1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 * Bill Paul <wpaul@bsdi.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34 */
35
36 /*
37 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38 * for FreeBSD. Datasheets are available from:
39 *
40 * http://www.national.com/ds/DP/DP83820.pdf
41 * http://www.national.com/ds/DP/DP83821.pdf
42 *
43 * These chips are used on several low cost gigabit ethernet NICs
44 * sold by D-Link, Addtron, SMC and Asante. Both parts are
45 * virtually the same, except the 83820 is a 64-bit/32-bit part,
46 * while the 83821 is 32-bit only.
47 *
48 * Many cards also use National gigE transceivers, such as the
49 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50 * contains a full register description that applies to all of these
51 * components:
52 *
53 * http://www.national.com/ds/DP/DP83861.pdf
54 *
55 * Written by Bill Paul <wpaul@bsdi.com>
56 * BSDi Open Source Solutions
57 */
58
59 /*
60 * The NatSemi DP83820 and 83821 controllers are enhanced versions
61 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66 * matching buffers, one perfect address filter buffer and interrupt
67 * moderation. The 83820 supports both 64-bit and 32-bit addressing
68 * and data transfers: the 64-bit support can be toggled on or off
69 * via software. This affects the size of certain fields in the DMA
70 * descriptors.
71 *
72 * There are two bugs/misfeatures in the 83820/83821 that I have
73 * discovered so far:
74 *
75 * - Receive buffers must be aligned on 64-bit boundaries, which means
76 * you must resort to copying data in order to fix up the payload
77 * alignment.
78 *
79 * - In order to transmit jumbo frames larger than 8170 bytes, you have
80 * to turn off transmit checksum offloading, because the chip can't
81 * compute the checksum on an outgoing frame unless it fits entirely
82 * within the TX FIFO, which is only 8192 bytes in size. If you have
83 * TX checksum offload enabled and you transmit attempt to transmit a
84 * frame larger than 8170 bytes, the transmitter will wedge.
85 *
86 * To work around the latter problem, TX checksum offload is disabled
87 * if the user selects an MTU larger than 8152 (8170 - 18).
88 */
89
90 #include "opt_ifpoll.h"
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/interrupt.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103
104 #include <net/if.h>
105 #include <net/ifq_var.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_poll.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 #include <net/vlan/if_vlan_ether.h>
114
115 #include <net/bpf.h>
116
117 #include <vm/vm.h> /* for vtophys */
118 #include <vm/pmap.h> /* for vtophys */
119
120 #include <dev/netif/mii_layer/mii.h>
121 #include <dev/netif/mii_layer/miivar.h>
122
123 #include "pcidevs.h"
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126
127 #define NGE_USEIOSPACE
128
129 #include "if_ngereg.h"
130
131
132 /* "controller miibus0" required. See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134
135 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
136
137 /*
138 * Various supported device vendors/types and their names.
139 */
140 static struct nge_type nge_devs[] = {
141 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
142 "National Semiconductor Gigabit Ethernet" },
143 { 0, 0, NULL }
144 };
145
146 static int nge_probe(device_t);
147 static int nge_attach(device_t);
148 static int nge_detach(device_t);
149
150 static int nge_alloc_jumbo_mem(struct nge_softc *);
151 static struct nge_jslot
152 *nge_jalloc(struct nge_softc *);
153 static void nge_jfree(void *);
154 static void nge_jref(void *);
155
156 static int nge_newbuf(struct nge_softc *, struct nge_desc *,
157 struct mbuf *);
158 static int nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
159 static void nge_rxeof(struct nge_softc *);
160 static void nge_txeof(struct nge_softc *);
161 static void nge_intr(void *);
162 static void nge_tick(void *);
163 static void nge_start(struct ifnet *, struct ifaltq_subque *);
164 static int nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
165 static void nge_init(void *);
166 static void nge_stop(struct nge_softc *);
167 static void nge_watchdog(struct ifnet *);
168 static void nge_shutdown(device_t);
169 static int nge_ifmedia_upd(struct ifnet *);
170 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
171
172 static void nge_delay(struct nge_softc *);
173 static void nge_eeprom_idle(struct nge_softc *);
174 static void nge_eeprom_putbyte(struct nge_softc *, int);
175 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
176 static void nge_read_eeprom(struct nge_softc *, void *, int, int);
177
178 static void nge_mii_sync(struct nge_softc *);
179 static void nge_mii_send(struct nge_softc *, uint32_t, int);
180 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
181 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
182
183 static int nge_miibus_readreg(device_t, int, int);
184 static int nge_miibus_writereg(device_t, int, int, int);
185 static void nge_miibus_statchg(device_t);
186
187 static void nge_setmulti(struct nge_softc *);
188 static void nge_reset(struct nge_softc *);
189 static int nge_list_rx_init(struct nge_softc *);
190 static int nge_list_tx_init(struct nge_softc *);
191 #ifdef IFPOLL_ENABLE
192 static void nge_npoll(struct ifnet *, struct ifpoll_info *);
193 static void nge_npoll_compat(struct ifnet *, void *, int);
194 #endif
195
196 #ifdef NGE_USEIOSPACE
197 #define NGE_RES SYS_RES_IOPORT
198 #define NGE_RID NGE_PCI_LOIO
199 #else
200 #define NGE_RES SYS_RES_MEMORY
201 #define NGE_RID NGE_PCI_LOMEM
202 #endif
203
204 static device_method_t nge_methods[] = {
205 /* Device interface */
206 DEVMETHOD(device_probe, nge_probe),
207 DEVMETHOD(device_attach, nge_attach),
208 DEVMETHOD(device_detach, nge_detach),
209 DEVMETHOD(device_shutdown, nge_shutdown),
210
211 /* bus interface */
212 DEVMETHOD(bus_print_child, bus_generic_print_child),
213 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
214
215 /* MII interface */
216 DEVMETHOD(miibus_readreg, nge_miibus_readreg),
217 DEVMETHOD(miibus_writereg, nge_miibus_writereg),
218 DEVMETHOD(miibus_statchg, nge_miibus_statchg),
219
220 DEVMETHOD_END
221 };
222
223 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
224 static devclass_t nge_devclass;
225
226 DECLARE_DUMMY_MODULE(if_nge);
227 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
228 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, NULL, NULL);
229 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, NULL, NULL);
230
231 #define NGE_SETBIT(sc, reg, x) \
232 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
233
234 #define NGE_CLRBIT(sc, reg, x) \
235 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
236
237 #define SIO_SET(x) \
238 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
239
240 #define SIO_CLR(x) \
241 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
242
243 static void
nge_delay(struct nge_softc * sc)244 nge_delay(struct nge_softc *sc)
245 {
246 int idx;
247
248 for (idx = (300 / 33) + 1; idx > 0; idx--)
249 CSR_READ_4(sc, NGE_CSR);
250 }
251
252 static void
nge_eeprom_idle(struct nge_softc * sc)253 nge_eeprom_idle(struct nge_softc *sc)
254 {
255 int i;
256
257 SIO_SET(NGE_MEAR_EE_CSEL);
258 nge_delay(sc);
259 SIO_SET(NGE_MEAR_EE_CLK);
260 nge_delay(sc);
261
262 for (i = 0; i < 25; i++) {
263 SIO_CLR(NGE_MEAR_EE_CLK);
264 nge_delay(sc);
265 SIO_SET(NGE_MEAR_EE_CLK);
266 nge_delay(sc);
267 }
268
269 SIO_CLR(NGE_MEAR_EE_CLK);
270 nge_delay(sc);
271 SIO_CLR(NGE_MEAR_EE_CSEL);
272 nge_delay(sc);
273 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
274 }
275
276 /*
277 * Send a read command and address to the EEPROM, check for ACK.
278 */
279 static void
nge_eeprom_putbyte(struct nge_softc * sc,int addr)280 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
281 {
282 int d, i;
283
284 d = addr | NGE_EECMD_READ;
285
286 /*
287 * Feed in each bit and stobe the clock.
288 */
289 for (i = 0x400; i; i >>= 1) {
290 if (d & i)
291 SIO_SET(NGE_MEAR_EE_DIN);
292 else
293 SIO_CLR(NGE_MEAR_EE_DIN);
294 nge_delay(sc);
295 SIO_SET(NGE_MEAR_EE_CLK);
296 nge_delay(sc);
297 SIO_CLR(NGE_MEAR_EE_CLK);
298 nge_delay(sc);
299 }
300 }
301
302 /*
303 * Read a word of data stored in the EEPROM at address 'addr.'
