_SSUBSAT: {
3514 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3515
3516 // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3517 // since it's a shorter expansion. However, we would need to figure out the
3518 // preferred boolean type for the carry out for the query.
3519 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3520 return lowerAddSubSatToMinMax(MI);
3521 return lowerAddSubSatToAddoSubo(MI);
3522 }
3523 case G_SSHLSAT:
3524 case G_USHLSAT:
3525 return lowerShlSat(MI);
3526 case G_ABS:
3527 return lowerAbsToAddXor(MI);
3528 case G_SELECT:
3529 return lowerSelect(MI);
3530 case G_IS_FPCLASS:
3531 return lowerISFPCLASS(MI);
3532 case G_SDIVREM:
3533 case G_UDIVREM:
3534 return lowerDIVREM(MI);
3535 case G_FSHL:
3536 case G_FSHR:
3537 return lowerFunnelShift(MI);
3538 case G_ROTL:
3539 case G_ROTR:
3540 return lowerRotate(MI);
3541 case G_MEMSET:
3542 case G_MEMCPY:
3543 case G_MEMMOVE:
3544 return lowerMemCpyFamily(MI);
3545 case G_MEMCPY_INLINE:
3546 return lowerMemcpyInline(MI);
3547 GISEL_VECREDUCE_CASES_NONSEQ
3548 return lowerVectorReduction(MI);
3549 }
3550 }
3551
getStackTemporaryAlignment(LLT Ty,Align MinAlign) const3552 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3553 Align MinAlign) const {
3554 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3555 // datalayout for the preferred alignment. Also there should be a target hook
3556 // for this to allow targets to reduce the alignment and ignore the
3557 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3558 // the type.
3559 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3560 }
3561
3562 MachineInstrBuilder
createStackTemporary(TypeSize Bytes,Align Alignment,MachinePointerInfo & PtrInfo)3563 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3564 MachinePointerInfo &PtrInfo) {
3565 MachineFunction &MF = MIRBuilder.getMF();
3566 const DataLayout &DL = MIRBuilder.getDataLayout();
3567 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3568
3569 unsigned AddrSpace = DL.getAllocaAddrSpace();
3570 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3571
3572 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3573 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3574 }
3575
clampDynamicVectorIndex(MachineIRBuilder & B,Register IdxReg,LLT VecTy)3576 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3577 LLT VecTy) {
3578 int64_t IdxVal;
3579 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3580 return IdxReg;
3581
3582 LLT IdxTy = B.getMRI()->getType(IdxReg);
3583 unsigned NElts = VecTy.getNumElements();
3584 if (isPowerOf2_32(NElts)) {
3585 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3586 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3587 }
3588
3589 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3590 .getReg(0);
3591 }
3592
getVectorElementPointer(Register VecPtr,LLT VecTy,Register Index)3593 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3594 Register Index) {
3595 LLT EltTy = VecTy.getElementType();
3596
3597 // Calculate the element offset and add it to the pointer.
3598 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3599 assert(EltSize * 8 == EltTy.getSizeInBits() &&
3600 "Converting bits to bytes lost precision");
3601
3602 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3603
3604 LLT IdxTy = MRI.getType(Index);
3605 auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3606 MIRBuilder.buildConstant(IdxTy, EltSize));
3607
3608 LLT PtrTy = MRI.getType(VecPtr);
3609 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3610 }
3611
3612 #ifndef NDEBUG
3613 /// Check that all vector operands have same number of elements. Other operands
3614 /// should be listed in NonVecOp.
hasSameNumEltsOnAllVectorOperands(GenericMachineInstr & MI,MachineRegisterInfo & MRI,std::initializer_list<unsigned> NonVecOpIndices)3615 static bool hasSameNumEltsOnAllVectorOperands(
3616 GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3617 std::initializer_list<unsigned> NonVecOpIndices) {
3618 if (MI.getNumMemOperands() != 0)
3619 return false;
3620
3621 LLT VecTy = MRI.getType(MI.getReg(0));
3622 if (!VecTy.isVector())
3623 return false;
3624 unsigned NumElts = VecTy.getNumElements();
3625
3626 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3627 MachineOperand &Op = MI.getOperand(OpIdx);
3628 if (!Op.isReg()) {
3629 if (!is_contained(NonVecOpIndices, OpIdx))
3630 return false;
3631 continue;
3632 }
3633
3634 LLT Ty = MRI.getType(Op.getReg());
3635 if (!Ty.isVector()) {
3636 if (!is_contained(NonVecOpIndices, OpIdx))
3637 return false;
3638 continue;
3639 }
3640
3641 if (Ty.getNumElements() != NumElts)
3642 return false;
3643 }
3644
3645 return true;
3646 }
3647 #endif
3648
3649 /// Fill \p DstOps with DstOps that have same number of elements combined as
3650 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3651 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3652 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
makeDstOps(SmallVectorImpl<DstOp> & DstOps,LLT Ty,unsigned NumElts)3653 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3654 unsigned NumElts) {
3655 LLT LeftoverTy;
3656 assert(Ty.isVector() && "Expected vector type");
3657 LLT EltTy = Ty.getElementType();
3658 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3659 int NumParts, NumLeftover;
3660 std::tie(NumParts, NumLeftover) =
3661 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3662
3663 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
3664 for (int i = 0; i < NumParts; ++i) {
3665 DstOps.push_back(NarrowTy);
3666 }
3667
3668 if (LeftoverTy.isValid()) {
3669 assert(NumLeftover == 1 && "expected exactly one leftover");
3670 DstOps.push_back(LeftoverTy);
3671 }
3672 }
3673
3674 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3675 /// made from \p Op depending on operand type.
broadcastSrcOp(SmallVectorImpl<SrcOp> & Ops,unsigned N,MachineOperand & Op)3676 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3677 MachineOperand &Op) {
3678 for (unsigned i = 0; i < N; ++i) {
3679 if (Op.isReg())
3680 Ops.push_back(Op.getReg());
3681 else if (Op.isImm())
3682 Ops.push_back(Op.getImm());
3683 else if (Op.isPredicate())
3684 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3685 else
3686 llvm_unreachable("Unsupported type");
3687 }
3688 }
3689
3690 // Handle splitting vector operations which need to have the same number of
3691 // elements in each type index, but each type index may have a different element
3692 // type.
3693 //
3694 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3695 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3696 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3697 //
3698 // Also handles some irregular breakdown cases, e.g.
3699 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3700 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3701 // s64 = G_SHL s64, s32
3702 LegalizerHelper::LegalizeResult
fewerElementsVectorMultiEltType(GenericMachineInstr & MI,unsigned NumElts,std::initializer_list<unsigned> NonVecOpIndices)3703 LegalizerHelper::fewerElementsVectorMultiEltType(
3704 GenericMachineInstr &MI, unsigned NumElts,
3705 std::initializer_list<unsigned> NonVecOpIndices) {
3706 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
3707 "Non-compatible opcode or not specified non-vector operands");
3708 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3709
3710 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3711 unsigned NumDefs = MI.getNumDefs();
3712
3713 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3714 // Build instructions with DstOps to use instruction found by CSE directly.
3715 // CSE copies found instruction into given vreg when building with vreg dest.
3716 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3717 // Output registers will be taken from created instructions.
3718 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3719 for (unsigned i = 0; i < NumDefs; ++i) {
3720 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3721 }
3722
3723 // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3724 // Operands listed in NonVecOpIndices will be used as is without splitting;
3725 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3726 // scalar condition (op 1), immediate in sext_inreg (op 2).
3727 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3728 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3729 ++UseIdx, ++UseNo) {
3730 if (is_contained(NonVecOpIndices, UseIdx)) {
3731 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3732 MI.getOperand(UseIdx));
3733 } else {
3734 SmallVector<Register, 8> SplitPieces;
3735 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3736 for (auto Reg : SplitPieces)
3737 InputOpsPieces[UseNo].push_back(Reg);
3738 }
3739 }
3740
3741 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3742
3743 // Take i-th piece of each input operand split and build sub-vector/scalar
3744 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3745 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3746 SmallVector<DstOp, 2> Defs;
3747 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3748 Defs.push_back(OutputOpsPieces[DstNo][i]);
3749
3750 SmallVector<SrcOp, 3> Uses;
3751 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3752 Uses.push_back(InputOpsPieces[InputNo][i]);
3753
3754 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3755 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3756 OutputRegs[DstNo].push_back(I.getReg(DstNo));
3757 }
3758
3759 // Merge small outputs into MI's output for each def operand.
3760 if (NumLeftovers) {
3761 for (unsigned i = 0; i < NumDefs; ++i)
3762 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3763 } else {
3764 for (unsigned i = 0; i < NumDefs; ++i)
3765 MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]);
3766 }
3767
3768 MI.eraseFromParent();
3769 return Legalized;
3770 }
3771
3772 LegalizerHelper::LegalizeResult
fewerElementsVectorPhi(GenericMachineInstr & MI,unsigned NumElts)3773 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3774 unsigned NumElts) {
3775 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3776
3777 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3778 unsigned NumDefs = MI.getNumDefs();
3779
3780 SmallVector<DstOp, 8> OutputOpsPieces;
3781 SmallVector<Register, 8> OutputRegs;
3782 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3783
3784 // Instructions that perform register split will be inserted in basic block
3785 // where register is defined (basic block is in the next operand).
3786 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3787 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3788 UseIdx += 2, ++UseNo) {
3789 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3790 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward());
3791 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3792 }
3793
3794 // Build PHIs with fewer elements.
3795 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3796 MIRBuilder.setInsertPt(*MI.getParent(), MI);
3797 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3798 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3799 Phi.addDef(
3800 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3801 OutputRegs.push_back(Phi.getReg(0));
3802
3803 for (unsigned j = 0; j < NumInputs / 2; ++j) {
3804 Phi.addUse(InputOpsPieces[j][i]);
3805 Phi.add(MI.getOperand(1 + j * 2 + 1));
3806 }
3807 }
3808
3809 // Merge small outputs into MI's def.
3810 if (NumLeftovers) {
3811 mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3812 } else {
3813 MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs);
3814 }
3815
3816 MI.eraseFromParent();
3817 return Legalized;
3818 }
3819
3820 LegalizerHelper::LegalizeResult
fewerElementsVectorUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3821 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3822 unsigned TypeIdx,
3823 LLT NarrowTy) {
3824 const int NumDst = MI.getNumOperands() - 1;
3825 const Register SrcReg = MI.getOperand(NumDst).getReg();
3826 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3827 LLT SrcTy = MRI.getType(SrcReg);
3828
3829 if (TypeIdx != 1 || NarrowTy == DstTy)
3830 return UnableToLegalize;
3831
3832 // Requires compatible types. Otherwise SrcReg should have been defined by
3833 // merge-like instruction that would get artifact combined. Most likely
3834 // instruction that defines SrcReg has to perform more/fewer elements
3835 // legalization compatible with NarrowTy.
3836 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3837 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3838
3839 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3840 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3841 return UnableToLegalize;
3842
3843 // This is most likely DstTy (smaller then register size) packed in SrcTy
3844 // (larger then register size) and since unmerge was not combined it will be
3845 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3846 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3847
3848 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3849 //
3850 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3851 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3852 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3853 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3854 const int NumUnmerge = Unmerge->getNumOperands() - 1;
3855 const int PartsPerUnmerge = NumDst / NumUnmerge;
3856
3857 for (int I = 0; I != NumUnmerge; ++I) {
3858 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3859
3860 for (int J = 0; J != PartsPerUnmerge; ++J)
3861 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3862 MIB.addUse(Unmerge.getReg(I));
3863 }
3864
3865 MI.eraseFromParent();
3866 return Legalized;
3867 }
3868
3869 LegalizerHelper::LegalizeResult
fewerElementsVectorMerge(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3870 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3871 LLT NarrowTy) {
3872 Register DstReg = MI.getOperand(0).getReg();
3873 LLT DstTy = MRI.getType(DstReg);
3874 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3875 // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3876 // that should have been artifact combined. Most likely instruction that uses
3877 // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3878 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3879 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3880 if (NarrowTy == SrcTy)
3881 return UnableToLegalize;
3882
3883 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3884 // is for old mir tests. Since the changes to more/fewer elements it should no
3885 // longer be possible to generate MIR like this when starting from llvm-ir
3886 // because LCMTy approach was replaced with merge/unmerge to vector elements.
3887 if (TypeIdx == 1) {
3888 assert(SrcTy.isVector() && "Expected vector types");
3889 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3890 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3891 (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3892 return UnableToLegalize;
3893 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3894 //
3895 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3896 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3897 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3898 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3899 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3900 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3901
3902 SmallVector<Register, 8> Elts;
3903 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3904 for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3905 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3906 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3907 Elts.push_back(Unmerge.getReg(j));
3908 }
3909
3910 SmallVector<Register, 8> NarrowTyElts;
3911 unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3912 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3913 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3914 ++i, Offset += NumNarrowTyElts) {
3915 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3916 NarrowTyElts.push_back(
3917 MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
3918 }
3919
3920 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts);
3921 MI.eraseFromParent();
3922 return Legalized;
3923 }
3924
3925 assert(TypeIdx == 0 && "Bad type index");
3926 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3927 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3928 return UnableToLegalize;
3929
3930 // This is most likely SrcTy (smaller then register size) packed in DstTy
3931 // (larger then register size) and since merge was not combined it will be
3932 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3933 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3934
3935 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3936 //
3937 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3938 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3939 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3940 SmallVector<Register, 8> NarrowTyElts;
3941 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3942 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3943 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3944 for (unsigned i = 0; i < NumParts; ++i) {
3945 SmallVector<Register, 8> Sources;
3946 for (unsigned j = 0; j < NumElts; ++j)
3947 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3948 NarrowTyElts.push_back(
3949 MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0));
3950 }
3951
3952 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts);
3953 MI.eraseFromParent();
3954 return Legalized;
3955 }
3956
3957 LegalizerHelper::LegalizeResult
fewerElementsVectorExtractInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowVecTy)3958 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3959 unsigned TypeIdx,
3960 LLT NarrowVecTy) {
3961 Register DstReg = MI.getOperand(0).getReg();
3962 Register SrcVec = MI.getOperand(1).getReg();
3963 Register InsertVal;
3964 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3965
3966 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3967 if (IsInsert)
3968 InsertVal = MI.getOperand(2).getReg();
3969
3970 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3971
3972 // TODO: Handle total scalarization case.
3973 if (!NarrowVecTy.isVector())
3974 return UnableToLegalize;
3975
3976 LLT VecTy = MRI.getType(SrcVec);
3977
3978 // If the index is a constant, we can really break this down as you would
3979 // expect, and index into the target size pieces.
3980 int64_t IdxVal;
3981 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
3982 if (MaybeCst) {
3983 IdxVal = MaybeCst->Value.getSExtValue();
3984 // Avoid out of bounds indexing the pieces.
3985 if (IdxVal >= VecTy.getNumElements()) {
3986 MIRBuilder.buildUndef(DstReg);
3987 MI.eraseFromParent();
3988 return Legalized;
3989 }
3990
3991 SmallVector<Register, 8> VecParts;
3992 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3993
3994 // Build a sequence of NarrowTy pieces in VecParts for this operand.
3995 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3996 TargetOpcode::G_ANYEXT);
3997
3998 unsigned NewNumElts = NarrowVecTy.getNumElements();
3999
4000 LLT IdxTy = MRI.getType(Idx);
4001 int64_t PartIdx = IdxVal / NewNumElts;
4002 auto NewIdx =
4003 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4004
4005 if (IsInsert) {
4006 LLT PartTy = MRI.getType(VecParts[PartIdx]);
4007
4008 // Use the adjusted index to insert into one of the subvectors.
4009 auto InsertPart = MIRBuilder.buildInsertVectorElement(
4010 PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4011 VecParts[PartIdx] = InsertPart.getReg(0);
4012
4013 // Recombine the inserted subvector with the others to reform the result
4014 // vector.
4015 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4016 } else {
4017 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4018 }
4019
4020 MI.eraseFromParent();
4021 return Legalized;
4022 }
4023
4024 // With a variable index, we can't perform the operation in a smaller type, so
4025 // we're forced to expand this.
4026 //
4027 // TODO: We could emit a chain of compare/select to figure out which piece to
4028 // index.
4029 return lowerExtractInsertVectorElt(MI);
4030 }
4031
4032 LegalizerHelper::LegalizeResult
reduceLoadStoreWidth(GLoadStore & LdStMI,unsigned TypeIdx,LLT NarrowTy)4033 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4034 LLT NarrowTy) {
4035 // FIXME: Don't know how to handle secondary types yet.
4036 if (TypeIdx != 0)
4037 return UnableToLegalize;
4038
4039 // This implementation doesn't work for atomics. Give up instead of doing
4040 // something invalid.
4041 if (LdStMI.isAtomic())
4042 return UnableToLegalize;
4043
4044 bool IsLoad = isa<GLoad>(LdStMI);
4045 Register ValReg = LdStMI.getReg(0);
4046 Register AddrReg = LdStMI.getPointerReg();
4047 LLT ValTy = MRI.getType(ValReg);
4048
4049 // FIXME: Do we need a distinct NarrowMemory legalize action?
4050 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4051 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4052 return UnableToLegalize;
4053 }
4054
4055 int NumParts = -1;
4056 int NumLeftover = -1;
4057 LLT LeftoverTy;
4058 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4059 if (IsLoad) {
4060 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4061 } else {
4062 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4063 NarrowLeftoverRegs)) {
4064 NumParts = NarrowRegs.size();
4065 NumLeftover = NarrowLeftoverRegs.size();
4066 }
4067 }
4068
4069 if (NumParts == -1)
4070 return UnableToLegalize;
4071
4072 LLT PtrTy = MRI.getType(AddrReg);
4073 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4074
4075 unsigned TotalSize = ValTy.getSizeInBits();
4076
4077 // Split the load/store into PartTy sized pieces starting at Offset. If this
4078 // is a load, return the new registers in ValRegs. For a store, each elements
4079 // of ValRegs should be PartTy. Returns the next offset that needs to be
4080 // handled.
4081 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4082 auto MMO = LdStMI.getMMO();
4083 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4084 unsigned NumParts, unsigned Offset) -> unsigned {
4085 MachineFunction &MF = MIRBuilder.getMF();
4086 unsigned PartSize = PartTy.getSizeInBits();
4087 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4088 ++Idx) {
4089 unsigned ByteOffset = Offset / 8;
4090 Register NewAddrReg;
4091
4092 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4093
4094 MachineMemOperand *NewMMO =
4095 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4096
4097 if (IsLoad) {
4098 Register Dst = MRI.createGenericVirtualRegister(PartTy);
4099 ValRegs.push_back(Dst);
4100 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4101 } else {
4102 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4103 }
4104 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4105 }
4106
4107 return Offset;
4108 };
4109
4110 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4111 unsigned HandledOffset =
4112 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4113
4114 // Handle the rest of the register if this isn't an even type breakdown.
