xref: /openbsd/gnu/llvm/llvm/docs/LangRef.rst (revision d415bd75)
1==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6   :local:
7   :depth: 3
8
9Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55    %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76   prefix. For example, ``%foo``, ``@DivisionByZero``,
77   ``%a.really.long.identifier``. The actual regular expression used is
78   '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
79   characters in their names can be surrounded with quotes. Special
80   characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81   code for the character in hexadecimal. In this way, any character can
82   be used in a name value, even quotes themselves. The ``"\01"`` prefix
83   can be used on global values to suppress mangling.
84#. Unnamed values are represented as an unsigned numeric value with
85   their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109    %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
115    %result = shl i32 %X, 3
116
117And the hard way:
118
119.. code-block:: llvm
120
121    %0 = add i32 %X, %X           ; yields i32:%0
122    %1 = add i32 %0, %0           ; yields i32:%1
123    %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130   not assigned to a named value.
131#. Unnamed temporaries are numbered sequentially (using a per-function
132   incrementing counter, starting with 0). Note that basic blocks and unnamed
133   function parameters are included in this numbering. For example, if the
134   entry basic block is not given a label name and all function parameters are
135   named, then it will get number 0.
136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
156    ; Declare the string constant as a global constant.
157    @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
158
159    ; External declaration of the puts function
160    declare i32 @puts(ptr nocapture) nounwind
161
162    ; Definition of main function
163    define i32 @main() {
164      ; Call puts function to write out the string to stdout.
165      call i32 @puts(ptr @.str)
166      ret i32 0
167    }
168
169    ; Named metadata
170    !0 = !{i32 42, null, !"string"}
171    !foo = !{!0}
172
173This example is made up of a :ref:`global variable <globalvars>` named
174"``.str``", an external declaration of the "``puts``" function, a
175:ref:`function definition <functionstructure>` for "``main``" and
176:ref:`named metadata <namedmetadatastructure>` "``foo``".
177
178In general, a module is made up of a list of global values (where both
179functions and global variables are global values). Global values are
180represented by a pointer to a memory location (in this case, a pointer
181to an array of char, and a pointer to a function), and have one of the
182following :ref:`linkage types <linkage>`.
183
184.. _linkage:
185
186Linkage Types
187-------------
188
189All Global Variables and Functions have one of the following types of
190linkage:
191
192``private``
193    Global values with "``private``" linkage are only directly
194    accessible by objects in the current module. In particular, linking
195    code into a module with a private global value may cause the
196    private to be renamed as necessary to avoid collisions. Because the
197    symbol is private to the module, all references can be updated. This
198    doesn't show up in any symbol table in the object file.
199``internal``
200    Similar to private, but the value shows as a local symbol
201    (``STB_LOCAL`` in the case of ELF) in the object file. This
202    corresponds to the notion of the '``static``' keyword in C.
203``available_externally``
204    Globals with "``available_externally``" linkage are never emitted into
205    the object file corresponding to the LLVM module. From the linker's
206    perspective, an ``available_externally`` global is equivalent to
207    an external declaration. They exist to allow inlining and other
208    optimizations to take place given knowledge of the definition of the
209    global, which is known to be somewhere outside the module. Globals
210    with ``available_externally`` linkage are allowed to be discarded at
211    will, and allow inlining and other optimizations. This linkage type is
212    only allowed on definitions, not declarations.
213``linkonce``
214    Globals with "``linkonce``" linkage are merged with other globals of
215    the same name when linkage occurs. This can be used to implement
216    some forms of inline functions, templates, or other code which must
217    be generated in each translation unit that uses it, but where the
218    body may be overridden with a more definitive definition later.
219    Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220    that ``linkonce`` linkage does not actually allow the optimizer to
221    inline the body of this function into callers because it doesn't
222    know if this definition of the function is the definitive definition
223    within the program or whether it will be overridden by a stronger
224    definition. To enable inlining and other optimizations, use
225    "``linkonce_odr``" linkage.
226``weak``
227    "``weak``" linkage has the same merging semantics as ``linkonce``
228    linkage, except that unreferenced globals with ``weak`` linkage may
229    not be discarded. This is used for globals that are declared "weak"
230    in C source code.
231``common``
232    "``common``" linkage is most similar to "``weak``" linkage, but they
233    are used for tentative definitions in C, such as "``int X;``" at
234    global scope. Symbols with "``common``" linkage are merged in the
235    same way as ``weak symbols``, and they may not be deleted if
236    unreferenced. ``common`` symbols may not have an explicit section,
237    must have a zero initializer, and may not be marked
238    ':ref:`constant <globalvars>`'. Functions and aliases may not have
239    common linkage.
240
241.. _linkage_appending:
242
243``appending``
244    "``appending``" linkage may only be applied to global variables of
245    pointer to array type. When two global variables with appending
246    linkage are linked together, the two global arrays are appended
247    together. This is the LLVM, typesafe, equivalent of having the
248    system linker append together "sections" with identical names when
249    .o files are linked.
250
251    Unfortunately this doesn't correspond to any feature in .o files, so it
252    can only be used for variables like ``llvm.global_ctors`` which llvm
253    interprets specially.
254
255``extern_weak``
256    The semantics of this linkage follow the ELF object file model: the
257    symbol is weak until linked, if not linked, the symbol becomes null
258    instead of being an undefined reference.
259``linkonce_odr``, ``weak_odr``
260    Some languages allow differing globals to be merged, such as two
261    functions with different semantics. Other languages, such as
262    ``C++``, ensure that only equivalent globals are ever merged (the
263    "one definition rule" --- "ODR"). Such languages can use the
264    ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
265    global will only be merged with equivalent globals. These linkage
266    types are otherwise the same as their non-``odr`` versions.
267``external``
268    If none of the above identifiers are used, the global is externally
269    visible, meaning that it participates in linkage and can be used to
270    resolve external symbol references.
271
272It is illegal for a global variable or function *declaration* to have any
273linkage type other than ``external`` or ``extern_weak``.
274
275.. _callingconv:
276
277Calling Conventions
278-------------------
279
280LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
281:ref:`invokes <i_invoke>` can all have an optional calling convention
282specified for the call. The calling convention of any pair of dynamic
283caller/callee must match, or the behavior of the program is undefined.
284The following calling conventions are supported by LLVM, and more may be
285added in the future:
286
287"``ccc``" - The C calling convention
288    This calling convention (the default if no other calling convention
289    is specified) matches the target C calling conventions. This calling
290    convention supports varargs function calls and tolerates some
291    mismatch in the declared prototype and implemented declaration of
292    the function (as does normal C).
293"``fastcc``" - The fast calling convention
294    This calling convention attempts to make calls as fast as possible
295    (e.g. by passing things in registers). This calling convention
296    allows the target to use whatever tricks it wants to produce fast
297    code for the target, without having to conform to an externally
298    specified ABI (Application Binary Interface). `Tail calls can only
299    be optimized when this, the tailcc, the GHC or the HiPE convention is
300    used. <CodeGenerator.html#tail-call-optimization>`_ This calling
301    convention does not support varargs and requires the prototype of all
302    callees to exactly match the prototype of the function definition.
303"``coldcc``" - The cold calling convention
304    This calling convention attempts to make code in the caller as
305    efficient as possible under the assumption that the call is not
306    commonly executed. As such, these calls often preserve all registers
307    so that the call does not break any live ranges in the caller side.
308    This calling convention does not support varargs and requires the
309    prototype of all callees to exactly match the prototype of the
310    function definition. Furthermore the inliner doesn't consider such function
311    calls for inlining.
312"``cc 10``" - GHC convention
313    This calling convention has been implemented specifically for use by
314    the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
315    It passes everything in registers, going to extremes to achieve this
316    by disabling callee save registers. This calling convention should
317    not be used lightly but only for specific situations such as an
318    alternative to the *register pinning* performance technique often
319    used when implementing functional programming languages. At the
320    moment only X86 supports this convention and it has the following
321    limitations:
322
323    -  On *X86-32* only supports up to 4 bit type parameters. No
324       floating-point types are supported.
325    -  On *X86-64* only supports up to 10 bit type parameters and 6
326       floating-point parameters.
327
328    This calling convention supports `tail call
329    optimization <CodeGenerator.html#tail-call-optimization>`_ but requires
330    both the caller and callee are using it.
331"``cc 11``" - The HiPE calling convention
332    This calling convention has been implemented specifically for use by
333    the `High-Performance Erlang
334    (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
335    native code compiler of the `Ericsson's Open Source Erlang/OTP
336    system <http://www.erlang.org/download.shtml>`_. It uses more
337    registers for argument passing than the ordinary C calling
338    convention and defines no callee-saved registers. The calling
339    convention properly supports `tail call
340    optimization <CodeGenerator.html#tail-call-optimization>`_ but requires
341    that both the caller and the callee use it. It uses a *register pinning*
342    mechanism, similar to GHC's convention, for keeping frequently
343    accessed runtime components pinned to specific hardware registers.
344    At the moment only X86 supports this convention (both 32 and 64
345    bit).
346"``webkit_jscc``" - WebKit's JavaScript calling convention
347    This calling convention has been implemented for `WebKit FTL JIT
348    <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
349    stack right to left (as cdecl does), and returns a value in the
350    platform's customary return register.
351"``anyregcc``" - Dynamic calling convention for code patching
352    This is a special convention that supports patching an arbitrary code
353    sequence in place of a call site. This convention forces the call
354    arguments into registers but allows them to be dynamically
355    allocated. This can currently only be used with calls to
356    llvm.experimental.patchpoint because only this intrinsic records
357    the location of its arguments in a side table. See :doc:`StackMaps`.
358"``preserve_mostcc``" - The `PreserveMost` calling convention
359    This calling convention attempts to make the code in the caller as
360    unintrusive as possible. This convention behaves identically to the `C`
361    calling convention on how arguments and return values are passed, but it
362    uses a different set of caller/callee-saved registers. This alleviates the
363    burden of saving and recovering a large register set before and after the
364    call in the caller. If the arguments are passed in callee-saved registers,
365    then they will be preserved by the callee across the call. This doesn't
366    apply for values returned in callee-saved registers.
367
368    - On X86-64 the callee preserves all general purpose registers, except for
369      R11. R11 can be used as a scratch register. Floating-point registers
370      (XMMs/YMMs) are not preserved and need to be saved by the caller.
371
372    The idea behind this convention is to support calls to runtime functions
373    that have a hot path and a cold path. The hot path is usually a small piece
374    of code that doesn't use many registers. The cold path might need to call out to
375    another function and therefore only needs to preserve the caller-saved
376    registers, which haven't already been saved by the caller. The
377    `PreserveMost` calling convention is very similar to the `cold` calling
378    convention in terms of caller/callee-saved registers, but they are used for
379    different types of function calls. `coldcc` is for function calls that are
380    rarely executed, whereas `preserve_mostcc` function calls are intended to be
381    on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
382    doesn't prevent the inliner from inlining the function call.
383
384    This calling convention will be used by a future version of the ObjectiveC
385    runtime and should therefore still be considered experimental at this time.
386    Although this convention was created to optimize certain runtime calls to
387    the ObjectiveC runtime, it is not limited to this runtime and might be used
388    by other runtimes in the future too. The current implementation only
389    supports X86-64, but the intention is to support more architectures in the
390    future.
391"``preserve_allcc``" - The `PreserveAll` calling convention
392    This calling convention attempts to make the code in the caller even less
393    intrusive than the `PreserveMost` calling convention. This calling
394    convention also behaves identical to the `C` calling convention on how
395    arguments and return values are passed, but it uses a different set of
396    caller/callee-saved registers. This removes the burden of saving and
397    recovering a large register set before and after the call in the caller. If
398    the arguments are passed in callee-saved registers, then they will be
399    preserved by the callee across the call. This doesn't apply for values
400    returned in callee-saved registers.
401
402    - On X86-64 the callee preserves all general purpose registers, except for
403      R11. R11 can be used as a scratch register. Furthermore it also preserves
404      all floating-point registers (XMMs/YMMs).
405
406    The idea behind this convention is to support calls to runtime functions
407    that don't need to call out to any other functions.
408
409    This calling convention, like the `PreserveMost` calling convention, will be
410    used by a future version of the ObjectiveC runtime and should be considered
411    experimental at this time.
412"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
413    Clang generates an access function to access C++-style TLS. The access
414    function generally has an entry block, an exit block and an initialization
415    block that is run at the first time. The entry and exit blocks can access
416    a few TLS IR variables, each access will be lowered to a platform-specific
417    sequence.
418
419    This calling convention aims to minimize overhead in the caller by
420    preserving as many registers as possible (all the registers that are
421    preserved on the fast path, composed of the entry and exit blocks).
422
423    This calling convention behaves identical to the `C` calling convention on
424    how arguments and return values are passed, but it uses a different set of
425    caller/callee-saved registers.
426
427    Given that each platform has its own lowering sequence, hence its own set
428    of preserved registers, we can't use the existing `PreserveMost`.
429
430    - On X86-64 the callee preserves all general purpose registers, except for
431      RDI and RAX.
432"``tailcc``" - Tail callable calling convention
433    This calling convention ensures that calls in tail position will always be
434    tail call optimized. This calling convention is equivalent to fastcc,
435    except for an additional guarantee that tail calls will be produced
436    whenever possible. `Tail calls can only be optimized when this, the fastcc,
437    the GHC or the HiPE convention is used. <CodeGenerator.html#tail-call-optimization>`_
438    This calling convention does not support varargs and requires the prototype of
439    all callees to exactly match the prototype of the function definition.
440"``swiftcc``" - This calling convention is used for Swift language.
441    - On X86-64 RCX and R8 are available for additional integer returns, and
442      XMM2 and XMM3 are available for additional FP/vector returns.
443    - On iOS platforms, we use AAPCS-VFP calling convention.
444"``swifttailcc``"
445    This calling convention is like ``swiftcc`` in most respects, but also the
446    callee pops the argument area of the stack so that mandatory tail calls are
447    possible as in ``tailcc``.
448"``cfguard_checkcc``" - Windows Control Flow Guard (Check mechanism)
449    This calling convention is used for the Control Flow Guard check function,
450    calls to which can be inserted before indirect calls to check that the call
451    target is a valid function address. The check function has no return value,
452    but it will trigger an OS-level error if the address is not a valid target.
453    The set of registers preserved by the check function, and the register
454    containing the target address are architecture-specific.
455
456    - On X86 the target address is passed in ECX.
457    - On ARM the target address is passed in R0.
458    - On AArch64 the target address is passed in X15.
459"``cc <n>``" - Numbered convention
460    Any calling convention may be specified by number, allowing
461    target-specific calling conventions to be used. Target specific
462    calling conventions start at 64.
463
464More calling conventions can be added/defined on an as-needed basis, to
465support Pascal conventions or any other well-known target-independent
466convention.
467
468.. _visibilitystyles:
469
470Visibility Styles
471-----------------
472
473All Global Variables and Functions have one of the following visibility
474styles:
475
476"``default``" - Default style
477    On targets that use the ELF object file format, default visibility
478    means that the declaration is visible to other modules and, in
479    shared libraries, means that the declared entity may be overridden.
480    On Darwin, default visibility means that the declaration is visible
481    to other modules. On XCOFF, default visibility means no explicit
482    visibility bit will be set and whether the symbol is visible
483    (i.e "exported") to other modules depends primarily on export lists
484    provided to the linker. Default visibility corresponds to "external
485    linkage" in the language.
486"``hidden``" - Hidden style
487    Two declarations of an object with hidden visibility refer to the
488    same object if they are in the same shared object. Usually, hidden
489    visibility indicates that the symbol will not be placed into the
490    dynamic symbol table, so no other module (executable or shared
491    library) can reference it directly.
492"``protected``" - Protected style
493    On ELF, protected visibility indicates that the symbol will be
494    placed in the dynamic symbol table, but that references within the
495    defining module will bind to the local symbol. That is, the symbol
496    cannot be overridden by another module.
497
498A symbol with ``internal`` or ``private`` linkage must have ``default``
499visibility.
500
501.. _dllstorageclass:
502
503DLL Storage Classes
504-------------------
505
506All Global Variables, Functions and Aliases can have one of the following
507DLL storage class:
508
509``dllimport``
510    "``dllimport``" causes the compiler to reference a function or variable via
511    a global pointer to a pointer that is set up by the DLL exporting the
512    symbol. On Microsoft Windows targets, the pointer name is formed by
513    combining ``__imp_`` and the function or variable name.
514``dllexport``
515    On Microsoft Windows targets, "``dllexport``" causes the compiler to provide
516    a global pointer to a pointer in a DLL, so that it can be referenced with the
517    ``dllimport`` attribute. the pointer name is formed by combining ``__imp_``
518    and the function or variable name. On XCOFF targets, ``dllexport`` indicates
519    that the symbol will be made visible to other modules using "exported"
520    visibility and thus placed by the linker in the loader section symbol table.
521    Since this storage class exists for defining a dll interface, the compiler,
522    assembler and linker know it is externally referenced and must refrain from
523    deleting the symbol.
524
525A symbol with ``internal`` or ``private`` linkage cannot have a DLL storage
526class.
527
528.. _tls_model:
529
530Thread Local Storage Models
531---------------------------
532
533A variable may be defined as ``thread_local``, which means that it will
534not be shared by threads (each thread will have a separated copy of the
535variable). Not all targets support thread-local variables. Optionally, a
536TLS model may be specified:
537
538``localdynamic``
539    For variables that are only used within the current shared library.
540``initialexec``
541    For variables in modules that will not be loaded dynamically.
542``localexec``
543    For variables defined in the executable and only used within it.
544
545If no explicit model is given, the "general dynamic" model is used.
546
547The models correspond to the ELF TLS models; see `ELF Handling For
548Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
549more information on under which circumstances the different models may
550be used. The target may choose a different TLS model if the specified
551model is not supported, or if a better choice of model can be made.
552
553A model can also be specified in an alias, but then it only governs how
554the alias is accessed. It will not have any effect in the aliasee.
555
556For platforms without linker support of ELF TLS model, the -femulated-tls
557flag can be used to generate GCC compatible emulated TLS code.
558
559.. _runtime_preemption_model:
560
561Runtime Preemption Specifiers
562-----------------------------
563
564Global variables, functions and aliases may have an optional runtime preemption
565specifier. If a preemption specifier isn't given explicitly, then a
566symbol is assumed to be ``dso_preemptable``.
567
568``dso_preemptable``
569    Indicates that the function or variable may be replaced by a symbol from
570    outside the linkage unit at runtime.
571
572``dso_local``
573    The compiler may assume that a function or variable marked as ``dso_local``
574    will resolve to a symbol within the same linkage unit. Direct access will
575    be generated even if the definition is not within this compilation unit.
576
577.. _namedtypes:
578
579Structure Types
580---------------
581
582LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
583types <t_struct>`. Literal types are uniqued structurally, but identified types
584are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
585to forward declare a type that is not yet available.
586
587An example of an identified structure specification is:
588
589.. code-block:: llvm
590
591    %mytype = type { %mytype*, i32 }
592
593Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
594literal types are uniqued in recent versions of LLVM.
595
596.. _nointptrtype:
597
598Non-Integral Pointer Type
599-------------------------
600
601Note: non-integral pointer types are a work in progress, and they should be
602considered experimental at this time.
603
604LLVM IR optionally allows the frontend to denote pointers in certain address
605spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
606Non-integral pointer types represent pointers that have an *unspecified* bitwise
607representation; that is, the integral representation may be target dependent or
608unstable (not backed by a fixed integer).
609
610``inttoptr`` and ``ptrtoint`` instructions have the same semantics as for
611integral (i.e. normal) pointers in that they convert integers to and from
612corresponding pointer types, but there are additional implications to be
613aware of.  Because the bit-representation of a non-integral pointer may
614not be stable, two identical casts of the same operand may or may not
615return the same value.  Said differently, the conversion to or from the
616non-integral type depends on environmental state in an implementation
617defined manner.
618
619If the frontend wishes to observe a *particular* value following a cast, the
620generated IR must fence with the underlying environment in an implementation
621defined manner. (In practice, this tends to require ``noinline`` routines for
622such operations.)
623
624From the perspective of the optimizer, ``inttoptr`` and ``ptrtoint`` for
625non-integral types are analogous to ones on integral types with one
626key exception: the optimizer may not, in general, insert new dynamic
627occurrences of such casts.  If a new cast is inserted, the optimizer would
628need to either ensure that a) all possible values are valid, or b)
629appropriate fencing is inserted.  Since the appropriate fencing is
630implementation defined, the optimizer can't do the latter.  The former is
631challenging as many commonly expected properties, such as
632``ptrtoint(v)-ptrtoint(v) == 0``, don't hold for non-integral types.
633
634.. _globalvars:
635
636Global Variables
637----------------
638
639Global variables define regions of memory allocated at compilation time
640instead of run-time.
641
642Global variable definitions must be initialized.
643
644Global variables in other translation units can also be declared, in which
645case they don't have an initializer.
646
647Global variables can optionally specify a :ref:`linkage type <linkage>`.
648
649Either global variable definitions or declarations may have an explicit section
650to be placed in and may have an optional explicit alignment specified. If there
651is a mismatch between the explicit or inferred section information for the
652variable declaration and its definition the resulting behavior is undefined.
653
654A variable may be defined as a global ``constant``, which indicates that
655the contents of the variable will **never** be modified (enabling better
656optimization, allowing the global data to be placed in the read-only
657section of an executable, etc). Note that variables that need runtime
658initialization cannot be marked ``constant`` as there is a store to the
659variable.
660
661LLVM explicitly allows *declarations* of global variables to be marked
662constant, even if the final definition of the global is not. This
663capability can be used to enable slightly better optimization of the
664program, but requires the language definition to guarantee that
665optimizations based on the 'constantness' are valid for the translation
666units that do not include the definition.
667
668As SSA values, global variables define pointer values that are in scope
669(i.e. they dominate) all basic blocks in the program. Global variables
670always define a pointer to their "content" type because they describe a
671region of memory, and all memory objects in LLVM are accessed through
672pointers.
673
674Global variables can be marked with ``unnamed_addr`` which indicates
675that the address is not significant, only the content. Constants marked
676like this can be merged with other constants if they have the same
677initializer. Note that a constant with significant address *can* be
678merged with a ``unnamed_addr`` constant, the result being a constant
679whose address is significant.
680
681If the ``local_unnamed_addr`` attribute is given, the address is known to
682not be significant within the module.
683
684A global variable may be declared to reside in a target-specific
685numbered address space. For targets that support them, address spaces
686may affect how optimizations are performed and/or what target
687instructions are used to access the variable. The default address space
688is zero. The address space qualifier must precede any other attributes.
689
690LLVM allows an explicit section to be specified for globals. If the
691target supports it, it will emit globals to the section specified.
692Additionally, the global can placed in a comdat if the target has the necessary
693support.
694
695External declarations may have an explicit section specified. Section
696information is retained in LLVM IR for targets that make use of this
697information. Attaching section information to an external declaration is an
698assertion that its definition is located in the specified section. If the
699definition is located in a different section, the behavior is undefined.
700
701By default, global initializers are optimized by assuming that global
702variables defined within the module are not modified from their
703initial values before the start of the global initializer. This is
704true even for variables potentially accessible from outside the
705module, including those with external linkage or appearing in
706``@llvm.used`` or dllexported variables. This assumption may be suppressed
707by marking the variable with ``externally_initialized``.
708
709An explicit alignment may be specified for a global, which must be a
710power of 2. If not present, or if the alignment is set to zero, the
711alignment of the global is set by the target to whatever it feels
712convenient. If an explicit alignment is specified, the global is forced
713to have exactly that alignment. Targets and optimizers are not allowed
714to over-align the global if the global has an assigned section. In this
715case, the extra alignment could be observable: for example, code could
716assume that the globals are densely packed in their section and try to
717iterate over them as an array, alignment padding would break this
718iteration. The maximum alignment is ``1 << 32``.
719
720For global variables declarations, as well as definitions that may be
721replaced at link time (``linkonce``, ``weak``, ``extern_weak`` and ``common``
722linkage types), LLVM makes no assumptions about the allocation size of the
723variables, except that they may not overlap. The alignment of a global variable
724declaration or replaceable definition must not be greater than the alignment of
725the definition it resolves to.
726
727Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
728an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
729an optional :ref:`global attributes <glattrs>` and
730an optional list of attached :ref:`metadata <metadata>`.
731
732Variables and aliases can have a
733:ref:`Thread Local Storage Model <tls_model>`.
734
735:ref:`Scalable vectors <t_vector>` cannot be global variables or members of
736arrays because their size is unknown at compile time. They are allowed in
737structs to facilitate intrinsics returning multiple values. Structs containing
738scalable vectors cannot be used in loads, stores, allocas, or GEPs.
739
740Syntax::
741
742      @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
743                         [DLLStorageClass] [ThreadLocal]
744                         [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
745                         [ExternallyInitialized]
746                         <global | constant> <Type> [<InitializerConstant>]
747                         [, section "name"] [, partition "name"]
748                         [, comdat [($name)]] [, align <Alignment>]
749                         [, no_sanitize_address] [, no_sanitize_hwaddress]
750                         [, sanitize_address_dyninit] [, sanitize_memtag]
751                         (, !name !N)*
752
753For example, the following defines a global in a numbered address space
754with an initializer, section, and alignment:
755
756.. code-block:: llvm
757
758    @G = addrspace(5) constant float 1.0, section "foo", align 4
759
760The following example just declares a global variable
761
762.. code-block:: llvm
763
764   @G = external global i32
765
766The following example defines a thread-local global with the
767``initialexec`` TLS model:
768
769.. code-block:: llvm
770
771    @G = thread_local(initialexec) global i32 0, align 4
772
773.. _functionstructure:
774
775Functions
776---------
777
778LLVM function definitions consist of the "``define``" keyword, an
779optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
780specifier <runtime_preemption_model>`,  an optional :ref:`visibility
781style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
782an optional :ref:`calling convention <callingconv>`,
783an optional ``unnamed_addr`` attribute, a return type, an optional
784:ref:`parameter attribute <paramattrs>` for the return type, a function
785name, a (possibly empty) argument list (each with optional :ref:`parameter
786attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
787an optional address space, an optional section, an optional partition,
788an optional alignment, an optional :ref:`comdat <langref_comdats>`,
789an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
790an optional :ref:`prologue <prologuedata>`,
791an optional :ref:`personality <personalityfn>`,
792an optional list of attached :ref:`metadata <metadata>`,
793an opening curly brace, a list of basic blocks, and a closing curly brace.
794
795Syntax::
796
797    define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
798           [cconv] [ret attrs]
799           <ResultType> @<FunctionName> ([argument list])
800           [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
801           [section "name"] [partition "name"] [comdat [($name)]] [align N]
802           [gc] [prefix Constant] [prologue Constant] [personality Constant]
803           (!name !N)* { ... }
804
805The argument list is a comma separated sequence of arguments where each
806argument is of the following form:
807
808Syntax::
809
810   <type> [parameter Attrs] [name]
811
812LLVM function declarations consist of the "``declare``" keyword, an
813optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
814<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
815optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
816or ``local_unnamed_addr`` attribute, an optional address space, a return type,
817an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
818empty list of arguments, an optional alignment, an optional :ref:`garbage
819collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
820:ref:`prologue <prologuedata>`.
821
822Syntax::
823
824    declare [linkage] [visibility] [DLLStorageClass]
825            [cconv] [ret attrs]
826            <ResultType> @<FunctionName> ([argument list])
827            [(unnamed_addr|local_unnamed_addr)] [align N] [gc]
828            [prefix Constant] [prologue Constant]
829
830A function definition contains a list of basic blocks, forming the CFG (Control
831Flow Graph) for the function. Each basic block may optionally start with a label
832(giving the basic block a symbol table entry), contains a list of instructions,
833and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
834function return). If an explicit label name is not provided, a block is assigned
835an implicit numbered label, using the next value from the same counter as used
836for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
837function entry block does not have an explicit label, it will be assigned label
838"%0", then the first unnamed temporary in that block will be "%1", etc. If a
839numeric label is explicitly specified, it must match the numeric label that
840would be used implicitly.
841
842The first basic block in a function is special in two ways: it is
843immediately executed on entrance to the function, and it is not allowed
844to have predecessor basic blocks (i.e. there can not be any branches to
845the entry block of a function). Because the block can have no
846predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
847
848LLVM allows an explicit section to be specified for functions. If the
849target supports it, it will emit functions to the section specified.
850Additionally, the function can be placed in a COMDAT.
851
852An explicit alignment may be specified for a function. If not present,
853or if the alignment is set to zero, the alignment of the function is set
854by the target to whatever it feels convenient. If an explicit alignment
855is specified, the function is forced to have at least that much
856alignment. All alignments must be a power of 2.
857
858If the ``unnamed_addr`` attribute is given, the address is known to not
859be significant and two identical functions can be merged.
860
861If the ``local_unnamed_addr`` attribute is given, the address is known to
862not be significant within the module.
863
864If an explicit address space is not given, it will default to the program
865address space from the :ref:`datalayout string<langref_datalayout>`.
866
867.. _langref_aliases:
868
869Aliases
870-------
871
872Aliases, unlike function or variables, don't create any new data. They
873are just a new symbol and metadata for an existing position.
874
875Aliases have a name and an aliasee that is either a global value or a
876constant expression.
877
878Aliases may have an optional :ref:`linkage type <linkage>`, an optional
879:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
880:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
881<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
882
883Syntax::
884
885    @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
886              [, partition "name"]
887
888The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
889``linkonce_odr``, ``weak_odr``, ``external``, ``available_externally``. Note
890that some system linkers might not correctly handle dropping a weak symbol that
891is aliased.
892
893Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
894the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
895to the same content.
896
897If the ``local_unnamed_addr`` attribute is given, the address is known to
898not be significant within the module.
899
900Since aliases are only a second name, some restrictions apply, of which
901some can only be checked when producing an object file:
902
903* The expression defining the aliasee must be computable at assembly
904  time. Since it is just a name, no relocations can be used.
905
906* No alias in the expression can be weak as the possibility of the
907  intermediate alias being overridden cannot be represented in an
908  object file.
909
910* If the alias has the ``available_externally`` linkage, the aliasee must be an
911  ``available_externally`` global value; otherwise the aliasee can be an
912  expression but no global value in the expression can be a declaration, since
913  that would require a relocation, which is not possible.
914
915* If either the alias or the aliasee may be replaced by a symbol outside the
916  module at link time or runtime, any optimization cannot replace the alias with
917  the aliasee, since the behavior may be different. The alias may be used as a
918  name guaranteed to point to the content in the current module.
919
920.. _langref_ifunc:
921
922IFuncs
923-------
924
925IFuncs, like as aliases, don't create any new data or func. They are just a new
926symbol that dynamic linker resolves at runtime by calling a resolver function.
927
928IFuncs have a name and a resolver that is a function called by dynamic linker
929that returns address of another function associated with the name.
930
931IFunc may have an optional :ref:`linkage type <linkage>` and an optional
932:ref:`visibility style <visibility>`.
933
934Syntax::
935
936    @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
937              [, partition "name"]
938
939
940.. _langref_comdats:
941
942Comdats
943-------
944
945Comdat IR provides access to object file COMDAT/section group functionality
946which represents interrelated sections.
947
948Comdats have a name which represents the COMDAT key and a selection kind to
949provide input on how the linker deduplicates comdats with the same key in two
950different object files. A comdat must be included or omitted as a unit.
951Discarding the whole comdat is allowed but discarding a subset is not.
952
953A global object may be a member of at most one comdat. Aliases are placed in the
954same COMDAT that their aliasee computes to, if any.
955
956Syntax::
957
958    $<Name> = comdat SelectionKind
959
960For selection kinds other than ``nodeduplicate``, only one of the duplicate
961comdats may be retained by the linker and the members of the remaining comdats
962must be discarded. The following selection kinds are supported:
963
964``any``
965    The linker may choose any COMDAT key, the choice is arbitrary.
966``exactmatch``
967    The linker may choose any COMDAT key but the sections must contain the
968    same data.
969``largest``
970    The linker will choose the section containing the largest COMDAT key.
971``nodeduplicate``
972    No deduplication is performed.
973``samesize``
974    The linker may choose any COMDAT key but the sections must contain the
975    same amount of data.
976
977- XCOFF and Mach-O don't support COMDATs.
978- COFF supports all selection kinds. Non-``nodeduplicate`` selection kinds need
979  a non-local linkage COMDAT symbol.
980- ELF supports ``any`` and ``nodeduplicate``.
981- WebAssembly only supports ``any``.
982
983Here is an example of a COFF COMDAT where a function will only be selected if
984the COMDAT key's section is the largest:
985
986.. code-block:: text
987
988   $foo = comdat largest
989   @foo = global i32 2, comdat($foo)
990
991   define void @bar() comdat($foo) {
992     ret void
993   }
994
995In a COFF object file, this will create a COMDAT section with selection kind
996``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
997and another COMDAT section with selection kind
998``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
999section and contains the contents of the ``@bar`` symbol.
1000
1001As a syntactic sugar the ``$name`` can be omitted if the name is the same as
1002the global name:
1003
1004.. code-block:: llvm
1005
1006  $foo = comdat any
1007  @foo = global i32 2, comdat
1008  @bar = global i32 3, comdat($foo)
1009
1010There are some restrictions on the properties of the global object.
1011It, or an alias to it, must have the same name as the COMDAT group when
1012targeting COFF.
1013The contents and size of this object may be used during link-time to determine
1014which COMDAT groups get selected depending on the selection kind.
1015Because the name of the object must match the name of the COMDAT group, the
1016linkage of the global object must not be local; local symbols can get renamed
1017if a collision occurs in the symbol table.
1018
1019The combined use of COMDATS and section attributes may yield surprising results.
1020For example:
1021
1022.. code-block:: llvm
1023
1024   $foo = comdat any
1025   $bar = comdat any
1026   @g1 = global i32 42, section "sec", comdat($foo)
1027   @g2 = global i32 42, section "sec", comdat($bar)
1028
1029From the object file perspective, this requires the creation of two sections
1030with the same name. This is necessary because both globals belong to different
1031COMDAT groups and COMDATs, at the object file level, are represented by
1032sections.
1033
1034Note that certain IR constructs like global variables and functions may
1035create COMDATs in the object file in addition to any which are specified using
1036COMDAT IR. This arises when the code generator is configured to emit globals
1037in individual sections (e.g. when `-data-sections` or `-function-sections`
1038is supplied to `llc`).
1039
1040.. _namedmetadatastructure:
1041
1042Named Metadata
1043--------------
1044
1045Named metadata is a collection of metadata. :ref:`Metadata
1046nodes <metadata>` (but not metadata strings) are the only valid
1047operands for a named metadata.
1048
1049#. Named metadata are represented as a string of characters with the
1050   metadata prefix. The rules for metadata names are the same as for
1051   identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
1052   are still valid, which allows any character to be part of a name.
1053
1054Syntax::
1055
1056    ; Some unnamed metadata nodes, which are referenced by the named metadata.
1057    !0 = !{!"zero"}
1058    !1 = !{!"one"}
1059    !2 = !{!"two"}
1060    ; A named metadata.
1061    !name = !{!0, !1, !2}
1062
1063.. _paramattrs:
1064
1065Parameter Attributes
1066--------------------
1067
1068The return type and each parameter of a function type may have a set of
1069*parameter attributes* associated with them. Parameter attributes are
1070used to communicate additional information about the result or
1071parameters of a function. Parameter attributes are considered to be part
1072of the function, not of the function type, so functions with different
1073parameter attributes can have the same function type.
1074
1075Parameter attributes are simple keywords that follow the type specified.
1076If multiple parameter attributes are needed, they are space separated.
1077For example:
1078
1079.. code-block:: llvm
1080
1081    declare i32 @printf(ptr noalias nocapture, ...)
1082    declare i32 @atoi(i8 zeroext)
1083    declare signext i8 @returns_signed_char()
1084
1085Note that any attributes for the function result (``nounwind``,
1086``readonly``) come immediately after the argument list.
1087
1088Currently, only the following parameter attributes are defined:
1089
1090``zeroext``
1091    This indicates to the code generator that the parameter or return
1092    value should be zero-extended to the extent required by the target's
1093    ABI by the caller (for a parameter) or the callee (for a return value).
1094``signext``
1095    This indicates to the code generator that the parameter or return
1096    value should be sign-extended to the extent required by the target's
1097    ABI (which is usually 32-bits) by the caller (for a parameter) or
1098    the callee (for a return value).
1099``inreg``
1100    This indicates that this parameter or return value should be treated
1101    in a special target-dependent fashion while emitting code for
1102    a function call or return (usually, by putting it in a register as
1103    opposed to memory, though some targets use it to distinguish between
1104    two different kinds of registers). Use of this attribute is
1105    target-specific.
1106``byval(<ty>)``
1107    This indicates that the pointer parameter should really be passed by
1108    value to the function. The attribute implies that a hidden copy of
1109    the pointee is made between the caller and the callee, so the callee
1110    is unable to modify the value in the caller. This attribute is only
1111    valid on LLVM pointer arguments. It is generally used to pass
1112    structs and arrays by value, but is also valid on pointers to
1113    scalars. The copy is considered to belong to the caller not the
1114    callee (for example, ``readonly`` functions should not write to
1115    ``byval`` parameters). This is not a valid attribute for return
1116    values.
1117
1118    The byval type argument indicates the in-memory value type, and
1119    must be the same as the pointee type of the argument.
1120
1121    The byval attribute also supports specifying an alignment with the
1122    align attribute. It indicates the alignment of the stack slot to
1123    form and the known alignment of the pointer specified to the call
1124    site. If the alignment is not specified, then the code generator
1125    makes a target-specific assumption.
1126
1127.. _attr_byref:
1128
1129``byref(<ty>)``
1130
1131    The ``byref`` argument attribute allows specifying the pointee
1132    memory type of an argument. This is similar to ``byval``, but does
1133    not imply a copy is made anywhere, or that the argument is passed
1134    on the stack. This implies the pointer is dereferenceable up to
1135    the storage size of the type.
1136
1137    It is not generally permissible to introduce a write to an
1138    ``byref`` pointer. The pointer may have any address space and may
1139    be read only.
1140
1141    This is not a valid attribute for return values.
1142
1143    The alignment for an ``byref`` parameter can be explicitly
1144    specified by combining it with the ``align`` attribute, similar to
1145    ``byval``. If the alignment is not specified, then the code generator
1146    makes a target-specific assumption.
1147
1148    This is intended for representing ABI constraints, and is not
1149    intended to be inferred for optimization use.
1150
1151.. _attr_preallocated:
1152
1153``preallocated(<ty>)``
1154    This indicates that the pointer parameter should really be passed by
1155    value to the function, and that the pointer parameter's pointee has
1156    already been initialized before the call instruction. This attribute
1157    is only valid on LLVM pointer arguments. The argument must be the value
1158    returned by the appropriate
1159    :ref:`llvm.call.preallocated.arg<int_call_preallocated_arg>` on non
1160    ``musttail`` calls, or the corresponding caller parameter in ``musttail``
1161    calls, although it is ignored during codegen.
1162
1163    A non ``musttail`` function call with a ``preallocated`` attribute in
1164    any parameter must have a ``"preallocated"`` operand bundle. A ``musttail``
1165    function call cannot have a ``"preallocated"`` operand bundle.
1166
1167    The preallocated attribute requires a type argument, which must be
1168    the same as the pointee type of the argument.
1169
1170    The preallocated attribute also supports specifying an alignment with the
1171    align attribute. It indicates the alignment of the stack slot to
1172    form and the known alignment of the pointer specified to the call
1173    site. If the alignment is not specified, then the code generator
1174    makes a target-specific assumption.
1175
1176.. _attr_inalloca:
1177
1178``inalloca(<ty>)``
1179
1180    The ``inalloca`` argument attribute allows the caller to take the
1181    address of outgoing stack arguments. An ``inalloca`` argument must
1182    be a pointer to stack memory produced by an ``alloca`` instruction.
1183    The alloca, or argument allocation, must also be tagged with the
1184    inalloca keyword. Only the last argument may have the ``inalloca``
1185    attribute, and that argument is guaranteed to be passed in memory.
1186
1187    An argument allocation may be used by a call at most once because
1188    the call may deallocate it. The ``inalloca`` attribute cannot be
1189    used in conjunction with other attributes that affect argument
1190    storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
1191    ``inalloca`` attribute also disables LLVM's implicit lowering of
1192    large aggregate return values, which means that frontend authors
1193    must lower them with ``sret`` pointers.
1194
1195    When the call site is reached, the argument allocation must have
1196    been the most recent stack allocation that is still live, or the
1197    behavior is undefined. It is possible to allocate additional stack
1198    space after an argument allocation and before its call site, but it
1199    must be cleared off with :ref:`llvm.stackrestore
1200    <int_stackrestore>`.
1201
1202    The inalloca attribute requires a type argument, which must be the
1203    same as the pointee type of the argument.
1204
1205    See :doc:`InAlloca` for more information on how to use this
1206    attribute.
1207
1208``sret(<ty>)``
1209    This indicates that the pointer parameter specifies the address of a
1210    structure that is the return value of the function in the source
1211    program. This pointer must be guaranteed by the caller to be valid:
1212    loads and stores to the structure may be assumed by the callee not
1213    to trap and to be properly aligned. This is not a valid attribute
1214    for return values.
1215
1216    The sret type argument specifies the in memory type, which must be
1217    the same as the pointee type of the argument.
1218
1219.. _attr_elementtype:
1220
1221``elementtype(<ty>)``
1222
1223    The ``elementtype`` argument attribute can be used to specify a pointer
1224    element type in a way that is compatible with `opaque pointers
1225    <OpaquePointers.html>`__.
1226
1227    The ``elementtype`` attribute by itself does not carry any specific
1228    semantics. However, certain intrinsics may require this attribute to be
1229    present and assign it particular semantics. This will be documented on
1230    individual intrinsics.
1231
1232    The attribute may only be applied to pointer typed arguments of intrinsic
1233    calls. It cannot be applied to non-intrinsic calls, and cannot be applied
1234    to parameters on function declarations. For non-opaque pointers, the type
1235    passed to ``elementtype`` must match the pointer element type.
1236
1237.. _attr_align:
1238
1239``align <n>`` or ``align(<n>)``
1240    This indicates that the pointer value or vector of pointers has the
1241    specified alignment. If applied to a vector of pointers, *all* pointers
1242    (elements) have the specified alignment. If the pointer value does not have
1243    the specified alignment, :ref:`poison value <poisonvalues>` is returned or
1244    passed instead.  The ``align`` attribute should be combined with the
1245    ``noundef`` attribute to ensure a pointer is aligned, or otherwise the
1246    behavior is undefined. Note that ``align 1`` has no effect on non-byval,
1247    non-preallocated arguments.
1248
1249    Note that this attribute has additional semantics when combined with the
1250    ``byval`` or ``preallocated`` attribute, which are documented there.
1251
1252.. _noalias:
1253
1254``noalias``
1255    This indicates that memory locations accessed via pointer values
1256    :ref:`based <pointeraliasing>` on the argument or return value are not also
1257    accessed, during the execution of the function, via pointer values not
1258    *based* on the argument or return value. This guarantee only holds for
1259    memory locations that are *modified*, by any means, during the execution of
1260    the function. The attribute on a return value also has additional semantics
1261    described below. The caller shares the responsibility with the callee for
1262    ensuring that these requirements are met.  For further details, please see
1263    the discussion of the NoAlias response in :ref:`alias analysis <Must, May,
1264    or No>`.
1265
1266    Note that this definition of ``noalias`` is intentionally similar
1267    to the definition of ``restrict`` in C99 for function arguments.
1268
1269    For function return values, C99's ``restrict`` is not meaningful,
1270    while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1271    attribute on return values are stronger than the semantics of the attribute
1272    when used on function arguments. On function return values, the ``noalias``
1273    attribute indicates that the function acts like a system memory allocation
1274    function, returning a pointer to allocated storage disjoint from the
1275    storage for any other object accessible to the caller.
1276
1277.. _nocapture:
1278
1279``nocapture``
1280    This indicates that the callee does not :ref:`capture <pointercapture>` the
1281    pointer. This is not a valid attribute for return values.
1282    This attribute applies only to the particular copy of the pointer passed in
1283    this argument. A caller could pass two copies of the same pointer with one
1284    being annotated nocapture and the other not, and the callee could validly
1285    capture through the non annotated parameter.
1286
1287.. code-block:: llvm
1288
1289    define void @f(ptr nocapture %a, ptr %b) {
1290      ; (capture %b)
1291    }
1292
1293    call void @f(ptr @glb, ptr @glb) ; well-defined
1294
1295``nofree``
1296    This indicates that callee does not free the pointer argument. This is not
1297    a valid attribute for return values.
1298
1299.. _nest:
1300
1301``nest``
1302    This indicates that the pointer parameter can be excised using the
1303    :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
1304    attribute for return values and can only be applied to one parameter.
1305
1306``returned``
1307    This indicates that the function always returns the argument as its return
1308    value. This is a hint to the optimizer and code generator used when
1309    generating the caller, allowing value propagation, tail call optimization,
1310    and omission of register saves and restores in some cases; it is not
1311    checked or enforced when generating the callee. The parameter and the
1312    function return type must be valid operands for the
1313    :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1314    return values and can only be applied to one parameter.
1315
1316``nonnull``
1317    This indicates that the parameter or return pointer is not null. This
1318    attribute may only be applied to pointer typed parameters. This is not
1319    checked or enforced by LLVM; if the parameter or return pointer is null,
1320    :ref:`poison value <poisonvalues>` is returned or passed instead.
1321    The ``nonnull`` attribute should be combined with the ``noundef`` attribute
1322    to ensure a pointer is not null or otherwise the behavior is undefined.
1323
1324``dereferenceable(<n>)``
1325    This indicates that the parameter or return pointer is dereferenceable. This
1326    attribute may only be applied to pointer typed parameters. A pointer that
1327    is dereferenceable can be loaded from speculatively without a risk of
1328    trapping. The number of bytes known to be dereferenceable must be provided
1329    in parentheses. It is legal for the number of bytes to be less than the
1330    size of the pointee type. The ``nonnull`` attribute does not imply
1331    dereferenceability (consider a pointer to one element past the end of an
1332    array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1333    ``addrspace(0)`` (which is the default address space), except if the
1334    ``null_pointer_is_valid`` function attribute is present.
1335    ``n`` should be a positive number. The pointer should be well defined,
1336    otherwise it is undefined behavior. This means ``dereferenceable(<n>)``
1337    implies ``noundef``.
1338
1339``dereferenceable_or_null(<n>)``
1340    This indicates that the parameter or return value isn't both
1341    non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1342    time. All non-null pointers tagged with
1343    ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1344    For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1345    a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1346    and in other address spaces ``dereferenceable_or_null(<n>)``
1347    implies that a pointer is at least one of ``dereferenceable(<n>)``
1348    or ``null`` (i.e. it may be both ``null`` and
1349    ``dereferenceable(<n>)``). This attribute may only be applied to
1350    pointer typed parameters.
1351
1352``swiftself``
1353    This indicates that the parameter is the self/context parameter. This is not
1354    a valid attribute for return values and can only be applied to one
1355    parameter.
1356
1357``swiftasync``
1358    This indicates that the parameter is the asynchronous context parameter and
1359    triggers the creation of a target-specific extended frame record to store
1360    this pointer. This is not a valid attribute for return values and can only
1361    be applied to one parameter.
1362
1363``swifterror``
1364    This attribute is motivated to model and optimize Swift error handling. It
1365    can be applied to a parameter with pointer to pointer type or a
1366    pointer-sized alloca. At the call site, the actual argument that corresponds
1367    to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1368    the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1369    the parameter or the alloca) can only be loaded and stored from, or used as
1370    a ``swifterror`` argument. This is not a valid attribute for return values
1371    and can only be applied to one parameter.
1372
1373    These constraints allow the calling convention to optimize access to
1374    ``swifterror`` variables by associating them with a specific register at
1375    call boundaries rather than placing them in memory. Since this does change
1376    the calling convention, a function which uses the ``swifterror`` attribute
1377    on a parameter is not ABI-compatible with one which does not.
1378
1379    These constraints also allow LLVM to assume that a ``swifterror`` argument
1380    does not alias any other memory visible within a function and that a
1381    ``swifterror`` alloca passed as an argument does not escape.
1382
1383``immarg``
1384    This indicates the parameter is required to be an immediate
1385    value. This must be a trivial immediate integer or floating-point
1386    constant. Undef or constant expressions are not valid. This is
1387    only valid on intrinsic declarations and cannot be applied to a
1388    call site or arbitrary function.
