xref: /openbsd/sys/uvm/uvm_vnode.c (revision 0b4f1452)
1 /*	$OpenBSD: uvm_vnode.c,v 1.138 2024/12/27 12:04:40 mpi Exp $	*/
2 /*	$NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993
7  *      The Regents of the University of California.
8  * Copyright (c) 1990 University of Utah.
9  *
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      @(#)vnode_pager.c       8.8 (Berkeley) 2/13/94
41  * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
42  */
43 
44 /*
45  * uvm_vnode.c: the vnode pager.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/lock.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/conf.h>
57 #include <sys/rwlock.h>
58 #include <sys/dkio.h>
59 #include <sys/specdev.h>
60 
61 #include <uvm/uvm.h>
62 #include <uvm/uvm_vnode.h>
63 
64 /*
65  * private global data structure
66  *
67  * we keep a list of writeable active vnode-backed VM objects for sync op.
68  * we keep a simpleq of vnodes that are currently being sync'd.
69  */
70 
71 LIST_HEAD(, uvm_vnode)		uvn_wlist;	/* [K] writeable uvns */
72 SIMPLEQ_HEAD(, uvm_vnode)	uvn_sync_q;	/* [S] sync'ing uvns */
73 struct rwlock uvn_sync_lock;			/* locks sync operation */
74 
75 extern int rebooting;
76 
77 /*
78  * functions
79  */
80 void		 uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
81 void		 uvn_detach(struct uvm_object *);
82 boolean_t	 uvn_flush(struct uvm_object *, voff_t, voff_t, int);
83 int		 uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
84 		     vm_prot_t, int, int);
85 void		 uvn_init(void);
86 int		 uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
87 int		 uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
88 void		 uvn_reference(struct uvm_object *);
89 
90 /*
91  * master pager structure
92  */
93 const struct uvm_pagerops uvm_vnodeops = {
94 	.pgo_init = uvn_init,
95 	.pgo_reference = uvn_reference,
96 	.pgo_detach = uvn_detach,
97 	.pgo_flush = uvn_flush,
98 	.pgo_get = uvn_get,
99 	.pgo_put = uvn_put,
100 	.pgo_cluster = uvn_cluster,
101 	/* use generic version of this: see uvm_pager.c */
102 	.pgo_mk_pcluster = uvm_mk_pcluster,
103 };
104 
105 /*
106  * the ops!
107  */
108 /*
109  * uvn_init
110  *
111  * init pager private data structures.
112  */
113 void
uvn_init(void)114 uvn_init(void)
115 {
116 
117 	LIST_INIT(&uvn_wlist);
118 	/* note: uvn_sync_q init'd in uvm_vnp_sync() */
119 	rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE);
120 }
121 
122 /*
123  * uvn_attach
124  *
125  * attach a vnode structure to a VM object.  if the vnode is already
126  * attached, then just bump the reference count by one and return the
127  * VM object.   if not already attached, attach and return the new VM obj.
128  * the "accessprot" tells the max access the attaching thread wants to
129  * our pages.
130  *
131  * => in fact, nothing should be locked so that we can sleep here.
132  * => note that uvm_object is first thing in vnode structure, so their
133  *    pointers are equiv.
134  */
135 struct uvm_object *
uvn_attach(struct vnode * vp,vm_prot_t accessprot)136 uvn_attach(struct vnode *vp, vm_prot_t accessprot)
137 {
138 	struct uvm_vnode *uvn = vp->v_uvm;
139 	struct vattr vattr;
140 	int oldflags, result;
141 	struct partinfo pi;
142 	u_quad_t used_vnode_size = 0;
143 
144 	/* if we're mapping a BLK device, make sure it is a disk. */
145 	if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
146 		return NULL;
147 	}
148 
149 	/* first get a lock on the uvn. */
150 	rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
151 	while (uvn->u_flags & UVM_VNODE_BLOCKED) {
152 		uvn->u_flags |= UVM_VNODE_WANTED;
153 		rwsleep_nsec(uvn, uvn->u_obj.vmobjlock, PVM, "uvn_attach",
154 		    INFSLP);
155 	}
156 
157 	/*
158 	 * now uvn must not be in a blocked state.
159 	 * first check to see if it is already active, in which case
160 	 * we can bump the reference count, check to see if we need to
161 	 * add it to the writeable list, and then return.
162 	 */
163 	if (uvn->u_flags & UVM_VNODE_VALID) {	/* already active? */
164 
165 		/* regain vref if we were persisting */
166 		if (uvn->u_obj.uo_refs == 0) {
167 			vref(vp);
168 		}
169 		uvn->u_obj.uo_refs++;		/* bump uvn ref! */
170 
171 		/* check for new writeable uvn */
172 		if ((accessprot & PROT_WRITE) != 0 &&
173 		    (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
174 			uvn->u_flags |= UVM_VNODE_WRITEABLE;
175 			KERNEL_ASSERT_LOCKED();
176 			LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
177 		}
178 
179 		rw_exit(uvn->u_obj.vmobjlock);
180 		return (&uvn->u_obj);
181 	}
182 
183 	/*
184 	 * need to call VOP_GETATTR() to get the attributes, but that could
185 	 * block (due to I/O), so we want to unlock the object before calling.
186 	 * however, we want to keep anyone else from playing with the object
187 	 * while it is unlocked.   to do this we set UVM_VNODE_ALOCK which
188 	 * prevents anyone from attaching to the vnode until we are done with
189 	 * it.
190 	 */
191 	uvn->u_flags = UVM_VNODE_ALOCK;
192 	rw_exit(uvn->u_obj.vmobjlock);
193 
194 	if (vp->v_type == VBLK) {
195 		/*
196 		 * We could implement this as a specfs getattr call, but:
197 		 *
198 		 *	(1) VOP_GETATTR() would get the file system
199 		 *	    vnode operation, not the specfs operation.
200 		 *
201 		 *	(2) All we want is the size, anyhow.
202 		 */
203 		result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
204 		    DIOCGPART, (caddr_t)&pi, FREAD, curproc);
205 		if (result == 0) {
206 			/* XXX should remember blocksize */
207 			used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
208 			    (u_quad_t)DL_GETPSIZE(pi.part);
209 		}
210 	} else {
211 		result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
212 		if (result == 0)
213 			used_vnode_size = vattr.va_size;
214 	}
215 
216 	if (result != 0) {
217 		rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
218 		if (uvn->u_flags & UVM_VNODE_WANTED)
219 			wakeup(uvn);
220 		uvn->u_flags = 0;
221 		rw_exit(uvn->u_obj.vmobjlock);
222 		return NULL;
223 	}
224 
225 	/*
226 	 * make sure that the newsize fits within a vaddr_t
227 	 * XXX: need to revise addressing data types
228 	 */
229 #ifdef DEBUG
230 	if (vp->v_type == VBLK)
231 		printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
232 #endif
233 
234 	/* now set up the uvn. */
235 	KASSERT(uvn->u_obj.uo_refs == 0);
236 	uvn->u_obj.uo_refs++;
237 	oldflags = uvn->u_flags;
238 	uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
239 	uvn->u_nio = 0;
240 	uvn->u_size = used_vnode_size;
241 
242 	/*
243 	 * add a reference to the vnode.   this reference will stay as long
244 	 * as there is a valid mapping of the vnode.   dropped when the
245 	 * reference count goes to zero [and we either free or persist].