4115 if (LeftoverTy.isValid())
4116 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4117
4118 if (IsLoad) {
4119 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4120 LeftoverTy, NarrowLeftoverRegs);
4121 }
4122
4123 LdStMI.eraseFromParent();
4124 return Legalized;
4125 }
4126
4127 LegalizerHelper::LegalizeResult
fewerElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4128 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4129 LLT NarrowTy) {
4130 using namespace TargetOpcode;
4131 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4132 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4133
4134 switch (MI.getOpcode()) {
4135 case G_IMPLICIT_DEF:
4136 case G_TRUNC:
4137 case G_AND:
4138 case G_OR:
4139 case G_XOR:
4140 case G_ADD:
4141 case G_SUB:
4142 case G_MUL:
4143 case G_PTR_ADD:
4144 case G_SMULH:
4145 case G_UMULH:
4146 case G_FADD:
4147 case G_FMUL:
4148 case G_FSUB:
4149 case G_FNEG:
4150 case G_FABS:
4151 case G_FCANONICALIZE:
4152 case G_FDIV:
4153 case G_FREM:
4154 case G_FMA:
4155 case G_FMAD:
4156 case G_FPOW:
4157 case G_FEXP:
4158 case G_FEXP2:
4159 case G_FLOG:
4160 case G_FLOG2:
4161 case G_FLOG10:
4162 case G_FNEARBYINT:
4163 case G_FCEIL:
4164 case G_FFLOOR:
4165 case G_FRINT:
4166 case G_INTRINSIC_ROUND:
4167 case G_INTRINSIC_ROUNDEVEN:
4168 case G_INTRINSIC_TRUNC:
4169 case G_FCOS:
4170 case G_FSIN:
4171 case G_FSQRT:
4172 case G_BSWAP:
4173 case G_BITREVERSE:
4174 case G_SDIV:
4175 case G_UDIV:
4176 case G_SREM:
4177 case G_UREM:
4178 case G_SDIVREM:
4179 case G_UDIVREM:
4180 case G_SMIN:
4181 case G_SMAX:
4182 case G_UMIN:
4183 case G_UMAX:
4184 case G_ABS:
4185 case G_FMINNUM:
4186 case G_FMAXNUM:
4187 case G_FMINNUM_IEEE:
4188 case G_FMAXNUM_IEEE:
4189 case G_FMINIMUM:
4190 case G_FMAXIMUM:
4191 case G_FSHL:
4192 case G_FSHR:
4193 case G_ROTL:
4194 case G_ROTR:
4195 case G_FREEZE:
4196 case G_SADDSAT:
4197 case G_SSUBSAT:
4198 case G_UADDSAT:
4199 case G_USUBSAT:
4200 case G_UMULO:
4201 case G_SMULO:
4202 case G_SHL:
4203 case G_LSHR:
4204 case G_ASHR:
4205 case G_SSHLSAT:
4206 case G_USHLSAT:
4207 case G_CTLZ:
4208 case G_CTLZ_ZERO_UNDEF:
4209 case G_CTTZ:
4210 case G_CTTZ_ZERO_UNDEF:
4211 case G_CTPOP:
4212 case G_FCOPYSIGN:
4213 case G_ZEXT:
4214 case G_SEXT:
4215 case G_ANYEXT:
4216 case G_FPEXT:
4217 case G_FPTRUNC:
4218 case G_SITOFP:
4219 case G_UITOFP:
4220 case G_FPTOSI:
4221 case G_FPTOUI:
4222 case G_INTTOPTR:
4223 case G_PTRTOINT:
4224 case G_ADDRSPACE_CAST:
4225 case G_UADDO:
4226 case G_USUBO:
4227 case G_UADDE:
4228 case G_USUBE:
4229 case G_SADDO:
4230 case G_SSUBO:
4231 case G_SADDE:
4232 case G_SSUBE:
4233 case G_STRICT_FADD:
4234 case G_STRICT_FSUB:
4235 case G_STRICT_FMUL:
4236 case G_STRICT_FMA:
4237 return fewerElementsVectorMultiEltType(GMI, NumElts);
4238 case G_ICMP:
4239 case G_FCMP:
4240 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4241 case G_IS_FPCLASS:
4242 return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/});
4243 case G_SELECT:
4244 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4245 return fewerElementsVectorMultiEltType(GMI, NumElts);
4246 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4247 case G_PHI:
4248 return fewerElementsVectorPhi(GMI, NumElts);
4249 case G_UNMERGE_VALUES:
4250 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4251 case G_BUILD_VECTOR:
4252 assert(TypeIdx == 0 && "not a vector type index");
4253 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4254 case G_CONCAT_VECTORS:
4255 if (TypeIdx != 1) // TODO: This probably does work as expected already.
4256 return UnableToLegalize;
4257 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4258 case G_EXTRACT_VECTOR_ELT:
4259 case G_INSERT_VECTOR_ELT:
4260 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4261 case G_LOAD:
4262 case G_STORE:
4263 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4264 case G_SEXT_INREG:
4265 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4266 GISEL_VECREDUCE_CASES_NONSEQ
4267 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4268 case G_SHUFFLE_VECTOR:
4269 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4270 default:
4271 return UnableToLegalize;
4272 }
4273 }
4274
fewerElementsVectorShuffle(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4275 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4276 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4277 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4278 if (TypeIdx != 0)
4279 return UnableToLegalize;
4280
4281 Register DstReg = MI.getOperand(0).getReg();
4282 Register Src1Reg = MI.getOperand(1).getReg();
4283 Register Src2Reg = MI.getOperand(2).getReg();
4284 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4285 LLT DstTy = MRI.getType(DstReg);
4286 LLT Src1Ty = MRI.getType(Src1Reg);
4287 LLT Src2Ty = MRI.getType(Src2Reg);
4288 // The shuffle should be canonicalized by now.
4289 if (DstTy != Src1Ty)
4290 return UnableToLegalize;
4291 if (DstTy != Src2Ty)
4292 return UnableToLegalize;
4293
4294 if (!isPowerOf2_32(DstTy.getNumElements()))
4295 return UnableToLegalize;
4296
4297 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4298 // Further legalization attempts will be needed to do split further.
4299 NarrowTy =
4300 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4301 unsigned NewElts = NarrowTy.getNumElements();
4302
4303 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4304 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4305 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4306 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4307 SplitSrc2Regs[1]};
4308
4309 Register Hi, Lo;
4310
4311 // If Lo or Hi uses elements from at most two of the four input vectors, then
4312 // express it as a vector shuffle of those two inputs. Otherwise extract the
4313 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4314 SmallVector<int, 16> Ops;
4315 for (unsigned High = 0; High < 2; ++High) {
4316 Register &Output = High ? Hi : Lo;
4317
4318 // Build a shuffle mask for the output, discovering on the fly which
4319 // input vectors to use as shuffle operands (recorded in InputUsed).
4320 // If building a suitable shuffle vector proves too hard, then bail
4321 // out with useBuildVector set.
4322 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4323 unsigned FirstMaskIdx = High * NewElts;
4324 bool UseBuildVector = false;
4325 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4326 // The mask element. This indexes into the input.
4327 int Idx = Mask[FirstMaskIdx + MaskOffset];
4328
4329 // The input vector this mask element indexes into.
4330 unsigned Input = (unsigned)Idx / NewElts;
4331
4332 if (Input >= std::size(Inputs)) {
4333 // The mask element does not index into any input vector.
4334 Ops.push_back(-1);
4335 continue;
4336 }
4337
4338 // Turn the index into an offset from the start of the input vector.
4339 Idx -= Input * NewElts;
4340
4341 // Find or create a shuffle vector operand to hold this input.
4342 unsigned OpNo;
4343 for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) {
4344 if (InputUsed[OpNo] == Input) {
4345 // This input vector is already an operand.
4346 break;
4347 } else if (InputUsed[OpNo] == -1U) {
4348 // Create a new operand for this input vector.
4349 InputUsed[OpNo] = Input;
4350 break;
4351 }
4352 }
4353
4354 if (OpNo >= std::size(InputUsed)) {
4355 // More than two input vectors used! Give up on trying to create a
4356 // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
4357 UseBuildVector = true;
4358 break;
4359 }
4360
4361 // Add the mask index for the new shuffle vector.
4362 Ops.push_back(Idx + OpNo * NewElts);
4363 }
4364
4365 if (UseBuildVector) {
4366 LLT EltTy = NarrowTy.getElementType();
4367 SmallVector<Register, 16> SVOps;
4368
4369 // Extract the input elements by hand.
4370 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4371 // The mask element. This indexes into the input.
4372 int Idx = Mask[FirstMaskIdx + MaskOffset];
4373
4374 // The input vector this mask element indexes into.
4375 unsigned Input = (unsigned)Idx / NewElts;
4376
4377 if (Input >= std::size(Inputs)) {
4378 // The mask element is "undef" or indexes off the end of the input.
4379 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4380 continue;
4381 }
4382
4383 // Turn the index into an offset from the start of the input vector.
4384 Idx -= Input * NewElts;
4385
4386 // Extract the vector element by hand.
4387 SVOps.push_back(MIRBuilder
4388 .buildExtractVectorElement(
4389 EltTy, Inputs[Input],
4390 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4391 .getReg(0));
4392 }
4393
4394 // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4395 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4396 } else if (InputUsed[0] == -1U) {
4397 // No input vectors were used! The result is undefined.
4398 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4399 } else {
4400 Register Op0 = Inputs[InputUsed[0]];
4401 // If only one input was used, use an undefined vector for the other.
4402 Register Op1 = InputUsed[1] == -1U
4403 ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4404 : Inputs[InputUsed[1]];
4405 // At least one input vector was used. Create a new shuffle vector.
4406 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4407 }
4408
4409 Ops.clear();
4410 }
4411
4412 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4413 MI.eraseFromParent();
4414 return Legalized;
4415 }
4416
getScalarOpcForReduction(unsigned Opc)4417 static unsigned getScalarOpcForReduction(unsigned Opc) {
4418 unsigned ScalarOpc;
4419 switch (Opc) {
4420 case TargetOpcode::G_VECREDUCE_FADD:
4421 ScalarOpc = TargetOpcode::G_FADD;
4422 break;
4423 case TargetOpcode::G_VECREDUCE_FMUL:
4424 ScalarOpc = TargetOpcode::G_FMUL;
4425 break;
4426 case TargetOpcode::G_VECREDUCE_FMAX:
4427 ScalarOpc = TargetOpcode::G_FMAXNUM;
4428 break;
4429 case TargetOpcode::G_VECREDUCE_FMIN:
4430 ScalarOpc = TargetOpcode::G_FMINNUM;
4431 break;
4432 case TargetOpcode::G_VECREDUCE_ADD:
4433 ScalarOpc = TargetOpcode::G_ADD;
4434 break;
4435 case TargetOpcode::G_VECREDUCE_MUL:
4436 ScalarOpc = TargetOpcode::G_MUL;
4437 break;
4438 case TargetOpcode::G_VECREDUCE_AND:
4439 ScalarOpc = TargetOpcode::G_AND;
4440 break;
4441 case TargetOpcode::G_VECREDUCE_OR:
4442 ScalarOpc = TargetOpcode::G_OR;
4443 break;
4444 case TargetOpcode::G_VECREDUCE_XOR:
4445 ScalarOpc = TargetOpcode::G_XOR;
4446 break;
4447 case TargetOpcode::G_VECREDUCE_SMAX:
4448 ScalarOpc = TargetOpcode::G_SMAX;
4449 break;
4450 case TargetOpcode::G_VECREDUCE_SMIN:
4451 ScalarOpc = TargetOpcode::G_SMIN;
4452 break;
4453 case TargetOpcode::G_VECREDUCE_UMAX:
4454 ScalarOpc = TargetOpcode::G_UMAX;
4455 break;
4456 case TargetOpcode::G_VECREDUCE_UMIN:
4457 ScalarOpc = TargetOpcode::G_UMIN;
4458 break;
4459 default:
4460 llvm_unreachable("Unhandled reduction");
4461 }
4462 return ScalarOpc;
4463 }
4464
fewerElementsVectorReductions(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)4465 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4466 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4467 unsigned Opc = MI.getOpcode();
4468 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4469 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4470 "Sequential reductions not expected");
4471
4472 if (TypeIdx != 1)
4473 return UnableToLegalize;
4474
4475 // The semantics of the normal non-sequential reductions allow us to freely
4476 // re-associate the operation.
4477 Register SrcReg = MI.getOperand(1).getReg();
4478 LLT SrcTy = MRI.getType(SrcReg);
4479 Register DstReg = MI.getOperand(0).getReg();
4480 LLT DstTy = MRI.getType(DstReg);
4481
4482 if (NarrowTy.isVector() &&
4483 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4484 return UnableToLegalize;
4485
4486 unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4487 SmallVector<Register> SplitSrcs;
4488 // If NarrowTy is a scalar then we're being asked to scalarize.
4489 const unsigned NumParts =
4490 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4491 : SrcTy.getNumElements();
4492
4493 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4494 if (NarrowTy.isScalar()) {
4495 if (DstTy != NarrowTy)
4496 return UnableToLegalize; // FIXME: handle implicit extensions.
4497
4498 if (isPowerOf2_32(NumParts)) {
4499 // Generate a tree of scalar operations to reduce the critical path.
4500 SmallVector<Register> PartialResults;
4501 unsigned NumPartsLeft = NumParts;
4502 while (NumPartsLeft > 1) {
4503 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4504 PartialResults.emplace_back(
4505 MIRBuilder
4506 .buildInstr(ScalarOpc, {NarrowTy},
4507 {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4508 .getReg(0));
4509 }
4510 SplitSrcs = PartialResults;
4511 PartialResults.clear();
4512 NumPartsLeft = SplitSrcs.size();
4513 }
4514 assert(SplitSrcs.size() == 1);
4515 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4516 MI.eraseFromParent();
4517 return Legalized;
4518 }
4519 // If we can't generate a tree, then just do sequential operations.
4520 Register Acc = SplitSrcs[0];
4521 for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4522 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4523 .getReg(0);
4524 MIRBuilder.buildCopy(DstReg, Acc);
4525 MI.eraseFromParent();
4526 return Legalized;
4527 }
4528 SmallVector<Register> PartialReductions;
4529 for (unsigned Part = 0; Part < NumParts; ++Part) {
4530 PartialReductions.push_back(
4531 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4532 }
4533
4534
4535 // If the types involved are powers of 2, we can generate intermediate vector
4536 // ops, before generating a final reduction operation.
4537 if (isPowerOf2_32(SrcTy.getNumElements()) &&
4538 isPowerOf2_32(NarrowTy.getNumElements())) {
4539 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4540 }
4541
4542 Register Acc = PartialReductions[0];
4543 for (unsigned Part = 1; Part < NumParts; ++Part) {
4544 if (Part == NumParts - 1) {
4545 MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4546 {Acc, PartialReductions[Part]});
4547 } else {
4548 Acc = MIRBuilder
4549 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4550 .getReg(0);
4551 }
4552 }
4553 MI.eraseFromParent();
4554 return Legalized;
4555 }
4556
4557 LegalizerHelper::LegalizeResult
tryNarrowPow2Reduction(MachineInstr & MI,Register SrcReg,LLT SrcTy,LLT NarrowTy,unsigned ScalarOpc)4558 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4559 LLT SrcTy, LLT NarrowTy,
4560 unsigned ScalarOpc) {
4561 SmallVector<Register> SplitSrcs;
4562 // Split the sources into NarrowTy size pieces.
4563 extractParts(SrcReg, NarrowTy,
4564 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4565 // We're going to do a tree reduction using vector operations until we have
4566 // one NarrowTy size value left.
4567 while (SplitSrcs.size() > 1) {
4568 SmallVector<Register> PartialRdxs;
4569 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4570 Register LHS = SplitSrcs[Idx];
4571 Register RHS = SplitSrcs[Idx + 1];
4572 // Create the intermediate vector op.
4573 Register Res =
4574 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4575 PartialRdxs.push_back(Res);
4576 }
4577 SplitSrcs = std::move(PartialRdxs);
4578 }
4579 // Finally generate the requested NarrowTy based reduction.
4580 Observer.changingInstr(MI);
4581 MI.getOperand(1).setReg(SplitSrcs[0]);
4582 Observer.changedInstr(MI);
4583 return Legalized;
4584 }
4585
4586 LegalizerHelper::LegalizeResult
narrowScalarShiftByConstant(MachineInstr & MI,const APInt & Amt,const LLT HalfTy,const LLT AmtTy)4587 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4588 const LLT HalfTy, const LLT AmtTy) {
4589
4590 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4591 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4592 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4593
4594 if (Amt.isZero()) {
4595 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH});
4596 MI.eraseFromParent();
4597 return Legalized;
4598 }
4599
4600 LLT NVT = HalfTy;
4601 unsigned NVTBits = HalfTy.getSizeInBits();
4602 unsigned VTBits = 2 * NVTBits;
4603
4604 SrcOp Lo(Register(0)), Hi(Register(0));
4605 if (MI.getOpcode() == TargetOpcode::G_SHL) {
4606 if (Amt.ugt(VTBits)) {
4607 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4608 } else if (Amt.ugt(NVTBits)) {
4609 Lo = MIRBuilder.buildConstant(NVT, 0);
4610 Hi = MIRBuilder.buildShl(NVT, InL,
4611 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4612 } else if (Amt == NVTBits) {
4613 Lo = MIRBuilder.buildConstant(NVT, 0);
4614 Hi = InL;
4615 } else {
4616 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4617 auto OrLHS =
4618 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4619 auto OrRHS = MIRBuilder.buildLShr(
4620 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4621 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4622 }
4623 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4624 if (Amt.ugt(VTBits)) {
4625 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4626 } else if (Amt.ugt(NVTBits)) {
4627 Lo = MIRBuilder.buildLShr(NVT, InH,
4628 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4629 Hi = MIRBuilder.buildConstant(NVT, 0);
4630 } else if (Amt == NVTBits) {
4631 Lo = InH;
4632 Hi = MIRBuilder.buildConstant(NVT, 0);
4633 } else {
4634 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4635
4636 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4637 auto OrRHS = MIRBuilder.buildShl(
4638 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4639
4640 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4641 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4642 }
4643 } else {
4644 if (Amt.ugt(VTBits)) {
4645 Hi = Lo = MIRBuilder.buildAShr(
4646 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4647 } else if (Amt.ugt(NVTBits)) {
4648 Lo = MIRBuilder.buildAShr(NVT, InH,
4649 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4650 Hi = MIRBuilder.buildAShr(NVT, InH,
4651 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4652 } else if (Amt == NVTBits) {
4653 Lo = InH;
4654 Hi = MIRBuilder.buildAShr(NVT, InH,
4655 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4656 } else {
4657 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4658
4659 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4660 auto OrRHS = MIRBuilder.buildShl(
4661 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4662
4663 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4664 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4665 }
4666 }
4667
4668 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi});
4669 MI.eraseFromParent();
4670
4671 return Legalized;
4672 }
4673
4674 // TODO: Optimize if constant shift amount.