1389
1390``noundef``
1391    This attribute applies to parameters and return values. If the value
1392    representation contains any undefined or poison bits, the behavior is
1393    undefined. Note that this does not refer to padding introduced by the
1394    type's storage representation.
1395
1396``alignstack(<n>)``
1397    This indicates the alignment that should be considered by the backend when
1398    assigning this parameter to a stack slot during calling convention
1399    lowering. The enforcement of the specified alignment is target-dependent,
1400    as target-specific calling convention rules may override this value. This
1401    attribute serves the purpose of carrying language specific alignment
1402    information that is not mapped to base types in the backend (for example,
1403    over-alignment specification through language attributes).
1404
1405``allocalign``
1406    The function parameter marked with this attribute is is the alignment in bytes of the
1407    newly allocated block returned by this function. The returned value must either have
1408    the specified alignment or be the null pointer. The return value MAY be more aligned
1409    than the requested alignment, but not less aligned.  Invalid (e.g. non-power-of-2)
1410    alignments are permitted for the allocalign parameter, so long as the returned pointer
1411    is null. This attribute may only be applied to integer parameters.
1412
1413``allocptr``
1414    The function parameter marked with this attribute is the pointer
1415    that will be manipulated by the allocator. For a realloc-like
1416    function the pointer will be invalidated upon success (but the
1417    same address may be returned), for a free-like function the
1418    pointer will always be invalidated.
1419
1420``readnone``
1421    This attribute indicates that the function does not dereference that
1422    pointer argument, even though it may read or write the memory that the
1423    pointer points to if accessed through other pointers.
1424
1425    If a function reads from or writes to a readnone pointer argument, the
1426    behavior is undefined.
1427
1428``readonly``
1429    This attribute indicates that the function does not write through this
1430    pointer argument, even though it may write to the memory that the pointer
1431    points to.
1432
1433    If a function writes to a readonly pointer argument, the behavior is
1434    undefined.
1435
1436``writeonly``
1437    This attribute indicates that the function may write to, but does not read
1438    through this pointer argument (even though it may read from the memory that
1439    the pointer points to).
1440
1441    If a function reads from a writeonly pointer argument, the behavior is
1442    undefined.
1443
1444.. _gc:
1445
1446Garbage Collector Strategy Names
1447--------------------------------
1448
1449Each function may specify a garbage collector strategy name, which is simply a
1450string:
1451
1452.. code-block:: llvm
1453
1454    define void @f() gc "name" { ... }
1455
1456The supported values of *name* includes those :ref:`built in to LLVM
1457<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
1458strategy will cause the compiler to alter its output in order to support the
1459named garbage collection algorithm. Note that LLVM itself does not contain a
1460garbage collector, this functionality is restricted to generating machine code
1461which can interoperate with a collector provided externally.
1462
1463.. _prefixdata:
1464
1465Prefix Data
1466-----------
1467
1468Prefix data is data associated with a function which the code
1469generator will emit immediately before the function's entrypoint.
1470The purpose of this feature is to allow frontends to associate
1471language-specific runtime metadata with specific functions and make it
1472available through the function pointer while still allowing the
1473function pointer to be called.
1474
1475To access the data for a given function, a program may bitcast the
1476function pointer to a pointer to the constant's type and dereference
1477index -1. This implies that the IR symbol points just past the end of
1478the prefix data. For instance, take the example of a function annotated
1479with a single ``i32``,
1480
1481.. code-block:: llvm
1482
1483    define void @f() prefix i32 123 { ... }
1484
1485The prefix data can be referenced as,
1486
1487.. code-block:: llvm
1488
1489    %a = getelementptr inbounds i32, ptr @f, i32 -1
1490    %b = load i32, ptr %a
1491
1492Prefix data is laid out as if it were an initializer for a global variable
1493of the prefix data's type. The function will be placed such that the
1494beginning of the prefix data is aligned. This means that if the size
1495of the prefix data is not a multiple of the alignment size, the
1496function's entrypoint will not be aligned. If alignment of the
1497function's entrypoint is desired, padding must be added to the prefix
1498data.
1499
1500A function may have prefix data but no body. This has similar semantics
1501to the ``available_externally`` linkage in that the data may be used by the
1502optimizers but will not be emitted in the object file.
1503
1504.. _prologuedata:
1505
1506Prologue Data
1507-------------
1508
1509The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1510be inserted prior to the function body. This can be used for enabling
1511function hot-patching and instrumentation.
1512
1513To maintain the semantics of ordinary function calls, the prologue data must
1514have a particular format. Specifically, it must begin with a sequence of
1515bytes which decode to a sequence of machine instructions, valid for the
1516module's target, which transfer control to the point immediately succeeding
1517the prologue data, without performing any other visible action. This allows
1518the inliner and other passes to reason about the semantics of the function
1519definition without needing to reason about the prologue data. Obviously this
1520makes the format of the prologue data highly target dependent.
1521
1522A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
1523which encodes the ``nop`` instruction:
1524
1525.. code-block:: text
1526
1527    define void @f() prologue i8 144 { ... }
1528
1529Generally prologue data can be formed by encoding a relative branch instruction
1530which skips the metadata, as in this example of valid prologue data for the
1531x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1532
1533.. code-block:: text
1534
1535    %0 = type <{ i8, i8, ptr }>
1536
1537    define void @f() prologue %0 <{ i8 235, i8 8, ptr @md}> { ... }
1538
1539A function may have prologue data but no body. This has similar semantics
1540to the ``available_externally`` linkage in that the data may be used by the
1541optimizers but will not be emitted in the object file.
1542
1543.. _personalityfn:
1544
1545Personality Function
1546--------------------
1547
1548The ``personality`` attribute permits functions to specify what function
1549to use for exception handling.
1550
1551.. _attrgrp:
1552
1553Attribute Groups
1554----------------
1555
1556Attribute groups are groups of attributes that are referenced by objects within
1557the IR. They are important for keeping ``.ll`` files readable, because a lot of
1558functions will use the same set of attributes. In the degenerative case of a
1559``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1560group will capture the important command line flags used to build that file.
1561
1562An attribute group is a module-level object. To use an attribute group, an
1563object references the attribute group's ID (e.g. ``#37``). An object may refer
1564to more than one attribute group. In that situation, the attributes from the
1565different groups are merged.
1566
1567Here is an example of attribute groups for a function that should always be
1568inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1569
1570.. code-block:: llvm
1571
1572   ; Target-independent attributes:
1573   attributes #0 = { alwaysinline alignstack=4 }
1574
1575   ; Target-dependent attributes:
1576   attributes #1 = { "no-sse" }
1577
1578   ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1579   define void @f() #0 #1 { ... }
1580
1581.. _fnattrs:
1582
1583Function Attributes
1584-------------------
1585
1586Function attributes are set to communicate additional information about
1587a function. Function attributes are considered to be part of the
1588function, not of the function type, so functions with different function
1589attributes can have the same function type.
1590
1591Function attributes are simple keywords that follow the type specified.
1592If multiple attributes are needed, they are space separated. For
1593example:
1594
1595.. code-block:: llvm
1596
1597    define void @f() noinline { ... }
1598    define void @f() alwaysinline { ... }
1599    define void @f() alwaysinline optsize { ... }
1600    define void @f() optsize { ... }
1601
1602``alignstack(<n>)``
1603    This attribute indicates that, when emitting the prologue and
1604    epilogue, the backend should forcibly align the stack pointer.
1605    Specify the desired alignment, which must be a power of two, in
1606    parentheses.
1607``"alloc-family"="FAMILY"``
1608    This indicates which "family" an allocator function is part of. To avoid
1609    collisions, the family name should match the mangled name of the primary
1610    allocator function, that is "malloc" for malloc/calloc/realloc/free,
1611    "_Znwm" for ``::operator::new`` and ``::operator::delete``, and
1612    "_ZnwmSt11align_val_t" for aligned ``::operator::new`` and
1613    ``::operator::delete``. Matching malloc/realloc/free calls within a family
1614    can be optimized, but mismatched ones will be left alone.
1615``allockind("KIND")``
1616    Describes the behavior of an allocation function. The KIND string contains comma
1617    separated entries from the following options:
1618
1619    * "alloc": the function returns a new block of memory or null.
1620    * "realloc": the function returns a new block of memory or null. If the
1621      result is non-null the memory contents from the start of the block up to
1622      the smaller of the original allocation size and the new allocation size
1623      will match that of the ``allocptr`` argument and the ``allocptr``
1624      argument is invalidated, even if the function returns the same address.
1625    * "free": the function frees the block of memory specified by ``allocptr``.
1626      Functions marked as "free" ``allockind`` must return void.
1627    * "uninitialized": Any newly-allocated memory (either a new block from
1628      a "alloc" function or the enlarged capacity from a "realloc" function)
1629      will be uninitialized.
1630    * "zeroed": Any newly-allocated memory (either a new block from a "alloc"
1631      function or the enlarged capacity from a "realloc" function) will be
1632      zeroed.
1633    * "aligned": the function returns memory aligned according to the
1634      ``allocalign`` parameter.
1635
1636    The first three options are mutually exclusive, and the remaining options
1637    describe more details of how the function behaves. The remaining options
1638    are invalid for "free"-type functions.
1639``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1640    This attribute indicates that the annotated function will always return at
1641    least a given number of bytes (or null). Its arguments are zero-indexed
1642    parameter numbers; if one argument is provided, then it's assumed that at
1643    least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1644    returned pointer. If two are provided, then it's assumed that
1645    ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1646    available. The referenced parameters must be integer types. No assumptions
1647    are made about the contents of the returned block of memory.
1648``alwaysinline``
1649    This attribute indicates that the inliner should attempt to inline
1650    this function into callers whenever possible, ignoring any active
1651    inlining size threshold for this caller.
1652``builtin``
1653    This indicates that the callee function at a call site should be
1654    recognized as a built-in function, even though the function's declaration
1655    uses the ``nobuiltin`` attribute. This is only valid at call sites for
1656    direct calls to functions that are declared with the ``nobuiltin``
1657    attribute.
1658``cold``
1659    This attribute indicates that this function is rarely called. When
1660    computing edge weights, basic blocks post-dominated by a cold
1661    function call are also considered to be cold; and, thus, given low
1662    weight.
1663``convergent``
1664    In some parallel execution models, there exist operations that cannot be
1665    made control-dependent on any additional values.  We call such operations
1666    ``convergent``, and mark them with this attribute.
1667
1668    The ``convergent`` attribute may appear on functions or call/invoke
1669    instructions.  When it appears on a function, it indicates that calls to
1670    this function should not be made control-dependent on additional values.
1671    For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
1672    calls to this intrinsic cannot be made control-dependent on additional
1673    values.
1674
1675    When it appears on a call/invoke, the ``convergent`` attribute indicates
1676    that we should treat the call as though we're calling a convergent
1677    function.  This is particularly useful on indirect calls; without this we
1678    may treat such calls as though the target is non-convergent.
1679
1680    The optimizer may remove the ``convergent`` attribute on functions when it
1681    can prove that the function does not execute any convergent operations.
1682    Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1683    can prove that the call/invoke cannot call a convergent function.
1684``disable_sanitizer_instrumentation``
1685    When instrumenting code with sanitizers, it can be important to skip certain
1686    functions to ensure no instrumentation is applied to them.
1687
1688    This attribute is not always similar to absent ``sanitize_<name>``
1689    attributes: depending on the specific sanitizer, code can be inserted into
1690    functions regardless of the ``sanitize_<name>`` attribute to prevent false
1691    positive reports.
1692
1693    ``disable_sanitizer_instrumentation`` disables all kinds of instrumentation,
1694    taking precedence over the ``sanitize_<name>`` attributes and other compiler
1695    flags.
1696``"dontcall-error"``
1697    This attribute denotes that an error diagnostic should be emitted when a
1698    call of a function with this attribute is not eliminated via optimization.
1699    Front ends can provide optional ``srcloc`` metadata nodes on call sites of
1700    such callees to attach information about where in the source language such a
1701    call came from. A string value can be provided as a note.
1702``"dontcall-warn"``
1703    This attribute denotes that a warning diagnostic should be emitted when a
1704    call of a function with this attribute is not eliminated via optimization.
1705    Front ends can provide optional ``srcloc`` metadata nodes on call sites of
1706    such callees to attach information about where in the source language such a
1707    call came from. A string value can be provided as a note.
1708``fn_ret_thunk_extern``
1709    This attribute tells the code generator that returns from functions should
1710    be replaced with jumps to externally-defined architecture-specific symbols.
1711    For X86, this symbol's identifier is ``__x86_return_thunk``.
1712``"frame-pointer"``
1713    This attribute tells the code generator whether the function
1714    should keep the frame pointer. The code generator may emit the frame pointer
1715    even if this attribute says the frame pointer can be eliminated.
1716    The allowed string values are:
1717
1718     * ``"none"`` (default) - the frame pointer can be eliminated.
1719     * ``"non-leaf"`` - the frame pointer should be kept if the function calls
1720       other functions.
1721     * ``"all"`` - the frame pointer should be kept.
1722``hot``
1723    This attribute indicates that this function is a hot spot of the program
1724    execution. The function will be optimized more aggressively and will be
1725    placed into special subsection of the text section to improving locality.
1726
1727    When profile feedback is enabled, this attribute has the precedence over
1728    the profile information. By marking a function ``hot``, users can work
1729    around the cases where the training input does not have good coverage
1730    on all the hot functions.
1731``inlinehint``
1732    This attribute indicates that the source code contained a hint that
1733    inlining this function is desirable (such as the "inline" keyword in
1734    C/C++). It is just a hint; it imposes no requirements on the
1735    inliner.
1736``jumptable``
1737    This attribute indicates that the function should be added to a
1738    jump-instruction table at code-generation time, and that all address-taken
1739    references to this function should be replaced with a reference to the
1740    appropriate jump-instruction-table function pointer. Note that this creates
1741    a new pointer for the original function, which means that code that depends
1742    on function-pointer identity can break. So, any function annotated with
1743    ``jumptable`` must also be ``unnamed_addr``.
1744``memory(...)``
1745    This attribute specifies the possible memory effects of the call-site or
1746    function. It allows specifying the possible access kinds (``none``,
1747    ``read``, ``write``, or ``readwrite``) for the possible memory location
1748    kinds (``argmem``, ``inaccessiblemem``, as well as a default). It is best
1749    understood by example:
1750
1751    - ``memory(none)``: Does not access any memory.
1752    - ``memory(read)``: May read (but not write) any memory.
1753    - ``memory(write)``: May write (but not read) any memory.
1754    - ``memory(readwrite)``: May read or write any memory.
1755    - ``memory(argmem: read)``: May only read argument memory.
1756    - ``memory(argmem: read, inaccessiblemem: write)``: May only read argument
1757      memory and only write inaccessible memory.
1758    - ``memory(read, argmem: readwrite)``: May read any memory (default mode)
1759      and additionally write argument memory.
1760    - ``memory(readwrite, argmem: none)``: May access any memory apart from
1761      argument memory.
1762
1763    The supported memory location kinds are:
1764
1765    - ``argmem``: This refers to accesses that are based on pointer arguments
1766      to the function.
1767    - ``inaccessiblemem``: This refers to accesses to memory which is not
1768      accessible by the current module (before return from the function -- an
1769      allocator function may return newly accessible memory while only
1770      accessing inaccessible memory itself). Inaccessible memory is often used
1771      to model control dependencies of intrinsics.
1772    - The default access kind (specified without a location prefix) applies to
1773      all locations that haven't been specified explicitly, including those that
1774      don't currently have a dedicated location kind (e.g. accesses to globals
1775      or captured pointers).
1776
1777    If the ``memory`` attribute is not specified, then ``memory(readwrite)``
1778    is implied (all memory effects are possible).
1779
1780    The memory effects of a call can be computed as
1781    ``CallSiteEffects & (FunctionEffects | OperandBundleEffects)``. Thus, the
1782    call-site annotation takes precedence over the potential effects described
1783    by either the function annotation or the operand bundles.
1784``minsize``
1785    This attribute suggests that optimization passes and code generator
1786    passes make choices that keep the code size of this function as small
1787    as possible and perform optimizations that may sacrifice runtime
1788    performance in order to minimize the size of the generated code.
1789``naked``
1790    This attribute disables prologue / epilogue emission for the
1791    function. This can have very system-specific consequences.
1792``"no-inline-line-tables"``
1793    When this attribute is set to true, the inliner discards source locations
1794    when inlining code and instead uses the source location of the call site.
1795    Breakpoints set on code that was inlined into the current function will
1796    not fire during the execution of the inlined call sites. If the debugger
1797    stops inside an inlined call site, it will appear to be stopped at the
1798    outermost inlined call site.
1799``no-jump-tables``
1800    When this attribute is set to true, the jump tables and lookup tables that
1801    can be generated from a switch case lowering are disabled.
1802``nobuiltin``
1803    This indicates that the callee function at a call site is not recognized as
1804    a built-in function. LLVM will retain the original call and not replace it
1805    with equivalent code based on the semantics of the built-in function, unless
1806    the call site uses the ``builtin`` attribute. This is valid at call sites
1807    and on function declarations and definitions.
1808``nocallback``
1809    This attribute indicates that the function is only allowed to jump back into
1810    caller's module by a return or an exception, and is not allowed to jump back
1811    by invoking a callback function, a direct, possibly transitive, external
1812    function call, use of ``longjmp``, or other means. It is a compiler hint that
1813    is used at module level to improve dataflow analysis, dropped during linking,
1814    and has no effect on functions defined in the current module.
1815``noduplicate``
1816    This attribute indicates that calls to the function cannot be
1817    duplicated. A call to a ``noduplicate`` function may be moved
1818    within its parent function, but may not be duplicated within
1819    its parent function.
1820
1821    A function containing a ``noduplicate`` call may still
1822    be an inlining candidate, provided that the call is not
1823    duplicated by inlining. That implies that the function has
1824    internal linkage and only has one call site, so the original
1825    call is dead after inlining.
1826``nofree``
1827    This function attribute indicates that the function does not, directly or
1828    transitively, call a memory-deallocation function (``free``, for example)
1829    on a memory allocation which existed before the call.
1830
1831    As a result, uncaptured pointers that are known to be dereferenceable
1832    prior to a call to a function with the ``nofree`` attribute are still
1833    known to be dereferenceable after the call. The capturing condition is
1834    necessary in environments where the function might communicate the
1835    pointer to another thread which then deallocates the memory.  Alternatively,
1836    ``nosync`` would ensure such communication cannot happen and even captured
1837    pointers cannot be freed by the function.
1838
1839    A ``nofree`` function is explicitly allowed to free memory which it
1840    allocated or (if not ``nosync``) arrange for another thread to free
1841    memory on it's behalf.  As a result, perhaps surprisingly, a ``nofree``
1842    function can return a pointer to a previously deallocated memory object.
1843``noimplicitfloat``
1844    Disallows implicit floating-point code. This inhibits optimizations that
1845    use floating-point code and floating-point registers for operations that are
1846    not nominally floating-point. LLVM instructions that perform floating-point
1847    operations or require access to floating-point registers may still cause
1848    floating-point code to be generated.
1849
1850    Also inhibits optimizations that create SIMD/vector code and registers from
1851    scalar code such as vectorization or memcpy/memset optimization. This
1852    includes integer vectors. Vector instructions present in IR may still cause
1853    vector code to be generated.
1854``noinline``
1855    This attribute indicates that the inliner should never inline this
1856    function in any situation. This attribute may not be used together
1857    with the ``alwaysinline`` attribute.
1858``nomerge``
1859    This attribute indicates that calls to this function should never be merged
1860    during optimization. For example, it will prevent tail merging otherwise
1861    identical code sequences that raise an exception or terminate the program.
1862    Tail merging normally reduces the precision of source location information,
1863    making stack traces less useful for debugging. This attribute gives the
1864    user control over the tradeoff between code size and debug information
1865    precision.
1866``nonlazybind``
1867    This attribute suppresses lazy symbol binding for the function. This
1868    may make calls to the function faster, at the cost of extra program
1869    startup time if the function is not called during program startup.
1870``noprofile``
1871    This function attribute prevents instrumentation based profiling, used for
1872    coverage or profile based optimization, from being added to a function. It
1873    also blocks inlining if the caller and callee have different values of this
1874    attribute.
1875``skipprofile``
1876    This function attribute prevents instrumentation based profiling, used for
1877    coverage or profile based optimization, from being added to a function. This
1878    attribute does not restrict inlining, so instrumented instruction could end
1879    up in this function.
1880``noredzone``
1881    This attribute indicates that the code generator should not use a
1882    red zone, even if the target-specific ABI normally permits it.
1883``indirect-tls-seg-refs``
1884    This attribute indicates that the code generator should not use
1885    direct TLS access through segment registers, even if the
1886    target-specific ABI normally permits it.
1887``noreturn``
1888    This function attribute indicates that the function never returns
1889    normally, hence through a return instruction. This produces undefined
1890    behavior at runtime if the function ever does dynamically return. Annotated
1891    functions may still raise an exception, i.a., ``nounwind`` is not implied.
1892``norecurse``
1893    This function attribute indicates that the function does not call itself
1894    either directly or indirectly down any possible call path. This produces
1895    undefined behavior at runtime if the function ever does recurse.
1896
1897.. _langref_willreturn:
1898
1899``willreturn``
1900    This function attribute indicates that a call of this function will
1901    either exhibit undefined behavior or comes back and continues execution
1902    at a point in the existing call stack that includes the current invocation.
1903    Annotated functions may still raise an exception, i.a., ``nounwind`` is not implied.
1904    If an invocation of an annotated function does not return control back
1905    to a point in the call stack, the behavior is undefined.
1906``nosync``
1907    This function attribute indicates that the function does not communicate
1908    (synchronize) with another thread through memory or other well-defined means.
1909    Synchronization is considered possible in the presence of `atomic` accesses
1910    that enforce an order, thus not "unordered" and "monotonic", `volatile` accesses,
1911    as well as `convergent` function calls. Note that through `convergent` function calls
1912    non-memory communication, e.g., cross-lane operations, are possible and are also
1913    considered synchronization. However `convergent` does not contradict `nosync`.
1914    If an annotated function does ever synchronize with another thread,
1915    the behavior is undefined.
1916``nounwind``
1917    This function attribute indicates that the function never raises an
1918    exception. If the function does raise an exception, its runtime
1919    behavior is undefined. However, functions marked nounwind may still
1920    trap or generate asynchronous exceptions. Exception handling schemes
1921    that are recognized by LLVM to handle asynchronous exceptions, such
1922    as SEH, will still provide their implementation defined semantics.
1923``nosanitize_bounds``
1924    This attribute indicates that bounds checking sanitizer instrumentation
1925    is disabled for this function.
1926``nosanitize_coverage``
1927    This attribute indicates that SanitizerCoverage instrumentation is disabled
1928    for this function.
1929``null_pointer_is_valid``
1930   If ``null_pointer_is_valid`` is set, then the ``null`` address
1931   in address-space 0 is considered to be a valid address for memory loads and
1932   stores. Any analysis or optimization should not treat dereferencing a
1933   pointer to ``null`` as undefined behavior in this function.
1934   Note: Comparing address of a global variable to ``null`` may still
1935   evaluate to false because of a limitation in querying this attribute inside
1936   constant expressions.
1937``optforfuzzing``
1938    This attribute indicates that this function should be optimized
1939    for maximum fuzzing signal.
1940``optnone``
1941    This function attribute indicates that most optimization passes will skip
1942    this function, with the exception of interprocedural optimization passes.
1943    Code generation defaults to the "fast" instruction selector.
1944    This attribute cannot be used together with the ``alwaysinline``
1945    attribute; this attribute is also incompatible
1946    with the ``minsize`` attribute and the ``optsize`` attribute.
1947
1948    This attribute requires the ``noinline`` attribute to be specified on
1949    the function as well, so the function is never inlined into any caller.
1950    Only functions with the ``alwaysinline`` attribute are valid
1951    candidates for inlining into the body of this function.
1952``optsize``
1953    This attribute suggests that optimization passes and code generator
1954    passes make choices that keep the code size of this function low,
1955    and otherwise do optimizations specifically to reduce code size as
1956    long as they do not significantly impact runtime performance.
1957``"patchable-function"``
1958    This attribute tells the code generator that the code
1959    generated for this function needs to follow certain conventions that
1960    make it possible for a runtime function to patch over it later.
1961    The exact effect of this attribute depends on its string value,
1962    for which there currently is one legal possibility:
1963
1964     * ``"prologue-short-redirect"`` - This style of patchable
1965       function is intended to support patching a function prologue to
1966       redirect control away from the function in a thread safe
1967       manner.  It guarantees that the first instruction of the
1968       function will be large enough to accommodate a short jump
1969       instruction, and will be sufficiently aligned to allow being
1970       fully changed via an atomic compare-and-swap instruction.
1971       While the first requirement can be satisfied by inserting large
1972       enough NOP, LLVM can and will try to re-purpose an existing
1973       instruction (i.e. one that would have to be emitted anyway) as
1974       the patchable instruction larger than a short jump.
1975
1976       ``"prologue-short-redirect"`` is currently only supported on
1977       x86-64.
1978
1979    This attribute by itself does not imply restrictions on
1980    inter-procedural optimizations.  All of the semantic effects the
1981    patching may have to be separately conveyed via the linkage type.
1982``"probe-stack"``
1983    This attribute indicates that the function will trigger a guard region
1984    in the end of the stack. It ensures that accesses to the stack must be
1985    no further apart than the size of the guard region to a previous
1986    access of the stack. It takes one required string value, the name of
1987    the stack probing function that will be called.
1988
1989    If a function that has a ``"probe-stack"`` attribute is inlined into
1990    a function with another ``"probe-stack"`` attribute, the resulting
1991    function has the ``"probe-stack"`` attribute of the caller. If a
1992    function that has a ``"probe-stack"`` attribute is inlined into a
1993    function that has no ``"probe-stack"`` attribute at all, the resulting
1994    function has the ``"probe-stack"`` attribute of the callee.
1995``"stack-probe-size"``
1996    This attribute controls the behavior of stack probes: either
1997    the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1998    It defines the size of the guard region. It ensures that if the function
1999    may use more stack space than the size of the guard region, stack probing
2000    sequence will be emitted. It takes one required integer value, which
2001    is 4096 by default.
2002
2003    If a function that has a ``"stack-probe-size"`` attribute is inlined into
2004    a function with another ``"stack-probe-size"`` attribute, the resulting
2005    function has the ``"stack-probe-size"`` attribute that has the lower
2006    numeric value. If a function that has a ``"stack-probe-size"`` attribute is
2007    inlined into a function that has no ``"stack-probe-size"`` attribute
2008    at all, the resulting function has the ``"stack-probe-size"`` attribute
2009    of the callee.
2010``"no-stack-arg-probe"``
2011    This attribute disables ABI-required stack probes, if any.
2012``returns_twice``
2013    This attribute indicates that this function can return twice. The C
2014    ``setjmp`` is an example of such a function. The compiler disables
2015    some optimizations (like tail calls) in the caller of these
2016    functions.
2017``safestack``
2018    This attribute indicates that
2019    `SafeStack <https://clang.llvm.org/docs/SafeStack.html>`_
2020    protection is enabled for this function.
2021
2022    If a function that has a ``safestack`` attribute is inlined into a
2023    function that doesn't have a ``safestack`` attribute or which has an
2024    ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
2025    function will have a ``safestack`` attribute.
2026``sanitize_address``
2027    This attribute indicates that AddressSanitizer checks
2028    (dynamic address safety analysis) are enabled for this function.
2029``sanitize_memory``
2030    This attribute indicates that MemorySanitizer checks (dynamic detection
2031    of accesses to uninitialized memory) are enabled for this function.
2032``sanitize_thread``
2033    This attribute indicates that ThreadSanitizer checks
2034    (dynamic thread safety analysis) are enabled for this function.
2035``sanitize_hwaddress``
2036    This attribute indicates that HWAddressSanitizer checks
2037    (dynamic address safety analysis based on tagged pointers) are enabled for
2038    this function.
2039``sanitize_memtag``
2040    This attribute indicates that MemTagSanitizer checks
2041    (dynamic address safety analysis based on Armv8 MTE) are enabled for
2042    this function.
2043``speculative_load_hardening``
2044    This attribute indicates that
2045    `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
2046    should be enabled for the function body.
2047
2048    Speculative Load Hardening is a best-effort mitigation against
2049    information leak attacks that make use of control flow
2050    miss-speculation - specifically miss-speculation of whether a branch
2051    is taken or not. Typically vulnerabilities enabling such attacks are
2052    classified as "Spectre variant #1". Notably, this does not attempt to
2053    mitigate against miss-speculation of branch target, classified as
2054    "Spectre variant #2" vulnerabilities.
2055
2056    When inlining, the attribute is sticky. Inlining a function that carries
2057    this attribute will cause the caller to gain the attribute. This is intended
2058    to provide a maximally conservative model where the code in a function
2059    annotated with this attribute will always (even after inlining) end up
2060    hardened.
2061``speculatable``
2062    This function attribute indicates that the function does not have any
2063    effects besides calculating its result and does not have undefined behavior.
2064    Note that ``speculatable`` is not enough to conclude that along any
2065    particular execution path the number of calls to this function will not be
2066    externally observable. This attribute is only valid on functions
2067    and declarations, not on individual call sites. If a function is
2068    incorrectly marked as speculatable and really does exhibit
2069    undefined behavior, the undefined behavior may be observed even
2070    if the call site is dead code.
2071
2072``ssp``
2073    This attribute indicates that the function should emit a stack
2074    smashing protector. It is in the form of a "canary" --- a random value
2075    placed on the stack before the local variables that's checked upon
2076    return from the function to see if it has been overwritten. A
2077    heuristic is used to determine if a function needs stack protectors
2078    or not. The heuristic used will enable protectors for functions with:
2079
2080    - Character arrays larger than ``ssp-buffer-size`` (default 8).
2081    - Aggregates containing character arrays larger than ``ssp-buffer-size``.
2082    - Calls to alloca() with variable sizes or constant sizes greater than
2083      ``ssp-buffer-size``.
2084
2085    Variables that are identified as requiring a protector will be arranged
2086    on the stack such that they are adjacent to the stack protector guard.
2087
2088    If a function with an ``ssp`` attribute is inlined into a calling function,
2089    the attribute is not carried over to the calling function.
2090
2091``sspstrong``
2092    This attribute indicates that the function should emit a stack smashing
2093    protector. This attribute causes a strong heuristic to be used when
2094    determining if a function needs stack protectors. The strong heuristic
2095    will enable protectors for functions with:
2096
2097    - Arrays of any size and type
2098    - Aggregates containing an array of any size and type.
2099    - Calls to alloca().
2100    - Local variables that have had their address taken.
2101
2102    Variables that are identified as requiring a protector will be arranged
2103    on the stack such that they are adjacent to the stack protector guard.
2104    The specific layout rules are:
2105
2106    #. Large arrays and structures containing large arrays
2107       (``>= ssp-buffer-size``) are closest to the stack protector.
2108    #. Small arrays and structures containing small arrays
2109       (``< ssp-buffer-size``) are 2nd closest to the protector.
2110    #. Variables that have had their address taken are 3rd closest to the
2111       protector.
2112
2113    This overrides the ``ssp`` function attribute.
2114
2115    If a function with an ``sspstrong`` attribute is inlined into a calling
2116    function which has an ``ssp`` attribute, the calling function's attribute
2117    will be upgraded to ``sspstrong``.
2118
2119``sspreq``
2120    This attribute indicates that the function should *always* emit a stack
2121    smashing protector. This overrides the ``ssp`` and ``sspstrong`` function
2122    attributes.
2123
2124    Variables that are identified as requiring a protector will be arranged
2125    on the stack such that they are adjacent to the stack protector guard.
2126    The specific layout rules are:
2127
2128    #. Large arrays and structures containing large arrays
2129       (``>= ssp-buffer-size``) are closest to the stack protector.
2130    #. Small arrays and structures containing small arrays
2131       (``< ssp-buffer-size``) are 2nd closest to the protector.
2132    #. Variables that have had their address taken are 3rd closest to the
2133       protector.
2134
2135    If a function with an ``sspreq`` attribute is inlined into a calling
2136    function which has an ``ssp`` or ``sspstrong`` attribute, the calling
2137    function's attribute will be upgraded to ``sspreq``.
2138
2139``strictfp``
2140    This attribute indicates that the function was called from a scope that
2141    requires strict floating-point semantics.  LLVM will not attempt any
2142    optimizations that require assumptions about the floating-point rounding
2143    mode or that might alter the state of floating-point status flags that
2144    might otherwise be set or cleared by calling this function. LLVM will
2145    not introduce any new floating-point instructions that may trap.
2146
2147``"denormal-fp-math"``
2148    This indicates the denormal (subnormal) handling that may be
2149    assumed for the default floating-point environment. This is a
2150    comma separated pair. The elements may be one of ``"ieee"``,
2151    ``"preserve-sign"``, or ``"positive-zero"``. The first entry
2152    indicates the flushing mode for the result of floating point
2153    operations. The second indicates the handling of denormal inputs
2154    to floating point instructions. For compatibility with older
2155    bitcode, if the second value is omitted, both input and output
2156    modes will assume the same mode.
2157
2158    If this is attribute is not specified, the default is
2159    ``"ieee,ieee"``.
2160
2161    If the output mode is ``"preserve-sign"``, or ``"positive-zero"``,
2162    denormal outputs may be flushed to zero by standard floating-point
2163    operations. It is not mandated that flushing to zero occurs, but if
2164    a denormal output is flushed to zero, it must respect the sign
2165    mode. Not all targets support all modes. While this indicates the
2166    expected floating point mode the function will be executed with,
2167    this does not make any attempt to ensure the mode is
2168    consistent. User or platform code is expected to set the floating
2169    point mode appropriately before function entry.
2170
2171   If the input mode is ``"preserve-sign"``, or ``"positive-zero"``, a
2172   floating-point operation must treat any input denormal value as
2173   zero. In some situations, if an instruction does not respect this
2174   mode, the input may need to be converted to 0 as if by
2175   ``@llvm.canonicalize`` during lowering for correctness.
2176
2177``"denormal-fp-math-f32"``
2178    Same as ``"denormal-fp-math"``, but only controls the behavior of
2179    the 32-bit float type (or vectors of 32-bit floats). If both are
2180    are present, this overrides ``"denormal-fp-math"``. Not all targets
2181    support separately setting the denormal mode per type, and no
2182    attempt is made to diagnose unsupported uses. Currently this
2183    attribute is respected by the AMDGPU and NVPTX backends.
2184
2185``"thunk"``
2186    This attribute indicates that the function will delegate to some other
2187    function with a tail call. The prototype of a thunk should not be used for
2188    optimization purposes. The caller is expected to cast the thunk prototype to
2189    match the thunk target prototype.
2190
2191``"tls-load-hoist"``
2192    This attribute indicates that the function will try to reduce redundant
2193    tls address calculation by hoisting tls variable.
2194
2195``uwtable[(sync|async)]``
2196    This attribute indicates that the ABI being targeted requires that
2197    an unwind table entry be produced for this function even if we can
2198    show that no exceptions passes by it. This is normally the case for
2199    the ELF x86-64 abi, but it can be disabled for some compilation
2200    units. The optional parameter describes what kind of unwind tables
2201    to generate: ``sync`` for normal unwind tables, ``async`` for asynchronous
2202    (instruction precise) unwind tables. Without the parameter, the attribute
2203    ``uwtable`` is equivalent to ``uwtable(async)``.
2204``nocf_check``
2205    This attribute indicates that no control-flow check will be performed on
2206    the attributed entity. It disables -fcf-protection=<> for a specific
2207    entity to fine grain the HW control flow protection mechanism. The flag
2208    is target independent and currently appertains to a function or function
2209    pointer.
2210``shadowcallstack``
2211    This attribute indicates that the ShadowCallStack checks are enabled for
2212    the function. The instrumentation checks that the return address for the
2213    function has not changed between the function prolog and epilog. It is
2214    currently x86_64-specific.
2215
2216.. _langref_mustprogress:
2217
2218``mustprogress``
2219    This attribute indicates that the function is required to return, unwind,
2220    or interact with the environment in an observable way e.g. via a volatile
2221    memory access, I/O, or other synchronization.  The ``mustprogress``
2222    attribute is intended to model the requirements of the first section of
2223    [intro.progress] of the C++ Standard. As a consequence, a loop in a
2224    function with the `mustprogress` attribute can be assumed to terminate if
2225    it does not interact with the environment in an observable way, and
2226    terminating loops without side-effects can be removed. If a `mustprogress`
2227    function does not satisfy this contract, the behavior is undefined.  This
2228    attribute does not apply transitively to callees, but does apply to call
2229    sites within the function. Note that `willreturn` implies `mustprogress`.
2230``"warn-stack-size"="<threshold>"``
2231    This attribute sets a threshold to emit diagnostics once the frame size is
2232    known should the frame size exceed the specified value.  It takes one
2233    required integer value, which should be a non-negative integer, and less
2234    than `UINT_MAX`.  It's unspecified which threshold will be used when
2235    duplicate definitions are linked together with differing values.
2236``vscale_range(<min>[, <max>])``
2237    This attribute indicates the minimum and maximum vscale value for the given
2238    function. The min must be greater than 0. A maximum value of 0 means
2239    unbounded. If the optional max value is omitted then max is set to the
2240    value of min. If the attribute is not present, no assumptions are made
2241    about the range of vscale.
2242``"nooutline"``
2243    This attribute indicates that outlining passes should not modify the
2244    function.
2245
2246Call Site Attributes
2247----------------------
2248
2249In addition to function attributes the following call site only
2250attributes are supported:
2251
2252``vector-function-abi-variant``
2253    This attribute can be attached to a :ref:`call <i_call>` to list
2254    the vector functions associated to the function. Notice that the
2255    attribute cannot be attached to a :ref:`invoke <i_invoke>` or a
2256    :ref:`callbr <i_callbr>` instruction. The attribute consists of a
2257    comma separated list of mangled names. The order of the list does
2258    not imply preference (it is logically a set). The compiler is free
2259    to pick any listed vector function of its choosing.
2260
2261    The syntax for the mangled names is as follows:::
2262
2263        _ZGV<isa><mask><vlen><parameters>_<scalar_name>[(<vector_redirection>)]
2264
2265    When present, the attribute informs the compiler that the function
2266    ``<scalar_name>`` has a corresponding vector variant that can be
2267    used to perform the concurrent invocation of ``<scalar_name>`` on
2268    vectors. The shape of the vector function is described by the
2269    tokens between the prefix ``_ZGV`` and the ``<scalar_name>``
2270    token. The standard name of the vector function is
2271    ``_ZGV<isa><mask><vlen><parameters>_<scalar_name>``. When present,
2272    the optional token ``(<vector_redirection>)`` informs the compiler
2273    that a custom name is provided in addition to the standard one
2274    (custom names can be provided for example via the use of ``declare
2275    variant`` in OpenMP 5.0). The declaration of the variant must be
2276    present in the IR Module. The signature of the vector variant is
2277    determined by the rules of the Vector Function ABI (VFABI)
2278    specifications of the target. For Arm and X86, the VFABI can be
2279    found at https://github.com/ARM-software/abi-aa and
2280    https://software.intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html,
2281    respectively.
2282
2283    For X86 and Arm targets, the values of the tokens in the standard
2284    name are those that are defined in the VFABI. LLVM has an internal
2285    ``<isa>`` token that can be used to create scalar-to-vector
2286    mappings for functions that are not directly associated to any of
2287    the target ISAs (for example, some of the mappings stored in the
2288    TargetLibraryInfo). Valid values for the ``<isa>`` token are:::
2289
2290        <isa>:= b | c | d | e  -> X86 SSE, AVX, AVX2, AVX512
2291              | n | s          -> Armv8 Advanced SIMD, SVE
2292              | __LLVM__       -> Internal LLVM Vector ISA
2293
2294    For all targets currently supported (x86, Arm and Internal LLVM),
2295    the remaining tokens can have the following values:::
2296
2297        <mask>:= M | N         -> mask | no mask
2298
2299        <vlen>:= number        -> number of lanes
2300               | x             -> VLA (Vector Length Agnostic)
2301
2302        <parameters>:= v              -> vector
2303                     | l | l <number> -> linear
2304                     | R | R <number> -> linear with ref modifier
2305                     | L | L <number> -> linear with val modifier
2306                     | U | U <number> -> linear with uval modifier
2307                     | ls <pos>       -> runtime linear
2308                     | Rs <pos>       -> runtime linear with ref modifier
2309                     | Ls <pos>       -> runtime linear with val modifier
2310                     | Us <pos>       -> runtime linear with uval modifier
2311                     | u              -> uniform
2312
2313        <scalar_name>:= name of the scalar function
2314
2315        <vector_redirection>:= optional, custom name of the vector function
2316
2317``preallocated(<ty>)``
2318    This attribute is required on calls to ``llvm.call.preallocated.arg``
2319    and cannot be used on any other call. See
2320    :ref:`llvm.call.preallocated.arg<int_call_preallocated_arg>` for more
2321    details.
2322
2323.. _glattrs:
2324
2325Global Attributes
2326-----------------
2327
2328Attributes may be set to communicate additional information about a global variable.
2329Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
2330are grouped into a single :ref:`attribute group <attrgrp>`.
2331
2332``no_sanitize_address``
2333    This attribute indicates that the global variable should not have
2334    AddressSanitizer instrumentation applied to it, because it was annotated
2335    with `__attribute__((no_sanitize("address")))`,
2336    `__attribute__((disable_sanitizer_instrumentation))`, or included in the
2337    `-fsanitize-ignorelist` file.
2338``no_sanitize_hwaddress``
2339    This attribute indicates that the global variable should not have
2340    HWAddressSanitizer instrumentation applied to it, because it was annotated
2341    with `__attribute__((no_sanitize("hwaddress")))`,
2342    `__attribute__((disable_sanitizer_instrumentation))`, or included in the
2343    `-fsanitize-ignorelist` file.
2344``sanitize_memtag``
2345    This attribute indicates that the global variable should have AArch64 memory
2346    tags (MTE) instrumentation applied to it. This attribute causes the
2347    suppression of certain optimisations, like GlobalMerge, as well as ensuring
2348    extra directives are emitted in the assembly and extra bits of metadata are
2349    placed in the object file so that the linker can ensure the accesses are
2350    protected by MTE. This attribute is added by clang when
2351    `-fsanitize=memtag-globals` is provided, as long as the global is not marked
2352    with `__attribute__((no_sanitize("memtag")))`,
2353    `__attribute__((disable_sanitizer_instrumentation))`, or included in the
2354    `-fsanitize-ignorelist` file. The AArch64 Globals Tagging pass may remove
2355    this attribute when it's not possible to tag the global (e.g. it's a TLS
2356    variable).
2357``sanitize_address_dyninit``
2358    This attribute indicates that the global variable, when instrumented with
2359    AddressSanitizer, should be checked for ODR violations. This attribute is
2360    applied to global variables that are dynamically initialized according to
2361    C++ rules.
2362
2363.. _opbundles:
2364
2365Operand Bundles
2366---------------
2367
2368Operand bundles are tagged sets of SSA values that can be associated
2369with certain LLVM instructions (currently only ``call`` s and
2370``invoke`` s).  In a way they are like metadata, but dropping them is
2371incorrect and will change program semantics.
2372
2373Syntax::
2374
2375    operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
2376    operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
2377    bundle operand ::= SSA value
2378    tag ::= string constant
2379
2380Operand bundles are **not** part of a function's signature, and a
2381given function may be called from multiple places with different kinds
2382of operand bundles.  This reflects the fact that the operand bundles
2383are conceptually a part of the ``call`` (or ``invoke``), not the
2384callee being dispatched to.
2385
2386Operand bundles are a generic mechanism intended to support
2387runtime-introspection-like functionality for managed languages.  While
2388the exact semantics of an operand bundle depend on the bundle tag,
2389there are certain limitations to how much the presence of an operand
2390bundle can influence the semantics of a program.  These restrictions
2391are described as the semantics of an "unknown" operand bundle.  As
2392long as the behavior of an operand bundle is describable within these
2393restrictions, LLVM does not need to have special knowledge of the
2394operand bundle to not miscompile programs containing it.
2395
2396- The bundle operands for an unknown operand bundle escape in unknown
2397  ways before control is transferred to the callee or invokee.
2398- Calls and invokes with operand bundles have unknown read / write
2399  effect on the heap on entry and exit (even if the call target is
2400  ``readnone`` or ``readonly``), unless they're overridden with
2401  callsite specific attributes.
2402- An operand bundle at a call site cannot change the implementation
2403  of the called function.  Inter-procedural optimizations work as
2404  usual as long as they take into account the first two properties.
2405
2406More specific types of operand bundles are described below.
2407
2408.. _deopt_opbundles:
2409
2410Deoptimization Operand Bundles
2411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2412
2413Deoptimization operand bundles are characterized by the ``"deopt"``
2414operand bundle tag.  These operand bundles represent an alternate
2415"safe" continuation for the call site they're attached to, and can be
2416used by a suitable runtime to deoptimize the compiled frame at the
2417specified call site.  There can be at most one ``"deopt"`` operand
2418bundle attached to a call site.  Exact details of deoptimization is
2419out of scope for the language reference, but it usually involves
2420rewriting a compiled frame into a set of interpreted frames.
2421
2422From the compiler's perspective, deoptimization operand bundles make
2423the call sites they're attached to at least ``readonly``.  They read
2424through all of their pointer typed operands (even if they're not
2425otherwise escaped) and the entire visible heap.  Deoptimization
2426operand bundles do not capture their operands except during
2427deoptimization, in which case control will not be returned to the
2428compiled frame.
2429
2430The inliner knows how to inline through calls that have deoptimization
2431operand bundles.  Just like inlining through a normal call site
2432involves composing the normal and exceptional continuations, inlining
2433through a call site with a deoptimization operand bundle needs to
2434appropriately compose the "safe" deoptimization continuation.  The
2435inliner does this by prepending the parent's deoptimization
2436continuation to every deoptimization continuation in the inlined body.
2437E.g. inlining ``@f`` into ``@g`` in the following example
2438
2439.. code-block:: llvm
2440
2441    define void @f() {
2442      call void @x()  ;; no deopt state
2443      call void @y() [ "deopt"(i32 10) ]
2444      call void @y() [ "deopt"(i32 10), "unknown"(ptr null) ]
2445      ret void
2446    }
2447
2448    define void @g() {
2449      call void @f() [ "deopt"(i32 20) ]
2450      ret void
2451    }
2452
2453will result in
2454
2455.. code-block:: llvm
2456
2457    define void @g() {
2458      call void @x()  ;; still no deopt state
2459      call void @y() [ "deopt"(i32 20, i32 10) ]
2460      call void @y() [ "deopt"(i32 20, i32 10), "unknown"(ptr null) ]
2461      ret void
2462    }
2463
2464It is the frontend's responsibility to structure or encode the
2465deoptimization state in a way that syntactically prepending the
2466caller's deoptimization state to the callee's deoptimization state is
2467semantically equivalent to composing the caller's deoptimization
2468continuation after the callee's deoptimization continuation.
2469
2470.. _ob_funclet:
2471
2472Funclet Operand Bundles
2473^^^^^^^^^^^^^^^^^^^^^^^
2474
2475Funclet operand bundles are characterized by the ``"funclet"``
2476operand bundle tag.  These operand bundles indicate that a call site
2477is within a particular funclet.  There can be at most one
2478``"funclet"`` operand bundle attached to a call site and it must have
2479exactly one bundle operand.
2480
2481If any funclet EH pads have been "entered" but not "exited" (per the
2482`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
2483it is undefined behavior to execute a ``call`` or ``invoke`` which:
2484
2485* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
2486  intrinsic, or
2487* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
2488  not-yet-exited funclet EH pad.
2489
2490Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
2491executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
2492
2493GC Transition Operand Bundles
2494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2495
2496GC transition operand bundles are characterized by the
2497``"gc-transition"`` operand bundle tag. These operand bundles mark a
2498call as a transition between a function with one GC strategy to a
2499function with a different GC strategy. If coordinating the transition
2500between GC strategies requires additional code generation at the call
2501site, these bundles may contain any values that are needed by the
2502generated code.  For more details, see :ref:`GC Transitions
2503<gc_transition_args>`.
2504
2505The bundle contain an arbitrary list of Values which need to be passed
2506to GC transition code. They will be lowered and passed as operands to
2507the appropriate GC_TRANSITION nodes in the selection DAG. It is assumed
2508that these arguments must be available before and after (but not
2509necessarily during) the execution of the callee.