304 */
305 static void
nge_eeprom_getword(struct nge_softc * sc,int addr,uint16_t * dest)306 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
307 {
308 int i;
309 uint16_t word = 0;
310
311 /* Force EEPROM to idle state. */
312 nge_eeprom_idle(sc);
313
314 /* Enter EEPROM access mode. */
315 nge_delay(sc);
316 SIO_CLR(NGE_MEAR_EE_CLK);
317 nge_delay(sc);
318 SIO_SET(NGE_MEAR_EE_CSEL);
319 nge_delay(sc);
320
321 /*
322 * Send address of word we want to read.
323 */
324 nge_eeprom_putbyte(sc, addr);
325
326 /*
327 * Start reading bits from EEPROM.
328 */
329 for (i = 0x8000; i; i >>= 1) {
330 SIO_SET(NGE_MEAR_EE_CLK);
331 nge_delay(sc);
332 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
333 word |= i;
334 nge_delay(sc);
335 SIO_CLR(NGE_MEAR_EE_CLK);
336 nge_delay(sc);
337 }
338
339 /* Turn off EEPROM access mode. */
340 nge_eeprom_idle(sc);
341
342 *dest = word;
343 }
344
345 /*
346 * Read a sequence of words from the EEPROM.
347 */
348 static void
nge_read_eeprom(struct nge_softc * sc,void * dest,int off,int cnt)349 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
350 {
351 int i;
352 uint16_t word = 0, *ptr;
353
354 for (i = 0; i < cnt; i++) {
355 nge_eeprom_getword(sc, off + i, &word);
356 ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
357 *ptr = word;
358 }
359 }
360
361 /*
362 * Sync the PHYs by setting data bit and strobing the clock 32 times.
363 */
364 static void
nge_mii_sync(struct nge_softc * sc)365 nge_mii_sync(struct nge_softc *sc)
366 {
367 int i;
368
369 SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
370
371 for (i = 0; i < 32; i++) {
372 SIO_SET(NGE_MEAR_MII_CLK);
373 DELAY(1);
374 SIO_CLR(NGE_MEAR_MII_CLK);
375 DELAY(1);
376 }
377 }
378
379 /*
380 * Clock a series of bits through the MII.
381 */
382 static void
nge_mii_send(struct nge_softc * sc,uint32_t bits,int cnt)383 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
384 {
385 int i;
386
387 SIO_CLR(NGE_MEAR_MII_CLK);
388
389 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
390 if (bits & i)
391 SIO_SET(NGE_MEAR_MII_DATA);
392 else
393 SIO_CLR(NGE_MEAR_MII_DATA);
394 DELAY(1);
395 SIO_CLR(NGE_MEAR_MII_CLK);
396 DELAY(1);
397 SIO_SET(NGE_MEAR_MII_CLK);
398 }
399 }
400
401 /*
402 * Read an PHY register through the MII.
403 */
404 static int
nge_mii_readreg(struct nge_softc * sc,struct nge_mii_frame * frame)405 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
406 {
407 int ack, i;
408
409 /*
410 * Set up frame for RX.
411 */
412 frame->mii_stdelim = NGE_MII_STARTDELIM;
413 frame->mii_opcode = NGE_MII_READOP;
414 frame->mii_turnaround = 0;
415 frame->mii_data = 0;
416
417 CSR_WRITE_4(sc, NGE_MEAR, 0);
418
419 /*
420 * Turn on data xmit.
421 */
422 SIO_SET(NGE_MEAR_MII_DIR);
423
424 nge_mii_sync(sc);
425
426 /*
427 * Send command/address info.
428 */
429 nge_mii_send(sc, frame->mii_stdelim, 2);
430 nge_mii_send(sc, frame->mii_opcode, 2);
431 nge_mii_send(sc, frame->mii_phyaddr, 5);
432 nge_mii_send(sc, frame->mii_regaddr, 5);
433
434 /* Idle bit */
435 SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
436 DELAY(1);
437 SIO_SET(NGE_MEAR_MII_CLK);
438 DELAY(1);
439
440 /* Turn off xmit. */
441 SIO_CLR(NGE_MEAR_MII_DIR);
442 /* Check for ack */
443 SIO_CLR(NGE_MEAR_MII_CLK);
444 DELAY(1);
445 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
446 SIO_SET(NGE_MEAR_MII_CLK);
447 DELAY(1);
448
449 /*
450 * Now try reading data bits. If the ack failed, we still
451 * need to clock through 16 cycles to keep the PHY(s) in sync.
452 */
453 if (ack) {
454 for(i = 0; i < 16; i++) {
455 SIO_CLR(NGE_MEAR_MII_CLK);
456 DELAY(1);
457 SIO_SET(NGE_MEAR_MII_CLK);
458 DELAY(1);
459 }
460 goto fail;
461 }
462
463 for (i = 0x8000; i; i >>= 1) {
464 SIO_CLR(NGE_MEAR_MII_CLK);
465 DELAY(1);
466 if (!ack) {
467 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
468 frame->mii_data |= i;
469 DELAY(1);
470 }
471 SIO_SET(NGE_MEAR_MII_CLK);
472 DELAY(1);
473 }
474
475 fail:
476 SIO_CLR(NGE_MEAR_MII_CLK);
477 DELAY(1);
478 SIO_SET(NGE_MEAR_MII_CLK);
479 DELAY(1);
480
481 if (ack)
482 return(1);
483 return(0);
484 }
485
486 /*
487 * Write to a PHY register through the MII.
488 */
489 static int
nge_mii_writereg(struct nge_softc * sc,struct nge_mii_frame * frame)490 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
491 {
492 /*
493 * Set up frame for TX.
494 */
495
496 frame->mii_stdelim = NGE_MII_STARTDELIM;
497 frame->mii_opcode = NGE_MII_WRITEOP;
498 frame->mii_turnaround = NGE_MII_TURNAROUND;
499
500 /*
501 * Turn on data output.
502 */
503 SIO_SET(NGE_MEAR_MII_DIR);
504
505 nge_mii_sync(sc);
506
507 nge_mii_send(sc, frame->mii_stdelim, 2);
508 nge_mii_send(sc, frame->mii_opcode, 2);
509 nge_mii_send(sc, frame->mii_phyaddr, 5);
510 nge_mii_send(sc, frame->mii_regaddr, 5);
511 nge_mii_send(sc, frame->mii_turnaround, 2);
512 nge_mii_send(sc, frame->mii_data, 16);
513
514 /* Idle bit. */
515 SIO_SET(NGE_MEAR_MII_CLK);
516 DELAY(1);
517 SIO_CLR(NGE_MEAR_MII_CLK);
518 DELAY(1);
519
520 /*
521 * Turn off xmit.
522 */
523 SIO_CLR(NGE_MEAR_MII_DIR);
524
525 return(0);
526 }
527
528 static int
nge_miibus_readreg(device_t dev,int phy,int reg)529 nge_miibus_readreg(device_t dev, int phy, int reg)
530 {
531 struct nge_softc *sc = device_get_softc(dev);
532 struct nge_mii_frame frame;
533
534 bzero((char *)&frame, sizeof(frame));
535
536 frame.mii_phyaddr = phy;
537 frame.mii_regaddr = reg;
538 nge_mii_readreg(sc, &frame);
539
540 return(frame.mii_data);
541 }
542
543 static int
nge_miibus_writereg(device_t dev,int phy,int reg,int data)544 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
545 {
546 struct nge_softc *sc = device_get_softc(dev);
547 struct nge_mii_frame frame;
548
549 bzero((char *)&frame, sizeof(frame));
550
551 frame.mii_phyaddr = phy;
552 frame.mii_regaddr = reg;
553 frame.mii_data = data;
554 nge_mii_writereg(sc, &frame);
555
556 return(0);
557 }
558
559 static void
nge_miibus_statchg(device_t dev)560 nge_miibus_statchg(device_t dev)
561 {
562 struct nge_softc *sc = device_get_softc(dev);
563 struct mii_data *mii;
564 int status;
565
566 if (sc->nge_tbi) {
567 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
568 == IFM_AUTO) {
569 status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
570 if (status == 0 || status & NGE_TBIANAR_FDX) {
571 NGE_SETBIT(sc, NGE_TX_CFG,
572 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
573 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
574 } else {
575 NGE_CLRBIT(sc, NGE_TX_CFG,
576 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
577 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
578 }
579 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
580 != IFM_FDX) {
581 NGE_CLRBIT(sc, NGE_TX_CFG,
582 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
583 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
584 } else {
585 NGE_SETBIT(sc, NGE_TX_CFG,
586 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
587 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
588 }
589 } else {
590 mii = device_get_softc(sc->nge_miibus);
591
592 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
593 NGE_SETBIT(sc, NGE_TX_CFG,
594 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
595 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
596 } else {
597 NGE_CLRBIT(sc, NGE_TX_CFG,
598 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
599 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
600 }
601
602 /* If we have a 1000Mbps link, set the mode_1000 bit. */
603 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
604 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
605 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
606 } else {
607 NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
608 }
609 }
610 }
611
612 static void
nge_setmulti(struct nge_softc * sc)613 nge_setmulti(struct nge_softc *sc)
614 {
615 struct ifnet *ifp = &sc->arpcom.ac_if;
616 struct ifmultiaddr *ifma;
617 uint32_t filtsave, h = 0, i;
618 int bit, index;
619
620 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
622 NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
623 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
624 return;
625 }
626
627 /*
628 * We have to explicitly enable the multicast hash table
629 * on the NatSemi chip if we want to use it, which we do.
