1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 u32 avg_timeout;
70 u32 count;
71 u32 start_time;
72 bool exiting;
73 bool early_drop;
74 };
75
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82
83 #define GC_SCAN_INTERVAL_MAX (60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN (1ul * HZ)
85
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP (300ul * HZ)
88
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90 * wakeup often just because we have three entries with a 1s timeout while still
91 * allowing non-idle machines to wakeup more often when needed.
92 */
93 #define GC_SCAN_INITIAL_COUNT 100
94 #define GC_SCAN_INTERVAL_INIT GC_SCAN_INTERVAL_MAX
95
96 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX (64000u / HZ)
98
99 #define MIN_CHAINLEN 50u
100 #define MAX_CHAINLEN (80u - MIN_CHAINLEN)
101
102 static struct conntrack_gc_work conntrack_gc_work;
103
nf_conntrack_lock(spinlock_t * lock)104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106 /* 1) Acquire the lock */
107 spin_lock(lock);
108
109 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 */
112 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 return;
114
115 /* fast path failed, unlock */
116 spin_unlock(lock);
117
118 /* Slow path 1) get global lock */
119 spin_lock(&nf_conntrack_locks_all_lock);
120
121 /* Slow path 2) get the lock we want */
122 spin_lock(lock);
123
124 /* Slow path 3) release the global lock */
125 spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131 h1 %= CONNTRACK_LOCKS;
132 h2 %= CONNTRACK_LOCKS;
133 spin_unlock(&nf_conntrack_locks[h1]);
134 if (h1 != h2)
135 spin_unlock(&nf_conntrack_locks[h2]);
136 }
137
138 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 unsigned int h2, unsigned int sequence)
141 {
142 h1 %= CONNTRACK_LOCKS;
143 h2 %= CONNTRACK_LOCKS;
144 if (h1 <= h2) {
145 nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 if (h1 != h2)
147 spin_lock_nested(&nf_conntrack_locks[h2],
148 SINGLE_DEPTH_NESTING);
149 } else {
150 nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 spin_lock_nested(&nf_conntrack_locks[h1],
152 SINGLE_DEPTH_NESTING);
153 }
154 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 nf_conntrack_double_unlock(h1, h2);
156 return true;
157 }
158 return false;
159 }
160
nf_conntrack_all_lock(void)161 static void nf_conntrack_all_lock(void)
162 __acquires(&nf_conntrack_locks_all_lock)
163 {
164 int i;
165
166 spin_lock(&nf_conntrack_locks_all_lock);
167
168 /* For nf_contrack_locks_all, only the latest time when another
169 * CPU will see an update is controlled, by the "release" of the
170 * spin_lock below.
171 * The earliest time is not controlled, an thus KCSAN could detect
172 * a race when nf_conntract_lock() reads the variable.
173 * WRITE_ONCE() is used to ensure the compiler will not
174 * optimize the write.
175 */
176 WRITE_ONCE(nf_conntrack_locks_all, true);
177
178 for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 spin_lock(&nf_conntrack_locks[i]);
180
181 /* This spin_unlock provides the "release" to ensure that
182 * nf_conntrack_locks_all==true is visible to everyone that
183 * acquired spin_lock(&nf_conntrack_locks[]).
184 */
185 spin_unlock(&nf_conntrack_locks[i]);
186 }
187 }
188
nf_conntrack_all_unlock(void)189 static void nf_conntrack_all_unlock(void)
190 __releases(&nf_conntrack_locks_all_lock)
191 {
192 /* All prior stores must be complete before we clear
193 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 * might observe the false value but not the entire
195 * critical section.
196 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 */
198 smp_store_release(&nf_conntrack_locks_all, false);
199 spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 unsigned int zoneid,
212 const struct net *net)
213 {
214 siphash_key_t key;
215
216 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217
218 key = nf_conntrack_hash_rnd;
219
220 key.key[0] ^= zoneid;
221 key.key[1] ^= net_hash_mix(net);
222
223 return siphash((void *)tuple,
224 offsetofend(struct nf_conntrack_tuple, dst.__nfct_hash_offsetend),
225 &key);
226 }
227
scale_hash(u32 hash)228 static u32 scale_hash(u32 hash)
229 {
230 return reciprocal_scale(hash, nf_conntrack_htable_size);
231 }
232
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)233 static u32 __hash_conntrack(const struct net *net,
234 const struct nf_conntrack_tuple *tuple,
235 unsigned int zoneid,
236 unsigned int size)
237 {
238 return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
239 }
240
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)241 static u32 hash_conntrack(const struct net *net,
242 const struct nf_conntrack_tuple *tuple,
243 unsigned int zoneid)
244 {
245 return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
246 }
247
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)248 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
249 unsigned int dataoff,
250 struct nf_conntrack_tuple *tuple)
251 { struct {
252 __be16 sport;
253 __be16 dport;
254 } _inet_hdr, *inet_hdr;
255
256 /* Actually only need first 4 bytes to get ports. */
257 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
258 if (!inet_hdr)
259 return false;
260
261 tuple->src.u.udp.port = inet_hdr->sport;
262 tuple->dst.u.udp.port = inet_hdr->dport;
263 return true;
264 }
265
266 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)267 nf_ct_get_tuple(const struct sk_buff *skb,
268 unsigned int nhoff,
269 unsigned int dataoff,
270 u_int16_t l3num,
271 u_int8_t protonum,
272 struct net *net,
273 struct nf_conntrack_tuple *tuple)
274 {
275 unsigned int size;
276 const __be32 *ap;
277 __be32 _addrs[8];
278
279 memset(tuple, 0, sizeof(*tuple));
280
281 tuple->src.l3num = l3num;
282 switch (l3num) {
283 case NFPROTO_IPV4:
284 nhoff += offsetof(struct iphdr, saddr);
285 size = 2 * sizeof(__be32);
286 break;
287 case NFPROTO_IPV6:
288 nhoff += offsetof(struct ipv6hdr, saddr);
289 size = sizeof(_addrs);
290 break;
291 default:
292 return true;
293 }
294
295 ap = skb_header_pointer(skb, nhoff, size, _addrs);
296 if (!ap)
297 return false;
298
299 switch (l3num) {
300 case NFPROTO_IPV4:
301 tuple->src.u3.ip = ap[0];
302 tuple->dst.u3.ip = ap[1];
303 break;
304 case NFPROTO_IPV6:
305 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
306 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
307 break;
308 }
309
310 tuple->dst.protonum = protonum;
311 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
312
313 switch (protonum) {
314 #if IS_ENABLED(CONFIG_IPV6)
315 case IPPROTO_ICMPV6:
316 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
317 #endif
318 case IPPROTO_ICMP:
319 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
320 #ifdef CONFIG_NF_CT_PROTO_GRE
321 case IPPROTO_GRE:
322 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
323 #endif
324 case IPPROTO_TCP:
325 case IPPROTO_UDP:
326 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
327 case IPPROTO_UDPLITE:
328 #endif
329 #ifdef CONFIG_NF_CT_PROTO_SCTP
330 case IPPROTO_SCTP:
331 #endif
332 #ifdef CONFIG_NF_CT_PROTO_DCCP
333 case IPPROTO_DCCP:
334 #endif
335 /* fallthrough */
336 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 default:
338 break;
339 }
340
341 return true;
342 }
343
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)344 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
345 u_int8_t *protonum)
346 {
347 int dataoff = -1;
348 const struct iphdr *iph;
349 struct iphdr _iph;
350
351 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
352 if (!iph)
353 return -1;
354
355 /* Conntrack defragments packets, we might still see fragments
356 * inside ICMP packets though.
357 */
358 if (iph->frag_off & htons(IP_OFFSET))
359 return -1;
360
361 dataoff = nhoff + (iph->ihl << 2);
362 *protonum = iph->protocol;
363
364 /* Check bogus IP headers */
365 if (dataoff > skb->len) {
366 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
367 nhoff, iph->ihl << 2, skb->len);
368 return -1;
369 }
370 return dataoff;
371 }
372
373 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)374 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
375 u8 *protonum)
376 {
377 int protoff = -1;
378 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
379 __be16 frag_off;
380 u8 nexthdr;
381
382 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
383 &nexthdr, sizeof(nexthdr)) != 0) {
384 pr_debug("can't get nexthdr\n");
385 return -1;
386 }
387 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
388 /*
389 * (protoff == skb->len) means the packet has not data, just
390 * IPv6 and possibly extensions headers, but it is tracked anyway
391 */
392 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
393 pr_debug("can't find proto in pkt\n");
394 return -1;
395 }
396
397 *protonum = nexthdr;
398 return protoff;
399 }
400 #endif
401
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)402 static int get_l4proto(const struct sk_buff *skb,
403 unsigned int nhoff, u8 pf, u8 *l4num)
404 {
405 switch (pf) {
406 case NFPROTO_IPV4:
407 return ipv4_get_l4proto(skb, nhoff, l4num);
408 #if IS_ENABLED(CONFIG_IPV6)
409 case NFPROTO_IPV6:
410 return ipv6_get_l4proto(skb, nhoff, l4num);
411 #endif
412 default:
413 *l4num = 0;
414 break;
415 }
416 return -1;
417 }
418
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)419 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
420 u_int16_t l3num,
421 struct net *net, struct nf_conntrack_tuple *tuple)
422 {
423 u8 protonum;
424 int protoff;
425
426 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
427 if (protoff <= 0)
428 return false;
429
430 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
431 }
432 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
433
434 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)435 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
436 const struct nf_conntrack_tuple *orig)
437 {
438 memset(inverse, 0, sizeof(*inverse));
439
440 inverse->src.l3num = orig->src.l3num;
441
442 switch (orig->src.l3num) {
443 case NFPROTO_IPV4:
444 inverse->src.u3.ip = orig->dst.u3.ip;
445 inverse->dst.u3.ip = orig->src.u3.ip;
446 break;
447 case NFPROTO_IPV6:
448 inverse->src.u3.in6 = orig->dst.u3.in6;
449 inverse->dst.u3.in6 = orig->src.u3.in6;
450 break;
451 default:
452 break;
453 }
454
455 inverse->dst.dir = !orig->dst.dir;
456
457 inverse->dst.protonum = orig->dst.protonum;
458
459 switch (orig->dst.protonum) {
460 case IPPROTO_ICMP:
461 return nf_conntrack_invert_icmp_tuple(inverse, orig);
462 #if IS_ENABLED(CONFIG_IPV6)
463 case IPPROTO_ICMPV6:
464 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
465 #endif
466 }
467
468 inverse->src.u.all = orig->dst.u.all;
469 inverse->dst.u.all = orig->src.u.all;
470 return true;
471 }
472 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
473
474 /* Generate a almost-unique pseudo-id for a given conntrack.