2510
2511.. _assume_opbundles:
2512
2513Assume Operand Bundles
2514^^^^^^^^^^^^^^^^^^^^^^
2515
2516Operand bundles on an :ref:`llvm.assume <int_assume>` allows representing
2517assumptions, such as that a :ref:`parameter attribute <paramattrs>` or a
2518:ref:`function attribute <fnattrs>` holds for a certain value at a certain
2519location. Operand bundles enable assumptions that are either hard or impossible
2520to represent as a boolean argument of an :ref:`llvm.assume <int_assume>`.
2521
2522An assume operand bundle has the form:
2523
2524::
2525
2526      "<tag>"([ <arguments>] ])
2527
2528In the case of function or parameter attributes, the operand bundle has the
2529restricted form:
2530
2531::
2532
2533      "<tag>"([ <holds for value> [, <attribute argument>] ])
2534
2535* The tag of the operand bundle is usually the name of attribute that can be
2536  assumed to hold. It can also be `ignore`, this tag doesn't contain any
2537  information and should be ignored.
2538* The first argument if present is the value for which the attribute hold.
2539* The second argument if present is an argument of the attribute.
2540
2541If there are no arguments the attribute is a property of the call location.
2542
2543For example:
2544
2545.. code-block:: llvm
2546
2547      call void @llvm.assume(i1 true) ["align"(ptr %val, i32 8)]
2548
2549allows the optimizer to assume that at location of call to
2550:ref:`llvm.assume <int_assume>` ``%val`` has an alignment of at least 8.
2551
2552.. code-block:: llvm
2553
2554      call void @llvm.assume(i1 %cond) ["cold"(), "nonnull"(ptr %val)]
2555
2556allows the optimizer to assume that the :ref:`llvm.assume <int_assume>`
2557call location is cold and that ``%val`` may not be null.
2558
2559Just like for the argument of :ref:`llvm.assume <int_assume>`, if any of the
2560provided guarantees are violated at runtime the behavior is undefined.
2561
2562While attributes expect constant arguments, assume operand bundles may be
2563provided a dynamic value, for example:
2564
2565.. code-block:: llvm
2566
2567      call void @llvm.assume(i1 true) ["align"(ptr %val, i32 %align)]
2568
2569If the operand bundle value violates any requirements on the attribute value,
2570the behavior is undefined, unless one of the following exceptions applies:
2571
2572* ``"align"`` operand bundles may specify a non-power-of-two alignment
2573  (including a zero alignment). If this is the case, then the pointer value
2574  must be a null pointer, otherwise the behavior is undefined.
2575
2576In addition to allowing operand bundles encoding function and parameter
2577attributes, an assume operand bundle my also encode a ``separate_storage``
2578operand bundle. This has the form:
2579
2580.. code-block:: llvm
2581
2582    separate_storage(<val1>, <val2>)``
2583
2584This indicates that no pointer :ref:`based <pointeraliasing>` on one of its
2585arguments can alias any pointer based on the other.
2586
2587Even if the assumed property can be encoded as a boolean value, like
2588``nonnull``, using operand bundles to express the property can still have
2589benefits:
2590
2591* Attributes that can be expressed via operand bundles are directly the
2592  property that the optimizer uses and cares about. Encoding attributes as
2593  operand bundles removes the need for an instruction sequence that represents
2594  the property (e.g., `icmp ne ptr %p, null` for `nonnull`) and for the
2595  optimizer to deduce the property from that instruction sequence.
2596* Expressing the property using operand bundles makes it easy to identify the
2597  use of the value as a use in an :ref:`llvm.assume <int_assume>`. This then
2598  simplifies and improves heuristics, e.g., for use "use-sensitive"
2599  optimizations.
2600
2601.. _ob_preallocated:
2602
2603Preallocated Operand Bundles
2604^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2605
2606Preallocated operand bundles are characterized by the ``"preallocated"``
2607operand bundle tag.  These operand bundles allow separation of the allocation
2608of the call argument memory from the call site.  This is necessary to pass
2609non-trivially copyable objects by value in a way that is compatible with MSVC
2610on some targets.  There can be at most one ``"preallocated"`` operand bundle
2611attached to a call site and it must have exactly one bundle operand, which is
2612a token generated by ``@llvm.call.preallocated.setup``.  A call with this
2613operand bundle should not adjust the stack before entering the function, as
2614that will have been done by one of the ``@llvm.call.preallocated.*`` intrinsics.
2615
2616.. code-block:: llvm
2617
2618      %foo = type { i64, i32 }
2619
2620      ...
2621
2622      %t = call token @llvm.call.preallocated.setup(i32 1)
2623      %a = call ptr @llvm.call.preallocated.arg(token %t, i32 0) preallocated(%foo)
2624      ; initialize %b
2625      call void @bar(i32 42, ptr preallocated(%foo) %a) ["preallocated"(token %t)]
2626
2627.. _ob_gc_live:
2628
2629GC Live Operand Bundles
2630^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2631
2632A "gc-live" operand bundle is only valid on a :ref:`gc.statepoint <gc_statepoint>`
2633intrinsic. The operand bundle must contain every pointer to a garbage collected
2634object which potentially needs to be updated by the garbage collector.
2635
2636When lowered, any relocated value will be recorded in the corresponding
2637:ref:`stackmap entry <statepoint-stackmap-format>`.  See the intrinsic description
2638for further details.
2639
2640ObjC ARC Attached Call Operand Bundles
2641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2642
2643A ``"clang.arc.attachedcall"`` operand bundle on a call indicates the call is
2644implicitly followed by a marker instruction and a call to an ObjC runtime
2645function that uses the result of the call. The operand bundle takes a mandatory
2646pointer to the runtime function (``@objc_retainAutoreleasedReturnValue`` or
2647``@objc_unsafeClaimAutoreleasedReturnValue``).
2648The return value of a call with this bundle is used by a call to
2649``@llvm.objc.clang.arc.noop.use`` unless the called function's return type is
2650void, in which case the operand bundle is ignored.
2651
2652.. code-block:: llvm
2653
2654   ; The marker instruction and a runtime function call are inserted after the call
2655   ; to @foo.
2656   call ptr @foo() [ "clang.arc.attachedcall"(ptr @objc_retainAutoreleasedReturnValue) ]
2657   call ptr @foo() [ "clang.arc.attachedcall"(ptr @objc_unsafeClaimAutoreleasedReturnValue) ]
2658
2659The operand bundle is needed to ensure the call is immediately followed by the
2660marker instruction and the ObjC runtime call in the final output.
2661
2662.. _ob_ptrauth:
2663
2664Pointer Authentication Operand Bundles
2665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2666
2667Pointer Authentication operand bundles are characterized by the
2668``"ptrauth"`` operand bundle tag.  They are described in the
2669`Pointer Authentication <PointerAuth.html#operand-bundle>`__ document.
2670
2671.. _ob_kcfi:
2672
2673KCFI Operand Bundles
2674^^^^^^^^^^^^^^^^^^^^
2675
2676A ``"kcfi"`` operand bundle on an indirect call indicates that the call will
2677be preceded by a runtime type check, which validates that the call target is
2678prefixed with a :ref:`type identifier<md_kcfi_type>` that matches the operand
2679bundle attribute. For example:
2680
2681.. code-block:: llvm
2682
2683      call void %0() ["kcfi"(i32 1234)]
2684
2685Clang emits KCFI operand bundles and the necessary metadata with
2686``-fsanitize=kcfi``.
2687
2688.. _moduleasm:
2689
2690Module-Level Inline Assembly
2691----------------------------
2692
2693Modules may contain "module-level inline asm" blocks, which corresponds
2694to the GCC "file scope inline asm" blocks. These blocks are internally
2695concatenated by LLVM and treated as a single unit, but may be separated
2696in the ``.ll`` file if desired. The syntax is very simple:
2697
2698.. code-block:: llvm
2699
2700    module asm "inline asm code goes here"
2701    module asm "more can go here"
2702
2703The strings can contain any character by escaping non-printable
2704characters. The escape sequence used is simply "\\xx" where "xx" is the
2705two digit hex code for the number.
2706
2707Note that the assembly string *must* be parseable by LLVM's integrated assembler
2708(unless it is disabled), even when emitting a ``.s`` file.
2709
2710.. _langref_datalayout:
2711
2712Data Layout
2713-----------
2714
2715A module may specify a target specific data layout string that specifies
2716how data is to be laid out in memory. The syntax for the data layout is
2717simply:
2718
2719.. code-block:: llvm
2720
2721    target datalayout = "layout specification"
2722
2723The *layout specification* consists of a list of specifications
2724separated by the minus sign character ('-'). Each specification starts
2725with a letter and may include other information after the letter to
2726define some aspect of the data layout. The specifications accepted are
2727as follows:
2728
2729``E``
2730    Specifies that the target lays out data in big-endian form. That is,
2731    the bits with the most significance have the lowest address
2732    location.
2733``e``
2734    Specifies that the target lays out data in little-endian form. That
2735    is, the bits with the least significance have the lowest address
2736    location.
2737``S<size>``
2738    Specifies the natural alignment of the stack in bits. Alignment
2739    promotion of stack variables is limited to the natural stack
2740    alignment to avoid dynamic stack realignment. The stack alignment
2741    must be a multiple of 8-bits. If omitted, the natural stack
2742    alignment defaults to "unspecified", which does not prevent any
2743    alignment promotions.
2744``P<address space>``
2745    Specifies the address space that corresponds to program memory.
2746    Harvard architectures can use this to specify what space LLVM
2747    should place things such as functions into. If omitted, the
2748    program memory space defaults to the default address space of 0,
2749    which corresponds to a Von Neumann architecture that has code
2750    and data in the same space.
2751``G<address space>``
2752    Specifies the address space to be used by default when creating global
2753    variables. If omitted, the globals address space defaults to the default
2754    address space 0.
2755    Note: variable declarations without an address space are always created in
2756    address space 0, this property only affects the default value to be used
2757    when creating globals without additional contextual information (e.g. in
2758    LLVM passes).
2759``A<address space>``
2760    Specifies the address space of objects created by '``alloca``'.
2761    Defaults to the default address space of 0.
2762``p[n]:<size>:<abi>[:<pref>][:<idx>]``
2763    This specifies the *size* of a pointer and its ``<abi>`` and
2764    ``<pref>``\erred alignments for address space ``n``. ``<pref>`` is optional
2765    and defaults to ``<abi>``. The fourth parameter ``<idx>`` is the size of the
2766    index that used for address calculation. If not
2767    specified, the default index size is equal to the pointer size. All sizes
2768    are in bits. The address space, ``n``, is optional, and if not specified,
2769    denotes the default address space 0. The value of ``n`` must be
2770    in the range [1,2^23).
2771``i<size>:<abi>[:<pref>]``
2772    This specifies the alignment for an integer type of a given bit
2773    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
2774    ``<pref>`` is optional and defaults to ``<abi>``.
2775    For ``i8``, the ``<abi>`` value must equal 8,
2776    that is, ``i8`` must be naturally aligned.
2777``v<size>:<abi>[:<pref>]``
2778    This specifies the alignment for a vector type of a given bit
2779    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
2780    ``<pref>`` is optional and defaults to ``<abi>``.
2781``f<size>:<abi>[:<pref>]``
2782    This specifies the alignment for a floating-point type of a given bit
2783    ``<size>``. Only values of ``<size>`` that are supported by the target
2784    will work. 32 (float) and 64 (double) are supported on all targets; 80
2785    or 128 (different flavors of long double) are also supported on some
2786    targets. The value of ``<size>`` must be in the range [1,2^23).
2787    ``<pref>`` is optional and defaults to ``<abi>``.
2788``a:<abi>[:<pref>]``
2789    This specifies the alignment for an object of aggregate type.
2790    ``<pref>`` is optional and defaults to ``<abi>``.
2791``F<type><abi>``
2792    This specifies the alignment for function pointers.
2793    The options for ``<type>`` are:
2794
2795    * ``i``: The alignment of function pointers is independent of the alignment
2796      of functions, and is a multiple of ``<abi>``.
2797    * ``n``: The alignment of function pointers is a multiple of the explicit
2798      alignment specified on the function, and is a multiple of ``<abi>``.
2799``m:<mangling>``
2800    If present, specifies that llvm names are mangled in the output. Symbols
2801    prefixed with the mangling escape character ``\01`` are passed through
2802    directly to the assembler without the escape character. The mangling style
2803    options are
2804
2805    * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2806    * ``l``: GOFF mangling: Private symbols get a ``@`` prefix.
2807    * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2808    * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2809      symbols get a ``_`` prefix.
2810    * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2811      Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2812      ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2813      ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2814      starting with ``?`` are not mangled in any way.
2815    * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2816      symbols do not receive a ``_`` prefix.
2817    * ``a``: XCOFF mangling: Private symbols get a ``L..`` prefix.
2818``n<size1>:<size2>:<size3>...``
2819    This specifies a set of native integer widths for the target CPU in
2820    bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2821    ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2822    this set are considered to support most general arithmetic operations
2823    efficiently.
2824``ni:<address space0>:<address space1>:<address space2>...``
2825    This specifies pointer types with the specified address spaces
2826    as :ref:`Non-Integral Pointer Type <nointptrtype>` s.  The ``0``
2827    address space cannot be specified as non-integral.
2828
2829On every specification that takes a ``<abi>:<pref>``, specifying the
2830``<pref>`` alignment is optional. If omitted, the preceding ``:``
2831should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2832
2833When constructing the data layout for a given target, LLVM starts with a
2834default set of specifications which are then (possibly) overridden by
2835the specifications in the ``datalayout`` keyword. The default
2836specifications are given in this list:
2837
2838-  ``e`` - little endian
2839-  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2840-  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2841   same as the default address space.
2842-  ``S0`` - natural stack alignment is unspecified
2843-  ``i1:8:8`` - i1 is 8-bit (byte) aligned
2844-  ``i8:8:8`` - i8 is 8-bit (byte) aligned as mandated
2845-  ``i16:16:16`` - i16 is 16-bit aligned
2846-  ``i32:32:32`` - i32 is 32-bit aligned
2847-  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2848   alignment of 64-bits
2849-  ``f16:16:16`` - half is 16-bit aligned
2850-  ``f32:32:32`` - float is 32-bit aligned
2851-  ``f64:64:64`` - double is 64-bit aligned
2852-  ``f128:128:128`` - quad is 128-bit aligned
2853-  ``v64:64:64`` - 64-bit vector is 64-bit aligned
2854-  ``v128:128:128`` - 128-bit vector is 128-bit aligned
2855-  ``a:0:64`` - aggregates are 64-bit aligned
2856
2857When LLVM is determining the alignment for a given type, it uses the
2858following rules:
2859
2860#. If the type sought is an exact match for one of the specifications,
2861   that specification is used.
2862#. If no match is found, and the type sought is an integer type, then
2863   the smallest integer type that is larger than the bitwidth of the
2864   sought type is used. If none of the specifications are larger than
2865   the bitwidth then the largest integer type is used. For example,
2866   given the default specifications above, the i7 type will use the
2867   alignment of i8 (next largest) while both i65 and i256 will use the
2868   alignment of i64 (largest specified).
2869
2870The function of the data layout string may not be what you expect.
2871Notably, this is not a specification from the frontend of what alignment
2872the code generator should use.
2873
2874Instead, if specified, the target data layout is required to match what
2875the ultimate *code generator* expects. This string is used by the
2876mid-level optimizers to improve code, and this only works if it matches
2877what the ultimate code generator uses. There is no way to generate IR
2878that does not embed this target-specific detail into the IR. If you
2879don't specify the string, the default specifications will be used to
2880generate a Data Layout and the optimization phases will operate
2881accordingly and introduce target specificity into the IR with respect to
2882these default specifications.
2883
2884.. _langref_triple:
2885
2886Target Triple
2887-------------
2888
2889A module may specify a target triple string that describes the target
2890host. The syntax for the target triple is simply:
2891
2892.. code-block:: llvm
2893
2894    target triple = "x86_64-apple-macosx10.7.0"
2895
2896The *target triple* string consists of a series of identifiers delimited
2897by the minus sign character ('-'). The canonical forms are:
2898
2899::
2900
2901    ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2902    ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2903
2904This information is passed along to the backend so that it generates
2905code for the proper architecture. It's possible to override this on the
2906command line with the ``-mtriple`` command line option.
2907
2908.. _objectlifetime:
2909
2910Object Lifetime
2911----------------------
2912
2913A memory object, or simply object, is a region of a memory space that is
2914reserved by a memory allocation such as :ref:`alloca <i_alloca>`, heap
2915allocation calls, and global variable definitions.
2916Once it is allocated, the bytes stored in the region can only be read or written
2917through a pointer that is :ref:`based on <pointeraliasing>` the allocation
2918value.
2919If a pointer that is not based on the object tries to read or write to the
2920object, it is undefined behavior.
2921
2922A lifetime of a memory object is a property that decides its accessibility.
2923Unless stated otherwise, a memory object is alive since its allocation, and
2924dead after its deallocation.
2925It is undefined behavior to access a memory object that isn't alive, but
2926operations that don't dereference it such as
2927:ref:`getelementptr <i_getelementptr>`, :ref:`ptrtoint <i_ptrtoint>` and
2928:ref:`icmp <i_icmp>` return a valid result.
2929This explains code motion of these instructions across operations that
2930impact the object's lifetime.
2931A stack object's lifetime can be explicitly specified using
2932:ref:`llvm.lifetime.start <int_lifestart>` and
2933:ref:`llvm.lifetime.end <int_lifeend>` intrinsic function calls.
2934
2935.. _pointeraliasing:
2936
2937Pointer Aliasing Rules
2938----------------------
2939
2940Any memory access must be done through a pointer value associated with
2941an address range of the memory access, otherwise the behavior is
2942undefined. Pointer values are associated with address ranges according
2943to the following rules:
2944
2945-  A pointer value is associated with the addresses associated with any
2946   value it is *based* on.
2947-  An address of a global variable is associated with the address range
2948   of the variable's storage.
2949-  The result value of an allocation instruction is associated with the
2950   address range of the allocated storage.
2951-  A null pointer in the default address-space is associated with no
2952   address.
2953-  An :ref:`undef value <undefvalues>` in *any* address-space is
2954   associated with no address.
2955-  An integer constant other than zero or a pointer value returned from
2956   a function not defined within LLVM may be associated with address
2957   ranges allocated through mechanisms other than those provided by
2958   LLVM. Such ranges shall not overlap with any ranges of addresses
2959   allocated by mechanisms provided by LLVM.
2960
2961A pointer value is *based* on another pointer value according to the
2962following rules:
2963
2964-  A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2965   the pointer-typed operand of the ``getelementptr``.
2966-  The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2967   is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2968   of the ``getelementptr``.
2969-  The result value of a ``bitcast`` is *based* on the operand of the
2970   ``bitcast``.
2971-  A pointer value formed by an ``inttoptr`` is *based* on all pointer
2972   values that contribute (directly or indirectly) to the computation of
2973   the pointer's value.
2974-  The "*based* on" relationship is transitive.
2975
2976Note that this definition of *"based"* is intentionally similar to the
2977definition of *"based"* in C99, though it is slightly weaker.
2978
2979LLVM IR does not associate types with memory. The result type of a
2980``load`` merely indicates the size and alignment of the memory from
2981which to load, as well as the interpretation of the value. The first
2982operand type of a ``store`` similarly only indicates the size and
2983alignment of the store.
2984
2985Consequently, type-based alias analysis, aka TBAA, aka
2986``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2987:ref:`Metadata <metadata>` may be used to encode additional information
2988which specialized optimization passes may use to implement type-based
2989alias analysis.
2990
2991.. _pointercapture:
2992
2993Pointer Capture
2994---------------
2995
2996Given a function call and a pointer that is passed as an argument or stored in
2997the memory before the call, a pointer is *captured* by the call if it makes a
2998copy of any part of the pointer that outlives the call.
2999To be precise, a pointer is captured if one or more of the following conditions
3000hold:
3001
30021. The call stores any bit of the pointer carrying information into a place,
3003   and the stored bits can be read from the place by the caller after this call
3004   exits.
3005
3006.. code-block:: llvm
3007
3008    @glb  = global ptr null
3009    @glb2 = global ptr null
3010    @glb3 = global ptr null
3011    @glbi = global i32 0
3012
3013    define ptr @f(ptr %a, ptr %b, ptr %c, ptr %d, ptr %e) {
3014      store ptr %a, ptr @glb ; %a is captured by this call
3015
3016      store ptr %b,   ptr @glb2 ; %b isn't captured because the stored value is overwritten by the store below
3017      store ptr null, ptr @glb2
3018
3019      store ptr %c,   ptr @glb3
3020      call void @g() ; If @g makes a copy of %c that outlives this call (@f), %c is captured
3021      store ptr null, ptr @glb3
3022
3023      %i = ptrtoint ptr %d to i64
3024      %j = trunc i64 %i to i32
3025      store i32 %j, ptr @glbi ; %d is captured
3026
3027      ret ptr %e ; %e is captured
3028    }
3029
30302. The call stores any bit of the pointer carrying information into a place,
3031   and the stored bits can be safely read from the place by another thread via
3032   synchronization.
3033
3034.. code-block:: llvm
3035
3036    @lock = global i1 true
3037
3038    define void @f(ptr %a) {
3039      store ptr %a, ptr* @glb
3040      store atomic i1 false, ptr @lock release ; %a is captured because another thread can safely read @glb
3041      store ptr null, ptr @glb
3042      ret void
3043    }
3044
30453. The call's behavior depends on any bit of the pointer carrying information.
3046
3047.. code-block:: llvm
3048
3049    @glb = global i8 0
3050
3051    define void @f(ptr %a) {
3052      %c = icmp eq ptr %a, @glb
3053      br i1 %c, label %BB_EXIT, label %BB_CONTINUE ; escapes %a
3054    BB_EXIT:
3055      call void @exit()
3056      unreachable
3057    BB_CONTINUE:
3058      ret void
3059    }
3060
30614. The pointer is used in a volatile access as its address.
3062
3063
3064.. _volatile:
3065
3066Volatile Memory Accesses
3067------------------------
3068
3069Certain memory accesses, such as :ref:`load <i_load>`'s,
3070:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
3071marked ``volatile``. The optimizers must not change the number of
3072volatile operations or change their order of execution relative to other
3073volatile operations. The optimizers *may* change the order of volatile
3074operations relative to non-volatile operations. This is not Java's
3075"volatile" and has no cross-thread synchronization behavior.
3076
3077A volatile load or store may have additional target-specific semantics.
3078Any volatile operation can have side effects, and any volatile operation
3079can read and/or modify state which is not accessible via a regular load
3080or store in this module. Volatile operations may use addresses which do
3081not point to memory (like MMIO registers). This means the compiler may
3082not use a volatile operation to prove a non-volatile access to that
3083address has defined behavior.
3084
3085The allowed side-effects for volatile accesses are limited.  If a
3086non-volatile store to a given address would be legal, a volatile
3087operation may modify the memory at that address. A volatile operation
3088may not modify any other memory accessible by the module being compiled.
3089A volatile operation may not call any code in the current module.
3090
3091In general (without target specific context), the address space of a
3092volatile operation may not be changed. Different address spaces may
3093have different trapping behavior when dereferencing an invalid
3094pointer.
3095
3096The compiler may assume execution will continue after a volatile operation,
3097so operations which modify memory or may have undefined behavior can be
3098hoisted past a volatile operation.
3099
3100As an exception to the preceding rule, the compiler may not assume execution
3101will continue after a volatile store operation. This restriction is necessary
3102to support the somewhat common pattern in C of intentionally storing to an
3103invalid pointer to crash the program. In the future, it might make sense to
3104allow frontends to control this behavior.
3105
3106IR-level volatile loads and stores cannot safely be optimized into llvm.memcpy
3107or llvm.memmove intrinsics even when those intrinsics are flagged volatile.
3108Likewise, the backend should never split or merge target-legal volatile
3109load/store instructions. Similarly, IR-level volatile loads and stores cannot
3110change from integer to floating-point or vice versa.
3111
3112.. admonition:: Rationale
3113
3114 Platforms may rely on volatile loads and stores of natively supported
3115 data width to be executed as single instruction. For example, in C
3116 this holds for an l-value of volatile primitive type with native
3117 hardware support, but not necessarily for aggregate types. The
3118 frontend upholds these expectations, which are intentionally
3119 unspecified in the IR. The rules above ensure that IR transformations
3120 do not violate the frontend's contract with the language.
3121
3122.. _memmodel:
3123
3124Memory Model for Concurrent Operations
3125--------------------------------------
3126
3127The LLVM IR does not define any way to start parallel threads of
3128execution or to register signal handlers. Nonetheless, there are
3129platform-specific ways to create them, and we define LLVM IR's behavior
3130in their presence. This model is inspired by the C++0x memory model.
3131
3132For a more informal introduction to this model, see the :doc:`Atomics`.
3133
3134We define a *happens-before* partial order as the least partial order
3135that
3136
3137-  Is a superset of single-thread program order, and
3138-  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
3139   ``b``. *Synchronizes-with* pairs are introduced by platform-specific
3140   techniques, like pthread locks, thread creation, thread joining,
3141   etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
3142   Constraints <ordering>`).
3143
3144Note that program order does not introduce *happens-before* edges
3145between a thread and signals executing inside that thread.
3146
3147Every (defined) read operation (load instructions, memcpy, atomic
3148loads/read-modify-writes, etc.) R reads a series of bytes written by
3149(defined) write operations (store instructions, atomic
3150stores/read-modify-writes, memcpy, etc.). For the purposes of this
3151section, initialized globals are considered to have a write of the
3152initializer which is atomic and happens before any other read or write
3153of the memory in question. For each byte of a read R, R\ :sub:`byte`
3154may see any write to the same byte, except:
3155
3156-  If write\ :sub:`1`  happens before write\ :sub:`2`, and
3157   write\ :sub:`2` happens before R\ :sub:`byte`, then
3158   R\ :sub:`byte` does not see write\ :sub:`1`.
3159-  If R\ :sub:`byte` happens before write\ :sub:`3`, then
3160   R\ :sub:`byte` does not see write\ :sub:`3`.
3161
3162Given that definition, R\ :sub:`byte` is defined as follows:
3163
3164-  If R is volatile, the result is target-dependent. (Volatile is
3165   supposed to give guarantees which can support ``sig_atomic_t`` in
3166   C/C++, and may be used for accesses to addresses that do not behave
3167   like normal memory. It does not generally provide cross-thread
3168   synchronization.)
3169-  Otherwise, if there is no write to the same byte that happens before
3170   R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
3171-  Otherwise, if R\ :sub:`byte` may see exactly one write,
3172   R\ :sub:`byte` returns the value written by that write.
3173-  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
3174   see are atomic, it chooses one of the values written. See the :ref:`Atomic
3175   Memory Ordering Constraints <ordering>` section for additional
3176   constraints on how the choice is made.
3177-  Otherwise R\ :sub:`byte` returns ``undef``.
3178
3179R returns the value composed of the series of bytes it read. This
3180implies that some bytes within the value may be ``undef`` **without**
3181the entire value being ``undef``. Note that this only defines the
3182semantics of the operation; it doesn't mean that targets will emit more
3183than one instruction to read the series of bytes.
3184
3185Note that in cases where none of the atomic intrinsics are used, this
3186model places only one restriction on IR transformations on top of what
3187is required for single-threaded execution: introducing a store to a byte
3188which might not otherwise be stored is not allowed in general.
3189(Specifically, in the case where another thread might write to and read
3190from an address, introducing a store can change a load that may see
3191exactly one write into a load that may see multiple writes.)
3192
3193.. _ordering:
3194
3195Atomic Memory Ordering Constraints
3196----------------------------------
3197
3198Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
3199:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
3200:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
3201ordering parameters that determine which other atomic instructions on
3202the same address they *synchronize with*. These semantics are borrowed
3203from Java and C++0x, but are somewhat more colloquial. If these
3204descriptions aren't precise enough, check those specs (see spec
3205references in the :doc:`atomics guide <Atomics>`).
3206:ref:`fence <i_fence>` instructions treat these orderings somewhat
3207differently since they don't take an address. See that instruction's
3208documentation for details.
3209
3210For a simpler introduction to the ordering constraints, see the
3211:doc:`Atomics`.
3212
3213``unordered``
3214    The set of values that can be read is governed by the happens-before
3215    partial order. A value cannot be read unless some operation wrote
3216    it. This is intended to provide a guarantee strong enough to model
3217    Java's non-volatile shared variables. This ordering cannot be
3218    specified for read-modify-write operations; it is not strong enough
3219    to make them atomic in any interesting way.
3220``monotonic``
3221    In addition to the guarantees of ``unordered``, there is a single
3222    total order for modifications by ``monotonic`` operations on each
3223    address. All modification orders must be compatible with the
3224    happens-before order. There is no guarantee that the modification
3225    orders can be combined to a global total order for the whole program
3226    (and this often will not be possible). The read in an atomic
3227    read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
3228    :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
3229    order immediately before the value it writes. If one atomic read
3230    happens before another atomic read of the same address, the later
3231    read must see the same value or a later value in the address's
3232    modification order. This disallows reordering of ``monotonic`` (or
3233    stronger) operations on the same address. If an address is written
3234    ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
3235    read that address repeatedly, the other threads must eventually see
3236    the write. This corresponds to the C++0x/C1x
3237    ``memory_order_relaxed``.
3238``acquire``
3239    In addition to the guarantees of ``monotonic``, a
3240    *synchronizes-with* edge may be formed with a ``release`` operation.
3241    This is intended to model C++'s ``memory_order_acquire``.
3242``release``
3243    In addition to the guarantees of ``monotonic``, if this operation
3244    writes a value which is subsequently read by an ``acquire``
3245    operation, it *synchronizes-with* that operation. (This isn't a
3246    complete description; see the C++0x definition of a release
3247    sequence.) This corresponds to the C++0x/C1x
3248    ``memory_order_release``.
3249``acq_rel`` (acquire+release)
3250    Acts as both an ``acquire`` and ``release`` operation on its
3251    address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
3252``seq_cst`` (sequentially consistent)
3253    In addition to the guarantees of ``acq_rel`` (``acquire`` for an
3254    operation that only reads, ``release`` for an operation that only
3255    writes), there is a global total order on all
3256    sequentially-consistent operations on all addresses, which is
3257    consistent with the *happens-before* partial order and with the
3258    modification orders of all the affected addresses. Each
3259    sequentially-consistent read sees the last preceding write to the
3260    same address in this global order. This corresponds to the C++0x/C1x
3261    ``memory_order_seq_cst`` and Java volatile.
3262
3263.. _syncscope:
3264
3265If an atomic operation is marked ``syncscope("singlethread")``, it only
3266*synchronizes with* and only participates in the seq\_cst total orderings of
3267other operations running in the same thread (for example, in signal handlers).
3268
3269If an atomic operation is marked ``syncscope("<target-scope>")``, where
3270``<target-scope>`` is a target specific synchronization scope, then it is target
3271dependent if it *synchronizes with* and participates in the seq\_cst total
3272orderings of other operations.
3273
3274Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
3275or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
3276seq\_cst total orderings of other operations that are not marked
3277``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
3278
3279.. _floatenv:
3280
3281Floating-Point Environment
3282--------------------------
3283
3284The default LLVM floating-point environment assumes that floating-point
3285instructions do not have side effects. Results assume the round-to-nearest
3286rounding mode. No floating-point exception state is maintained in this
3287environment. Therefore, there is no attempt to create or preserve invalid
3288operation (SNaN) or division-by-zero exceptions.
3289
3290The benefit of this exception-free assumption is that floating-point
3291operations may be speculated freely without any other fast-math relaxations
3292to the floating-point model.
3293
3294Code that requires different behavior than this should use the
3295:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
3296
3297.. _fastmath:
3298
3299Fast-Math Flags
3300---------------
3301
3302LLVM IR floating-point operations (:ref:`fneg <i_fneg>`, :ref:`fadd <i_fadd>`,
3303:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
3304:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`), :ref:`phi <i_phi>`,
3305:ref:`select <i_select>` and :ref:`call <i_call>`
3306may use the following flags to enable otherwise unsafe
3307floating-point transformations.
3308
3309``nnan``
3310   No NaNs - Allow optimizations to assume the arguments and result are not
3311   NaN. If an argument is a nan, or the result would be a nan, it produces
3312   a :ref:`poison value <poisonvalues>` instead.
3313
3314``ninf``
3315   No Infs - Allow optimizations to assume the arguments and result are not
3316   +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
3317   produces a :ref:`poison value <poisonvalues>` instead.
3318
3319``nsz``
3320   No Signed Zeros - Allow optimizations to treat the sign of a zero
3321   argument or zero result as insignificant. This does not imply that -0.0
3322   is poison and/or guaranteed to not exist in the operation.
3323
3324``arcp``
3325   Allow Reciprocal - Allow optimizations to use the reciprocal of an
3326   argument rather than perform division.
3327
3328``contract``
3329   Allow floating-point contraction (e.g. fusing a multiply followed by an
3330   addition into a fused multiply-and-add). This does not enable reassociating
3331   to form arbitrary contractions. For example, ``(a*b) + (c*d) + e`` can not
3332   be transformed into ``(a*b) + ((c*d) + e)`` to create two fma operations.
3333
3334``afn``
3335   Approximate functions - Allow substitution of approximate calculations for
3336   functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
3337   for places where this can apply to LLVM's intrinsic math functions.
3338
3339``reassoc``
3340   Allow reassociation transformations for floating-point instructions.
3341   This may dramatically change results in floating-point.
3342
3343``fast``
3344   This flag implies all of the others.
3345
3346.. _uselistorder:
3347
3348Use-list Order Directives
3349-------------------------
3350
3351Use-list directives encode the in-memory order of each use-list, allowing the
3352order to be recreated. ``<order-indexes>`` is a comma-separated list of
3353indexes that are assigned to the referenced value's uses. The referenced
3354value's use-list is immediately sorted by these indexes.
3355
3356Use-list directives may appear at function scope or global scope. They are not
3357instructions, and have no effect on the semantics of the IR. When they're at
3358function scope, they must appear after the terminator of the final basic block.
3359
3360If basic blocks have their address taken via ``blockaddress()`` expressions,
3361``uselistorder_bb`` can be used to reorder their use-lists from outside their
3362function's scope.
3363
3364:Syntax:
3365
3366::
3367
3368    uselistorder <ty> <value>, { <order-indexes> }
3369    uselistorder_bb @function, %block { <order-indexes> }
3370
3371:Examples:
3372
3373::
3374
3375    define void @foo(i32 %arg1, i32 %arg2) {
3376    entry:
3377      ; ... instructions ...
3378    bb:
3379      ; ... instructions ...
3380
3381      ; At function scope.
3382      uselistorder i32 %arg1, { 1, 0, 2 }
3383      uselistorder label %bb, { 1, 0 }
3384    }
3385
3386    ; At global scope.
3387    uselistorder ptr @global, { 1, 2, 0 }
3388    uselistorder i32 7, { 1, 0 }
3389    uselistorder i32 (i32) @bar, { 1, 0 }
3390    uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
3391
3392.. _source_filename:
3393
3394Source Filename
3395---------------
3396
3397The *source filename* string is set to the original module identifier,
3398which will be the name of the compiled source file when compiling from
3399source through the clang front end, for example. It is then preserved through
3400the IR and bitcode.
3401
3402This is currently necessary to generate a consistent unique global
3403identifier for local functions used in profile data, which prepends the
3404source file name to the local function name.
3405
3406The syntax for the source file name is simply:
3407
3408.. code-block:: text
3409
3410    source_filename = "/path/to/source.c"
3411
3412.. _typesystem:
3413
3414Type System
3415===========
3416
3417The LLVM type system is one of the most important features of the
3418intermediate representation. Being typed enables a number of
3419optimizations to be performed on the intermediate representation
3420directly, without having to do extra analyses on the side before the
3421transformation. A strong type system makes it easier to read the
3422generated code and enables novel analyses and transformations that are
3423not feasible to perform on normal three address code representations.
3424
3425.. _t_void:
3426
3427Void Type
3428---------
3429
3430:Overview:
3431
3432
3433The void type does not represent any value and has no size.
3434
3435:Syntax:
3436
3437
3438::
3439
3440      void
3441
3442
3443.. _t_function:
3444
3445Function Type
3446-------------
3447
3448:Overview:
3449
3450
3451The function type can be thought of as a function signature. It consists of a
3452return type and a list of formal parameter types. The return type of a function
3453type is a void type or first class type --- except for :ref:`label <t_label>`
3454and :ref:`metadata <t_metadata>` types.
3455
3456:Syntax:
3457
3458::
3459
3460      <returntype> (<parameter list>)
3461
3462...where '``<parameter list>``' is a comma-separated list of type
3463specifiers. Optionally, the parameter list may include a type ``...``, which
3464indicates that the function takes a variable number of arguments. Variable
3465argument functions can access their arguments with the :ref:`variable argument
3466handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
3467except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
3468
3469:Examples:
3470
3471+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3472| ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
3473+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3474| ``i32 (ptr, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` argument and returns an integer. This is the signature for ``printf`` in LLVM.                 |
3475+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3476| ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
3477+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3478
3479.. _t_firstclass:
3480
3481First Class Types
3482-----------------
3483
3484The :ref:`first class <t_firstclass>` types are perhaps the most important.
3485Values of these types are the only ones which can be produced by
3486instructions.
3487
3488.. _t_single_value:
3489
3490Single Value Types
3491^^^^^^^^^^^^^^^^^^
3492
3493These are the types that are valid in registers from CodeGen's perspective.
3494
3495.. _t_integer:
3496
3497Integer Type
3498""""""""""""
3499
3500:Overview:
3501
3502The integer type is a very simple type that simply specifies an
3503arbitrary bit width for the integer type desired. Any bit width from 1
3504bit to 2\ :sup:`23`\ (about 8 million) can be specified.
3505
3506:Syntax:
3507
3508::
3509
3510      iN
3511
3512The number of bits the integer will occupy is specified by the ``N``
3513value.
3514
3515Examples:
3516*********
3517
3518+----------------+------------------------------------------------+
3519| ``i1``         | a single-bit integer.                          |
3520+----------------+------------------------------------------------+
3521| ``i32``        | a 32-bit integer.                              |
3522+----------------+------------------------------------------------+
3523| ``i1942652``   | a really big integer of over 1 million bits.   |
3524+----------------+------------------------------------------------+
3525
3526.. _t_floating:
3527
3528Floating-Point Types
3529""""""""""""""""""""
3530
3531.. list-table::
3532   :header-rows: 1
3533
3534   * - Type
3535     - Description
3536
3537   * - ``half``
3538     - 16-bit floating-point value
3539
3540   * - ``bfloat``
3541     - 16-bit "brain" floating-point value (7-bit significand).  Provides the
3542       same number of exponent bits as ``float``, so that it matches its dynamic
3543       range, but with greatly reduced precision.  Used in Intel's AVX-512 BF16
3544       extensions and Arm's ARMv8.6-A extensions, among others.
3545
3546   * - ``float``
3547     - 32-bit floating-point value
3548
3549   * - ``double``
3550     - 64-bit floating-point value
3551
3552   * - ``fp128``
3553     - 128-bit floating-point value (113-bit significand)
3554
3555   * - ``x86_fp80``
3556     -  80-bit floating-point value (X87)
3557
3558   * - ``ppc_fp128``
3559     - 128-bit floating-point value (two 64-bits)
3560
3561The binary format of half, float, double, and fp128 correspond to the
3562IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
3563respectively.
3564
3565X86_amx Type
3566""""""""""""
3567
3568:Overview:
3569
3570The x86_amx type represents a value held in an AMX tile register on an x86
3571machine. The operations allowed on it are quite limited. Only few intrinsics
3572are allowed: stride load and store, zero and dot product. No instruction is
3573allowed for this type. There are no arguments, arrays, pointers, vectors
3574or constants of this type.
3575
3576:Syntax:
3577
3578::
3579
3580      x86_amx
3581
3582
3583X86_mmx Type
3584""""""""""""
3585
3586:Overview:
3587
3588The x86_mmx type represents a value held in an MMX register on an x86
3589machine. The operations allowed on it are quite limited: parameters and
3590return values, load and store, and bitcast. User-specified MMX
3591instructions are represented as intrinsic or asm calls with arguments
3592and/or results of this type. There are no arrays, vectors or constants
3593of this type.
3594
3595:Syntax:
3596
3597::
3598
3599      x86_mmx
3600
3601
3602.. _t_pointer:
3603
3604Pointer Type
3605""""""""""""
3606
3607:Overview:
3608
3609The pointer type ``ptr`` is used to specify memory locations. Pointers are
3610commonly used to reference objects in memory.
3611
3612Pointer types may have an optional address space attribute defining
3613the numbered address space where the pointed-to object resides. For
3614example, ``ptr addrspace(5)`` is a pointer to address space 5.
3615In addition to integer constants, ``addrspace`` can also reference one of the
3616address spaces defined in the :ref:`datalayout string<langref_datalayout>`.
3617``addrspace("A")`` will use the alloca address space, ``addrspace("G")``
3618the default globals address space and ``addrspace("P")`` the program address
3619space.
3620
3621The default address space is number zero.
3622
3623The semantics of non-zero address spaces are target-specific. Memory
3624access through a non-dereferenceable pointer is undefined behavior in
3625any address space. Pointers with the bit-value 0 are only assumed to
3626be non-dereferenceable in address space 0, unless the function is
3627marked with the ``null_pointer_is_valid`` attribute.
3628
3629If an object can be proven accessible through a pointer with a
3630different address space, the access may be modified to use that
3631address space. Exceptions apply if the operation is ``volatile``.
3632
3633Prior to LLVM 15, pointer types also specified a pointee type, such as
3634``i8*``, ``[4 x i32]*`` or ``i32 (i32*)*``. In LLVM 15, such "typed
3635pointers" are still supported under non-default options. See the
3636`opaque pointers document <OpaquePointers.html>`__ for more information.
3637
3638.. _t_target_type:
3639
3640Target Extension Type
3641"""""""""""""""""""""
3642
3643:Overview:
3644
3645Target extension types represent types that must be preserved through
3646optimization, but are otherwise generally opaque to the compiler. They may be
3647used as function parameters or arguments, and in :ref:`phi <i_phi>` or
3648:ref:`select <i_select>` instructions. Some types may be also used in
3649:ref:`alloca <i_alloca>` instructions or as global values, and correspondingly
3650it is legal to use :ref:`load <i_load>` and :ref:`store <i_store>` instructions
3651on them. Full semantics for these types are defined by the target.
3652
3653The only constants that target extension types may have are ``zeroinitializer``,
3654``undef``, and ``poison``. Other possible values for target extension types may
3655arise from target-specific intrinsics and functions.
3656
3657These types cannot be converted to other types. As such, it is not legal to use
3658them in :ref:`bitcast <i_bitcast>` instructions (as a source or target type),
3659nor is it legal to use them in :ref:`ptrtoint <i_ptrtoint>` or
3660:ref:`inttoptr <i_inttoptr>` instructions. Similarly, they are not legal to use
3661in an :ref:`icmp <i_icmp>` instruction.
3662
3663Target extension types have a name and optional type or integer parameters. The
3664meanings of name and parameters are defined by the target. When being defined in
3665LLVM IR, all of the type parameters must precede all of the integer parameters.
3666
3667Specific target extension types are registered with LLVM as having specific
3668properties. These properties can be used to restrict the type from appearing in
3669certain contexts, such as being the type of a global variable or having a
3670``zeroinitializer`` constant be valid. A complete list of type properties may be
3671found in the documentation for ``llvm::TargetExtType::Property`` (`doxygen
3672<https://llvm.org/doxygen/classllvm_1_1TargetExtType.html>`_).
3673
3674:Syntax:
3675
3676.. code-block:: llvm
3677
3678      target("label")
3679      target("label", void)
3680      target("label", void, i32)
3681      target("label", 0, 1, 2)
3682      target("label", void, i32, 0, 1, 2)
3683
3684
3685.. _t_vector:
3686
3687Vector Type
3688"""""""""""
3689
3690:Overview:
3691
3692A vector type is a simple derived type that represents a vector of
3693elements. Vector types are used when multiple primitive data are
3694operated in parallel using a single instruction (SIMD). A vector type
3695requires a size (number of elements), an underlying primitive data type,
3696and a scalable property to represent vectors where the exact hardware
3697vector length is unknown at compile time. Vector types are considered
3698:ref:`first class <t_firstclass>`.
3699
3700:Memory Layout:
3701
3702In general vector elements are laid out in memory in the same way as
3703:ref:`array types <t_array>`. Such an analogy works fine as long as the vector
3704elements are byte sized. However, when the elements of the vector aren't byte
3705sized it gets a bit more complicated. One way to describe the layout is by
3706describing what happens when a vector such as <N x iM> is bitcasted to an
3707integer type with N*M bits, and then following the rules for storing such an
3708integer to memory.
3709
3710A bitcast from a vector type to a scalar integer type will see the elements
3711being packed together (without padding). The order in which elements are
3712inserted in the integer depends on endianess. For little endian element zero
3713is put in the least significant bits of the integer, and for big endian
3714element zero is put in the most significant bits.
3715
3716Using a vector such as ``<i4 1, i4 2, i4 3, i4 5>`` as an example, together
3717with the analogy that we can replace a vector store by a bitcast followed by
3718an integer store, we get this for big endian:
3719
3720.. code-block:: llvm
3721
3722      %val = bitcast <4 x i4> <i4 1, i4 2, i4 3, i4 5> to i16
3723
3724      ; Bitcasting from a vector to an integral type can be seen as
3725      ; concatenating the values:
3726      ;   %val now has the hexadecimal value 0x1235.
3727
3728      store i16 %val, ptr %ptr
3729
3730      ; In memory the content will be (8-bit addressing):
3731      ;
3732      ;    [%ptr + 0]: 00010010  (0x12)
3733      ;    [%ptr + 1]: 00110101  (0x35)
3734
3735The same example for little endian:
3736
3737.. code-block:: llvm
3738
3739      %val = bitcast <4 x i4> <i4 1, i4 2, i4 3, i4 5> to i16
3740
3741      ; Bitcasting from a vector to an integral type can be seen as
3742      ; concatenating the values:
3743      ;   %val now has the hexadecimal value 0x5321.
3744
3745      store i16 %val, ptr %ptr
3746
3747      ; In memory the content will be (8-bit addressing):
3748      ;
3749      ;    [%ptr + 0]: 01010011  (0x53)
3750      ;    [%ptr + 1]: 00100001  (0x21)
3751
3752When ``<N*M>`` isn't evenly divisible by the byte size the exact memory layout
3753is unspecified (just like it is for an integral type of the same size). This
3754is because different targets could put the padding at different positions when
3755the type size is smaller than the type's store size.
3756
3757:Syntax:
3758
3759::
3760
3761      < <# elements> x <elementtype> >          ; Fixed-length vector
3762      < vscale x <# elements> x <elementtype> > ; Scalable vector
3763
3764The number of elements is a constant integer value larger than 0;
3765elementtype may be any integer, floating-point or pointer type. Vectors
3766of size zero are not allowed. For scalable vectors, the total number of
3767elements is a constant multiple (called vscale) of the specified number
3768of elements; vscale is a positive integer that is unknown at compile time
3769and the same hardware-dependent constant for all scalable vectors at run
3770time. The size of a specific scalable vector type is thus constant within
3771IR, even if the exact size in bytes cannot be determined until run time.
3772
3773:Examples:
3774
3775+------------------------+----------------------------------------------------+
3776| ``<4 x i32>``          | Vector of 4 32-bit integer values.                 |
3777+------------------------+----------------------------------------------------+
3778| ``<8 x float>``        | Vector of 8 32-bit floating-point values.          |
3779+------------------------+----------------------------------------------------+
3780| ``<2 x i64>``          | Vector of 2 64-bit integer values.                 |
3781+------------------------+----------------------------------------------------+
3782| ``<4 x ptr>``          | Vector of 4 pointers                               |
3783+------------------------+----------------------------------------------------+
3784| ``<vscale x 4 x i32>`` | Vector with a multiple of 4 32-bit integer values. |
3785+------------------------+----------------------------------------------------+
3786
3787.. _t_label:
3788
3789Label Type
3790^^^^^^^^^^
3791
3792:Overview:
3793
3794The label type represents code labels.
3795
3796:Syntax:
3797
3798::
3799
3800      label
3801
3802.. _t_token:
3803
3804Token Type
3805^^^^^^^^^^
3806
3807:Overview:
3808
3809The token type is used when a value is associated with an instruction
3810but all uses of the value must not attempt to introspect or obscure it.
3811As such, it is not appropriate to have a :ref:`phi <i_phi>` or
3812:ref:`select <i_select>` of type token.