246 	 */
247 	vref(vp);
248 
249 	/* if write access, we need to add it to the wlist */
250 	if (accessprot & PROT_WRITE) {
251 		uvn->u_flags |= UVM_VNODE_WRITEABLE;	/* we are on wlist! */
252 		KERNEL_ASSERT_LOCKED();
253 		LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
254 	}
255 
256 	if (oldflags & UVM_VNODE_WANTED)
257 		wakeup(uvn);
258 
259 	return &uvn->u_obj;
260 }
261 
262 
263 /*
264  * uvn_reference
265  *
266  * duplicate a reference to a VM object.  Note that the reference
267  * count must already be at least one (the passed in reference) so
268  * there is no chance of the uvn being killed out here.
269  *
270  * => caller must be using the same accessprot as was used at attach time
271  */
272 
273 
274 void
uvn_reference(struct uvm_object * uobj)275 uvn_reference(struct uvm_object *uobj)
276 {
277 #ifdef DEBUG
278 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
279 #endif
280 
281 	rw_enter(uobj->vmobjlock, RW_WRITE);
282 #ifdef DEBUG
283 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
284 		printf("uvn_reference: ref=%d, flags=0x%x\n",
285 		    uobj->uo_refs, uvn->u_flags);
286 		panic("uvn_reference: invalid state");
287 	}
288 #endif
289 	uobj->uo_refs++;
290 	rw_exit(uobj->vmobjlock);
291 }
292 
293 /*
294  * uvn_detach
295  *
296  * remove a reference to a VM object.
297  *
298  * => caller must call with map locked.
299  * => this starts the detach process, but doesn't have to finish it
300  *    (async i/o could still be pending).
301  */
302 void
uvn_detach(struct uvm_object * uobj)303 uvn_detach(struct uvm_object *uobj)
304 {
305 	struct uvm_vnode *uvn;
306 	struct vnode *vp;
307 	int oldflags;
308 
309 	rw_enter(uobj->vmobjlock, RW_WRITE);
310 	uobj->uo_refs--;			/* drop ref! */
311 	if (uobj->uo_refs) {			/* still more refs */
312 		rw_exit(uobj->vmobjlock);
313 		return;
314 	}
315 
316 	KERNEL_LOCK();
317 	/* get other pointers ... */
318 	uvn = (struct uvm_vnode *) uobj;
319 	vp = uvn->u_vnode;
320 
321 	/*
322 	 * clear VTEXT flag now that there are no mappings left (VTEXT is used
323 	 * to keep an active text file from being overwritten).
324 	 */
325 	vp->v_flag &= ~VTEXT;
326 
327 	/*
328 	 * we just dropped the last reference to the uvn.   see if we can
329 	 * let it "stick around".
330 	 */
331 	if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
332 		/* won't block */
333 		uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
334 		goto out;
335 	}
336 
337 	/* its a goner! */
338 	uvn->u_flags |= UVM_VNODE_DYING;
339 
340 	/*
341 	 * even though we may unlock in flush, no one can gain a reference
342 	 * to us until we clear the "dying" flag [because it blocks
343 	 * attaches].  we will not do that until after we've disposed of all
344 	 * the pages with uvn_flush().  note that before the flush the only
345 	 * pages that could be marked PG_BUSY are ones that are in async
346 	 * pageout by the daemon.  (there can't be any pending "get"'s
347 	 * because there are no references to the object).
348 	 */
349 	(void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
350 
351 	/*
352 	 * given the structure of this pager, the above flush request will
353 	 * create the following state: all the pages that were in the object
354 	 * have either been free'd or they are marked PG_BUSY and in the
355 	 * middle of an async io. If we still have pages we set the "relkill"
356 	 * state, so that in the case the vnode gets terminated we know
357 	 * to leave it alone. Otherwise we'll kill the vnode when it's empty.
358 	 */
359 	uvn->u_flags |= UVM_VNODE_RELKILL;
360 	/* wait on any outstanding io */
361 	while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
362 		uvn->u_flags |= UVM_VNODE_IOSYNC;
363 		rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term",
364 		    INFSLP);
365 	}
366 
367 	if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0) {
368 		rw_exit(uobj->vmobjlock);
369 		KERNEL_UNLOCK();
370 		return;
371 	}
372 
373 	/*
374 	 * kill object now.   note that we can't be on the sync q because
375 	 * all references are gone.
376 	 */
377 	if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
378 		LIST_REMOVE(uvn, u_wlist);
379 	}
380 	KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt));
381 	oldflags = uvn->u_flags;
382 	uvn->u_flags = 0;
383 
384 	/* wake up any sleepers */
385 	if (oldflags & UVM_VNODE_WANTED)
386 		wakeup(uvn);
387 out:
388 	rw_exit(uobj->vmobjlock);
389 
390 	/* drop our reference to the vnode. */
391 	vrele(vp);
392 	KERNEL_UNLOCK();
393 }
394 
395 /*
396  * uvm_vnp_terminate: external hook to clear out a vnode's VM
397  *
398  * called in two cases:
399  *  [1] when a persisting vnode vm object (i.e. one with a zero reference
400  *      count) needs to be freed so that a vnode can be reused.  this
401  *      happens under "getnewvnode" in vfs_subr.c.   if the vnode from
402  *      the free list is still attached (i.e. not VBAD) then vgone is
403  *	called.   as part of the vgone trace this should get called to
404  *	free the vm object.   this is the common case.
405  *  [2] when a filesystem is being unmounted by force (MNT_FORCE,
406  *	"umount -f") the vgone() function is called on active vnodes
407  *	on the mounted file systems to kill their data (the vnodes become
408  *	"dead" ones [see src/sys/miscfs/deadfs/...]).  that results in a
409  *	call here (even if the uvn is still in use -- i.e. has a non-zero
410  *	reference count).  this case happens at "umount -f" and during a
411  *	"reboot/halt" operation.
412  *
413  * => the caller must XLOCK and VOP_LOCK the vnode before calling us
414  *	[protects us from getting a vnode that is already in the DYING
415  *	 state...]
416  * => in case [2] the uvn is still alive after this call, but all I/O
417  *	ops will fail (due to the backing vnode now being "dead").  this
418  *	will prob. kill any process using the uvn due to pgo_get failing.