630 * We also have to tell it that we don't want to use the
631 * hash table for matching unicast addresses.
632 */
633 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
634 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
635 NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
636
637 filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
638
639 /* first, zot all the existing hash bits */
640 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
641 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
642 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
643 }
644
645 /*
646 * From the 11 bits returned by the crc routine, the top 7
647 * bits represent the 16-bit word in the mcast hash table
648 * that needs to be updated, and the lower 4 bits represent
649 * which bit within that byte needs to be set.
650 */
651 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
652 if (ifma->ifma_addr->sa_family != AF_LINK)
653 continue;
654 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
655 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
656 index = (h >> 4) & 0x7F;
657 bit = h & 0xF;
658 CSR_WRITE_4(sc, NGE_RXFILT_CTL,
659 NGE_FILTADDR_MCAST_LO + (index * 2));
660 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
661 }
662
663 CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
664 }
665
666 static void
nge_reset(struct nge_softc * sc)667 nge_reset(struct nge_softc *sc)
668 {
669 int i;
670
671 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
672
673 for (i = 0; i < NGE_TIMEOUT; i++) {
674 if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
675 break;
676 }
677
678 if (i == NGE_TIMEOUT)
679 kprintf("nge%d: reset never completed\n", sc->nge_unit);
680
681 /* Wait a little while for the chip to get its brains in order. */
682 DELAY(1000);
683
684 /*
685 * If this is a NetSemi chip, make sure to clear
686 * PME mode.
687 */
688 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
689 CSR_WRITE_4(sc, NGE_CLKRUN, 0);
690 }
691
692 /*
693 * Probe for an NatSemi chip. Check the PCI vendor and device
694 * IDs against our list and return a device name if we find a match.
695 */
696 static int
nge_probe(device_t dev)697 nge_probe(device_t dev)
698 {
699 struct nge_type *t;
700 uint16_t vendor, product;
701
702 vendor = pci_get_vendor(dev);
703 product = pci_get_device(dev);
704
705 for (t = nge_devs; t->nge_name != NULL; t++) {
706 if (vendor == t->nge_vid && product == t->nge_did) {
707 device_set_desc(dev, t->nge_name);
708 return(0);
709 }
710 }
711
712 return(ENXIO);
713 }
714
715 /*
716 * Attach the interface. Allocate softc structures, do ifmedia
717 * setup and ethernet/BPF attach.
718 */
719 static int
nge_attach(device_t dev)720 nge_attach(device_t dev)
721 {
722 struct nge_softc *sc;
723 struct ifnet *ifp;
724 uint8_t eaddr[ETHER_ADDR_LEN];
725 uint32_t command;
726 int error = 0, rid, unit;
727 const char *sep = "";
728
729 sc = device_get_softc(dev);
730 unit = device_get_unit(dev);
731 callout_init(&sc->nge_stat_timer);
732 lwkt_serialize_init(&sc->nge_jslot_serializer);
733
734 /*
735 * Handle power management nonsense.
736 */
737 command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
738 if (command == 0x01) {
739 command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
740 if (command & NGE_PSTATE_MASK) {
741 uint32_t iobase, membase, irq;
742
743 /* Save important PCI config data. */
744 iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
745 membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
746 irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
747
748 /* Reset the power state. */
749 kprintf("nge%d: chip is in D%d power mode "
750 "-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
751 command &= 0xFFFFFFFC;
752 pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
753
754 /* Restore PCI config data. */
755 pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
756 pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
757 pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
758 }
759 }
760
761 /*
762 * Map control/status registers.
763 */
764 command = pci_read_config(dev, PCIR_COMMAND, 4);
765 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
766 pci_write_config(dev, PCIR_COMMAND, command, 4);
767 command = pci_read_config(dev, PCIR_COMMAND, 4);
768
769 #ifdef NGE_USEIOSPACE
770 if (!(command & PCIM_CMD_PORTEN)) {
771 kprintf("nge%d: failed to enable I/O ports!\n", unit);
772 error = ENXIO;
773 return(error);
774 }
775 #else
776 if (!(command & PCIM_CMD_MEMEN)) {
777 kprintf("nge%d: failed to enable memory mapping!\n", unit);
778 error = ENXIO;
779 return(error);
780 }
781 #endif
782
783 rid = NGE_RID;
784 sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
785
786 if (sc->nge_res == NULL) {
787 kprintf("nge%d: couldn't map ports/memory\n", unit);
788 error = ENXIO;
789 return(error);
790 }
791
792 sc->nge_btag = rman_get_bustag(sc->nge_res);
793 sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
794
795 /* Allocate interrupt */
796 rid = 0;
797 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
798 RF_SHAREABLE | RF_ACTIVE);
799
800 if (sc->nge_irq == NULL) {
801 kprintf("nge%d: couldn't map interrupt\n", unit);
802 error = ENXIO;
803 goto fail;
804 }
805
806 /* Reset the adapter. */
807 nge_reset(sc);
808
809 /*
810 * Get station address from the EEPROM.
811 */
812 nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
813 nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
814 nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
815
816 sc->nge_unit = unit;
817
818 sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
819 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
820
821 if (sc->nge_ldata == NULL) {
822 kprintf("nge%d: no memory for list buffers!\n", unit);
823 error = ENXIO;
824 goto fail;
825 }
826
827 /* Try to allocate memory for jumbo buffers. */
828 if (nge_alloc_jumbo_mem(sc)) {
829 kprintf("nge%d: jumbo buffer allocation failed\n",
830 sc->nge_unit);
831 error = ENXIO;
832 goto fail;
833 }
834
835 ifp = &sc->arpcom.ac_if;
836 ifp->if_softc = sc;
837 if_initname(ifp, "nge", unit);
838 ifp->if_mtu = ETHERMTU;
839 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
840 ifp->if_ioctl = nge_ioctl;
841 ifp->if_start = nge_start;
842 #ifdef IFPOLL_ENABLE
843 ifp->if_npoll = nge_npoll;
844 #endif
845 ifp->if_watchdog = nge_watchdog;
846 ifp->if_init = nge_init;
847 ifp->if_baudrate = 1000000000;
848 ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
849 ifq_set_ready(&ifp->if_snd);
850 ifp->if_hwassist = NGE_CSUM_FEATURES;
851 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
852 ifp->if_capenable = ifp->if_capabilities;
853
854 /*
855 * Do MII setup.
856 */
857 if (mii_phy_probe(dev, &sc->nge_miibus,
858 nge_ifmedia_upd, nge_ifmedia_sts)) {
859 if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
860 sc->nge_tbi = 1;
861 device_printf(dev, "Using TBI\n");
862
863 sc->nge_miibus = dev;
864
865 ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
866 nge_ifmedia_sts);
867 #define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
868 #define PRINT(s) kprintf("%s%s", sep, s); sep = ", "
869 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
870 device_printf(dev, " ");
871 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
872 PRINT("1000baseSX");
873 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
874 PRINT("1000baseSX-FDX");
875 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
876 PRINT("auto");
877
878 kprintf("\n");
879 #undef ADD
880 #undef PRINT
881 ifmedia_set(&sc->nge_ifmedia,
882 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
883
884 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
885 | NGE_GPIO_GP4_OUT
886 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
887 | NGE_GPIO_GP3_OUTENB
888 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
889
890 } else {
891 kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
892 error = ENXIO;
893 goto fail;
894 }
895 }
896
897 /*
898 * Call MI attach routine.