3813
3814:Syntax:
3815
3816::
3817
3818      token
3819
3820
3821
3822.. _t_metadata:
3823
3824Metadata Type
3825^^^^^^^^^^^^^
3826
3827:Overview:
3828
3829The metadata type represents embedded metadata. No derived types may be
3830created from metadata except for :ref:`function <t_function>` arguments.
3831
3832:Syntax:
3833
3834::
3835
3836      metadata
3837
3838.. _t_aggregate:
3839
3840Aggregate Types
3841^^^^^^^^^^^^^^^
3842
3843Aggregate Types are a subset of derived types that can contain multiple
3844member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
3845aggregate types. :ref:`Vectors <t_vector>` are not considered to be
3846aggregate types.
3847
3848.. _t_array:
3849
3850Array Type
3851""""""""""
3852
3853:Overview:
3854
3855The array type is a very simple derived type that arranges elements
3856sequentially in memory. The array type requires a size (number of
3857elements) and an underlying data type.
3858
3859:Syntax:
3860
3861::
3862
3863      [<# elements> x <elementtype>]
3864
3865The number of elements is a constant integer value; ``elementtype`` may
3866be any type with a size.
3867
3868:Examples:
3869
3870+------------------+--------------------------------------+
3871| ``[40 x i32]``   | Array of 40 32-bit integer values.   |
3872+------------------+--------------------------------------+
3873| ``[41 x i32]``   | Array of 41 32-bit integer values.   |
3874+------------------+--------------------------------------+
3875| ``[4 x i8]``     | Array of 4 8-bit integer values.     |
3876+------------------+--------------------------------------+
3877
3878Here are some examples of multidimensional arrays:
3879
3880+-----------------------------+----------------------------------------------------------+
3881| ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
3882+-----------------------------+----------------------------------------------------------+
3883| ``[12 x [10 x float]]``     | 12x10 array of single precision floating-point values.   |
3884+-----------------------------+----------------------------------------------------------+
3885| ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
3886+-----------------------------+----------------------------------------------------------+
3887
3888There is no restriction on indexing beyond the end of the array implied
3889by a static type (though there are restrictions on indexing beyond the
3890bounds of an allocated object in some cases). This means that
3891single-dimension 'variable sized array' addressing can be implemented in
3892LLVM with a zero length array type. An implementation of 'pascal style
3893arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
3894example.
3895
3896.. _t_struct:
3897
3898Structure Type
3899""""""""""""""
3900
3901:Overview:
3902
3903The structure type is used to represent a collection of data members
3904together in memory. The elements of a structure may be any type that has
3905a size.
3906
3907Structures in memory are accessed using '``load``' and '``store``' by
3908getting a pointer to a field with the '``getelementptr``' instruction.
3909Structures in registers are accessed using the '``extractvalue``' and
3910'``insertvalue``' instructions.
3911
3912Structures may optionally be "packed" structures, which indicate that
3913the alignment of the struct is one byte, and that there is no padding
3914between the elements. In non-packed structs, padding between field types
3915is inserted as defined by the DataLayout string in the module, which is
3916required to match what the underlying code generator expects.
3917
3918Structures can either be "literal" or "identified". A literal structure
3919is defined inline with other types (e.g. ``[2 x {i32, i32}]``) whereas
3920identified types are always defined at the top level with a name.
3921Literal types are uniqued by their contents and can never be recursive
3922or opaque since there is no way to write one. Identified types can be
3923recursive, can be opaqued, and are never uniqued.
3924
3925:Syntax:
3926
3927::
3928
3929      %T1 = type { <type list> }     ; Identified normal struct type
3930      %T2 = type <{ <type list> }>   ; Identified packed struct type
3931
3932:Examples:
3933
3934+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3935| ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
3936+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3937| ``{ float, ptr }``           | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>`.                                                                                |
3938+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3939| ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
3940+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3941
3942.. _t_opaque:
3943
3944Opaque Structure Types
3945""""""""""""""""""""""
3946
3947:Overview:
3948
3949Opaque structure types are used to represent structure types that
3950do not have a body specified. This corresponds (for example) to the C
3951notion of a forward declared structure. They can be named (``%X``) or
3952unnamed (``%52``).
3953
3954:Syntax:
3955
3956::
3957
3958      %X = type opaque
3959      %52 = type opaque
3960
3961:Examples:
3962
3963+--------------+-------------------+
3964| ``opaque``   | An opaque type.   |
3965+--------------+-------------------+
3966
3967.. _constants:
3968
3969Constants
3970=========
3971
3972LLVM has several different basic types of constants. This section
3973describes them all and their syntax.
3974
3975Simple Constants
3976----------------
3977
3978**Boolean constants**
3979    The two strings '``true``' and '``false``' are both valid constants
3980    of the ``i1`` type.
3981**Integer constants**
3982    Standard integers (such as '4') are constants of the
3983    :ref:`integer <t_integer>` type. Negative numbers may be used with
3984    integer types.
3985**Floating-point constants**
3986    Floating-point constants use standard decimal notation (e.g.
3987    123.421), exponential notation (e.g. 1.23421e+2), or a more precise
3988    hexadecimal notation (see below). The assembler requires the exact
3989    decimal value of a floating-point constant. For example, the
3990    assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
3991    decimal in binary. Floating-point constants must have a
3992    :ref:`floating-point <t_floating>` type.
3993**Null pointer constants**
3994    The identifier '``null``' is recognized as a null pointer constant
3995    and must be of :ref:`pointer type <t_pointer>`.
3996**Token constants**
3997    The identifier '``none``' is recognized as an empty token constant
3998    and must be of :ref:`token type <t_token>`.
3999
4000The one non-intuitive notation for constants is the hexadecimal form of
4001floating-point constants. For example, the form
4002'``double    0x432ff973cafa8000``' is equivalent to (but harder to read
4003than) '``double 4.5e+15``'. The only time hexadecimal floating-point
4004constants are required (and the only time that they are generated by the
4005disassembler) is when a floating-point constant must be emitted but it
4006cannot be represented as a decimal floating-point number in a reasonable
4007number of digits. For example, NaN's, infinities, and other special
4008values are represented in their IEEE hexadecimal format so that assembly
4009and disassembly do not cause any bits to change in the constants.
4010
4011When using the hexadecimal form, constants of types bfloat, half, float, and
4012double are represented using the 16-digit form shown above (which matches the
4013IEEE754 representation for double); bfloat, half and float values must, however,
4014be exactly representable as bfloat, IEEE 754 half, and IEEE 754 single
4015precision respectively. Hexadecimal format is always used for long double, and
4016there are three forms of long double. The 80-bit format used by x86 is
4017represented as ``0xK`` followed by 20 hexadecimal digits. The 128-bit format
4018used by PowerPC (two adjacent doubles) is represented by ``0xM`` followed by 32
4019hexadecimal digits. The IEEE 128-bit format is represented by ``0xL`` followed
4020by 32 hexadecimal digits. Long doubles will only work if they match the long
4021double format on your target.  The IEEE 16-bit format (half precision) is
4022represented by ``0xH`` followed by 4 hexadecimal digits. The bfloat 16-bit
4023format is represented by ``0xR`` followed by 4 hexadecimal digits. All
4024hexadecimal formats are big-endian (sign bit at the left).
4025
4026There are no constants of type x86_mmx and x86_amx.
4027
4028.. _complexconstants:
4029
4030Complex Constants
4031-----------------
4032
4033Complex constants are a (potentially recursive) combination of simple
4034constants and smaller complex constants.
4035
4036**Structure constants**
4037    Structure constants are represented with notation similar to
4038    structure type definitions (a comma separated list of elements,
4039    surrounded by braces (``{}``)). For example:
4040    "``{ i32 4, float 17.0, ptr @G }``", where "``@G``" is declared as
4041    "``@G = external global i32``". Structure constants must have
4042    :ref:`structure type <t_struct>`, and the number and types of elements
4043    must match those specified by the type.
4044**Array constants**
4045    Array constants are represented with notation similar to array type
4046    definitions (a comma separated list of elements, surrounded by
4047    square brackets (``[]``)). For example:
4048    "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
4049    :ref:`array type <t_array>`, and the number and types of elements must
4050    match those specified by the type. As a special case, character array
4051    constants may also be represented as a double-quoted string using the ``c``
4052    prefix. For example: "``c"Hello World\0A\00"``".
4053**Vector constants**
4054    Vector constants are represented with notation similar to vector
4055    type definitions (a comma separated list of elements, surrounded by
4056    less-than/greater-than's (``<>``)). For example:
4057    "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
4058    must have :ref:`vector type <t_vector>`, and the number and types of
4059    elements must match those specified by the type.
4060**Zero initialization**
4061    The string '``zeroinitializer``' can be used to zero initialize a
4062    value to zero of *any* type, including scalar and
4063    :ref:`aggregate <t_aggregate>` types. This is often used to avoid
4064    having to print large zero initializers (e.g. for large arrays) and
4065    is always exactly equivalent to using explicit zero initializers.
4066**Metadata node**
4067    A metadata node is a constant tuple without types. For example:
4068    "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
4069    for example: "``!{!0, i32 0, ptr @global, ptr @function, !"str"}``".
4070    Unlike other typed constants that are meant to be interpreted as part of
4071    the instruction stream, metadata is a place to attach additional
4072    information such as debug info.
4073
4074Global Variable and Function Addresses
4075--------------------------------------
4076
4077The addresses of :ref:`global variables <globalvars>` and
4078:ref:`functions <functionstructure>` are always implicitly valid
4079(link-time) constants. These constants are explicitly referenced when
4080the :ref:`identifier for the global <identifiers>` is used and always have
4081:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
4082file:
4083
4084.. code-block:: llvm
4085
4086    @X = global i32 17
4087    @Y = global i32 42
4088    @Z = global [2 x ptr] [ ptr @X, ptr @Y ]
4089
4090.. _undefvalues:
4091
4092Undefined Values
4093----------------
4094
4095The string '``undef``' can be used anywhere a constant is expected, and
4096indicates that the user of the value may receive an unspecified
4097bit-pattern. Undefined values may be of any type (other than '``label``'
4098or '``void``') and be used anywhere a constant is permitted.
4099
4100.. note::
4101
4102  A '``poison``' value (decribed in the next section) should be used instead of
4103  '``undef``' whenever possible. Poison values are stronger than undef, and
4104  enable more optimizations. Just the existence of '``undef``' blocks certain
4105  optimizations (see the examples below).
4106
4107Undefined values are useful because they indicate to the compiler that
4108the program is well defined no matter what value is used. This gives the
4109compiler more freedom to optimize. Here are some examples of
4110(potentially surprising) transformations that are valid (in pseudo IR):
4111
4112.. code-block:: llvm
4113
4114      %A = add %X, undef
4115      %B = sub %X, undef
4116      %C = xor %X, undef
4117    Safe:
4118      %A = undef
4119      %B = undef
4120      %C = undef
4121
4122This is safe because all of the output bits are affected by the undef
4123bits. Any output bit can have a zero or one depending on the input bits.
4124
4125.. code-block:: llvm
4126
4127      %A = or %X, undef
4128      %B = and %X, undef
4129    Safe:
4130      %A = -1
4131      %B = 0
4132    Safe:
4133      %A = %X  ;; By choosing undef as 0
4134      %B = %X  ;; By choosing undef as -1
4135    Unsafe:
4136      %A = undef
4137      %B = undef
4138
4139These logical operations have bits that are not always affected by the
4140input. For example, if ``%X`` has a zero bit, then the output of the
4141'``and``' operation will always be a zero for that bit, no matter what
4142the corresponding bit from the '``undef``' is. As such, it is unsafe to
4143optimize or assume that the result of the '``and``' is '``undef``'.
4144However, it is safe to assume that all bits of the '``undef``' could be
41450, and optimize the '``and``' to 0. Likewise, it is safe to assume that
4146all the bits of the '``undef``' operand to the '``or``' could be set,
4147allowing the '``or``' to be folded to -1.
4148
4149.. code-block:: llvm
4150
4151      %A = select undef, %X, %Y
4152      %B = select undef, 42, %Y
4153      %C = select %X, %Y, undef
4154    Safe:
4155      %A = %X     (or %Y)
4156      %B = 42     (or %Y)
4157      %C = %Y     (if %Y is provably not poison; unsafe otherwise)
4158    Unsafe:
4159      %A = undef
4160      %B = undef
4161      %C = undef
4162
4163This set of examples shows that undefined '``select``' (and conditional
4164branch) conditions can go *either way*, but they have to come from one
4165of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
4166both known to have a clear low bit, then ``%A`` would have to have a
4167cleared low bit. However, in the ``%C`` example, the optimizer is
4168allowed to assume that the '``undef``' operand could be the same as
4169``%Y`` if ``%Y`` is provably not '``poison``', allowing the whole '``select``'
4170to be eliminated. This is because '``poison``' is stronger than '``undef``'.
4171
4172.. code-block:: llvm
4173
4174      %A = xor undef, undef
4175
4176      %B = undef
4177      %C = xor %B, %B
4178
4179      %D = undef
4180      %E = icmp slt %D, 4
4181      %F = icmp gte %D, 4
4182
4183    Safe:
4184      %A = undef
4185      %B = undef
4186      %C = undef
4187      %D = undef
4188      %E = undef
4189      %F = undef
4190
4191This example points out that two '``undef``' operands are not
4192necessarily the same. This can be surprising to people (and also matches
4193C semantics) where they assume that "``X^X``" is always zero, even if
4194``X`` is undefined. This isn't true for a number of reasons, but the
4195short answer is that an '``undef``' "variable" can arbitrarily change
4196its value over its "live range". This is true because the variable
4197doesn't actually *have a live range*. Instead, the value is logically
4198read from arbitrary registers that happen to be around when needed, so
4199the value is not necessarily consistent over time. In fact, ``%A`` and
4200``%C`` need to have the same semantics or the core LLVM "replace all
4201uses with" concept would not hold.
4202
4203To ensure all uses of a given register observe the same value (even if
4204'``undef``'), the :ref:`freeze instruction <i_freeze>` can be used.
4205
4206.. code-block:: llvm
4207
4208      %A = sdiv undef, %X
4209      %B = sdiv %X, undef
4210    Safe:
4211      %A = 0
4212    b: unreachable
4213
4214These examples show the crucial difference between an *undefined value*
4215and *undefined behavior*. An undefined value (like '``undef``') is
4216allowed to have an arbitrary bit-pattern. This means that the ``%A``
4217operation can be constant folded to '``0``', because the '``undef``'
4218could be zero, and zero divided by any value is zero.
4219However, in the second example, we can make a more aggressive
4220assumption: because the ``undef`` is allowed to be an arbitrary value,
4221we are allowed to assume that it could be zero. Since a divide by zero
4222has *undefined behavior*, we are allowed to assume that the operation
4223does not execute at all. This allows us to delete the divide and all
4224code after it. Because the undefined operation "can't happen", the
4225optimizer can assume that it occurs in dead code.
4226
4227.. code-block:: text
4228
4229    a:  store undef -> %X
4230    b:  store %X -> undef
4231    Safe:
4232    a: <deleted>     (if the stored value in %X is provably not poison)
4233    b: unreachable
4234
4235A store *of* an undefined value can be assumed to not have any effect;
4236we can assume that the value is overwritten with bits that happen to
4237match what was already there. This argument is only valid if the stored value
4238is provably not ``poison``. However, a store *to* an undefined
4239location could clobber arbitrary memory, therefore, it has undefined
4240behavior.
4241
4242Branching on an undefined value is undefined behavior.
4243This explains optimizations that depend on branch conditions to construct
4244predicates, such as Correlated Value Propagation and Global Value Numbering.
4245In case of switch instruction, the branch condition should be frozen, otherwise
4246it is undefined behavior.
4247
4248.. code-block:: llvm
4249
4250    Unsafe:
4251      br undef, BB1, BB2 ; UB
4252
4253      %X = and i32 undef, 255
4254      switch %X, label %ret [ .. ] ; UB
4255
4256      store undef, ptr %ptr
4257      %X = load ptr %ptr ; %X is undef
4258      switch i8 %X, label %ret [ .. ] ; UB
4259
4260    Safe:
4261      %X = or i8 undef, 255 ; always 255
4262      switch i8 %X, label %ret [ .. ] ; Well-defined
4263
4264      %X = freeze i1 undef
4265      br %X, BB1, BB2 ; Well-defined (non-deterministic jump)
4266
4267
4268
4269.. _poisonvalues:
4270
4271Poison Values
4272-------------
4273
4274A poison value is a result of an erroneous operation.
4275In order to facilitate speculative execution, many instructions do not
4276invoke immediate undefined behavior when provided with illegal operands,
4277and return a poison value instead.
4278The string '``poison``' can be used anywhere a constant is expected, and
4279operations such as :ref:`add <i_add>` with the ``nsw`` flag can produce
4280a poison value.
4281
4282Most instructions return '``poison``' when one of their arguments is
4283'``poison``'. A notable exception is the :ref:`select instruction <i_select>`.
4284Propagation of poison can be stopped with the
4285:ref:`freeze instruction <i_freeze>`.
4286
4287It is correct to replace a poison value with an
4288:ref:`undef value <undefvalues>` or any value of the type.
4289
4290This means that immediate undefined behavior occurs if a poison value is
4291used as an instruction operand that has any values that trigger undefined
4292behavior. Notably this includes (but is not limited to):
4293
4294-  The pointer operand of a :ref:`load <i_load>`, :ref:`store <i_store>` or
4295   any other pointer dereferencing instruction (independent of address
4296   space).
4297-  The divisor operand of a ``udiv``, ``sdiv``, ``urem`` or ``srem``
4298   instruction.
4299-  The condition operand of a :ref:`br <i_br>` instruction.
4300-  The callee operand of a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
4301   instruction.
4302-  The parameter operand of a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
4303   instruction, when the function or invoking call site has a ``noundef``
4304   attribute in the corresponding position.
4305-  The operand of a :ref:`ret <i_ret>` instruction if the function or invoking
4306   call site has a `noundef` attribute in the return value position.
4307
4308Here are some examples:
4309
4310.. code-block:: llvm
4311
4312    entry:
4313      %poison = sub nuw i32 0, 1           ; Results in a poison value.
4314      %poison2 = sub i32 poison, 1         ; Also results in a poison value.
4315      %still_poison = and i32 %poison, 0   ; 0, but also poison.
4316      %poison_yet_again = getelementptr i32, ptr @h, i32 %still_poison
4317      store i32 0, ptr %poison_yet_again   ; Undefined behavior due to
4318                                           ; store to poison.
4319
4320      store i32 %poison, ptr @g            ; Poison value stored to memory.
4321      %poison3 = load i32, ptr @g          ; Poison value loaded back from memory.
4322
4323      %poison4 = load i16, ptr @g          ; Returns a poison value.
4324      %poison5 = load i64, ptr @g          ; Returns a poison value.
4325
4326      %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
4327      br i1 %cmp, label %end, label %end   ; undefined behavior
4328
4329    end:
4330
4331.. _welldefinedvalues:
4332
4333Well-Defined Values
4334-------------------
4335
4336Given a program execution, a value is *well defined* if the value does not
4337have an undef bit and is not poison in the execution.
4338An aggregate value or vector is well defined if its elements are well defined.
4339The padding of an aggregate isn't considered, since it isn't visible
4340without storing it into memory and loading it with a different type.
4341
4342A constant of a :ref:`single value <t_single_value>`, non-vector type is well
4343defined if it is neither '``undef``' constant nor '``poison``' constant.
4344The result of :ref:`freeze instruction <i_freeze>` is well defined regardless
4345of its operand.
4346
4347.. _blockaddress:
4348
4349Addresses of Basic Blocks
4350-------------------------
4351
4352``blockaddress(@function, %block)``
4353
4354The '``blockaddress``' constant computes the address of the specified
4355basic block in the specified function.
4356
4357It always has an ``ptr addrspace(P)`` type, where ``P`` is the address space
4358of the function containing ``%block`` (usually ``addrspace(0)``).
4359
4360Taking the address of the entry block is illegal.
4361
4362This value only has defined behavior when used as an operand to the
4363':ref:`indirectbr <i_indirectbr>`' or for comparisons against null. Pointer
4364equality tests between labels addresses results in undefined behavior ---
4365though, again, comparison against null is ok, and no label is equal to the null
4366pointer. This may be passed around as an opaque pointer sized value as long as
4367the bits are not inspected. This allows ``ptrtoint`` and arithmetic to be
4368performed on these values so long as the original value is reconstituted before
4369the ``indirectbr`` instruction.
4370
4371Finally, some targets may provide defined semantics when using the value
4372as the operand to an inline assembly, but that is target specific.
4373
4374.. _dso_local_equivalent:
4375
4376DSO Local Equivalent
4377--------------------
4378
4379``dso_local_equivalent @func``
4380
4381A '``dso_local_equivalent``' constant represents a function which is
4382functionally equivalent to a given function, but is always defined in the
4383current linkage unit. The resulting pointer has the same type as the underlying
4384function. The resulting pointer is permitted, but not required, to be different
4385from a pointer to the function, and it may have different values in different
4386translation units.
4387
4388The target function may not have ``extern_weak`` linkage.
4389
4390``dso_local_equivalent`` can be implemented as such:
4391
4392- If the function has local linkage, hidden visibility, or is
4393  ``dso_local``, ``dso_local_equivalent`` can be implemented as simply a pointer
4394  to the function.
4395- ``dso_local_equivalent`` can be implemented with a stub that tail-calls the
4396  function. Many targets support relocations that resolve at link time to either
4397  a function or a stub for it, depending on if the function is defined within the
4398  linkage unit; LLVM will use this when available. (This is commonly called a
4399  "PLT stub".) On other targets, the stub may need to be emitted explicitly.
4400
4401This can be used wherever a ``dso_local`` instance of a function is needed without
4402needing to explicitly make the original function ``dso_local``. An instance where
4403this can be used is for static offset calculations between a function and some other
4404``dso_local`` symbol. This is especially useful for the Relative VTables C++ ABI,
4405where dynamic relocations for function pointers in VTables can be replaced with
4406static relocations for offsets between the VTable and virtual functions which
4407may not be ``dso_local``.
4408
4409This is currently only supported for ELF binary formats.
4410
4411.. _no_cfi:
4412
4413No CFI
4414------
4415
4416``no_cfi @func``
4417
4418With `Control-Flow Integrity (CFI)
4419<https://clang.llvm.org/docs/ControlFlowIntegrity.html>`_, a '``no_cfi``'
4420constant represents a function reference that does not get replaced with a
4421reference to the CFI jump table in the ``LowerTypeTests`` pass. These constants
4422may be useful in low-level programs, such as operating system kernels, which
4423need to refer to the actual function body.
4424
4425.. _constantexprs:
4426
4427Constant Expressions
4428--------------------
4429
4430Constant expressions are used to allow expressions involving other
4431constants to be used as constants. Constant expressions may be of any
4432:ref:`first class <t_firstclass>` type and may involve any LLVM operation
4433that does not have side effects (e.g. load and call are not supported).
4434The following is the syntax for constant expressions:
4435
4436``trunc (CST to TYPE)``
4437    Perform the :ref:`trunc operation <i_trunc>` on constants.
4438``zext (CST to TYPE)``
4439    Perform the :ref:`zext operation <i_zext>` on constants.
4440``sext (CST to TYPE)``
4441    Perform the :ref:`sext operation <i_sext>` on constants.
4442``fptrunc (CST to TYPE)``
4443    Truncate a floating-point constant to another floating-point type.
4444    The size of CST must be larger than the size of TYPE. Both types
4445    must be floating-point.
4446``fpext (CST to TYPE)``
4447    Floating-point extend a constant to another type. The size of CST
4448    must be smaller or equal to the size of TYPE. Both types must be
4449    floating-point.
4450``fptoui (CST to TYPE)``
4451    Convert a floating-point constant to the corresponding unsigned
4452    integer constant. TYPE must be a scalar or vector integer type. CST
4453    must be of scalar or vector floating-point type. Both CST and TYPE
4454    must be scalars, or vectors of the same number of elements. If the
4455    value won't fit in the integer type, the result is a
4456    :ref:`poison value <poisonvalues>`.
4457``fptosi (CST to TYPE)``
4458    Convert a floating-point constant to the corresponding signed
4459    integer constant. TYPE must be a scalar or vector integer type. CST
4460    must be of scalar or vector floating-point type. Both CST and TYPE
4461    must be scalars, or vectors of the same number of elements. If the
4462    value won't fit in the integer type, the result is a
4463    :ref:`poison value <poisonvalues>`.
4464``uitofp (CST to TYPE)``
4465    Convert an unsigned integer constant to the corresponding
4466    floating-point constant. TYPE must be a scalar or vector floating-point
4467    type.  CST must be of scalar or vector integer type. Both CST and TYPE must
4468    be scalars, or vectors of the same number of elements.
4469``sitofp (CST to TYPE)``
4470    Convert a signed integer constant to the corresponding floating-point
4471    constant. TYPE must be a scalar or vector floating-point type.
4472    CST must be of scalar or vector integer type. Both CST and TYPE must
4473    be scalars, or vectors of the same number of elements.
4474``ptrtoint (CST to TYPE)``
4475    Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
4476``inttoptr (CST to TYPE)``
4477    Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
4478    This one is *really* dangerous!
4479``bitcast (CST to TYPE)``
4480    Convert a constant, CST, to another TYPE.
4481    The constraints of the operands are the same as those for the
4482    :ref:`bitcast instruction <i_bitcast>`.
4483``addrspacecast (CST to TYPE)``
4484    Convert a constant pointer or constant vector of pointer, CST, to another
4485    TYPE in a different address space. The constraints of the operands are the
4486    same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
4487``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
4488    Perform the :ref:`getelementptr operation <i_getelementptr>` on
4489    constants. As with the :ref:`getelementptr <i_getelementptr>`
4490    instruction, the index list may have one or more indexes, which are
4491    required to make sense for the type of "pointer to TY".
4492``select (COND, VAL1, VAL2)``
4493    Perform the :ref:`select operation <i_select>` on constants.
4494``icmp COND (VAL1, VAL2)``
4495    Perform the :ref:`icmp operation <i_icmp>` on constants.
4496``fcmp COND (VAL1, VAL2)``
4497    Perform the :ref:`fcmp operation <i_fcmp>` on constants.
4498``extractelement (VAL, IDX)``
4499    Perform the :ref:`extractelement operation <i_extractelement>` on
4500    constants.
4501``insertelement (VAL, ELT, IDX)``
4502    Perform the :ref:`insertelement operation <i_insertelement>` on
4503    constants.
4504``shufflevector (VEC1, VEC2, IDXMASK)``
4505    Perform the :ref:`shufflevector operation <i_shufflevector>` on
4506    constants.
4507``extractvalue (VAL, IDX0, IDX1, ...)``
4508    Perform the :ref:`extractvalue operation <i_extractvalue>` on
4509    constants. The index list is interpreted in a similar manner as
4510    indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
4511    least one index value must be specified.
4512``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
4513    Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
4514    The index list is interpreted in a similar manner as indices in a
4515    ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
4516    value must be specified.
4517``OPCODE (LHS, RHS)``
4518    Perform the specified operation of the LHS and RHS constants. OPCODE
4519    may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
4520    binary <bitwiseops>` operations. The constraints on operands are
4521    the same as those for the corresponding instruction (e.g. no bitwise
4522    operations on floating-point values are allowed).
4523
4524Other Values
4525============
4526
4527.. _inlineasmexprs:
4528
4529Inline Assembler Expressions
4530----------------------------
4531
4532LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
4533Inline Assembly <moduleasm>`) through the use of a special value. This value
4534represents the inline assembler as a template string (containing the
4535instructions to emit), a list of operand constraints (stored as a string), a
4536flag that indicates whether or not the inline asm expression has side effects,
4537and a flag indicating whether the function containing the asm needs to align its
4538stack conservatively.
4539
4540The template string supports argument substitution of the operands using "``$``"
4541followed by a number, to indicate substitution of the given register/memory
4542location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
4543be used, where ``MODIFIER`` is a target-specific annotation for how to print the
4544operand (See :ref:`inline-asm-modifiers`).
4545
4546A literal "``$``" may be included by using "``$$``" in the template. To include
4547other special characters into the output, the usual "``\XX``" escapes may be
4548used, just as in other strings. Note that after template substitution, the
4549resulting assembly string is parsed by LLVM's integrated assembler unless it is
4550disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
4551syntax known to LLVM.
4552
4553LLVM also supports a few more substitutions useful for writing inline assembly:
4554
4555- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
4556  This substitution is useful when declaring a local label. Many standard
4557  compiler optimizations, such as inlining, may duplicate an inline asm blob.
4558  Adding a blob-unique identifier ensures that the two labels will not conflict
4559  during assembly. This is used to implement `GCC's %= special format
4560  string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
4561- ``${:comment}``: Expands to the comment character of the current target's
4562  assembly dialect. This is usually ``#``, but many targets use other strings,
4563  such as ``;``, ``//``, or ``!``.
4564- ``${:private}``: Expands to the assembler private label prefix. Labels with
4565  this prefix will not appear in the symbol table of the assembled object.
4566  Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
4567  relatively popular.
4568
4569LLVM's support for inline asm is modeled closely on the requirements of Clang's
4570GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
4571modifier codes listed here are similar or identical to those in GCC's inline asm
4572support. However, to be clear, the syntax of the template and constraint strings
4573described here is *not* the same as the syntax accepted by GCC and Clang, and,
4574while most constraint letters are passed through as-is by Clang, some get
4575translated to other codes when converting from the C source to the LLVM
4576assembly.
4577
4578An example inline assembler expression is:
4579
4580.. code-block:: llvm
4581
4582    i32 (i32) asm "bswap $0", "=r,r"
4583
4584Inline assembler expressions may **only** be used as the callee operand
4585of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
4586Thus, typically we have:
4587
4588.. code-block:: llvm
4589
4590    %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
4591
4592Inline asms with side effects not visible in the constraint list must be
4593marked as having side effects. This is done through the use of the
4594'``sideeffect``' keyword, like so:
4595
4596.. code-block:: llvm
4597
4598    call void asm sideeffect "eieio", ""()
4599
4600In some cases inline asms will contain code that will not work unless
4601the stack is aligned in some way, such as calls or SSE instructions on
4602x86, yet will not contain code that does that alignment within the asm.
4603The compiler should make conservative assumptions about what the asm
4604might contain and should generate its usual stack alignment code in the
4605prologue if the '``alignstack``' keyword is present:
4606
4607.. code-block:: llvm
4608
4609    call void asm alignstack "eieio", ""()
4610
4611Inline asms also support using non-standard assembly dialects. The
4612assumed dialect is ATT. When the '``inteldialect``' keyword is present,
4613the inline asm is using the Intel dialect. Currently, ATT and Intel are
4614the only supported dialects. An example is:
4615
4616.. code-block:: llvm
4617
4618    call void asm inteldialect "eieio", ""()
4619
4620In the case that the inline asm might unwind the stack,
4621the '``unwind``' keyword must be used, so that the compiler emits
4622unwinding information:
4623
4624.. code-block:: llvm
4625
4626    call void asm unwind "call func", ""()
4627
4628If the inline asm unwinds the stack and isn't marked with
4629the '``unwind``' keyword, the behavior is undefined.
4630
4631If multiple keywords appear, the '``sideeffect``' keyword must come
4632first, the '``alignstack``' keyword second, the '``inteldialect``' keyword
4633third and the '``unwind``' keyword last.
4634
4635Inline Asm Constraint String
4636^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4637
4638The constraint list is a comma-separated string, each element containing one or
4639more constraint codes.
4640
4641For each element in the constraint list an appropriate register or memory
4642operand will be chosen, and it will be made available to assembly template
4643string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
4644second, etc.
4645
4646There are three different types of constraints, which are distinguished by a
4647prefix symbol in front of the constraint code: Output, Input, and Clobber. The
4648constraints must always be given in that order: outputs first, then inputs, then
4649clobbers. They cannot be intermingled.
4650
4651There are also three different categories of constraint codes:
4652
4653- Register constraint. This is either a register class, or a fixed physical
4654  register. This kind of constraint will allocate a register, and if necessary,
4655  bitcast the argument or result to the appropriate type.
4656- Memory constraint. This kind of constraint is for use with an instruction
4657  taking a memory operand. Different constraints allow for different addressing
4658  modes used by the target.
4659- Immediate value constraint. This kind of constraint is for an integer or other
4660  immediate value which can be rendered directly into an instruction. The
4661  various target-specific constraints allow the selection of a value in the
4662  proper range for the instruction you wish to use it with.
4663
4664Output constraints
4665""""""""""""""""""
4666
4667Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
4668indicates that the assembly will write to this operand, and the operand will
4669then be made available as a return value of the ``asm`` expression. Output
4670constraints do not consume an argument from the call instruction. (Except, see
4671below about indirect outputs).
4672
4673Normally, it is expected that no output locations are written to by the assembly
4674expression until *all* of the inputs have been read. As such, LLVM may assign
4675the same register to an output and an input. If this is not safe (e.g. if the
4676assembly contains two instructions, where the first writes to one output, and
4677the second reads an input and writes to a second output), then the "``&``"
4678modifier must be used (e.g. "``=&r``") to specify that the output is an
4679"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
4680will not use the same register for any inputs (other than an input tied to this
4681output).
4682
4683Input constraints
4684"""""""""""""""""
4685
4686Input constraints do not have a prefix -- just the constraint codes. Each input
4687constraint will consume one argument from the call instruction. It is not
4688permitted for the asm to write to any input register or memory location (unless
4689that input is tied to an output). Note also that multiple inputs may all be
4690assigned to the same register, if LLVM can determine that they necessarily all
4691contain the same value.
4692
4693Instead of providing a Constraint Code, input constraints may also "tie"
4694themselves to an output constraint, by providing an integer as the constraint
4695string. Tied inputs still consume an argument from the call instruction, and
4696take up a position in the asm template numbering as is usual -- they will simply
4697be constrained to always use the same register as the output they've been tied
4698to. For example, a constraint string of "``=r,0``" says to assign a register for
4699output, and use that register as an input as well (it being the 0'th
4700constraint).
4701
4702It is permitted to tie an input to an "early-clobber" output. In that case, no
4703*other* input may share the same register as the input tied to the early-clobber
4704(even when the other input has the same value).
4705
4706You may only tie an input to an output which has a register constraint, not a
4707memory constraint. Only a single input may be tied to an output.
4708
4709There is also an "interesting" feature which deserves a bit of explanation: if a
4710register class constraint allocates a register which is too small for the value
4711type operand provided as input, the input value will be split into multiple
4712registers, and all of them passed to the inline asm.
4713
4714However, this feature is often not as useful as you might think.
4715
4716Firstly, the registers are *not* guaranteed to be consecutive. So, on those
4717architectures that have instructions which operate on multiple consecutive
4718instructions, this is not an appropriate way to support them. (e.g. the 32-bit
4719SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
4720hardware then loads into both the named register, and the next register. This
4721feature of inline asm would not be useful to support that.)
4722
4723A few of the targets provide a template string modifier allowing explicit access
4724to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
4725``D``). On such an architecture, you can actually access the second allocated
4726register (yet, still, not any subsequent ones). But, in that case, you're still
4727probably better off simply splitting the value into two separate operands, for
4728clarity. (e.g. see the description of the ``A`` constraint on X86, which,
4729despite existing only for use with this feature, is not really a good idea to
4730use)
4731
4732Indirect inputs and outputs
4733"""""""""""""""""""""""""""
4734
4735Indirect output or input constraints can be specified by the "``*``" modifier
4736(which goes after the "``=``" in case of an output). This indicates that the asm
4737will write to or read from the contents of an *address* provided as an input
4738argument. (Note that in this way, indirect outputs act more like an *input* than
4739an output: just like an input, they consume an argument of the call expression,
4740rather than producing a return value. An indirect output constraint is an
4741"output" only in that the asm is expected to write to the contents of the input
4742memory location, instead of just read from it).
4743
4744This is most typically used for memory constraint, e.g. "``=*m``", to pass the
4745address of a variable as a value.
4746
4747It is also possible to use an indirect *register* constraint, but only on output
4748(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
4749value normally, and then, separately emit a store to the address provided as
4750input, after the provided inline asm. (It's not clear what value this
4751functionality provides, compared to writing the store explicitly after the asm
4752statement, and it can only produce worse code, since it bypasses many
4753optimization passes. I would recommend not using it.)
4754
4755Call arguments for indirect constraints must have pointer type and must specify
4756the :ref:`elementtype <attr_elementtype>` attribute to indicate the pointer
4757element type.
4758
4759Clobber constraints
4760"""""""""""""""""""
4761
4762A clobber constraint is indicated by a "``~``" prefix. A clobber does not
4763consume an input operand, nor generate an output. Clobbers cannot use any of the
4764general constraint code letters -- they may use only explicit register
4765constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
4766"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
4767memory locations -- not only the memory pointed to by a declared indirect
4768output.
4769
4770Note that clobbering named registers that are also present in output
4771constraints is not legal.
4772
4773Label constraints
4774"""""""""""""""""
4775
4776A label constraint is indicated by a "``!``" prefix and typically used in the
4777form ``"!i"``. Instead of consuming call arguments, label constraints consume
4778indirect destination labels of ``callbr`` instructions.
4779
4780Label constraints can only be used in conjunction with ``callbr`` and the
4781number of label constraints must match the number of indirect destination
4782labels in the ``callbr`` instruction.
4783
4784
4785Constraint Codes
4786""""""""""""""""
4787After a potential prefix comes constraint code, or codes.
4788
4789A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
4790followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
4791(e.g. "``{eax}``").
4792
4793The one and two letter constraint codes are typically chosen to be the same as
4794GCC's constraint codes.
4795
4796A single constraint may include one or more than constraint code in it, leaving
4797it up to LLVM to choose which one to use. This is included mainly for
4798compatibility with the translation of GCC inline asm coming from clang.
4799
4800There are two ways to specify alternatives, and either or both may be used in an
4801inline asm constraint list:
4802
48031) Append the codes to each other, making a constraint code set. E.g. "``im``"
4804   or "``{eax}m``". This means "choose any of the options in the set". The
4805   choice of constraint is made independently for each constraint in the
4806   constraint list.
4807
48082) Use "``|``" between constraint code sets, creating alternatives. Every
4809   constraint in the constraint list must have the same number of alternative
4810   sets. With this syntax, the same alternative in *all* of the items in the
4811   constraint list will be chosen together.
4812
4813Putting those together, you might have a two operand constraint string like
4814``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
4815operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
4816may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
4817
4818However, the use of either of the alternatives features is *NOT* recommended, as
4819LLVM is not able to make an intelligent choice about which one to use. (At the
4820point it currently needs to choose, not enough information is available to do so
4821in a smart way.) Thus, it simply tries to make a choice that's most likely to
4822compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
4823always choose to use memory, not registers). And, if given multiple registers,
4824or multiple register classes, it will simply choose the first one. (In fact, it
4825doesn't currently even ensure explicitly specified physical registers are
4826unique, so specifying multiple physical registers as alternatives, like
4827``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
4828intended.)
4829
4830Supported Constraint Code List
4831""""""""""""""""""""""""""""""
4832
4833The constraint codes are, in general, expected to behave the same way they do in
4834GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
4835inline asm code which was supported by GCC. A mismatch in behavior between LLVM
4836and GCC likely indicates a bug in LLVM.
4837
4838Some constraint codes are typically supported by all targets:
4839
4840- ``r``: A register in the target's general purpose register class.
4841- ``m``: A memory address operand. It is target-specific what addressing modes
4842  are supported, typical examples are register, or register + register offset,
4843  or register + immediate offset (of some target-specific size).
4844- ``p``: An address operand. Similar to ``m``, but used by "load address"
4845  type instructions without touching memory.
4846- ``i``: An integer constant (of target-specific width). Allows either a simple
4847  immediate, or a relocatable value.
4848- ``n``: An integer constant -- *not* including relocatable values.
4849- ``s``: An integer constant, but allowing *only* relocatable values.
4850- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
4851  useful to pass a label for an asm branch or call.
4852
4853  .. FIXME: but that surely isn't actually okay to jump out of an asm
4854     block without telling llvm about the control transfer???)
4855
4856- ``{register-name}``: Requires exactly the named physical register.
4857
4858Other constraints are target-specific:
4859
4860AArch64:
4861
4862- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
4863- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
4864  i.e. 0 to 4095 with optional shift by 12.
4865- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
4866  ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
4867- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
4868  logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
4869- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
4870  logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
4871- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
4872  32-bit register. This is a superset of ``K``: in addition to the bitmask
4873  immediate, also allows immediate integers which can be loaded with a single
4874  ``MOVZ`` or ``MOVL`` instruction.
4875- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
4876  64-bit register. This is a superset of ``L``.
4877- ``Q``: Memory address operand must be in a single register (no
4878  offsets). (However, LLVM currently does this for the ``m`` constraint as
4879  well.)
4880- ``r``: A 32 or 64-bit integer register (W* or X*).
4881- ``w``: A 32, 64, or 128-bit floating-point, SIMD or SVE vector register.
4882- ``x``: Like w, but restricted to registers 0 to 15 inclusive.
4883- ``y``: Like w, but restricted to SVE vector registers Z0 to Z7 inclusive.
4884- ``Upl``: One of the low eight SVE predicate registers (P0 to P7)
4885- ``Upa``: Any of the SVE predicate registers (P0 to P15)
4886
4887AMDGPU:
4888
4889- ``r``: A 32 or 64-bit integer register.
4890- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
4891- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
4892- ``[0-9]a``: The 32-bit AGPR register, number 0-9.
4893- ``I``: An integer inline constant in the range from -16 to 64.
4894- ``J``: A 16-bit signed integer constant.
4895- ``A``: An integer or a floating-point inline constant.
4896- ``B``: A 32-bit signed integer constant.
4897- ``C``: A 32-bit unsigned integer constant or an integer inline constant in the range from -16 to 64.
4898- ``DA``: A 64-bit constant that can be split into two "A" constants.
4899- ``DB``: A 64-bit constant that can be split into two "B" constants.
4900
4901All ARM modes:
4902
4903- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
4904  operand. Treated the same as operand ``m``, at the moment.
4905- ``Te``: An even general-purpose 32-bit integer register: ``r0,r2,...,r12,r14``
4906- ``To``: An odd general-purpose 32-bit integer register: ``r1,r3,...,r11``
4907
4908ARM and ARM's Thumb2 mode:
4909
4910- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
4911- ``I``: An immediate integer valid for a data-processing instruction.
4912- ``J``: An immediate integer between -4095 and 4095.
4913- ``K``: An immediate integer whose bitwise inverse is valid for a
4914  data-processing instruction. (Can be used with template modifier "``B``" to
4915  print the inverted value).
4916- ``L``: An immediate integer whose negation is valid for a data-processing
4917  instruction. (Can be used with template modifier "``n``" to print the negated
4918  value).
4919- ``M``: A power of two or an integer between 0 and 32.
4920- ``N``: Invalid immediate constraint.
4921- ``O``: Invalid immediate constraint.
4922- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
4923- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
4924  as ``r``.
4925- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
4926  invalid.
4927- ``w``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4928  ``s0-s31``, ``d0-d31``, or ``q0-q15``, respectively.
4929- ``t``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4930  ``s0-s31``, ``d0-d15``, or ``q0-q7``, respectively.
4931- ``x``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4932  ``s0-s15``, ``d0-d7``, or ``q0-q3``, respectively.
4933
4934ARM's Thumb1 mode:
4935
4936- ``I``: An immediate integer between 0 and 255.
4937- ``J``: An immediate integer between -255 and -1.
4938- ``K``: An immediate integer between 0 and 255, with optional left-shift by
4939  some amount.
4940- ``L``: An immediate integer between -7 and 7.
4941- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
4942- ``N``: An immediate integer between 0 and 31.
4943- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
4944- ``r``: A low 32-bit GPR register (``r0-r7``).
4945- ``l``: A low 32-bit GPR register (``r0-r7``).
4946- ``h``: A high GPR register (``r0-r7``).
4947- ``w``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4948  ``s0-s31``, ``d0-d31``, or ``q0-q15``, respectively.
4949- ``t``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4950  ``s0-s31``, ``d0-d15``, or ``q0-q7``, respectively.
4951- ``x``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4952  ``s0-s15``, ``d0-d7``, or ``q0-q3``, respectively.
4953
4954Hexagon:
4955
4956- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
4957  at the moment.
4958- ``r``: A 32 or 64-bit register.
4959
4960LoongArch:
4961
4962- ``f``: A floating-point register (if available).
4963- ``k``: A memory operand whose address is formed by a base register and
4964  (optionally scaled) index register.
4965- ``l``: A signed 16-bit constant.
4966- ``m``: A memory operand whose address is formed by a base register and
4967  offset that is suitable for use in instructions with the same addressing
4968  mode as st.w and ld.w.
4969- ``I``: A signed 12-bit constant (for arithmetic instructions).
4970- ``J``: An immediate integer zero.
4971- ``K``: An unsigned 12-bit constant (for logic instructions).
4972- ``ZB``: An address that is held in a general-purpose register. The offset
4973  is zero.
4974- ``ZC``: A memory operand whose address is formed by a base register and
4975  offset that is suitable for use in instructions with the same addressing
4976  mode as ll.w and sc.w.
4977
4978MSP430:
4979
4980- ``r``: An 8 or 16-bit register.
4981
4982MIPS:
4983
4984- ``I``: An immediate signed 16-bit integer.
4985- ``J``: An immediate integer zero.
4986- ``K``: An immediate unsigned 16-bit integer.
4987- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
4988- ``N``: An immediate integer between -65535 and -1.
4989- ``O``: An immediate signed 15-bit integer.
4990- ``P``: An immediate integer between 1 and 65535.
4991- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
4992  register plus 16-bit immediate offset. In MIPS mode, just a base register.
4993- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
4994  register plus a 9-bit signed offset. In MIPS mode, the same as constraint
4995  ``m``.
4996- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
4997  ``sc`` instruction on the given subtarget (details vary).
4998- ``r``, ``d``,  ``y``: A 32 or 64-bit GPR register.
4999- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
5000  (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
5001  argument modifier for compatibility with GCC.
5002- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
5003  ``25``).
5004- ``l``: The ``lo`` register, 32 or 64-bit.
5005- ``x``: Invalid.
5006
5007NVPTX:
5008
5009- ``b``: A 1-bit integer register.
5010- ``c`` or ``h``: A 16-bit integer register.
5011- ``r``: A 32-bit integer register.
5012- ``l`` or ``N``: A 64-bit integer register.
5013- ``f``: A 32-bit float register.
5014- ``d``: A 64-bit float register.
5015
5016
5017PowerPC:
5018
5019- ``I``: An immediate signed 16-bit integer.
5020- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
5021- ``K``: An immediate unsigned 16-bit integer.
5022- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
5023- ``M``: An immediate integer greater than 31.
5024- ``N``: An immediate integer that is an exact power of 2.
5025- ``O``: The immediate integer constant 0.
5026- ``P``: An immediate integer constant whose negation is a signed 16-bit
5027  constant.
5028- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
5029  treated the same as ``m``.
5030- ``r``: A 32 or 64-bit integer register.
5031- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
5032  ``R1-R31``).
5033- ``f``: A 32 or 64-bit float register (``F0-F31``),
5034- ``v``: For ``4 x f32`` or ``4 x f64`` types, a 128-bit altivec vector
5035   register (``V0-V31``).
5036
5037- ``y``: Condition register (``CR0-CR7``).
5038- ``wc``: An individual CR bit in a CR register.
5039- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
5040  register set (overlapping both the floating-point and vector register files).
5041- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
5042  set.
5043
5044RISC-V:
5045
5046- ``A``: An address operand (using a general-purpose register, without an
5047  offset).
5048- ``I``: A 12-bit signed integer immediate operand.
5049- ``J``: A zero integer immediate operand.
5050- ``K``: A 5-bit unsigned integer immediate operand.
5051- ``f``: A 32- or 64-bit floating-point register (requires F or D extension).
5052- ``r``: A 32- or 64-bit general-purpose register (depending on the platform
5053  ``XLEN``).
5054- ``vr``: A vector register. (requires V extension).
5055- ``vm``: A vector register for masking operand. (requires V extension).
5056
5057Sparc:
5058
5059- ``I``: An immediate 13-bit signed integer.
5060- ``r``: A 32-bit integer register.
5061- ``f``: Any floating-point register on SparcV8, or a floating-point
5062  register in the "low" half of the registers on SparcV9.
5063- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
5064
5065SystemZ:
5066
5067- ``I``: An immediate unsigned 8-bit integer.
5068- ``J``: An immediate unsigned 12-bit integer.