419  */
420 void
uvm_vnp_terminate(struct vnode * vp)421 uvm_vnp_terminate(struct vnode *vp)
422 {
423 	struct uvm_vnode *uvn = vp->v_uvm;
424 	struct uvm_object *uobj = &uvn->u_obj;
425 	int oldflags;
426 
427 	/* check if it is valid */
428 	rw_enter(uobj->vmobjlock, RW_WRITE);
429 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
430 		rw_exit(uobj->vmobjlock);
431 		return;
432 	}
433 
434 	/*
435 	 * must be a valid uvn that is not already dying (because XLOCK
436 	 * protects us from that).   the uvn can't in the ALOCK state
437 	 * because it is valid, and uvn's that are in the ALOCK state haven't
438 	 * been marked valid yet.
439 	 */
440 #ifdef DEBUG
441 	/*
442 	 * debug check: are we yanking the vnode out from under our uvn?
443 	 */
444 	if (uvn->u_obj.uo_refs) {
445 		printf("uvm_vnp_terminate(%p): terminating active vnode "
446 		    "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
447 	}
448 #endif
449 
450 	/*
451 	 * it is possible that the uvn was detached and is in the relkill
452 	 * state [i.e. waiting for async i/o to finish].
453 	 * we take over the vnode now and cancel the relkill.
454 	 * we want to know when the i/o is done so we can recycle right
455 	 * away.   note that a uvn can only be in the RELKILL state if it
456 	 * has a zero reference count.
457 	 */
458 	if (uvn->u_flags & UVM_VNODE_RELKILL)
459 		uvn->u_flags &= ~UVM_VNODE_RELKILL;	/* cancel RELKILL */
460 
461 	/*
462 	 * block the uvn by setting the dying flag, and then flush the
463 	 * pages.
464 	 *
465 	 * also, note that we tell I/O that we are already VOP_LOCK'd so
466 	 * that uvn_io doesn't attempt to VOP_LOCK again.
467 	 *
468 	 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
469 	 *	due to a forceful unmount might not be a good idea.  maybe we
470 	 *	need a way to pass in this info to uvn_flush through a
471 	 *	pager-defined PGO_ constant [currently there are none].
472 	 */
473 	uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
474 
475 	(void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
476 
477 	/*
478 	 * as we just did a flush we expect all the pages to be gone or in
479 	 * the process of going.  sleep to wait for the rest to go [via iosync].
480 	 */
481 	while (uvn->u_obj.uo_npages) {
482 #ifdef DEBUG
483 		struct vm_page *pp;
484 		RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
485 			if ((pp->pg_flags & PG_BUSY) == 0)
486 				panic("uvm_vnp_terminate: detected unbusy pg");
487 		}
488 		if (uvn->u_nio == 0)
489 			panic("uvm_vnp_terminate: no I/O to wait for?");
490 		printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
491 		/*
492 		 * XXXCDC: this is unlikely to happen without async i/o so we
493 		 * put a printf in just to keep an eye on it.
494 		 */
495 #endif
496 		uvn->u_flags |= UVM_VNODE_IOSYNC;
497 		rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term",
498 		    INFSLP);
499 	}
500 
501 	/*
502 	 * done.   now we free the uvn if its reference count is zero
503 	 * (true if we are zapping a persisting uvn).   however, if we are
504 	 * terminating a uvn with active mappings we let it live ... future
505 	 * calls down to the vnode layer will fail.
506 	 */
507 	oldflags = uvn->u_flags;
508 	if (uvn->u_obj.uo_refs) {
509 		/*
510 		 * uvn must live on it is dead-vnode state until all references
511 		 * are gone.   restore flags.    clear CANPERSIST state.
512 		 */
513 		uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
514 		      UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
515 	} else {
516 		/*
517 		 * free the uvn now.   note that the vref reference is already
518 		 * gone [it is dropped when we enter the persist state].
519 		 */
520 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
521 			panic("uvm_vnp_terminate: io sync wanted bit set");
522 
523 		if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
524 			LIST_REMOVE(uvn, u_wlist);
525 		}
526 		uvn->u_flags = 0;	/* uvn is history, clear all bits */
527 	}
528 
529 	if (oldflags & UVM_VNODE_WANTED)
530 		wakeup(uvn);
531 
532 	rw_exit(uobj->vmobjlock);
533 }
534 
535 /*
536  * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
537  * through the buffer cache and allow I/O in any size.  These VOPs use
538  * synchronous i/o.  [vs. VOP_STRATEGY which can be async, but doesn't
539  * go through the buffer cache or allow I/O sizes larger than a
540  * block].  we will eventually want to change this.
541  *
542  * issues to consider:
543  *   uvm provides the uvm_aiodesc structure for async i/o management.
544  * there are two tailq's in the uvm. structure... one for pending async
545  * i/o and one for "done" async i/o.   to do an async i/o one puts
546  * an aiodesc on the "pending" list (protected by splbio()), starts the
547  * i/o and returns VM_PAGER_PEND.    when the i/o is done, we expect
548  * some sort of "i/o done" function to be called (at splbio(), interrupt
549  * time).   this function should remove the aiodesc from the pending list
550  * and place it on the "done" list and wakeup the daemon.   the daemon
551  * will run at normal spl() and will remove all items from the "done"
552  * list and call the "aiodone" hook for each done request (see uvm_pager.c).
553  * [in the old vm code, this was done by calling the "put" routine with
554  * null arguments which made the code harder to read and understand because
555  * you had one function ("put") doing two things.]
556  *
557  * so the current pager needs:
558  *   int uvn_aiodone(struct uvm_aiodesc *)
559  *
560  * => return 0 (aio finished, free it). otherwise requeue for later collection.
561  * => called with pageq's locked by the daemon.
562  *
563  * general outline:
564  * - drop "u_nio" (this req is done!)
565  * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
566  * - get "page" structures (atop?).
567  * - handle "wanted" pages
568  * dont forget to look at "object" wanted flag in all cases.
569  */
570 
571 /*
572  * uvn_flush: flush pages out of a uvm object.
573  *
574  * => if PGO_CLEANIT is set, we may block (due to I/O).   thus, a caller
575  *	might want to unlock higher level resources (e.g. vm_map)
576  *	before calling flush.
577  * => if PGO_CLEANIT is not set, then we will not block
578  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
579  *	for flushing.
580  * => NOTE: we are allowed to lock the page queues, so the caller
581  *	must not be holding the lock on them [e.g. pagedaemon had
582  *	better not call us with the queues locked]
583  * => we return TRUE unless we encountered some sort of I/O error
584  *
585  * comment on "cleaning" object and PG_BUSY pages:
586  *	this routine is holding the lock on the object.   the only time
587  *	that it can run into a PG_BUSY page that it does not own is if
588  *	some other process has started I/O on the page (e.g. either
589  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
590  *	in, then it can not be dirty (!PG_CLEAN) because no one has
591  *	had a chance to modify it yet.    if the PG_BUSY page is being
592  *	paged out then it means that someone else has already started
593  *	cleaning the page for us (how nice!).    in this case, if we
594  *	have syncio specified, then after we make our pass through the
595  *	object we need to wait for the other PG_BUSY pages to clear
596  *	off (i.e. we need to do an iosync).   also note that once a
597  *	page is PG_BUSY it must stay in its object until it is un-busyed.