4675 LegalizerHelper::LegalizeResult
narrowScalarShift(MachineInstr & MI,unsigned TypeIdx,LLT RequestedTy)4676 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4677 LLT RequestedTy) {
4678 if (TypeIdx == 1) {
4679 Observer.changingInstr(MI);
4680 narrowScalarSrc(MI, RequestedTy, 2);
4681 Observer.changedInstr(MI);
4682 return Legalized;
4683 }
4684
4685 Register DstReg = MI.getOperand(0).getReg();
4686 LLT DstTy = MRI.getType(DstReg);
4687 if (DstTy.isVector())
4688 return UnableToLegalize;
4689
4690 Register Amt = MI.getOperand(2).getReg();
4691 LLT ShiftAmtTy = MRI.getType(Amt);
4692 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4693 if (DstEltSize % 2 != 0)
4694 return UnableToLegalize;
4695
4696 // Ignore the input type. We can only go to exactly half the size of the
4697 // input. If that isn't small enough, the resulting pieces will be further
4698 // legalized.
4699 const unsigned NewBitSize = DstEltSize / 2;
4700 const LLT HalfTy = LLT::scalar(NewBitSize);
4701 const LLT CondTy = LLT::scalar(1);
4702
4703 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4704 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4705 ShiftAmtTy);
4706 }
4707
4708 // TODO: Expand with known bits.
4709
4710 // Handle the fully general expansion by an unknown amount.
4711 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4712
4713 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4714 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4715 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4716
4717 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4718 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4719
4720 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4721 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4722 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4723
4724 Register ResultRegs[2];
4725 switch (MI.getOpcode()) {
4726 case TargetOpcode::G_SHL: {
4727 // Short: ShAmt < NewBitSize
4728 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4729
4730 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4731 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4732 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4733
4734 // Long: ShAmt >= NewBitSize
4735 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
4736 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4737
4738 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4739 auto Hi = MIRBuilder.buildSelect(
4740 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4741
4742 ResultRegs[0] = Lo.getReg(0);
4743 ResultRegs[1] = Hi.getReg(0);
4744 break;
4745 }
4746 case TargetOpcode::G_LSHR:
4747 case TargetOpcode::G_ASHR: {
4748 // Short: ShAmt < NewBitSize
4749 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4750
4751 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4752 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4753 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4754
4755 // Long: ShAmt >= NewBitSize
4756 MachineInstrBuilder HiL;
4757 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4758 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
4759 } else {
4760 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4761 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
4762 }
4763 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4764 {InH, AmtExcess}); // Lo from Hi part.
4765
4766 auto Lo = MIRBuilder.buildSelect(
4767 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4768
4769 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4770
4771 ResultRegs[0] = Lo.getReg(0);
4772 ResultRegs[1] = Hi.getReg(0);
4773 break;
4774 }
4775 default:
4776 llvm_unreachable("not a shift");
4777 }
4778
4779 MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs);
4780 MI.eraseFromParent();
4781 return Legalized;
4782 }
4783
4784 LegalizerHelper::LegalizeResult
moreElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4785 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4786 LLT MoreTy) {
4787 assert(TypeIdx == 0 && "Expecting only Idx 0");
4788
4789 Observer.changingInstr(MI);
4790 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4791 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4792 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4793 moreElementsVectorSrc(MI, MoreTy, I);
4794 }
4795
4796 MachineBasicBlock &MBB = *MI.getParent();
4797 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4798 moreElementsVectorDst(MI, MoreTy, 0);
4799 Observer.changedInstr(MI);
4800 return Legalized;
4801 }
4802
4803 LegalizerHelper::LegalizeResult
moreElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4804 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4805 LLT MoreTy) {
4806 unsigned Opc = MI.getOpcode();
4807 switch (Opc) {
4808 case TargetOpcode::G_IMPLICIT_DEF:
4809 case TargetOpcode::G_LOAD: {
4810 if (TypeIdx != 0)
4811 return UnableToLegalize;
4812 Observer.changingInstr(MI);
4813 moreElementsVectorDst(MI, MoreTy, 0);
4814 Observer.changedInstr(MI);
4815 return Legalized;
4816 }
4817 case TargetOpcode::G_STORE:
4818 if (TypeIdx != 0)
4819 return UnableToLegalize;
4820 Observer.changingInstr(MI);
4821 moreElementsVectorSrc(MI, MoreTy, 0);
4822 Observer.changedInstr(MI);
4823 return Legalized;
4824 case TargetOpcode::G_AND:
4825 case TargetOpcode::G_OR:
4826 case TargetOpcode::G_XOR:
4827 case TargetOpcode::G_ADD:
4828 case TargetOpcode::G_SUB:
4829 case TargetOpcode::G_MUL:
4830 case TargetOpcode::G_FADD:
4831 case TargetOpcode::G_FMUL:
4832 case TargetOpcode::G_UADDSAT:
4833 case TargetOpcode::G_USUBSAT:
4834 case TargetOpcode::G_SADDSAT:
4835 case TargetOpcode::G_SSUBSAT:
4836 case TargetOpcode::G_SMIN:
4837 case TargetOpcode::G_SMAX:
4838 case TargetOpcode::G_UMIN:
4839 case TargetOpcode::G_UMAX:
4840 case TargetOpcode::G_FMINNUM:
4841 case TargetOpcode::G_FMAXNUM:
4842 case TargetOpcode::G_FMINNUM_IEEE:
4843 case TargetOpcode::G_FMAXNUM_IEEE:
4844 case TargetOpcode::G_FMINIMUM:
4845 case TargetOpcode::G_FMAXIMUM:
4846 case TargetOpcode::G_STRICT_FADD:
4847 case TargetOpcode::G_STRICT_FSUB:
4848 case TargetOpcode::G_STRICT_FMUL: {
4849 Observer.changingInstr(MI);
4850 moreElementsVectorSrc(MI, MoreTy, 1);
4851 moreElementsVectorSrc(MI, MoreTy, 2);
4852 moreElementsVectorDst(MI, MoreTy, 0);
4853 Observer.changedInstr(MI);
4854 return Legalized;
4855 }
4856 case TargetOpcode::G_FMA:
4857 case TargetOpcode::G_STRICT_FMA:
4858 case TargetOpcode::G_FSHR:
4859 case TargetOpcode::G_FSHL: {
4860 Observer.changingInstr(MI);
4861 moreElementsVectorSrc(MI, MoreTy, 1);
4862 moreElementsVectorSrc(MI, MoreTy, 2);
4863 moreElementsVectorSrc(MI, MoreTy, 3);
4864 moreElementsVectorDst(MI, MoreTy, 0);
4865 Observer.changedInstr(MI);
4866 return Legalized;
4867 }
4868 case TargetOpcode::G_EXTRACT:
4869 if (TypeIdx != 1)
4870 return UnableToLegalize;
4871 Observer.changingInstr(MI);
4872 moreElementsVectorSrc(MI, MoreTy, 1);
4873 Observer.changedInstr(MI);
4874 return Legalized;
4875 case TargetOpcode::G_INSERT:
4876 case TargetOpcode::G_FREEZE:
4877 case TargetOpcode::G_FNEG:
4878 case TargetOpcode::G_FABS:
4879 case TargetOpcode::G_BSWAP:
4880 case TargetOpcode::G_FCANONICALIZE:
4881 case TargetOpcode::G_SEXT_INREG:
4882 if (TypeIdx != 0)
4883 return UnableToLegalize;
4884 Observer.changingInstr(MI);
4885 moreElementsVectorSrc(MI, MoreTy, 1);
4886 moreElementsVectorDst(MI, MoreTy, 0);
4887 Observer.changedInstr(MI);
4888 return Legalized;
4889 case TargetOpcode::G_SELECT: {
4890 Register DstReg = MI.getOperand(0).getReg();
4891 Register CondReg = MI.getOperand(1).getReg();
4892 LLT DstTy = MRI.getType(DstReg);
4893 LLT CondTy = MRI.getType(CondReg);
4894 if (TypeIdx == 1) {
4895 if (!CondTy.isScalar() ||
4896 DstTy.getElementCount() != MoreTy.getElementCount())
4897 return UnableToLegalize;
4898
4899 // This is turning a scalar select of vectors into a vector
4900 // select. Broadcast the select condition.
4901 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg);
4902 Observer.changingInstr(MI);
4903 MI.getOperand(1).setReg(ShufSplat.getReg(0));
4904 Observer.changedInstr(MI);
4905 return Legalized;
4906 }
4907
4908 if (CondTy.isVector())
4909 return UnableToLegalize;
4910
4911 Observer.changingInstr(MI);
4912 moreElementsVectorSrc(MI, MoreTy, 2);
4913 moreElementsVectorSrc(MI, MoreTy, 3);
4914 moreElementsVectorDst(MI, MoreTy, 0);
4915 Observer.changedInstr(MI);
4916 return Legalized;
4917 }
4918 case TargetOpcode::G_UNMERGE_VALUES:
4919 return UnableToLegalize;
4920 case TargetOpcode::G_PHI:
4921 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4922 case TargetOpcode::G_SHUFFLE_VECTOR:
4923 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4924 case TargetOpcode::G_BUILD_VECTOR: {
4925 SmallVector<SrcOp, 8> Elts;
4926 for (auto Op : MI.uses()) {
4927 Elts.push_back(Op.getReg());
4928 }
4929
4930 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4931 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4932 }
4933
4934 MIRBuilder.buildDeleteTrailingVectorElements(
4935 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4936 MI.eraseFromParent();
4937 return Legalized;
4938 }
4939 case TargetOpcode::G_TRUNC: {
4940 Observer.changingInstr(MI);
4941 moreElementsVectorSrc(MI, MoreTy, 1);
4942 moreElementsVectorDst(MI, MoreTy, 0);
4943 Observer.changedInstr(MI);
4944 return Legalized;
4945 }
4946 default:
4947 return UnableToLegalize;
4948 }
4949 }
4950
4951 /// Expand source vectors to the size of destination vector.
4952 static LegalizerHelper::LegalizeResult
equalizeVectorShuffleLengths(MachineInstr & MI,MachineIRBuilder & MIRBuilder)4953 equalizeVectorShuffleLengths(MachineInstr &MI, MachineIRBuilder &MIRBuilder) {
4954 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4955
4956 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4957 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4958 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4959 unsigned MaskNumElts = Mask.size();
4960 unsigned SrcNumElts = SrcTy.getNumElements();
4961 Register DstReg = MI.getOperand(0).getReg();
4962 LLT DestEltTy = DstTy.getElementType();
4963
4964 // TODO: Normalize the shuffle vector since mask and vector length don't
4965 // match.
4966 if (MaskNumElts <= SrcNumElts) {
4967 return LegalizerHelper::LegalizeResult::UnableToLegalize;
4968 }
4969
4970 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4971 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4972 LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy);
4973
4974 // Create new source vectors by concatenating the initial
4975 // source vectors with undefined vectors of the same size.
4976 auto Undef = MIRBuilder.buildUndef(SrcTy);
4977 SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0));
4978 SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0));
4979 MOps1[0] = MI.getOperand(1).getReg();
4980 MOps2[0] = MI.getOperand(2).getReg();
4981
4982 auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1);
4983 auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2);
4984
4985 // Readjust mask for new input vector length.
4986 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4987 for (unsigned I = 0; I != MaskNumElts; ++I) {
4988 int Idx = Mask[I];
4989 if (Idx >= static_cast<int>(SrcNumElts))
4990 Idx += PaddedMaskNumElts - SrcNumElts;
4991 MappedOps[I] = Idx;
4992 }
4993
4994 // If we got more elements than required, extract subvector.
4995 if (MaskNumElts != PaddedMaskNumElts) {
4996 auto Shuffle =
4997 MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps);
4998
4999 SmallVector<Register, 16> Elts(MaskNumElts);
5000 for (unsigned I = 0; I < MaskNumElts; ++I) {
5001 Elts[I] =
5002 MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I)
5003 .getReg(0);
5004 }
5005 MIRBuilder.buildBuildVector(DstReg, Elts);
5006 } else {
5007 MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps);
5008 }
5009
5010 MI.eraseFromParent();
5011 return LegalizerHelper::LegalizeResult::Legalized;
5012 }
5013
5014 LegalizerHelper::LegalizeResult
moreElementsVectorShuffle(MachineInstr & MI,unsigned int TypeIdx,LLT MoreTy)5015 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5016 unsigned int TypeIdx, LLT MoreTy) {
5017 Register DstReg = MI.getOperand(0).getReg();
5018 Register Src1Reg = MI.getOperand(1).getReg();
5019 Register Src2Reg = MI.getOperand(2).getReg();
5020 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5021 LLT DstTy = MRI.getType(DstReg);
5022 LLT Src1Ty = MRI.getType(Src1Reg);
5023 LLT Src2Ty = MRI.getType(Src2Reg);
5024 unsigned NumElts = DstTy.getNumElements();
5025 unsigned WidenNumElts = MoreTy.getNumElements();
5026
5027 if (DstTy.isVector() && Src1Ty.isVector() &&
5028 DstTy.getNumElements() > Src1Ty.getNumElements()) {
5029 return equalizeVectorShuffleLengths(MI, MIRBuilder);
5030 }
5031
5032 if (TypeIdx != 0)
5033 return UnableToLegalize;
5034
5035 // Expect a canonicalized shuffle.
5036 if (DstTy != Src1Ty || DstTy != Src2Ty)
5037 return UnableToLegalize;
5038
5039 moreElementsVectorSrc(MI, MoreTy, 1);
5040 moreElementsVectorSrc(MI, MoreTy, 2);
5041
5042 // Adjust mask based on new input vector length.
5043 SmallVector<int, 16> NewMask;
5044 for (unsigned I = 0; I != NumElts; ++I) {
5045 int Idx = Mask[I];
5046 if (Idx < static_cast<int>(NumElts))
5047 NewMask.push_back(Idx);
5048 else
5049 NewMask.push_back(Idx - NumElts + WidenNumElts);
5050 }
5051 for (unsigned I = NumElts; I != WidenNumElts; ++I)
5052 NewMask.push_back(-1);
5053 moreElementsVectorDst(MI, MoreTy, 0);
5054 MIRBuilder.setInstrAndDebugLoc(MI);
5055 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5056 MI.getOperand(1).getReg(),
5057 MI.getOperand(2).getReg(), NewMask);
5058 MI.eraseFromParent();
5059 return Legalized;
5060 }
5061
multiplyRegisters(SmallVectorImpl<Register> & DstRegs,ArrayRef<Register> Src1Regs,ArrayRef<Register> Src2Regs,LLT NarrowTy)5062 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5063 ArrayRef<Register> Src1Regs,
5064 ArrayRef<Register> Src2Regs,
5065 LLT NarrowTy) {
5066 MachineIRBuilder &B = MIRBuilder;
5067 unsigned SrcParts = Src1Regs.size();
5068 unsigned DstParts = DstRegs.size();
5069
5070 unsigned DstIdx = 0; // Low bits of the result.
5071 Register FactorSum =
5072 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5073 DstRegs[DstIdx] = FactorSum;
5074
5075 unsigned CarrySumPrevDstIdx;
5076 SmallVector<Register, 4> Factors;
5077
5078 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5079 // Collect low parts of muls for DstIdx.
5080 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5081 i <= std::min(DstIdx, SrcParts - 1); ++i) {
5082 MachineInstrBuilder Mul =
5083 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5084 Factors.push_back(Mul.getReg(0));
5085 }
5086 // Collect high parts of muls from previous DstIdx.
5087 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5088 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5089 MachineInstrBuilder Umulh =
5090 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5091 Factors.push_back(Umulh.getReg(0));
5092 }
5093 // Add CarrySum from additions calculated for previous DstIdx.
5094 if (DstIdx != 1) {
5095 Factors.push_back(CarrySumPrevDstIdx);
5096 }
5097
5098 Register CarrySum;
5099 // Add all factors and accumulate all carries into CarrySum.
5100 if (DstIdx != DstParts - 1) {
5101 MachineInstrBuilder Uaddo =
5102 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5103 FactorSum = Uaddo.getReg(0);
5104 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5105 for (unsigned i = 2; i < Factors.size(); ++i) {
5106 MachineInstrBuilder Uaddo =
5107 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5108 FactorSum = Uaddo.getReg(0);
5109 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5110 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5111 }
5112 } else {
5113 // Since value for the next index is not calculated, neither is CarrySum.