5069- ``K``: An immediate signed 16-bit integer.
5070- ``L``: An immediate signed 20-bit integer.
5071- ``M``: An immediate integer 0x7fffffff.
5072- ``Q``: A memory address operand with a base address and a 12-bit immediate
5073  unsigned displacement.
5074- ``R``: A memory address operand with a base address, a 12-bit immediate
5075  unsigned displacement, and an index register.
5076- ``S``: A memory address operand with a base address and a 20-bit immediate
5077  signed displacement.
5078- ``T``: A memory address operand with a base address, a 20-bit immediate
5079  signed displacement, and an index register.
5080- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
5081- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
5082  address context evaluates as zero).
5083- ``h``: A 32-bit value in the high part of a 64bit data register
5084  (LLVM-specific)
5085- ``f``: A 32, 64, or 128-bit floating-point register.
5086
5087X86:
5088
5089- ``I``: An immediate integer between 0 and 31.
5090- ``J``: An immediate integer between 0 and 64.
5091- ``K``: An immediate signed 8-bit integer.
5092- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
5093  0xffffffff.
5094- ``M``: An immediate integer between 0 and 3.
5095- ``N``: An immediate unsigned 8-bit integer.
5096- ``O``: An immediate integer between 0 and 127.
5097- ``e``: An immediate 32-bit signed integer.
5098- ``Z``: An immediate 32-bit unsigned integer.
5099- ``o``, ``v``: Treated the same as ``m``, at the moment.
5100- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
5101  ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
5102  registers, and on X86-64, it is all of the integer registers.
5103- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
5104  ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
5105- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
5106- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
5107  existed since i386, and can be accessed without the REX prefix.
5108- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
5109- ``y``: A 64-bit MMX register, if MMX is enabled.
5110- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
5111  operand in a SSE register. If AVX is also enabled, can also be a 256-bit
5112  vector operand in an AVX register. If AVX-512 is also enabled, can also be a
5113  512-bit vector operand in an AVX512 register, Otherwise, an error.
5114- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
5115- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
5116  32-bit mode, a 64-bit integer operand will get split into two registers). It
5117  is not recommended to use this constraint, as in 64-bit mode, the 64-bit
5118  operand will get allocated only to RAX -- if two 32-bit operands are needed,
5119  you're better off splitting it yourself, before passing it to the asm
5120  statement.
5121
5122XCore:
5123
5124- ``r``: A 32-bit integer register.
5125
5126
5127.. _inline-asm-modifiers:
5128
5129Asm template argument modifiers
5130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5131
5132In the asm template string, modifiers can be used on the operand reference, like
5133"``${0:n}``".
5134
5135The modifiers are, in general, expected to behave the same way they do in
5136GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
5137inline asm code which was supported by GCC. A mismatch in behavior between LLVM
5138and GCC likely indicates a bug in LLVM.
5139
5140Target-independent:
5141
5142- ``c``: Print an immediate integer constant unadorned, without
5143  the target-specific immediate punctuation (e.g. no ``$`` prefix).
5144- ``n``: Negate and print immediate integer constant unadorned, without the
5145  target-specific immediate punctuation (e.g. no ``$`` prefix).
5146- ``l``: Print as an unadorned label, without the target-specific label
5147  punctuation (e.g. no ``$`` prefix).
5148
5149AArch64:
5150
5151- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
5152  instead of ``x30``, print ``w30``.
5153- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
5154- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
5155  ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
5156  ``v*``.
5157
5158AMDGPU:
5159
5160- ``r``: No effect.
5161
5162ARM:
5163
5164- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
5165  register).
5166- ``P``: No effect.
5167- ``q``: No effect.
5168- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
5169  as ``d4[1]`` instead of ``s9``)
5170- ``B``: Bitwise invert and print an immediate integer constant without ``#``
5171  prefix.
5172- ``L``: Print the low 16-bits of an immediate integer constant.
5173- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
5174  register operands subsequent to the specified one (!), so use carefully.
5175- ``Q``: Print the low-order register of a register-pair, or the low-order
5176  register of a two-register operand.
5177- ``R``: Print the high-order register of a register-pair, or the high-order
5178  register of a two-register operand.
5179- ``H``: Print the second register of a register-pair. (On a big-endian system,
5180  ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
5181  to ``R``.)
5182
5183  .. FIXME: H doesn't currently support printing the second register
5184     of a two-register operand.
5185
5186- ``e``: Print the low doubleword register of a NEON quad register.
5187- ``f``: Print the high doubleword register of a NEON quad register.
5188- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
5189  adornment.
5190
5191Hexagon:
5192
5193- ``L``: Print the second register of a two-register operand. Requires that it
5194  has been allocated consecutively to the first.
5195
5196  .. FIXME: why is it restricted to consecutive ones? And there's
5197     nothing that ensures that happens, is there?
5198
5199- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
5200  nothing. Used to print 'addi' vs 'add' instructions.
5201
5202LoongArch:
5203
5204- ``z``: Print $zero register if operand is zero, otherwise print it normally.
5205
5206MSP430:
5207
5208No additional modifiers.
5209
5210MIPS:
5211
5212- ``X``: Print an immediate integer as hexadecimal
5213- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
5214- ``d``: Print an immediate integer as decimal.
5215- ``m``: Subtract one and print an immediate integer as decimal.
5216- ``z``: Print $0 if an immediate zero, otherwise print normally.
5217- ``L``: Print the low-order register of a two-register operand, or prints the
5218  address of the low-order word of a double-word memory operand.
5219
5220  .. FIXME: L seems to be missing memory operand support.
5221
5222- ``M``: Print the high-order register of a two-register operand, or prints the
5223  address of the high-order word of a double-word memory operand.
5224
5225  .. FIXME: M seems to be missing memory operand support.
5226
5227- ``D``: Print the second register of a two-register operand, or prints the
5228  second word of a double-word memory operand. (On a big-endian system, ``D`` is
5229  equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
5230  ``M``.)
5231- ``w``: No effect. Provided for compatibility with GCC which requires this
5232  modifier in order to print MSA registers (``W0-W31``) with the ``f``
5233  constraint.
5234
5235NVPTX:
5236
5237- ``r``: No effect.
5238
5239PowerPC:
5240
5241- ``L``: Print the second register of a two-register operand. Requires that it
5242  has been allocated consecutively to the first.
5243
5244  .. FIXME: why is it restricted to consecutive ones? And there's
5245     nothing that ensures that happens, is there?
5246
5247- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
5248  nothing. Used to print 'addi' vs 'add' instructions.
5249- ``y``: For a memory operand, prints formatter for a two-register X-form
5250  instruction. (Currently always prints ``r0,OPERAND``).
5251- ``U``: Prints 'u' if the memory operand is an update form, and nothing
5252  otherwise. (NOTE: LLVM does not support update form, so this will currently
5253  always print nothing)
5254- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
5255  not support indexed form, so this will currently always print nothing)
5256
5257RISC-V:
5258
5259- ``i``: Print the letter 'i' if the operand is not a register, otherwise print
5260  nothing. Used to print 'addi' vs 'add' instructions, etc.
5261- ``z``: Print the register ``zero`` if an immediate zero, otherwise print
5262  normally.
5263
5264Sparc:
5265
5266- ``r``: No effect.
5267
5268SystemZ:
5269
5270SystemZ implements only ``n``, and does *not* support any of the other
5271target-independent modifiers.
5272
5273X86:
5274
5275- ``c``: Print an unadorned integer or symbol name. (The latter is
5276  target-specific behavior for this typically target-independent modifier).
5277- ``A``: Print a register name with a '``*``' before it.
5278- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
5279  operand.
5280- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
5281  memory operand.
5282- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
5283  operand.
5284- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
5285  operand.
5286- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
5287  available, otherwise the 32-bit register name; do nothing on a memory operand.
5288- ``n``: Negate and print an unadorned integer, or, for operands other than an
5289  immediate integer (e.g. a relocatable symbol expression), print a '-' before
5290  the operand. (The behavior for relocatable symbol expressions is a
5291  target-specific behavior for this typically target-independent modifier)
5292- ``H``: Print a memory reference with additional offset +8.
5293- ``P``: Print a memory reference used as the argument of a call instruction or
5294  used with explicit base reg and index reg as its offset. So it can not use
5295  additional regs to present the memory reference. (E.g. omit ``(rip)``, even
5296  though it's PC-relative.)
5297
5298XCore:
5299
5300No additional modifiers.
5301
5302
5303Inline Asm Metadata
5304^^^^^^^^^^^^^^^^^^^
5305
5306The call instructions that wrap inline asm nodes may have a
5307"``!srcloc``" MDNode attached to it that contains a list of constant
5308integers. If present, the code generator will use the integer as the
5309location cookie value when report errors through the ``LLVMContext``
5310error reporting mechanisms. This allows a front-end to correlate backend
5311errors that occur with inline asm back to the source code that produced
5312it. For example:
5313
5314.. code-block:: llvm
5315
5316    call void asm sideeffect "something bad", ""(), !srcloc !42
5317    ...
5318    !42 = !{ i32 1234567 }
5319
5320It is up to the front-end to make sense of the magic numbers it places
5321in the IR. If the MDNode contains multiple constants, the code generator
5322will use the one that corresponds to the line of the asm that the error
5323occurs on.
5324
5325.. _metadata:
5326
5327Metadata
5328========
5329
5330LLVM IR allows metadata to be attached to instructions and global objects in the
5331program that can convey extra information about the code to the optimizers and
5332code generator. One example application of metadata is source-level
5333debug information. There are two metadata primitives: strings and nodes.
5334
5335Metadata does not have a type, and is not a value. If referenced from a
5336``call`` instruction, it uses the ``metadata`` type.
5337
5338All metadata are identified in syntax by an exclamation point ('``!``').
5339
5340.. _metadata-string:
5341
5342Metadata Nodes and Metadata Strings
5343-----------------------------------
5344
5345A metadata string is a string surrounded by double quotes. It can
5346contain any character by escaping non-printable characters with
5347"``\xx``" where "``xx``" is the two digit hex code. For example:
5348"``!"test\00"``".
5349
5350Metadata nodes are represented with notation similar to structure
5351constants (a comma separated list of elements, surrounded by braces and
5352preceded by an exclamation point). Metadata nodes can have any values as
5353their operand. For example:
5354
5355.. code-block:: llvm
5356
5357    !{ !"test\00", i32 10}
5358
5359Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
5360
5361.. code-block:: text
5362
5363    !0 = distinct !{!"test\00", i32 10}
5364
5365``distinct`` nodes are useful when nodes shouldn't be merged based on their
5366content. They can also occur when transformations cause uniquing collisions
5367when metadata operands change.
5368
5369A :ref:`named metadata <namedmetadatastructure>` is a collection of
5370metadata nodes, which can be looked up in the module symbol table. For
5371example:
5372
5373.. code-block:: llvm
5374
5375    !foo = !{!4, !3}
5376
5377Metadata can be used as function arguments. Here the ``llvm.dbg.value``
5378intrinsic is using three metadata arguments:
5379
5380.. code-block:: llvm
5381
5382    call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
5383
5384Metadata can be attached to an instruction. Here metadata ``!21`` is attached
5385to the ``add`` instruction using the ``!dbg`` identifier:
5386
5387.. code-block:: llvm
5388
5389    %indvar.next = add i64 %indvar, 1, !dbg !21
5390
5391Instructions may not have multiple metadata attachments with the same
5392identifier.
5393
5394Metadata can also be attached to a function or a global variable. Here metadata
5395``!22`` is attached to the ``f1`` and ``f2`` functions, and the globals ``g1``
5396and ``g2`` using the ``!dbg`` identifier:
5397
5398.. code-block:: llvm
5399
5400    declare !dbg !22 void @f1()
5401    define void @f2() !dbg !22 {
5402      ret void
5403    }
5404
5405    @g1 = global i32 0, !dbg !22
5406    @g2 = external global i32, !dbg !22
5407
5408Unlike instructions, global objects (functions and global variables) may have
5409multiple metadata attachments with the same identifier.
5410
5411A transformation is required to drop any metadata attachment that it
5412does not know or know it can't preserve. Currently there is an
5413exception for metadata attachment to globals for ``!func_sanitize``,
5414``!type``, ``!absolute_symbol`` and ``!associated`` which can't be
5415unconditionally dropped unless the global is itself deleted.
5416
5417Metadata attached to a module using named metadata may not be dropped, with
5418the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
5419
5420More information about specific metadata nodes recognized by the
5421optimizers and code generator is found below.
5422
5423.. _specialized-metadata:
5424
5425Specialized Metadata Nodes
5426^^^^^^^^^^^^^^^^^^^^^^^^^^
5427
5428Specialized metadata nodes are custom data structures in metadata (as opposed
5429to generic tuples). Their fields are labelled, and can be specified in any
5430order.
5431
5432These aren't inherently debug info centric, but currently all the specialized
5433metadata nodes are related to debug info.
5434
5435.. _DICompileUnit:
5436
5437DICompileUnit
5438"""""""""""""
5439
5440``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
5441``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
5442containing the debug info to be emitted along with the compile unit, regardless
5443of code optimizations (some nodes are only emitted if there are references to
5444them from instructions). The ``debugInfoForProfiling:`` field is a boolean
5445indicating whether or not line-table discriminators are updated to provide
5446more-accurate debug info for profiling results.
5447
5448.. code-block:: text
5449
5450    !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
5451                        isOptimized: true, flags: "-O2", runtimeVersion: 2,
5452                        splitDebugFilename: "abc.debug", emissionKind: FullDebug,
5453                        enums: !2, retainedTypes: !3, globals: !4, imports: !5,
5454                        macros: !6, dwoId: 0x0abcd)
5455
5456Compile unit descriptors provide the root scope for objects declared in a
5457specific compilation unit. File descriptors are defined using this scope.  These
5458descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
5459track of global variables, type information, and imported entities (declarations
5460and namespaces).
5461
5462.. _DIFile:
5463
5464DIFile
5465""""""
5466
5467``DIFile`` nodes represent files. The ``filename:`` can include slashes.
5468
5469.. code-block:: none
5470
5471    !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
5472                 checksumkind: CSK_MD5,
5473                 checksum: "000102030405060708090a0b0c0d0e0f")
5474
5475Files are sometimes used in ``scope:`` fields, and are the only valid target
5476for ``file:`` fields.
5477Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1, CSK_SHA256}
5478
5479.. _DIBasicType:
5480
5481DIBasicType
5482"""""""""""
5483
5484``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
5485``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
5486
5487.. code-block:: text
5488
5489    !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
5490                      encoding: DW_ATE_unsigned_char)
5491    !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
5492
5493The ``encoding:`` describes the details of the type. Usually it's one of the
5494following:
5495
5496.. code-block:: text
5497
5498  DW_ATE_address       = 1
5499  DW_ATE_boolean       = 2
5500  DW_ATE_float         = 4
5501  DW_ATE_signed        = 5
5502  DW_ATE_signed_char   = 6
5503  DW_ATE_unsigned      = 7
5504  DW_ATE_unsigned_char = 8
5505
5506.. _DISubroutineType:
5507
5508DISubroutineType
5509""""""""""""""""
5510
5511``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
5512refers to a tuple; the first operand is the return type, while the rest are the
5513types of the formal arguments in order. If the first operand is ``null``, that
5514represents a function with no return value (such as ``void foo() {}`` in C++).
5515
5516.. code-block:: text
5517
5518    !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
5519    !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
5520    !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
5521
5522.. _DIDerivedType:
5523
5524DIDerivedType
5525"""""""""""""
5526
5527``DIDerivedType`` nodes represent types derived from other types, such as
5528qualified types.
5529
5530.. code-block:: text
5531
5532    !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
5533                      encoding: DW_ATE_unsigned_char)
5534    !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
5535                        align: 32)
5536
5537The following ``tag:`` values are valid:
5538
5539.. code-block:: text
5540
5541  DW_TAG_member             = 13
5542  DW_TAG_pointer_type       = 15
5543  DW_TAG_reference_type     = 16
5544  DW_TAG_typedef            = 22
5545  DW_TAG_inheritance        = 28
5546  DW_TAG_ptr_to_member_type = 31
5547  DW_TAG_const_type         = 38
5548  DW_TAG_friend             = 42
5549  DW_TAG_volatile_type      = 53
5550  DW_TAG_restrict_type      = 55
5551  DW_TAG_atomic_type        = 71
5552  DW_TAG_immutable_type     = 75
5553
5554.. _DIDerivedTypeMember:
5555
5556``DW_TAG_member`` is used to define a member of a :ref:`composite type
5557<DICompositeType>`. The type of the member is the ``baseType:``. The
5558``offset:`` is the member's bit offset.  If the composite type has an ODR
5559``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
5560uniqued based only on its ``name:`` and ``scope:``.
5561
5562``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
5563field of :ref:`composite types <DICompositeType>` to describe parents and
5564friends.
5565
5566``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
5567
5568``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
5569``DW_TAG_volatile_type``, ``DW_TAG_restrict_type``, ``DW_TAG_atomic_type`` and
5570``DW_TAG_immutable_type`` are used to qualify the ``baseType:``.
5571
5572Note that the ``void *`` type is expressed as a type derived from NULL.
5573
5574.. _DICompositeType:
5575
5576DICompositeType
5577"""""""""""""""
5578
5579``DICompositeType`` nodes represent types composed of other types, like
5580structures and unions. ``elements:`` points to a tuple of the composed types.
5581
5582If the source language supports ODR, the ``identifier:`` field gives the unique
5583identifier used for type merging between modules.  When specified,
5584:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
5585derived types <DIDerivedTypeMember>` that reference the ODR-type in their
5586``scope:`` change uniquing rules.
5587
5588For a given ``identifier:``, there should only be a single composite type that
5589does not have  ``flags: DIFlagFwdDecl`` set.  LLVM tools that link modules
5590together will unique such definitions at parse time via the ``identifier:``
5591field, even if the nodes are ``distinct``.
5592
5593.. code-block:: text
5594
5595    !0 = !DIEnumerator(name: "SixKind", value: 7)
5596    !1 = !DIEnumerator(name: "SevenKind", value: 7)
5597    !2 = !DIEnumerator(name: "NegEightKind", value: -8)
5598    !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
5599                          line: 2, size: 32, align: 32, identifier: "_M4Enum",
5600                          elements: !{!0, !1, !2})
5601
5602The following ``tag:`` values are valid:
5603
5604.. code-block:: text
5605
5606  DW_TAG_array_type       = 1
5607  DW_TAG_class_type       = 2
5608  DW_TAG_enumeration_type = 4
5609  DW_TAG_structure_type   = 19
5610  DW_TAG_union_type       = 23
5611
5612For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
5613descriptors <DISubrange>`, each representing the range of subscripts at that
5614level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
5615array type is a native packed vector. The optional ``dataLocation`` is a
5616DIExpression that describes how to get from an object's address to the actual
5617raw data, if they aren't equivalent. This is only supported for array types,
5618particularly to describe Fortran arrays, which have an array descriptor in
5619addition to the array data. Alternatively it can also be DIVariable which
5620has the address of the actual raw data. The Fortran language supports pointer
5621arrays which can be attached to actual arrays, this attachment between pointer
5622and pointee is called association.  The optional ``associated`` is a
5623DIExpression that describes whether the pointer array is currently associated.
5624The optional ``allocated`` is a DIExpression that describes whether the
5625allocatable array is currently allocated.  The optional ``rank`` is a
5626DIExpression that describes the rank (number of dimensions) of fortran assumed
5627rank array (rank is known at runtime).
5628
5629For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
5630descriptors <DIEnumerator>`, each representing the definition of an enumeration
5631value for the set. All enumeration type descriptors are collected in the
5632``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
5633
5634For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
5635``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
5636<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
5637``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
5638``isDefinition: false``.
5639
5640.. _DISubrange:
5641
5642DISubrange
5643""""""""""
5644
5645``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
5646:ref:`DICompositeType`.
5647
5648- ``count: -1`` indicates an empty array.
5649- ``count: !10`` describes the count with a :ref:`DILocalVariable`.
5650- ``count: !12`` describes the count with a :ref:`DIGlobalVariable`.
5651
5652.. code-block:: text
5653
5654    !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
5655    !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
5656    !2 = !DISubrange(count: -1) ; empty array.
5657
5658    ; Scopes used in rest of example
5659    !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
5660    !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
5661    !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
5662
5663    ; Use of local variable as count value
5664    !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
5665    !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
5666    !11 = !DISubrange(count: !10, lowerBound: 0)
5667
5668    ; Use of global variable as count value
5669    !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
5670    !13 = !DISubrange(count: !12, lowerBound: 0)
5671
5672.. _DIEnumerator:
5673
5674DIEnumerator
5675""""""""""""
5676
5677``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
5678variants of :ref:`DICompositeType`.
5679
5680.. code-block:: text
5681
5682    !0 = !DIEnumerator(name: "SixKind", value: 7)
5683    !1 = !DIEnumerator(name: "SevenKind", value: 7)
5684    !2 = !DIEnumerator(name: "NegEightKind", value: -8)
5685
5686DITemplateTypeParameter
5687"""""""""""""""""""""""
5688
5689``DITemplateTypeParameter`` nodes represent type parameters to generic source
5690language constructs. They are used (optionally) in :ref:`DICompositeType` and
5691:ref:`DISubprogram` ``templateParams:`` fields.
5692
5693.. code-block:: text
5694
5695    !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
5696
5697DITemplateValueParameter
5698""""""""""""""""""""""""
5699
5700``DITemplateValueParameter`` nodes represent value parameters to generic source
5701language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
5702but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
5703``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
5704:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
5705
5706.. code-block:: text
5707
5708    !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
5709
5710DINamespace
5711"""""""""""
5712
5713``DINamespace`` nodes represent namespaces in the source language.
5714
5715.. code-block:: text
5716
5717    !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
5718
5719.. _DIGlobalVariable:
5720
5721DIGlobalVariable
5722""""""""""""""""
5723
5724``DIGlobalVariable`` nodes represent global variables in the source language.
5725
5726.. code-block:: text
5727
5728    @foo = global i32, !dbg !0
5729    !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
5730    !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
5731                           file: !3, line: 7, type: !4, isLocal: true,
5732                           isDefinition: false, declaration: !5)
5733
5734
5735DIGlobalVariableExpression
5736""""""""""""""""""""""""""
5737
5738``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
5739with a :ref:`DIExpression`.
5740
5741.. code-block:: text
5742
5743    @lower = global i32, !dbg !0
5744    @upper = global i32, !dbg !1
5745    !0 = !DIGlobalVariableExpression(
5746             var: !2,
5747             expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
5748             )
5749    !1 = !DIGlobalVariableExpression(
5750             var: !2,
5751             expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
5752             )
5753    !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
5754                           file: !4, line: 8, type: !5, declaration: !6)
5755
5756All global variable expressions should be referenced by the `globals:` field of
5757a :ref:`compile unit <DICompileUnit>`.
5758
5759.. _DISubprogram:
5760
5761DISubprogram
5762""""""""""""
5763
5764``DISubprogram`` nodes represent functions from the source language. A distinct
5765``DISubprogram`` may be attached to a function definition using ``!dbg``
5766metadata. A unique ``DISubprogram`` may be attached to a function declaration
5767used for call site debug info. The ``retainedNodes:`` field is a list of
5768:ref:`variables <DILocalVariable>` and :ref:`labels <DILabel>` that must be
5769retained, even if their IR counterparts are optimized out of the IR. The
5770``type:`` field must point at an :ref:`DISubroutineType`.
5771
5772.. _DISubprogramDeclaration:
5773
5774When ``isDefinition: false``, subprograms describe a declaration in the type
5775tree as opposed to a definition of a function.  If the scope is a composite
5776type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
5777then the subprogram declaration is uniqued based only on its ``linkageName:``
5778and ``scope:``.
5779
5780.. code-block:: text
5781
5782    define void @_Z3foov() !dbg !0 {
5783      ...
5784    }
5785
5786    !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
5787                                file: !2, line: 7, type: !3, isLocal: true,
5788                                isDefinition: true, scopeLine: 8,
5789                                containingType: !4,
5790                                virtuality: DW_VIRTUALITY_pure_virtual,
5791                                virtualIndex: 10, flags: DIFlagPrototyped,
5792                                isOptimized: true, unit: !5, templateParams: !6,
5793                                declaration: !7, retainedNodes: !8,
5794                                thrownTypes: !9)
5795
5796.. _DILexicalBlock:
5797
5798DILexicalBlock
5799""""""""""""""
5800
5801``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
5802<DISubprogram>`. The line number and column numbers are used to distinguish
5803two lexical blocks at same depth. They are valid targets for ``scope:``
5804fields.
5805
5806.. code-block:: text
5807
5808    !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
5809
5810Usually lexical blocks are ``distinct`` to prevent node merging based on
5811operands.
5812
5813.. _DILexicalBlockFile:
5814
5815DILexicalBlockFile
5816""""""""""""""""""
5817
5818``DILexicalBlockFile`` nodes are used to discriminate between sections of a
5819:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
5820indicate textual inclusion, or the ``discriminator:`` field can be used to
5821discriminate between control flow within a single block in the source language.
5822
5823.. code-block:: text
5824
5825    !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
5826    !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
5827    !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
5828
5829.. _DILocation:
5830
5831DILocation
5832""""""""""
5833
5834``DILocation`` nodes represent source debug locations. The ``scope:`` field is
5835mandatory, and points at an :ref:`DILexicalBlockFile`, an
5836:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
5837
5838.. code-block:: text
5839
5840    !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
5841
5842.. _DILocalVariable:
5843
5844DILocalVariable
5845"""""""""""""""
5846
5847``DILocalVariable`` nodes represent local variables in the source language. If
5848the ``arg:`` field is set to non-zero, then this variable is a subprogram
5849parameter, and it will be included in the ``retainedNodes:`` field of its
5850:ref:`DISubprogram`.
5851
5852.. code-block:: text
5853
5854    !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
5855                          type: !3, flags: DIFlagArtificial)
5856    !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
5857                          type: !3)
5858    !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
5859
5860.. _DIExpression:
5861
5862DIExpression
5863""""""""""""
5864
5865``DIExpression`` nodes represent expressions that are inspired by the DWARF
5866expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
5867(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
5868referenced LLVM variable relates to the source language variable. Debug
5869intrinsics are interpreted left-to-right: start by pushing the value/address
5870operand of the intrinsic onto a stack, then repeatedly push and evaluate
5871opcodes from the DIExpression until the final variable description is produced.
5872
5873The current supported opcode vocabulary is limited:
5874
5875- ``DW_OP_deref`` dereferences the top of the expression stack.
5876- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
5877  them together and appends the result to the expression stack.
5878- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
5879  the last entry from the second last entry and appends the result to the
5880  expression stack.
5881- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
5882- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
5883  here, respectively) of the variable fragment from the working expression. Note
5884  that contrary to DW_OP_bit_piece, the offset is describing the location
5885  within the described source variable.
5886- ``DW_OP_LLVM_convert, 16, DW_ATE_signed`` specifies a bit size and encoding
5887  (``16`` and ``DW_ATE_signed`` here, respectively) to which the top of the
5888  expression stack is to be converted. Maps into a ``DW_OP_convert`` operation
5889  that references a base type constructed from the supplied values.
5890- ``DW_OP_LLVM_tag_offset, tag_offset`` specifies that a memory tag should be
5891  optionally applied to the pointer. The memory tag is derived from the
5892  given tag offset in an implementation-defined manner.
5893- ``DW_OP_swap`` swaps top two stack entries.
5894- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
5895  of the stack is treated as an address. The second stack entry is treated as an
5896  address space identifier.
5897- ``DW_OP_stack_value`` marks a constant value.
5898- ``DW_OP_LLVM_entry_value, N`` may only appear in MIR and at the
5899  beginning of a ``DIExpression``. In DWARF a ``DBG_VALUE``
5900  instruction binding a ``DIExpression(DW_OP_LLVM_entry_value`` to a
5901  register is lowered to a ``DW_OP_entry_value [reg]``, pushing the
5902  value the register had upon function entry onto the stack.  The next
5903  ``(N - 1)`` operations will be part of the ``DW_OP_entry_value``
5904  block argument. For example, ``!DIExpression(DW_OP_LLVM_entry_value,
5905  1, DW_OP_plus_uconst, 123, DW_OP_stack_value)`` specifies an
5906  expression where the entry value of the debug value instruction's
5907  value/address operand is pushed to the stack, and is added
5908  with 123. Due to framework limitations ``N`` can currently only
5909  be 1.
5910
5911  The operation is introduced by the ``LiveDebugValues`` pass, which
5912  applies it only to function parameters that are unmodified
5913  throughout the function. Support is limited to simple register
5914  location descriptions, or as indirect locations (e.g., when a struct
5915  is passed-by-value to a callee via a pointer to a temporary copy
5916  made in the caller). The entry value op is also introduced by the
5917  ``AsmPrinter`` pass when a call site parameter value
5918  (``DW_AT_call_site_parameter_value``) is represented as entry value
5919  of the parameter.
5920- ``DW_OP_LLVM_arg, N`` is used in debug intrinsics that refer to more than one
5921  value, such as one that calculates the sum of two registers. This is always
5922  used in combination with an ordered list of values, such that
5923  ``DW_OP_LLVM_arg, N`` refers to the ``N``\ :sup:`th` element in that list. For
5924  example, ``!DIExpression(DW_OP_LLVM_arg, 0, DW_OP_LLVM_arg, 1, DW_OP_minus,
5925  DW_OP_stack_value)`` used with the list ``(%reg1, %reg2)`` would evaluate to
5926  ``%reg1 - reg2``. This list of values should be provided by the containing
5927  intrinsic/instruction.
5928- ``DW_OP_breg`` (or ``DW_OP_bregx``) represents a content on the provided
5929  signed offset of the specified register. The opcode is only generated by the
5930  ``AsmPrinter`` pass to describe call site parameter value which requires an
5931  expression over two registers.
5932- ``DW_OP_push_object_address`` pushes the address of the object which can then
5933  serve as a descriptor in subsequent calculation. This opcode can be used to
5934  calculate bounds of fortran allocatable array which has array descriptors.
5935- ``DW_OP_over`` duplicates the entry currently second in the stack at the top
5936  of the stack. This opcode can be used to calculate bounds of fortran assumed
5937  rank array which has rank known at run time and current dimension number is
5938  implicitly first element of the stack.
5939- ``DW_OP_LLVM_implicit_pointer`` It specifies the dereferenced value. It can
5940  be used to represent pointer variables which are optimized out but the value
5941  it points to is known. This operator is required as it is different than DWARF
5942  operator DW_OP_implicit_pointer in representation and specification (number
5943  and types of operands) and later can not be used as multiple level.
5944
5945.. code-block:: text
5946
5947    IR for "*ptr = 4;"
5948    --------------
5949    call void @llvm.dbg.value(metadata i32 4, metadata !17, metadata !20)
5950    !17 = !DILocalVariable(name: "ptr1", scope: !12, file: !3, line: 5,
5951                           type: !18)
5952    !18 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !19, size: 64)
5953    !19 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
5954    !20 = !DIExpression(DW_OP_LLVM_implicit_pointer))
5955
5956    IR for "**ptr = 4;"
5957    --------------
5958    call void @llvm.dbg.value(metadata i32 4, metadata !17, metadata !21)
5959    !17 = !DILocalVariable(name: "ptr1", scope: !12, file: !3, line: 5,
5960                           type: !18)
5961    !18 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !19, size: 64)
5962    !19 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !20, size: 64)
5963    !20 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
5964    !21 = !DIExpression(DW_OP_LLVM_implicit_pointer,
5965                        DW_OP_LLVM_implicit_pointer))
5966
5967DWARF specifies three kinds of simple location descriptions: Register, memory,
5968and implicit location descriptions.  Note that a location description is
5969defined over certain ranges of a program, i.e the location of a variable may
5970change over the course of the program. Register and memory location
5971descriptions describe the *concrete location* of a source variable (in the
5972sense that a debugger might modify its value), whereas *implicit locations*
5973describe merely the actual *value* of a source variable which might not exist
5974in registers or in memory (see ``DW_OP_stack_value``).
5975
5976A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
5977value (the address) of a source variable. The first operand of the intrinsic
5978must be an address of some kind. A DIExpression attached to the intrinsic
5979refines this address to produce a concrete location for the source variable.
5980
5981A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
5982The first operand of the intrinsic may be a direct or indirect value. A
5983DIExpression attached to the intrinsic refines the first operand to produce a
5984direct value. For example, if the first operand is an indirect value, it may be
5985necessary to insert ``DW_OP_deref`` into the DIExpression in order to produce a
5986valid debug intrinsic.
5987
5988.. note::
5989
5990   A DIExpression is interpreted in the same way regardless of which kind of
5991   debug intrinsic it's attached to.
5992
5993.. code-block:: text
5994
5995    !0 = !DIExpression(DW_OP_deref)
5996    !1 = !DIExpression(DW_OP_plus_uconst, 3)
5997    !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
5998    !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
5999    !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
6000    !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
6001    !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
6002
6003DIAssignID
6004""""""""""""
6005
6006``DIAssignID`` nodes have no operands and are always distinct. They are used to
6007link together `@llvm.dbg.assign` intrinsics (:ref:`debug
6008intrinsics<dbg_intrinsics>`) and instructions that store in IR. See `Debug Info
6009Assignment Tracking <AssignmentTracking.html>`_ for more info.
6010
6011.. code-block:: llvm
6012
6013    store i32 %a, ptr %a.addr, align 4, !DIAssignID !2
6014    llvm.dbg.assign(metadata %a, metadata !1, metadata !DIExpression(), !2, metadata %a.addr, metadata !DIExpression()), !dbg !3
6015
6016    !2 = distinct !DIAssignID()
6017
6018DIArgList
6019""""""""""""
6020
6021``DIArgList`` nodes hold a list of constant or SSA value references. These are
6022used in :ref:`debug intrinsics<dbg_intrinsics>` (currently only in
6023``llvm.dbg.value``) in combination with a ``DIExpression`` that uses the
6024``DW_OP_LLVM_arg`` operator. Because a DIArgList may refer to local values
6025within a function, it must only be used as a function argument, must always be
6026inlined, and cannot appear in named metadata.
6027
6028.. code-block:: text
6029
6030    llvm.dbg.value(metadata !DIArgList(i32 %a, i32 %b),
6031                   metadata !16,
6032                   metadata !DIExpression(DW_OP_LLVM_arg, 0, DW_OP_LLVM_arg, 1, DW_OP_plus))
6033
6034DIFlags
6035"""""""""""""""
6036
6037These flags encode various properties of DINodes.
6038
6039The `ExportSymbols` flag marks a class, struct or union whose members
6040may be referenced as if they were defined in the containing class or
6041union. This flag is used to decide whether the DW_AT_export_symbols can
6042be used for the structure type.
6043
6044DIObjCProperty
6045""""""""""""""
6046
6047``DIObjCProperty`` nodes represent Objective-C property nodes.
6048
6049.. code-block:: text
6050
6051    !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
6052                         getter: "getFoo", attributes: 7, type: !2)
6053
6054DIImportedEntity
6055""""""""""""""""
6056
6057``DIImportedEntity`` nodes represent entities (such as modules) imported into a
6058compile unit. The ``elements`` field is a list of renamed entities (such as
6059variables and subprograms) in the imported entity (such as module).
6060
6061.. code-block:: text
6062
6063   !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
6064                          entity: !1, line: 7, elements: !3)
6065   !3 = !{!4}
6066   !4 = !DIImportedEntity(tag: DW_TAG_imported_declaration, name: "bar", scope: !0,
6067                          entity: !5, line: 7)
6068
6069DIMacro
6070"""""""
6071
6072``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
6073The ``name:`` field is the macro identifier, followed by macro parameters when
6074defining a function-like macro, and the ``value`` field is the token-string
6075used to expand the macro identifier.
6076
6077.. code-block:: text
6078
6079   !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
6080                 value: "((x) + 1)")
6081   !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
6082
6083DIMacroFile
6084"""""""""""
6085
6086``DIMacroFile`` nodes represent inclusion of source files.
6087The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
6088appear in the included source file.
6089
6090.. code-block:: text
6091
6092   !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
6093                     nodes: !3)
6094
6095.. _DILabel:
6096
6097DILabel
6098"""""""
6099
6100``DILabel`` nodes represent labels within a :ref:`DISubprogram`. All fields of
6101a ``DILabel`` are mandatory. The ``scope:`` field must be one of either a
6102:ref:`DILexicalBlockFile`, a :ref:`DILexicalBlock`, or a :ref:`DISubprogram`.
6103The ``name:`` field is the label identifier. The ``file:`` field is the
6104:ref:`DIFile` the label is present in. The ``line:`` field is the source line
6105within the file where the label is declared.
6106
6107.. code-block:: text
6108
6109  !2 = !DILabel(scope: !0, name: "foo", file: !1, line: 7)
6110
6111'``tbaa``' Metadata
6112^^^^^^^^^^^^^^^^^^^
6113
6114In LLVM IR, memory does not have types, so LLVM's own type system is not
6115suitable for doing type based alias analysis (TBAA). Instead, metadata is
6116added to the IR to describe a type system of a higher level language. This
6117can be used to implement C/C++ strict type aliasing rules, but it can also
6118be used to implement custom alias analysis behavior for other languages.
6119
6120This description of LLVM's TBAA system is broken into two parts:
6121:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
6122:ref:`Representation<tbaa_node_representation>` talks about the metadata
6123encoding of various entities.
6124
6125It is always possible to trace any TBAA node to a "root" TBAA node (details
6126in the :ref:`Representation<tbaa_node_representation>` section).  TBAA
6127nodes with different roots have an unknown aliasing relationship, and LLVM
6128conservatively infers ``MayAlias`` between them.  The rules mentioned in
6129this section only pertain to TBAA nodes living under the same root.
6130
6131.. _tbaa_node_semantics:
6132
6133Semantics
6134"""""""""
6135
6136The TBAA metadata system, referred to as "struct path TBAA" (not to be
6137confused with ``tbaa.struct``), consists of the following high level
6138concepts: *Type Descriptors*, further subdivided into scalar type
6139descriptors and struct type descriptors; and *Access Tags*.
6140
6141**Type descriptors** describe the type system of the higher level language
6142being compiled.  **Scalar type descriptors** describe types that do not
6143contain other types.  Each scalar type has a parent type, which must also
6144be a scalar type or the TBAA root.  Via this parent relation, scalar types
6145within a TBAA root form a tree.  **Struct type descriptors** denote types
6146that contain a sequence of other type descriptors, at known offsets.  These
6147contained type descriptors can either be struct type descriptors themselves
6148or scalar type descriptors.
6149
6150**Access tags** are metadata nodes attached to load and store instructions.
6151Access tags use type descriptors to describe the *location* being accessed
6152in terms of the type system of the higher level language.  Access tags are
6153tuples consisting of a base type, an access type and an offset.  The base
6154type is a scalar type descriptor or a struct type descriptor, the access
6155type is a scalar type descriptor, and the offset is a constant integer.
6156
6157The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
6158things:
6159
6160 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
6161   or store) of a value of type ``AccessTy`` contained in the struct type
6162   ``BaseTy`` at offset ``Offset``.
6163
6164 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
6165   ``AccessTy`` must be the same; and the access tag describes a scalar
6166   access with scalar type ``AccessTy``.
6167
6168We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
6169tuples this way:
6170
6171 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
6172   ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
6173   described in the TBAA metadata.  ``ImmediateParent(BaseTy, Offset)`` is
6174   undefined if ``Offset`` is non-zero.
6175
6176 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
6177   is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
6178   ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
6179   to be relative within that inner type.
6180
6181A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
6182aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
6183Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
6184Offset2)`` via the ``Parent`` relation or vice versa.
6185
6186As a concrete example, the type descriptor graph for the following program
6187
6188.. code-block:: c
6189
6190    struct Inner {
6191      int i;    // offset 0
6192      float f;  // offset 4
6193    };
6194
6195    struct Outer {
6196      float f;  // offset 0
6197      double d; // offset 4
6198      struct Inner inner_a;  // offset 12
6199    };
6200
6201    void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
6202      outer->f = 0;            // tag0: (OuterStructTy, FloatScalarTy, 0)
6203      outer->inner_a.i = 0;    // tag1: (OuterStructTy, IntScalarTy, 12)
6204      outer->inner_a.f = 0.0;  // tag2: (OuterStructTy, FloatScalarTy, 16)
6205      *f = 0.0;                // tag3: (FloatScalarTy, FloatScalarTy, 0)
6206    }
6207
6208is (note that in C and C++, ``char`` can be used to access any arbitrary
6209type):
6210
6211.. code-block:: text
6212
6213    Root = "TBAA Root"
6214    CharScalarTy = ("char", Root, 0)
6215    FloatScalarTy = ("float", CharScalarTy, 0)
6216    DoubleScalarTy = ("double", CharScalarTy, 0)
6217    IntScalarTy = ("int", CharScalarTy, 0)
6218    InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
6219    OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
6220                     (InnerStructTy, 12)}
6221
6222
6223with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
62240)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
6225``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
6226
6227.. _tbaa_node_representation:
6228
6229Representation
6230""""""""""""""
6231
6232The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
6233with exactly one ``MDString`` operand.
6234
6235Scalar type descriptors are represented as an ``MDNode`` s with two
6236operands.  The first operand is an ``MDString`` denoting the name of the
6237struct type.  LLVM does not assign meaning to the value of this operand, it
6238only cares about it being an ``MDString``.  The second operand is an
6239``MDNode`` which points to the parent for said scalar type descriptor,
6240which is either another scalar type descriptor or the TBAA root.  Scalar
6241type descriptors can have an optional third argument, but that must be the
6242constant integer zero.
6243
6244Struct type descriptors are represented as ``MDNode`` s with an odd number
6245of operands greater than 1.  The first operand is an ``MDString`` denoting
6246the name of the struct type.  Like in scalar type descriptors the actual
6247value of this name operand is irrelevant to LLVM.  After the name operand,
6248the struct type descriptors have a sequence of alternating ``MDNode`` and
6249``ConstantInt`` operands.  With N starting from 1, the 2N - 1 th operand,
6250an ``MDNode``, denotes a contained field, and the 2N th operand, a
6251``ConstantInt``, is the offset of the said contained field.  The offsets
6252must be in non-decreasing order.
6253
6254Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
6255The first operand is an ``MDNode`` pointing to the node representing the
6256base type.  The second operand is an ``MDNode`` pointing to the node
6257representing the access type.  The third operand is a ``ConstantInt`` that
6258states the offset of the access.  If a fourth field is present, it must be
6259a ``ConstantInt`` valued at 0 or 1.  If it is 1 then the access tag states
6260that the location being accessed is "constant" (meaning
6261``pointsToConstantMemory`` should return true; see `other useful
6262AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).  The TBAA root of
6263the access type and the base type of an access tag must be the same, and
6264that is the TBAA root of the access tag.
6265
6266'``tbaa.struct``' Metadata
6267^^^^^^^^^^^^^^^^^^^^^^^^^^
6268
6269The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
6270aggregate assignment operations in C and similar languages, however it
6271is defined to copy a contiguous region of memory, which is more than
6272strictly necessary for aggregate types which contain holes due to
6273padding. Also, it doesn't contain any TBAA information about the fields
6274of the aggregate.
6275
6276``!tbaa.struct`` metadata can describe which memory subregions in a
6277memcpy are padding and what the TBAA tags of the struct are.
6278
6279The current metadata format is very simple. ``!tbaa.struct`` metadata
6280nodes are a list of operands which are in conceptual groups of three.
6281For each group of three, the first operand gives the byte offset of a
6282field in bytes, the second gives its size in bytes, and the third gives
6283its tbaa tag. e.g.:
6284
6285.. code-block:: llvm
6286
6287    !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
6288
6289This describes a struct with two fields. The first is at offset 0 bytes
6290with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
6291and has size 4 bytes and has tbaa tag !2.
6292
6293Note that the fields need not be contiguous. In this example, there is a
62944 byte gap between the two fields. This gap represents padding which
6295does not carry useful data and need not be preserved.
6296
6297'``noalias``' and '``alias.scope``' Metadata
6298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6299
6300``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
6301noalias memory-access sets. This means that some collection of memory access
6302instructions (loads, stores, memory-accessing calls, etc.) that carry
6303``noalias`` metadata can specifically be specified not to alias with some other
6304collection of memory access instructions that carry ``alias.scope`` metadata.
6305Each type of metadata specifies a list of scopes where each scope has an id and
6306a domain.
6307
6308When evaluating an aliasing query, if for some domain, the set
6309of scopes with that domain in one instruction's ``alias.scope`` list is a
6310subset of (or equal to) the set of scopes for that domain in another
6311instruction's ``noalias`` list, then the two memory accesses are assumed not to
6312alias.
6313
6314Because scopes in one domain don't affect scopes in other domains, separate
6315domains can be used to compose multiple independent noalias sets.  This is
6316used for example during inlining.  As the noalias function parameters are
6317turned into noalias scope metadata, a new domain is used every time the
6318function is inlined.
6319
6320The metadata identifying each domain is itself a list containing one or two
6321entries. The first entry is the name of the domain. Note that if the name is a
6322string then it can be combined across functions and translation units. A
6323self-reference can be used to create globally unique domain names. A
6324descriptive string may optionally be provided as a second list entry.
6325
6326The metadata identifying each scope is also itself a list containing two or
6327three entries. The first entry is the name of the scope. Note that if the name
6328is a string then it can be combined across functions and translation units. A
6329self-reference can be used to create globally unique scope names. A metadata
6330reference to the scope's domain is the second entry. A descriptive string may
6331optionally be provided as a third list entry.
6332
6333For example,
6334
6335.. code-block:: llvm
6336
6337    ; Two scope domains:
6338    !0 = !{!0}
6339    !1 = !{!1}
6340
6341    ; Some scopes in these domains:
6342    !2 = !{!2, !0}
6343    !3 = !{!3, !0}
6344    !4 = !{!4, !1}
6345
6346    ; Some scope lists:
6347    !5 = !{!4} ; A list containing only scope !4
6348    !6 = !{!4, !3, !2}
6349    !7 = !{!3}
6350
6351    ; These two instructions don't alias:
6352    %0 = load float, ptr %c, align 4, !alias.scope !5
6353    store float %0, ptr %arrayidx.i, align 4, !noalias !5
6354
6355    ; These two instructions also don't alias (for domain !1, the set of scopes
6356    ; in the !alias.scope equals that in the !noalias list):
6357    %2 = load float, ptr %c, align 4, !alias.scope !5
6358    store float %2, ptr %arrayidx.i2, align 4, !noalias !6
6359
6360    ; These two instructions may alias (for domain !0, the set of scopes in
6361    ; the !noalias list is not a superset of, or equal to, the scopes in the
6362    ; !alias.scope list):
6363    %2 = load float, ptr %c, align 4, !alias.scope !6
6364    store float %0, ptr %arrayidx.i, align 4, !noalias !7
6365
6366'``fpmath``' Metadata
6367^^^^^^^^^^^^^^^^^^^^^
6368
6369``fpmath`` metadata may be attached to any instruction of floating-point
6370type. It can be used to express the maximum acceptable error in the
6371result of that instruction, in ULPs, thus potentially allowing the
6372compiler to use a more efficient but less accurate method of computing
6373it. ULP is defined as follows:
6374
6375    If ``x`` is a real number that lies between two finite consecutive
6376    floating-point numbers ``a`` and ``b``, without being equal to one
6377    of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
6378    distance between the two non-equal finite floating-point numbers
6379    nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
6380
6381The metadata node shall consist of a single positive float type number
6382representing the maximum relative error, for example:
6383
6384.. code-block:: llvm
6385
6386    !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
6387
6388.. _range-metadata:
6389
6390'``range``' Metadata
6391^^^^^^^^^^^^^^^^^^^^
6392
6393``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
6394integer types. It expresses the possible ranges the loaded value or the value
6395returned by the called function at this call site is in. If the loaded or
6396returned value is not in the specified range, a poison value is returned
6397instead. The ranges are represented with a flattened list of integers. The
6398loaded value or the value returned is known to be in the union of the ranges
6399defined by each consecutive pair. Each pair has the following properties:
6400
6401-  The type must match the type loaded by the instruction.
6402-  The pair ``a,b`` represents the range ``[a,b)``.
6403-  Both ``a`` and ``b`` are constants.
6404-  The range is allowed to wrap.
6405-  The range should not represent the full or empty set. That is,
6406   ``a!=b``.
6407
6408In addition, the pairs must be in signed order of the lower bound and
6409they must be non-contiguous.
6410
6411Examples:
6412
6413.. code-block:: llvm
6414
6415      %a = load i8, ptr %x, align 1, !range !0 ; Can only be 0 or 1
6416      %b = load i8, ptr %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
6417      %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
6418      %d = invoke i8 @bar() to label %cont
6419             unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
6420    ...