598  */
599 boolean_t
uvn_flush(struct uvm_object * uobj,voff_t start,voff_t stop,int flags)600 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
601 {
602 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
603 	struct vm_page *pp, *ptmp;
604 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
605 	struct pglist dead;
606 	int npages, result, lcv;
607 	boolean_t retval, need_iosync, needs_clean;
608 	voff_t curoff;
609 
610 	KASSERT(rw_write_held(uobj->vmobjlock));
611 	TAILQ_INIT(&dead);
612 
613 	/* get init vals and determine how we are going to traverse object */
614 	need_iosync = FALSE;
615 	retval = TRUE;		/* return value */
616 	if (flags & PGO_ALLPAGES) {
617 		start = 0;
618 		stop = round_page(uvn->u_size);
619 	} else {
620 		start = trunc_page(start);
621 		stop = MIN(round_page(stop), round_page(uvn->u_size));
622 	}
623 
624 	/*
625 	 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
626 	 * a _hint_ as to how up to date the PG_CLEAN bit is.   if the hint
627 	 * is wrong it will only prevent us from clustering... it won't break
628 	 * anything.   we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
629 	 * will set them as it syncs PG_CLEAN.   This is only an issue if we
630 	 * are looking at non-inactive pages (because inactive page's PG_CLEAN
631 	 * bit is always up to date since there are no mappings).
632 	 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
633 	 */
634 	if ((flags & PGO_CLEANIT) != 0) {
635 		KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
636 		for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
637 			if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
638 				atomic_clearbits_int(&pp->pg_flags,
639 				    PG_CLEANCHK);
640 		}
641 	}
642 
643 	ppsp = NULL;		/* XXX: shut up gcc */
644 	uvm_lock_pageq();
645 	/* locked: both page queues */
646 	for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
647 		if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
648 			continue;
649 		/*
650 		 * handle case where we do not need to clean page (either
651 		 * because we are not clean or because page is not dirty or
652 		 * is busy):
653 		 *
654 		 * NOTE: we are allowed to deactivate a non-wired active
655 		 * PG_BUSY page, but once a PG_BUSY page is on the inactive
656 		 * queue it must stay put until it is !PG_BUSY (so as not to
657 		 * confuse pagedaemon).
658 		 */
659 		if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
660 			needs_clean = FALSE;
661 			if ((pp->pg_flags & PG_BUSY) != 0 &&
662 			    (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
663 			             (PGO_CLEANIT|PGO_SYNCIO))
664 				need_iosync = TRUE;
665 		} else {
666 			/*
667 			 * freeing: nuke all mappings so we can sync
668 			 * PG_CLEAN bit with no race
669 			 */
670 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
671 			    (flags & PGO_FREE) != 0 &&
672 			    (pp->pg_flags & PQ_ACTIVE) != 0)
673 				pmap_page_protect(pp, PROT_NONE);
674 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
675 			    pmap_is_modified(pp))
676 				atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
677 			atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
678 
679 			needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
680 		}
681 
682 		/* if we don't need a clean, deactivate/free pages then cont. */
683 		if (!needs_clean) {
684 			if (flags & PGO_DEACTIVATE) {
685 				if (pp->wire_count == 0) {
686 					uvm_pagedeactivate(pp);
687 				}
688 			} else if (flags & PGO_FREE) {
689 				if (pp->pg_flags & PG_BUSY) {
690 					uvm_unlock_pageq();
691 					uvm_pagewait(pp, uobj->vmobjlock,
692 					    "uvn_flsh");
693 					rw_enter(uobj->vmobjlock, RW_WRITE);
694 					uvm_lock_pageq();
695 					curoff -= PAGE_SIZE;
696 					continue;
697 				} else {
698 					pmap_page_protect(pp, PROT_NONE);
699 					/* removed page from object */
700 					uvm_pageclean(pp);
701 					TAILQ_INSERT_HEAD(&dead, pp, pageq);
702 				}
703 			}
704 			continue;
705 		}
706 
707 		/*
708 		 * pp points to a page in the object that we are
709 		 * working on.  if it is !PG_CLEAN,!PG_BUSY and we asked
710 		 * for cleaning (PGO_CLEANIT).  we clean it now.
711 		 *
712 		 * let uvm_pager_put attempted a clustered page out.
713 		 * note: locked: page queues.
714 		 */
715 		atomic_setbits_int(&pp->pg_flags, PG_BUSY);
716 		UVM_PAGE_OWN(pp, "uvn_flush");
717 		pmap_page_protect(pp, PROT_READ);
718 		/* if we're async, free the page in aiodoned */
719 		if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
720 			atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
721 ReTry:
722 		ppsp = pps;
723 		npages = sizeof(pps) / sizeof(struct vm_page *);
724 
725 		result = uvm_pager_put(uobj, pp, &ppsp, &npages,
726 			   flags | PGO_DOACTCLUST, start, stop);
727 
728 		/*
729 		 * if we did an async I/O it is remotely possible for the
730 		 * async i/o to complete and the page "pp" be freed or what
731 		 * not before we get a chance to relock the object. Therefore,
732 		 * we only touch it when it won't be freed, RELEASED took care
733 		 * of the rest.
734 		 */
735 		uvm_lock_pageq();
736 
737 		/*
738 		 * VM_PAGER_AGAIN: given the structure of this pager, this
739 		 * can only happen when we are doing async I/O and can't
740 		 * map the pages into kernel memory (pager_map) due to lack
741 		 * of vm space.   if this happens we drop back to sync I/O.
742 		 */
743 		if (result == VM_PAGER_AGAIN) {
744 			/*
745 			 * it is unlikely, but page could have been released
746 			 * we ignore this now and retry the I/O.
747 			 * we will detect and
748 			 * handle the released page after the syncio I/O
749 			 * completes.
750 			 */
751 #ifdef DIAGNOSTIC
752 			if (flags & PGO_SYNCIO)
753 	panic("%s: PGO_SYNCIO return 'try again' error (impossible)", __func__);
754 #endif
755 			flags |= PGO_SYNCIO;
756 			if (flags & PGO_FREE)
757 				atomic_clearbits_int(&pp->pg_flags,
758 				    PG_RELEASED);
759 
760 			goto ReTry;
761 		}
762 
763 		/*
764 		 * the cleaning operation is now done.   finish up.  note that
765 		 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
766 		 * if success (OK, PEND) then uvm_pager_put returns the cluster
767 		 * to us in ppsp/npages.
768 		 */
769 		/*
770 		 * for pending async i/o if we are not deactivating
771 		 * we can move on to the next page. aiodoned deals with
772 		 * the freeing case for us.
773 		 */
774 		if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
775 			continue;
776 
777 		/*
778 		 * need to look at each page of the I/O operation, and do what
779 		 * we gotta do.
780 		 */
781 		for (lcv = 0 ; lcv < npages; lcv++) {
782 			ptmp = ppsp[lcv];
783 			/*
784 			 * verify the page didn't get moved
785 			 */
786 			if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
787 				continue;
788 
789 			/*
790 			 * unbusy the page if I/O is done.   note that for
791 			 * pending I/O it is possible that the I/O op
792 			 * finished
793 			 * (in which case the page is no longer busy).