5114 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5115 for (unsigned i = 2; i < Factors.size(); ++i)
5116 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5117 }
5118
5119 CarrySumPrevDstIdx = CarrySum;
5120 DstRegs[DstIdx] = FactorSum;
5121 Factors.clear();
5122 }
5123 }
5124
5125 LegalizerHelper::LegalizeResult
narrowScalarAddSub(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5126 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5127 LLT NarrowTy) {
5128 if (TypeIdx != 0)
5129 return UnableToLegalize;
5130
5131 Register DstReg = MI.getOperand(0).getReg();
5132 LLT DstType = MRI.getType(DstReg);
5133 // FIXME: add support for vector types
5134 if (DstType.isVector())
5135 return UnableToLegalize;
5136
5137 unsigned Opcode = MI.getOpcode();
5138 unsigned OpO, OpE, OpF;
5139 switch (Opcode) {
5140 case TargetOpcode::G_SADDO:
5141 case TargetOpcode::G_SADDE:
5142 case TargetOpcode::G_UADDO:
5143 case TargetOpcode::G_UADDE:
5144 case TargetOpcode::G_ADD:
5145 OpO = TargetOpcode::G_UADDO;
5146 OpE = TargetOpcode::G_UADDE;
5147 OpF = TargetOpcode::G_UADDE;
5148 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5149 OpF = TargetOpcode::G_SADDE;
5150 break;
5151 case TargetOpcode::G_SSUBO:
5152 case TargetOpcode::G_SSUBE:
5153 case TargetOpcode::G_USUBO:
5154 case TargetOpcode::G_USUBE:
5155 case TargetOpcode::G_SUB:
5156 OpO = TargetOpcode::G_USUBO;
5157 OpE = TargetOpcode::G_USUBE;
5158 OpF = TargetOpcode::G_USUBE;
5159 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5160 OpF = TargetOpcode::G_SSUBE;
5161 break;
5162 default:
5163 llvm_unreachable("Unexpected add/sub opcode!");
5164 }
5165
5166 // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5167 unsigned NumDefs = MI.getNumExplicitDefs();
5168 Register Src1 = MI.getOperand(NumDefs).getReg();
5169 Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5170 Register CarryDst, CarryIn;
5171 if (NumDefs == 2)
5172 CarryDst = MI.getOperand(1).getReg();
5173 if (MI.getNumOperands() == NumDefs + 3)
5174 CarryIn = MI.getOperand(NumDefs + 2).getReg();
5175
5176 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5177 LLT LeftoverTy, DummyTy;
5178 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5179 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5180 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5181
5182 int NarrowParts = Src1Regs.size();
5183 for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5184 Src1Regs.push_back(Src1Left[I]);
5185 Src2Regs.push_back(Src2Left[I]);
5186 }
5187 DstRegs.reserve(Src1Regs.size());
5188
5189 for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5190 Register DstReg =
5191 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5192 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5193 // Forward the final carry-out to the destination register
5194 if (i == e - 1 && CarryDst)
5195 CarryOut = CarryDst;
5196
5197 if (!CarryIn) {
5198 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5199 {Src1Regs[i], Src2Regs[i]});
5200 } else if (i == e - 1) {
5201 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5202 {Src1Regs[i], Src2Regs[i], CarryIn});
5203 } else {
5204 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5205 {Src1Regs[i], Src2Regs[i], CarryIn});
5206 }
5207
5208 DstRegs.push_back(DstReg);
5209 CarryIn = CarryOut;
5210 }
5211 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5212 ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5213 ArrayRef(DstRegs).drop_front(NarrowParts));
5214
5215 MI.eraseFromParent();
5216 return Legalized;
5217 }
5218
5219 LegalizerHelper::LegalizeResult
narrowScalarMul(MachineInstr & MI,LLT NarrowTy)5220 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5221 Register DstReg = MI.getOperand(0).getReg();
5222 Register Src1 = MI.getOperand(1).getReg();
5223 Register Src2 = MI.getOperand(2).getReg();
5224
5225 LLT Ty = MRI.getType(DstReg);
5226 if (Ty.isVector())
5227 return UnableToLegalize;
5228
5229 unsigned Size = Ty.getSizeInBits();
5230 unsigned NarrowSize = NarrowTy.getSizeInBits();
5231 if (Size % NarrowSize != 0)
5232 return UnableToLegalize;
5233
5234 unsigned NumParts = Size / NarrowSize;
5235 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5236 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5237
5238 SmallVector<Register, 2> Src1Parts, Src2Parts;
5239 SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5240 extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5241 extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5242 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5243
5244 // Take only high half of registers if this is high mul.
5245 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5246 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5247 MI.eraseFromParent();
5248 return Legalized;
5249 }
5250
5251 LegalizerHelper::LegalizeResult
narrowScalarFPTOI(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5252 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5253 LLT NarrowTy) {
5254 if (TypeIdx != 0)
5255 return UnableToLegalize;
5256
5257 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5258
5259 Register Src = MI.getOperand(1).getReg();
5260 LLT SrcTy = MRI.getType(Src);
5261
5262 // If all finite floats fit into the narrowed integer type, we can just swap
5263 // out the result type. This is practically only useful for conversions from
5264 // half to at least 16-bits, so just handle the one case.
5265 if (SrcTy.getScalarType() != LLT::scalar(16) ||
5266 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5267 return UnableToLegalize;
5268
5269 Observer.changingInstr(MI);
5270 narrowScalarDst(MI, NarrowTy, 0,
5271 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5272 Observer.changedInstr(MI);
5273 return Legalized;
5274 }
5275
5276 LegalizerHelper::LegalizeResult
narrowScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5277 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5278 LLT NarrowTy) {
5279 if (TypeIdx != 1)
5280 return UnableToLegalize;
5281
5282 uint64_t NarrowSize = NarrowTy.getSizeInBits();
5283
5284 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5285 // FIXME: add support for when SizeOp1 isn't an exact multiple of
5286 // NarrowSize.
5287 if (SizeOp1 % NarrowSize != 0)
5288 return UnableToLegalize;
5289 int NumParts = SizeOp1 / NarrowSize;
5290
5291 SmallVector<Register, 2> SrcRegs, DstRegs;
5292 SmallVector<uint64_t, 2> Indexes;
5293 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5294
5295 Register OpReg = MI.getOperand(0).getReg();
5296 uint64_t OpStart = MI.getOperand(2).getImm();
5297 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5298 for (int i = 0; i < NumParts; ++i) {
5299 unsigned SrcStart = i * NarrowSize;
5300
5301 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5302 // No part of the extract uses this subregister, ignore it.
5303 continue;
5304 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5305 // The entire subregister is extracted, forward the value.
5306 DstRegs.push_back(SrcRegs[i]);
5307 continue;
5308 }
5309
5310 // OpSegStart is where this destination segment would start in OpReg if it
5311 // extended infinitely in both directions.
5312 int64_t ExtractOffset;
5313 uint64_t SegSize;
5314 if (OpStart < SrcStart) {
5315 ExtractOffset = 0;
5316 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5317 } else {
5318 ExtractOffset = OpStart - SrcStart;
5319 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5320 }
5321
5322 Register SegReg = SrcRegs[i];
5323 if (ExtractOffset != 0 || SegSize != NarrowSize) {
5324 // A genuine extract is needed.
5325 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5326 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5327 }
5328
5329 DstRegs.push_back(SegReg);
5330 }
5331
5332 Register DstReg = MI.getOperand(0).getReg();
5333 if (MRI.getType(DstReg).isVector())
5334 MIRBuilder.buildBuildVector(DstReg, DstRegs);
5335 else if (DstRegs.size() > 1)
5336 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5337 else
5338 MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5339 MI.eraseFromParent();
5340 return Legalized;
5341 }
5342
5343 LegalizerHelper::LegalizeResult
narrowScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5344 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5345 LLT NarrowTy) {
5346 // FIXME: Don't know how to handle secondary types yet.
5347 if (TypeIdx != 0)
5348 return UnableToLegalize;
5349
5350 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5351 SmallVector<uint64_t, 2> Indexes;
5352 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5353 LLT LeftoverTy;
5354 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5355 LeftoverRegs);
5356
5357 for (Register Reg : LeftoverRegs)
5358 SrcRegs.push_back(Reg);
5359
5360 uint64_t NarrowSize = NarrowTy.getSizeInBits();
5361 Register OpReg = MI.getOperand(2).getReg();
5362 uint64_t OpStart = MI.getOperand(3).getImm();
5363 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5364 for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5365 unsigned DstStart = I * NarrowSize;
5366
5367 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5368 // The entire subregister is defined by this insert, forward the new
5369 // value.
5370 DstRegs.push_back(OpReg);
5371 continue;
5372 }
5373
5374 Register SrcReg = SrcRegs[I];
5375 if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5376 // The leftover reg is smaller than NarrowTy, so we need to extend it.
5377 SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5378 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5379 }
5380
5381 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5382 // No part of the insert affects this subregister, forward the original.
5383 DstRegs.push_back(SrcReg);
5384 continue;
5385 }
5386
5387 // OpSegStart is where this destination segment would start in OpReg if it
5388 // extended infinitely in both directions.
5389 int64_t ExtractOffset, InsertOffset;
5390 uint64_t SegSize;
5391 if (OpStart < DstStart) {
5392 InsertOffset = 0;
5393 ExtractOffset = DstStart - OpStart;
5394 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5395 } else {
5396 InsertOffset = OpStart - DstStart;
5397 ExtractOffset = 0;
5398 SegSize =
5399 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5400 }
5401
5402 Register SegReg = OpReg;
5403 if (ExtractOffset != 0 || SegSize != OpSize) {
5404 // A genuine extract is needed.
5405 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5406 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5407 }
5408
5409 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5410 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5411 DstRegs.push_back(DstReg);
5412 }
5413
5414 uint64_t WideSize = DstRegs.size() * NarrowSize;
5415 Register DstReg = MI.getOperand(0).getReg();
5416 if (WideSize > RegTy.getSizeInBits()) {
5417 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5418 MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs);
5419 MIRBuilder.buildTrunc(DstReg, MergeReg);
5420 } else
5421 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs);
5422
5423 MI.eraseFromParent();
5424 return Legalized;
5425 }
5426
5427 LegalizerHelper::LegalizeResult
narrowScalarBasic(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5428 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5429 LLT NarrowTy) {
5430 Register DstReg = MI.getOperand(0).getReg();
5431 LLT DstTy = MRI.getType(DstReg);
5432
5433 assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5434
5435 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5436 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5437 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5438 LLT LeftoverTy;
5439 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5440 Src0Regs, Src0LeftoverRegs))
5441 return UnableToLegalize;
5442
5443 LLT Unused;
5444 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5445 Src1Regs, Src1LeftoverRegs))
5446 llvm_unreachable("inconsistent extractParts result");
5447
5448 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5449 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5450 {Src0Regs[I], Src1Regs[I]});
5451 DstRegs.push_back(Inst.getReg(0));
5452 }
5453
5454 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5455 auto Inst = MIRBuilder.buildInstr(
5456 MI.getOpcode(),
5457 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5458 DstLeftoverRegs.push_back(Inst.getReg(0));
5459 }
5460
5461 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5462 LeftoverTy, DstLeftoverRegs);
5463
5464 MI.eraseFromParent();
5465 return Legalized;
5466 }
5467
5468 LegalizerHelper::LegalizeResult
narrowScalarExt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5469 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5470 LLT NarrowTy) {
5471 if (TypeIdx != 0)
5472 return UnableToLegalize;
5473
5474 Register DstReg = MI.getOperand(0).getReg();
5475 Register SrcReg = MI.getOperand(1).getReg();
5476
5477 LLT DstTy = MRI.getType(DstReg);
5478 if (DstTy.isVector())
5479 return UnableToLegalize;
5480
5481 SmallVector<Register, 8> Parts;
5482 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5483 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5484 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5485
5486 MI.eraseFromParent();
5487 return Legalized;
5488 }
5489
5490 LegalizerHelper::LegalizeResult
narrowScalarSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5491 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5492 LLT NarrowTy) {
5493 if (TypeIdx != 0)
5494 return UnableToLegalize;
5495
5496 Register CondReg = MI.getOperand(1).getReg();
5497 LLT CondTy = MRI.getType(CondReg);
5498 if (CondTy.isVector()) // TODO: Handle vselect
5499 return UnableToLegalize;
5500
5501 Register DstReg = MI.getOperand(0).getReg();
5502 LLT DstTy = MRI.getType(DstReg);
5503
5504 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5505 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5506 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5507 LLT LeftoverTy;
5508 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5509 Src1Regs, Src1LeftoverRegs))
5510 return UnableToLegalize;
5511
5512 LLT Unused;
5513 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5514 Src2Regs, Src2LeftoverRegs))
5515 llvm_unreachable("inconsistent extractParts result");
5516
5517 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5518 auto Select = MIRBuilder.buildSelect(NarrowTy,
5519 CondReg, Src1Regs[I], Src2Regs[I]);
5520 DstRegs.push_back(Select.getReg(0));
5521 }
5522
5523 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5524 auto Select = MIRBuilder.buildSelect(
5525 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5526 DstLeftoverRegs.push_back(Select.getReg(0));
5527 }
5528
5529 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5530 LeftoverTy, DstLeftoverRegs);
5531
5532 MI.eraseFromParent();
5533 return Legalized;
5534 }
5535
5536 LegalizerHelper::LegalizeResult
narrowScalarCTLZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5537 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5538 LLT NarrowTy) {
5539 if (TypeIdx != 1)
5540 return UnableToLegalize;
5541
5542 Register DstReg = MI.getOperand(0).getReg();
5543 Register SrcReg = MI.getOperand(1).getReg();
5544 LLT DstTy = MRI.getType(DstReg);
5545 LLT SrcTy = MRI.getType(SrcReg);
5546 unsigned NarrowSize = NarrowTy.getSizeInBits();
5547
5548 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5549 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5550
5551 MachineIRBuilder &B = MIRBuilder;
5552 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5553 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5554 auto C_0 = B.buildConstant(NarrowTy, 0);
5555 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5556 UnmergeSrc.getReg(1), C_0);
5557 auto LoCTLZ = IsUndef ?
5558 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5559 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5560 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5561 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5562 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5563 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5564
5565 MI.eraseFromParent();
5566 return Legalized;
5567 }
5568
5569 return UnableToLegalize;
5570 }
5571
5572 LegalizerHelper::LegalizeResult
narrowScalarCTTZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5573 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5574 LLT NarrowTy) {
5575 if (TypeIdx != 1)
5576 return UnableToLegalize;
5577
5578 Register DstReg = MI.getOperand(0).getReg();
5579 Register SrcReg = MI.getOperand(1).getReg();
5580 LLT DstTy = MRI.getType(DstReg);
5581 LLT SrcTy = MRI.getType(SrcReg);
5582 unsigned NarrowSize = NarrowTy.getSizeInBits();
5583
5584 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5585 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5586
5587 MachineIRBuilder &B = MIRBuilder;
5588 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5589 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5590 auto C_0 = B.buildConstant(NarrowTy, 0);
5591 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5592 UnmergeSrc.getReg(0), C_0);
5593 auto HiCTTZ = IsUndef ?
5594 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5595 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5596 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5597 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5598 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5599 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5600
5601 MI.eraseFromParent();
5602 return Legalized;
5603 }
5604
5605 return UnableToLegalize;
5606 }
5607
5608 LegalizerHelper::LegalizeResult
narrowScalarCTPOP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)5609 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5610 LLT NarrowTy) {
5611 if (TypeIdx != 1)
5612 return UnableToLegalize;
5613
5614 Register DstReg = MI.getOperand(0).getReg();
5615 LLT DstTy = MRI.getType(DstReg);
5616 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5617 unsigned NarrowSize = NarrowTy.getSizeInBits();
5618
5619 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5620 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5621
5622 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5623 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5624 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5625
5626 MI.eraseFromParent();
5627 return Legalized;
5628 }
5629
5630 return UnableToLegalize;
5631 }
5632
5633 LegalizerHelper::LegalizeResult
lowerBitCount(MachineInstr & MI)5634 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5635 unsigned Opc = MI.getOpcode();
5636 const auto &TII = MIRBuilder.getTII();
5637 auto isSupported = [this](const LegalityQuery &Q) {
5638 auto QAction = LI.getAction(Q).Action;
5639 return QAction == Legal || QAction == Libcall || QAction == Custom;
5640 };
5641 switch (Opc) {
5642 default:
5643 return UnableToLegalize;
5644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5645 // This trivially expands to CTLZ.
5646 Observer.changingInstr(MI);
5647 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5648 Observer.changedInstr(MI);
5649 return Legalized;
5650 }
5651 case TargetOpcode::G_CTLZ: {
5652 Register DstReg = MI.getOperand(0).getReg();
5653 Register SrcReg = MI.getOperand(1).getReg();
5654 LLT DstTy = MRI.getType(DstReg);
5655 LLT SrcTy = MRI.getType(SrcReg);
5656 unsigned Len = SrcTy.getSizeInBits();
5657
5658 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5659 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5660 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5661 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5662 auto ICmp = MIRBuilder.buildICmp(
5663 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5664 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5665 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5666 MI.eraseFromParent();
5667 return Legalized;
5668 }
5669 // for now, we do this:
5670 // NewLen = NextPowerOf2(Len);
5671 // x = x | (x >> 1);
5672 // x = x | (x >> 2);
5673 // ...
5674 // x = x | (x >>16);
5675 // x = x | (x >>32); // for 64-bit input
5676 // Upto NewLen/2
5677 // return Len - popcount(x);
5678 //
5679 // Ref: "Hacker's Delight" by Henry Warren
5680 Register Op = SrcReg;
5681 unsigned NewLen = PowerOf2Ceil(Len);
5682 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5683 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5684 auto MIBOp = MIRBuilder.buildOr(
5685 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5686 Op = MIBOp.getReg(0);
5687 }
5688 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5689 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5690 MIBPop);
5691 MI.eraseFromParent();
5692 return Legalized;
5693 }
5694 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5695 // This trivially expands to CTTZ.
5696 Observer.changingInstr(MI);
5697 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5698 Observer.changedInstr(MI);
5699 return Legalized;
5700 }
5701 case TargetOpcode::G_CTTZ: {
5702 Register DstReg = MI.getOperand(0).getReg();
5703 Register SrcReg = MI.getOperand(1).getReg();
5704 LLT DstTy = MRI.getType(DstReg);
5705 LLT SrcTy = MRI.getType(SrcReg);
5706
5707 unsigned Len = SrcTy.getSizeInBits();
5708 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5709 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5710 // zero.
5711 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5712 auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5713 auto ICmp = MIRBuilder.buildICmp(
5714 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5715 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5716 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5717 MI.eraseFromParent();
5718 return Legalized;
5719 }
5720 // for now, we use: { return popcount(~x & (x - 1)); }
5721 // unless the target has ctlz but not ctpop, in which case we use:
5722 // { return 32 - nlz(~x & (x-1)); }
5723 // Ref: "Hacker's Delight" by Henry Warren
5724 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5725 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5726 auto MIBTmp = MIRBuilder.buildAnd(
5727 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5728 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5729 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5730 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5731 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5732 MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5733 MI.eraseFromParent();
5734 return Legalized;
5735 }
5736 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5737 MI.getOperand(1).setReg(MIBTmp.getReg(0));
5738 return Legalized;
5739 }
5740 case TargetOpcode::G_CTPOP: {
5741 Register SrcReg = MI.getOperand(1).getReg();
5742 LLT Ty = MRI.getType(SrcReg);
5743 unsigned Size = Ty.getSizeInBits();
5744 MachineIRBuilder &B = MIRBuilder;
5745
5746 // Count set bits in blocks of 2 bits. Default approach would be
5747 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5748 // We use following formula instead:
5749 // B2Count = val - { (val >> 1) & 0x55555555 }
5750 // since it gives same result in blocks of 2 with one instruction less.
5751 auto C_1 = B.buildConstant(Ty, 1);
5752 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5753 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5754 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5755 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5756 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5757
5758 // In order to get count in blocks of 4 add values from adjacent block of 2.
5759 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5760 auto C_2 = B.buildConstant(Ty, 2);
5761 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5762 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5763 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5764 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5765 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5766 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5767
5768 // For count in blocks of 8 bits we don't have to mask high 4 bits before
5769 // addition since count value sits in range {0,...,8} and 4 bits are enough
5770 // to hold such binary values. After addition high 4 bits still hold count
5771 // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5772 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5773 auto C_4 = B.buildConstant(Ty, 4);
5774 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5775 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5776 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5777 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5778 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5779
5780 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5781 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5782 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5783 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5784 auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5785
5786 // Shift count result from 8 high bits to low bits.