6421    !0 = !{ i8 0, i8 2 }
6422    !1 = !{ i8 255, i8 2 }
6423    !2 = !{ i8 0, i8 2, i8 3, i8 6 }
6424    !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
6425
6426'``absolute_symbol``' Metadata
6427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6428
6429``absolute_symbol`` metadata may be attached to a global variable
6430declaration. It marks the declaration as a reference to an absolute symbol,
6431which causes the backend to use absolute relocations for the symbol even
6432in position independent code, and expresses the possible ranges that the
6433global variable's *address* (not its value) is in, in the same format as
6434``range`` metadata, with the extension that the pair ``all-ones,all-ones``
6435may be used to represent the full set.
6436
6437Example (assuming 64-bit pointers):
6438
6439.. code-block:: llvm
6440
6441      @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
6442      @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
6443
6444    ...
6445    !0 = !{ i64 0, i64 256 }
6446    !1 = !{ i64 -1, i64 -1 }
6447
6448'``callees``' Metadata
6449^^^^^^^^^^^^^^^^^^^^^^
6450
6451``callees`` metadata may be attached to indirect call sites. If ``callees``
6452metadata is attached to a call site, and any callee is not among the set of
6453functions provided by the metadata, the behavior is undefined. The intent of
6454this metadata is to facilitate optimizations such as indirect-call promotion.
6455For example, in the code below, the call instruction may only target the
6456``add`` or ``sub`` functions:
6457
6458.. code-block:: llvm
6459
6460    %result = call i64 %binop(i64 %x, i64 %y), !callees !0
6461
6462    ...
6463    !0 = !{ptr @add, ptr @sub}
6464
6465'``callback``' Metadata
6466^^^^^^^^^^^^^^^^^^^^^^^
6467
6468``callback`` metadata may be attached to a function declaration, or definition.
6469(Call sites are excluded only due to the lack of a use case.) For ease of
6470exposition, we'll refer to the function annotated w/ metadata as a broker
6471function. The metadata describes how the arguments of a call to the broker are
6472in turn passed to the callback function specified by the metadata. Thus, the
6473``callback`` metadata provides a partial description of a call site inside the
6474broker function with regards to the arguments of a call to the broker. The only
6475semantic restriction on the broker function itself is that it is not allowed to
6476inspect or modify arguments referenced in the ``callback`` metadata as
6477pass-through to the callback function.
6478
6479The broker is not required to actually invoke the callback function at runtime.
6480However, the assumptions about not inspecting or modifying arguments that would
6481be passed to the specified callback function still hold, even if the callback
6482function is not dynamically invoked. The broker is allowed to invoke the
6483callback function more than once per invocation of the broker. The broker is
6484also allowed to invoke (directly or indirectly) the function passed as a
6485callback through another use. Finally, the broker is also allowed to relay the
6486callback callee invocation to a different thread.
6487
6488The metadata is structured as follows: At the outer level, ``callback``
6489metadata is a list of ``callback`` encodings. Each encoding starts with a
6490constant ``i64`` which describes the argument position of the callback function
6491in the call to the broker. The following elements, except the last, describe
6492what arguments are passed to the callback function. Each element is again an
6493``i64`` constant identifying the argument of the broker that is passed through,
6494or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
6495they are listed has to be the same in which they are passed to the callback
6496callee. The last element of the encoding is a boolean which specifies how
6497variadic arguments of the broker are handled. If it is true, all variadic
6498arguments of the broker are passed through to the callback function *after* the
6499arguments encoded explicitly before.
6500
6501In the code below, the ``pthread_create`` function is marked as a broker
6502through the ``!callback !1`` metadata. In the example, there is only one
6503callback encoding, namely ``!2``, associated with the broker. This encoding
6504identifies the callback function as the second argument of the broker (``i64
65052``) and the sole argument of the callback function as the third one of the
6506broker function (``i64 3``).
6507
6508.. FIXME why does the llvm-sphinx-docs builder give a highlighting
6509   error if the below is set to highlight as 'llvm', despite that we
6510   have misc.highlighting_failure set?
6511
6512.. code-block:: text
6513
6514    declare !callback !1 dso_local i32 @pthread_create(ptr, ptr, ptr, ptr)
6515
6516    ...
6517    !2 = !{i64 2, i64 3, i1 false}
6518    !1 = !{!2}
6519
6520Another example is shown below. The callback callee is the second argument of
6521the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
6522values (each identified by a ``i64 -1``) and afterwards all
6523variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
6524final ``i1 true``).
6525
6526.. FIXME why does the llvm-sphinx-docs builder give a highlighting
6527   error if the below is set to highlight as 'llvm', despite that we
6528   have misc.highlighting_failure set?
6529
6530.. code-block:: text
6531
6532    declare !callback !0 dso_local void @__kmpc_fork_call(ptr, i32, ptr, ...)
6533
6534    ...
6535    !1 = !{i64 2, i64 -1, i64 -1, i1 true}
6536    !0 = !{!1}
6537
6538'``exclude``' Metadata
6539^^^^^^^^^^^^^^^^^^^^^^
6540
6541``exclude`` metadata may be attached to a global variable to signify that its
6542section should not be included in the final executable or shared library. This
6543option is only valid for global variables with an explicit section targeting ELF
6544or COFF. This is done using the ``SHF_EXCLUDE`` flag on ELF targets and the
6545``IMAGE_SCN_LNK_REMOVE`` and ``IMAGE_SCN_MEM_DISCARDABLE`` flags for COFF
6546targets. Additionally, this metadata is only used as a flag, so the associated
6547node must be empty. The explicit section should not conflict with any other
6548sections that the user does not want removed after linking.
6549
6550.. code-block:: text
6551
6552  @object = private constant [1 x i8] c"\00", section ".foo" !exclude !0
6553
6554  ...
6555  !0 = !{}
6556
6557'``unpredictable``' Metadata
6558^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6559
6560``unpredictable`` metadata may be attached to any branch or switch
6561instruction. It can be used to express the unpredictability of control
6562flow. Similar to the llvm.expect intrinsic, it may be used to alter
6563optimizations related to compare and branch instructions. The metadata
6564is treated as a boolean value; if it exists, it signals that the branch
6565or switch that it is attached to is completely unpredictable.
6566
6567.. _md_dereferenceable:
6568
6569'``dereferenceable``' Metadata
6570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6571
6572The existence of the ``!dereferenceable`` metadata on the instruction
6573tells the optimizer that the value loaded is known to be dereferenceable.
6574The number of bytes known to be dereferenceable is specified by the integer
6575value in the metadata node. This is analogous to the ''dereferenceable''
6576attribute on parameters and return values.
6577
6578.. _md_dereferenceable_or_null:
6579
6580'``dereferenceable_or_null``' Metadata
6581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6582
6583The existence of the ``!dereferenceable_or_null`` metadata on the
6584instruction tells the optimizer that the value loaded is known to be either
6585dereferenceable or null.
6586The number of bytes known to be dereferenceable is specified by the integer
6587value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6588attribute on parameters and return values.
6589
6590.. _llvm.loop:
6591
6592'``llvm.loop``'
6593^^^^^^^^^^^^^^^
6594
6595It is sometimes useful to attach information to loop constructs. Currently,
6596loop metadata is implemented as metadata attached to the branch instruction
6597in the loop latch block. The loop metadata node is a list of
6598other metadata nodes, each representing a property of the loop. Usually,
6599the first item of the property node is a string. For example, the
6600``llvm.loop.unroll.count`` suggests an unroll factor to the loop
6601unroller:
6602
6603.. code-block:: llvm
6604
6605      br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
6606    ...
6607    !0 = !{!0, !1, !2}
6608    !1 = !{!"llvm.loop.unroll.enable"}
6609    !2 = !{!"llvm.loop.unroll.count", i32 4}
6610
6611For legacy reasons, the first item of a loop metadata node must be a
6612reference to itself. Before the advent of the 'distinct' keyword, this
6613forced the preservation of otherwise identical metadata nodes. Since
6614the loop-metadata node can be attached to multiple nodes, the 'distinct'
6615keyword has become unnecessary.
6616
6617Prior to the property nodes, one or two ``DILocation`` (debug location)
6618nodes can be present in the list. The first, if present, identifies the
6619source-code location where the loop begins. The second, if present,
6620identifies the source-code location where the loop ends.
6621
6622Loop metadata nodes cannot be used as unique identifiers. They are
6623neither persistent for the same loop through transformations nor
6624necessarily unique to just one loop.
6625
6626'``llvm.loop.disable_nonforced``'
6627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6628
6629This metadata disables all optional loop transformations unless
6630explicitly instructed using other transformation metadata such as
6631``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
6632whether a transformation is profitable. The purpose is to avoid that the
6633loop is transformed to a different loop before an explicitly requested
6634(forced) transformation is applied. For instance, loop fusion can make
6635other transformations impossible. Mandatory loop canonicalizations such
6636as loop rotation are still applied.
6637
6638It is recommended to use this metadata in addition to any llvm.loop.*
6639transformation directive. Also, any loop should have at most one
6640directive applied to it (and a sequence of transformations built using
6641followup-attributes). Otherwise, which transformation will be applied
6642depends on implementation details such as the pass pipeline order.
6643
6644See :ref:`transformation-metadata` for details.
6645
6646'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
6647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6648
6649Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
6650used to control per-loop vectorization and interleaving parameters such as
6651vectorization width and interleave count. These metadata should be used in
6652conjunction with ``llvm.loop`` loop identification metadata. The
6653``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
6654optimization hints and the optimizer will only interleave and vectorize loops if
6655it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
6656which contains information about loop-carried memory dependencies can be helpful
6657in determining the safety of these transformations.
6658
6659'``llvm.loop.interleave.count``' Metadata
6660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6661
6662This metadata suggests an interleave count to the loop interleaver.
6663The first operand is the string ``llvm.loop.interleave.count`` and the
6664second operand is an integer specifying the interleave count. For
6665example:
6666
6667.. code-block:: llvm
6668
6669   !0 = !{!"llvm.loop.interleave.count", i32 4}
6670
6671Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
6672multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
6673then the interleave count will be determined automatically.
6674
6675'``llvm.loop.vectorize.enable``' Metadata
6676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6677
6678This metadata selectively enables or disables vectorization for the loop. The
6679first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
6680is a bit. If the bit operand value is 1 vectorization is enabled. A value of
66810 disables vectorization:
6682
6683.. code-block:: llvm
6684
6685   !0 = !{!"llvm.loop.vectorize.enable", i1 0}
6686   !1 = !{!"llvm.loop.vectorize.enable", i1 1}
6687
6688'``llvm.loop.vectorize.predicate.enable``' Metadata
6689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6690
6691This metadata selectively enables or disables creating predicated instructions
6692for the loop, which can enable folding of the scalar epilogue loop into the
6693main loop. The first operand is the string
6694``llvm.loop.vectorize.predicate.enable`` and the second operand is a bit. If
6695the bit operand value is 1 vectorization is enabled. A value of 0 disables
6696vectorization:
6697
6698.. code-block:: llvm
6699
6700   !0 = !{!"llvm.loop.vectorize.predicate.enable", i1 0}
6701   !1 = !{!"llvm.loop.vectorize.predicate.enable", i1 1}
6702
6703'``llvm.loop.vectorize.scalable.enable``' Metadata
6704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6705
6706This metadata selectively enables or disables scalable vectorization for the
6707loop, and only has any effect if vectorization for the loop is already enabled.
6708The first operand is the string ``llvm.loop.vectorize.scalable.enable``
6709and the second operand is a bit. If the bit operand value is 1 scalable
6710vectorization is enabled, whereas a value of 0 reverts to the default fixed
6711width vectorization:
6712
6713.. code-block:: llvm
6714
6715   !0 = !{!"llvm.loop.vectorize.scalable.enable", i1 0}
6716   !1 = !{!"llvm.loop.vectorize.scalable.enable", i1 1}
6717
6718'``llvm.loop.vectorize.width``' Metadata
6719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6720
6721This metadata sets the target width of the vectorizer. The first
6722operand is the string ``llvm.loop.vectorize.width`` and the second
6723operand is an integer specifying the width. For example:
6724
6725.. code-block:: llvm
6726
6727   !0 = !{!"llvm.loop.vectorize.width", i32 4}
6728
6729Note that setting ``llvm.loop.vectorize.width`` to 1 disables
6730vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
67310 or if the loop does not have this metadata the width will be
6732determined automatically.
6733
6734'``llvm.loop.vectorize.followup_vectorized``' Metadata
6735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6736
6737This metadata defines which loop attributes the vectorized loop will
6738have. See :ref:`transformation-metadata` for details.
6739
6740'``llvm.loop.vectorize.followup_epilogue``' Metadata
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743This metadata defines which loop attributes the epilogue will have. The
6744epilogue is not vectorized and is executed when either the vectorized
6745loop is not known to preserve semantics (because e.g., it processes two
6746arrays that are found to alias by a runtime check) or for the last
6747iterations that do not fill a complete set of vector lanes. See
6748:ref:`Transformation Metadata <transformation-metadata>` for details.
6749
6750'``llvm.loop.vectorize.followup_all``' Metadata
6751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6752
6753Attributes in the metadata will be added to both the vectorized and
6754epilogue loop.
6755See :ref:`Transformation Metadata <transformation-metadata>` for details.
6756
6757'``llvm.loop.unroll``'
6758^^^^^^^^^^^^^^^^^^^^^^
6759
6760Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
6761optimization hints such as the unroll factor. ``llvm.loop.unroll``
6762metadata should be used in conjunction with ``llvm.loop`` loop
6763identification metadata. The ``llvm.loop.unroll`` metadata are only
6764optimization hints and the unrolling will only be performed if the
6765optimizer believes it is safe to do so.
6766
6767'``llvm.loop.unroll.count``' Metadata
6768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6769
6770This metadata suggests an unroll factor to the loop unroller. The
6771first operand is the string ``llvm.loop.unroll.count`` and the second
6772operand is a positive integer specifying the unroll factor. For
6773example:
6774
6775.. code-block:: llvm
6776
6777   !0 = !{!"llvm.loop.unroll.count", i32 4}
6778
6779If the trip count of the loop is less than the unroll count the loop
6780will be partially unrolled.
6781
6782'``llvm.loop.unroll.disable``' Metadata
6783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6784
6785This metadata disables loop unrolling. The metadata has a single operand
6786which is the string ``llvm.loop.unroll.disable``. For example:
6787
6788.. code-block:: llvm
6789
6790   !0 = !{!"llvm.loop.unroll.disable"}
6791
6792'``llvm.loop.unroll.runtime.disable``' Metadata
6793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6794
6795This metadata disables runtime loop unrolling. The metadata has a single
6796operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
6797
6798.. code-block:: llvm
6799
6800   !0 = !{!"llvm.loop.unroll.runtime.disable"}
6801
6802'``llvm.loop.unroll.enable``' Metadata
6803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6804
6805This metadata suggests that the loop should be fully unrolled if the trip count
6806is known at compile time and partially unrolled if the trip count is not known
6807at compile time. The metadata has a single operand which is the string
6808``llvm.loop.unroll.enable``.  For example:
6809
6810.. code-block:: llvm
6811
6812   !0 = !{!"llvm.loop.unroll.enable"}
6813
6814'``llvm.loop.unroll.full``' Metadata
6815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6816
6817This metadata suggests that the loop should be unrolled fully. The
6818metadata has a single operand which is the string ``llvm.loop.unroll.full``.
6819For example:
6820
6821.. code-block:: llvm
6822
6823   !0 = !{!"llvm.loop.unroll.full"}
6824
6825'``llvm.loop.unroll.followup``' Metadata
6826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6827
6828This metadata defines which loop attributes the unrolled loop will have.
6829See :ref:`Transformation Metadata <transformation-metadata>` for details.
6830
6831'``llvm.loop.unroll.followup_remainder``' Metadata
6832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6833
6834This metadata defines which loop attributes the remainder loop after
6835partial/runtime unrolling will have. See
6836:ref:`Transformation Metadata <transformation-metadata>` for details.
6837
6838'``llvm.loop.unroll_and_jam``'
6839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6840
6841This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
6842above, but affect the unroll and jam pass. In addition any loop with
6843``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
6844disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
6845unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
6846too.)
6847
6848The metadata for unroll and jam otherwise is the same as for ``unroll``.
6849``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
6850``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
6851``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
6852and the normal safety checks will still be performed.
6853
6854'``llvm.loop.unroll_and_jam.count``' Metadata
6855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6856
6857This metadata suggests an unroll and jam factor to use, similarly to
6858``llvm.loop.unroll.count``. The first operand is the string
6859``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
6860specifying the unroll factor. For example:
6861
6862.. code-block:: llvm
6863
6864   !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
6865
6866If the trip count of the loop is less than the unroll count the loop
6867will be partially unroll and jammed.
6868
6869'``llvm.loop.unroll_and_jam.disable``' Metadata
6870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6871
6872This metadata disables loop unroll and jamming. The metadata has a single
6873operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
6874
6875.. code-block:: llvm
6876
6877   !0 = !{!"llvm.loop.unroll_and_jam.disable"}
6878
6879'``llvm.loop.unroll_and_jam.enable``' Metadata
6880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6881
6882This metadata suggests that the loop should be fully unroll and jammed if the
6883trip count is known at compile time and partially unrolled if the trip count is
6884not known at compile time. The metadata has a single operand which is the
6885string ``llvm.loop.unroll_and_jam.enable``.  For example:
6886
6887.. code-block:: llvm
6888
6889   !0 = !{!"llvm.loop.unroll_and_jam.enable"}
6890
6891'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
6892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6893
6894This metadata defines which loop attributes the outer unrolled loop will
6895have. See :ref:`Transformation Metadata <transformation-metadata>` for
6896details.
6897
6898'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
6899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6900
6901This metadata defines which loop attributes the inner jammed loop will
6902have. See :ref:`Transformation Metadata <transformation-metadata>` for
6903details.
6904
6905'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
6906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6907
6908This metadata defines which attributes the epilogue of the outer loop
6909will have. This loop is usually unrolled, meaning there is no such
6910loop. This attribute will be ignored in this case. See
6911:ref:`Transformation Metadata <transformation-metadata>` for details.
6912
6913'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
6914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6915
6916This metadata defines which attributes the inner loop of the epilogue
6917will have. The outer epilogue will usually be unrolled, meaning there
6918can be multiple inner remainder loops. See
6919:ref:`Transformation Metadata <transformation-metadata>` for details.
6920
6921'``llvm.loop.unroll_and_jam.followup_all``' Metadata
6922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6923
6924Attributes specified in the metadata is added to all
6925``llvm.loop.unroll_and_jam.*`` loops. See
6926:ref:`Transformation Metadata <transformation-metadata>` for details.
6927
6928'``llvm.loop.licm_versioning.disable``' Metadata
6929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6930
6931This metadata indicates that the loop should not be versioned for the purpose
6932of enabling loop-invariant code motion (LICM). The metadata has a single operand
6933which is the string ``llvm.loop.licm_versioning.disable``. For example:
6934
6935.. code-block:: llvm
6936
6937   !0 = !{!"llvm.loop.licm_versioning.disable"}
6938
6939'``llvm.loop.distribute.enable``' Metadata
6940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6941
6942Loop distribution allows splitting a loop into multiple loops.  Currently,
6943this is only performed if the entire loop cannot be vectorized due to unsafe
6944memory dependencies.  The transformation will attempt to isolate the unsafe
6945dependencies into their own loop.
6946
6947This metadata can be used to selectively enable or disable distribution of the
6948loop.  The first operand is the string ``llvm.loop.distribute.enable`` and the
6949second operand is a bit. If the bit operand value is 1 distribution is
6950enabled. A value of 0 disables distribution:
6951
6952.. code-block:: llvm
6953
6954   !0 = !{!"llvm.loop.distribute.enable", i1 0}
6955   !1 = !{!"llvm.loop.distribute.enable", i1 1}
6956
6957This metadata should be used in conjunction with ``llvm.loop`` loop
6958identification metadata.
6959
6960'``llvm.loop.distribute.followup_coincident``' Metadata
6961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6962
6963This metadata defines which attributes extracted loops with no cyclic
6964dependencies will have (i.e. can be vectorized). See
6965:ref:`Transformation Metadata <transformation-metadata>` for details.
6966
6967'``llvm.loop.distribute.followup_sequential``' Metadata
6968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6969
6970This metadata defines which attributes the isolated loops with unsafe
6971memory dependencies will have. See
6972:ref:`Transformation Metadata <transformation-metadata>` for details.
6973
6974'``llvm.loop.distribute.followup_fallback``' Metadata
6975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6976
6977If loop versioning is necessary, this metadata defined the attributes
6978the non-distributed fallback version will have. See
6979:ref:`Transformation Metadata <transformation-metadata>` for details.
6980
6981'``llvm.loop.distribute.followup_all``' Metadata
6982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6983
6984The attributes in this metadata is added to all followup loops of the
6985loop distribution pass. See
6986:ref:`Transformation Metadata <transformation-metadata>` for details.
6987
6988'``llvm.licm.disable``' Metadata
6989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6990
6991This metadata indicates that loop-invariant code motion (LICM) should not be
6992performed on this loop. The metadata has a single operand which is the string
6993``llvm.licm.disable``. For example:
6994
6995.. code-block:: llvm
6996
6997   !0 = !{!"llvm.licm.disable"}
6998
6999Note that although it operates per loop it isn't given the llvm.loop prefix
7000as it is not affected by the ``llvm.loop.disable_nonforced`` metadata.
7001
7002'``llvm.access.group``' Metadata
7003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7004
7005``llvm.access.group`` metadata can be attached to any instruction that
7006potentially accesses memory. It can point to a single distinct metadata
7007node, which we call access group. This node represents all memory access
7008instructions referring to it via ``llvm.access.group``. When an
7009instruction belongs to multiple access groups, it can also point to a
7010list of accesses groups, illustrated by the following example.
7011
7012.. code-block:: llvm
7013
7014   %val = load i32, ptr %arrayidx, !llvm.access.group !0
7015   ...
7016   !0 = !{!1, !2}
7017   !1 = distinct !{}
7018   !2 = distinct !{}
7019
7020It is illegal for the list node to be empty since it might be confused
7021with an access group.
7022
7023The access group metadata node must be 'distinct' to avoid collapsing
7024multiple access groups by content. A access group metadata node must
7025always be empty which can be used to distinguish an access group
7026metadata node from a list of access groups. Being empty avoids the
7027situation that the content must be updated which, because metadata is
7028immutable by design, would required finding and updating all references
7029to the access group node.
7030
7031The access group can be used to refer to a memory access instruction
7032without pointing to it directly (which is not possible in global
7033metadata). Currently, the only metadata making use of it is
7034``llvm.loop.parallel_accesses``.
7035
7036'``llvm.loop.parallel_accesses``' Metadata
7037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7038
7039The ``llvm.loop.parallel_accesses`` metadata refers to one or more
7040access group metadata nodes (see ``llvm.access.group``). It denotes that
7041no loop-carried memory dependence exist between it and other instructions
7042in the loop with this metadata.
7043
7044Let ``m1`` and ``m2`` be two instructions that both have the
7045``llvm.access.group`` metadata to the access group ``g1``, respectively
7046``g2`` (which might be identical). If a loop contains both access groups
7047in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
7048assume that there is no dependency between ``m1`` and ``m2`` carried by
7049this loop. Instructions that belong to multiple access groups are
7050considered having this property if at least one of the access groups
7051matches the ``llvm.loop.parallel_accesses`` list.
7052
7053If all memory-accessing instructions in a loop have
7054``llvm.access.group`` metadata that each refer to one of the access
7055groups of a loop's ``llvm.loop.parallel_accesses`` metadata, then the
7056loop has no loop carried memory dependences and is considered to be a
7057parallel loop.
7058
7059Note that if not all memory access instructions belong to an access
7060group referred to by ``llvm.loop.parallel_accesses``, then the loop must
7061not be considered trivially parallel. Additional
7062memory dependence analysis is required to make that determination. As a fail
7063safe mechanism, this causes loops that were originally parallel to be considered
7064sequential (if optimization passes that are unaware of the parallel semantics
7065insert new memory instructions into the loop body).
7066
7067Example of a loop that is considered parallel due to its correct use of
7068both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
7069metadata types.
7070
7071.. code-block:: llvm
7072
7073   for.body:
7074     ...
7075     %val0 = load i32, ptr %arrayidx, !llvm.access.group !1
7076     ...
7077     store i32 %val0, ptr %arrayidx1, !llvm.access.group !1
7078     ...
7079     br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
7080
7081   for.end:
7082   ...
7083   !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
7084   !1 = distinct !{}
7085
7086It is also possible to have nested parallel loops:
7087
7088.. code-block:: llvm
7089
7090   outer.for.body:
7091     ...
7092     %val1 = load i32, ptr %arrayidx3, !llvm.access.group !4
7093     ...
7094     br label %inner.for.body
7095
7096   inner.for.body:
7097     ...
7098     %val0 = load i32, ptr %arrayidx1, !llvm.access.group !3
7099     ...
7100     store i32 %val0, ptr %arrayidx2, !llvm.access.group !3
7101     ...
7102     br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
7103
7104   inner.for.end:
7105     ...
7106     store i32 %val1, ptr %arrayidx4, !llvm.access.group !4
7107     ...
7108     br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
7109
7110   outer.for.end:                                          ; preds = %for.body
7111   ...
7112   !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}}     ; metadata for the inner loop
7113   !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
7114   !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
7115   !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
7116
7117.. _langref_llvm_loop_mustprogress:
7118
7119'``llvm.loop.mustprogress``' Metadata
7120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7121
7122The ``llvm.loop.mustprogress`` metadata indicates that this loop is required to
7123terminate, unwind, or interact with the environment in an observable way e.g.
7124via a volatile memory access, I/O, or other synchronization. If such a loop is
7125not found to interact with the environment in an observable way, the loop may
7126be removed. This corresponds to the ``mustprogress`` function attribute.
7127
7128'``irr_loop``' Metadata
7129^^^^^^^^^^^^^^^^^^^^^^^
7130
7131``irr_loop`` metadata may be attached to the terminator instruction of a basic
7132block that's an irreducible loop header (note that an irreducible loop has more
7133than once header basic blocks.) If ``irr_loop`` metadata is attached to the
7134terminator instruction of a basic block that is not really an irreducible loop
7135header, the behavior is undefined. The intent of this metadata is to improve the
7136accuracy of the block frequency propagation. For example, in the code below, the
7137block ``header0`` may have a loop header weight (relative to the other headers of
7138the irreducible loop) of 100:
7139
7140.. code-block:: llvm
7141
7142    header0:
7143    ...
7144    br i1 %cmp, label %t1, label %t2, !irr_loop !0
7145
7146    ...
7147    !0 = !{"loop_header_weight", i64 100}
7148
7149Irreducible loop header weights are typically based on profile data.
7150
7151.. _md_invariant.group:
7152
7153'``invariant.group``' Metadata
7154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7155
7156The experimental ``invariant.group`` metadata may be attached to
7157``load``/``store`` instructions referencing a single metadata with no entries.
7158The existence of the ``invariant.group`` metadata on the instruction tells
7159the optimizer that every ``load`` and ``store`` to the same pointer operand
7160can be assumed to load or store the same
7161value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
7162when two pointers are considered the same). Pointers returned by bitcast or
7163getelementptr with only zero indices are considered the same.
7164
7165Examples:
7166
7167.. code-block:: llvm
7168
7169   @unknownPtr = external global i8
7170   ...
7171   %ptr = alloca i8
7172   store i8 42, ptr %ptr, !invariant.group !0
7173   call void @foo(ptr %ptr)
7174
7175   %a = load i8, ptr %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
7176   call void @foo(ptr %ptr)
7177
7178   %newPtr = call ptr @getPointer(ptr %ptr)
7179   %c = load i8, ptr %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
7180
7181   %unknownValue = load i8, ptr @unknownPtr
7182   store i8 %unknownValue, ptr %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
7183
7184   call void @foo(ptr %ptr)
7185   %newPtr2 = call ptr @llvm.launder.invariant.group.p0(ptr %ptr)
7186   %d = load i8, ptr %newPtr2, !invariant.group !0  ; Can't step through launder.invariant.group to get value of %ptr
7187
7188   ...
7189   declare void @foo(ptr)
7190   declare ptr @getPointer(ptr)
7191   declare ptr @llvm.launder.invariant.group.p0(ptr)
7192
7193   !0 = !{}
7194
7195The invariant.group metadata must be dropped when replacing one pointer by
7196another based on aliasing information. This is because invariant.group is tied
7197to the SSA value of the pointer operand.
7198
7199.. code-block:: llvm
7200
7201  %v = load i8, ptr %x, !invariant.group !0
7202  ; if %x mustalias %y then we can replace the above instruction with
7203  %v = load i8, ptr %y
7204
7205Note that this is an experimental feature, which means that its semantics might
7206change in the future.
7207
7208'``type``' Metadata
7209^^^^^^^^^^^^^^^^^^^
7210
7211See :doc:`TypeMetadata`.
7212
7213'``associated``' Metadata
7214^^^^^^^^^^^^^^^^^^^^^^^^^
7215
7216The ``associated`` metadata may be attached to a global variable definition with
7217a single argument that references a global object (optionally through an alias).
7218
7219This metadata lowers to the ELF section flag ``SHF_LINK_ORDER`` which prevents
7220discarding of the global variable in linker GC unless the referenced object is
7221also discarded. The linker support for this feature is spotty. For best
7222compatibility, globals carrying this metadata should:
7223
7224- Be in ``@llvm.compiler.used``.
7225- If the referenced global variable is in a comdat, be in the same comdat.
7226
7227``!associated`` can not express many-to-one relationship. A global variable with
7228the metadata should generally not be referenced by a function: the function may
7229be inlined into other functions, leading to more references to the metadata.
7230Ideally we would want to keep metadata alive as long as any inline location is
7231alive, but this many-to-one relationship is not representable. Moreover, if the
7232metadata is retained while the function is discarded, the linker will report an
7233error of a relocation referencing a discarded section.
7234
7235The metadata is often used with an explicit section consisting of valid C
7236identifiers so that the runtime can find the metadata section with
7237linker-defined encapsulation symbols ``__start_<section_name>`` and
7238``__stop_<section_name>``.
7239
7240It does not have any effect on non-ELF targets.
7241
7242Example:
7243
7244.. code-block:: text
7245
7246    $a = comdat any
7247    @a = global i32 1, comdat $a
7248    @b = internal global i32 2, comdat $a, section "abc", !associated !0
7249    !0 = !{ptr @a}
7250
7251
7252'``prof``' Metadata
7253^^^^^^^^^^^^^^^^^^^
7254
7255The ``prof`` metadata is used to record profile data in the IR.
7256The first operand of the metadata node indicates the profile metadata
7257type. There are currently 3 types:
7258:ref:`branch_weights<prof_node_branch_weights>`,
7259:ref:`function_entry_count<prof_node_function_entry_count>`, and
7260:ref:`VP<prof_node_VP>`.
7261
7262.. _prof_node_branch_weights:
7263
7264branch_weights
7265""""""""""""""
7266
7267Branch weight metadata attached to a branch, select, switch or call instruction
7268represents the likeliness of the associated branch being taken.
7269For more information, see :doc:`BranchWeightMetadata`.
7270
7271.. _prof_node_function_entry_count:
7272
7273function_entry_count
7274""""""""""""""""""""
7275
7276Function entry count metadata can be attached to function definitions
7277to record the number of times the function is called. Used with BFI
7278information, it is also used to derive the basic block profile count.
7279For more information, see :doc:`BranchWeightMetadata`.
7280
7281.. _prof_node_VP:
7282
7283VP
7284""
7285
7286VP (value profile) metadata can be attached to instructions that have
7287value profile information. Currently this is indirect calls (where it
7288records the hottest callees) and calls to memory intrinsics such as memcpy,
7289memmove, and memset (where it records the hottest byte lengths).
7290
7291Each VP metadata node contains "VP" string, then a uint32_t value for the value
7292profiling kind, a uint64_t value for the total number of times the instruction
7293is executed, followed by uint64_t value and execution count pairs.
7294The value profiling kind is 0 for indirect call targets and 1 for memory
7295operations. For indirect call targets, each profile value is a hash
7296of the callee function name, and for memory operations each value is the
7297byte length.
7298
7299Note that the value counts do not need to add up to the total count
7300listed in the third operand (in practice only the top hottest values
7301are tracked and reported).
7302
7303Indirect call example:
7304
7305.. code-block:: llvm
7306
7307    call void %f(), !prof !1
7308    !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
7309
7310Note that the VP type is 0 (the second operand), which indicates this is
7311an indirect call value profile data. The third operand indicates that the
7312indirect call executed 1600 times. The 4th and 6th operands give the
7313hashes of the 2 hottest target functions' names (this is the same hash used
7314to represent function names in the profile database), and the 5th and 7th
7315operands give the execution count that each of the respective prior target
7316functions was called.
7317
7318.. _md_annotation:
7319
7320'``annotation``' Metadata
7321^^^^^^^^^^^^^^^^^^^^^^^^^
7322
7323The ``annotation`` metadata can be used to attach a tuple of annotation strings
7324to any instruction. This metadata does not impact the semantics of the program
7325and may only be used to provide additional insight about the program and
7326transformations to users.
7327
7328Example:
7329
7330.. code-block:: text
7331
7332    %a.addr = alloca ptr, align 8, !annotation !0
7333    !0 = !{!"auto-init"}
7334
7335'``func_sanitize``' Metadata
7336^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7337
7338The ``func_sanitize`` metadata is used to attach two values for the function
7339sanitizer instrumentation. The first value is the ubsan function signature.
7340The second value is the address of the proxy variable which stores the address
7341of the RTTI descriptor. If :ref:`prologue <prologuedata>` and '``func_sanitize``'
7342are used at the same time, :ref:`prologue <prologuedata>` is emitted before
7343'``func_sanitize``' in the output.
7344
7345Example:
7346
7347.. code-block:: text
7348
7349    @__llvm_rtti_proxy = private unnamed_addr constant ptr @_ZTIFvvE
7350    define void @_Z3funv() !func_sanitize !0 {
7351      return void
7352    }
7353    !0 = !{i32 846595819, ptr @__llvm_rtti_proxy}
7354
7355.. _md_kcfi_type:
7356
7357'``kcfi_type``' Metadata
7358^^^^^^^^^^^^^^^^^^^^^^^^
7359
7360The ``kcfi_type`` metadata can be used to attach a type identifier to
7361functions that can be called indirectly. The type data is emitted before the
7362function entry in the assembly. Indirect calls with the :ref:`kcfi operand
7363bundle<ob_kcfi>` will emit a check that compares the type identifier to the
7364metadata.
7365
7366Example:
7367
7368.. code-block:: text
7369
7370    define dso_local i32 @f() !kcfi_type !0 {
7371      ret i32 0
7372    }
7373    !0 = !{i32 12345678}
7374
7375Clang emits ``kcfi_type`` metadata nodes for address-taken functions with
7376``-fsanitize=kcfi``.
7377
7378Module Flags Metadata
7379=====================
7380
7381Information about the module as a whole is difficult to convey to LLVM's
7382subsystems. The LLVM IR isn't sufficient to transmit this information.
7383The ``llvm.module.flags`` named metadata exists in order to facilitate
7384this. These flags are in the form of key / value pairs --- much like a
7385dictionary --- making it easy for any subsystem who cares about a flag to
7386look it up.
7387
7388The ``llvm.module.flags`` metadata contains a list of metadata triplets.
7389Each triplet has the following form:
7390
7391-  The first element is a *behavior* flag, which specifies the behavior
7392   when two (or more) modules are merged together, and it encounters two
7393   (or more) metadata with the same ID. The supported behaviors are
7394   described below.
7395-  The second element is a metadata string that is a unique ID for the
7396   metadata. Each module may only have one flag entry for each unique ID (not
7397   including entries with the **Require** behavior).
7398-  The third element is the value of the flag.
7399
7400When two (or more) modules are merged together, the resulting
7401``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
7402each unique metadata ID string, there will be exactly one entry in the merged
7403modules ``llvm.module.flags`` metadata table, and the value for that entry will
7404be determined by the merge behavior flag, as described below. The only exception
7405is that entries with the *Require* behavior are always preserved.
7406
7407The following behaviors are supported:
7408
7409.. list-table::
7410   :header-rows: 1
7411   :widths: 10 90
7412
7413   * - Value
7414     - Behavior
7415
7416   * - 1
7417     - **Error**
7418           Emits an error if two values disagree, otherwise the resulting value
7419           is that of the operands.
7420
7421   * - 2
7422     - **Warning**
7423           Emits a warning if two values disagree. The result value will be the
7424           operand for the flag from the first module being linked, or the max
7425           if the other module uses **Max** (in which case the resulting flag
7426           will be **Max**).
7427
7428   * - 3
7429     - **Require**
7430           Adds a requirement that another module flag be present and have a
7431           specified value after linking is performed. The value must be a
7432           metadata pair, where the first element of the pair is the ID of the
7433           module flag to be restricted, and the second element of the pair is
7434           the value the module flag should be restricted to. This behavior can
7435           be used to restrict the allowable results (via triggering of an
7436           error) of linking IDs with the **Override** behavior.
7437
7438   * - 4
7439     - **Override**
7440           Uses the specified value, regardless of the behavior or value of the
7441           other module. If both modules specify **Override**, but the values
7442           differ, an error will be emitted.
7443
7444   * - 5
7445     - **Append**
7446           Appends the two values, which are required to be metadata nodes.
7447
7448   * - 6
7449     - **AppendUnique**
7450           Appends the two values, which are required to be metadata
7451           nodes. However, duplicate entries in the second list are dropped
7452           during the append operation.
7453
7454   * - 7
7455     - **Max**
7456           Takes the max of the two values, which are required to be integers.
7457
7458   * - 8
7459     - **Min**
7460           Takes the min of the two values, which are required to be non-negative integers.
7461           An absent module flag is treated as having the value 0.
7462
7463It is an error for a particular unique flag ID to have multiple behaviors,
7464except in the case of **Require** (which adds restrictions on another metadata
7465value) or **Override**.
7466
7467An example of module flags:
7468
7469.. code-block:: llvm
7470
7471    !0 = !{ i32 1, !"foo", i32 1 }
7472    !1 = !{ i32 4, !"bar", i32 37 }
7473    !2 = !{ i32 2, !"qux", i32 42 }
7474    !3 = !{ i32 3, !"qux",
7475      !{
7476        !"foo", i32 1
7477      }
7478    }
7479    !llvm.module.flags = !{ !0, !1, !2, !3 }
7480
7481-  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
7482   if two or more ``!"foo"`` flags are seen is to emit an error if their
7483   values are not equal.
7484
7485-  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
7486   behavior if two or more ``!"bar"`` flags are seen is to use the value
7487   '37'.
7488
7489-  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
7490   behavior if two or more ``!"qux"`` flags are seen is to emit a
7491   warning if their values are not equal.
7492
7493-  Metadata ``!3`` has the ID ``!"qux"`` and the value:
7494
7495   ::
7496
7497       !{ !"foo", i32 1 }
7498
7499   The behavior is to emit an error if the ``llvm.module.flags`` does not
7500   contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
7501   performed.
7502
7503Synthesized Functions Module Flags Metadata
7504-------------------------------------------
7505
7506These metadata specify the default attributes synthesized functions should have.
7507These metadata are currently respected by a few instrumentation passes, such as
7508sanitizers.
7509
7510These metadata correspond to a few function attributes with significant code
7511generation behaviors. Function attributes with just optimization purposes
7512should not be listed because the performance impact of these synthesized
7513functions is small.
7514
7515- "frame-pointer": **Max**. The value can be 0, 1, or 2. A synthesized function
7516  will get the "frame-pointer" function attribute, with value being "none",
7517  "non-leaf", or "all", respectively.
7518- "function_return_thunk_extern": The synthesized function will get the
7519  ``fn_return_thunk_extern`` function attribute.
7520- "uwtable": **Max**. The value can be 0, 1, or 2. If the value is 1, a synthesized
7521  function will get the ``uwtable(sync)`` function attribute, if the value is 2,
7522  a synthesized function will get the ``uwtable(async)`` function attribute.
7523
7524Objective-C Garbage Collection Module Flags Metadata
7525----------------------------------------------------
7526
7527On the Mach-O platform, Objective-C stores metadata about garbage
7528collection in a special section called "image info". The metadata
7529consists of a version number and a bitmask specifying what types of
7530garbage collection are supported (if any) by the file. If two or more
7531modules are linked together their garbage collection metadata needs to
7532be merged rather than appended together.
7533
7534The Objective-C garbage collection module flags metadata consists of the
7535following key-value pairs:
7536
7537.. list-table::
7538   :header-rows: 1
7539   :widths: 30 70
7540
7541   * - Key
7542     - Value
7543
7544   * - ``Objective-C Version``
7545     - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
7546
7547   * - ``Objective-C Image Info Version``
7548     - **[Required]** --- The version of the image info section. Currently
7549       always 0.
7550
7551   * - ``Objective-C Image Info Section``
7552     - **[Required]** --- The section to place the metadata. Valid values are
7553       ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
7554       ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
7555       Objective-C ABI version 2.
7556
7557   * - ``Objective-C Garbage Collection``
7558     - **[Required]** --- Specifies whether garbage collection is supported or
7559       not. Valid values are 0, for no garbage collection, and 2, for garbage
7560       collection supported.
7561
7562   * - ``Objective-C GC Only``
7563     - **[Optional]** --- Specifies that only garbage collection is supported.
7564       If present, its value must be 6. This flag requires that the
7565       ``Objective-C Garbage Collection`` flag have the value 2.
7566
7567Some important flag interactions:
7568
7569-  If a module with ``Objective-C Garbage Collection`` set to 0 is
7570   merged with a module with ``Objective-C Garbage Collection`` set to
7571   2, then the resulting module has the
7572   ``Objective-C Garbage Collection`` flag set to 0.
7573-  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
7574   merged with a module with ``Objective-C GC Only`` set to 6.
7575
7576C type width Module Flags Metadata
7577----------------------------------
7578
7579The ARM backend emits a section into each generated object file describing the
7580options that it was compiled with (in a compiler-independent way) to prevent
7581linking incompatible objects, and to allow automatic library selection. Some
7582of these options are not visible at the IR level, namely wchar_t width and enum
7583width.
7584
7585To pass this information to the backend, these options are encoded in module
7586flags metadata, using the following key-value pairs:
7587
7588.. list-table::
7589   :header-rows: 1
7590   :widths: 30 70
7591
7592   * - Key
7593     - Value
7594
7595   * - short_wchar
7596     - * 0 --- sizeof(wchar_t) == 4
7597       * 1 --- sizeof(wchar_t) == 2
7598
7599   * - short_enum
7600     - * 0 --- Enums are at least as large as an ``int``.
7601       * 1 --- Enums are stored in the smallest integer type which can
7602         represent all of its values.
7603
7604For example, the following metadata section specifies that the module was
7605compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
7606enum is the smallest type which can represent all of its values::
7607
7608    !llvm.module.flags = !{!0, !1}
7609    !0 = !{i32 1, !"short_wchar", i32 1}
7610    !1 = !{i32 1, !"short_enum", i32 0}
7611
7612LTO Post-Link Module Flags Metadata
7613-----------------------------------
7614
7615Some optimisations are only when the entire LTO unit is present in the current
7616module. This is represented by the ``LTOPostLink`` module flags metadata, which
7617will be created with a value of ``1`` when LTO linking occurs.
7618
7619Embedded Objects Names Metadata
7620===============================
7621
7622Offloading compilations need to embed device code into the host section table to
7623create a fat binary. This metadata node references each global that will be
7624embedded in the module. The primary use for this is to make referencing these
7625globals more efficient in the IR. The metadata references nodes containing
7626pointers to the global to be embedded followed by the section name it will be
7627stored at::
7628
7629    !llvm.embedded.objects = !{!0}
7630    !0 = !{ptr @object, !".section"}
7631
7632Automatic Linker Flags Named Metadata
7633=====================================
7634
7635Some targets support embedding of flags to the linker inside individual object
7636files. Typically this is used in conjunction with language extensions which
7637allow source files to contain linker command line options, and have these
7638automatically be transmitted to the linker via object files.
7639
7640These flags are encoded in the IR using named metadata with the name
7641``!llvm.linker.options``. Each operand is expected to be a metadata node
7642which should be a list of other metadata nodes, each of which should be a
7643list of metadata strings defining linker options.
7644
7645For example, the following metadata section specifies two separate sets of
7646linker options, presumably to link against ``libz`` and the ``Cocoa``
7647framework::
7648
7649    !0 = !{ !"-lz" }
7650    !1 = !{ !"-framework", !"Cocoa" }
7651    !llvm.linker.options = !{ !0, !1 }
7652
7653The metadata encoding as lists of lists of options, as opposed to a collapsed
7654list of options, is chosen so that the IR encoding can use multiple option
7655strings to specify e.g., a single library, while still having that specifier be
7656preserved as an atomic element that can be recognized by a target specific
7657assembly writer or object file emitter.
7658
7659Each individual option is required to be either a valid option for the target's
7660linker, or an option that is reserved by the target specific assembly writer or
7661object file emitter. No other aspect of these options is defined by the IR.
7662
7663Dependent Libs Named Metadata
7664=============================
7665
7666Some targets support embedding of strings into object files to indicate
7667a set of libraries to add to the link. Typically this is used in conjunction
7668with language extensions which allow source files to explicitly declare the
7669libraries they depend on, and have these automatically be transmitted to the
7670linker via object files.
7671
7672The list is encoded in the IR using named metadata with the name
7673``!llvm.dependent-libraries``. Each operand is expected to be a metadata node
7674which should contain a single string operand.
7675
7676For example, the following metadata section contains two library specifiers::
7677
7678    !0 = !{!"a library specifier"}
7679    !1 = !{!"another library specifier"}
7680    !llvm.dependent-libraries = !{ !0, !1 }
7681
7682Each library specifier will be handled independently by the consuming linker.
7683The effect of the library specifiers are defined by the consuming linker.
7684
7685.. _summary:
7686
7687ThinLTO Summary
7688===============
7689
7690Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
7691causes the building of a compact summary of the module that is emitted into
7692the bitcode. The summary is emitted into the LLVM assembly and identified
7693in syntax by a caret ('``^``').
7694
7695The summary is parsed into a bitcode output, along with the Module
7696IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
7697of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
7698summary entries (just as they currently ignore summary entries in a bitcode
7699input file).
7700
7701Eventually, the summary will be parsed into a ModuleSummaryIndex object under
7702the same conditions where summary index is currently built from bitcode.
7703Specifically, tools that test the Thin Link portion of a ThinLTO compile
7704(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
7705for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
7706(this part is not yet implemented, use llvm-as to create a bitcode object
7707before feeding into thin link tools for now).
7708
7709There are currently 3 types of summary entries in the LLVM assembly:
7710:ref:`module paths<module_path_summary>`,
7711:ref:`global values<gv_summary>`, and
7712:ref:`type identifiers<typeid_summary>`.
7713
7714.. _module_path_summary:
7715
7716Module Path Summary Entry
7717-------------------------
7718
7719Each module path summary entry lists a module containing global values included
7720in the summary. For a single IR module there will be one such entry, but
7721in a combined summary index produced during the thin link, there will be
7722one module path entry per linked module with summary.
7723
7724Example:
7725
7726.. code-block:: text
7727
7728    ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
7729
7730The ``path`` field is a string path to the bitcode file, and the ``hash``
7731field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
7732incremental builds and caching.
7733
7734.. _gv_summary:
7735
7736Global Value Summary Entry
7737--------------------------
7738
7739Each global value summary entry corresponds to a global value defined or
7740referenced by a summarized module.
7741
7742Example:
7743
7744.. code-block:: text
7745
7746    ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
7747
7748For declarations, there will not be a summary list. For definitions, a
7749global value will contain a list of summaries, one per module containing
7750a definition. There can be multiple entries in a combined summary index
7751for symbols with weak linkage.
7752
7753Each ``Summary`` format will depend on whether the global value is a
7754:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
7755:ref:`alias<alias_summary>`.
7756
7757.. _function_summary:
7758
7759Function Summary
7760^^^^^^^^^^^^^^^^
7761
7762If the global value is a function, the ``Summary`` entry will look like:
7763
7764.. code-block:: text
7765
7766    function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Params]?[, Refs]?
7767
7768The ``module`` field includes the summary entry id for the module containing
7769this definition, and the ``flags`` field contains information such as
7770the linkage type, a flag indicating whether it is legal to import the
7771definition, whether it is globally live and whether the linker resolved it
7772to a local definition (the latter two are populated during the thin link).