794 			 */
795 			if (result != VM_PAGER_PEND) {
796 				if (ptmp->pg_flags & PG_WANTED)
797 					wakeup(ptmp);
798 
799 				atomic_clearbits_int(&ptmp->pg_flags,
800 				    PG_WANTED|PG_BUSY);
801 				UVM_PAGE_OWN(ptmp, NULL);
802 				atomic_setbits_int(&ptmp->pg_flags,
803 				    PG_CLEAN|PG_CLEANCHK);
804 				if ((flags & PGO_FREE) == 0)
805 					pmap_clear_modify(ptmp);
806 			}
807 
808 			/* dispose of page */
809 			if (flags & PGO_DEACTIVATE) {
810 				if (ptmp->wire_count == 0) {
811 					uvm_pagedeactivate(ptmp);
812 				}
813 			} else if (flags & PGO_FREE &&
814 			    result != VM_PAGER_PEND) {
815 				if (result != VM_PAGER_OK) {
816 					static struct timeval lasttime;
817 					static const struct timeval interval =
818 					    { 5, 0 };
819 
820 					if (ratecheck(&lasttime, &interval)) {
821 						printf("%s: obj=%p, "
822 						   "offset=0x%llx.  error "
823 						   "during pageout.\n",
824 						    __func__, pp->uobject,
825 						    (long long)pp->offset);
826 						printf("%s: WARNING: "
827 						    "changes to page may be "
828 						    "lost!\n", __func__);
829 					}
830 					retval = FALSE;
831 				}
832 				pmap_page_protect(ptmp, PROT_NONE);
833 				uvm_pageclean(ptmp);
834 				TAILQ_INSERT_TAIL(&dead, ptmp, pageq);
835 			}
836 
837 		}		/* end of "lcv" for loop */
838 
839 	}		/* end of "pp" for loop */
840 
841 	/* done with pagequeues: unlock */
842 	uvm_unlock_pageq();
843 
844 	/* now wait for all I/O if required. */
845 	if (need_iosync) {
846 		while (uvn->u_nio != 0) {
847 			uvn->u_flags |= UVM_VNODE_IOSYNC;
848 			rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM,
849 			    "uvn_flush", INFSLP);
850 		}
851 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
852 			wakeup(&uvn->u_flags);
853 		uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
854 	}
855 
856 	uvm_pglistfree(&dead);
857 
858 	return retval;
859 }
860 
861 /*
862  * uvn_cluster
863  *
864  * we are about to do I/O in an object at offset.   this function is called
865  * to establish a range of offsets around "offset" in which we can cluster
866  * I/O.
867  */
868 
869 void
uvn_cluster(struct uvm_object * uobj,voff_t offset,voff_t * loffset,voff_t * hoffset)870 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
871     voff_t *hoffset)
872 {
873 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
874 	*loffset = offset;
875 
876 	KASSERT(rw_write_held(uobj->vmobjlock));
877 
878 	if (*loffset >= uvn->u_size)
879 		panic("uvn_cluster: offset out of range");
880 
881 	/*
882 	 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
883 	 */
884 	*hoffset = *loffset + MAXBSIZE;
885 	if (*hoffset > round_page(uvn->u_size))	/* past end? */
886 		*hoffset = round_page(uvn->u_size);
887 }
888 
889 /*
890  * uvn_put: flush page data to backing store.
891  *
892  * => prefer map unlocked (not required)
893  * => flags: PGO_SYNCIO -- use sync. I/O
894  * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
895  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
896  *	[thus we never do async i/o!  see iodone comment]
897  */
898 int
uvn_put(struct uvm_object * uobj,struct vm_page ** pps,int npages,int flags)899 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
900 {
901 	struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
902 	int dying, retval;
903 
904 	KASSERT(rw_write_held(uobj->vmobjlock));
905 
906 	/*
907 	 * Unless we're recycling this vnode, grab a reference to it
908 	 * to prevent it from being recycled from under our feet.
909 	 * This also makes sure we can don't panic if we end up in
910 	 * uvn_vnp_uncache() as a result of the I/O operation as that
911 	 * function assumes we hold a reference.
912 	 *
913 	 * If the vnode is in the process of being recycled by someone
914 	 * else, grabbing a reference will fail.  In that case the
915 	 * pages will already be written out by whoever is cleaning
916 	 * the vnode, so simply return VM_PAGER_AGAIN such that we
917 	 * skip these pages.
918 	 */
919 	dying = (uvn->u_flags & UVM_VNODE_DYING);
920 	if (!dying) {
921 		if (vget(uvn->u_vnode, LK_NOWAIT))
922 			return VM_PAGER_AGAIN;
923 	}
924 
925 	retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
926 
927 	if (!dying)
928 		vrele(uvn->u_vnode);
929 
930 	return retval;
931 }
932 
933 /*
934  * uvn_get: get pages (synchronously) from backing store
935  *
936  * => prefer map unlocked (not required)
937  * => flags: PGO_ALLPAGES: get all of the pages
938  *           PGO_LOCKED: fault data structures are locked
939  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
940  * => NOTE: caller must check for released pages!!
941  */
942 int
uvn_get(struct uvm_object * uobj,voff_t offset,struct vm_page ** pps,int * npagesp,int centeridx,vm_prot_t access_type,int advice,int flags)943 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
944     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
945 {
946 	voff_t current_offset;
947 	struct vm_page *ptmp;
948 	int lcv, result, gotpages;
949 	boolean_t done;
950 
951 	KASSERT(rw_lock_held(uobj->vmobjlock));
952 	KASSERT(rw_write_held(uobj->vmobjlock) ||
953 	    ((flags & PGO_LOCKED) != 0 && (access_type & PROT_WRITE) == 0));
954 
955 	/* step 1: handled the case where fault data structures are locked. */
956 	if (flags & PGO_LOCKED) {
957 		/*
958 		 * gotpages is the current number of pages we've gotten (which
959 		 * we pass back up to caller via *npagesp.
960 		 */
961 		gotpages = 0;
962 
963 		/*
964 		 * step 1a: get pages that are already resident.   only do this
965 		 * if the data structures are locked (i.e. the first time
966 		 * through).
967 		 */
968 		done = TRUE;	/* be optimistic */
969 
970 		for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
971 		    lcv++, current_offset += PAGE_SIZE) {
972 			/* do we care about this page?  if not, skip it */
973 			if (pps[lcv] == PGO_DONTCARE)
974 				continue;
975 
976 			/* lookup page */
977 			ptmp = uvm_pagelookup(uobj, current_offset);
978 
979 			/*
980 			 * to be useful must get a non-busy page
981 			 */
982 			if (ptmp == NULL || (ptmp->pg_flags & PG_BUSY) != 0) {
983 				if (lcv == centeridx ||
984 				    (flags & PGO_ALLPAGES) != 0)
985 					/* need to do a wait or I/O! */
986 					done = FALSE;
987 				continue;
988 			}
989 
990 			/*
991 			 * useful page: busy it and plug it in our
992 			 * result array
993 			 */
994 			pps[lcv] = ptmp;
995 			gotpages++;
996 
997 		}
998 
999 		/*
1000 		 * XXX: given the "advice", should we consider async read-ahead?