899 */
900 ether_ifattach(ifp, eaddr, NULL);
901
902 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->nge_irq));
903
904 #ifdef IFPOLL_ENABLE
905 ifpoll_compat_setup(&sc->nge_npoll, NULL, NULL, device_get_unit(dev),
906 ifp->if_serializer);
907 #endif
908
909 error = bus_setup_intr(dev, sc->nge_irq, INTR_MPSAFE,
910 nge_intr, sc, &sc->nge_intrhand,
911 ifp->if_serializer);
912 if (error) {
913 ether_ifdetach(ifp);
914 device_printf(dev, "couldn't set up irq\n");
915 goto fail;
916 }
917
918 return(0);
919 fail:
920 nge_detach(dev);
921 return(error);
922 }
923
924 static int
nge_detach(device_t dev)925 nge_detach(device_t dev)
926 {
927 struct nge_softc *sc = device_get_softc(dev);
928 struct ifnet *ifp = &sc->arpcom.ac_if;
929
930 if (device_is_attached(dev)) {
931 lwkt_serialize_enter(ifp->if_serializer);
932 nge_reset(sc);
933 nge_stop(sc);
934 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
935 lwkt_serialize_exit(ifp->if_serializer);
936
937 ether_ifdetach(ifp);
938 }
939
940 if (sc->nge_miibus)
941 device_delete_child(dev, sc->nge_miibus);
942 bus_generic_detach(dev);
943
944 if (sc->nge_irq)
945 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
946 if (sc->nge_res)
947 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
948 if (sc->nge_ldata) {
949 contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
950 M_DEVBUF);
951 }
952 if (sc->nge_cdata.nge_jumbo_buf)
953 contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
954
955 return(0);
956 }
957
958 /*
959 * Initialize the transmit descriptors.
960 */
961 static int
nge_list_tx_init(struct nge_softc * sc)962 nge_list_tx_init(struct nge_softc *sc)
963 {
964 struct nge_list_data *ld;
965 struct nge_ring_data *cd;
966 int i;
967
968 cd = &sc->nge_cdata;
969 ld = sc->nge_ldata;
970
971 for (i = 0; i < NGE_TX_LIST_CNT; i++) {
972 if (i == (NGE_TX_LIST_CNT - 1)) {
973 ld->nge_tx_list[i].nge_nextdesc =
974 &ld->nge_tx_list[0];
975 ld->nge_tx_list[i].nge_next =
976 vtophys(&ld->nge_tx_list[0]);
977 } else {
978 ld->nge_tx_list[i].nge_nextdesc =
979 &ld->nge_tx_list[i + 1];
980 ld->nge_tx_list[i].nge_next =
981 vtophys(&ld->nge_tx_list[i + 1]);
982 }
983 ld->nge_tx_list[i].nge_mbuf = NULL;
984 ld->nge_tx_list[i].nge_ptr = 0;
985 ld->nge_tx_list[i].nge_ctl = 0;
986 }
987
988 cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
989
990 return(0);
991 }
992
993
994 /*
995 * Initialize the RX descriptors and allocate mbufs for them. Note that
996 * we arrange the descriptors in a closed ring, so that the last descriptor
997 * points back to the first.
998 */
999 static int
nge_list_rx_init(struct nge_softc * sc)1000 nge_list_rx_init(struct nge_softc *sc)
1001 {
1002 struct nge_list_data *ld;
1003 struct nge_ring_data *cd;
1004 int i;
1005
1006 ld = sc->nge_ldata;
1007 cd = &sc->nge_cdata;
1008
1009 for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1010 if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1011 return(ENOBUFS);
1012 if (i == (NGE_RX_LIST_CNT - 1)) {
1013 ld->nge_rx_list[i].nge_nextdesc =
1014 &ld->nge_rx_list[0];
1015 ld->nge_rx_list[i].nge_next =
1016 vtophys(&ld->nge_rx_list[0]);
1017 } else {
1018 ld->nge_rx_list[i].nge_nextdesc =
1019 &ld->nge_rx_list[i + 1];
1020 ld->nge_rx_list[i].nge_next =
1021 vtophys(&ld->nge_rx_list[i + 1]);
1022 }
1023 }
1024
1025 cd->nge_rx_prod = 0;
1026
1027 return(0);
1028 }
1029
1030 /*
1031 * Initialize an RX descriptor and attach an MBUF cluster.
1032 */
1033 static int
nge_newbuf(struct nge_softc * sc,struct nge_desc * c,struct mbuf * m)1034 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1035 {
1036 struct mbuf *m_new = NULL;
1037 struct nge_jslot *buf;
1038
1039 if (m == NULL) {
1040 MGETHDR(m_new, M_NOWAIT, MT_DATA);
1041 if (m_new == NULL) {
1042 kprintf("nge%d: no memory for rx list "
1043 "-- packet dropped!\n", sc->nge_unit);
1044 return(ENOBUFS);
1045 }
1046
1047 /* Allocate the jumbo buffer */
1048 buf = nge_jalloc(sc);
1049 if (buf == NULL) {
1050 #ifdef NGE_VERBOSE
1051 kprintf("nge%d: jumbo allocation failed "
1052 "-- packet dropped!\n", sc->nge_unit);
1053 #endif
1054 m_freem(m_new);
1055 return(ENOBUFS);
1056 }
1057 /* Attach the buffer to the mbuf */
1058 m_new->m_ext.ext_arg = buf;
1059 m_new->m_ext.ext_buf = buf->nge_buf;
1060 m_new->m_ext.ext_free = nge_jfree;
1061 m_new->m_ext.ext_ref = nge_jref;
1062 m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1063
1064 m_new->m_data = m_new->m_ext.ext_buf;
1065 m_new->m_flags |= M_EXT;
1066 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1067 } else {
1068 m_new = m;
1069 m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1070 m_new->m_data = m_new->m_ext.ext_buf;
1071 }
1072
1073 m_adj(m_new, sizeof(uint64_t));
1074
1075 c->nge_mbuf = m_new;
1076 c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1077 c->nge_ctl = m_new->m_len;
1078 c->nge_extsts = 0;
1079
1080 return(0);
1081 }
1082
1083 static int
nge_alloc_jumbo_mem(struct nge_softc * sc)1084 nge_alloc_jumbo_mem(struct nge_softc *sc)
1085 {
1086 caddr_t ptr;
1087 int i;
1088 struct nge_jslot *entry;
1089
1090 /* Grab a big chunk o' storage. */
1091 sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1092 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1093
1094 if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1095 kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1096 return(ENOBUFS);
1097 }
1098
1099 SLIST_INIT(&sc->nge_jfree_listhead);
1100
1101 /*
1102 * Now divide it up into 9K pieces and save the addresses
1103 * in an array.
1104 */
1105 ptr = sc->nge_cdata.nge_jumbo_buf;
1106 for (i = 0; i < NGE_JSLOTS; i++) {
1107 entry = &sc->nge_cdata.nge_jslots[i];
1108 entry->nge_sc = sc;
1109 entry->nge_buf = ptr;
1110 entry->nge_inuse = 0;
1111 entry->nge_slot = i;
1112 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1113 ptr += NGE_JLEN;
1114 }
1115
1116 return(0);
1117 }
1118
1119
1120 /*
1121 * Allocate a jumbo buffer.
1122 */
1123 static struct nge_jslot *
nge_jalloc(struct nge_softc * sc)1124 nge_jalloc(struct nge_softc *sc)
1125 {
1126 struct nge_jslot *entry;
1127
1128 lwkt_serialize_enter(&sc->nge_jslot_serializer);
1129 entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1130 if (entry) {
1131 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1132 entry->nge_inuse = 1;
1133 } else {
1134 #ifdef NGE_VERBOSE
1135 kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1136 #endif
1137 }
1138 lwkt_serialize_exit(&sc->nge_jslot_serializer);
1139 return(entry);
1140 }
1141
1142 /*
1143 * Adjust usage count on a jumbo buffer. In general this doesn't
1144 * get used much because our jumbo buffers don't get passed around
1145 * a lot, but it's implemented for correctness.