5787 auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5788 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5789
5790 MI.eraseFromParent();
5791 return Legalized;
5792 }
5793 }
5794 }
5795
5796 // Check that (every element of) Reg is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(const MachineRegisterInfo & MRI,Register Reg,unsigned BW)5797 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5798 Register Reg, unsigned BW) {
5799 return matchUnaryPredicate(
5800 MRI, Reg,
5801 [=](const Constant *C) {
5802 // Null constant here means an undef.
5803 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5804 return !CI || CI->getValue().urem(BW) != 0;
5805 },
5806 /*AllowUndefs*/ true);
5807 }
5808
5809 LegalizerHelper::LegalizeResult
lowerFunnelShiftWithInverse(MachineInstr & MI)5810 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5811 Register Dst = MI.getOperand(0).getReg();
5812 Register X = MI.getOperand(1).getReg();
5813 Register Y = MI.getOperand(2).getReg();
5814 Register Z = MI.getOperand(3).getReg();
5815 LLT Ty = MRI.getType(Dst);
5816 LLT ShTy = MRI.getType(Z);
5817
5818 unsigned BW = Ty.getScalarSizeInBits();
5819
5820 if (!isPowerOf2_32(BW))
5821 return UnableToLegalize;
5822
5823 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5824 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5825
5826 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5827 // fshl X, Y, Z -> fshr X, Y, -Z
5828 // fshr X, Y, Z -> fshl X, Y, -Z
5829 auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5830 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5831 } else {
5832 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5833 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5834 auto One = MIRBuilder.buildConstant(ShTy, 1);
5835 if (IsFSHL) {
5836 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5837 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5838 } else {
5839 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5840 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5841 }
5842
5843 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5844 }
5845
5846 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5847 MI.eraseFromParent();
5848 return Legalized;
5849 }
5850
5851 LegalizerHelper::LegalizeResult
lowerFunnelShiftAsShifts(MachineInstr & MI)5852 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5853 Register Dst = MI.getOperand(0).getReg();
5854 Register X = MI.getOperand(1).getReg();
5855 Register Y = MI.getOperand(2).getReg();
5856 Register Z = MI.getOperand(3).getReg();
5857 LLT Ty = MRI.getType(Dst);
5858 LLT ShTy = MRI.getType(Z);
5859
5860 const unsigned BW = Ty.getScalarSizeInBits();
5861 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5862
5863 Register ShX, ShY;
5864 Register ShAmt, InvShAmt;
5865
5866 // FIXME: Emit optimized urem by constant instead of letting it expand later.
5867 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5868 // fshl: X << C | Y >> (BW - C)
5869 // fshr: X << (BW - C) | Y >> C
5870 // where C = Z % BW is not zero
5871 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5872 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5873 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5874 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5875 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5876 } else {
5877 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5878 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5879 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5880 if (isPowerOf2_32(BW)) {
5881 // Z % BW -> Z & (BW - 1)
5882 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5883 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5884 auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5885 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5886 } else {
5887 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5888 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5889 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5890 }
5891
5892 auto One = MIRBuilder.buildConstant(ShTy, 1);
5893 if (IsFSHL) {
5894 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5895 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5896 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5897 } else {
5898 auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5899 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5900 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5901 }
5902 }
5903
5904 MIRBuilder.buildOr(Dst, ShX, ShY);
5905 MI.eraseFromParent();
5906 return Legalized;
5907 }
5908
5909 LegalizerHelper::LegalizeResult
lowerFunnelShift(MachineInstr & MI)5910 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5911 // These operations approximately do the following (while avoiding undefined
5912 // shifts by BW):
5913 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5914 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5915 Register Dst = MI.getOperand(0).getReg();
5916 LLT Ty = MRI.getType(Dst);
5917 LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5918
5919 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5920 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5921
5922 // TODO: Use smarter heuristic that accounts for vector legalization.
5923 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5924 return lowerFunnelShiftAsShifts(MI);
5925
5926 // This only works for powers of 2, fallback to shifts if it fails.
5927 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5928 if (Result == UnableToLegalize)
5929 return lowerFunnelShiftAsShifts(MI);
5930 return Result;
5931 }
5932
5933 LegalizerHelper::LegalizeResult
lowerRotateWithReverseRotate(MachineInstr & MI)5934 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5935 Register Dst = MI.getOperand(0).getReg();
5936 Register Src = MI.getOperand(1).getReg();
5937 Register Amt = MI.getOperand(2).getReg();
5938 LLT AmtTy = MRI.getType(Amt);
5939 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5940 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5941 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5942 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5943 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5944 MI.eraseFromParent();
5945 return Legalized;
5946 }
5947
lowerRotate(MachineInstr & MI)5948 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5949 Register Dst = MI.getOperand(0).getReg();
5950 Register Src = MI.getOperand(1).getReg();
5951 Register Amt = MI.getOperand(2).getReg();
5952 LLT DstTy = MRI.getType(Dst);
5953 LLT SrcTy = MRI.getType(Src);
5954 LLT AmtTy = MRI.getType(Amt);
5955
5956 unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5957 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5958
5959 MIRBuilder.setInstrAndDebugLoc(MI);
5960
5961 // If a rotate in the other direction is supported, use it.
5962 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5963 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5964 isPowerOf2_32(EltSizeInBits))
5965 return lowerRotateWithReverseRotate(MI);
5966
5967 // If a funnel shift is supported, use it.
5968 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5969 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5970 bool IsFShLegal = false;
5971 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5972 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5973 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5974 Register R3) {
5975 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5976 MI.eraseFromParent();
5977 return Legalized;
5978 };
5979 // If a funnel shift in the other direction is supported, use it.
5980 if (IsFShLegal) {
5981 return buildFunnelShift(FShOpc, Dst, Src, Amt);
5982 } else if (isPowerOf2_32(EltSizeInBits)) {
5983 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5984 return buildFunnelShift(RevFsh, Dst, Src, Amt);
5985 }
5986 }
5987
5988 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5989 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5990 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5991 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5992 Register ShVal;
5993 Register RevShiftVal;
5994 if (isPowerOf2_32(EltSizeInBits)) {
5995 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5996 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5997 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5998 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5999 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6000 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
6001 RevShiftVal =
6002 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
6003 } else {
6004 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6005 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6006 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
6007 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
6008 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6009 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
6010 auto One = MIRBuilder.buildConstant(AmtTy, 1);
6011 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
6012 RevShiftVal =
6013 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
6014 }
6015 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
6016 MI.eraseFromParent();
6017 return Legalized;
6018 }
6019
6020 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6021 // representation.
6022 LegalizerHelper::LegalizeResult
lowerU64ToF32BitOps(MachineInstr & MI)6023 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6024 Register Dst = MI.getOperand(0).getReg();
6025 Register Src = MI.getOperand(1).getReg();
6026 const LLT S64 = LLT::scalar(64);
6027 const LLT S32 = LLT::scalar(32);
6028 const LLT S1 = LLT::scalar(1);
6029
6030 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6031
6032 // unsigned cul2f(ulong u) {
6033 // uint lz = clz(u);
6034 // uint e = (u != 0) ? 127U + 63U - lz : 0;
6035 // u = (u << lz) & 0x7fffffffffffffffUL;
6036 // ulong t = u & 0xffffffffffUL;
6037 // uint v = (e << 23) | (uint)(u >> 40);
6038 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6039 // return as_float(v + r);
6040 // }
6041
6042 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6043 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6044
6045 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6046
6047 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6048 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6049
6050 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6051 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6052
6053 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6054 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6055
6056 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6057
6058 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6059 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6060
6061 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6062 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6063 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6064
6065 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6066 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6067 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6068 auto One = MIRBuilder.buildConstant(S32, 1);
6069
6070 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6071 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6072 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6073 MIRBuilder.buildAdd(Dst, V, R);
6074
6075 MI.eraseFromParent();
6076 return Legalized;
6077 }
6078
lowerUITOFP(MachineInstr & MI)6079 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6080 Register Dst = MI.getOperand(0).getReg();
6081 Register Src = MI.getOperand(1).getReg();
6082 LLT DstTy = MRI.getType(Dst);
6083 LLT SrcTy = MRI.getType(Src);
6084
6085 if (SrcTy == LLT::scalar(1)) {
6086 auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6087 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6088 MIRBuilder.buildSelect(Dst, Src, True, False);
6089 MI.eraseFromParent();
6090 return Legalized;
6091 }
6092
6093 if (SrcTy != LLT::scalar(64))
6094 return UnableToLegalize;
6095
6096 if (DstTy == LLT::scalar(32)) {
6097 // TODO: SelectionDAG has several alternative expansions to port which may
6098 // be more reasonble depending on the available instructions. If a target
6099 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6100 // intermediate type, this is probably worse.
6101 return lowerU64ToF32BitOps(MI);
6102 }
6103
6104 return UnableToLegalize;
6105 }
6106
lowerSITOFP(MachineInstr & MI)6107 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6108 Register Dst = MI.getOperand(0).getReg();
6109 Register Src = MI.getOperand(1).getReg();
6110 LLT DstTy = MRI.getType(Dst);
6111 LLT SrcTy = MRI.getType(Src);
6112
6113 const LLT S64 = LLT::scalar(64);
6114 const LLT S32 = LLT::scalar(32);
6115 const LLT S1 = LLT::scalar(1);
6116
6117 if (SrcTy == S1) {
6118 auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6119 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6120 MIRBuilder.buildSelect(Dst, Src, True, False);
6121 MI.eraseFromParent();
6122 return Legalized;
6123 }
6124
6125 if (SrcTy != S64)
6126 return UnableToLegalize;
6127
6128 if (DstTy == S32) {
6129 // signed cl2f(long l) {
6130 // long s = l >> 63;
6131 // float r = cul2f((l + s) ^ s);
6132 // return s ? -r : r;
6133 // }
6134 Register L = Src;
6135 auto SignBit = MIRBuilder.buildConstant(S64, 63);
6136 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6137
6138 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6139 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6140 auto R = MIRBuilder.buildUITOFP(S32, Xor);
6141
6142 auto RNeg = MIRBuilder.buildFNeg(S32, R);
6143 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6144 MIRBuilder.buildConstant(S64, 0));
6145 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6146 MI.eraseFromParent();
6147 return Legalized;
6148 }
6149
6150 return UnableToLegalize;
6151 }
6152
lowerFPTOUI(MachineInstr & MI)6153 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6154 Register Dst = MI.getOperand(0).getReg();
6155 Register Src = MI.getOperand(1).getReg();
6156 LLT DstTy = MRI.getType(Dst);
6157 LLT SrcTy = MRI.getType(Src);
6158 const LLT S64 = LLT::scalar(64);
6159 const LLT S32 = LLT::scalar(32);
6160
6161 if (SrcTy != S64 && SrcTy != S32)
6162 return UnableToLegalize;
6163 if (DstTy != S32 && DstTy != S64)
6164 return UnableToLegalize;
6165
6166 // FPTOSI gives same result as FPTOUI for positive signed integers.
6167 // FPTOUI needs to deal with fp values that convert to unsigned integers
6168 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6169
6170 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6171 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6172 : APFloat::IEEEdouble(),
6173 APInt::getZero(SrcTy.getSizeInBits()));
6174 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6175
6176 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6177
6178 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6179 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6180 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6181 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6182 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6183 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6184 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6185
6186 const LLT S1 = LLT::scalar(1);
6187
6188 MachineInstrBuilder FCMP =
6189 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6190 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6191
6192 MI.eraseFromParent();
6193 return Legalized;
6194 }
6195
lowerFPTOSI(MachineInstr & MI)6196 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6197 Register Dst = MI.getOperand(0).getReg();
6198 Register Src = MI.getOperand(1).getReg();
6199 LLT DstTy = MRI.getType(Dst);
6200 LLT SrcTy = MRI.getType(Src);
6201 const LLT S64 = LLT::scalar(64);
6202 const LLT S32 = LLT::scalar(32);
6203
6204 // FIXME: Only f32 to i64 conversions are supported.
6205 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6206 return UnableToLegalize;
6207
6208 // Expand f32 -> i64 conversion
6209 // This algorithm comes from compiler-rt's implementation of fixsfdi:
6210 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6211
6212 unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6213
6214 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6215 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6216
6217 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6218 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6219
6220 auto SignMask = MIRBuilder.buildConstant(SrcTy,
6221 APInt::getSignMask(SrcEltBits));
6222 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6223 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6224 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6225 Sign = MIRBuilder.buildSExt(DstTy, Sign);
6226
6227 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6228 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6229 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6230
6231 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6232 R = MIRBuilder.buildZExt(DstTy, R);
6233
6234 auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6235 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6236 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6237 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6238
6239 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6240 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6241
6242 const LLT S1 = LLT::scalar(1);
6243 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6244 S1, Exponent, ExponentLoBit);
6245
6246 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6247
6248 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6249 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6250
6251 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6252
6253 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6254 S1, Exponent, ZeroSrcTy);
6255
6256 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6257 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6258
6259 MI.eraseFromParent();
6260 return Legalized;
6261 }
6262
6263 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6264 LegalizerHelper::LegalizeResult
lowerFPTRUNC_F64_TO_F16(MachineInstr & MI)6265 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6266 Register Dst = MI.getOperand(0).getReg();
6267 Register Src = MI.getOperand(1).getReg();
6268
6269 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6270 return UnableToLegalize;
6271
6272 const unsigned ExpMask = 0x7ff;
6273 const unsigned ExpBiasf64 = 1023;
6274 const unsigned ExpBiasf16 = 15;
6275 const LLT S32 = LLT::scalar(32);
6276 const LLT S1 = LLT::scalar(1);
6277
6278 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6279 Register U = Unmerge.getReg(0);
6280 Register UH = Unmerge.getReg(1);
6281
6282 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6283 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6284
6285 // Subtract the fp64 exponent bias (1023) to get the real exponent and
6286 // add the f16 bias (15) to get the biased exponent for the f16 format.
6287 E = MIRBuilder.buildAdd(
6288 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6289
6290 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6291 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6292
6293 auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6294 MIRBuilder.buildConstant(S32, 0x1ff));
6295 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6296
6297 auto Zero = MIRBuilder.buildConstant(S32, 0);
6298 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6299 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6300 M = MIRBuilder.buildOr(S32, M, Lo40Set);
6301
6302 // (M != 0 ? 0x0200 : 0) | 0x7c00;
6303 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6304 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6305 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6306
6307 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6308 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6309
6310 // N = M | (E << 12);
6311 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6312 auto N = MIRBuilder.buildOr(S32, M, EShl12);
6313
6314 // B = clamp(1-E, 0, 13);
6315 auto One = MIRBuilder.buildConstant(S32, 1);
6316 auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6317 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6318 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6319
6320 auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6321 MIRBuilder.buildConstant(S32, 0x1000));
6322
6323 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6324 auto D0 = MIRBuilder.buildShl(S32, D, B);
6325
6326 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6327 D0, SigSetHigh);
6328 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6329 D = MIRBuilder.buildOr(S32, D, D1);
6330
6331 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6332 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6333
6334 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6335 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6336
6337 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6338 MIRBuilder.buildConstant(S32, 3));
6339 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6340
6341 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6342 MIRBuilder.buildConstant(S32, 5));
6343 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6344
6345 V1 = MIRBuilder.buildOr(S32, V0, V1);
6346 V = MIRBuilder.buildAdd(S32, V, V1);
6347
6348 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
6349 E, MIRBuilder.buildConstant(S32, 30));
6350 V = MIRBuilder.buildSelect(S32, CmpEGt30,
6351 MIRBuilder.buildConstant(S32, 0x7c00), V);
6352
6353 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6354 E, MIRBuilder.buildConstant(S32, 1039));
6355 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6356
6357 // Extract the sign bit.
6358 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6359 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6360
6361 // Insert the sign bit
6362 V = MIRBuilder.buildOr(S32, Sign, V);
6363
6364 MIRBuilder.buildTrunc(Dst, V);
6365 MI.eraseFromParent();
6366 return Legalized;
6367 }
6368
6369 LegalizerHelper::LegalizeResult
lowerFPTRUNC(MachineInstr & MI)6370 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6371 Register Dst = MI.getOperand(0).getReg();
6372 Register Src = MI.getOperand(1).getReg();
6373
6374 LLT DstTy = MRI.getType(Dst);
6375 LLT SrcTy = MRI.getType(Src);
6376 const LLT S64 = LLT::scalar(64);
6377 const LLT S16 = LLT::scalar(16);
6378
6379 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6380 return lowerFPTRUNC_F64_TO_F16(MI);
6381
6382 return UnableToLegalize;
6383 }
6384
6385 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6386 // multiplication tree.
lowerFPOWI(MachineInstr & MI)6387 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6388 Register Dst = MI.getOperand(0).getReg();
6389 Register Src0 = MI.getOperand(1).getReg();
6390 Register Src1 = MI.getOperand(2).getReg();
6391 LLT Ty = MRI.getType(Dst);
6392
6393 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6394 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6395 MI.eraseFromParent();
6396 return Legalized;
6397 }
6398
minMaxToCompare(unsigned Opc)6399 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6400 switch (Opc) {
6401 case TargetOpcode::G_SMIN:
6402 return CmpInst::ICMP_SLT;
6403 case TargetOpcode::G_SMAX:
6404 return CmpInst::ICMP_SGT;
6405 case TargetOpcode::G_UMIN:
6406 return CmpInst::ICMP_ULT;
6407 case TargetOpcode::G_UMAX:
6408 return CmpInst::ICMP_UGT;
6409 default:
6410 llvm_unreachable("not in integer min/max");
6411 }
6412 }
6413
lowerMinMax(MachineInstr & MI)6414 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6415 Register Dst = MI.getOperand(0).getReg();
6416 Register Src0 = MI.getOperand(1).getReg();
6417 Register Src1 = MI.getOperand(2).getReg();
6418
6419 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6420 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6421
6422 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6423 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6424
6425 MI.eraseFromParent();
6426 return Legalized;
6427 }
6428
6429 LegalizerHelper::LegalizeResult
lowerFCopySign(MachineInstr & MI)6430 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6431 Register Dst = MI.getOperand(0).getReg();
6432 Register Src0 = MI.getOperand(1).getReg();
6433 Register Src1 = MI.getOperand(2).getReg();
6434
6435 const LLT Src0Ty = MRI.getType(Src0);
6436 const LLT Src1Ty = MRI.getType(Src1);
6437
6438 const int Src0Size = Src0Ty.getScalarSizeInBits();
6439 const int Src1Size = Src1Ty.getScalarSizeInBits();
6440
6441 auto SignBitMask = MIRBuilder.buildConstant(
6442 Src0Ty, APInt::getSignMask(Src0Size));
6443
6444 auto NotSignBitMask = MIRBuilder.buildConstant(
6445 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6446
6447 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6448 Register And1;
6449 if (Src0Ty == Src1Ty) {
6450 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6451 } else if (Src0Size > Src1Size) {
6452 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6453 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6454 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6455 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6456 } else {
6457 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6458 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6459 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6460 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6461 }
6462
6463 // Be careful about setting nsz/nnan/ninf on every instruction, since the
6464 // constants are a nan and -0.0, but the final result should preserve
6465 // everything.