475 *
476 * intentionally doesn't re-use any of the seeds used for hash
477 * table location, we assume id gets exposed to userspace.
478 *
479 * Following nf_conn items do not change throughout lifetime
480 * of the nf_conn:
481 *
482 * 1. nf_conn address
483 * 2. nf_conn->master address (normally NULL)
484 * 3. the associated net namespace
485 * 4. the original direction tuple
486 */
nf_ct_get_id(const struct nf_conn * ct)487 u32 nf_ct_get_id(const struct nf_conn *ct)
488 {
489 static siphash_aligned_key_t ct_id_seed;
490 unsigned long a, b, c, d;
491
492 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
493
494 a = (unsigned long)ct;
495 b = (unsigned long)ct->master;
496 c = (unsigned long)nf_ct_net(ct);
497 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
498 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
499 &ct_id_seed);
500 #ifdef CONFIG_64BIT
501 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
502 #else
503 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
504 #endif
505 }
506 EXPORT_SYMBOL_GPL(nf_ct_get_id);
507
508 static void
clean_from_lists(struct nf_conn * ct)509 clean_from_lists(struct nf_conn *ct)
510 {
511 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
512 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
513
514 /* Destroy all pending expectations */
515 nf_ct_remove_expectations(ct);
516 }
517
518 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
519
520 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)521 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
522 const struct nf_conntrack_zone *zone,
523 gfp_t flags)
524 {
525 struct nf_conn *tmpl, *p;
526
527 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
528 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
529 if (!tmpl)
530 return NULL;
531
532 p = tmpl;
533 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
534 if (tmpl != p) {
535 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
536 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
537 }
538 } else {
539 tmpl = kzalloc(sizeof(*tmpl), flags);
540 if (!tmpl)
541 return NULL;
542 }
543
544 tmpl->status = IPS_TEMPLATE;
545 write_pnet(&tmpl->ct_net, net);
546 nf_ct_zone_add(tmpl, zone);
547 refcount_set(&tmpl->ct_general.use, 1);
548
549 return tmpl;
550 }
551 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
552
nf_ct_tmpl_free(struct nf_conn * tmpl)553 void nf_ct_tmpl_free(struct nf_conn *tmpl)
554 {
555 kfree(tmpl->ext);
556
557 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
558 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
559 else
560 kfree(tmpl);
561 }
562 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
563
destroy_gre_conntrack(struct nf_conn * ct)564 static void destroy_gre_conntrack(struct nf_conn *ct)
565 {
566 #ifdef CONFIG_NF_CT_PROTO_GRE
567 struct nf_conn *master = ct->master;
568
569 if (master)
570 nf_ct_gre_keymap_destroy(master);
571 #endif
572 }
573
nf_ct_destroy(struct nf_conntrack * nfct)574 void nf_ct_destroy(struct nf_conntrack *nfct)
575 {
576 struct nf_conn *ct = (struct nf_conn *)nfct;
577
578 WARN_ON(refcount_read(&nfct->use) != 0);
579
580 if (unlikely(nf_ct_is_template(ct))) {
581 nf_ct_tmpl_free(ct);
582 return;
583 }
584
585 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
586 destroy_gre_conntrack(ct);
587
588 /* Expectations will have been removed in clean_from_lists,
589 * except TFTP can create an expectation on the first packet,
590 * before connection is in the list, so we need to clean here,
591 * too.
592 */
593 nf_ct_remove_expectations(ct);
594
595 if (ct->master)
596 nf_ct_put(ct->master);
597
598 nf_conntrack_free(ct);
599 }
600 EXPORT_SYMBOL(nf_ct_destroy);
601
__nf_ct_delete_from_lists(struct nf_conn * ct)602 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
603 {
604 struct net *net = nf_ct_net(ct);
605 unsigned int hash, reply_hash;
606 unsigned int sequence;
607
608 do {
609 sequence = read_seqcount_begin(&nf_conntrack_generation);
610 hash = hash_conntrack(net,
611 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
612 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
613 reply_hash = hash_conntrack(net,
614 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
615 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
616 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
617
618 clean_from_lists(ct);
619 nf_conntrack_double_unlock(hash, reply_hash);
620 }
621
nf_ct_delete_from_lists(struct nf_conn * ct)622 static void nf_ct_delete_from_lists(struct nf_conn *ct)
623 {
624 nf_ct_helper_destroy(ct);
625 local_bh_disable();
626
627 __nf_ct_delete_from_lists(ct);
628
629 local_bh_enable();
630 }
631
nf_ct_add_to_ecache_list(struct nf_conn * ct)632 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
633 {
634 #ifdef CONFIG_NF_CONNTRACK_EVENTS
635 struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
636
637 spin_lock(&cnet->ecache.dying_lock);
638 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
639 &cnet->ecache.dying_list);
640 spin_unlock(&cnet->ecache.dying_lock);
641 #endif
642 }
643
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)644 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
645 {
646 struct nf_conn_tstamp *tstamp;
647 struct net *net;
648
649 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
650 return false;
651
652 tstamp = nf_conn_tstamp_find(ct);
653 if (tstamp) {
654 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
655
656 tstamp->stop = ktime_get_real_ns();
657 if (timeout < 0)
658 tstamp->stop -= jiffies_to_nsecs(-timeout);
659 }
660
661 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
662 portid, report) < 0) {
663 /* destroy event was not delivered. nf_ct_put will
664 * be done by event cache worker on redelivery.
665 */
666 nf_ct_helper_destroy(ct);
667 local_bh_disable();
668 __nf_ct_delete_from_lists(ct);
669 nf_ct_add_to_ecache_list(ct);
670 local_bh_enable();
671
672 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
673 return false;
674 }
675
676 net = nf_ct_net(ct);
677 if (nf_conntrack_ecache_dwork_pending(net))
678 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
679 nf_ct_delete_from_lists(ct);
680 nf_ct_put(ct);
681 return true;
682 }
683 EXPORT_SYMBOL_GPL(nf_ct_delete);
684
685 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)686 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
687 const struct nf_conntrack_tuple *tuple,
688 const struct nf_conntrack_zone *zone,
689 const struct net *net)
690 {
691 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
692
693 /* A conntrack can be recreated with the equal tuple,
694 * so we need to check that the conntrack is confirmed
695 */
696 return nf_ct_tuple_equal(tuple, &h->tuple) &&
697 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
698 nf_ct_is_confirmed(ct) &&
699 net_eq(net, nf_ct_net(ct));
700 }
701
702 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)703 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
704 {
705 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
706 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
707 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
708 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
709 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
710 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
711 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
712 }
713
714 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)715 static void nf_ct_gc_expired(struct nf_conn *ct)
716 {
717 if (!refcount_inc_not_zero(&ct->ct_general.use))
718 return;
719
720 /* load ->status after refcount increase */
721 smp_acquire__after_ctrl_dep();
722
723 if (nf_ct_should_gc(ct))
724 nf_ct_kill(ct);
725
726 nf_ct_put(ct);
727 }
728
729 /*
730 * Warning :
731 * - Caller must take a reference on returned object
732 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
733 */
734 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)735 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
736 const struct nf_conntrack_tuple *tuple, u32 hash)
737 {
738 struct nf_conntrack_tuple_hash *h;
739 struct hlist_nulls_head *ct_hash;
740 struct hlist_nulls_node *n;
741 unsigned int bucket, hsize;
742
743 begin:
744 nf_conntrack_get_ht(&ct_hash, &hsize);
745 bucket = reciprocal_scale(hash, hsize);
746
747 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
748 struct nf_conn *ct;
749
750 ct = nf_ct_tuplehash_to_ctrack(h);
751 if (nf_ct_is_expired(ct)) {
752 nf_ct_gc_expired(ct);
753 continue;
754 }
755
756 if (nf_ct_key_equal(h, tuple, zone, net))
757 return h;
758 }
759 /*
760 * if the nulls value we got at the end of this lookup is
761 * not the expected one, we must restart lookup.
762 * We probably met an item that was moved to another chain.
763 */
764 if (get_nulls_value(n) != bucket) {
765 NF_CT_STAT_INC_ATOMIC(net, search_restart);
766 goto begin;
767 }
768
769 return NULL;
770 }
771
772 /* Find a connection corresponding to a tuple. */
773 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)774 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
775 const struct nf_conntrack_tuple *tuple, u32 hash)
776 {
777 struct nf_conntrack_tuple_hash *h;
778 struct nf_conn *ct;
779
780 h = ____nf_conntrack_find(net, zone, tuple, hash);
781 if (h) {
782 /* We have a candidate that matches the tuple we're interested
783 * in, try to obtain a reference and re-check tuple
784 */
785 ct = nf_ct_tuplehash_to_ctrack(h);
786 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
787 /* re-check key after refcount */
788 smp_acquire__after_ctrl_dep();
789
790 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
791 return h;
792
793 /* TYPESAFE_BY_RCU recycled the candidate */
794 nf_ct_put(ct);
795 }
796
797 h = NULL;
798 }
799
800 return h;
801 }
802
803 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)804 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
805 const struct nf_conntrack_tuple *tuple)
806 {
807 unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
808 struct nf_conntrack_tuple_hash *thash;
809
810 rcu_read_lock();
811
812 thash = __nf_conntrack_find_get(net, zone, tuple,
813 hash_conntrack_raw(tuple, zone_id, net));
814
815 if (thash)
816 goto out_unlock;
817
818 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
819 if (rid != zone_id)
820 thash = __nf_conntrack_find_get(net, zone, tuple,
821 hash_conntrack_raw(tuple, rid, net));
822
823 out_unlock:
824 rcu_read_unlock();
825 return thash;
826 }
827 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
828
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)829 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
830 unsigned int hash,
831 unsigned int reply_hash)
832 {
833 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
834 &nf_conntrack_hash[hash]);
835 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
836 &nf_conntrack_hash[reply_hash]);
837 }
838
nf_ct_ext_valid_pre(const struct nf_ct_ext * ext)839 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
840 {
841 /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
842 * may contain stale pointers to e.g. helper that has been removed.