1001 		 * XXX: fault current does deactivate of pages behind us.  is
1002 		 * this good (other callers might now).
1003 		 */
1004 		/*
1005 		 * XXX: read-ahead currently handled by buffer cache (bread)
1006 		 * level.
1007 		 * XXX: no async i/o available.
1008 		 * XXX: so we don't do anything now.
1009 		 */
1010 
1011 		/*
1012 		 * step 1c: now we've either done everything needed or we to
1013 		 * unlock and do some waiting or I/O.
1014 		 */
1015 		*npagesp = gotpages;		/* let caller know */
1016 		return done ? VM_PAGER_OK : VM_PAGER_UNLOCK;
1017 	}
1018 
1019 	/*
1020 	 * step 2: get non-resident or busy pages.
1021 	 * data structures are unlocked.
1022 	 *
1023 	 * XXX: because we can't do async I/O at this level we get things
1024 	 * page at a time (otherwise we'd chunk).   the VOP_READ() will do
1025 	 * async-read-ahead for us at a lower level.
1026 	 */
1027 	for (lcv = 0, current_offset = offset;
1028 			 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
1029 
1030 		/* skip over pages we've already gotten or don't want */
1031 		/* skip over pages we don't _have_ to get */
1032 		if (pps[lcv] != NULL || (lcv != centeridx &&
1033 		    (flags & PGO_ALLPAGES) == 0))
1034 			continue;
1035 
1036 		/*
1037 		 * we have yet to locate the current page (pps[lcv]).   we first
1038 		 * look for a page that is already at the current offset.   if
1039 		 * we fine a page, we check to see if it is busy or released.
1040 		 * if that is the case, then we sleep on the page until it is
1041 		 * no longer busy or released and repeat the lookup.    if the
1042 		 * page we found is neither busy nor released, then we busy it
1043 		 * (so we own it) and plug it into pps[lcv].   this breaks the
1044 		 * following while loop and indicates we are ready to move on
1045 		 * to the next page in the "lcv" loop above.
1046 		 *
1047 		 * if we exit the while loop with pps[lcv] still set to NULL,
1048 		 * then it means that we allocated a new busy/fake/clean page
1049 		 * ptmp in the object and we need to do I/O to fill in the data.
1050 		 */
1051 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
1052 			/* look for a current page */
1053 			ptmp = uvm_pagelookup(uobj, current_offset);
1054 
1055 			/* nope?   allocate one now (if we can) */
1056 			if (ptmp == NULL) {
1057 				ptmp = uvm_pagealloc(uobj, current_offset,
1058 				    NULL, 0);
1059 
1060 				/* out of RAM? */
1061 				if (ptmp == NULL) {
1062 					uvm_wait("uvn_getpage");
1063 
1064 					/* goto top of pps while loop */
1065 					continue;
1066 				}
1067 
1068 				/*
1069 				 * got new page ready for I/O.  break pps
1070 				 * while loop.  pps[lcv] is still NULL.
1071 				 */
1072 				break;
1073 			}
1074 
1075 			/* page is there, see if we need to wait on it */
1076 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1077 				uvm_pagewait(ptmp, uobj->vmobjlock, "uvn_get");
1078 				rw_enter(uobj->vmobjlock, RW_WRITE);
1079 				continue;	/* goto top of pps while loop */
1080 			}
1081 
1082 			/*
1083 			 * if we get here then the page has become resident
1084 			 * and unbusy between steps 1 and 2.  we busy it
1085 			 * now (so we own it) and set pps[lcv] (so that we
1086 			 * exit the while loop).
1087 			 */
1088 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1089 			UVM_PAGE_OWN(ptmp, "uvn_get2");
1090 			pps[lcv] = ptmp;
1091 		}
1092 
1093 		/*
1094 		 * if we own the a valid page at the correct offset, pps[lcv]
1095 		 * will point to it.   nothing more to do except go to the
1096 		 * next page.
1097 		 */
1098 		if (pps[lcv])
1099 			continue;			/* next lcv */
1100 
1101 		/*
1102 		 * we have a "fake/busy/clean" page that we just allocated.  do
1103 		 * I/O to fill it with valid data.
1104 		 */
1105 		result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1106 		    PGO_SYNCIO|PGO_NOWAIT, UIO_READ);
1107 
1108 		/*
1109 		 * I/O done.  because we used syncio the result can not be
1110 		 * PEND or AGAIN.
1111 		 */
1112 		if (result != VM_PAGER_OK) {
1113 			if (ptmp->pg_flags & PG_WANTED)
1114 				wakeup(ptmp);
1115 
1116 			atomic_clearbits_int(&ptmp->pg_flags,
1117 			    PG_WANTED|PG_BUSY);
1118 			UVM_PAGE_OWN(ptmp, NULL);
1119 			uvm_lock_pageq();
1120 			uvm_pagefree(ptmp);
1121 			uvm_unlock_pageq();
1122 			rw_exit(uobj->vmobjlock);
1123 			return result;
1124 		}
1125 
1126 		/*
1127 		 * we got the page!   clear the fake flag (indicates valid
1128 		 * data now in page) and plug into our result array.   note
1129 		 * that page is still busy.
1130 		 *
1131 		 * it is the callers job to:
1132 		 * => check if the page is released
1133 		 * => unbusy the page
1134 		 * => activate the page
1135 		 */
1136 
1137 		/* data is valid ... */
1138 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1139 		pmap_clear_modify(ptmp);		/* ... and clean */
1140 		pps[lcv] = ptmp;
1141 
1142 	}
1143 
1144 
1145 	rw_exit(uobj->vmobjlock);
1146 	return (VM_PAGER_OK);
1147 }
1148 
1149 /*
1150  * uvn_io: do I/O to a vnode
1151  *
1152  * => prefer map unlocked (not required)
1153  * => flags: PGO_SYNCIO -- use sync. I/O
1154  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1155  *	[thus we never do async i/o!  see iodone comment]
1156  */
1157 
1158 int
uvn_io(struct uvm_vnode * uvn,vm_page_t * pps,int npages,int flags,int rw)1159 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1160 {
1161 	struct uvm_object *uobj = &uvn->u_obj;
1162 	struct vnode *vn;
1163 	struct uio uio;
1164 	struct iovec iov;
1165 	vaddr_t kva;
1166 	off_t file_offset;
1167 	int waitf, result, mapinflags;
1168 	size_t got, wanted;
1169 	int vnlocked, netunlocked = 0;
1170 	int lkflags = (flags & PGO_NOWAIT) ? LK_NOWAIT : 0;
1171 	voff_t uvnsize;
1172 
1173 	KASSERT(rw_write_held(uobj->vmobjlock));
1174 
1175 	/* init values */
1176 	waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1177 	vn = uvn->u_vnode;
1178 	file_offset = pps[0]->offset;
1179 
1180 	/* check for sync'ing I/O. */
1181 	while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1182 		if (waitf == M_NOWAIT) {
1183 			return VM_PAGER_AGAIN;
1184 		}
1185 		uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1186 		rwsleep_nsec(&uvn->u_flags, uobj->vmobjlock, PVM, "uvn_iosync",
1187 		    INFSLP);
1188 	}
1189 
1190 	/* check size */
1191 	if (file_offset >= uvn->u_size) {
1192 		return VM_PAGER_BAD;
1193 	}
1194 
1195 	/* first try and map the pages in (without waiting) */
1196 	mapinflags = (rw == UIO_READ) ?