1146 */
1147 static void
nge_jref(void * arg)1148 nge_jref(void *arg)
1149 {
1150 struct nge_jslot *entry = (struct nge_jslot *)arg;
1151 struct nge_softc *sc = entry->nge_sc;
1152
1153 if (sc == NULL)
1154 panic("nge_jref: can't find softc pointer!");
1155
1156 if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1157 panic("nge_jref: asked to reference buffer "
1158 "that we don't manage!");
1159 else if (entry->nge_inuse == 0)
1160 panic("nge_jref: buffer already free!");
1161 else
1162 atomic_add_int(&entry->nge_inuse, 1);
1163 }
1164
1165 /*
1166 * Release a jumbo buffer.
1167 */
1168 static void
nge_jfree(void * arg)1169 nge_jfree(void *arg)
1170 {
1171 struct nge_jslot *entry = (struct nge_jslot *)arg;
1172 struct nge_softc *sc = entry->nge_sc;
1173
1174 if (sc == NULL)
1175 panic("nge_jref: can't find softc pointer!");
1176
1177 if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1178 panic("nge_jref: asked to reference buffer "
1179 "that we don't manage!");
1180 } else if (entry->nge_inuse == 0) {
1181 panic("nge_jref: buffer already free!");
1182 } else {
1183 lwkt_serialize_enter(&sc->nge_jslot_serializer);
1184 atomic_subtract_int(&entry->nge_inuse, 1);
1185 if (entry->nge_inuse == 0) {
1186 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1187 entry, jslot_link);
1188 }
1189 lwkt_serialize_exit(&sc->nge_jslot_serializer);
1190 }
1191 }
1192 /*
1193 * A frame has been uploaded: pass the resulting mbuf chain up to
1194 * the higher level protocols.
1195 */
1196 static void
nge_rxeof(struct nge_softc * sc)1197 nge_rxeof(struct nge_softc *sc)
1198 {
1199 struct mbuf *m;
1200 struct ifnet *ifp = &sc->arpcom.ac_if;
1201 struct nge_desc *cur_rx;
1202 int i, total_len = 0;
1203 uint32_t rxstat;
1204
1205 i = sc->nge_cdata.nge_rx_prod;
1206
1207 while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1208 struct mbuf *m0 = NULL;
1209 uint32_t extsts;
1210
1211 #ifdef IFPOLL_ENABLE
1212 if (ifp->if_flags & IFF_NPOLLING) {
1213 if (sc->rxcycles <= 0)
1214 break;
1215 sc->rxcycles--;
1216 }
1217 #endif /* IFPOLL_ENABLE */
1218
1219 cur_rx = &sc->nge_ldata->nge_rx_list[i];
1220 rxstat = cur_rx->nge_rxstat;
1221 extsts = cur_rx->nge_extsts;
1222 m = cur_rx->nge_mbuf;
1223 cur_rx->nge_mbuf = NULL;
1224 total_len = NGE_RXBYTES(cur_rx);
1225 NGE_INC(i, NGE_RX_LIST_CNT);
1226 /*
1227 * If an error occurs, update stats, clear the
1228 * status word and leave the mbuf cluster in place:
1229 * it should simply get re-used next time this descriptor
1230 * comes up in the ring.
1231 */
1232 if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1233 IFNET_STAT_INC(ifp, ierrors, 1);
1234 nge_newbuf(sc, cur_rx, m);
1235 continue;
1236 }
1237
1238 /*
1239 * Ok. NatSemi really screwed up here. This is the
1240 * only gigE chip I know of with alignment constraints
1241 * on receive buffers. RX buffers must be 64-bit aligned.
1242 */
1243 #ifdef __x86_64__
1244 /*
1245 * By popular demand, ignore the alignment problems
1246 * on the Intel x86 platform. The performance hit
1247 * incurred due to unaligned accesses is much smaller
1248 * than the hit produced by forcing buffer copies all
1249 * the time, especially with jumbo frames. We still
1250 * need to fix up the alignment everywhere else though.
1251 */
1252 if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1253 #endif
1254 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1255 total_len + ETHER_ALIGN, 0, ifp);
1256 nge_newbuf(sc, cur_rx, m);
1257 if (m0 == NULL) {
1258 kprintf("nge%d: no receive buffers "
1259 "available -- packet dropped!\n",
1260 sc->nge_unit);
1261 IFNET_STAT_INC(ifp, ierrors, 1);
1262 continue;
1263 }
1264 m_adj(m0, ETHER_ALIGN);
1265 m = m0;
1266 #ifdef __x86_64__
1267 } else {
1268 m->m_pkthdr.rcvif = ifp;
1269 m->m_pkthdr.len = m->m_len = total_len;
1270 }
1271 #endif
1272
1273 IFNET_STAT_INC(ifp, ipackets, 1);
1274
1275 /* Do IP checksum checking. */
1276 if (extsts & NGE_RXEXTSTS_IPPKT)
1277 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1278 if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1279 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1280 if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1281 (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1282 (extsts & NGE_RXEXTSTS_UDPPKT &&
1283 (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1284 m->m_pkthdr.csum_flags |=
1285 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1286 CSUM_FRAG_NOT_CHECKED;
1287 m->m_pkthdr.csum_data = 0xffff;
1288 }
1289
1290 /*
1291 * If we received a packet with a vlan tag, pass it
1292 * to vlan_input() instead of ether_input().
1293 */
1294 if (extsts & NGE_RXEXTSTS_VLANPKT) {
1295 m->m_flags |= M_VLANTAG;
1296 m->m_pkthdr.ether_vlantag =
1297 (extsts & NGE_RXEXTSTS_VTCI);
1298 }
1299 ifp->if_input(ifp, m, NULL, -1);
1300 }
1301
1302 sc->nge_cdata.nge_rx_prod = i;
1303 }
1304
1305 /*
1306 * A frame was downloaded to the chip. It's safe for us to clean up
1307 * the list buffers.
1308 */
1309 static void
nge_txeof(struct nge_softc * sc)1310 nge_txeof(struct nge_softc *sc)
1311 {
1312 struct ifnet *ifp = &sc->arpcom.ac_if;
1313 struct nge_desc *cur_tx = NULL;
1314 uint32_t idx;
1315
1316 /* Clear the timeout timer. */
1317 ifp->if_timer = 0;
1318
1319 /*
1320 * Go through our tx list and free mbufs for those
1321 * frames that have been transmitted.
1322 */
1323 idx = sc->nge_cdata.nge_tx_cons;
1324 while (idx != sc->nge_cdata.nge_tx_prod) {
1325 cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1326
1327 if (NGE_OWNDESC(cur_tx))
1328 break;
1329
1330 if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1331 sc->nge_cdata.nge_tx_cnt--;
1332 NGE_INC(idx, NGE_TX_LIST_CNT);
1333 continue;
1334 }
1335
1336 if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1337 IFNET_STAT_INC(ifp, oerrors, 1);
1338 if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1339 IFNET_STAT_INC(ifp, collisions, 1);
1340 if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1341 IFNET_STAT_INC(ifp, collisions, 1);
1342 }
1343
1344 IFNET_STAT_INC(ifp, collisions,
1345 (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16);
1346
1347 IFNET_STAT_INC(ifp, opackets, 1);
1348 if (cur_tx->nge_mbuf != NULL) {
1349 m_freem(cur_tx->nge_mbuf);
1350 cur_tx->nge_mbuf = NULL;
1351 }
1352
1353 sc->nge_cdata.nge_tx_cnt--;
1354 NGE_INC(idx, NGE_TX_LIST_CNT);
1355 ifp->if_timer = 0;
1356 }
1357
1358 sc->nge_cdata.nge_tx_cons = idx;
1359
1360 if (cur_tx != NULL)
1361 ifq_clr_oactive(&ifp->if_snd);
1362 }
1363
1364 static void
nge_tick(void * xsc)1365 nge_tick(void *xsc)
1366 {
1367 struct nge_softc *sc = xsc;
1368 struct ifnet *ifp = &sc->arpcom.ac_if;
1369 struct mii_data *mii;
1370
1371 lwkt_serialize_enter(ifp->if_serializer);
1372
1373 if (sc->nge_tbi) {
1374 if (sc->nge_link == 0) {
1375 if (CSR_READ_4(sc, NGE_TBI_BMSR)
1376 & NGE_TBIBMSR_ANEG_DONE) {
1377 kprintf("nge%d: gigabit link up\n",
1378 sc->nge_unit);
1379 nge_miibus_statchg(sc->nge_miibus);
1380 sc->nge_link++;
1381 if (!ifq_is_empty(&ifp->if_snd))
1382 if_devstart(ifp);
1383 }
1384 }
1385 } else {
1386 mii = device_get_softc(sc->nge_miibus);
1387 mii_tick(mii);
1388
1389 if (sc->nge_link == 0) {
1390 if (mii->mii_media_status & IFM_ACTIVE &&
1391 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1392 sc->nge_link++;
1393 if (IFM_SUBTYPE(mii->mii_media_active)
1394 == IFM_1000_T)
1395 kprintf("nge%d: gigabit link up\n",
1396 sc->nge_unit);
1397 if (!ifq_is_empty(&ifp->if_snd))
1398 if_devstart(ifp);
1399 }
1400 }
1401 }
1402 callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1403
1404 lwkt_serialize_exit(ifp->if_serializer);
1405 }
1406
1407 #ifdef IFPOLL_ENABLE
1408
1409 static void
nge_npoll_compat(struct ifnet * ifp,void * arg __unused,int count)1410 nge_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1411 {
1412 struct nge_softc *sc = ifp->if_softc;
1413
1414 ASSERT_SERIALIZED(ifp->if_serializer);
1415
1416 /*
1417 * On the nge, reading the status register also clears it.