6466 unsigned Flags = MI.getFlags();
6467 MIRBuilder.buildOr(Dst, And0, And1, Flags);
6468
6469 MI.eraseFromParent();
6470 return Legalized;
6471 }
6472
6473 LegalizerHelper::LegalizeResult
lowerFMinNumMaxNum(MachineInstr & MI)6474 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6475 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6476 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6477
6478 Register Dst = MI.getOperand(0).getReg();
6479 Register Src0 = MI.getOperand(1).getReg();
6480 Register Src1 = MI.getOperand(2).getReg();
6481 LLT Ty = MRI.getType(Dst);
6482
6483 if (!MI.getFlag(MachineInstr::FmNoNans)) {
6484 // Insert canonicalizes if it's possible we need to quiet to get correct
6485 // sNaN behavior.
6486
6487 // Note this must be done here, and not as an optimization combine in the
6488 // absence of a dedicate quiet-snan instruction as we're using an
6489 // omni-purpose G_FCANONICALIZE.
6490 if (!isKnownNeverSNaN(Src0, MRI))
6491 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6492
6493 if (!isKnownNeverSNaN(Src1, MRI))
6494 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6495 }
6496
6497 // If there are no nans, it's safe to simply replace this with the non-IEEE
6498 // version.
6499 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6500 MI.eraseFromParent();
6501 return Legalized;
6502 }
6503
lowerFMad(MachineInstr & MI)6504 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6505 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6506 Register DstReg = MI.getOperand(0).getReg();
6507 LLT Ty = MRI.getType(DstReg);
6508 unsigned Flags = MI.getFlags();
6509
6510 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6511 Flags);
6512 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6513 MI.eraseFromParent();
6514 return Legalized;
6515 }
6516
6517 LegalizerHelper::LegalizeResult
lowerIntrinsicRound(MachineInstr & MI)6518 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6519 Register DstReg = MI.getOperand(0).getReg();
6520 Register X = MI.getOperand(1).getReg();
6521 const unsigned Flags = MI.getFlags();
6522 const LLT Ty = MRI.getType(DstReg);
6523 const LLT CondTy = Ty.changeElementSize(1);
6524
6525 // round(x) =>
6526 // t = trunc(x);
6527 // d = fabs(x - t);
6528 // o = copysign(1.0f, x);
6529 // return t + (d >= 0.5 ? o : 0.0);
6530
6531 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6532
6533 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6534 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6535 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6536 auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6537 auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6538 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6539
6540 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6541 Flags);
6542 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6543
6544 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6545
6546 MI.eraseFromParent();
6547 return Legalized;
6548 }
6549
6550 LegalizerHelper::LegalizeResult
lowerFFloor(MachineInstr & MI)6551 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6552 Register DstReg = MI.getOperand(0).getReg();
6553 Register SrcReg = MI.getOperand(1).getReg();
6554 unsigned Flags = MI.getFlags();
6555 LLT Ty = MRI.getType(DstReg);
6556 const LLT CondTy = Ty.changeElementSize(1);
6557
6558 // result = trunc(src);
6559 // if (src < 0.0 && src != result)
6560 // result += -1.0.
6561
6562 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6563 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6564
6565 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6566 SrcReg, Zero, Flags);
6567 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6568 SrcReg, Trunc, Flags);
6569 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6570 auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6571
6572 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6573 MI.eraseFromParent();
6574 return Legalized;
6575 }
6576
6577 LegalizerHelper::LegalizeResult
lowerMergeValues(MachineInstr & MI)6578 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6579 const unsigned NumOps = MI.getNumOperands();
6580 Register DstReg = MI.getOperand(0).getReg();
6581 Register Src0Reg = MI.getOperand(1).getReg();
6582 LLT DstTy = MRI.getType(DstReg);
6583 LLT SrcTy = MRI.getType(Src0Reg);
6584 unsigned PartSize = SrcTy.getSizeInBits();
6585
6586 LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6587 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6588
6589 for (unsigned I = 2; I != NumOps; ++I) {
6590 const unsigned Offset = (I - 1) * PartSize;
6591
6592 Register SrcReg = MI.getOperand(I).getReg();
6593 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6594
6595 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6596 MRI.createGenericVirtualRegister(WideTy);
6597
6598 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6599 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6600 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6601 ResultReg = NextResult;
6602 }
6603
6604 if (DstTy.isPointer()) {
6605 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6606 DstTy.getAddressSpace())) {
6607 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6608 return UnableToLegalize;
6609 }
6610
6611 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6612 }
6613
6614 MI.eraseFromParent();
6615 return Legalized;
6616 }
6617
6618 LegalizerHelper::LegalizeResult
lowerUnmergeValues(MachineInstr & MI)6619 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6620 const unsigned NumDst = MI.getNumOperands() - 1;
6621 Register SrcReg = MI.getOperand(NumDst).getReg();
6622 Register Dst0Reg = MI.getOperand(0).getReg();
6623 LLT DstTy = MRI.getType(Dst0Reg);
6624 if (DstTy.isPointer())
6625 return UnableToLegalize; // TODO
6626
6627 SrcReg = coerceToScalar(SrcReg);
6628 if (!SrcReg)
6629 return UnableToLegalize;
6630
6631 // Expand scalarizing unmerge as bitcast to integer and shift.
6632 LLT IntTy = MRI.getType(SrcReg);
6633
6634 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6635
6636 const unsigned DstSize = DstTy.getSizeInBits();
6637 unsigned Offset = DstSize;
6638 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6639 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6640 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6641 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6642 }
6643
6644 MI.eraseFromParent();
6645 return Legalized;
6646 }
6647
6648 /// Lower a vector extract or insert by writing the vector to a stack temporary
6649 /// and reloading the element or vector.
6650 ///
6651 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6652 /// =>
6653 /// %stack_temp = G_FRAME_INDEX
6654 /// G_STORE %vec, %stack_temp
6655 /// %idx = clamp(%idx, %vec.getNumElements())
6656 /// %element_ptr = G_PTR_ADD %stack_temp, %idx
6657 /// %dst = G_LOAD %element_ptr
6658 LegalizerHelper::LegalizeResult
lowerExtractInsertVectorElt(MachineInstr & MI)6659 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6660 Register DstReg = MI.getOperand(0).getReg();
6661 Register SrcVec = MI.getOperand(1).getReg();
6662 Register InsertVal;
6663 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6664 InsertVal = MI.getOperand(2).getReg();
6665
6666 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6667
6668 LLT VecTy = MRI.getType(SrcVec);
6669 LLT EltTy = VecTy.getElementType();
6670 unsigned NumElts = VecTy.getNumElements();
6671
6672 int64_t IdxVal;
6673 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6674 SmallVector<Register, 8> SrcRegs;
6675 extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6676
6677 if (InsertVal) {
6678 SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6679 MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs);
6680 } else {
6681 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6682 }
6683
6684 MI.eraseFromParent();
6685 return Legalized;
6686 }
6687
6688 if (!EltTy.isByteSized()) { // Not implemented.
6689 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6690 return UnableToLegalize;
6691 }
6692
6693 unsigned EltBytes = EltTy.getSizeInBytes();
6694 Align VecAlign = getStackTemporaryAlignment(VecTy);
6695 Align EltAlign;
6696
6697 MachinePointerInfo PtrInfo;
6698 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6699 VecAlign, PtrInfo);
6700 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6701
6702 // Get the pointer to the element, and be sure not to hit undefined behavior
6703 // if the index is out of bounds.
6704 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6705
6706 if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6707 int64_t Offset = IdxVal * EltBytes;
6708 PtrInfo = PtrInfo.getWithOffset(Offset);
6709 EltAlign = commonAlignment(VecAlign, Offset);
6710 } else {
6711 // We lose information with a variable offset.
6712 EltAlign = getStackTemporaryAlignment(EltTy);
6713 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6714 }
6715
6716 if (InsertVal) {
6717 // Write the inserted element
6718 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6719
6720 // Reload the whole vector.
6721 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6722 } else {
6723 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6724 }
6725
6726 MI.eraseFromParent();
6727 return Legalized;
6728 }
6729
6730 LegalizerHelper::LegalizeResult
lowerShuffleVector(MachineInstr & MI)6731 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6732 Register DstReg = MI.getOperand(0).getReg();
6733 Register Src0Reg = MI.getOperand(1).getReg();
6734 Register Src1Reg = MI.getOperand(2).getReg();
6735 LLT Src0Ty = MRI.getType(Src0Reg);
6736 LLT DstTy = MRI.getType(DstReg);
6737 LLT IdxTy = LLT::scalar(32);
6738
6739 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6740
6741 if (DstTy.isScalar()) {
6742 if (Src0Ty.isVector())
6743 return UnableToLegalize;
6744
6745 // This is just a SELECT.
6746 assert(Mask.size() == 1 && "Expected a single mask element");
6747 Register Val;
6748 if (Mask[0] < 0 || Mask[0] > 1)
6749 Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6750 else
6751 Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6752 MIRBuilder.buildCopy(DstReg, Val);
6753 MI.eraseFromParent();
6754 return Legalized;
6755 }
6756
6757 Register Undef;
6758 SmallVector<Register, 32> BuildVec;
6759 LLT EltTy = DstTy.getElementType();
6760
6761 for (int Idx : Mask) {
6762 if (Idx < 0) {
6763 if (!Undef.isValid())
6764 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6765 BuildVec.push_back(Undef);
6766 continue;
6767 }
6768
6769 if (Src0Ty.isScalar()) {
6770 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6771 } else {
6772 int NumElts = Src0Ty.getNumElements();
6773 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6774 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6775 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6776 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6777 BuildVec.push_back(Extract.getReg(0));
6778 }
6779 }
6780
6781 MIRBuilder.buildBuildVector(DstReg, BuildVec);
6782 MI.eraseFromParent();
6783 return Legalized;
6784 }
6785
6786 LegalizerHelper::LegalizeResult
lowerDynStackAlloc(MachineInstr & MI)6787 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6788 const auto &MF = *MI.getMF();
6789 const auto &TFI = *MF.getSubtarget().getFrameLowering();
6790 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6791 return UnableToLegalize;
6792
6793 Register Dst = MI.getOperand(0).getReg();
6794 Register AllocSize = MI.getOperand(1).getReg();
6795 Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6796
6797 LLT PtrTy = MRI.getType(Dst);
6798 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6799
6800 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6801 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6802 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6803
6804 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6805 // have to generate an extra instruction to negate the alloc and then use
6806 // G_PTR_ADD to add the negative offset.
6807 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6808 if (Alignment > Align(1)) {
6809 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6810 AlignMask.negate();
6811 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6812 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6813 }
6814
6815 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6816 MIRBuilder.buildCopy(SPReg, SPTmp);
6817 MIRBuilder.buildCopy(Dst, SPTmp);
6818
6819 MI.eraseFromParent();
6820 return Legalized;
6821 }
6822
6823 LegalizerHelper::LegalizeResult
lowerExtract(MachineInstr & MI)6824 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6825 Register Dst = MI.getOperand(0).getReg();
6826 Register Src = MI.getOperand(1).getReg();
6827 unsigned Offset = MI.getOperand(2).getImm();
6828
6829 LLT DstTy = MRI.getType(Dst);
6830 LLT SrcTy = MRI.getType(Src);
6831
6832 // Extract sub-vector or one element
6833 if (SrcTy.isVector()) {
6834 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6835 unsigned DstSize = DstTy.getSizeInBits();
6836
6837 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6838 (Offset + DstSize <= SrcTy.getSizeInBits())) {
6839 // Unmerge and allow access to each Src element for the artifact combiner.
6840 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6841
6842 // Take element(s) we need to extract and copy it (merge them).
6843 SmallVector<Register, 8> SubVectorElts;
6844 for (unsigned Idx = Offset / SrcEltSize;
6845 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6846 SubVectorElts.push_back(Unmerge.getReg(Idx));
6847 }
6848 if (SubVectorElts.size() == 1)
6849 MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6850 else
6851 MIRBuilder.buildMergeLikeInstr(Dst, SubVectorElts);
6852
6853 MI.eraseFromParent();
6854 return Legalized;
6855 }
6856 }
6857
6858 if (DstTy.isScalar() &&
6859 (SrcTy.isScalar() ||
6860 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6861 LLT SrcIntTy = SrcTy;
6862 if (!SrcTy.isScalar()) {
6863 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6864 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6865 }
6866
6867 if (Offset == 0)
6868 MIRBuilder.buildTrunc(Dst, Src);
6869 else {
6870 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6871 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6872 MIRBuilder.buildTrunc(Dst, Shr);
6873 }
6874
6875 MI.eraseFromParent();
6876 return Legalized;
6877 }
6878
6879 return UnableToLegalize;
6880 }
6881
lowerInsert(MachineInstr & MI)6882 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6883 Register Dst = MI.getOperand(0).getReg();
6884 Register Src = MI.getOperand(1).getReg();
6885 Register InsertSrc = MI.getOperand(2).getReg();
6886 uint64_t Offset = MI.getOperand(3).getImm();
6887
6888 LLT DstTy = MRI.getType(Src);
6889 LLT InsertTy = MRI.getType(InsertSrc);
6890
6891 // Insert sub-vector or one element
6892 if (DstTy.isVector() && !InsertTy.isPointer()) {
6893 LLT EltTy = DstTy.getElementType();
6894 unsigned EltSize = EltTy.getSizeInBits();
6895 unsigned InsertSize = InsertTy.getSizeInBits();
6896
6897 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6898 (Offset + InsertSize <= DstTy.getSizeInBits())) {
6899 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6900 SmallVector<Register, 8> DstElts;
6901 unsigned Idx = 0;
6902 // Elements from Src before insert start Offset
6903 for (; Idx < Offset / EltSize; ++Idx) {
6904 DstElts.push_back(UnmergeSrc.getReg(Idx));
6905 }
6906
6907 // Replace elements in Src with elements from InsertSrc
6908 if (InsertTy.getSizeInBits() > EltSize) {
6909 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6910 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6911 ++Idx, ++i) {
6912 DstElts.push_back(UnmergeInsertSrc.getReg(i));
6913 }
6914 } else {
6915 DstElts.push_back(InsertSrc);
6916 ++Idx;
6917 }
6918
6919 // Remaining elements from Src after insert
6920 for (; Idx < DstTy.getNumElements(); ++Idx) {
6921 DstElts.push_back(UnmergeSrc.getReg(Idx));
6922 }
6923
6924 MIRBuilder.buildMergeLikeInstr(Dst, DstElts);
6925 MI.eraseFromParent();
6926 return Legalized;
6927 }
6928 }
6929
6930 if (InsertTy.isVector() ||
6931 (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6932 return UnableToLegalize;
6933
6934 const DataLayout &DL = MIRBuilder.getDataLayout();
6935 if ((DstTy.isPointer() &&
6936 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6937 (InsertTy.isPointer() &&
6938 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6939 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6940 return UnableToLegalize;
6941 }
6942
6943 LLT IntDstTy = DstTy;
6944
6945 if (!DstTy.isScalar()) {
6946 IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6947 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6948 }
6949
6950 if (!InsertTy.isScalar()) {
6951 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6952 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6953 }
6954
6955 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6956 if (Offset != 0) {
6957 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6958 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6959 }
6960
6961 APInt MaskVal = APInt::getBitsSetWithWrap(
6962 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6963
6964 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6965 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6966 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6967
6968 MIRBuilder.buildCast(Dst, Or);
6969 MI.eraseFromParent();
6970 return Legalized;
6971 }
6972
6973 LegalizerHelper::LegalizeResult
lowerSADDO_SSUBO(MachineInstr & MI)6974 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6975 Register Dst0 = MI.getOperand(0).getReg();
6976 Register Dst1 = MI.getOperand(1).getReg();
6977 Register LHS = MI.getOperand(2).getReg();
6978 Register RHS = MI.getOperand(3).getReg();
6979 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6980
6981 LLT Ty = MRI.getType(Dst0);
6982 LLT BoolTy = MRI.getType(Dst1);
6983
6984 if (IsAdd)
6985 MIRBuilder.buildAdd(Dst0, LHS, RHS);
6986 else
6987 MIRBuilder.buildSub(Dst0, LHS, RHS);
6988
6989 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6990
6991 auto Zero = MIRBuilder.buildConstant(Ty, 0);
6992
6993 // For an addition, the result should be less than one of the operands (LHS)
6994 // if and only if the other operand (RHS) is negative, otherwise there will
6995 // be overflow.
6996 // For a subtraction, the result should be less than one of the operands
6997 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6998 // otherwise there will be overflow.