843 *
844 * The helper can't clear this because the nf_conn object isn't in
845 * any hash and synchronize_rcu() isn't enough because associated skb
846 * might sit in a queue.
847 */
848 return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
849 }
850
nf_ct_ext_valid_post(struct nf_ct_ext * ext)851 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
852 {
853 if (!ext)
854 return true;
855
856 if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
857 return false;
858
859 /* inserted into conntrack table, nf_ct_iterate_cleanup()
860 * will find it. Disable nf_ct_ext_find() id check.
861 */
862 WRITE_ONCE(ext->gen_id, 0);
863 return true;
864 }
865
866 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)867 nf_conntrack_hash_check_insert(struct nf_conn *ct)
868 {
869 const struct nf_conntrack_zone *zone;
870 struct net *net = nf_ct_net(ct);
871 unsigned int hash, reply_hash;
872 struct nf_conntrack_tuple_hash *h;
873 struct hlist_nulls_node *n;
874 unsigned int max_chainlen;
875 unsigned int chainlen = 0;
876 unsigned int sequence;
877 int err = -EEXIST;
878
879 zone = nf_ct_zone(ct);
880
881 if (!nf_ct_ext_valid_pre(ct->ext))
882 return -EAGAIN;
883
884 local_bh_disable();
885 do {
886 sequence = read_seqcount_begin(&nf_conntrack_generation);
887 hash = hash_conntrack(net,
888 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
889 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
890 reply_hash = hash_conntrack(net,
891 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
892 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
893 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
894
895 max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
896
897 /* See if there's one in the list already, including reverse */
898 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
899 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
900 zone, net))
901 goto out;
902
903 if (chainlen++ > max_chainlen)
904 goto chaintoolong;
905 }
906
907 chainlen = 0;
908
909 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
910 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
911 zone, net))
912 goto out;
913 if (chainlen++ > max_chainlen)
914 goto chaintoolong;
915 }
916
917 /* If genid has changed, we can't insert anymore because ct
918 * extensions could have stale pointers and nf_ct_iterate_destroy
919 * might have completed its table scan already.
920 *
921 * Increment of the ext genid right after this check is fine:
922 * nf_ct_iterate_destroy blocks until locks are released.
923 */
924 if (!nf_ct_ext_valid_post(ct->ext)) {
925 err = -EAGAIN;
926 goto out;
927 }
928
929 smp_wmb();
930 /* The caller holds a reference to this object */
931 refcount_set(&ct->ct_general.use, 2);
932 __nf_conntrack_hash_insert(ct, hash, reply_hash);
933 nf_conntrack_double_unlock(hash, reply_hash);
934 NF_CT_STAT_INC(net, insert);
935 local_bh_enable();
936
937 return 0;
938 chaintoolong:
939 NF_CT_STAT_INC(net, chaintoolong);
940 err = -ENOSPC;
941 out:
942 nf_conntrack_double_unlock(hash, reply_hash);
943 local_bh_enable();
944 return err;
945 }
946 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
947
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)948 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
949 unsigned int bytes)
950 {
951 struct nf_conn_acct *acct;
952
953 acct = nf_conn_acct_find(ct);
954 if (acct) {
955 struct nf_conn_counter *counter = acct->counter;
956
957 atomic64_add(packets, &counter[dir].packets);
958 atomic64_add(bytes, &counter[dir].bytes);
959 }
960 }
961 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
962
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)963 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
964 const struct nf_conn *loser_ct)
965 {
966 struct nf_conn_acct *acct;
967
968 acct = nf_conn_acct_find(loser_ct);
969 if (acct) {
970 struct nf_conn_counter *counter = acct->counter;
971 unsigned int bytes;
972
973 /* u32 should be fine since we must have seen one packet. */
974 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
975 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
976 }
977 }
978
__nf_conntrack_insert_prepare(struct nf_conn * ct)979 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
980 {
981 struct nf_conn_tstamp *tstamp;
982
983 refcount_inc(&ct->ct_general.use);
984
985 /* set conntrack timestamp, if enabled. */
986 tstamp = nf_conn_tstamp_find(ct);
987 if (tstamp)
988 tstamp->start = ktime_get_real_ns();
989 }
990
991 /**
992 * nf_ct_match_reverse - check if ct1 and ct2 refer to identical flow
993 * @ct1: conntrack in hash table to check against
994 * @ct2: merge candidate
995 *
996 * returns true if ct1 and ct2 happen to refer to the same flow, but
997 * in opposing directions, i.e.
998 * ct1: a:b -> c:d
999 * ct2: c:d -> a:b
1000 * for both directions. If so, @ct2 should not have been created
1001 * as the skb should have been picked up as ESTABLISHED flow.
1002 * But ct1 was not yet committed to hash table before skb that created
1003 * ct2 had arrived.
1004 *
1005 * Note we don't compare netns because ct entries in different net
1006 * namespace cannot clash to begin with.
1007 *
1008 * @return: true if ct1 and ct2 are identical when swapping origin/reply.
1009 */
1010 static bool
nf_ct_match_reverse(const struct nf_conn * ct1,const struct nf_conn * ct2)1011 nf_ct_match_reverse(const struct nf_conn *ct1, const struct nf_conn *ct2)
1012 {
1013 u16 id1, id2;
1014
1015 if (!nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1016 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple))
1017 return false;
1018
1019 if (!nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
1020 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1021 return false;
1022
1023 id1 = nf_ct_zone_id(nf_ct_zone(ct1), IP_CT_DIR_ORIGINAL);
1024 id2 = nf_ct_zone_id(nf_ct_zone(ct2), IP_CT_DIR_REPLY);
1025 if (id1 != id2)
1026 return false;
1027
1028 id1 = nf_ct_zone_id(nf_ct_zone(ct1), IP_CT_DIR_REPLY);
1029 id2 = nf_ct_zone_id(nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL);
1030
1031 return id1 == id2;
1032 }
1033
nf_ct_can_merge(const struct nf_conn * ct,const struct nf_conn * loser_ct)1034 static int nf_ct_can_merge(const struct nf_conn *ct,
1035 const struct nf_conn *loser_ct)
1036 {
1037 return nf_ct_match(ct, loser_ct) ||
1038 nf_ct_match_reverse(ct, loser_ct);
1039 }
1040
1041 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)1042 static int __nf_ct_resolve_clash(struct sk_buff *skb,
1043 struct nf_conntrack_tuple_hash *h)
1044 {
1045 /* This is the conntrack entry already in hashes that won race. */
1046 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1047 enum ip_conntrack_info ctinfo;
1048 struct nf_conn *loser_ct;
1049
1050 loser_ct = nf_ct_get(skb, &ctinfo);
1051
1052 if (nf_ct_can_merge(ct, loser_ct)) {
1053 struct net *net = nf_ct_net(ct);
1054
1055 nf_conntrack_get(&ct->ct_general);
1056
1057 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1058 nf_ct_put(loser_ct);
1059 nf_ct_set(skb, ct, ctinfo);
1060
1061 NF_CT_STAT_INC(net, clash_resolve);
1062 return NF_ACCEPT;
1063 }
1064
1065 return NF_DROP;
1066 }
1067
1068 /**
1069 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1070 *
1071 * @skb: skb that causes the collision
1072 * @repl_idx: hash slot for reply direction
1073 *
1074 * Called when origin or reply direction had a clash.
1075 * The skb can be handled without packet drop provided the reply direction
1076 * is unique or there the existing entry has the identical tuple in both
1077 * directions.
1078 *
1079 * Caller must hold conntrack table locks to prevent concurrent updates.
1080 *
1081 * Returns NF_DROP if the clash could not be handled.
1082 */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1083 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1084 {
1085 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1086 const struct nf_conntrack_zone *zone;
1087 struct nf_conntrack_tuple_hash *h;
1088 struct hlist_nulls_node *n;
1089 struct net *net;
1090
1091 zone = nf_ct_zone(loser_ct);
1092 net = nf_ct_net(loser_ct);
1093
1094 /* Reply direction must never result in a clash, unless both origin
1095 * and reply tuples are identical.
1096 */
1097 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1098 if (nf_ct_key_equal(h,
1099 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1100 zone, net))
1101 return __nf_ct_resolve_clash(skb, h);
1102 }
1103
1104 /* We want the clashing entry to go away real soon: 1 second timeout. */
1105 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1106
1107 /* IPS_NAT_CLASH removes the entry automatically on the first
1108 * reply. Also prevents UDP tracker from moving the entry to
1109 * ASSURED state, i.e. the entry can always be evicted under
1110 * pressure.
1111 */
1112 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1113
1114 __nf_conntrack_insert_prepare(loser_ct);
1115
1116 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1117 * already in the table. This also hides the clashing entry from
1118 * ctnetlink iteration, i.e. conntrack -L won't show them.
1119 */
1120 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1121
1122 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1123 &nf_conntrack_hash[repl_idx]);
1124
1125 NF_CT_STAT_INC(net, clash_resolve);
1126 return NF_ACCEPT;
1127 }
1128
1129 /**
1130 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1131 *
1132 * @skb: skb that causes the clash
1133 * @h: tuplehash of the clashing entry already in table
1134 * @reply_hash: hash slot for reply direction
1135 *
1136 * A conntrack entry can be inserted to the connection tracking table
1137 * if there is no existing entry with an identical tuple.