7773The ``insts`` field contains the number of IR instructions in the function.
7774Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
7775:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
7776:ref:`Params<params_summary>`, :ref:`Refs<refs_summary>`.
7777
7778.. _variable_summary:
7779
7780Global Variable Summary
7781^^^^^^^^^^^^^^^^^^^^^^^
7782
7783If the global value is a variable, the ``Summary`` entry will look like:
7784
7785.. code-block:: text
7786
7787    variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
7788
7789The variable entry contains a subset of the fields in a
7790:ref:`function summary <function_summary>`, see the descriptions there.
7791
7792.. _alias_summary:
7793
7794Alias Summary
7795^^^^^^^^^^^^^
7796
7797If the global value is an alias, the ``Summary`` entry will look like:
7798
7799.. code-block:: text
7800
7801    alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
7802
7803The ``module`` and ``flags`` fields are as described for a
7804:ref:`function summary <function_summary>`. The ``aliasee`` field
7805contains a reference to the global value summary entry of the aliasee.
7806
7807.. _funcflags_summary:
7808
7809Function Flags
7810^^^^^^^^^^^^^^
7811
7812The optional ``FuncFlags`` field looks like:
7813
7814.. code-block:: text
7815
7816    funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0, noInline: 0, alwaysInline: 0, noUnwind: 1, mayThrow: 0, hasUnknownCall: 0)
7817
7818If unspecified, flags are assumed to hold the conservative ``false`` value of
7819``0``.
7820
7821.. _calls_summary:
7822
7823Calls
7824^^^^^
7825
7826The optional ``Calls`` field looks like:
7827
7828.. code-block:: text
7829
7830    calls: ((Callee)[, (Callee)]*)
7831
7832where each ``Callee`` looks like:
7833
7834.. code-block:: text
7835
7836    callee: ^1[, hotness: None]?[, relbf: 0]?
7837
7838The ``callee`` refers to the summary entry id of the callee. At most one
7839of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
7840``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
7841branch frequency relative to the entry frequency, scaled down by 2^8)
7842may be specified. The defaults are ``Unknown`` and ``0``, respectively.
7843
7844.. _params_summary:
7845
7846Params
7847^^^^^^
7848
7849The optional ``Params`` is used by ``StackSafety`` and looks like:
7850
7851.. code-block:: text
7852
7853    Params: ((Param)[, (Param)]*)
7854
7855where each ``Param`` describes pointer parameter access inside of the
7856function and looks like:
7857
7858.. code-block:: text
7859
7860    param: 4, offset: [0, 5][, calls: ((Callee)[, (Callee)]*)]?
7861
7862where the first ``param`` is the number of the parameter it describes,
7863``offset`` is the inclusive range of offsets from the pointer parameter to bytes
7864which can be accessed by the function. This range does not include accesses by
7865function calls from ``calls`` list.
7866
7867where each ``Callee`` describes how parameter is forwarded into other
7868functions and looks like:
7869
7870.. code-block:: text
7871
7872    callee: ^3, param: 5, offset: [-3, 3]
7873
7874The ``callee`` refers to the summary entry id of the callee,  ``param`` is
7875the number of the callee parameter which points into the callers parameter
7876with offset known to be inside of the ``offset`` range. ``calls`` will be
7877consumed and removed by thin link stage to update ``Param::offset`` so it
7878covers all accesses possible by ``calls``.
7879
7880Pointer parameter without corresponding ``Param`` is considered unsafe and we
7881assume that access with any offset is possible.
7882
7883Example:
7884
7885If we have the following function:
7886
7887.. code-block:: text
7888
7889    define i64 @foo(ptr %0, ptr %1, ptr %2, i8 %3) {
7890      store ptr %1, ptr @x
7891      %5 = getelementptr inbounds i8, ptr %2, i64 5
7892      %6 = load i8, ptr %5
7893      %7 = getelementptr inbounds i8, ptr %2, i8 %3
7894      tail call void @bar(i8 %3, ptr %7)
7895      %8 = load i64, ptr %0
7896      ret i64 %8
7897    }
7898
7899We can expect the record like this:
7900
7901.. code-block:: text
7902
7903    params: ((param: 0, offset: [0, 7]),(param: 2, offset: [5, 5], calls: ((callee: ^3, param: 1, offset: [-128, 127]))))
7904
7905The function may access just 8 bytes of the parameter %0 . ``calls`` is empty,
7906so the parameter is either not used for function calls or ``offset`` already
7907covers all accesses from nested function calls.
7908Parameter %1 escapes, so access is unknown.
7909The function itself can access just a single byte of the parameter %2. Additional
7910access is possible inside of the ``@bar`` or ``^3``. The function adds signed
7911offset to the pointer and passes the result as the argument %1 into ``^3``.
7912This record itself does not tell us how ``^3`` will access the parameter.
7913Parameter %3 is not a pointer.
7914
7915.. _refs_summary:
7916
7917Refs
7918^^^^
7919
7920The optional ``Refs`` field looks like:
7921
7922.. code-block:: text
7923
7924    refs: ((Ref)[, (Ref)]*)
7925
7926where each ``Ref`` contains a reference to the summary id of the referenced
7927value (e.g. ``^1``).
7928
7929.. _typeidinfo_summary:
7930
7931TypeIdInfo
7932^^^^^^^^^^
7933
7934The optional ``TypeIdInfo`` field, used for
7935`Control Flow Integrity <https://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
7936looks like:
7937
7938.. code-block:: text
7939
7940    typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
7941
7942These optional fields have the following forms:
7943
7944TypeTests
7945"""""""""
7946
7947.. code-block:: text
7948
7949    typeTests: (TypeIdRef[, TypeIdRef]*)
7950
7951Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
7952by summary id or ``GUID``.
7953
7954TypeTestAssumeVCalls
7955""""""""""""""""""""
7956
7957.. code-block:: text
7958
7959    typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
7960
7961Where each VFuncId has the format:
7962
7963.. code-block:: text
7964
7965    vFuncId: (TypeIdRef, offset: 16)
7966
7967Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
7968by summary id or ``GUID`` preceded by a ``guid:`` tag.
7969
7970TypeCheckedLoadVCalls
7971"""""""""""""""""""""
7972
7973.. code-block:: text
7974
7975    typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
7976
7977Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
7978
7979TypeTestAssumeConstVCalls
7980"""""""""""""""""""""""""
7981
7982.. code-block:: text
7983
7984    typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
7985
7986Where each ConstVCall has the format:
7987
7988.. code-block:: text
7989
7990    (VFuncId, args: (Arg[, Arg]*))
7991
7992and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
7993and each Arg is an integer argument number.
7994
7995TypeCheckedLoadConstVCalls
7996""""""""""""""""""""""""""
7997
7998.. code-block:: text
7999
8000    typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
8001
8002Where each ConstVCall has the format described for
8003``TypeTestAssumeConstVCalls``.
8004
8005.. _typeid_summary:
8006
8007Type ID Summary Entry
8008---------------------
8009
8010Each type id summary entry corresponds to a type identifier resolution
8011which is generated during the LTO link portion of the compile when building
8012with `Control Flow Integrity <https://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
8013so these are only present in a combined summary index.
8014
8015Example:
8016
8017.. code-block:: text
8018
8019    ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
8020
8021The ``typeTestRes`` gives the type test resolution ``kind`` (which may
8022be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
8023the ``size-1`` bit width. It is followed by optional flags, which default to 0,
8024and an optional WpdResolutions (whole program devirtualization resolution)
8025field that looks like:
8026
8027.. code-block:: text
8028
8029    wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
8030
8031where each entry is a mapping from the given byte offset to the whole-program
8032devirtualization resolution WpdRes, that has one of the following formats:
8033
8034.. code-block:: text
8035
8036    wpdRes: (kind: branchFunnel)
8037    wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
8038    wpdRes: (kind: indir)
8039
8040Additionally, each wpdRes has an optional ``resByArg`` field, which
8041describes the resolutions for calls with all constant integer arguments:
8042
8043.. code-block:: text
8044
8045    resByArg: (ResByArg[, ResByArg]*)
8046
8047where ResByArg is:
8048
8049.. code-block:: text
8050
8051    args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
8052
8053Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
8054or ``VirtualConstProp``. The ``info`` field is only used if the kind
8055is ``UniformRetVal`` (indicates the uniform return value), or
8056``UniqueRetVal`` (holds the return value associated with the unique vtable
8057(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
8058not support the use of absolute symbols to store constants.
8059
8060.. _intrinsicglobalvariables:
8061
8062Intrinsic Global Variables
8063==========================
8064
8065LLVM has a number of "magic" global variables that contain data that
8066affect code generation or other IR semantics. These are documented here.
8067All globals of this sort should have a section specified as
8068"``llvm.metadata``". This section and all globals that start with
8069"``llvm.``" are reserved for use by LLVM.
8070
8071.. _gv_llvmused:
8072
8073The '``llvm.used``' Global Variable
8074-----------------------------------
8075
8076The ``@llvm.used`` global is an array which has
8077:ref:`appending linkage <linkage_appending>`. This array contains a list of
8078pointers to named global variables, functions and aliases which may optionally
8079have a pointer cast formed of bitcast or getelementptr. For example, a legal
8080use of it is:
8081
8082.. code-block:: llvm
8083
8084    @X = global i8 4
8085    @Y = global i32 123
8086
8087    @llvm.used = appending global [2 x ptr] [
8088       ptr @X,
8089       ptr @Y
8090    ], section "llvm.metadata"
8091
8092If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
8093and linker are required to treat the symbol as if there is a reference to the
8094symbol that it cannot see (which is why they have to be named). For example, if
8095a variable has internal linkage and no references other than that from the
8096``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
8097references from inline asms and other things the compiler cannot "see", and
8098corresponds to "``attribute((used))``" in GNU C.
8099
8100On some targets, the code generator must emit a directive to the
8101assembler or object file to prevent the assembler and linker from
8102removing the symbol.
8103
8104.. _gv_llvmcompilerused:
8105
8106The '``llvm.compiler.used``' Global Variable
8107--------------------------------------------
8108
8109The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
8110directive, except that it only prevents the compiler from touching the
8111symbol. On targets that support it, this allows an intelligent linker to
8112optimize references to the symbol without being impeded as it would be
8113by ``@llvm.used``.
8114
8115This is a rare construct that should only be used in rare circumstances,
8116and should not be exposed to source languages.
8117
8118.. _gv_llvmglobalctors:
8119
8120The '``llvm.global_ctors``' Global Variable
8121-------------------------------------------
8122
8123.. code-block:: llvm
8124
8125    %0 = type { i32, ptr, ptr }
8126    @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, ptr @ctor, ptr @data }]
8127
8128The ``@llvm.global_ctors`` array contains a list of constructor
8129functions, priorities, and an associated global or function.
8130The functions referenced by this array will be called in ascending order
8131of priority (i.e. lowest first) when the module is loaded. The order of
8132functions with the same priority is not defined.
8133
8134If the third field is non-null, and points to a global variable
8135or function, the initializer function will only run if the associated
8136data from the current module is not discarded.
8137On ELF the referenced global variable or function must be in a comdat.
8138
8139.. _llvmglobaldtors:
8140
8141The '``llvm.global_dtors``' Global Variable
8142-------------------------------------------
8143
8144.. code-block:: llvm
8145
8146    %0 = type { i32, ptr, ptr }
8147    @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, ptr @dtor, ptr @data }]
8148
8149The ``@llvm.global_dtors`` array contains a list of destructor
8150functions, priorities, and an associated global or function.
8151The functions referenced by this array will be called in descending
8152order of priority (i.e. highest first) when the module is unloaded. The
8153order of functions with the same priority is not defined.
8154
8155If the third field is non-null, and points to a global variable
8156or function, the destructor function will only run if the associated
8157data from the current module is not discarded.
8158On ELF the referenced global variable or function must be in a comdat.
8159
8160Instruction Reference
8161=====================
8162
8163The LLVM instruction set consists of several different classifications
8164of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
8165instructions <binaryops>`, :ref:`bitwise binary
8166instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
8167:ref:`other instructions <otherops>`.
8168
8169.. _terminators:
8170
8171Terminator Instructions
8172-----------------------
8173
8174As mentioned :ref:`previously <functionstructure>`, every basic block in a
8175program ends with a "Terminator" instruction, which indicates which
8176block should be executed after the current block is finished. These
8177terminator instructions typically yield a '``void``' value: they produce
8178control flow, not values (the one exception being the
8179':ref:`invoke <i_invoke>`' instruction).
8180
8181The terminator instructions are: ':ref:`ret <i_ret>`',
8182':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
8183':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
8184':ref:`callbr <i_callbr>`'
8185':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
8186':ref:`catchret <i_catchret>`',
8187':ref:`cleanupret <i_cleanupret>`',
8188and ':ref:`unreachable <i_unreachable>`'.
8189
8190.. _i_ret:
8191
8192'``ret``' Instruction
8193^^^^^^^^^^^^^^^^^^^^^
8194
8195Syntax:
8196"""""""
8197
8198::
8199
8200      ret <type> <value>       ; Return a value from a non-void function
8201      ret void                 ; Return from void function
8202
8203Overview:
8204"""""""""
8205
8206The '``ret``' instruction is used to return control flow (and optionally
8207a value) from a function back to the caller.
8208
8209There are two forms of the '``ret``' instruction: one that returns a
8210value and then causes control flow, and one that just causes control
8211flow to occur.
8212
8213Arguments:
8214""""""""""
8215
8216The '``ret``' instruction optionally accepts a single argument, the
8217return value. The type of the return value must be a ':ref:`first
8218class <t_firstclass>`' type.
8219
8220A function is not :ref:`well formed <wellformed>` if it has a non-void
8221return type and contains a '``ret``' instruction with no return value or
8222a return value with a type that does not match its type, or if it has a
8223void return type and contains a '``ret``' instruction with a return
8224value.
8225
8226Semantics:
8227""""""""""
8228
8229When the '``ret``' instruction is executed, control flow returns back to
8230the calling function's context. If the caller is a
8231":ref:`call <i_call>`" instruction, execution continues at the
8232instruction after the call. If the caller was an
8233":ref:`invoke <i_invoke>`" instruction, execution continues at the
8234beginning of the "normal" destination block. If the instruction returns
8235a value, that value shall set the call or invoke instruction's return
8236value.
8237
8238Example:
8239""""""""
8240
8241.. code-block:: llvm
8242
8243      ret i32 5                       ; Return an integer value of 5
8244      ret void                        ; Return from a void function
8245      ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
8246
8247.. _i_br:
8248
8249'``br``' Instruction
8250^^^^^^^^^^^^^^^^^^^^
8251
8252Syntax:
8253"""""""
8254
8255::
8256
8257      br i1 <cond>, label <iftrue>, label <iffalse>
8258      br label <dest>          ; Unconditional branch
8259
8260Overview:
8261"""""""""
8262
8263The '``br``' instruction is used to cause control flow to transfer to a
8264different basic block in the current function. There are two forms of
8265this instruction, corresponding to a conditional branch and an
8266unconditional branch.
8267
8268Arguments:
8269""""""""""
8270
8271The conditional branch form of the '``br``' instruction takes a single
8272'``i1``' value and two '``label``' values. The unconditional form of the
8273'``br``' instruction takes a single '``label``' value as a target.
8274
8275Semantics:
8276""""""""""
8277
8278Upon execution of a conditional '``br``' instruction, the '``i1``'
8279argument is evaluated. If the value is ``true``, control flows to the
8280'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
8281to the '``iffalse``' ``label`` argument.
8282If '``cond``' is ``poison`` or ``undef``, this instruction has undefined
8283behavior.
8284
8285Example:
8286""""""""
8287
8288.. code-block:: llvm
8289
8290    Test:
8291      %cond = icmp eq i32 %a, %b
8292      br i1 %cond, label %IfEqual, label %IfUnequal
8293    IfEqual:
8294      ret i32 1
8295    IfUnequal:
8296      ret i32 0
8297
8298.. _i_switch:
8299
8300'``switch``' Instruction
8301^^^^^^^^^^^^^^^^^^^^^^^^
8302
8303Syntax:
8304"""""""
8305
8306::
8307
8308      switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
8309
8310Overview:
8311"""""""""
8312
8313The '``switch``' instruction is used to transfer control flow to one of
8314several different places. It is a generalization of the '``br``'
8315instruction, allowing a branch to occur to one of many possible
8316destinations.
8317
8318Arguments:
8319""""""""""
8320
8321The '``switch``' instruction uses three parameters: an integer
8322comparison value '``value``', a default '``label``' destination, and an
8323array of pairs of comparison value constants and '``label``'s. The table
8324is not allowed to contain duplicate constant entries.
8325
8326Semantics:
8327""""""""""
8328
8329The ``switch`` instruction specifies a table of values and destinations.
8330When the '``switch``' instruction is executed, this table is searched
8331for the given value. If the value is found, control flow is transferred
8332to the corresponding destination; otherwise, control flow is transferred
8333to the default destination.
8334If '``value``' is ``poison`` or ``undef``, this instruction has undefined
8335behavior.
8336
8337Implementation:
8338"""""""""""""""
8339
8340Depending on properties of the target machine and the particular
8341``switch`` instruction, this instruction may be code generated in
8342different ways. For example, it could be generated as a series of
8343chained conditional branches or with a lookup table.
8344
8345Example:
8346""""""""
8347
8348.. code-block:: llvm
8349
8350     ; Emulate a conditional br instruction
8351     %Val = zext i1 %value to i32
8352     switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
8353
8354     ; Emulate an unconditional br instruction
8355     switch i32 0, label %dest [ ]
8356
8357     ; Implement a jump table:
8358     switch i32 %val, label %otherwise [ i32 0, label %onzero
8359                                         i32 1, label %onone
8360                                         i32 2, label %ontwo ]
8361
8362.. _i_indirectbr:
8363
8364'``indirectbr``' Instruction
8365^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8366
8367Syntax:
8368"""""""
8369
8370::
8371
8372      indirectbr ptr <address>, [ label <dest1>, label <dest2>, ... ]
8373
8374Overview:
8375"""""""""
8376
8377The '``indirectbr``' instruction implements an indirect branch to a
8378label within the current function, whose address is specified by
8379"``address``". Address must be derived from a
8380:ref:`blockaddress <blockaddress>` constant.
8381
8382Arguments:
8383""""""""""
8384
8385The '``address``' argument is the address of the label to jump to. The
8386rest of the arguments indicate the full set of possible destinations
8387that the address may point to. Blocks are allowed to occur multiple
8388times in the destination list, though this isn't particularly useful.
8389
8390This destination list is required so that dataflow analysis has an
8391accurate understanding of the CFG.
8392
8393Semantics:
8394""""""""""
8395
8396Control transfers to the block specified in the address argument. All
8397possible destination blocks must be listed in the label list, otherwise
8398this instruction has undefined behavior. This implies that jumps to
8399labels defined in other functions have undefined behavior as well.
8400If '``address``' is ``poison`` or ``undef``, this instruction has undefined
8401behavior.
8402
8403Implementation:
8404"""""""""""""""
8405
8406This is typically implemented with a jump through a register.
8407
8408Example:
8409""""""""
8410
8411.. code-block:: llvm
8412
8413     indirectbr ptr %Addr, [ label %bb1, label %bb2, label %bb3 ]
8414
8415.. _i_invoke:
8416
8417'``invoke``' Instruction
8418^^^^^^^^^^^^^^^^^^^^^^^^
8419
8420Syntax:
8421"""""""
8422
8423::
8424
8425      <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
8426                    [operand bundles] to label <normal label> unwind label <exception label>
8427
8428Overview:
8429"""""""""
8430
8431The '``invoke``' instruction causes control to transfer to a specified
8432function, with the possibility of control flow transfer to either the
8433'``normal``' label or the '``exception``' label. If the callee function
8434returns with the "``ret``" instruction, control flow will return to the
8435"normal" label. If the callee (or any indirect callees) returns via the
8436":ref:`resume <i_resume>`" instruction or other exception handling
8437mechanism, control is interrupted and continued at the dynamically
8438nearest "exception" label.
8439
8440The '``exception``' label is a `landing
8441pad <ExceptionHandling.html#overview>`_ for the exception. As such,
8442'``exception``' label is required to have the
8443":ref:`landingpad <i_landingpad>`" instruction, which contains the
8444information about the behavior of the program after unwinding happens,
8445as its first non-PHI instruction. The restrictions on the
8446"``landingpad``" instruction's tightly couples it to the "``invoke``"
8447instruction, so that the important information contained within the
8448"``landingpad``" instruction can't be lost through normal code motion.
8449
8450Arguments:
8451""""""""""
8452
8453This instruction requires several arguments:
8454
8455#. The optional "cconv" marker indicates which :ref:`calling
8456   convention <callingconv>` the call should use. If none is
8457   specified, the call defaults to using C calling conventions.
8458#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8459   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8460   are valid here.
8461#. The optional addrspace attribute can be used to indicate the address space
8462   of the called function. If it is not specified, the program address space
8463   from the :ref:`datalayout string<langref_datalayout>` will be used.
8464#. '``ty``': the type of the call instruction itself which is also the
8465   type of the return value. Functions that return no value are marked
8466   ``void``.
8467#. '``fnty``': shall be the signature of the function being invoked. The
8468   argument types must match the types implied by this signature. This
8469   type can be omitted if the function is not varargs.
8470#. '``fnptrval``': An LLVM value containing a pointer to a function to
8471   be invoked. In most cases, this is a direct function invocation, but
8472   indirect ``invoke``'s are just as possible, calling an arbitrary pointer
8473   to function value.
8474#. '``function args``': argument list whose types match the function
8475   signature argument types and parameter attributes. All arguments must
8476   be of :ref:`first class <t_firstclass>` type. If the function signature
8477   indicates the function accepts a variable number of arguments, the
8478   extra arguments can be specified.
8479#. '``normal label``': the label reached when the called function
8480   executes a '``ret``' instruction.
8481#. '``exception label``': the label reached when a callee returns via
8482   the :ref:`resume <i_resume>` instruction or other exception handling
8483   mechanism.
8484#. The optional :ref:`function attributes <fnattrs>` list.
8485#. The optional :ref:`operand bundles <opbundles>` list.
8486
8487Semantics:
8488""""""""""
8489
8490This instruction is designed to operate as a standard '``call``'
8491instruction in most regards. The primary difference is that it
8492establishes an association with a label, which is used by the runtime
8493library to unwind the stack.
8494
8495This instruction is used in languages with destructors to ensure that
8496proper cleanup is performed in the case of either a ``longjmp`` or a
8497thrown exception. Additionally, this is important for implementation of
8498'``catch``' clauses in high-level languages that support them.
8499
8500For the purposes of the SSA form, the definition of the value returned
8501by the '``invoke``' instruction is deemed to occur on the edge from the
8502current block to the "normal" label. If the callee unwinds then no
8503return value is available.
8504
8505Example:
8506""""""""
8507
8508.. code-block:: llvm
8509
8510      %retval = invoke i32 @Test(i32 15) to label %Continue
8511                  unwind label %TestCleanup              ; i32:retval set
8512      %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
8513                  unwind label %TestCleanup              ; i32:retval set
8514
8515.. _i_callbr:
8516
8517'``callbr``' Instruction
8518^^^^^^^^^^^^^^^^^^^^^^^^
8519
8520Syntax:
8521"""""""
8522
8523::
8524
8525      <result> = callbr [cconv] [ret attrs] [addrspace(<num>)] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
8526                    [operand bundles] to label <fallthrough label> [indirect labels]
8527
8528Overview:
8529"""""""""
8530
8531The '``callbr``' instruction causes control to transfer to a specified
8532function, with the possibility of control flow transfer to either the
8533'``fallthrough``' label or one of the '``indirect``' labels.
8534
8535This instruction should only be used to implement the "goto" feature of gcc
8536style inline assembly. Any other usage is an error in the IR verifier.
8537
8538Arguments:
8539""""""""""
8540
8541This instruction requires several arguments:
8542
8543#. The optional "cconv" marker indicates which :ref:`calling
8544   convention <callingconv>` the call should use. If none is
8545   specified, the call defaults to using C calling conventions.
8546#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8547   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8548   are valid here.
8549#. The optional addrspace attribute can be used to indicate the address space
8550   of the called function. If it is not specified, the program address space
8551   from the :ref:`datalayout string<langref_datalayout>` will be used.
8552#. '``ty``': the type of the call instruction itself which is also the
8553   type of the return value. Functions that return no value are marked
8554   ``void``.
8555#. '``fnty``': shall be the signature of the function being called. The
8556   argument types must match the types implied by this signature. This
8557   type can be omitted if the function is not varargs.
8558#. '``fnptrval``': An LLVM value containing a pointer to a function to
8559   be called. In most cases, this is a direct function call, but
8560   other ``callbr``'s are just as possible, calling an arbitrary pointer
8561   to function value.
8562#. '``function args``': argument list whose types match the function
8563   signature argument types and parameter attributes. All arguments must
8564   be of :ref:`first class <t_firstclass>` type. If the function signature
8565   indicates the function accepts a variable number of arguments, the
8566   extra arguments can be specified.
8567#. '``fallthrough label``': the label reached when the inline assembly's
8568   execution exits the bottom.
8569#. '``indirect labels``': the labels reached when a callee transfers control
8570   to a location other than the '``fallthrough label``'. Label constraints
8571   refer to these destinations.
8572#. The optional :ref:`function attributes <fnattrs>` list.
8573#. The optional :ref:`operand bundles <opbundles>` list.
8574
8575Semantics:
8576""""""""""
8577
8578This instruction is designed to operate as a standard '``call``'
8579instruction in most regards. The primary difference is that it
8580establishes an association with additional labels to define where control
8581flow goes after the call.
8582
8583The output values of a '``callbr``' instruction are available only to
8584the '``fallthrough``' block, not to any '``indirect``' blocks(s).
8585
8586The only use of this today is to implement the "goto" feature of gcc inline
8587assembly where additional labels can be provided as locations for the inline
8588assembly to jump to.
8589
8590Example:
8591""""""""
8592
8593.. code-block:: llvm
8594
8595      ; "asm goto" without output constraints.
8596      callbr void asm "", "r,!i"(i32 %x)
8597                  to label %fallthrough [label %indirect]
8598
8599      ; "asm goto" with output constraints.
8600      <result> = callbr i32 asm "", "=r,r,!i"(i32 %x)
8601                  to label %fallthrough [label %indirect]
8602
8603.. _i_resume:
8604
8605'``resume``' Instruction
8606^^^^^^^^^^^^^^^^^^^^^^^^
8607
8608Syntax:
8609"""""""
8610
8611::
8612
8613      resume <type> <value>
8614
8615Overview:
8616"""""""""
8617
8618The '``resume``' instruction is a terminator instruction that has no
8619successors.
8620
8621Arguments:
8622""""""""""
8623
8624The '``resume``' instruction requires one argument, which must have the
8625same type as the result of any '``landingpad``' instruction in the same
8626function.
8627
8628Semantics:
8629""""""""""
8630
8631The '``resume``' instruction resumes propagation of an existing
8632(in-flight) exception whose unwinding was interrupted with a
8633:ref:`landingpad <i_landingpad>` instruction.
8634
8635Example:
8636""""""""
8637
8638.. code-block:: llvm
8639
8640      resume { ptr, i32 } %exn
8641
8642.. _i_catchswitch:
8643
8644'``catchswitch``' Instruction
8645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8646
8647Syntax:
8648"""""""
8649
8650::
8651
8652      <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
8653      <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
8654
8655Overview:
8656"""""""""
8657
8658The '``catchswitch``' instruction is used by `LLVM's exception handling system
8659<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
8660that may be executed by the :ref:`EH personality routine <personalityfn>`.
8661
8662Arguments:
8663""""""""""
8664
8665The ``parent`` argument is the token of the funclet that contains the
8666``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
8667this operand may be the token ``none``.
8668
8669The ``default`` argument is the label of another basic block beginning with
8670either a ``cleanuppad`` or ``catchswitch`` instruction.  This unwind destination
8671must be a legal target with respect to the ``parent`` links, as described in
8672the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
8673
8674The ``handlers`` are a nonempty list of successor blocks that each begin with a
8675:ref:`catchpad <i_catchpad>` instruction.
8676
8677Semantics:
8678""""""""""
8679
8680Executing this instruction transfers control to one of the successors in
8681``handlers``, if appropriate, or continues to unwind via the unwind label if
8682present.
8683
8684The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
8685it must be both the first non-phi instruction and last instruction in the basic
8686block. Therefore, it must be the only non-phi instruction in the block.
8687
8688Example:
8689""""""""
8690
8691.. code-block:: text
8692
8693    dispatch1:
8694      %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
8695    dispatch2:
8696      %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
8697
8698.. _i_catchret:
8699
8700'``catchret``' Instruction
8701^^^^^^^^^^^^^^^^^^^^^^^^^^
8702
8703Syntax:
8704"""""""
8705
8706::
8707
8708      catchret from <token> to label <normal>
8709
8710Overview:
8711"""""""""
8712
8713The '``catchret``' instruction is a terminator instruction that has a
8714single successor.
8715
8716
8717Arguments:
8718""""""""""
8719
8720The first argument to a '``catchret``' indicates which ``catchpad`` it
8721exits.  It must be a :ref:`catchpad <i_catchpad>`.
8722The second argument to a '``catchret``' specifies where control will
8723transfer to next.
8724
8725Semantics:
8726""""""""""
8727
8728The '``catchret``' instruction ends an existing (in-flight) exception whose
8729unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction.  The
8730:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
8731code to, for example, destroy the active exception.  Control then transfers to
8732``normal``.
8733
8734The ``token`` argument must be a token produced by a ``catchpad`` instruction.
8735If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
8736funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8737the ``catchret``'s behavior is undefined.
8738
8739Example:
8740""""""""
8741
8742.. code-block:: text
8743
8744      catchret from %catch to label %continue
8745
8746.. _i_cleanupret:
8747
8748'``cleanupret``' Instruction
8749^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8750
8751Syntax:
8752"""""""
8753
8754::
8755
8756      cleanupret from <value> unwind label <continue>
8757      cleanupret from <value> unwind to caller
8758
8759Overview:
8760"""""""""
8761
8762The '``cleanupret``' instruction is a terminator instruction that has
8763an optional successor.
8764
8765
8766Arguments:
8767""""""""""
8768
8769The '``cleanupret``' instruction requires one argument, which indicates
8770which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
8771If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
8772funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8773the ``cleanupret``'s behavior is undefined.
8774
8775The '``cleanupret``' instruction also has an optional successor, ``continue``,
8776which must be the label of another basic block beginning with either a
8777``cleanuppad`` or ``catchswitch`` instruction.  This unwind destination must
8778be a legal target with respect to the ``parent`` links, as described in the
8779`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
8780
8781Semantics:
8782""""""""""
8783
8784The '``cleanupret``' instruction indicates to the
8785:ref:`personality function <personalityfn>` that one
8786:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
8787It transfers control to ``continue`` or unwinds out of the function.
8788
8789Example:
8790""""""""
8791
8792.. code-block:: text
8793
8794      cleanupret from %cleanup unwind to caller
8795      cleanupret from %cleanup unwind label %continue
8796
8797.. _i_unreachable:
8798
8799'``unreachable``' Instruction
8800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8801
8802Syntax:
8803"""""""
8804
8805::
8806
8807      unreachable
8808
8809Overview:
8810"""""""""
8811
8812The '``unreachable``' instruction has no defined semantics. This
8813instruction is used to inform the optimizer that a particular portion of
8814the code is not reachable. This can be used to indicate that the code
8815after a no-return function cannot be reached, and other facts.
8816
8817Semantics:
8818""""""""""
8819
8820The '``unreachable``' instruction has no defined semantics.
8821
8822.. _unaryops:
8823
8824Unary Operations
8825-----------------
8826
8827Unary operators require a single operand, execute an operation on
8828it, and produce a single value. The operand might represent multiple
8829data, as is the case with the :ref:`vector <t_vector>` data type. The
8830result value has the same type as its operand.
8831
8832.. _i_fneg:
8833
8834'``fneg``' Instruction
8835^^^^^^^^^^^^^^^^^^^^^^
8836
8837Syntax:
8838"""""""
8839
8840::
8841
8842      <result> = fneg [fast-math flags]* <ty> <op1>   ; yields ty:result
8843
8844Overview:
8845"""""""""
8846
8847The '``fneg``' instruction returns the negation of its operand.
8848
8849Arguments:
8850""""""""""
8851
8852The argument to the '``fneg``' instruction must be a
8853:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8854floating-point values.
8855
8856Semantics:
8857""""""""""
8858
8859The value produced is a copy of the operand with its sign bit flipped.
8860This instruction can also take any number of :ref:`fast-math
8861flags <fastmath>`, which are optimization hints to enable otherwise
8862unsafe floating-point optimizations:
8863
8864Example:
8865""""""""
8866
8867.. code-block:: text
8868
8869      <result> = fneg float %val          ; yields float:result = -%var
8870
8871.. _binaryops:
8872
8873Binary Operations
8874-----------------
8875
8876Binary operators are used to do most of the computation in a program.
8877They require two operands of the same type, execute an operation on
8878them, and produce a single value. The operands might represent multiple
8879data, as is the case with the :ref:`vector <t_vector>` data type. The
8880result value has the same type as its operands.
8881
8882There are several different binary operators:
8883
8884.. _i_add:
8885
8886'``add``' Instruction
8887^^^^^^^^^^^^^^^^^^^^^
8888
8889Syntax:
8890"""""""
8891
8892::
8893
8894      <result> = add <ty> <op1>, <op2>          ; yields ty:result
8895      <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
8896      <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
8897      <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
8898
8899Overview:
8900"""""""""
8901
8902The '``add``' instruction returns the sum of its two operands.
8903
8904Arguments:
8905""""""""""
8906
8907The two arguments to the '``add``' instruction must be
8908:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8909arguments must have identical types.
8910
8911Semantics:
8912""""""""""
8913
8914The value produced is the integer sum of the two operands.
8915
8916If the sum has unsigned overflow, the result returned is the
8917mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
8918the result.
8919
8920Because LLVM integers use a two's complement representation, this
8921instruction is appropriate for both signed and unsigned integers.
8922
8923``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
8924respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
8925result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
8926unsigned and/or signed overflow, respectively, occurs.
8927
8928Example:
8929""""""""
8930
8931.. code-block:: text
8932
8933      <result> = add i32 4, %var          ; yields i32:result = 4 + %var
8934
8935.. _i_fadd:
8936
8937'``fadd``' Instruction
8938^^^^^^^^^^^^^^^^^^^^^^
8939
8940Syntax:
8941"""""""
8942
8943::
8944
8945      <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
8946
8947Overview:
8948"""""""""
8949
8950The '``fadd``' instruction returns the sum of its two operands.
8951
8952Arguments:
8953""""""""""
8954
8955The two arguments to the '``fadd``' instruction must be
8956:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8957floating-point values. Both arguments must have identical types.
8958
8959Semantics:
8960""""""""""
8961
8962The value produced is the floating-point sum of the two operands.
8963This instruction is assumed to execute in the default :ref:`floating-point
8964environment <floatenv>`.
8965This instruction can also take any number of :ref:`fast-math
8966flags <fastmath>`, which are optimization hints to enable otherwise
8967unsafe floating-point optimizations:
8968
8969Example:
8970""""""""
8971
8972.. code-block:: text
8973
8974      <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
8975
8976.. _i_sub:
8977
8978'``sub``' Instruction
8979^^^^^^^^^^^^^^^^^^^^^
8980
8981Syntax:
8982"""""""
8983
8984::
8985
8986      <result> = sub <ty> <op1>, <op2>          ; yields ty:result
8987      <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
8988      <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
8989      <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
8990
8991Overview:
8992"""""""""
8993
8994The '``sub``' instruction returns the difference of its two operands.
8995
8996Note that the '``sub``' instruction is used to represent the '``neg``'
8997instruction present in most other intermediate representations.
8998
8999Arguments:
9000""""""""""
9001
9002The two arguments to the '``sub``' instruction must be
9003:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9004arguments must have identical types.
9005
9006Semantics:
9007""""""""""
9008
9009The value produced is the integer difference of the two operands.
9010
9011If the difference has unsigned overflow, the result returned is the
9012mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
9013the result.
9014
9015Because LLVM integers use a two's complement representation, this
9016instruction is appropriate for both signed and unsigned integers.
9017
9018``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
9019respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
9020result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
9021unsigned and/or signed overflow, respectively, occurs.
9022
9023Example:
9024""""""""
9025
9026.. code-block:: text
9027
9028      <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
9029      <result> = sub i32 0, %val          ; yields i32:result = -%var
9030
9031.. _i_fsub:
9032
9033'``fsub``' Instruction
9034^^^^^^^^^^^^^^^^^^^^^^
9035
9036Syntax:
9037"""""""
9038
9039::
9040
9041      <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
9042
9043Overview:
9044"""""""""
9045
9046The '``fsub``' instruction returns the difference of its two operands.
9047
9048Arguments:
9049""""""""""
9050
9051The two arguments to the '``fsub``' instruction must be
9052:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
9053floating-point values. Both arguments must have identical types.
9054
9055Semantics:
9056""""""""""
9057
9058The value produced is the floating-point difference of the two operands.
9059This instruction is assumed to execute in the default :ref:`floating-point
9060environment <floatenv>`.
9061This instruction can also take any number of :ref:`fast-math
9062flags <fastmath>`, which are optimization hints to enable otherwise
9063unsafe floating-point optimizations:
9064
9065Example:
9066""""""""
9067
9068.. code-block:: text
9069
9070      <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
9071      <result> = fsub float -0.0, %val          ; yields float:result = -%var
9072
9073.. _i_mul:
9074
9075'``mul``' Instruction
9076^^^^^^^^^^^^^^^^^^^^^
9077
9078Syntax:
9079"""""""
9080
9081::
9082
9083      <result> = mul <ty> <op1>, <op2>          ; yields ty:result
9084      <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
9085      <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
9086      <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
9087
9088Overview:
9089"""""""""
9090
9091The '``mul``' instruction returns the product of its two operands.
9092
9093Arguments:
9094""""""""""
9095
9096The two arguments to the '``mul``' instruction must be
9097:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9098arguments must have identical types.
9099
9100Semantics:
9101""""""""""
9102
9103The value produced is the integer product of the two operands.
9104
9105If the result of the multiplication has unsigned overflow, the result
9106returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
9107bit width of the result.
9108
9109Because LLVM integers use a two's complement representation, and the
9110result is the same width as the operands, this instruction returns the
9111correct result for both signed and unsigned integers. If a full product
9112(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
9113sign-extended or zero-extended as appropriate to the width of the full
9114product.
9115
9116``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
9117respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
9118result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
9119unsigned and/or signed overflow, respectively, occurs.
9120
9121Example:
9122""""""""
9123
9124.. code-block:: text
9125
9126      <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
9127
9128.. _i_fmul:
9129
9130'``fmul``' Instruction
9131^^^^^^^^^^^^^^^^^^^^^^
9132
9133Syntax:
9134"""""""
9135
9136::
9137
9138      <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
9139
9140Overview:
9141"""""""""
9142
9143The '``fmul``' instruction returns the product of its two operands.
9144
9145Arguments:
9146""""""""""
9147
9148The two arguments to the '``fmul``' instruction must be
9149:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
9150floating-point values. Both arguments must have identical types.
9151
9152Semantics:
9153""""""""""
9154
9155The value produced is the floating-point product of the two operands.
9156This instruction is assumed to execute in the default :ref:`floating-point
9157environment <floatenv>`.
9158This instruction can also take any number of :ref:`fast-math
9159flags <fastmath>`, which are optimization hints to enable otherwise
9160unsafe floating-point optimizations:
9161
9162Example:
9163""""""""
9164
9165.. code-block:: text
9166
9167      <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
9168
9169.. _i_udiv:
9170
9171'``udiv``' Instruction
9172^^^^^^^^^^^^^^^^^^^^^^
9173
9174Syntax:
9175"""""""
9176
9177::
9178
9179      <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
9180      <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
9181
9182Overview:
9183"""""""""
9184
9185The '``udiv``' instruction returns the quotient of its two operands.
9186
9187Arguments:
9188""""""""""
9189
9190The two arguments to the '``udiv``' instruction must be
9191:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9192arguments must have identical types.
9193
9194Semantics:
9195""""""""""
9196
9197The value produced is the unsigned integer quotient of the two operands.
9198
9199Note that unsigned integer division and signed integer division are
9200distinct operations; for signed integer division, use '``sdiv``'.
9201
9202Division by zero is undefined behavior. For vectors, if any element
9203of the divisor is zero, the operation has undefined behavior.
9204
9205
9206If the ``exact`` keyword is present, the result value of the ``udiv`` is
9207a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
9208such, "((a udiv exact b) mul b) == a").
9209
9210Example:
9211""""""""
9212
9213.. code-block:: text
9214
9215      <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
9216
9217.. _i_sdiv:
9218
9219'``sdiv``' Instruction
9220^^^^^^^^^^^^^^^^^^^^^^
9221
9222Syntax:
9223"""""""
9224
9225::
9226
9227      <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
9228      <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
9229
9230Overview:
9231"""""""""
9232
9233The '``sdiv``' instruction returns the quotient of its two operands.
9234
9235Arguments:
9236""""""""""
9237
9238The two arguments to the '``sdiv``' instruction must be
9239:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9240arguments must have identical types.
9241
9242Semantics:
9243""""""""""
9244
9245The value produced is the signed integer quotient of the two operands
9246rounded towards zero.
9247
9248Note that signed integer division and unsigned integer division are
9249distinct operations; for unsigned integer division, use '``udiv``'.
9250
9251Division by zero is undefined behavior. For vectors, if any element
9252of the divisor is zero, the operation has undefined behavior.
9253Overflow also leads to undefined behavior; this is a rare case, but can
9254occur, for example, by doing a 32-bit division of -2147483648 by -1.
9255
9256If the ``exact`` keyword is present, the result value of the ``sdiv`` is
9257a :ref:`poison value <poisonvalues>` if the result would be rounded.
9258
9259Example:
9260""""""""
9261
9262.. code-block:: text
9263
9264      <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
9265
9266.. _i_fdiv:
9267
9268'``fdiv``' Instruction
9269^^^^^^^^^^^^^^^^^^^^^^
9270
9271Syntax:
9272"""""""
9273
9274::
9275
9276      <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
9277
9278Overview:
9279"""""""""
9280
9281The '``fdiv``' instruction returns the quotient of its two operands.
9282
9283Arguments:
9284""""""""""
9285
9286The two arguments to the '``fdiv``' instruction must be
9287:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
9288floating-point values. Both arguments must have identical types.
9289
9290Semantics:
9291""""""""""
9292
9293The value produced is the floating-point quotient of the two operands.
9294This instruction is assumed to execute in the default :ref:`floating-point
9295environment <floatenv>`.
9296This instruction can also take any number of :ref:`fast-math
9297flags <fastmath>`, which are optimization hints to enable otherwise
9298unsafe floating-point optimizations:
9299
9300Example:
9301""""""""
9302
9303.. code-block:: text
9304
9305      <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
9306
9307.. _i_urem:
9308
9309'``urem``' Instruction
9310^^^^^^^^^^^^^^^^^^^^^^
9311
9312Syntax:
9313"""""""
9314
9315::
9316
9317      <result> = urem <ty> <op1>, <op2>   ; yields ty:result
9318
9319Overview:
9320"""""""""
9321
9322The '``urem``' instruction returns the remainder from the unsigned
9323division of its two arguments.
9324
9325Arguments:
9326""""""""""
9327
9328The two arguments to the '``urem``' instruction must be
9329:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9330arguments must have identical types.
9331
9332Semantics:
9333""""""""""
9334
9335This instruction returns the unsigned integer *remainder* of a division.
9336This instruction always performs an unsigned division to get the
9337remainder.
9338
9339Note that unsigned integer remainder and signed integer remainder are
9340distinct operations; for signed integer remainder, use '``srem``'.
9341
9342Taking the remainder of a division by zero is undefined behavior.
9343For vectors, if any element of the divisor is zero, the operation has
9344undefined behavior.
9345
9346Example:
9347""""""""
9348
9349.. code-block:: text
9350
9351      <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
9352
9353.. _i_srem:
9354
9355'``srem``' Instruction
9356^^^^^^^^^^^^^^^^^^^^^^
9357
9358Syntax:
9359"""""""
9360
9361::
9362
9363      <result> = srem <ty> <op1>, <op2>   ; yields ty:result
9364
9365Overview:
9366"""""""""
9367
9368The '``srem``' instruction returns the remainder from the signed
9369division of its two operands. This instruction can also take
9370:ref:`vector <t_vector>` versions of the values in which case the elements
9371must be integers.
9372
9373Arguments:
9374""""""""""
9375
9376The two arguments to the '``srem``' instruction must be
9377:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9378arguments must have identical types.
9379
9380Semantics:
9381""""""""""
9382
9383This instruction returns the *remainder* of a division (where the result
9384is either zero or has the same sign as the dividend, ``op1``), not the
9385*modulo* operator (where the result is either zero or has the same sign
9386as the divisor, ``op2``) of a value. For more information about the
9387difference, see `The Math
9388Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
9389table of how this is implemented in various languages, please see
9390`Wikipedia: modulo
9391operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
9392
9393Note that signed integer remainder and unsigned integer remainder are
9394distinct operations; for unsigned integer remainder, use '``urem``'.
9395
9396Taking the remainder of a division by zero is undefined behavior.
9397For vectors, if any element of the divisor is zero, the operation has
9398undefined behavior.
9399Overflow also leads to undefined behavior; this is a rare case, but can
9400occur, for example, by taking the remainder of a 32-bit division of
9401-2147483648 by -1. (The remainder doesn't actually overflow, but this
9402rule lets srem be implemented using instructions that return both the
9403result of the division and the remainder.)
9404
9405Example:
9406""""""""
9407
9408.. code-block:: text
9409
9410      <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
9411
9412.. _i_frem:
9413
9414'``frem``' Instruction
9415^^^^^^^^^^^^^^^^^^^^^^
9416
9417Syntax:
9418"""""""
9419
9420::
9421
9422      <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
9423
9424Overview:
9425"""""""""
9426
9427The '``frem``' instruction returns the remainder from the division of
9428its two operands.
9429
9430Arguments:
9431""""""""""
9432
9433The two arguments to the '``frem``' instruction must be
9434:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
9435floating-point values. Both arguments must have identical types.
9436
9437Semantics:
9438""""""""""
9439
9440The value produced is the floating-point remainder of the two operands.
9441This is the same output as a libm '``fmod``' function, but without any
9442possibility of setting ``errno``. The remainder has the same sign as the
9443dividend.
9444This instruction is assumed to execute in the default :ref:`floating-point
9445environment <floatenv>`.
9446This instruction can also take any number of :ref:`fast-math
9447flags <fastmath>`, which are optimization hints to enable otherwise
9448unsafe floating-point optimizations:
9449
9450Example:
9451""""""""
9452
9453.. code-block:: text
9454
9455      <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
9456
9457.. _bitwiseops:
9458
9459Bitwise Binary Operations
9460-------------------------
9461
9462Bitwise binary operators are used to do various forms of bit-twiddling
9463in a program. They are generally very efficient instructions and can
9464commonly be strength reduced from other instructions. They require two
9465operands of the same type, execute an operation on them, and produce a
9466single value. The resulting value is the same type as its operands.
9467
9468.. _i_shl:
9469
9470'``shl``' Instruction
9471^^^^^^^^^^^^^^^^^^^^^
9472
9473Syntax:
9474"""""""
9475
9476::
9477
9478      <result> = shl <ty> <op1>, <op2>           ; yields ty:result
9479      <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
9480      <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
9481      <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
9482
9483Overview:
9484"""""""""
9485
9486The '``shl``' instruction returns the first operand shifted to the left
9487a specified number of bits.
9488
9489Arguments:
9490""""""""""
9491
9492Both arguments to the '``shl``' instruction must be the same
9493:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
9494'``op2``' is treated as an unsigned value.
9495
9496Semantics:
9497""""""""""
9498
9499The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
9500where ``n`` is the width of the result. If ``op2`` is (statically or
9501dynamically) equal to or larger than the number of bits in
9502``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
9503If the arguments are vectors, each vector element of ``op1`` is shifted
9504by the corresponding shift amount in ``op2``.
9505
9506If the ``nuw`` keyword is present, then the shift produces a poison
9507value if it shifts out any non-zero bits.
9508If the ``nsw`` keyword is present, then the shift produces a poison
9509value if it shifts out any bits that disagree with the resultant sign bit.