1197 	    UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1198 
1199 	kva = uvm_pagermapin(pps, npages, mapinflags);
1200 	if (kva == 0 && waitf == M_NOWAIT) {
1201 		return VM_PAGER_AGAIN;
1202 	}
1203 
1204 	/*
1205 	 * ok, now bump u_nio up.   at this point we are done with uvn
1206 	 * and can unlock it.   if we still don't have a kva, try again
1207 	 * (this time with sleep ok).
1208 	 */
1209 	uvn->u_nio++;			/* we have an I/O in progress! */
1210 	vnlocked = (uvn->u_flags & UVM_VNODE_VNISLOCKED);
1211 	uvnsize = uvn->u_size;
1212 	rw_exit(uobj->vmobjlock);
1213 	if (kva == 0)
1214 		kva = uvm_pagermapin(pps, npages,
1215 		    mapinflags | UVMPAGER_MAPIN_WAITOK);
1216 
1217 	/*
1218 	 * ok, mapped in.  our pages are PG_BUSY so they are not going to
1219 	 * get touched (so we can look at "offset" without having to lock
1220 	 * the object).  set up for I/O.
1221 	 */
1222 	/* fill out uio/iov */
1223 	iov.iov_base = (caddr_t) kva;
1224 	wanted = (size_t)npages << PAGE_SHIFT;
1225 	if (file_offset + wanted > uvnsize)
1226 		wanted = uvnsize - file_offset;	/* XXX: needed? */
1227 	iov.iov_len = wanted;
1228 	uio.uio_iov = &iov;
1229 	uio.uio_iovcnt = 1;
1230 	uio.uio_offset = file_offset;
1231 	uio.uio_segflg = UIO_SYSSPACE;
1232 	uio.uio_rw = rw;
1233 	uio.uio_resid = wanted;
1234 	uio.uio_procp = curproc;
1235 
1236 	/*
1237 	 * This process may already have the NET_LOCK(), if we
1238 	 * faulted in copyin() or copyout() in the network stack.
1239 	 */
1240 	if (rw_status(&netlock) == RW_WRITE) {
1241 		NET_UNLOCK();
1242 		netunlocked = 1;
1243 	}
1244 
1245 	/* do the I/O!  (XXX: curproc?) */
1246 	/*
1247 	 * This process may already have this vnode locked, if we faulted in
1248 	 * copyin() or copyout() on a region backed by this vnode
1249 	 * while doing I/O to the vnode.  If this is the case, don't
1250 	 * panic.. instead, return the error to the user.
1251 	 *
1252 	 * XXX this is a stopgap to prevent a panic.
1253 	 * Ideally, this kind of operation *should* work.
1254 	 */
1255 	result = 0;
1256 	KERNEL_LOCK();
1257 	if (!vnlocked)
1258 		result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL | lkflags);
1259 	if (result == 0) {
1260 		/* NOTE: vnode now locked! */
1261 		if (rw == UIO_READ)
1262 			result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1263 		else
1264 			result = VOP_WRITE(vn, &uio,
1265 			    (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0,
1266 			    curproc->p_ucred);
1267 
1268 		if (!vnlocked)
1269 			VOP_UNLOCK(vn);
1270 
1271 	}
1272 	KERNEL_UNLOCK();
1273 
1274 	if (netunlocked)
1275 		NET_LOCK();
1276 
1277 
1278 	/* NOTE: vnode now unlocked (unless vnislocked) */
1279 	/*
1280 	 * result == unix style errno (0 == OK!)
1281 	 *
1282 	 * zero out rest of buffer (if needed)
1283 	 */
1284 	if (result == 0) {
1285 		got = wanted - uio.uio_resid;
1286 
1287 		if (wanted && got == 0) {
1288 			result = EIO;		/* XXX: error? */
1289 		} else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1290 			memset((void *) (kva + got), 0,
1291 			       ((size_t)npages << PAGE_SHIFT) - got);
1292 		}
1293 	}
1294 
1295 	/* now remove pager mapping */
1296 	uvm_pagermapout(kva, npages);
1297 
1298 	/* now clean up the object (i.e. drop I/O count) */
1299 	rw_enter(uobj->vmobjlock, RW_WRITE);
1300 	uvn->u_nio--;			/* I/O DONE! */
1301 	if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1302 		wakeup(&uvn->u_nio);
1303 	}
1304 
1305 	if (result == 0) {
1306 		return VM_PAGER_OK;
1307 	} else if (result == EBUSY) {
1308 		KASSERT(flags & PGO_NOWAIT);
1309 		return VM_PAGER_AGAIN;
1310 	} else {
1311 		if (rebooting) {
1312 			KERNEL_LOCK();
1313 			while (rebooting)
1314 				tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP);
1315 			KERNEL_UNLOCK();
1316 		}
1317 		return VM_PAGER_ERROR;
1318 	}
1319 }
1320 
1321 /*
1322  * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1323  * is gone we will kill the object (flushing dirty pages back to the vnode
1324  * if needed).
1325  *
1326  * => returns TRUE if there was no uvm_object attached or if there was
1327  *	one and we killed it [i.e. if there is no active uvn]
1328  * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1329  *	needed]
1330  *
1331  * => XXX: given that we now kill uvn's when a vnode is recycled (without
1332  *	having to hold a reference on the vnode) and given a working
1333  *	uvm_vnp_sync(), how does that effect the need for this function?
1334  *      [XXXCDC: seems like it can die?]
1335  *
1336  * => XXX: this function should DIE once we merge the VM and buffer
1337  *	cache.
1338  *
1339  * research shows that this is called in the following places:
1340  * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1341  *	changes sizes
1342  * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1343  *	are written to
1344  * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1345  *	is off
1346  * ffs_realloccg: when we can't extend the current block and have
1347  *	to allocate a new one we call this [XXX: why?]