1138 *
1139 * If there is one, @skb (and the associated, unconfirmed conntrack) has
1140 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1141 * will find the already-existing entry.
1142 *
1143 * The major problem with such packet drop is the extra delay added by
1144 * the packet loss -- it will take some time for a retransmit to occur
1145 * (or the sender to time out when waiting for a reply).
1146 *
1147 * This function attempts to handle the situation without packet drop.
1148 *
1149 * If @skb has no NAT transformation or if the colliding entries are
1150 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1151 * and @skb is associated with the conntrack entry already in the table.
1152 *
1153 * Failing that, the new, unconfirmed conntrack is still added to the table
1154 * provided that the collision only occurs in the ORIGINAL direction.
1155 * The new entry will be added only in the non-clashing REPLY direction,
1156 * so packets in the ORIGINAL direction will continue to match the existing
1157 * entry. The new entry will also have a fixed timeout so it expires --
1158 * due to the collision, it will only see reply traffic.
1159 *
1160 * Returns NF_DROP if the clash could not be resolved.
1161 */
1162 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1163 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1164 u32 reply_hash)
1165 {
1166 /* This is the conntrack entry already in hashes that won race. */
1167 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1168 const struct nf_conntrack_l4proto *l4proto;
1169 enum ip_conntrack_info ctinfo;
1170 struct nf_conn *loser_ct;
1171 struct net *net;
1172 int ret;
1173
1174 loser_ct = nf_ct_get(skb, &ctinfo);
1175 net = nf_ct_net(loser_ct);
1176
1177 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1178 if (!l4proto->allow_clash)
1179 goto drop;
1180
1181 ret = __nf_ct_resolve_clash(skb, h);
1182 if (ret == NF_ACCEPT)
1183 return ret;
1184
1185 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1186 if (ret == NF_ACCEPT)
1187 return ret;
1188
1189 drop:
1190 NF_CT_STAT_INC(net, drop);
1191 NF_CT_STAT_INC(net, insert_failed);
1192 return NF_DROP;
1193 }
1194
1195 /* Confirm a connection given skb; places it in hash table */
1196 int
__nf_conntrack_confirm(struct sk_buff * skb)1197 __nf_conntrack_confirm(struct sk_buff *skb)
1198 {
1199 unsigned int chainlen = 0, sequence, max_chainlen;
1200 const struct nf_conntrack_zone *zone;
1201 unsigned int hash, reply_hash;
1202 struct nf_conntrack_tuple_hash *h;
1203 struct nf_conn *ct;
1204 struct nf_conn_help *help;
1205 struct hlist_nulls_node *n;
1206 enum ip_conntrack_info ctinfo;
1207 struct net *net;
1208 int ret = NF_DROP;
1209
1210 ct = nf_ct_get(skb, &ctinfo);
1211 net = nf_ct_net(ct);
1212
1213 /* ipt_REJECT uses nf_conntrack_attach to attach related
1214 ICMP/TCP RST packets in other direction. Actual packet
1215 which created connection will be IP_CT_NEW or for an
1216 expected connection, IP_CT_RELATED. */
1217 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1218 return NF_ACCEPT;
1219
1220 zone = nf_ct_zone(ct);
1221 local_bh_disable();
1222
1223 do {
1224 sequence = read_seqcount_begin(&nf_conntrack_generation);
1225 /* reuse the hash saved before */
1226 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1227 hash = scale_hash(hash);
1228 reply_hash = hash_conntrack(net,
1229 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1230 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1231 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1232
1233 /* We're not in hash table, and we refuse to set up related
1234 * connections for unconfirmed conns. But packet copies and
1235 * REJECT will give spurious warnings here.
1236 */
1237
1238 /* Another skb with the same unconfirmed conntrack may
1239 * win the race. This may happen for bridge(br_flood)
1240 * or broadcast/multicast packets do skb_clone with
1241 * unconfirmed conntrack.
1242 */
1243 if (unlikely(nf_ct_is_confirmed(ct))) {
1244 WARN_ON_ONCE(1);
1245 nf_conntrack_double_unlock(hash, reply_hash);
1246 local_bh_enable();
1247 return NF_DROP;
1248 }
1249
1250 if (!nf_ct_ext_valid_pre(ct->ext)) {
1251 NF_CT_STAT_INC(net, insert_failed);
1252 goto dying;
1253 }
1254
1255 /* We have to check the DYING flag after unlink to prevent
1256 * a race against nf_ct_get_next_corpse() possibly called from
1257 * user context, else we insert an already 'dead' hash, blocking
1258 * further use of that particular connection -JM.
1259 */
1260 ct->status |= IPS_CONFIRMED;
1261
1262 if (unlikely(nf_ct_is_dying(ct))) {
1263 NF_CT_STAT_INC(net, insert_failed);
1264 goto dying;
1265 }
1266
1267 max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1268 /* See if there's one in the list already, including reverse:
1269 NAT could have grabbed it without realizing, since we're
1270 not in the hash. If there is, we lost race. */
1271 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1272 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1273 zone, net))
1274 goto out;
1275 if (chainlen++ > max_chainlen)
1276 goto chaintoolong;
1277 }
1278
1279 chainlen = 0;
1280 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1281 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1282 zone, net))
1283 goto out;
1284 if (chainlen++ > max_chainlen) {
1285 chaintoolong:
1286 NF_CT_STAT_INC(net, chaintoolong);
1287 NF_CT_STAT_INC(net, insert_failed);
1288 ret = NF_DROP;
1289 goto dying;
1290 }
1291 }
1292
1293 /* Timer relative to confirmation time, not original
1294 setting time, otherwise we'd get timer wrap in
1295 weird delay cases. */
1296 ct->timeout += nfct_time_stamp;
1297
1298 __nf_conntrack_insert_prepare(ct);
1299
1300 /* Since the lookup is lockless, hash insertion must be done after
1301 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1302 * guarantee that no other CPU can find the conntrack before the above
1303 * stores are visible.
1304 */
1305 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1306 nf_conntrack_double_unlock(hash, reply_hash);
1307 local_bh_enable();
1308
1309 /* ext area is still valid (rcu read lock is held,
1310 * but will go out of scope soon, we need to remove
1311 * this conntrack again.
1312 */
1313 if (!nf_ct_ext_valid_post(ct->ext)) {
1314 nf_ct_kill(ct);
1315 NF_CT_STAT_INC_ATOMIC(net, drop);
1316 return NF_DROP;
1317 }
1318
1319 help = nfct_help(ct);
1320 if (help && help->helper)
1321 nf_conntrack_event_cache(IPCT_HELPER, ct);
1322
1323 nf_conntrack_event_cache(master_ct(ct) ?
1324 IPCT_RELATED : IPCT_NEW, ct);
1325 return NF_ACCEPT;
1326
1327 out:
1328 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1329 dying:
1330 nf_conntrack_double_unlock(hash, reply_hash);
1331 local_bh_enable();
1332 return ret;
1333 }
1334 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1335
1336 /* Returns true if a connection corresponds to the tuple (required
1337 for NAT). */
1338 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1339 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1340 const struct nf_conn *ignored_conntrack)
1341 {
1342 struct net *net = nf_ct_net(ignored_conntrack);
1343 const struct nf_conntrack_zone *zone;
1344 struct nf_conntrack_tuple_hash *h;
1345 struct hlist_nulls_head *ct_hash;
1346 unsigned int hash, hsize;
1347 struct hlist_nulls_node *n;
1348 struct nf_conn *ct;
1349
1350 zone = nf_ct_zone(ignored_conntrack);
1351
1352 rcu_read_lock();
1353 begin:
1354 nf_conntrack_get_ht(&ct_hash, &hsize);
1355 hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1356
1357 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1358 ct = nf_ct_tuplehash_to_ctrack(h);
1359
1360 if (ct == ignored_conntrack)
1361 continue;
1362
1363 if (nf_ct_is_expired(ct)) {
1364 nf_ct_gc_expired(ct);
1365 continue;
1366 }
1367
1368 if (nf_ct_key_equal(h, tuple, zone, net)) {
1369 /* Tuple is taken already, so caller will need to find
1370 * a new source port to use.
1371 *
1372 * Only exception:
1373 * If the *original tuples* are identical, then both
1374 * conntracks refer to the same flow.
1375 * This is a rare situation, it can occur e.g. when
1376 * more than one UDP packet is sent from same socket
1377 * in different threads.
1378 *
1379 * Let nf_ct_resolve_clash() deal with this later.
1380 */
1381 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1382 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1383 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1384 continue;
1385
1386 NF_CT_STAT_INC_ATOMIC(net, found);
1387 rcu_read_unlock();
1388 return 1;
1389 }
1390 }
1391
1392 if (get_nulls_value(n) != hash) {
1393 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1394 goto begin;
1395 }
1396
1397 rcu_read_unlock();
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1402
1403 #define NF_CT_EVICTION_RANGE 8
1404
1405 /* There's a small race here where we may free a just-assured
1406 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1407 static unsigned int early_drop_list(struct net *net,
1408 struct hlist_nulls_head *head)
1409 {
1410 struct nf_conntrack_tuple_hash *h;
1411 struct hlist_nulls_node *n;
1412 unsigned int drops = 0;
1413 struct nf_conn *tmp;
1414
1415 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1416 tmp = nf_ct_tuplehash_to_ctrack(h);
1417
1418 if (nf_ct_is_expired(tmp)) {
1419 nf_ct_gc_expired(tmp);
1420 continue;
1421 }
1422
1423 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1424 !net_eq(nf_ct_net(tmp), net) ||
1425 nf_ct_is_dying(tmp))
1426 continue;
1427
1428 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1429 continue;
1430
1431 /* load ->ct_net and ->status after refcount increase */
1432 smp_acquire__after_ctrl_dep();
1433
1434 /* kill only if still in same netns -- might have moved due to
1435 * SLAB_TYPESAFE_BY_RCU rules.
1436 *
1437 * We steal the timer reference. If that fails timer has
1438 * already fired or someone else deleted it. Just drop ref
1439 * and move to next entry.