1418 * So before returning to intr mode we must make sure that all
1419 * possible pending sources of interrupts have been served.
1420 * In practice this means run to completion the *eof routines,
1421 * and then call the interrupt routine
1422 */
1423 sc->rxcycles = count;
1424 nge_rxeof(sc);
1425 nge_txeof(sc);
1426 if (!ifq_is_empty(&ifp->if_snd))
1427 if_devstart(ifp);
1428
1429 if (sc->nge_npoll.ifpc_stcount-- == 0) {
1430 uint32_t status;
1431
1432 sc->nge_npoll.ifpc_stcount = sc->nge_npoll.ifpc_stfrac;
1433
1434 /* Reading the ISR register clears all interrupts. */
1435 status = CSR_READ_4(sc, NGE_ISR);
1436
1437 if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1438 nge_rxeof(sc);
1439
1440 if (status & (NGE_ISR_RX_IDLE))
1441 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1442
1443 if (status & NGE_ISR_SYSERR) {
1444 nge_reset(sc);
1445 nge_init(sc);
1446 }
1447 }
1448 }
1449
1450 static void
nge_npoll(struct ifnet * ifp,struct ifpoll_info * info)1451 nge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1452 {
1453 struct nge_softc *sc = ifp->if_softc;
1454
1455 ASSERT_SERIALIZED(ifp->if_serializer);
1456
1457 if (info != NULL) {
1458 int cpuid = sc->nge_npoll.ifpc_cpuid;
1459
1460 info->ifpi_rx[cpuid].poll_func = nge_npoll_compat;
1461 info->ifpi_rx[cpuid].arg = NULL;
1462 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1463
1464 if (ifp->if_flags & IFF_RUNNING) {
1465 /* disable interrupts */
1466 CSR_WRITE_4(sc, NGE_IER, 0);
1467 sc->nge_npoll.ifpc_stcount = 0;
1468 }
1469 ifq_set_cpuid(&ifp->if_snd, cpuid);
1470 } else {
1471 if (ifp->if_flags & IFF_RUNNING) {
1472 /* enable interrupts */
1473 CSR_WRITE_4(sc, NGE_IER, 1);
1474 }
1475 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->nge_irq));
1476 }
1477 }
1478
1479 #endif /* IFPOLL_ENABLE */
1480
1481 static void
nge_intr(void * arg)1482 nge_intr(void *arg)
1483 {
1484 struct nge_softc *sc = arg;
1485 struct ifnet *ifp = &sc->arpcom.ac_if;
1486 uint32_t status;
1487
1488 /* Supress unwanted interrupts */
1489 if (!(ifp->if_flags & IFF_UP)) {
1490 nge_stop(sc);
1491 return;
1492 }
1493
1494 /* Disable interrupts. */
1495 CSR_WRITE_4(sc, NGE_IER, 0);
1496
1497 /* Data LED on for TBI mode */
1498 if(sc->nge_tbi)
1499 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1500 | NGE_GPIO_GP3_OUT);
1501
1502 for (;;) {
1503 /* Reading the ISR register clears all interrupts. */
1504 status = CSR_READ_4(sc, NGE_ISR);
1505
1506 if ((status & NGE_INTRS) == 0)
1507 break;
1508
1509 if ((status & NGE_ISR_TX_DESC_OK) ||
1510 (status & NGE_ISR_TX_ERR) ||
1511 (status & NGE_ISR_TX_OK) ||
1512 (status & NGE_ISR_TX_IDLE))
1513 nge_txeof(sc);
1514
1515 if ((status & NGE_ISR_RX_DESC_OK) ||
1516 (status & NGE_ISR_RX_ERR) ||
1517 (status & NGE_ISR_RX_OFLOW) ||
1518 (status & NGE_ISR_RX_FIFO_OFLOW) ||
1519 (status & NGE_ISR_RX_IDLE) ||
1520 (status & NGE_ISR_RX_OK))
1521 nge_rxeof(sc);
1522
1523 if ((status & NGE_ISR_RX_IDLE))
1524 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1525
1526 if (status & NGE_ISR_SYSERR) {
1527 nge_reset(sc);
1528 ifp->if_flags &= ~IFF_RUNNING;
1529 nge_init(sc);
1530 }
1531
1532 #ifdef notyet
1533 /* mii_tick should only be called once per second */
1534 if (status & NGE_ISR_PHY_INTR) {
1535 sc->nge_link = 0;
1536 nge_tick_serialized(sc);
1537 }
1538 #endif
1539 }
1540
1541 /* Re-enable interrupts. */
1542 CSR_WRITE_4(sc, NGE_IER, 1);
1543
1544 if (!ifq_is_empty(&ifp->if_snd))
1545 if_devstart(ifp);
1546
1547 /* Data LED off for TBI mode */
1548
1549 if(sc->nge_tbi)
1550 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1551 & ~NGE_GPIO_GP3_OUT);
1552 }
1553
1554 /*
1555 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1556 * pointers to the fragment pointers.
1557 */
1558 static int
nge_encap(struct nge_softc * sc,struct mbuf * m_head,uint32_t * txidx)1559 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1560 {
1561 struct nge_desc *f = NULL;
1562 struct mbuf *m;
1563 int frag, cur, cnt = 0;
1564
1565 /*
1566 * Start packing the mbufs in this chain into
1567 * the fragment pointers. Stop when we run out
1568 * of fragments or hit the end of the mbuf chain.
1569 */
1570 cur = frag = *txidx;
1571
1572 for (m = m_head; m != NULL; m = m->m_next) {
1573 if (m->m_len != 0) {
1574 if ((NGE_TX_LIST_CNT -
1575 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1576 break;
1577 f = &sc->nge_ldata->nge_tx_list[frag];
1578 f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1579 f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1580 if (cnt != 0)
1581 f->nge_ctl |= NGE_CMDSTS_OWN;
1582 cur = frag;
1583 NGE_INC(frag, NGE_TX_LIST_CNT);
1584 cnt++;
1585 }
1586 }
1587 /* Caller should make sure that 'm_head' is not excessive fragmented */
1588 KASSERT(m == NULL, ("too many fragments"));
1589
1590 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1591 if (m_head->m_pkthdr.csum_flags) {
1592 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1593 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1594 NGE_TXEXTSTS_IPCSUM;
1595 if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1596 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1597 NGE_TXEXTSTS_TCPCSUM;
1598 if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1599 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1600 NGE_TXEXTSTS_UDPCSUM;
1601 }
1602
1603 if (m_head->m_flags & M_VLANTAG) {
1604 sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1605 (NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag);
1606 }
1607
1608 sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1609 sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1610 sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1611 sc->nge_cdata.nge_tx_cnt += cnt;
1612 *txidx = frag;
1613
1614 return(0);
1615 }
1616
1617 /*
1618 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1619 * to the mbuf data regions directly in the transmit lists. We also save a
1620 * copy of the pointers since the transmit list fragment pointers are
1621 * physical addresses.