6999 auto ResultLowerThanLHS =
7000 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
7001 auto ConditionRHS = MIRBuilder.buildICmp(
7002 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
7003
7004 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
7005 MI.eraseFromParent();
7006 return Legalized;
7007 }
7008
7009 LegalizerHelper::LegalizeResult
lowerAddSubSatToMinMax(MachineInstr & MI)7010 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
7011 Register Res = MI.getOperand(0).getReg();
7012 Register LHS = MI.getOperand(1).getReg();
7013 Register RHS = MI.getOperand(2).getReg();
7014 LLT Ty = MRI.getType(Res);
7015 bool IsSigned;
7016 bool IsAdd;
7017 unsigned BaseOp;
7018 switch (MI.getOpcode()) {
7019 default:
7020 llvm_unreachable("unexpected addsat/subsat opcode");
7021 case TargetOpcode::G_UADDSAT:
7022 IsSigned = false;
7023 IsAdd = true;
7024 BaseOp = TargetOpcode::G_ADD;
7025 break;
7026 case TargetOpcode::G_SADDSAT:
7027 IsSigned = true;
7028 IsAdd = true;
7029 BaseOp = TargetOpcode::G_ADD;
7030 break;
7031 case TargetOpcode::G_USUBSAT:
7032 IsSigned = false;
7033 IsAdd = false;
7034 BaseOp = TargetOpcode::G_SUB;
7035 break;
7036 case TargetOpcode::G_SSUBSAT:
7037 IsSigned = true;
7038 IsAdd = false;
7039 BaseOp = TargetOpcode::G_SUB;
7040 break;
7041 }
7042
7043 if (IsSigned) {
7044 // sadd.sat(a, b) ->
7045 // hi = 0x7fffffff - smax(a, 0)
7046 // lo = 0x80000000 - smin(a, 0)
7047 // a + smin(smax(lo, b), hi)
7048 // ssub.sat(a, b) ->
7049 // lo = smax(a, -1) - 0x7fffffff
7050 // hi = smin(a, -1) - 0x80000000
7051 // a - smin(smax(lo, b), hi)
7052 // TODO: AMDGPU can use a "median of 3" instruction here:
7053 // a +/- med3(lo, b, hi)
7054 uint64_t NumBits = Ty.getScalarSizeInBits();
7055 auto MaxVal =
7056 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
7057 auto MinVal =
7058 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7059 MachineInstrBuilder Hi, Lo;
7060 if (IsAdd) {
7061 auto Zero = MIRBuilder.buildConstant(Ty, 0);
7062 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7063 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7064 } else {
7065 auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7066 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7067 MaxVal);
7068 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7069 MinVal);
7070 }
7071 auto RHSClamped =
7072 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7073 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7074 } else {
7075 // uadd.sat(a, b) -> a + umin(~a, b)
7076 // usub.sat(a, b) -> a - umin(a, b)
7077 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7078 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7079 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7080 }
7081
7082 MI.eraseFromParent();
7083 return Legalized;
7084 }
7085
7086 LegalizerHelper::LegalizeResult
lowerAddSubSatToAddoSubo(MachineInstr & MI)7087 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7088 Register Res = MI.getOperand(0).getReg();
7089 Register LHS = MI.getOperand(1).getReg();
7090 Register RHS = MI.getOperand(2).getReg();
7091 LLT Ty = MRI.getType(Res);
7092 LLT BoolTy = Ty.changeElementSize(1);
7093 bool IsSigned;
7094 bool IsAdd;
7095 unsigned OverflowOp;
7096 switch (MI.getOpcode()) {
7097 default:
7098 llvm_unreachable("unexpected addsat/subsat opcode");
7099 case TargetOpcode::G_UADDSAT:
7100 IsSigned = false;
7101 IsAdd = true;
7102 OverflowOp = TargetOpcode::G_UADDO;
7103 break;
7104 case TargetOpcode::G_SADDSAT:
7105 IsSigned = true;
7106 IsAdd = true;
7107 OverflowOp = TargetOpcode::G_SADDO;
7108 break;
7109 case TargetOpcode::G_USUBSAT:
7110 IsSigned = false;
7111 IsAdd = false;
7112 OverflowOp = TargetOpcode::G_USUBO;
7113 break;
7114 case TargetOpcode::G_SSUBSAT:
7115 IsSigned = true;
7116 IsAdd = false;
7117 OverflowOp = TargetOpcode::G_SSUBO;
7118 break;
7119 }
7120
7121 auto OverflowRes =
7122 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7123 Register Tmp = OverflowRes.getReg(0);
7124 Register Ov = OverflowRes.getReg(1);
7125 MachineInstrBuilder Clamp;
7126 if (IsSigned) {
7127 // sadd.sat(a, b) ->
7128 // {tmp, ov} = saddo(a, b)
7129 // ov ? (tmp >>s 31) + 0x80000000 : r
7130 // ssub.sat(a, b) ->
7131 // {tmp, ov} = ssubo(a, b)
7132 // ov ? (tmp >>s 31) + 0x80000000 : r
7133 uint64_t NumBits = Ty.getScalarSizeInBits();
7134 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7135 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7136 auto MinVal =
7137 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7138 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7139 } else {
7140 // uadd.sat(a, b) ->
7141 // {tmp, ov} = uaddo(a, b)
7142 // ov ? 0xffffffff : tmp
7143 // usub.sat(a, b) ->
7144 // {tmp, ov} = usubo(a, b)
7145 // ov ? 0 : tmp
7146 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7147 }
7148 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7149
7150 MI.eraseFromParent();
7151 return Legalized;
7152 }
7153
7154 LegalizerHelper::LegalizeResult
lowerShlSat(MachineInstr & MI)7155 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7156 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7157 MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7158 "Expected shlsat opcode!");
7159 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7160 Register Res = MI.getOperand(0).getReg();
7161 Register LHS = MI.getOperand(1).getReg();
7162 Register RHS = MI.getOperand(2).getReg();
7163 LLT Ty = MRI.getType(Res);
7164 LLT BoolTy = Ty.changeElementSize(1);
7165
7166 unsigned BW = Ty.getScalarSizeInBits();
7167 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7168 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7169 : MIRBuilder.buildLShr(Ty, Result, RHS);
7170
7171 MachineInstrBuilder SatVal;
7172 if (IsSigned) {
7173 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7174 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7175 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7176 MIRBuilder.buildConstant(Ty, 0));
7177 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7178 } else {
7179 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7180 }
7181 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7182 MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7183
7184 MI.eraseFromParent();
7185 return Legalized;
7186 }
7187
7188 LegalizerHelper::LegalizeResult
lowerBswap(MachineInstr & MI)7189 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7190 Register Dst = MI.getOperand(0).getReg();
7191 Register Src = MI.getOperand(1).getReg();
7192 const LLT Ty = MRI.getType(Src);
7193 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7194 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7195
7196 // Swap most and least significant byte, set remaining bytes in Res to zero.
7197 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7198 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7199 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7200 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7201
7202 // Set i-th high/low byte in Res to i-th low/high byte from Src.
7203 for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7204 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7205 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7206 auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7207 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7208 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7209 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7210 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7211 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7212 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7213 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7214 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7215 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7216 }
7217 Res.getInstr()->getOperand(0).setReg(Dst);
7218
7219 MI.eraseFromParent();
7220 return Legalized;
7221 }
7222
7223 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
SwapN(unsigned N,DstOp Dst,MachineIRBuilder & B,MachineInstrBuilder Src,APInt Mask)7224 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7225 MachineInstrBuilder Src, APInt Mask) {
7226 const LLT Ty = Dst.getLLTTy(*B.getMRI());
7227 MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7228 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7229 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7230 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7231 return B.buildOr(Dst, LHS, RHS);
7232 }
7233
7234 LegalizerHelper::LegalizeResult
lowerBitreverse(MachineInstr & MI)7235 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7236 Register Dst = MI.getOperand(0).getReg();
7237 Register Src = MI.getOperand(1).getReg();
7238 const LLT Ty = MRI.getType(Src);
7239 unsigned Size = Ty.getSizeInBits();
7240
7241 MachineInstrBuilder BSWAP =
7242 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7243
7244 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7245 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7246 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7247 MachineInstrBuilder Swap4 =
7248 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7249
7250 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7251 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7252 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7253 MachineInstrBuilder Swap2 =
7254 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7255
7256 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7257 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7258 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7259 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7260
7261 MI.eraseFromParent();
7262 return Legalized;
7263 }
7264
7265 LegalizerHelper::LegalizeResult
lowerReadWriteRegister(MachineInstr & MI)7266 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7267 MachineFunction &MF = MIRBuilder.getMF();
7268
7269 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7270 int NameOpIdx = IsRead ? 1 : 0;
7271 int ValRegIndex = IsRead ? 0 : 1;
7272
7273 Register ValReg = MI.getOperand(ValRegIndex).getReg();
7274 const LLT Ty = MRI.getType(ValReg);
7275 const MDString *RegStr = cast<MDString>(
7276 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7277
7278 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7279 if (!PhysReg.isValid())
7280 return UnableToLegalize;
7281
7282 if (IsRead)
7283 MIRBuilder.buildCopy(ValReg, PhysReg);
7284 else
7285 MIRBuilder.buildCopy(PhysReg, ValReg);
7286
7287 MI.eraseFromParent();
7288 return Legalized;
7289 }
7290
7291 LegalizerHelper::LegalizeResult
lowerSMULH_UMULH(MachineInstr & MI)7292 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7293 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7294 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7295 Register Result = MI.getOperand(0).getReg();
7296 LLT OrigTy = MRI.getType(Result);
7297 auto SizeInBits = OrigTy.getScalarSizeInBits();
7298 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7299
7300 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7301 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7302 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7303 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7304
7305 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7306 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7307 MIRBuilder.buildTrunc(Result, Shifted);
7308
7309 MI.eraseFromParent();
7310 return Legalized;
7311 }
7312
7313 LegalizerHelper::LegalizeResult
lowerISFPCLASS(MachineInstr & MI)7314 LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) {
7315 Register DstReg = MI.getOperand(0).getReg();
7316 Register SrcReg = MI.getOperand(1).getReg();
7317 LLT DstTy = MRI.getType(DstReg);
7318 LLT SrcTy = MRI.getType(SrcReg);
7319 uint64_t Mask = MI.getOperand(2).getImm();
7320
7321 if (Mask == 0) {
7322 MIRBuilder.buildConstant(DstReg, 0);
7323 MI.eraseFromParent();
7324 return Legalized;
7325 }
7326 if ((Mask & fcAllFlags) == fcAllFlags) {
7327 MIRBuilder.buildConstant(DstReg, 1);
7328 MI.eraseFromParent();
7329 return Legalized;
7330 }
7331
7332 unsigned BitSize = SrcTy.getScalarSizeInBits();
7333 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType());
7334
7335 LLT IntTy = LLT::scalar(BitSize);
7336 if (SrcTy.isVector())
7337 IntTy = LLT::vector(SrcTy.getElementCount(), IntTy);
7338 auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg);
7339
7340 // Various masks.
7341 APInt SignBit = APInt::getSignMask(BitSize);
7342 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
7343 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7344 APInt ExpMask = Inf;
7345 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7346 APInt QNaNBitMask =
7347 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7348 APInt InvertionMask = APInt::getAllOnesValue(DstTy.getScalarSizeInBits());
7349
7350 auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit);
7351 auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask);
7352 auto InfC = MIRBuilder.buildConstant(IntTy, Inf);
7353 auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask);
7354 auto ZeroC = MIRBuilder.buildConstant(IntTy, 0);
7355
7356 auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC);
7357 auto Sign =
7358 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs);
7359
7360 auto Res = MIRBuilder.buildConstant(DstTy, 0);
7361 const auto appendToRes = [&](MachineInstrBuilder ToAppend) {
7362 Res = MIRBuilder.buildOr(DstTy, Res, ToAppend);
7363 };
7364
7365 // Tests that involve more than one class should be processed first.
7366 if ((Mask & fcFinite) == fcFinite) {
7367 // finite(V) ==> abs(V) u< exp_mask
7368 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs,
7369 ExpMaskC));
7370 Mask &= ~fcFinite;
7371 } else if ((Mask & fcFinite) == fcPosFinite) {
7372 // finite(V) && V > 0 ==> V u< exp_mask
7373 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt,
7374 ExpMaskC));
7375 Mask &= ~fcPosFinite;
7376 } else if ((Mask & fcFinite) == fcNegFinite) {
7377 // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1
7378 auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs,
7379 ExpMaskC);
7380 auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign);
7381 appendToRes(And);
7382 Mask &= ~fcNegFinite;
7383 }
7384
7385 // Check for individual classes.
7386 if (unsigned PartialCheck = Mask & fcZero) {
7387 if (PartialCheck == fcPosZero)
7388 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7389 AsInt, ZeroC));
7390 else if (PartialCheck == fcZero)
7391 appendToRes(
7392 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC));
7393 else // fcNegZero
7394 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7395 AsInt, SignBitC));
7396 }
7397
7398 if (unsigned PartialCheck = Mask & fcInf) {
7399 if (PartialCheck == fcPosInf)
7400 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7401 AsInt, InfC));
7402 else if (PartialCheck == fcInf)
7403 appendToRes(
7404 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC));
7405 else { // fcNegInf
7406 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7407 auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf);
7408 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy,
7409 AsInt, NegInfC));
7410 }
7411 }
7412
7413 if (unsigned PartialCheck = Mask & fcNan) {
7414 auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask);
7415 if (PartialCheck == fcNan) {
7416 // isnan(V) ==> abs(V) u> int(inf)
7417 appendToRes(
7418 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC));
7419 } else if (PartialCheck == fcQNan) {
7420 // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit)
7421 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs,
7422 InfWithQnanBitC));
7423 } else { // fcSNan
7424 // issignaling(V) ==> abs(V) u> unsigned(Inf) &&
7425 // abs(V) u< (unsigned(Inf) | quiet_bit)
7426 auto IsNan =
7427 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC);
7428 auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy,
7429 Abs, InfWithQnanBitC);
7430 appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan));
7431 }
7432 }
7433
7434 if (unsigned PartialCheck = Mask & fcSubnormal) {
7435 // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set)
7436 // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set)
7437 auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs;
7438 auto OneC = MIRBuilder.buildConstant(IntTy, 1);
7439 auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC);
7440 auto SubnormalRes =
7441 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne,
7442 MIRBuilder.buildConstant(IntTy, AllOneMantissa));
7443 if (PartialCheck == fcNegSubnormal)
7444 SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign);
7445 appendToRes(SubnormalRes);
7446 }
7447
7448 if (unsigned PartialCheck = Mask & fcNormal) {
7449 // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u<
7450 // (max_exp-1))
7451 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7452 auto ExpMinusOne = MIRBuilder.buildSub(
7453 IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB));
7454 APInt MaxExpMinusOne = ExpMask - ExpLSB;
7455 auto NormalRes =
7456 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne,
7457 MIRBuilder.buildConstant(IntTy, MaxExpMinusOne));
7458 if (PartialCheck == fcNegNormal)
7459 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign);
7460 else if (PartialCheck == fcPosNormal) {
7461 auto PosSign = MIRBuilder.buildXor(
7462 DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask));
7463 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign);
7464 }
7465 appendToRes(NormalRes);
7466 }
7467
7468 MIRBuilder.buildCopy(DstReg, Res);
7469 MI.eraseFromParent();
7470 return Legalized;
7471 }
7472
lowerSelect(MachineInstr & MI)7473 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7474 // Implement vector G_SELECT in terms of XOR, AND, OR.
7475 Register DstReg = MI.getOperand(0).getReg();
7476 Register MaskReg = MI.getOperand(1).getReg();
7477 Register Op1Reg = MI.getOperand(2).getReg();
7478 Register Op2Reg = MI.getOperand(3).getReg();
7479 LLT DstTy = MRI.getType(DstReg);
7480 LLT MaskTy = MRI.getType(MaskReg);
7481 if (!DstTy.isVector())
7482 return UnableToLegalize;
7483
7484 bool IsEltPtr = DstTy.getElementType().isPointer();
7485 if (IsEltPtr) {
7486 LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits());
7487 LLT NewTy = DstTy.changeElementType(ScalarPtrTy);
7488 Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0);
7489 Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0);
7490 DstTy = NewTy;
7491 }
7492
7493 if (MaskTy.isScalar()) {
7494 // Turn the scalar condition into a vector condition mask.
7495
7496 Register MaskElt = MaskReg;
7497
7498 // The condition was potentially zero extended before, but we want a sign
7499 // extended boolean.
7500 if (MaskTy != LLT::scalar(1))
7501 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0);
7502
7503 // Continue the sign extension (or truncate) to match the data type.
7504 MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(),
7505 MaskElt).getReg(0);
7506
7507 // Generate a vector splat idiom.
7508 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7509 MaskReg = ShufSplat.getReg(0);
7510 MaskTy = DstTy;
7511 }
7512
7513 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) {
7514 return UnableToLegalize;
7515 }
7516
7517 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7518 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7519 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7520 if (IsEltPtr) {
7521 auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2);
7522 MIRBuilder.buildIntToPtr(DstReg, Or);
7523 } else {
7524 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7525 }
7526 MI.eraseFromParent();
7527 return Legalized;
7528 }
7529
lowerDIVREM(MachineInstr & MI)7530 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7531 // Split DIVREM into individual instructions.
7532 unsigned Opcode = MI.getOpcode();
7533
7534 MIRBuilder.buildInstr(
7535 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7536 : TargetOpcode::G_UDIV,
7537 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7538 MIRBuilder.buildInstr(
7539 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7540 : TargetOpcode::G_UREM,
7541 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7542 MI.eraseFromParent();
7543 return Legalized;
7544 }
7545
7546 LegalizerHelper::LegalizeResult
lowerAbsToAddXor(MachineInstr & MI)7547 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7548 // Expand %res = G_ABS %a into:
7549 // %v1 = G_ASHR %a, scalar_size-1
7550 // %v2 = G_ADD %a, %v1
7551 // %res = G_XOR %v2, %v1
7552 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7553 Register OpReg = MI.getOperand(1).getReg();
7554 auto ShiftAmt =
7555 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7556 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7557 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7558 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7559 MI.eraseFromParent();
7560 return Legalized;
7561 }
7562
7563 LegalizerHelper::LegalizeResult
lowerAbsToMaxNeg(MachineInstr & MI)7564 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7565 // Expand %res = G_ABS %a into:
7566 // %v1 = G_CONSTANT 0
7567 // %v2 = G_SUB %v1, %a
7568 // %res = G_SMAX %a, %v2
7569 Register SrcReg = MI.getOperand(1).getReg();
7570 LLT Ty = MRI.getType(SrcReg);
7571 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7572 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7573 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7574 MI.eraseFromParent();
7575 return Legalized;
7576 }
7577
7578 LegalizerHelper::LegalizeResult
lowerVectorReduction(MachineInstr & MI)7579 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7580 Register SrcReg = MI.getOperand(1).getReg();
7581 LLT SrcTy = MRI.getType(SrcReg);
7582 LLT DstTy = MRI.getType(SrcReg);
7583
7584 // The source could be a scalar if the IR type was <1 x sN>.
7585 if (SrcTy.isScalar()) {
7586 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7587 return UnableToLegalize; // FIXME: handle extension.
7588 // This can be just a plain copy.
7589 Observer.changingInstr(MI);
7590 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7591 Observer.changedInstr(MI);
7592 return Legalized;
7593 }
7594 return UnableToLegalize;;
7595 }
7596
shouldLowerMemFuncForSize(const MachineFunction & MF)7597 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7598 // On Darwin, -Os means optimize for size without hurting performance, so
7599 // only really optimize for size when -Oz (MinSize) is used.
7600 if (MF.getTarget().getTargetTriple().isOSDarwin())
7601 return MF.getFunction().hasMinSize();
7602 return MF.getFunction().hasOptSize();
7603 }
7604
7605 // Returns a list of types to use for memory op lowering in MemOps. A partial
7606 // port of findOptimalMemOpLowering in TargetLowering.
findGISelOptimalMemOpLowering(std::vector<LLT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes,const TargetLowering & TLI)7607 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7608 unsigned Limit, const MemOp &Op,
7609 unsigned DstAS, unsigned SrcAS,
7610 const AttributeList &FuncAttributes,
7611 const TargetLowering &TLI) {
7612 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7613 return false;
7614
7615 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7616
7617 if (Ty == LLT()) {
7618 // Use the largest scalar type whose alignment constraints are satisfied.