1440 */
1441 if (net_eq(nf_ct_net(tmp), net) &&
1442 nf_ct_is_confirmed(tmp) &&
1443 nf_ct_delete(tmp, 0, 0))
1444 drops++;
1445
1446 nf_ct_put(tmp);
1447 }
1448
1449 return drops;
1450 }
1451
early_drop(struct net * net,unsigned int hash)1452 static noinline int early_drop(struct net *net, unsigned int hash)
1453 {
1454 unsigned int i, bucket;
1455
1456 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1457 struct hlist_nulls_head *ct_hash;
1458 unsigned int hsize, drops;
1459
1460 rcu_read_lock();
1461 nf_conntrack_get_ht(&ct_hash, &hsize);
1462 if (!i)
1463 bucket = reciprocal_scale(hash, hsize);
1464 else
1465 bucket = (bucket + 1) % hsize;
1466
1467 drops = early_drop_list(net, &ct_hash[bucket]);
1468 rcu_read_unlock();
1469
1470 if (drops) {
1471 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1472 return true;
1473 }
1474 }
1475
1476 return false;
1477 }
1478
gc_worker_skip_ct(const struct nf_conn * ct)1479 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1480 {
1481 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1482 }
1483
gc_worker_can_early_drop(const struct nf_conn * ct)1484 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1485 {
1486 const struct nf_conntrack_l4proto *l4proto;
1487 u8 protonum = nf_ct_protonum(ct);
1488
1489 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1490 return true;
1491
1492 l4proto = nf_ct_l4proto_find(protonum);
1493 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1494 return true;
1495
1496 return false;
1497 }
1498
gc_worker(struct work_struct * work)1499 static void gc_worker(struct work_struct *work)
1500 {
1501 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1502 u32 end_time, start_time = nfct_time_stamp;
1503 struct conntrack_gc_work *gc_work;
1504 unsigned int expired_count = 0;
1505 unsigned long next_run;
1506 s32 delta_time;
1507 long count;
1508
1509 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1510
1511 i = gc_work->next_bucket;
1512 if (gc_work->early_drop)
1513 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1514
1515 if (i == 0) {
1516 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1517 gc_work->count = GC_SCAN_INITIAL_COUNT;
1518 gc_work->start_time = start_time;
1519 }
1520
1521 next_run = gc_work->avg_timeout;
1522 count = gc_work->count;
1523
1524 end_time = start_time + GC_SCAN_MAX_DURATION;
1525
1526 do {
1527 struct nf_conntrack_tuple_hash *h;
1528 struct hlist_nulls_head *ct_hash;
1529 struct hlist_nulls_node *n;
1530 struct nf_conn *tmp;
1531
1532 rcu_read_lock();
1533
1534 nf_conntrack_get_ht(&ct_hash, &hashsz);
1535 if (i >= hashsz) {
1536 rcu_read_unlock();
1537 break;
1538 }
1539
1540 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1541 struct nf_conntrack_net *cnet;
1542 struct net *net;
1543 long expires;
1544
1545 tmp = nf_ct_tuplehash_to_ctrack(h);
1546
1547 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1548 nf_ct_offload_timeout(tmp);
1549 if (!nf_conntrack_max95)
1550 continue;
1551 }
1552
1553 if (expired_count > GC_SCAN_EXPIRED_MAX) {
1554 rcu_read_unlock();
1555
1556 gc_work->next_bucket = i;
1557 gc_work->avg_timeout = next_run;
1558 gc_work->count = count;
1559
1560 delta_time = nfct_time_stamp - gc_work->start_time;
1561
1562 /* re-sched immediately if total cycle time is exceeded */
1563 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1564 goto early_exit;
1565 }
1566
1567 if (nf_ct_is_expired(tmp)) {
1568 nf_ct_gc_expired(tmp);
1569 expired_count++;
1570 continue;
1571 }
1572
1573 expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1574 expires = (expires - (long)next_run) / ++count;
1575 next_run += expires;
1576
1577 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1578 continue;
1579
1580 net = nf_ct_net(tmp);
1581 cnet = nf_ct_pernet(net);
1582 if (atomic_read(&cnet->count) < nf_conntrack_max95)
1583 continue;
1584
1585 /* need to take reference to avoid possible races */
1586 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1587 continue;
1588
1589 /* load ->status after refcount increase */
1590 smp_acquire__after_ctrl_dep();
1591
1592 if (gc_worker_skip_ct(tmp)) {
1593 nf_ct_put(tmp);
1594 continue;
1595 }
1596
1597 if (gc_worker_can_early_drop(tmp)) {
1598 nf_ct_kill(tmp);
1599 expired_count++;
1600 }
1601
1602 nf_ct_put(tmp);
1603 }
1604
1605 /* could check get_nulls_value() here and restart if ct
1606 * was moved to another chain. But given gc is best-effort
1607 * we will just continue with next hash slot.
1608 */
1609 rcu_read_unlock();
1610 cond_resched();
1611 i++;
1612
1613 delta_time = nfct_time_stamp - end_time;
1614 if (delta_time > 0 && i < hashsz) {
1615 gc_work->avg_timeout = next_run;
1616 gc_work->count = count;
1617 gc_work->next_bucket = i;
1618 next_run = 0;
1619 goto early_exit;
1620 }
1621 } while (i < hashsz);
1622
1623 gc_work->next_bucket = 0;
1624
1625 next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1626
1627 delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1628 if (next_run > (unsigned long)delta_time)
1629 next_run -= delta_time;
1630 else
1631 next_run = 1;
1632
1633 early_exit:
1634 if (gc_work->exiting)
1635 return;
1636
1637 if (next_run)
1638 gc_work->early_drop = false;
1639
1640 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1641 }
1642
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1643 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1644 {
1645 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1646 gc_work->exiting = false;
1647 }
1648
1649 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1650 __nf_conntrack_alloc(struct net *net,
1651 const struct nf_conntrack_zone *zone,
1652 const struct nf_conntrack_tuple *orig,
1653 const struct nf_conntrack_tuple *repl,
1654 gfp_t gfp, u32 hash)
1655 {
1656 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1657 unsigned int ct_count;
1658 struct nf_conn *ct;
1659
1660 /* We don't want any race condition at early drop stage */
1661 ct_count = atomic_inc_return(&cnet->count);
1662
1663 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1664 if (!early_drop(net, hash)) {
1665 if (!conntrack_gc_work.early_drop)
1666 conntrack_gc_work.early_drop = true;
1667 atomic_dec(&cnet->count);
1668 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1669 return ERR_PTR(-ENOMEM);
1670 }
1671 }
1672
1673 /*
1674 * Do not use kmem_cache_zalloc(), as this cache uses
1675 * SLAB_TYPESAFE_BY_RCU.
1676 */
1677 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1678 if (ct == NULL)
1679 goto out;
1680
1681 spin_lock_init(&ct->lock);
1682 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1683 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1684 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1685 /* save hash for reusing when confirming */
1686 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1687 ct->status = 0;
1688 WRITE_ONCE(ct->timeout, 0);
1689 write_pnet(&ct->ct_net, net);
1690 memset_after(ct, 0, __nfct_init_offset);
1691
1692 nf_ct_zone_add(ct, zone);
1693
1694 /* Because we use RCU lookups, we set ct_general.use to zero before
1695 * this is inserted in any list.
1696 */
1697 refcount_set(&ct->ct_general.use, 0);
1698 return ct;
1699 out:
1700 atomic_dec(&cnet->count);
1701 return ERR_PTR(-ENOMEM);
1702 }
1703
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1704 struct nf_conn *nf_conntrack_alloc(struct net *net,
1705 const struct nf_conntrack_zone *zone,
1706 const struct nf_conntrack_tuple *orig,
1707 const struct nf_conntrack_tuple *repl,
1708 gfp_t gfp)
1709 {
1710 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1711 }
1712 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1713
nf_conntrack_free(struct nf_conn * ct)1714 void nf_conntrack_free(struct nf_conn *ct)
1715 {
1716 struct net *net = nf_ct_net(ct);
1717 struct nf_conntrack_net *cnet;
1718
1719 /* A freed object has refcnt == 0, that's
1720 * the golden rule for SLAB_TYPESAFE_BY_RCU
1721 */
1722 WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1723
1724 if (ct->status & IPS_SRC_NAT_DONE) {
1725 const struct nf_nat_hook *nat_hook;
1726
1727 rcu_read_lock();
1728 nat_hook = rcu_dereference(nf_nat_hook);
1729 if (nat_hook)
1730 nat_hook->remove_nat_bysrc(ct);
1731 rcu_read_unlock();
1732 }
1733
1734 kfree(ct->ext);
1735 kmem_cache_free(nf_conntrack_cachep, ct);
1736 cnet = nf_ct_pernet(net);
1737
1738 smp_mb__before_atomic();
1739 atomic_dec(&cnet->count);
1740 }
1741 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1742
1743
1744 /* Allocate a new conntrack: we return -ENOMEM if classification
1745 failed due to stress. Otherwise it really is unclassifiable. */
1746 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1747 init_conntrack(struct net *net, struct nf_conn *tmpl,
1748 const struct nf_conntrack_tuple *tuple,
1749 struct sk_buff *skb,
1750 unsigned int dataoff, u32 hash)
1751 {
1752 struct nf_conn *ct;
1753 struct nf_conn_help *help;
1754 struct nf_conntrack_tuple repl_tuple;
1755 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1756 struct nf_conntrack_ecache *ecache;
1757 #endif
1758 struct nf_conntrack_expect *exp = NULL;
1759 const struct nf_conntrack_zone *zone;
1760 struct nf_conn_timeout *timeout_ext;
1761 struct nf_conntrack_zone tmp;
1762 struct nf_conntrack_net *cnet;
1763
1764 if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1765 return NULL;
1766
1767 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1768 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1769 hash);
1770 if (IS_ERR(ct))
1771 return ERR_CAST(ct);
1772
1773 if (!nf_ct_add_synproxy(ct, tmpl)) {
1774 nf_conntrack_free(ct);
1775 return ERR_PTR(-ENOMEM);
1776 }
1777
1778 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1779
1780 if (timeout_ext)
1781 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1782 GFP_ATOMIC);
1783
1784 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1785 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1786 nf_ct_labels_ext_add(ct);
1787
1788 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1789 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1790
1791 if ((ecache || net->ct.sysctl_events) &&
1792 !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1793 ecache ? ecache->expmask : 0,
1794 GFP_ATOMIC)) {
1795 nf_conntrack_free(ct);
1796 return ERR_PTR(-ENOMEM);
1797 }
1798 #endif
1799
1800 cnet = nf_ct_pernet(net);
1801 if (cnet->expect_count) {
1802 spin_lock_bh(&nf_conntrack_expect_lock);
1803 exp = nf_ct_find_expectation(net, zone, tuple, !tmpl || nf_ct_is_confirmed(tmpl));
1804 if (exp) {
1805 /* Welcome, Mr. Bond. We've been expecting you... */
1806 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1807 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1808 ct->master = exp->master;
1809 if (exp->helper) {
1810 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1811 if (help)
1812 rcu_assign_pointer(help->helper, exp->helper);
1813 }
1814
1815 #ifdef CONFIG_NF_CONNTRACK_MARK
1816 ct->mark = READ_ONCE(exp->master->mark);
1817 #endif
1818 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1819 ct->secmark = exp->master->secmark;
1820 #endif
1821 NF_CT_STAT_INC(net, expect_new);
1822 }
1823 spin_unlock_bh(&nf_conntrack_expect_lock);
1824 }
1825 if (!exp && tmpl)
1826 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1827
1828 /* Other CPU might have obtained a pointer to this object before it was
1829 * released. Because refcount is 0, refcount_inc_not_zero() will fail.