1622 */
1623
1624 static void
nge_start(struct ifnet * ifp,struct ifaltq_subque * ifsq)1625 nge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1626 {
1627 struct nge_softc *sc = ifp->if_softc;
1628 struct mbuf *m_head = NULL, *m_defragged;
1629 uint32_t idx;
1630 int need_trans;
1631
1632 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1633
1634 if (!sc->nge_link) {
1635 ifq_purge(&ifp->if_snd);
1636 return;
1637 }
1638
1639 idx = sc->nge_cdata.nge_tx_prod;
1640
1641 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1642 return;
1643
1644 need_trans = 0;
1645 while (sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1646 struct mbuf *m;
1647 int cnt;
1648
1649 m_defragged = NULL;
1650 m_head = ifq_dequeue(&ifp->if_snd);
1651 if (m_head == NULL)
1652 break;
1653
1654 again:
1655 cnt = 0;
1656 for (m = m_head; m != NULL; m = m->m_next)
1657 ++cnt;
1658 if ((NGE_TX_LIST_CNT -
1659 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) {
1660 if (m_defragged != NULL) {
1661 /*
1662 * Even after defragmentation, there
1663 * are still too many fragments, so
1664 * drop this packet.
1665 */
1666 m_freem(m_head);
1667 ifq_set_oactive(&ifp->if_snd);
1668 break;
1669 }
1670
1671 m_defragged = m_defrag(m_head, M_NOWAIT);
1672 if (m_defragged == NULL) {
1673 m_freem(m_head);
1674 continue;
1675 }
1676 m_head = m_defragged;
1677
1678 /* Recount # of fragments */
1679 goto again;
1680 }
1681
1682 nge_encap(sc, m_head, &idx);
1683 need_trans = 1;
1684
1685 ETHER_BPF_MTAP(ifp, m_head);
1686 }
1687
1688 if (!need_trans)
1689 return;
1690
1691 /* Transmit */
1692 sc->nge_cdata.nge_tx_prod = idx;
1693 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1694
1695 /*
1696 * Set a timeout in case the chip goes out to lunch.
1697 */
1698 ifp->if_timer = 5;
1699 }
1700
1701 static void
nge_init(void * xsc)1702 nge_init(void *xsc)
1703 {
1704 struct nge_softc *sc = xsc;
1705 struct ifnet *ifp = &sc->arpcom.ac_if;
1706 struct mii_data *mii;
1707
1708 if (ifp->if_flags & IFF_RUNNING) {
1709 return;
1710 }
1711
1712 /*
1713 * Cancel pending I/O and free all RX/TX buffers.
1714 */
1715 nge_stop(sc);
1716 callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1717
1718 if (sc->nge_tbi)
1719 mii = NULL;
1720 else
1721 mii = device_get_softc(sc->nge_miibus);
1722
1723 /* Set MAC address */
1724 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1725 CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1726 ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1727 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1728 CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1729 ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1730 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1731 CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1732 ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1733
1734 /* Init circular RX list. */
1735 if (nge_list_rx_init(sc) == ENOBUFS) {
1736 kprintf("nge%d: initialization failed: no "
1737 "memory for rx buffers\n", sc->nge_unit);
1738 nge_stop(sc);
1739 return;
1740 }
1741
1742 /*
1743 * Init tx descriptors.
1744 */
1745 nge_list_tx_init(sc);
1746
1747 /*
1748 * For the NatSemi chip, we have to explicitly enable the
1749 * reception of ARP frames, as well as turn on the 'perfect
1750 * match' filter where we store the station address, otherwise
1751 * we won't receive unicasts meant for this host.
1752 */
1753 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1754 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1755
1756 /* If we want promiscuous mode, set the allframes bit. */
1757 if (ifp->if_flags & IFF_PROMISC)
1758 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1759 else
1760 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1761
1762 /*
1763 * Set the capture broadcast bit to capture broadcast frames.
1764 */
1765 if (ifp->if_flags & IFF_BROADCAST)
1766 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1767 else
1768 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1769
1770 /*
1771 * Load the multicast filter.
1772 */
1773 nge_setmulti(sc);
1774
1775 /* Turn the receive filter on */
1776 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1777
1778 /*
1779 * Load the address of the RX and TX lists.
1780 */
1781 CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1782 vtophys(&sc->nge_ldata->nge_rx_list[0]));
1783 CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1784 vtophys(&sc->nge_ldata->nge_tx_list[0]));
1785
1786 /* Set RX configuration */
1787 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1788 /*
1789 * Enable hardware checksum validation for all IPv4
1790 * packets, do not reject packets with bad checksums.
1791 */
1792 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1793
1794 /*
1795 * Tell the chip to detect and strip VLAN tag info from
1796 * received frames. The tag will be provided in the extsts
1797 * field in the RX descriptors.
1798 */
1799 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1800 NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1801
1802 /* Set TX configuration */
1803 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1804
1805 /*
1806 * Enable TX IPv4 checksumming on a per-packet basis.
1807 */
1808 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1809
1810 /*
1811 * Tell the chip to insert VLAN tags on a per-packet basis as
1812 * dictated by the code in the frame encapsulation routine.
1813 */
1814 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1815
1816 /* Set full/half duplex mode. */
1817 if (sc->nge_tbi) {
1818 if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1819 == IFM_FDX) {
1820 NGE_SETBIT(sc, NGE_TX_CFG,
1821 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1822 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1823 } else {
1824 NGE_CLRBIT(sc, NGE_TX_CFG,
1825 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1826 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1827 }
1828 } else {
1829 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1830 NGE_SETBIT(sc, NGE_TX_CFG,
1831 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1832 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1833 } else {
1834 NGE_CLRBIT(sc, NGE_TX_CFG,
1835 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1836 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1837 }
1838 }
1839
1840 /*
1841 * Enable the delivery of PHY interrupts based on
1842 * link/speed/duplex status changes. Also enable the
1843 * extsts field in the DMA descriptors (needed for
1844 * TCP/IP checksum offload on transmit).
1845 */
1846 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1847 NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1848
1849 /*
1850 * Configure interrupt holdoff (moderation). We can
1851 * have the chip delay interrupt delivery for a certain
1852 * period. Units are in 100us, and the max setting
1853 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1854 */
1855 CSR_WRITE_4(sc, NGE_IHR, 0x01);
1856
1857 /*
1858 * Enable interrupts.
1859 */
1860 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1861 #ifdef IFPOLL_ENABLE
1862 /*
1863 * ... only enable interrupts if we are not polling, make sure
1864 * they are off otherwise.
1865 */
1866 if (ifp->if_flags & IFF_NPOLLING) {
1867 CSR_WRITE_4(sc, NGE_IER, 0);
1868 sc->nge_npoll.ifpc_stcount = 0;
1869 } else
1870 #endif /* IFPOLL_ENABLE */
1871 CSR_WRITE_4(sc, NGE_IER, 1);
1872
1873 /* Enable receiver and transmitter. */
1874 NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1875 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1876
1877 nge_ifmedia_upd(ifp);
1878
1879 ifp->if_flags |= IFF_RUNNING;
1880 ifq_clr_oactive(&ifp->if_snd);
1881 }
1882
1883 /*
1884 * Set media options.
1885 */
1886 static int
nge_ifmedia_upd(struct ifnet * ifp)1887 nge_ifmedia_upd(struct ifnet *ifp)
1888 {
1889 struct nge_softc *sc = ifp->if_softc;
1890 struct mii_data *mii;
1891
1892 if (sc->nge_tbi) {
1893 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1894 == IFM_AUTO) {
1895 CSR_WRITE_4(sc, NGE_TBI_ANAR,
1896 CSR_READ_4(sc, NGE_TBI_ANAR)
1897 | NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1898 | NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1899 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1900 | NGE_TBIBMCR_RESTART_ANEG);
1901 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1902 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1903 & IFM_GMASK) == IFM_FDX) {
1904 NGE_SETBIT(sc, NGE_TX_CFG,
1905 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1906 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1907
1908 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1909 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1910 } else {
1911 NGE_CLRBIT(sc, NGE_TX_CFG,
1912 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1913 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1914
1915 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1916 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1917 }
1918
1919 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1920 & ~NGE_GPIO_GP3_OUT);
1921 } else {
1922 mii = device_get_softc(sc->nge_miibus);
1923 sc->nge_link = 0;
1924 if (mii->mii_instance) {
1925 struct mii_softc *miisc;
1926 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1927 miisc = LIST_NEXT(miisc, mii_list))
1928 mii_phy_reset(miisc);
1929 }
1930 mii_mediachg(mii);
1931 }
1932
1933 return(0);
1934 }
1935
1936 /*
1937 * Report current media status.