7619 // We only need to check DstAlign here as SrcAlign is always greater or
7620 // equal to DstAlign (or zero).
7621 Ty = LLT::scalar(64);
7622 if (Op.isFixedDstAlign())
7623 while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7624 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7625 Ty = LLT::scalar(Ty.getSizeInBytes());
7626 assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
7627 // FIXME: check for the largest legal type we can load/store to.
7628 }
7629
7630 unsigned NumMemOps = 0;
7631 uint64_t Size = Op.size();
7632 while (Size) {
7633 unsigned TySize = Ty.getSizeInBytes();
7634 while (TySize > Size) {
7635 // For now, only use non-vector load / store's for the left-over pieces.
7636 LLT NewTy = Ty;
7637 // FIXME: check for mem op safety and legality of the types. Not all of
7638 // SDAGisms map cleanly to GISel concepts.
7639 if (NewTy.isVector())
7640 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7641 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7642 unsigned NewTySize = NewTy.getSizeInBytes();
7643 assert(NewTySize > 0 && "Could not find appropriate type");
7644
7645 // If the new LLT cannot cover all of the remaining bits, then consider
7646 // issuing a (or a pair of) unaligned and overlapping load / store.
7647 unsigned Fast;
7648 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7649 MVT VT = getMVTForLLT(Ty);
7650 if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7651 TLI.allowsMisalignedMemoryAccesses(
7652 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7653 MachineMemOperand::MONone, &Fast) &&
7654 Fast)
7655 TySize = Size;
7656 else {
7657 Ty = NewTy;
7658 TySize = NewTySize;
7659 }
7660 }
7661
7662 if (++NumMemOps > Limit)
7663 return false;
7664
7665 MemOps.push_back(Ty);
7666 Size -= TySize;
7667 }
7668
7669 return true;
7670 }
7671
getTypeForLLT(LLT Ty,LLVMContext & C)7672 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7673 if (Ty.isVector())
7674 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7675 Ty.getNumElements());
7676 return IntegerType::get(C, Ty.getSizeInBits());
7677 }
7678
7679 // Get a vectorized representation of the memset value operand, GISel edition.
getMemsetValue(Register Val,LLT Ty,MachineIRBuilder & MIB)7680 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7681 MachineRegisterInfo &MRI = *MIB.getMRI();
7682 unsigned NumBits = Ty.getScalarSizeInBits();
7683 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7684 if (!Ty.isVector() && ValVRegAndVal) {
7685 APInt Scalar = ValVRegAndVal->Value.trunc(8);
7686 APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7687 return MIB.buildConstant(Ty, SplatVal).getReg(0);
7688 }
7689
7690 // Extend the byte value to the larger type, and then multiply by a magic
7691 // value 0x010101... in order to replicate it across every byte.
7692 // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7693 if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7694 return MIB.buildConstant(Ty, 0).getReg(0);
7695 }
7696
7697 LLT ExtType = Ty.getScalarType();
7698 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7699 if (NumBits > 8) {
7700 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7701 auto MagicMI = MIB.buildConstant(ExtType, Magic);
7702 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7703 }
7704
7705 // For vector types create a G_BUILD_VECTOR.
7706 if (Ty.isVector())
7707 Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7708
7709 return Val;
7710 }
7711
7712 LegalizerHelper::LegalizeResult
lowerMemset(MachineInstr & MI,Register Dst,Register Val,uint64_t KnownLen,Align Alignment,bool IsVolatile)7713 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7714 uint64_t KnownLen, Align Alignment,
7715 bool IsVolatile) {
7716 auto &MF = *MI.getParent()->getParent();
7717 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7718 auto &DL = MF.getDataLayout();
7719 LLVMContext &C = MF.getFunction().getContext();
7720
7721 assert(KnownLen != 0 && "Have a zero length memset length!");
7722
7723 bool DstAlignCanChange = false;
7724 MachineFrameInfo &MFI = MF.getFrameInfo();
7725 bool OptSize = shouldLowerMemFuncForSize(MF);
7726
7727 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7728 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7729 DstAlignCanChange = true;
7730
7731 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7732 std::vector<LLT> MemOps;
7733
7734 const auto &DstMMO = **MI.memoperands_begin();
7735 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7736
7737 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7738 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7739
7740 if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7741 MemOp::Set(KnownLen, DstAlignCanChange,
7742 Alignment,
7743 /*IsZeroMemset=*/IsZeroVal,
7744 /*IsVolatile=*/IsVolatile),
7745 DstPtrInfo.getAddrSpace(), ~0u,
7746 MF.getFunction().getAttributes(), TLI))
7747 return UnableToLegalize;
7748
7749 if (DstAlignCanChange) {
7750 // Get an estimate of the type from the LLT.
7751 Type *IRTy = getTypeForLLT(MemOps[0], C);
7752 Align NewAlign = DL.getABITypeAlign(IRTy);
7753 if (NewAlign > Alignment) {
7754 Alignment = NewAlign;
7755 unsigned FI = FIDef->getOperand(1).getIndex();
7756 // Give the stack frame object a larger alignment if needed.
7757 if (MFI.getObjectAlign(FI) < Alignment)
7758 MFI.setObjectAlignment(FI, Alignment);
7759 }
7760 }
7761
7762 MachineIRBuilder MIB(MI);
7763 // Find the largest store and generate the bit pattern for it.
7764 LLT LargestTy = MemOps[0];
7765 for (unsigned i = 1; i < MemOps.size(); i++)
7766 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7767 LargestTy = MemOps[i];
7768
7769 // The memset stored value is always defined as an s8, so in order to make it
7770 // work with larger store types we need to repeat the bit pattern across the
7771 // wider type.
7772 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7773
7774 if (!MemSetValue)
7775 return UnableToLegalize;
7776
7777 // Generate the stores. For each store type in the list, we generate the
7778 // matching store of that type to the destination address.
7779 LLT PtrTy = MRI.getType(Dst);
7780 unsigned DstOff = 0;
7781 unsigned Size = KnownLen;
7782 for (unsigned I = 0; I < MemOps.size(); I++) {
7783 LLT Ty = MemOps[I];
7784 unsigned TySize = Ty.getSizeInBytes();
7785 if (TySize > Size) {
7786 // Issuing an unaligned load / store pair that overlaps with the previous
7787 // pair. Adjust the offset accordingly.
7788 assert(I == MemOps.size() - 1 && I != 0);
7789 DstOff -= TySize - Size;
7790 }
7791
7792 // If this store is smaller than the largest store see whether we can get
7793 // the smaller value for free with a truncate.
7794 Register Value = MemSetValue;
7795 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7796 MVT VT = getMVTForLLT(Ty);
7797 MVT LargestVT = getMVTForLLT(LargestTy);
7798 if (!LargestTy.isVector() && !Ty.isVector() &&
7799 TLI.isTruncateFree(LargestVT, VT))
7800 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7801 else
7802 Value = getMemsetValue(Val, Ty, MIB);
7803 if (!Value)
7804 return UnableToLegalize;
7805 }
7806
7807 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7808
7809 Register Ptr = Dst;
7810 if (DstOff != 0) {
7811 auto Offset =
7812 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7813 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7814 }
7815
7816 MIB.buildStore(Value, Ptr, *StoreMMO);
7817 DstOff += Ty.getSizeInBytes();
7818 Size -= TySize;
7819 }
7820
7821 MI.eraseFromParent();
7822 return Legalized;
7823 }
7824
7825 LegalizerHelper::LegalizeResult
lowerMemcpyInline(MachineInstr & MI)7826 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7827 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7828
7829 Register Dst = MI.getOperand(0).getReg();
7830 Register Src = MI.getOperand(1).getReg();
7831 Register Len = MI.getOperand(2).getReg();
7832
7833 const auto *MMOIt = MI.memoperands_begin();
7834 const MachineMemOperand *MemOp = *MMOIt;
7835 bool IsVolatile = MemOp->isVolatile();
7836
7837 // See if this is a constant length copy
7838 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7839 // FIXME: support dynamically sized G_MEMCPY_INLINE
7840 assert(LenVRegAndVal &&
7841 "inline memcpy with dynamic size is not yet supported");
7842 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7843 if (KnownLen == 0) {
7844 MI.eraseFromParent();
7845 return Legalized;
7846 }
7847
7848 const auto &DstMMO = **MI.memoperands_begin();
7849 const auto &SrcMMO = **std::next(MI.memoperands_begin());
7850 Align DstAlign = DstMMO.getBaseAlign();
7851 Align SrcAlign = SrcMMO.getBaseAlign();
7852
7853 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7854 IsVolatile);
7855 }
7856
7857 LegalizerHelper::LegalizeResult
lowerMemcpyInline(MachineInstr & MI,Register Dst,Register Src,uint64_t KnownLen,Align DstAlign,Align SrcAlign,bool IsVolatile)7858 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7859 uint64_t KnownLen, Align DstAlign,
7860 Align SrcAlign, bool IsVolatile) {
7861 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7862 return lowerMemcpy(MI, Dst, Src, KnownLen,
7863 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7864 IsVolatile);
7865 }
7866
7867 LegalizerHelper::LegalizeResult
lowerMemcpy(MachineInstr & MI,Register Dst,Register Src,uint64_t KnownLen,uint64_t Limit,Align DstAlign,Align SrcAlign,bool IsVolatile)7868 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7869 uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7870 Align SrcAlign, bool IsVolatile) {
7871 auto &MF = *MI.getParent()->getParent();
7872 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7873 auto &DL = MF.getDataLayout();
7874 LLVMContext &C = MF.getFunction().getContext();
7875
7876 assert(KnownLen != 0 && "Have a zero length memcpy length!");
7877
7878 bool DstAlignCanChange = false;
7879 MachineFrameInfo &MFI = MF.getFrameInfo();
7880 Align Alignment = std::min(DstAlign, SrcAlign);
7881
7882 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7883 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7884 DstAlignCanChange = true;
7885
7886 // FIXME: infer better src pointer alignment like SelectionDAG does here.
7887 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7888 // if the memcpy is in a tail call position.
7889
7890 std::vector<LLT> MemOps;
7891
7892 const auto &DstMMO = **MI.memoperands_begin();
7893 const auto &SrcMMO = **std::next(MI.memoperands_begin());
7894 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7895 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7896
7897 if (!findGISelOptimalMemOpLowering(
7898 MemOps, Limit,
7899 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7900 IsVolatile),
7901 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7902 MF.getFunction().getAttributes(), TLI))
7903 return UnableToLegalize;
7904
7905 if (DstAlignCanChange) {
7906 // Get an estimate of the type from the LLT.
7907 Type *IRTy = getTypeForLLT(MemOps[0], C);
7908 Align NewAlign = DL.getABITypeAlign(IRTy);
7909
7910 // Don't promote to an alignment that would require dynamic stack
7911 // realignment.
7912 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7913 if (!TRI->hasStackRealignment(MF))
7914 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7915 NewAlign = NewAlign.previous();
7916
7917 if (NewAlign > Alignment) {
7918 Alignment = NewAlign;
7919 unsigned FI = FIDef->getOperand(1).getIndex();
7920 // Give the stack frame object a larger alignment if needed.
7921 if (MFI.getObjectAlign(FI) < Alignment)
7922 MFI.setObjectAlignment(FI, Alignment);
7923 }
7924 }
7925
7926 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
7927
7928 MachineIRBuilder MIB(MI);
7929 // Now we need to emit a pair of load and stores for each of the types we've
7930 // collected. I.e. for each type, generate a load from the source pointer of
7931 // that type width, and then generate a corresponding store to the dest buffer
7932 // of that value loaded. This can result in a sequence of loads and stores
7933 // mixed types, depending on what the target specifies as good types to use.
7934 unsigned CurrOffset = 0;
7935 unsigned Size = KnownLen;
7936 for (auto CopyTy : MemOps) {
7937 // Issuing an unaligned load / store pair that overlaps with the previous
7938 // pair. Adjust the offset accordingly.
7939 if (CopyTy.getSizeInBytes() > Size)
7940 CurrOffset -= CopyTy.getSizeInBytes() - Size;
7941
7942 // Construct MMOs for the accesses.
7943 auto *LoadMMO =
7944 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7945 auto *StoreMMO =
7946 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7947
7948 // Create the load.
7949 Register LoadPtr = Src;
7950 Register Offset;
7951 if (CurrOffset != 0) {
7952 LLT SrcTy = MRI.getType(Src);
7953 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7954 .getReg(0);
7955 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7956 }
7957 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7958
7959 // Create the store.
7960 Register StorePtr = Dst;
7961 if (CurrOffset != 0) {
7962 LLT DstTy = MRI.getType(Dst);
7963 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7964 }
7965 MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7966 CurrOffset += CopyTy.getSizeInBytes();
7967 Size -= CopyTy.getSizeInBytes();
7968 }
7969
7970 MI.eraseFromParent();
7971 return Legalized;
7972 }
7973
7974 LegalizerHelper::LegalizeResult
lowerMemmove(MachineInstr & MI,Register Dst,Register Src,uint64_t KnownLen,Align DstAlign,Align SrcAlign,bool IsVolatile)7975 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7976 uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7977 bool IsVolatile) {
7978 auto &MF = *MI.getParent()->getParent();
7979 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7980 auto &DL = MF.getDataLayout();
7981 LLVMContext &C = MF.getFunction().getContext();
7982
7983 assert(KnownLen != 0 && "Have a zero length memmove length!");
7984
7985 bool DstAlignCanChange = false;
7986 MachineFrameInfo &MFI = MF.getFrameInfo();
7987 bool OptSize = shouldLowerMemFuncForSize(MF);
7988 Align Alignment = std::min(DstAlign, SrcAlign);
7989
7990 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7991 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7992 DstAlignCanChange = true;
7993
7994 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7995 std::vector<LLT> MemOps;
7996
7997 const auto &DstMMO = **MI.memoperands_begin();
7998 const auto &SrcMMO = **std::next(MI.memoperands_begin());
7999 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
8000 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
8001
8002 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
8003 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
8004 // same thing here.
8005 if (!findGISelOptimalMemOpLowering(
8006 MemOps, Limit,
8007 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
8008 /*IsVolatile*/ true),
8009 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8010 MF.getFunction().getAttributes(), TLI))
8011 return UnableToLegalize;
8012
8013 if (DstAlignCanChange) {
8014 // Get an estimate of the type from the LLT.
8015 Type *IRTy = getTypeForLLT(MemOps[0], C);
8016 Align NewAlign = DL.getABITypeAlign(IRTy);
8017
8018 // Don't promote to an alignment that would require dynamic stack
8019 // realignment.
8020 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8021 if (!TRI->hasStackRealignment(MF))
8022 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
8023 NewAlign = NewAlign.previous();
8024
8025 if (NewAlign > Alignment) {
8026 Alignment = NewAlign;
8027 unsigned FI = FIDef->getOperand(1).getIndex();
8028 // Give the stack frame object a larger alignment if needed.
8029 if (MFI.getObjectAlign(FI) < Alignment)
8030 MFI.setObjectAlignment(FI, Alignment);
8031 }
8032 }
8033
8034 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
8035
8036 MachineIRBuilder MIB(MI);
8037 // Memmove requires that we perform the loads first before issuing the stores.
8038 // Apart from that, this loop is pretty much doing the same thing as the
8039 // memcpy codegen function.
8040 unsigned CurrOffset = 0;
8041 SmallVector<Register, 16> LoadVals;
8042 for (auto CopyTy : MemOps) {
8043 // Construct MMO for the load.
8044 auto *LoadMMO =
8045 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
8046
8047 // Create the load.
8048 Register LoadPtr = Src;
8049 if (CurrOffset != 0) {
8050 LLT SrcTy = MRI.getType(Src);
8051 auto Offset =
8052 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
8053 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
8054 }
8055 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
8056 CurrOffset += CopyTy.getSizeInBytes();
8057 }
8058
8059 CurrOffset = 0;
8060 for (unsigned I = 0; I < MemOps.size(); ++I) {
8061 LLT CopyTy = MemOps[I];
8062 // Now store the values loaded.
8063 auto *StoreMMO =
8064 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
8065
8066 Register StorePtr = Dst;
8067 if (CurrOffset != 0) {
8068 LLT DstTy = MRI.getType(Dst);
8069 auto Offset =
8070 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
8071 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
8072 }
8073 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
8074 CurrOffset += CopyTy.getSizeInBytes();
8075 }
8076 MI.eraseFromParent();
8077 return Legalized;
8078 }
8079
8080 LegalizerHelper::LegalizeResult
lowerMemCpyFamily(MachineInstr & MI,unsigned MaxLen)8081 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
8082 const unsigned Opc = MI.getOpcode();
8083 // This combine is fairly complex so it's not written with a separate
8084 // matcher function.
8085 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
8086 Opc == TargetOpcode::G_MEMSET) &&
8087 "Expected memcpy like instruction");
8088
8089 auto MMOIt = MI.memoperands_begin();
8090 const MachineMemOperand *MemOp = *MMOIt;
8091
8092 Align DstAlign = MemOp->getBaseAlign();
8093 Align SrcAlign;
8094 Register Dst = MI.getOperand(0).getReg();
8095 Register Src = MI.getOperand(1).getReg();
8096 Register Len = MI.getOperand(2).getReg();
8097
8098 if (Opc != TargetOpcode::G_MEMSET) {
8099 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
8100 MemOp = *(++MMOIt);
8101 SrcAlign = MemOp->getBaseAlign();
8102 }
8103
8104 // See if this is a constant length copy
8105 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
8106 if (!LenVRegAndVal)
8107 return UnableToLegalize;
8108 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
8109
8110 if (KnownLen == 0) {
8111 MI.eraseFromParent();
8112 return Legalized;
8113 }
8114
8115 bool IsVolatile = MemOp->isVolatile();
8116 if (Opc == TargetOpcode::G_MEMCPY_INLINE)
8117 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
8118 IsVolatile);
8119
8120 // Don't try to optimize volatile.
8121 if (IsVolatile)
8122 return UnableToLegalize;
8123
8124 if (MaxLen && KnownLen > MaxLen)
8125 return UnableToLegalize;
8126
8127 if (Opc == TargetOpcode::G_MEMCPY) {
8128 auto &MF = *MI.getParent()->getParent();
8129 const auto &TLI = *MF.getSubtarget().getTargetLowering();
8130 bool OptSize = shouldLowerMemFuncForSize(MF);
8131 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
8132 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
8133 IsVolatile);
8134 }
8135 if (Opc == TargetOpcode::G_MEMMOVE)
8136 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
8137 if (Opc == TargetOpcode::G_MEMSET)
8138 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
8139 return UnableToLegalize;
8140 }
8141