1830 *
1831 * After refcount_set(1) it will succeed; ensure that zeroing of
1832 * ct->status and the correct ct->net pointer are visible; else other
1833 * core might observe CONFIRMED bit which means the entry is valid and
1834 * in the hash table, but its not (anymore).
1835 */
1836 smp_wmb();
1837
1838 /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1839 refcount_set(&ct->ct_general.use, 1);
1840
1841 if (exp) {
1842 if (exp->expectfn)
1843 exp->expectfn(ct, exp);
1844 nf_ct_expect_put(exp);
1845 }
1846
1847 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1848 }
1849
1850 /* On success, returns 0, sets skb->_nfct | ctinfo */
1851 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1852 resolve_normal_ct(struct nf_conn *tmpl,
1853 struct sk_buff *skb,
1854 unsigned int dataoff,
1855 u_int8_t protonum,
1856 const struct nf_hook_state *state)
1857 {
1858 const struct nf_conntrack_zone *zone;
1859 struct nf_conntrack_tuple tuple;
1860 struct nf_conntrack_tuple_hash *h;
1861 enum ip_conntrack_info ctinfo;
1862 struct nf_conntrack_zone tmp;
1863 u32 hash, zone_id, rid;
1864 struct nf_conn *ct;
1865
1866 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1867 dataoff, state->pf, protonum, state->net,
1868 &tuple))
1869 return 0;
1870
1871 /* look for tuple match */
1872 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1873
1874 zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1875 hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1876 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1877
1878 if (!h) {
1879 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1880 if (zone_id != rid) {
1881 u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1882
1883 h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1884 }
1885 }
1886
1887 if (!h) {
1888 h = init_conntrack(state->net, tmpl, &tuple,
1889 skb, dataoff, hash);
1890 if (!h)
1891 return 0;
1892 if (IS_ERR(h))
1893 return PTR_ERR(h);
1894 }
1895 ct = nf_ct_tuplehash_to_ctrack(h);
1896
1897 /* It exists; we have (non-exclusive) reference. */
1898 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1899 ctinfo = IP_CT_ESTABLISHED_REPLY;
1900 } else {
1901 unsigned long status = READ_ONCE(ct->status);
1902
1903 /* Once we've had two way comms, always ESTABLISHED. */
1904 if (likely(status & IPS_SEEN_REPLY))
1905 ctinfo = IP_CT_ESTABLISHED;
1906 else if (status & IPS_EXPECTED)
1907 ctinfo = IP_CT_RELATED;
1908 else
1909 ctinfo = IP_CT_NEW;
1910 }
1911 nf_ct_set(skb, ct, ctinfo);
1912 return 0;
1913 }
1914
1915 /*
1916 * icmp packets need special treatment to handle error messages that are
1917 * related to a connection.
1918 *
1919 * Callers need to check if skb has a conntrack assigned when this
1920 * helper returns; in such case skb belongs to an already known connection.
1921 */
1922 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1923 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1924 struct sk_buff *skb,
1925 unsigned int dataoff,
1926 u8 protonum,
1927 const struct nf_hook_state *state)
1928 {
1929 int ret;
1930
1931 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1932 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1933 #if IS_ENABLED(CONFIG_IPV6)
1934 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1935 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1936 #endif
1937 else
1938 return NF_ACCEPT;
1939
1940 if (ret <= 0)
1941 NF_CT_STAT_INC_ATOMIC(state->net, error);
1942
1943 return ret;
1944 }
1945
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1946 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1947 enum ip_conntrack_info ctinfo)
1948 {
1949 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1950
1951 if (!timeout)
1952 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1953
1954 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1955 return NF_ACCEPT;
1956 }
1957
1958 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1959 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1960 struct sk_buff *skb,
1961 unsigned int dataoff,
1962 enum ip_conntrack_info ctinfo,
1963 const struct nf_hook_state *state)
1964 {
1965 switch (nf_ct_protonum(ct)) {
1966 case IPPROTO_TCP:
1967 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1968 ctinfo, state);
1969 case IPPROTO_UDP:
1970 return nf_conntrack_udp_packet(ct, skb, dataoff,
1971 ctinfo, state);
1972 case IPPROTO_ICMP:
1973 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1974 #if IS_ENABLED(CONFIG_IPV6)
1975 case IPPROTO_ICMPV6:
1976 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1977 #endif
1978 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1979 case IPPROTO_UDPLITE:
1980 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1981 ctinfo, state);
1982 #endif
1983 #ifdef CONFIG_NF_CT_PROTO_SCTP
1984 case IPPROTO_SCTP:
1985 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1986 ctinfo, state);
1987 #endif
1988 #ifdef CONFIG_NF_CT_PROTO_DCCP
1989 case IPPROTO_DCCP:
1990 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1991 ctinfo, state);
1992 #endif
1993 #ifdef CONFIG_NF_CT_PROTO_GRE
1994 case IPPROTO_GRE:
1995 return nf_conntrack_gre_packet(ct, skb, dataoff,
1996 ctinfo, state);
1997 #endif
1998 }
1999
2000 return generic_packet(ct, skb, ctinfo);
2001 }
2002
2003 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)2004 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
2005 {
2006 enum ip_conntrack_info ctinfo;
2007 struct nf_conn *ct, *tmpl;
2008 u_int8_t protonum;
2009 int dataoff, ret;
2010
2011 tmpl = nf_ct_get(skb, &ctinfo);
2012 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
2013 /* Previously seen (loopback or untracked)? Ignore. */
2014 if ((tmpl && !nf_ct_is_template(tmpl)) ||
2015 ctinfo == IP_CT_UNTRACKED)
2016 return NF_ACCEPT;
2017 skb->_nfct = 0;
2018 }
2019
2020 /* rcu_read_lock()ed by nf_hook_thresh */
2021 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
2022 if (dataoff <= 0) {
2023 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2024 ret = NF_ACCEPT;
2025 goto out;
2026 }
2027
2028 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
2029 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
2030 protonum, state);
2031 if (ret <= 0) {
2032 ret = -ret;
2033 goto out;
2034 }
2035 /* ICMP[v6] protocol trackers may assign one conntrack. */
2036 if (skb->_nfct)
2037 goto out;
2038 }
2039 repeat:
2040 ret = resolve_normal_ct(tmpl, skb, dataoff,
2041 protonum, state);
2042 if (ret < 0) {
2043 /* Too stressed to deal. */
2044 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2045 ret = NF_DROP;
2046 goto out;
2047 }
2048
2049 ct = nf_ct_get(skb, &ctinfo);
2050 if (!ct) {
2051 /* Not valid part of a connection */
2052 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2053 ret = NF_ACCEPT;
2054 goto out;
2055 }
2056
2057 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2058 if (ret <= 0) {
2059 /* Invalid: inverse of the return code tells
2060 * the netfilter core what to do */
2061 nf_ct_put(ct);
2062 skb->_nfct = 0;
2063 /* Special case: TCP tracker reports an attempt to reopen a
2064 * closed/aborted connection. We have to go back and create a
2065 * fresh conntrack.