1348  * nfsrv_rename, rename_files: called when the target filename is there
1349  *	and we want to remove it
1350  * nfsrv_remove, sys_unlink: called on file we are removing
1351  * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1352  *	then return "text busy"
1353  * nfs_open: seems to uncache any file opened with nfs
1354  * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1355  * fusefs_open: uncaches any file that is opened
1356  * fusefs_write: uncaches on every write
1357  */
1358 
1359 int
uvm_vnp_uncache(struct vnode * vp)1360 uvm_vnp_uncache(struct vnode *vp)
1361 {
1362 	struct uvm_vnode *uvn = vp->v_uvm;
1363 	struct uvm_object *uobj = &uvn->u_obj;
1364 
1365 	/* lock uvn part of the vnode and check if we need to do anything */
1366 
1367 	rw_enter(uobj->vmobjlock, RW_WRITE);
1368 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1369 			(uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1370 		rw_exit(uobj->vmobjlock);
1371 		return TRUE;
1372 	}
1373 
1374 	/*
1375 	 * we have a valid, non-blocked uvn.   clear persist flag.
1376 	 * if uvn is currently active we can return now.
1377 	 */
1378 	uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1379 	if (uvn->u_obj.uo_refs) {
1380 		rw_exit(uobj->vmobjlock);
1381 		return FALSE;
1382 	}
1383 
1384 	/*
1385 	 * uvn is currently persisting!   we have to gain a reference to
1386 	 * it so that we can call uvn_detach to kill the uvn.
1387 	 */
1388 	vref(vp);			/* seems ok, even with VOP_LOCK */
1389 	uvn->u_obj.uo_refs++;		/* value is now 1 */
1390 	rw_exit(uobj->vmobjlock);
1391 
1392 #ifdef VFSLCKDEBUG
1393 	/*
1394 	 * carry over sanity check from old vnode pager: the vnode should
1395 	 * be VOP_LOCK'd, and we confirm it here.
1396 	 */
1397 	if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1398 		panic("uvm_vnp_uncache: vnode not locked!");
1399 #endif
1400 
1401 	/*
1402 	 * now drop our reference to the vnode.   if we have the sole
1403 	 * reference to the vnode then this will cause it to die [as we
1404 	 * just cleared the persist flag].   we have to unlock the vnode
1405 	 * while we are doing this as it may trigger I/O.
1406 	 *
1407 	 * XXX: it might be possible for uvn to get reclaimed while we are
1408 	 * unlocked causing us to return TRUE when we should not.   we ignore
1409 	 * this as a false-positive return value doesn't hurt us.
1410 	 */
1411 	VOP_UNLOCK(vp);
1412 	uvn_detach(&uvn->u_obj);
1413 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1414 
1415 	return TRUE;
1416 }
1417 
1418 /*
1419  * uvm_vnp_setsize: grow or shrink a vnode uvn
1420  *
1421  * grow   => just update size value
1422  * shrink => toss un-needed pages
1423  *
1424  * => we assume that the caller has a reference of some sort to the
1425  *	vnode in question so that it will not be yanked out from under
1426  *	us.
1427  *
1428  * called from:
1429  *  => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos],
1430  *     fusefs_setattr)
1431  *  => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write
1432  *     fusefs_write)
1433  *  => ffs_balloc [XXX: why? doesn't WRITE handle?]
1434  *  => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1435  *  => union fs: union_newsize
1436  */
1437 
1438 void
uvm_vnp_setsize(struct vnode * vp,off_t newsize)1439 uvm_vnp_setsize(struct vnode *vp, off_t newsize)
1440 {
1441 	struct uvm_vnode *uvn = vp->v_uvm;
1442 	struct uvm_object *uobj = &uvn->u_obj;
1443 
1444 	KERNEL_ASSERT_LOCKED();
1445 
1446 	rw_enter(uobj->vmobjlock, RW_WRITE);
1447 
1448 	/* lock uvn and check for valid object, and if valid: do it! */
1449 	if (uvn->u_flags & UVM_VNODE_VALID) {
1450 
1451 		/*
1452 		 * now check if the size has changed: if we shrink we had better
1453 		 * toss some pages...
1454 		 */
1455 
1456 		if (uvn->u_size > newsize) {
1457 			(void)uvn_flush(&uvn->u_obj, newsize,
1458 			    uvn->u_size, PGO_FREE);
1459 		}
1460 		uvn->u_size = newsize;
1461 	}
1462 	rw_exit(uobj->vmobjlock);
1463 }
1464 
1465 /*
1466  * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1467  *
1468  * => called from sys_sync with no VM structures locked
1469  * => only one process can do a sync at a time (because the uvn
1470  *    structure only has one queue for sync'ing).  we ensure this
1471  *    by holding the uvn_sync_lock while the sync is in progress.
1472  *    other processes attempting a sync will sleep on this lock
1473  *    until we are done.
1474  */
1475 void
uvm_vnp_sync(struct mount * mp)1476 uvm_vnp_sync(struct mount *mp)
1477 {
1478 	struct uvm_vnode *uvn;
1479 	struct vnode *vp;
1480 
1481 	/*
1482 	 * step 1: ensure we are only ones using the uvn_sync_q by locking
1483 	 * our lock...
1484 	 */
1485 	rw_enter_write(&uvn_sync_lock);
1486 
1487 	/*
1488 	 * step 2: build up a simpleq of uvns of interest based on the
1489 	 * write list.   we gain a reference to uvns of interest.
1490 	 */
1491 	SIMPLEQ_INIT(&uvn_sync_q);
1492 	LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1493 		vp = uvn->u_vnode;
1494 		if (mp && vp->v_mount != mp)
1495 			continue;
1496 
1497 		/*
1498 		 * If the vnode is "blocked" it means it must be dying, which
1499 		 * in turn means its in the process of being flushed out so
1500 		 * we can safely skip it.
1501 		 *
1502 		 * note that uvn must already be valid because we found it on
1503 		 * the wlist (this also means it can't be ALOCK'd).
1504 		 */
1505 		if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1506 			continue;
1507 
1508 		/*
1509 		 * gain reference.   watch out for persisting uvns (need to
1510 		 * regain vnode REF).
1511 		 */
1512 		if (uvn->u_obj.uo_refs == 0)
1513 			vref(vp);
1514 		uvn->u_obj.uo_refs++;
1515 
1516 		SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1517 	}
1518 
1519 	/* step 3: we now have a list of uvn's that may need cleaning. */
1520 	SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1521 		rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
1522 #ifdef DEBUG
1523 		if (uvn->u_flags & UVM_VNODE_DYING) {
1524 			printf("uvm_vnp_sync: dying vnode on sync list\n");
1525 		}
1526 #endif
1527 		uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1528 
1529 		/*
1530 		 * if we have the only reference and we just cleaned the uvn,
1531 		 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1532 		 * thus allowing us to avoid thinking about flushing it again
1533 		 * on later sync ops.
1534 		 */
1535 		if (uvn->u_obj.uo_refs == 1 &&
1536 		    (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1537 			LIST_REMOVE(uvn, u_wlist);
1538 			uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1539 		}
1540 		rw_exit(uvn->u_obj.vmobjlock);
1541 
1542 		/* now drop our reference to the uvn */
1543 		uvn_detach(&uvn->u_obj);
1544 	}
1545 
1546 	rw_exit_write(&uvn_sync_lock);
1547 }
1548