1938 */
1939 static void
nge_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1940 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1941 {
1942 struct nge_softc *sc = ifp->if_softc;
1943 struct mii_data *mii;
1944
1945 if (sc->nge_tbi) {
1946 ifmr->ifm_status = IFM_AVALID;
1947 ifmr->ifm_active = IFM_ETHER;
1948
1949 if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1950 ifmr->ifm_status |= IFM_ACTIVE;
1951 if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1952 ifmr->ifm_active |= IFM_LOOP;
1953 if (!(CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)) {
1954 ifmr->ifm_active |= IFM_NONE;
1955 ifmr->ifm_status = 0;
1956 return;
1957 }
1958 ifmr->ifm_active |= IFM_1000_SX;
1959 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1960 == IFM_AUTO) {
1961 ifmr->ifm_active |= IFM_AUTO;
1962 if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1963 & NGE_TBIANAR_FDX) {
1964 ifmr->ifm_active |= IFM_FDX;
1965 }else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1966 & NGE_TBIANAR_HDX) {
1967 ifmr->ifm_active |= IFM_HDX;
1968 }
1969 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1970 == IFM_FDX)
1971 ifmr->ifm_active |= IFM_FDX;
1972 else
1973 ifmr->ifm_active |= IFM_HDX;
1974
1975 } else {
1976 mii = device_get_softc(sc->nge_miibus);
1977 mii_pollstat(mii);
1978 ifmr->ifm_active = mii->mii_media_active;
1979 ifmr->ifm_status = mii->mii_media_status;
1980 }
1981 }
1982
1983 static int
nge_ioctl(struct ifnet * ifp,u_long command,caddr_t data,struct ucred * cr)1984 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1985 {
1986 struct nge_softc *sc = ifp->if_softc;
1987 struct ifreq *ifr = (struct ifreq *) data;
1988 struct mii_data *mii;
1989 int error = 0;
1990
1991 switch(command) {
1992 case SIOCSIFMTU:
1993 if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1994 error = EINVAL;
1995 } else {
1996 ifp->if_mtu = ifr->ifr_mtu;
1997 /*
1998 * Workaround: if the MTU is larger than
1999 * 8152 (TX FIFO size minus 64 minus 18), turn off
2000 * TX checksum offloading.
2001 */
2002 if (ifr->ifr_mtu >= 8152)
2003 ifp->if_hwassist = 0;
2004 else
2005 ifp->if_hwassist = NGE_CSUM_FEATURES;
2006 }
2007 break;
2008 case SIOCSIFFLAGS:
2009 if (ifp->if_flags & IFF_UP) {
2010 if (ifp->if_flags & IFF_RUNNING &&
2011 ifp->if_flags & IFF_PROMISC &&
2012 !(sc->nge_if_flags & IFF_PROMISC)) {
2013 NGE_SETBIT(sc, NGE_RXFILT_CTL,
2014 NGE_RXFILTCTL_ALLPHYS|
2015 NGE_RXFILTCTL_ALLMULTI);
2016 } else if (ifp->if_flags & IFF_RUNNING &&
2017 !(ifp->if_flags & IFF_PROMISC) &&
2018 sc->nge_if_flags & IFF_PROMISC) {
2019 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2020 NGE_RXFILTCTL_ALLPHYS);
2021 if (!(ifp->if_flags & IFF_ALLMULTI))
2022 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2023 NGE_RXFILTCTL_ALLMULTI);
2024 } else {
2025 ifp->if_flags &= ~IFF_RUNNING;
2026 nge_init(sc);
2027 }
2028 } else {
2029 if (ifp->if_flags & IFF_RUNNING)
2030 nge_stop(sc);
2031 }
2032 sc->nge_if_flags = ifp->if_flags;
2033 error = 0;
2034 break;
2035 case SIOCADDMULTI:
2036 case SIOCDELMULTI:
2037 nge_setmulti(sc);
2038 error = 0;
2039 break;
2040 case SIOCGIFMEDIA:
2041 case SIOCSIFMEDIA:
2042 if (sc->nge_tbi) {
2043 error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2044 command);
2045 } else {
2046 mii = device_get_softc(sc->nge_miibus);
2047 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2048 command);
2049 }
2050 break;
2051 default:
2052 error = ether_ioctl(ifp, command, data);
2053 break;
2054 }
2055 return(error);
2056 }
2057
2058 static void
nge_watchdog(struct ifnet * ifp)2059 nge_watchdog(struct ifnet *ifp)
2060 {
2061 struct nge_softc *sc = ifp->if_softc;
2062
2063 IFNET_STAT_INC(ifp, oerrors, 1);
2064 kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2065
2066 nge_stop(sc);
2067 nge_reset(sc);
2068 ifp->if_flags &= ~IFF_RUNNING;
2069 nge_init(sc);
2070
2071 if (!ifq_is_empty(&ifp->if_snd))
2072 if_devstart(ifp);
2073 }
2074
2075 /*
2076 * Stop the adapter and free any mbufs allocated to the
2077 * RX and TX lists.
2078 */
2079 static void
nge_stop(struct nge_softc * sc)2080 nge_stop(struct nge_softc *sc)
2081 {
2082 struct ifnet *ifp = &sc->arpcom.ac_if;
2083 struct ifmedia_entry *ifm;
2084 struct mii_data *mii;
2085 int i, itmp, mtmp, dtmp;
2086
2087 ifp->if_timer = 0;
2088 if (sc->nge_tbi)
2089 mii = NULL;
2090 else
2091 mii = device_get_softc(sc->nge_miibus);
2092
2093 callout_stop(&sc->nge_stat_timer);
2094 CSR_WRITE_4(sc, NGE_IER, 0);
2095 CSR_WRITE_4(sc, NGE_IMR, 0);
2096 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2097 DELAY(1000);
2098 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2099 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2100
2101 /*
2102 * Isolate/power down the PHY, but leave the media selection
2103 * unchanged so that things will be put back to normal when
2104 * we bring the interface back up.
2105 */
2106 itmp = ifp->if_flags;
2107 ifp->if_flags |= IFF_UP;
2108
2109 if (sc->nge_tbi)
2110 ifm = sc->nge_ifmedia.ifm_cur;
2111 else
2112 ifm = mii->mii_media.ifm_cur;
2113
2114 mtmp = ifm->ifm_media;
2115 dtmp = ifm->ifm_data;
2116 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2117 ifm->ifm_data = MII_MEDIA_NONE;
2118
2119 if (!sc->nge_tbi)
2120 mii_mediachg(mii);
2121 ifm->ifm_media = mtmp;
2122 ifm->ifm_data = dtmp;
2123 ifp->if_flags = itmp;
2124
2125 sc->nge_link = 0;
2126
2127 /*
2128 * Free data in the RX lists.
2129 */
2130 for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2131 if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2132 m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2133 sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2134 }
2135 }
2136 bzero(&sc->nge_ldata->nge_rx_list,
2137 sizeof(sc->nge_ldata->nge_rx_list));
2138
2139 /*
2140 * Free the TX list buffers.
2141 */
2142 for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2143 if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2144 m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2145 sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2146 }
2147 }
2148
2149 bzero(&sc->nge_ldata->nge_tx_list,
2150 sizeof(sc->nge_ldata->nge_tx_list));
2151
2152 ifp->if_flags &= ~IFF_RUNNING;
2153 ifq_clr_oactive(&ifp->if_snd);
2154 }
2155
2156 /*
2157 * Stop all chip I/O so that the kernel's probe routines don't
2158 * get confused by errant DMAs when rebooting.
2159 */
2160 static void
nge_shutdown(device_t dev)2161 nge_shutdown(device_t dev)
2162 {
2163 struct nge_softc *sc = device_get_softc(dev);
2164 struct ifnet *ifp = &sc->arpcom.ac_if;
2165
2166 lwkt_serialize_enter(ifp->if_serializer);
2167 nge_reset(sc);
2168 nge_stop(sc);
2169 lwkt_serialize_exit(ifp->if_serializer);
2170 }
2171
2172