2066 */
2067 if (ret == -NF_REPEAT)
2068 goto repeat;
2069
2070 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2071 if (ret == NF_DROP)
2072 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2073
2074 ret = -ret;
2075 goto out;
2076 }
2077
2078 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2079 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2080 nf_conntrack_event_cache(IPCT_REPLY, ct);
2081 out:
2082 if (tmpl)
2083 nf_ct_put(tmpl);
2084
2085 return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2088
2089 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2090 void __nf_ct_refresh_acct(struct nf_conn *ct,
2091 enum ip_conntrack_info ctinfo,
2092 const struct sk_buff *skb,
2093 u32 extra_jiffies,
2094 bool do_acct)
2095 {
2096 /* Only update if this is not a fixed timeout */
2097 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2098 goto acct;
2099
2100 /* If not in hash table, timer will not be active yet */
2101 if (nf_ct_is_confirmed(ct))
2102 extra_jiffies += nfct_time_stamp;
2103
2104 if (READ_ONCE(ct->timeout) != extra_jiffies)
2105 WRITE_ONCE(ct->timeout, extra_jiffies);
2106 acct:
2107 if (do_acct)
2108 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2109 }
2110 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2111
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2112 bool nf_ct_kill_acct(struct nf_conn *ct,
2113 enum ip_conntrack_info ctinfo,
2114 const struct sk_buff *skb)
2115 {
2116 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2117
2118 return nf_ct_delete(ct, 0, 0);
2119 }
2120 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2121
2122 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2123
2124 #include <linux/netfilter/nfnetlink.h>
2125 #include <linux/netfilter/nfnetlink_conntrack.h>
2126 #include <linux/mutex.h>
2127
2128 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2129 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2130 const struct nf_conntrack_tuple *tuple)
2131 {
2132 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2133 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2134 goto nla_put_failure;
2135 return 0;
2136
2137 nla_put_failure:
2138 return -1;
2139 }
2140 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2141
2142 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2143 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2144 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2145 };
2146 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2147
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2148 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2149 struct nf_conntrack_tuple *t,
2150 u_int32_t flags)
2151 {
2152 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2153 if (!tb[CTA_PROTO_SRC_PORT])
2154 return -EINVAL;
2155
2156 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2157 }
2158
2159 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2160 if (!tb[CTA_PROTO_DST_PORT])
2161 return -EINVAL;
2162
2163 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2164 }
2165
2166 return 0;
2167 }
2168 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2169
nf_ct_port_nlattr_tuple_size(void)2170 unsigned int nf_ct_port_nlattr_tuple_size(void)
2171 {
2172 static unsigned int size __read_mostly;
2173
2174 if (!size)
2175 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2176
2177 return size;
2178 }
2179 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2180 #endif
2181
2182 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2183 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2184 {
2185 struct nf_conn *ct;
2186 enum ip_conntrack_info ctinfo;
2187
2188 /* This ICMP is in reverse direction to the packet which caused it */
2189 ct = nf_ct_get(skb, &ctinfo);
2190 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2191 ctinfo = IP_CT_RELATED_REPLY;
2192 else
2193 ctinfo = IP_CT_RELATED;
2194
2195 /* Attach to new skbuff, and increment count */
2196 nf_ct_set(nskb, ct, ctinfo);
2197 nf_conntrack_get(skb_nfct(nskb));
2198 }
2199
2200 /* This packet is coming from userspace via nf_queue, complete the packet
2201 * processing after the helper invocation in nf_confirm().
2202 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2203 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2204 enum ip_conntrack_info ctinfo)
2205 {
2206 const struct nf_conntrack_helper *helper;
2207 const struct nf_conn_help *help;
2208 int protoff;
2209
2210 help = nfct_help(ct);
2211 if (!help)
2212 return NF_ACCEPT;
2213
2214 helper = rcu_dereference(help->helper);
2215 if (!helper)
2216 return NF_ACCEPT;
2217
2218 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2219 return NF_ACCEPT;
2220
2221 switch (nf_ct_l3num(ct)) {
2222 case NFPROTO_IPV4:
2223 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2224 break;
2225 #if IS_ENABLED(CONFIG_IPV6)
2226 case NFPROTO_IPV6: {
2227 __be16 frag_off;
2228 u8 pnum;
2229
2230 pnum = ipv6_hdr(skb)->nexthdr;
2231 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2232 &frag_off);
2233 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2234 return NF_ACCEPT;
2235 break;
2236 }
2237 #endif
2238 default:
2239 return NF_ACCEPT;
2240 }
2241
2242 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2243 !nf_is_loopback_packet(skb)) {
2244 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2245 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2246 return NF_DROP;
2247 }
2248 }
2249
2250 /* We've seen it coming out the other side: confirm it */
2251 return nf_conntrack_confirm(skb);
2252 }
2253
nf_conntrack_update(struct net * net,struct sk_buff * skb)2254 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2255 {
2256 enum ip_conntrack_info ctinfo;
2257 struct nf_conn *ct;
2258
2259 ct = nf_ct_get(skb, &ctinfo);
2260 if (!ct)
2261 return NF_ACCEPT;
2262
2263 return nf_confirm_cthelper(skb, ct, ctinfo);
2264 }
2265
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2266 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2267 const struct sk_buff *skb)
2268 {
2269 const struct nf_conntrack_tuple *src_tuple;
2270 const struct nf_conntrack_tuple_hash *hash;
2271 struct nf_conntrack_tuple srctuple;
2272 enum ip_conntrack_info ctinfo;
2273 struct nf_conn *ct;
2274
2275 ct = nf_ct_get(skb, &ctinfo);
2276 if (ct) {
2277 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2278 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2279 return true;
2280 }
2281
2282 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2283 NFPROTO_IPV4, dev_net(skb->dev),
2284 &srctuple))
2285 return false;
2286
2287 hash = nf_conntrack_find_get(dev_net(skb->dev),
2288 &nf_ct_zone_dflt,
2289 &srctuple);
2290 if (!hash)
2291 return false;
2292
2293 ct = nf_ct_tuplehash_to_ctrack(hash);
2294 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2295 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2296 nf_ct_put(ct);
2297
2298 return true;
2299 }
2300
2301 /* Bring out ya dead! */
2302 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data,unsigned int * bucket)2303 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2304 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2305 {
2306 struct nf_conntrack_tuple_hash *h;
2307 struct nf_conn *ct;
2308 struct hlist_nulls_node *n;
2309 spinlock_t *lockp;
2310
2311 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2312 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2313
2314 if (hlist_nulls_empty(hslot))
2315 continue;
2316
2317 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2318 local_bh_disable();
2319 nf_conntrack_lock(lockp);
2320 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2321 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2322 continue;
2323 /* All nf_conn objects are added to hash table twice, one
2324 * for original direction tuple, once for the reply tuple.
2325 *
2326 * Exception: In the IPS_NAT_CLASH case, only the reply
2327 * tuple is added (the original tuple already existed for
2328 * a different object).
2329 *
2330 * We only need to call the iterator once for each
2331 * conntrack, so we just use the 'reply' direction
2332 * tuple while iterating.
2333 */
2334 ct = nf_ct_tuplehash_to_ctrack(h);
2335
2336 if (iter_data->net &&
2337 !net_eq(iter_data->net, nf_ct_net(ct)))
2338 continue;
2339
2340 if (iter(ct, iter_data->data))
2341 goto found;
2342 }
2343 spin_unlock(lockp);
2344 local_bh_enable();
2345 cond_resched();
2346 }
2347
2348 return NULL;
2349 found:
2350 refcount_inc(&ct->ct_general.use);
2351 spin_unlock(lockp);
2352 local_bh_enable();
2353 return ct;
2354 }
2355
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2356 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2357 const struct nf_ct_iter_data *iter_data)
2358 {
2359 unsigned int bucket = 0;
2360 struct nf_conn *ct;
2361
2362 might_sleep();
2363
2364 mutex_lock(&nf_conntrack_mutex);
2365 while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2366 /* Time to push up daises... */
2367
2368 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2369 nf_ct_put(ct);
2370 cond_resched();
2371 }
2372 mutex_unlock(&nf_conntrack_mutex);
2373 }
2374
nf_ct_iterate_cleanup_net(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2375 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2376 const struct nf_ct_iter_data *iter_data)
2377 {
2378 struct net *net = iter_data->net;
2379 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2380
2381 might_sleep();
2382
2383 if (atomic_read(&cnet->count) == 0)
2384 return;
2385
2386 nf_ct_iterate_cleanup(iter, iter_data);
2387 }
2388 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2389
2390 /**
2391 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2392 * @iter: callback to invoke for each conntrack
2393 * @data: data to pass to @iter
2394 *
2395 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2396 * unconfirmed list as dying (so they will not be inserted into
2397 * main table).
2398 *
2399 * Can only be called in module exit path.
2400 */
2401 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2402 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2403 {
2404 struct nf_ct_iter_data iter_data = {};
2405 struct net *net;
2406
2407 down_read(&net_rwsem);
2408 for_each_net(net) {
2409 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2410
2411 if (atomic_read(&cnet->count) == 0)
2412 continue;
2413 nf_queue_nf_hook_drop(net);
2414 }
2415 up_read(&net_rwsem);
2416
2417 /* Need to wait for netns cleanup worker to finish, if its
2418 * running -- it might have deleted a net namespace from
2419 * the global list, so hook drop above might not have
2420 * affected all namespaces.
2421 */
2422 net_ns_barrier();
2423
2424 /* a skb w. unconfirmed conntrack could have been reinjected just
2425 * before we called nf_queue_nf_hook_drop().
2426 *
2427 * This makes sure its inserted into conntrack table.
2428 */
2429 synchronize_net();
2430
2431 nf_ct_ext_bump_genid();
2432 iter_data.data = data;
2433 nf_ct_iterate_cleanup(iter, &iter_data);
2434
2435 /* Another cpu might be in a rcu read section with
2436 * rcu protected pointer cleared in iter callback
2437 * or hidden via nf_ct_ext_bump_genid() above.
2438 *
2439 * Wait until those are done.
2440 */
2441 synchronize_rcu();
2442 }
2443 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2444
kill_all(struct nf_conn * i,void * data)2445 static int kill_all(struct nf_conn *i, void *data)
2446 {
2447 return 1;
2448 }
2449
nf_conntrack_cleanup_start(void)2450 void nf_conntrack_cleanup_start(void)
2451 {
2452 cleanup_nf_conntrack_bpf();
2453 conntrack_gc_work.exiting = true;
2454 }
2455
nf_conntrack_cleanup_end(void)2456 void nf_conntrack_cleanup_end(void)
2457 {
2458 RCU_INIT_POINTER(nf_ct_hook, NULL);
2459 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2460 kvfree(nf_conntrack_hash);
2461
2462 nf_conntrack_proto_fini();
2463 nf_conntrack_helper_fini();
2464 nf_conntrack_expect_fini();
2465
2466 kmem_cache_destroy(nf_conntrack_cachep);
2467 }
2468
2469 /*
2470 * Mishearing the voices in his head, our hero wonders how he's
2471 * supposed to kill the mall.
2472 */
nf_conntrack_cleanup_net(struct net * net)2473 void nf_conntrack_cleanup_net(struct net *net)
2474 {
2475 LIST_HEAD(single);
2476
2477 list_add(&net->exit_list, &single);
2478 nf_conntrack_cleanup_net_list(&single);
2479 }
2480
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2481 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2482 {
2483 struct nf_ct_iter_data iter_data = {};
2484 struct net *net;
2485 int busy;
2486
2487 /*
2488 * This makes sure all current packets have passed through
2489 * netfilter framework. Roll on, two-stage module
2490 * delete...
2491 */
2492 synchronize_rcu_expedited();
2493 i_see_dead_people:
2494 busy = 0;
2495 list_for_each_entry(net, net_exit_list, exit_list) {
2496 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2497
2498 iter_data.net = net;
2499 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2500 if (atomic_read(&cnet->count) != 0)
2501 busy = 1;
2502 }
2503 if (busy) {
2504 schedule();
2505 goto i_see_dead_people;
2506 }
2507
2508 list_for_each_entry(net, net_exit_list, exit_list) {
2509 nf_conntrack_ecache_pernet_fini(net);
2510 nf_conntrack_expect_pernet_fini(net);
2511 free_percpu(net->ct.stat);
2512 }
2513 }
2514
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2515 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2516 {
2517 struct hlist_nulls_head *hash;
2518 unsigned int nr_slots, i;
2519
2520 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2521 return NULL;
2522
2523 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2524 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2525
2526 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2527
2528 if (hash && nulls)
2529 for (i = 0; i < nr_slots; i++)
2530 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2531
2532 return hash;
2533 }
2534 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2535
nf_conntrack_hash_resize(unsigned int hashsize)2536 int nf_conntrack_hash_resize(unsigned int hashsize)
2537 {
2538 int i, bucket;
2539 unsigned int old_size;
2540 struct hlist_nulls_head *hash, *old_hash;
2541 struct nf_conntrack_tuple_hash *h;
2542 struct nf_conn *ct;
2543
2544 if (!hashsize)
2545 return -EINVAL;
2546
2547 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2548 if (!hash)
2549 return -ENOMEM;
2550
2551 mutex_lock(&nf_conntrack_mutex);
2552 old_size = nf_conntrack_htable_size;
2553 if (old_size == hashsize) {
2554 mutex_unlock(&nf_conntrack_mutex);
2555 kvfree(hash);
2556 return 0;
2557 }
2558
2559 local_bh_disable();
2560 nf_conntrack_all_lock();
2561 write_seqcount_begin(&nf_conntrack_generation);
2562
2563 /* Lookups in the old hash might happen in parallel, which means we
2564 * might get false negatives during connection lookup. New connections
2565 * created because of a false negative won't make it into the hash
2566 * though since that required taking the locks.
2567 */
2568
2569 for (i = 0; i < nf_conntrack_htable_size; i++) {
2570 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2571 unsigned int zone_id;
2572
2573 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2574 struct nf_conntrack_tuple_hash, hnnode);
2575 ct = nf_ct_tuplehash_to_ctrack(h);
2576 hlist_nulls_del_rcu(&h->hnnode);
2577
2578 zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2579 bucket = __hash_conntrack(nf_ct_net(ct),
2580 &h->tuple, zone_id, hashsize);
2581 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2582 }
2583 }
2584 old_hash = nf_conntrack_hash;
2585
2586 nf_conntrack_hash = hash;
2587 nf_conntrack_htable_size = hashsize;
2588
2589 write_seqcount_end(&nf_conntrack_generation);
2590 nf_conntrack_all_unlock();
2591 local_bh_enable();
2592
2593 mutex_unlock(&nf_conntrack_mutex);
2594
2595 synchronize_net();
2596 kvfree(old_hash);
2597 return 0;
2598 }
2599
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2600 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2601 {
2602 unsigned int hashsize;
2603 int rc;
2604
2605 if (current->nsproxy->net_ns != &init_net)
2606 return -EOPNOTSUPP;
2607
2608 /* On boot, we can set this without any fancy locking. */
2609 if (!nf_conntrack_hash)
2610 return param_set_uint(val, kp);
2611
2612 rc = kstrtouint(val, 0, &hashsize);
2613 if (rc)
2614 return rc;
2615
2616 return nf_conntrack_hash_resize(hashsize);
2617 }
2618
nf_conntrack_init_start(void)2619 int nf_conntrack_init_start(void)
2620 {
2621 unsigned long nr_pages = totalram_pages();
2622 int max_factor = 8;
2623 int ret = -ENOMEM;
2624 int i;
2625
2626 seqcount_spinlock_init(&nf_conntrack_generation,
2627 &nf_conntrack_locks_all_lock);
2628
2629 for (i = 0; i < CONNTRACK_LOCKS; i++)
2630 spin_lock_init(&nf_conntrack_locks[i]);
2631
2632 if (!nf_conntrack_htable_size) {
2633 nf_conntrack_htable_size
2634 = (((nr_pages << PAGE_SHIFT) / 16384)
2635 / sizeof(struct hlist_head));
2636 if (BITS_PER_LONG >= 64 &&
2637 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2638 nf_conntrack_htable_size = 262144;
2639 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2640 nf_conntrack_htable_size = 65536;
2641
2642 if (nf_conntrack_htable_size < 1024)
2643 nf_conntrack_htable_size = 1024;
2644 /* Use a max. factor of one by default to keep the average
2645 * hash chain length at 2 entries. Each entry has to be added
2646 * twice (once for original direction, once for reply).
2647 * When a table size is given we use the old value of 8 to
2648 * avoid implicit reduction of the max entries setting.
2649 */
2650 max_factor = 1;
2651 }
2652
2653 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2654 if (!nf_conntrack_hash)
2655 return -ENOMEM;
2656
2657 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2658
2659 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2660 sizeof(struct nf_conn),
2661 NFCT_INFOMASK + 1,
2662 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2663 if (!nf_conntrack_cachep)
2664 goto err_cachep;
2665
2666 ret = nf_conntrack_expect_init();
2667 if (ret < 0)
2668 goto err_expect;
2669
2670 ret = nf_conntrack_helper_init();
2671 if (ret < 0)
2672 goto err_helper;
2673
2674 ret = nf_conntrack_proto_init();
2675 if (ret < 0)
2676 goto err_proto;
2677
2678 conntrack_gc_work_init(&conntrack_gc_work);
2679 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2680
2681 ret = register_nf_conntrack_bpf();
2682 if (ret < 0)
2683 goto err_kfunc;
2684
2685 return 0;
2686
2687 err_kfunc:
2688 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2689 nf_conntrack_proto_fini();
2690 err_proto:
2691 nf_conntrack_helper_fini();
2692 err_helper:
2693 nf_conntrack_expect_fini();
2694 err_expect:
2695 kmem_cache_destroy(nf_conntrack_cachep);
2696 err_cachep:
2697 kvfree(nf_conntrack_hash);
2698 return ret;
2699 }
2700
nf_conntrack_set_closing(struct nf_conntrack * nfct)2701 static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2702 {
2703 struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2704
2705 switch (nf_ct_protonum(ct)) {
2706 case IPPROTO_TCP:
2707 nf_conntrack_tcp_set_closing(ct);
2708 break;
2709 }
2710 }
2711
2712 static const struct nf_ct_hook nf_conntrack_hook = {
2713 .update = nf_conntrack_update,
2714 .destroy = nf_ct_destroy,
2715 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2716 .attach = nf_conntrack_attach,
2717 .set_closing = nf_conntrack_set_closing,
2718 .confirm = __nf_conntrack_confirm,
2719 };
2720
nf_conntrack_init_end(void)2721 void nf_conntrack_init_end(void)
2722 {
2723 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2724 }
2725
2726 /*
2727 * We need to use special "null" values, not used in hash table
2728 */
2729 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2730
nf_conntrack_init_net(struct net * net)2731 int nf_conntrack_init_net(struct net *net)
2732 {
2733 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2734 int ret = -ENOMEM;
2735
2736 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2737 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2738 atomic_set(&cnet->count, 0);
2739
2740 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2741 if (!net->ct.stat)
2742 return ret;
2743
2744 ret = nf_conntrack_expect_pernet_init(net);
2745 if (ret < 0)
2746 goto err_expect;
2747
2748 nf_conntrack_acct_pernet_init(net);
2749 nf_conntrack_tstamp_pernet_init(net);
2750 nf_conntrack_ecache_pernet_init(net);
2751 nf_conntrack_proto_pernet_init(net);
2752
2753 return 0;
2754
2755 err_expect:
2756 free_percpu(net->ct.stat);
2757 return ret;
2758 }
2759
2760 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2761
__nf_ct_change_timeout(struct nf_conn * ct,u64 timeout)2762 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2763 {
2764 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2765 return -EPERM;
2766
2767 __nf_ct_set_timeout(ct, timeout);
2768
2769 if (test_bit(IPS_DYING_BIT, &ct->status))
2770 return -ETIME;
2771
2772 return 0;
2773 }
2774 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2775
__nf_ct_change_status(struct nf_conn * ct,unsigned long on,unsigned long off)2776 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2777 {
2778 unsigned int bit;
2779
2780 /* Ignore these unchangable bits */
2781 on &= ~IPS_UNCHANGEABLE_MASK;
2782 off &= ~IPS_UNCHANGEABLE_MASK;
2783
2784 for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2785 if (on & (1 << bit))
2786 set_bit(bit, &ct->status);
2787 else if (off & (1 << bit))
2788 clear_bit(bit, &ct->status);
2789 }
2790 }
2791 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2792
nf_ct_change_status_common(struct nf_conn * ct,unsigned int status)2793 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2794 {
2795 unsigned long d;
2796
2797 d = ct->status ^ status;
2798
2799 if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2800 /* unchangeable */
2801 return -EBUSY;
2802
2803 if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2804 /* SEEN_REPLY bit can only be set */
2805 return -EBUSY;
2806
2807 if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2808 /* ASSURED bit can only be set */
2809 return -EBUSY;
2810
2811 __nf_ct_change_status(ct, status, 0);
2812 return 0;
2813 }
2814 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2815