9510
9511Example:
9512""""""""
9513
9514.. code-block:: text
9515
9516      <result> = shl i32 4, %var   ; yields i32: 4 << %var
9517      <result> = shl i32 4, 2      ; yields i32: 16
9518      <result> = shl i32 1, 10     ; yields i32: 1024
9519      <result> = shl i32 1, 32     ; undefined
9520      <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
9521
9522.. _i_lshr:
9523
9524
9525'``lshr``' Instruction
9526^^^^^^^^^^^^^^^^^^^^^^
9527
9528Syntax:
9529"""""""
9530
9531::
9532
9533      <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
9534      <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
9535
9536Overview:
9537"""""""""
9538
9539The '``lshr``' instruction (logical shift right) returns the first
9540operand shifted to the right a specified number of bits with zero fill.
9541
9542Arguments:
9543""""""""""
9544
9545Both arguments to the '``lshr``' instruction must be the same
9546:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
9547'``op2``' is treated as an unsigned value.
9548
9549Semantics:
9550""""""""""
9551
9552This instruction always performs a logical shift right operation. The
9553most significant bits of the result will be filled with zero bits after
9554the shift. If ``op2`` is (statically or dynamically) equal to or larger
9555than the number of bits in ``op1``, this instruction returns a :ref:`poison
9556value <poisonvalues>`. If the arguments are vectors, each vector element
9557of ``op1`` is shifted by the corresponding shift amount in ``op2``.
9558
9559If the ``exact`` keyword is present, the result value of the ``lshr`` is
9560a poison value if any of the bits shifted out are non-zero.
9561
9562Example:
9563""""""""
9564
9565.. code-block:: text
9566
9567      <result> = lshr i32 4, 1   ; yields i32:result = 2
9568      <result> = lshr i32 4, 2   ; yields i32:result = 1
9569      <result> = lshr i8  4, 3   ; yields i8:result = 0
9570      <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
9571      <result> = lshr i32 1, 32  ; undefined
9572      <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
9573
9574.. _i_ashr:
9575
9576'``ashr``' Instruction
9577^^^^^^^^^^^^^^^^^^^^^^
9578
9579Syntax:
9580"""""""
9581
9582::
9583
9584      <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
9585      <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
9586
9587Overview:
9588"""""""""
9589
9590The '``ashr``' instruction (arithmetic shift right) returns the first
9591operand shifted to the right a specified number of bits with sign
9592extension.
9593
9594Arguments:
9595""""""""""
9596
9597Both arguments to the '``ashr``' instruction must be the same
9598:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
9599'``op2``' is treated as an unsigned value.
9600
9601Semantics:
9602""""""""""
9603
9604This instruction always performs an arithmetic shift right operation,
9605The most significant bits of the result will be filled with the sign bit
9606of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
9607than the number of bits in ``op1``, this instruction returns a :ref:`poison
9608value <poisonvalues>`. If the arguments are vectors, each vector element
9609of ``op1`` is shifted by the corresponding shift amount in ``op2``.
9610
9611If the ``exact`` keyword is present, the result value of the ``ashr`` is
9612a poison value if any of the bits shifted out are non-zero.
9613
9614Example:
9615""""""""
9616
9617.. code-block:: text
9618
9619      <result> = ashr i32 4, 1   ; yields i32:result = 2
9620      <result> = ashr i32 4, 2   ; yields i32:result = 1
9621      <result> = ashr i8  4, 3   ; yields i8:result = 0
9622      <result> = ashr i8 -2, 1   ; yields i8:result = -1
9623      <result> = ashr i32 1, 32  ; undefined
9624      <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
9625
9626.. _i_and:
9627
9628'``and``' Instruction
9629^^^^^^^^^^^^^^^^^^^^^
9630
9631Syntax:
9632"""""""
9633
9634::
9635
9636      <result> = and <ty> <op1>, <op2>   ; yields ty:result
9637
9638Overview:
9639"""""""""
9640
9641The '``and``' instruction returns the bitwise logical and of its two
9642operands.
9643
9644Arguments:
9645""""""""""
9646
9647The two arguments to the '``and``' instruction must be
9648:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9649arguments must have identical types.
9650
9651Semantics:
9652""""""""""
9653
9654The truth table used for the '``and``' instruction is:
9655
9656+-----+-----+-----+
9657| In0 | In1 | Out |
9658+-----+-----+-----+
9659|   0 |   0 |   0 |
9660+-----+-----+-----+
9661|   0 |   1 |   0 |
9662+-----+-----+-----+
9663|   1 |   0 |   0 |
9664+-----+-----+-----+
9665|   1 |   1 |   1 |
9666+-----+-----+-----+
9667
9668Example:
9669""""""""
9670
9671.. code-block:: text
9672
9673      <result> = and i32 4, %var         ; yields i32:result = 4 & %var
9674      <result> = and i32 15, 40          ; yields i32:result = 8
9675      <result> = and i32 4, 8            ; yields i32:result = 0
9676
9677.. _i_or:
9678
9679'``or``' Instruction
9680^^^^^^^^^^^^^^^^^^^^
9681
9682Syntax:
9683"""""""
9684
9685::
9686
9687      <result> = or <ty> <op1>, <op2>   ; yields ty:result
9688
9689Overview:
9690"""""""""
9691
9692The '``or``' instruction returns the bitwise logical inclusive or of its
9693two operands.
9694
9695Arguments:
9696""""""""""
9697
9698The two arguments to the '``or``' instruction must be
9699:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9700arguments must have identical types.
9701
9702Semantics:
9703""""""""""
9704
9705The truth table used for the '``or``' instruction is:
9706
9707+-----+-----+-----+
9708| In0 | In1 | Out |
9709+-----+-----+-----+
9710|   0 |   0 |   0 |
9711+-----+-----+-----+
9712|   0 |   1 |   1 |
9713+-----+-----+-----+
9714|   1 |   0 |   1 |
9715+-----+-----+-----+
9716|   1 |   1 |   1 |
9717+-----+-----+-----+
9718
9719Example:
9720""""""""
9721
9722::
9723
9724      <result> = or i32 4, %var         ; yields i32:result = 4 | %var
9725      <result> = or i32 15, 40          ; yields i32:result = 47
9726      <result> = or i32 4, 8            ; yields i32:result = 12
9727
9728.. _i_xor:
9729
9730'``xor``' Instruction
9731^^^^^^^^^^^^^^^^^^^^^
9732
9733Syntax:
9734"""""""
9735
9736::
9737
9738      <result> = xor <ty> <op1>, <op2>   ; yields ty:result
9739
9740Overview:
9741"""""""""
9742
9743The '``xor``' instruction returns the bitwise logical exclusive or of
9744its two operands. The ``xor`` is used to implement the "one's
9745complement" operation, which is the "~" operator in C.
9746
9747Arguments:
9748""""""""""
9749
9750The two arguments to the '``xor``' instruction must be
9751:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
9752arguments must have identical types.
9753
9754Semantics:
9755""""""""""
9756
9757The truth table used for the '``xor``' instruction is:
9758
9759+-----+-----+-----+
9760| In0 | In1 | Out |
9761+-----+-----+-----+
9762|   0 |   0 |   0 |
9763+-----+-----+-----+
9764|   0 |   1 |   1 |
9765+-----+-----+-----+
9766|   1 |   0 |   1 |
9767+-----+-----+-----+
9768|   1 |   1 |   0 |
9769+-----+-----+-----+
9770
9771Example:
9772""""""""
9773
9774.. code-block:: text
9775
9776      <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
9777      <result> = xor i32 15, 40          ; yields i32:result = 39
9778      <result> = xor i32 4, 8            ; yields i32:result = 12
9779      <result> = xor i32 %V, -1          ; yields i32:result = ~%V
9780
9781Vector Operations
9782-----------------
9783
9784LLVM supports several instructions to represent vector operations in a
9785target-independent manner. These instructions cover the element-access
9786and vector-specific operations needed to process vectors effectively.
9787While LLVM does directly support these vector operations, many
9788sophisticated algorithms will want to use target-specific intrinsics to
9789take full advantage of a specific target.
9790
9791.. _i_extractelement:
9792
9793'``extractelement``' Instruction
9794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9795
9796Syntax:
9797"""""""
9798
9799::
9800
9801      <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
9802      <result> = extractelement <vscale x n x <ty>> <val>, <ty2> <idx> ; yields <ty>
9803
9804Overview:
9805"""""""""
9806
9807The '``extractelement``' instruction extracts a single scalar element
9808from a vector at a specified index.
9809
9810Arguments:
9811""""""""""
9812
9813The first operand of an '``extractelement``' instruction is a value of
9814:ref:`vector <t_vector>` type. The second operand is an index indicating
9815the position from which to extract the element. The index may be a
9816variable of any integer type, and will be treated as an unsigned integer.
9817
9818Semantics:
9819""""""""""
9820
9821The result is a scalar of the same type as the element type of ``val``.
9822Its value is the value at position ``idx`` of ``val``. If ``idx``
9823exceeds the length of ``val`` for a fixed-length vector, the result is a
9824:ref:`poison value <poisonvalues>`. For a scalable vector, if the value
9825of ``idx`` exceeds the runtime length of the vector, the result is a
9826:ref:`poison value <poisonvalues>`.
9827
9828Example:
9829""""""""
9830
9831.. code-block:: text
9832
9833      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
9834
9835.. _i_insertelement:
9836
9837'``insertelement``' Instruction
9838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9839
9840Syntax:
9841"""""""
9842
9843::
9844
9845      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
9846      <result> = insertelement <vscale x n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <vscale x n x <ty>>
9847
9848Overview:
9849"""""""""
9850
9851The '``insertelement``' instruction inserts a scalar element into a
9852vector at a specified index.
9853
9854Arguments:
9855""""""""""
9856
9857The first operand of an '``insertelement``' instruction is a value of
9858:ref:`vector <t_vector>` type. The second operand is a scalar value whose
9859type must equal the element type of the first operand. The third operand
9860is an index indicating the position at which to insert the value. The
9861index may be a variable of any integer type, and will be treated as an
9862unsigned integer.
9863
9864Semantics:
9865""""""""""
9866
9867The result is a vector of the same type as ``val``. Its element values
9868are those of ``val`` except at position ``idx``, where it gets the value
9869``elt``. If ``idx`` exceeds the length of ``val`` for a fixed-length vector,
9870the result is a :ref:`poison value <poisonvalues>`. For a scalable vector,
9871if the value of ``idx`` exceeds the runtime length of the vector, the result
9872is a :ref:`poison value <poisonvalues>`.
9873
9874Example:
9875""""""""
9876
9877.. code-block:: text
9878
9879      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
9880
9881.. _i_shufflevector:
9882
9883'``shufflevector``' Instruction
9884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9885
9886Syntax:
9887"""""""
9888
9889::
9890
9891      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
9892      <result> = shufflevector <vscale x n x <ty>> <v1>, <vscale x n x <ty>> v2, <vscale x m x i32> <mask>  ; yields <vscale x m x <ty>>
9893
9894Overview:
9895"""""""""
9896
9897The '``shufflevector``' instruction constructs a permutation of elements
9898from two input vectors, returning a vector with the same element type as
9899the input and length that is the same as the shuffle mask.
9900
9901Arguments:
9902""""""""""
9903
9904The first two operands of a '``shufflevector``' instruction are vectors
9905with the same type. The third argument is a shuffle mask vector constant
9906whose element type is ``i32``. The mask vector elements must be constant
9907integers or ``undef`` values. The result of the instruction is a vector
9908whose length is the same as the shuffle mask and whose element type is the
9909same as the element type of the first two operands.
9910
9911Semantics:
9912""""""""""
9913
9914The elements of the two input vectors are numbered from left to right
9915across both of the vectors. For each element of the result vector, the
9916shuffle mask selects an element from one of the input vectors to copy
9917to the result. Non-negative elements in the mask represent an index
9918into the concatenated pair of input vectors.
9919
9920If the shuffle mask is undefined, the result vector is undefined. If
9921the shuffle mask selects an undefined element from one of the input
9922vectors, the resulting element is undefined. An undefined element
9923in the mask vector specifies that the resulting element is undefined.
9924An undefined element in the mask vector prevents a poisoned vector
9925element from propagating.
9926
9927For scalable vectors, the only valid mask values at present are
9928``zeroinitializer`` and ``undef``, since we cannot write all indices as
9929literals for a vector with a length unknown at compile time.
9930
9931Example:
9932""""""""
9933
9934.. code-block:: text
9935
9936      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
9937                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
9938      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
9939                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
9940      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
9941                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
9942      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
9943                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
9944
9945Aggregate Operations
9946--------------------
9947
9948LLVM supports several instructions for working with
9949:ref:`aggregate <t_aggregate>` values.
9950
9951.. _i_extractvalue:
9952
9953'``extractvalue``' Instruction
9954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9955
9956Syntax:
9957"""""""
9958
9959::
9960
9961      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
9962
9963Overview:
9964"""""""""
9965
9966The '``extractvalue``' instruction extracts the value of a member field
9967from an :ref:`aggregate <t_aggregate>` value.
9968
9969Arguments:
9970""""""""""
9971
9972The first operand of an '``extractvalue``' instruction is a value of
9973:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
9974constant indices to specify which value to extract in a similar manner
9975as indices in a '``getelementptr``' instruction.
9976
9977The major differences to ``getelementptr`` indexing are:
9978
9979-  Since the value being indexed is not a pointer, the first index is
9980   omitted and assumed to be zero.
9981-  At least one index must be specified.
9982-  Not only struct indices but also array indices must be in bounds.
9983
9984Semantics:
9985""""""""""
9986
9987The result is the value at the position in the aggregate specified by
9988the index operands.
9989
9990Example:
9991""""""""
9992
9993.. code-block:: text
9994
9995      <result> = extractvalue {i32, float} %agg, 0    ; yields i32
9996
9997.. _i_insertvalue:
9998
9999'``insertvalue``' Instruction
10000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10001
10002Syntax:
10003"""""""
10004
10005::
10006
10007      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
10008
10009Overview:
10010"""""""""
10011
10012The '``insertvalue``' instruction inserts a value into a member field in
10013an :ref:`aggregate <t_aggregate>` value.
10014
10015Arguments:
10016""""""""""
10017
10018The first operand of an '``insertvalue``' instruction is a value of
10019:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
10020a first-class value to insert. The following operands are constant
10021indices indicating the position at which to insert the value in a
10022similar manner as indices in a '``extractvalue``' instruction. The value
10023to insert must have the same type as the value identified by the
10024indices.
10025
10026Semantics:
10027""""""""""
10028
10029The result is an aggregate of the same type as ``val``. Its value is
10030that of ``val`` except that the value at the position specified by the
10031indices is that of ``elt``.
10032
10033Example:
10034""""""""
10035
10036.. code-block:: llvm
10037
10038      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
10039      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
10040      %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}
10041
10042.. _memoryops:
10043
10044Memory Access and Addressing Operations
10045---------------------------------------
10046
10047A key design point of an SSA-based representation is how it represents
10048memory. In LLVM, no memory locations are in SSA form, which makes things
10049very simple. This section describes how to read, write, and allocate
10050memory in LLVM.
10051
10052.. _i_alloca:
10053
10054'``alloca``' Instruction
10055^^^^^^^^^^^^^^^^^^^^^^^^
10056
10057Syntax:
10058"""""""
10059
10060::
10061
10062      <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)]     ; yields type addrspace(num)*:result
10063
10064Overview:
10065"""""""""
10066
10067The '``alloca``' instruction allocates memory on the stack frame of the
10068currently executing function, to be automatically released when this
10069function returns to its caller.  If the address space is not explicitly
10070specified, the object is allocated in the alloca address space from the
10071:ref:`datalayout string<langref_datalayout>`.
10072
10073Arguments:
10074""""""""""
10075
10076The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
10077bytes of memory on the runtime stack, returning a pointer of the
10078appropriate type to the program. If "NumElements" is specified, it is
10079the number of elements allocated, otherwise "NumElements" is defaulted
10080to be one. If a constant alignment is specified, the value result of the
10081allocation is guaranteed to be aligned to at least that boundary. The
10082alignment may not be greater than ``1 << 32``. If not specified, or if
10083zero, the target can choose to align the allocation on any convenient
10084boundary compatible with the type.
10085
10086'``type``' may be any sized type.
10087
10088Semantics:
10089""""""""""
10090
10091Memory is allocated; a pointer is returned. The allocated memory is
10092uninitialized, and loading from uninitialized memory produces an undefined
10093value. The operation itself is undefined if there is insufficient stack
10094space for the allocation.'``alloca``'d memory is automatically released
10095when the function returns. The '``alloca``' instruction is commonly used
10096to represent automatic variables that must have an address available. When
10097the function returns (either with the ``ret`` or ``resume`` instructions),
10098the memory is reclaimed. Allocating zero bytes is legal, but the returned
10099pointer may not be unique. The order in which memory is allocated (ie.,
10100which way the stack grows) is not specified.
10101
10102Note that '``alloca``' outside of the alloca address space from the
10103:ref:`datalayout string<langref_datalayout>` is meaningful only if the
10104target has assigned it a semantics.
10105
10106If the returned pointer is used by :ref:`llvm.lifetime.start <int_lifestart>`,
10107the returned object is initially dead.
10108See :ref:`llvm.lifetime.start <int_lifestart>` and
10109:ref:`llvm.lifetime.end <int_lifeend>` for the precise semantics of
10110lifetime-manipulating intrinsics.
10111
10112Example:
10113""""""""
10114
10115.. code-block:: llvm
10116
10117      %ptr = alloca i32                             ; yields ptr
10118      %ptr = alloca i32, i32 4                      ; yields ptr
10119      %ptr = alloca i32, i32 4, align 1024          ; yields ptr
10120      %ptr = alloca i32, align 1024                 ; yields ptr
10121
10122.. _i_load:
10123
10124'``load``' Instruction
10125^^^^^^^^^^^^^^^^^^^^^^
10126
10127Syntax:
10128"""""""
10129
10130::
10131
10132      <result> = load [volatile] <ty>, ptr <pointer>[, align <alignment>][, !nontemporal !<nontemp_node>][, !invariant.load !<empty_node>][, !invariant.group !<empty_node>][, !nonnull !<empty_node>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>][, !noundef !<empty_node>]
10133      <result> = load atomic [volatile] <ty>, ptr <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<empty_node>]
10134      !<nontemp_node> = !{ i32 1 }
10135      !<empty_node> = !{}
10136      !<deref_bytes_node> = !{ i64 <dereferenceable_bytes> }
10137      !<align_node> = !{ i64 <value_alignment> }
10138
10139Overview:
10140"""""""""
10141
10142The '``load``' instruction is used to read from memory.
10143
10144Arguments:
10145""""""""""
10146
10147The argument to the ``load`` instruction specifies the memory address from which
10148to load. The type specified must be a :ref:`first class <t_firstclass>` type of
10149known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
10150the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
10151modify the number or order of execution of this ``load`` with other
10152:ref:`volatile operations <volatile>`.
10153
10154If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
10155<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
10156``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
10157Atomic loads produce :ref:`defined <memmodel>` results when they may see
10158multiple atomic stores. The type of the pointee must be an integer, pointer, or
10159floating-point type whose bit width is a power of two greater than or equal to
10160eight and less than or equal to a target-specific size limit.  ``align`` must be
10161explicitly specified on atomic loads, and the load has undefined behavior if the
10162alignment is not set to a value which is at least the size in bytes of the
10163pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
10164
10165The optional constant ``align`` argument specifies the alignment of the
10166operation (that is, the alignment of the memory address). A value of 0
10167or an omitted ``align`` argument means that the operation has the ABI
10168alignment for the target. It is the responsibility of the code emitter
10169to ensure that the alignment information is correct. Overestimating the
10170alignment results in undefined behavior. Underestimating the alignment
10171may produce less efficient code. An alignment of 1 is always safe. The
10172maximum possible alignment is ``1 << 32``. An alignment value higher
10173than the size of the loaded type implies memory up to the alignment
10174value bytes can be safely loaded without trapping in the default
10175address space. Access of the high bytes can interfere with debugging
10176tools, so should not be accessed if the function has the
10177``sanitize_thread`` or ``sanitize_address`` attributes.
10178
10179The optional ``!nontemporal`` metadata must reference a single
10180metadata name ``<nontemp_node>`` corresponding to a metadata node with one
10181``i32`` entry of value 1. The existence of the ``!nontemporal``
10182metadata on the instruction tells the optimizer and code generator
10183that this load is not expected to be reused in the cache. The code
10184generator may select special instructions to save cache bandwidth, such
10185as the ``MOVNT`` instruction on x86.
10186
10187The optional ``!invariant.load`` metadata must reference a single
10188metadata name ``<empty_node>`` corresponding to a metadata node with no
10189entries. If a load instruction tagged with the ``!invariant.load``
10190metadata is executed, the memory location referenced by the load has
10191to contain the same value at all points in the program where the
10192memory location is dereferenceable; otherwise, the behavior is
10193undefined.
10194
10195The optional ``!invariant.group`` metadata must reference a single metadata name
10196 ``<empty_node>`` corresponding to a metadata node with no entries.
10197 See ``invariant.group`` metadata :ref:`invariant.group <md_invariant.group>`.
10198
10199The optional ``!nonnull`` metadata must reference a single
10200metadata name ``<empty_node>`` corresponding to a metadata node with no
10201entries. The existence of the ``!nonnull`` metadata on the
10202instruction tells the optimizer that the value loaded is known to
10203never be null. If the value is null at runtime, a poison value is returned
10204instead.  This is analogous to the ``nonnull`` attribute on parameters and
10205return values. This metadata can only be applied to loads of a pointer type.
10206
10207The optional ``!dereferenceable`` metadata must reference a single metadata
10208name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
10209entry.
10210See ``dereferenceable`` metadata :ref:`dereferenceable <md_dereferenceable>`.
10211
10212The optional ``!dereferenceable_or_null`` metadata must reference a single
10213metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
10214``i64`` entry.
10215See ``dereferenceable_or_null`` metadata :ref:`dereferenceable_or_null
10216<md_dereferenceable_or_null>`.
10217
10218The optional ``!align`` metadata must reference a single metadata name
10219``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
10220The existence of the ``!align`` metadata on the instruction tells the
10221optimizer that the value loaded is known to be aligned to a boundary specified
10222by the integer value in the metadata node. The alignment must be a power of 2.
10223This is analogous to the ''align'' attribute on parameters and return values.
10224This metadata can only be applied to loads of a pointer type. If the returned
10225value is not appropriately aligned at runtime, a poison value is returned
10226instead.
10227
10228The optional ``!noundef`` metadata must reference a single metadata name
10229``<empty_node>`` corresponding to a node with no entries. The existence of
10230``!noundef`` metadata on the instruction tells the optimizer that the value
10231loaded is known to be :ref:`well defined <welldefinedvalues>`.
10232If the value isn't well defined, the behavior is undefined. If the ``!noundef``
10233metadata is combined with poison-generating metadata like ``!nonnull``,
10234violation of that metadata constraint will also result in undefined behavior.
10235
10236Semantics:
10237""""""""""
10238
10239The location of memory pointed to is loaded. If the value being loaded
10240is of scalar type then the number of bytes read does not exceed the
10241minimum number of bytes needed to hold all bits of the type. For
10242example, loading an ``i24`` reads at most three bytes. When loading a
10243value of a type like ``i20`` with a size that is not an integral number
10244of bytes, the result is undefined if the value was not originally
10245written using a store of the same type.
10246If the value being loaded is of aggregate type, the bytes that correspond to
10247padding may be accessed but are ignored, because it is impossible to observe
10248padding from the loaded aggregate value.
10249If ``<pointer>`` is not a well-defined value, the behavior is undefined.
10250
10251Examples:
10252"""""""""
10253
10254.. code-block:: llvm
10255
10256      %ptr = alloca i32                               ; yields ptr
10257      store i32 3, ptr %ptr                           ; yields void
10258      %val = load i32, ptr %ptr                       ; yields i32:val = i32 3
10259
10260.. _i_store:
10261
10262'``store``' Instruction
10263^^^^^^^^^^^^^^^^^^^^^^^
10264
10265Syntax:
10266"""""""
10267
10268::
10269
10270      store [volatile] <ty> <value>, ptr <pointer>[, align <alignment>][, !nontemporal !<nontemp_node>][, !invariant.group !<empty_node>]        ; yields void
10271      store atomic [volatile] <ty> <value>, ptr <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<empty_node>] ; yields void
10272      !<nontemp_node> = !{ i32 1 }
10273      !<empty_node> = !{}
10274
10275Overview:
10276"""""""""
10277
10278The '``store``' instruction is used to write to memory.
10279
10280Arguments:
10281""""""""""
10282
10283There are two arguments to the ``store`` instruction: a value to store and an
10284address at which to store it. The type of the ``<pointer>`` operand must be a
10285pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
10286operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
10287allowed to modify the number or order of execution of this ``store`` with other
10288:ref:`volatile operations <volatile>`.  Only values of :ref:`first class
10289<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
10290structural type <t_opaque>`) can be stored.
10291
10292If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
10293<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
10294``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
10295Atomic loads produce :ref:`defined <memmodel>` results when they may see
10296multiple atomic stores. The type of the pointee must be an integer, pointer, or
10297floating-point type whose bit width is a power of two greater than or equal to
10298eight and less than or equal to a target-specific size limit.  ``align`` must be
10299explicitly specified on atomic stores, and the store has undefined behavior if
10300the alignment is not set to a value which is at least the size in bytes of the
10301pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
10302
10303The optional constant ``align`` argument specifies the alignment of the
10304operation (that is, the alignment of the memory address). A value of 0
10305or an omitted ``align`` argument means that the operation has the ABI
10306alignment for the target. It is the responsibility of the code emitter
10307to ensure that the alignment information is correct. Overestimating the
10308alignment results in undefined behavior. Underestimating the
10309alignment may produce less efficient code. An alignment of 1 is always
10310safe. The maximum possible alignment is ``1 << 32``. An alignment
10311value higher than the size of the stored type implies memory up to the
10312alignment value bytes can be stored to without trapping in the default
10313address space. Storing to the higher bytes however may result in data
10314races if another thread can access the same address. Introducing a
10315data race is not allowed. Storing to the extra bytes is not allowed
10316even in situations where a data race is known to not exist if the
10317function has the ``sanitize_address`` attribute.
10318
10319The optional ``!nontemporal`` metadata must reference a single metadata
10320name ``<nontemp_node>`` corresponding to a metadata node with one ``i32`` entry
10321of value 1. The existence of the ``!nontemporal`` metadata on the instruction
10322tells the optimizer and code generator that this load is not expected to
10323be reused in the cache. The code generator may select special
10324instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
10325x86.
10326
10327The optional ``!invariant.group`` metadata must reference a
10328single metadata name ``<empty_node>``. See ``invariant.group`` metadata.
10329
10330Semantics:
10331""""""""""
10332
10333The contents of memory are updated to contain ``<value>`` at the
10334location specified by the ``<pointer>`` operand. If ``<value>`` is
10335of scalar type then the number of bytes written does not exceed the
10336minimum number of bytes needed to hold all bits of the type. For
10337example, storing an ``i24`` writes at most three bytes. When writing a
10338value of a type like ``i20`` with a size that is not an integral number
10339of bytes, it is unspecified what happens to the extra bits that do not
10340belong to the type, but they will typically be overwritten.
10341If ``<value>`` is of aggregate type, padding is filled with
10342:ref:`undef <undefvalues>`.
10343If ``<pointer>`` is not a well-defined value, the behavior is undefined.
10344
10345Example:
10346""""""""
10347
10348.. code-block:: llvm
10349
10350      %ptr = alloca i32                               ; yields ptr
10351      store i32 3, ptr %ptr                           ; yields void
10352      %val = load i32, ptr %ptr                       ; yields i32:val = i32 3
10353
10354.. _i_fence:
10355
10356'``fence``' Instruction
10357^^^^^^^^^^^^^^^^^^^^^^^
10358
10359Syntax:
10360"""""""
10361
10362::
10363
10364      fence [syncscope("<target-scope>")] <ordering>  ; yields void
10365
10366Overview:
10367"""""""""
10368
10369The '``fence``' instruction is used to introduce happens-before edges
10370between operations.
10371
10372Arguments:
10373""""""""""
10374
10375'``fence``' instructions take an :ref:`ordering <ordering>` argument which
10376defines what *synchronizes-with* edges they add. They can only be given
10377``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
10378
10379Semantics:
10380""""""""""
10381
10382A fence A which has (at least) ``release`` ordering semantics
10383*synchronizes with* a fence B with (at least) ``acquire`` ordering
10384semantics if and only if there exist atomic operations X and Y, both
10385operating on some atomic object M, such that A is sequenced before X, X
10386modifies M (either directly or through some side effect of a sequence
10387headed by X), Y is sequenced before B, and Y observes M. This provides a
10388*happens-before* dependency between A and B. Rather than an explicit
10389``fence``, one (but not both) of the atomic operations X or Y might
10390provide a ``release`` or ``acquire`` (resp.) ordering constraint and
10391still *synchronize-with* the explicit ``fence`` and establish the
10392*happens-before* edge.
10393
10394A ``fence`` which has ``seq_cst`` ordering, in addition to having both
10395``acquire`` and ``release`` semantics specified above, participates in
10396the global program order of other ``seq_cst`` operations and/or fences.
10397
10398A ``fence`` instruction can also take an optional
10399":ref:`syncscope <syncscope>`" argument.
10400
10401Example:
10402""""""""
10403
10404.. code-block:: text
10405
10406      fence acquire                                        ; yields void
10407      fence syncscope("singlethread") seq_cst              ; yields void
10408      fence syncscope("agent") seq_cst                     ; yields void
10409
10410.. _i_cmpxchg:
10411
10412'``cmpxchg``' Instruction
10413^^^^^^^^^^^^^^^^^^^^^^^^^
10414
10415Syntax:
10416"""""""
10417
10418::
10419
10420      cmpxchg [weak] [volatile] ptr <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering>[, align <alignment>] ; yields  { ty, i1 }
10421
10422Overview:
10423"""""""""
10424
10425The '``cmpxchg``' instruction is used to atomically modify memory. It
10426loads a value in memory and compares it to a given value. If they are
10427equal, it tries to store a new value into the memory.
10428
10429Arguments:
10430""""""""""
10431
10432There are three arguments to the '``cmpxchg``' instruction: an address
10433to operate on, a value to compare to the value currently be at that
10434address, and a new value to place at that address if the compared values
10435are equal. The type of '<cmp>' must be an integer or pointer type whose
10436bit width is a power of two greater than or equal to eight and less
10437than or equal to a target-specific size limit. '<cmp>' and '<new>' must
10438have the same type, and the type of '<pointer>' must be a pointer to
10439that type. If the ``cmpxchg`` is marked as ``volatile``, then the
10440optimizer is not allowed to modify the number or order of execution of
10441this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
10442
10443The success and failure :ref:`ordering <ordering>` arguments specify how this
10444``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
10445must be at least ``monotonic``, the failure ordering cannot be either
10446``release`` or ``acq_rel``.
10447
10448A ``cmpxchg`` instruction can also take an optional
10449":ref:`syncscope <syncscope>`" argument.
10450
10451The instruction can take an optional ``align`` attribute.
10452The alignment must be a power of two greater or equal to the size of the
10453`<value>` type. If unspecified, the alignment is assumed to be equal to the
10454size of the '<value>' type. Note that this default alignment assumption is
10455different from the alignment used for the load/store instructions when align
10456isn't specified.
10457
10458The pointer passed into cmpxchg must have alignment greater than or
10459equal to the size in memory of the operand.
10460
10461Semantics:
10462""""""""""
10463
10464The contents of memory at the location specified by the '``<pointer>``' operand
10465is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
10466written to the location. The original value at the location is returned,
10467together with a flag indicating success (true) or failure (false).
10468
10469If the cmpxchg operation is marked as ``weak`` then a spurious failure is
10470permitted: the operation may not write ``<new>`` even if the comparison
10471matched.
10472
10473If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
10474if the value loaded equals ``cmp``.
10475
10476A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
10477identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
10478load with an ordering parameter determined the second ordering parameter.
10479
10480Example:
10481""""""""
10482
10483.. code-block:: llvm
10484
10485    entry:
10486      %orig = load atomic i32, ptr %ptr unordered, align 4                      ; yields i32
10487      br label %loop
10488
10489    loop:
10490      %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
10491      %squared = mul i32 %cmp, %cmp
10492      %val_success = cmpxchg ptr %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
10493      %value_loaded = extractvalue { i32, i1 } %val_success, 0
10494      %success = extractvalue { i32, i1 } %val_success, 1
10495      br i1 %success, label %done, label %loop
10496
10497    done:
10498      ...
10499
10500.. _i_atomicrmw:
10501
10502'``atomicrmw``' Instruction
10503^^^^^^^^^^^^^^^^^^^^^^^^^^^
10504
10505Syntax:
10506"""""""
10507
10508::
10509
10510      atomicrmw [volatile] <operation> ptr <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering>[, align <alignment>]  ; yields ty
10511
10512Overview:
10513"""""""""
10514
10515The '``atomicrmw``' instruction is used to atomically modify memory.
10516
10517Arguments:
10518""""""""""
10519
10520There are three arguments to the '``atomicrmw``' instruction: an
10521operation to apply, an address whose value to modify, an argument to the
10522operation. The operation must be one of the following keywords:
10523
10524-  xchg
10525-  add
10526-  sub
10527-  and
10528-  nand
10529-  or
10530-  xor
10531-  max
10532-  min
10533-  umax
10534-  umin
10535-  fadd
10536-  fsub
10537-  fmax
10538-  fmin
10539-  uinc_wrap
10540-  udec_wrap
10541
10542For most of these operations, the type of '<value>' must be an integer
10543type whose bit width is a power of two greater than or equal to eight
10544and less than or equal to a target-specific size limit. For xchg, this
10545may also be a floating point or a pointer type with the same size constraints
10546as integers.  For fadd/fsub/fmax/fmin, this must be a floating point type.  The
10547type of the '``<pointer>``' operand must be a pointer to that type. If
10548the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
10549allowed to modify the number or order of execution of this
10550``atomicrmw`` with other :ref:`volatile operations <volatile>`.
10551
10552The instruction can take an optional ``align`` attribute.
10553The alignment must be a power of two greater or equal to the size of the
10554`<value>` type. If unspecified, the alignment is assumed to be equal to the
10555size of the '<value>' type. Note that this default alignment assumption is
10556different from the alignment used for the load/store instructions when align
10557isn't specified.
10558
10559A ``atomicrmw`` instruction can also take an optional
10560":ref:`syncscope <syncscope>`" argument.
10561
10562Semantics:
10563""""""""""
10564
10565The contents of memory at the location specified by the '``<pointer>``'
10566operand are atomically read, modified, and written back. The original
10567value at the location is returned. The modification is specified by the
10568operation argument:
10569
10570-  xchg: ``*ptr = val``
10571-  add: ``*ptr = *ptr + val``
10572-  sub: ``*ptr = *ptr - val``
10573-  and: ``*ptr = *ptr & val``
10574-  nand: ``*ptr = ~(*ptr & val)``
10575-  or: ``*ptr = *ptr | val``
10576-  xor: ``*ptr = *ptr ^ val``
10577-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
10578-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
10579-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned comparison)
10580-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned comparison)
10581- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
10582- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)
10583-  fmax: ``*ptr = maxnum(*ptr, val)`` (match the `llvm.maxnum.*`` intrinsic)
10584-  fmin: ``*ptr = minnum(*ptr, val)`` (match the `llvm.minnum.*`` intrinsic)
10585-  uinc_wrap: ``*ptr = (*ptr u>= val) ? 0 : (*ptr + 1)`` (increment value with wraparound to zero when incremented above input value)
10586-  udec_wrap: ``*ptr = ((*ptr == 0) || (*ptr u> val)) ? val : (*ptr -   1)`` (decrement with wraparound to input value when decremented below zero).
10587
10588
10589Example:
10590""""""""
10591
10592.. code-block:: llvm
10593
10594      %old = atomicrmw add ptr %ptr, i32 1 acquire                        ; yields i32
10595
10596.. _i_getelementptr:
10597
10598'``getelementptr``' Instruction
10599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10600
10601Syntax:
10602"""""""
10603
10604::
10605
10606      <result> = getelementptr <ty>, ptr <ptrval>{, [inrange] <ty> <idx>}*
10607      <result> = getelementptr inbounds <ty>, ptr <ptrval>{, [inrange] <ty> <idx>}*
10608      <result> = getelementptr <ty>, <N x ptr> <ptrval>, [inrange] <vector index type> <idx>
10609
10610Overview:
10611"""""""""
10612
10613The '``getelementptr``' instruction is used to get the address of a
10614subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
10615address calculation only and does not access memory. The instruction can also
10616be used to calculate a vector of such addresses.
10617
10618Arguments:
10619""""""""""
10620
10621The first argument is always a type used as the basis for the calculations.
10622The second argument is always a pointer or a vector of pointers, and is the
10623base address to start from. The remaining arguments are indices
10624that indicate which of the elements of the aggregate object are indexed.
10625The interpretation of each index is dependent on the type being indexed
10626into. The first index always indexes the pointer value given as the
10627second argument, the second index indexes a value of the type pointed to
10628(not necessarily the value directly pointed to, since the first index
10629can be non-zero), etc. The first type indexed into must be a pointer
10630value, subsequent types can be arrays, vectors, and structs. Note that
10631subsequent types being indexed into can never be pointers, since that
10632would require loading the pointer before continuing calculation.
10633
10634The type of each index argument depends on the type it is indexing into.
10635When indexing into a (optionally packed) structure, only ``i32`` integer
10636**constants** are allowed (when using a vector of indices they must all
10637be the **same** ``i32`` integer constant). When indexing into an array,
10638pointer or vector, integers of any width are allowed, and they are not
10639required to be constant. These integers are treated as signed values
10640where relevant.
10641
10642For example, let's consider a C code fragment and how it gets compiled
10643to LLVM:
10644
10645.. code-block:: c
10646
10647    struct RT {
10648      char A;
10649      int B[10][20];
10650      char C;
10651    };
10652    struct ST {
10653      int X;
10654      double Y;
10655      struct RT Z;
10656    };
10657
10658    int *foo(struct ST *s) {
10659      return &s[1].Z.B[5][13];
10660    }
10661
10662The LLVM code generated by Clang is:
10663
10664.. code-block:: llvm
10665
10666    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
10667    %struct.ST = type { i32, double, %struct.RT }
10668
10669    define ptr @foo(ptr %s) nounwind uwtable readnone optsize ssp {
10670    entry:
10671      %arrayidx = getelementptr inbounds %struct.ST, ptr %s, i64 1, i32 2, i32 1, i64 5, i64 13
10672      ret ptr %arrayidx
10673    }
10674
10675Semantics:
10676""""""""""
10677
10678In the example above, the first index is indexing into the
10679'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
10680= '``{ i32, double, %struct.RT }``' type, a structure. The second index
10681indexes into the third element of the structure, yielding a
10682'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
10683structure. The third index indexes into the second element of the
10684structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
10685dimensions of the array are subscripted into, yielding an '``i32``'
10686type. The '``getelementptr``' instruction returns a pointer to this
10687element.
10688
10689Note that it is perfectly legal to index partially through a structure,
10690returning a pointer to an inner element. Because of this, the LLVM code
10691for the given testcase is equivalent to:
10692
10693.. code-block:: llvm
10694
10695    define ptr @foo(ptr %s) {
10696      %t1 = getelementptr %struct.ST, ptr %s, i32 1
10697      %t2 = getelementptr %struct.ST, ptr %t1, i32 0, i32 2
10698      %t3 = getelementptr %struct.RT, ptr %t2, i32 0, i32 1
10699      %t4 = getelementptr [10 x [20 x i32]], ptr %t3, i32 0, i32 5
10700      %t5 = getelementptr [20 x i32], ptr %t4, i32 0, i32 13
10701      ret ptr %t5
10702    }
10703
10704If the ``inbounds`` keyword is present, the result value of the
10705``getelementptr`` is a :ref:`poison value <poisonvalues>` if one of the
10706following rules is violated:
10707
10708*  The base pointer has an *in bounds* address of an allocated object, which
10709   means that it points into an allocated object, or to its end. The only
10710   *in bounds* address for a null pointer in the default address-space is the
10711   null pointer itself.
10712*  If the type of an index is larger than the pointer index type, the
10713   truncation to the pointer index type preserves the signed value.
10714*  The multiplication of an index by the type size does not wrap the pointer
10715   index type in a signed sense (``nsw``).
10716*  The successive addition of offsets (without adding the base address) does
10717   not wrap the pointer index type in a signed sense (``nsw``).
10718*  The successive addition of the current address, interpreted as an unsigned
10719   number, and an offset, interpreted as a signed number, does not wrap the
10720   unsigned address space and remains *in bounds* of the allocated object.
10721   As a corollary, if the added offset is non-negative, the addition does not
10722   wrap in an unsigned sense (``nuw``).
10723*  In cases where the base is a vector of pointers, the ``inbounds`` keyword
10724   applies to each of the computations element-wise.
10725
10726These rules are based on the assumption that no allocated object may cross
10727the unsigned address space boundary, and no allocated object may be larger
10728than half the pointer index type space.
10729
10730If the ``inbounds`` keyword is not present, the offsets are added to the
10731base address with silently-wrapping two's complement arithmetic. If the
10732offsets have a different width from the pointer, they are sign-extended
10733or truncated to the width of the pointer. The result value of the
10734``getelementptr`` may be outside the object pointed to by the base
10735pointer. The result value may not necessarily be used to access memory
10736though, even if it happens to point into allocated storage. See the
10737:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
10738information.
10739
10740If the ``inrange`` keyword is present before any index, loading from or
10741storing to any pointer derived from the ``getelementptr`` has undefined
10742behavior if the load or store would access memory outside of the bounds of
10743the element selected by the index marked as ``inrange``. The result of a
10744pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
10745involving memory) involving a pointer derived from a ``getelementptr`` with
10746the ``inrange`` keyword is undefined, with the exception of comparisons
10747in the case where both operands are in the range of the element selected
10748by the ``inrange`` keyword, inclusive of the address one past the end of
10749that element. Note that the ``inrange`` keyword is currently only allowed
10750in constant ``getelementptr`` expressions.
10751
10752The getelementptr instruction is often confusing. For some more insight
10753into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
10754
10755Example:
10756""""""""
10757
10758.. code-block:: llvm
10759
10760        %aptr = getelementptr {i32, [12 x i8]}, ptr %saptr, i64 0, i32 1
10761        %vptr = getelementptr {i32, <2 x i8>}, ptr %svptr, i64 0, i32 1, i32 1
10762        %eptr = getelementptr [12 x i8], ptr %aptr, i64 0, i32 1
10763        %iptr = getelementptr [10 x i32], ptr @arr, i16 0, i16 0
10764
10765Vector of pointers:
10766"""""""""""""""""""
10767
10768The ``getelementptr`` returns a vector of pointers, instead of a single address,
10769when one or more of its arguments is a vector. In such cases, all vector
10770arguments should have the same number of elements, and every scalar argument
10771will be effectively broadcast into a vector during address calculation.
10772
10773.. code-block:: llvm
10774
10775     ; All arguments are vectors:
10776     ;   A[i] = ptrs[i] + offsets[i]*sizeof(i8)
10777     %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
10778
10779     ; Add the same scalar offset to each pointer of a vector:
10780     ;   A[i] = ptrs[i] + offset*sizeof(i8)
10781     %A = getelementptr i8, <4 x ptr> %ptrs, i64 %offset
10782
10783     ; Add distinct offsets to the same pointer:
10784     ;   A[i] = ptr + offsets[i]*sizeof(i8)
10785     %A = getelementptr i8, ptr %ptr, <4 x i64> %offsets
10786
10787     ; In all cases described above the type of the result is <4 x ptr>
10788
10789The two following instructions are equivalent:
10790
10791.. code-block:: llvm
10792
10793     getelementptr  %struct.ST, <4 x ptr> %s, <4 x i64> %ind1,
10794       <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
10795       <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
10796       <4 x i32> %ind4,
10797       <4 x i64> <i64 13, i64 13, i64 13, i64 13>
10798
10799     getelementptr  %struct.ST, <4 x ptr> %s, <4 x i64> %ind1,
10800       i32 2, i32 1, <4 x i32> %ind4, i64 13
10801
10802Let's look at the C code, where the vector version of ``getelementptr``
10803makes sense:
10804
10805.. code-block:: c
10806
10807    // Let's assume that we vectorize the following loop:
10808    double *A, *B; int *C;
10809    for (int i = 0; i < size; ++i) {
10810      A[i] = B[C[i]];
10811    }
10812
10813.. code-block:: llvm
10814
10815    ; get pointers for 8 elements from array B
10816    %ptrs = getelementptr double, ptr %B, <8 x i32> %C
10817    ; load 8 elements from array B into A
10818    %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x ptr> %ptrs,
10819         i32 8, <8 x i1> %mask, <8 x double> %passthru)
10820
10821Conversion Operations
10822---------------------
10823
10824The instructions in this category are the conversion instructions
10825(casting) which all take a single operand and a type. They perform
10826various bit conversions on the operand.
10827
10828.. _i_trunc:
10829
10830'``trunc .. to``' Instruction
10831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10832
10833Syntax:
10834"""""""
10835
10836::
10837
10838      <result> = trunc <ty> <value> to <ty2>             ; yields ty2
10839
10840Overview:
10841"""""""""
10842
10843The '``trunc``' instruction truncates its operand to the type ``ty2``.
10844
10845Arguments:
10846""""""""""
10847
10848The '``trunc``' instruction takes a value to trunc, and a type to trunc
10849it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
10850of the same number of integers. The bit size of the ``value`` must be
10851larger than the bit size of the destination type, ``ty2``. Equal sized
10852types are not allowed.
10853
10854Semantics:
10855""""""""""
10856
10857The '``trunc``' instruction truncates the high order bits in ``value``
10858and converts the remaining bits to ``ty2``. Since the source size must
10859be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
10860It will always truncate bits.
10861
10862Example:
10863""""""""
10864
10865.. code-block:: llvm
10866
10867      %X = trunc i32 257 to i8                        ; yields i8:1
10868      %Y = trunc i32 123 to i1                        ; yields i1:true
10869      %Z = trunc i32 122 to i1                        ; yields i1:false
10870      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
10871
10872.. _i_zext:
10873
10874'``zext .. to``' Instruction
10875^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10876
10877Syntax:
10878"""""""
10879
10880::
10881
10882      <result> = zext <ty> <value> to <ty2>             ; yields ty2
10883
10884Overview:
10885"""""""""
10886
10887The '``zext``' instruction zero extends its operand to type ``ty2``.
10888
10889Arguments:
10890""""""""""
10891
10892The '``zext``' instruction takes a value to cast, and a type to cast it
10893to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
10894the same number of integers. The bit size of the ``value`` must be
10895smaller than the bit size of the destination type, ``ty2``.
10896
10897Semantics:
10898""""""""""
10899
10900The ``zext`` fills the high order bits of the ``value`` with zero bits
10901until it reaches the size of the destination type, ``ty2``.
10902
10903When zero extending from i1, the result will always be either 0 or 1.
10904
10905Example:
10906""""""""
10907
10908.. code-block:: llvm
10909
10910      %X = zext i32 257 to i64              ; yields i64:257
10911      %Y = zext i1 true to i32              ; yields i32:1
10912      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
10913
10914.. _i_sext:
10915
10916'``sext .. to``' Instruction
10917^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10918
10919Syntax:
10920"""""""
10921
10922::
10923
10924      <result> = sext <ty> <value> to <ty2>             ; yields ty2
10925
10926Overview:
10927"""""""""
10928
10929The '``sext``' sign extends ``value`` to the type ``ty2``.
10930
10931Arguments:
10932""""""""""
10933
10934The '``sext``' instruction takes a value to cast, and a type to cast it
10935to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
10936the same number of integers. The bit size of the ``value`` must be
10937smaller than the bit size of the destination type, ``ty2``.
10938
10939Semantics:
10940""""""""""
10941
10942The '``sext``' instruction performs a sign extension by copying the sign
10943bit (highest order bit) of the ``value`` until it reaches the bit size
10944of the type ``ty2``.
10945
10946When sign extending from i1, the extension always results in -1 or 0.
10947
10948Example:
10949""""""""
10950
10951.. code-block:: llvm
10952
10953      %X = sext i8  -1 to i16              ; yields i16   :65535
10954      %Y = sext i1 true to i32             ; yields i32:-1
10955      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
10956
10957'``fptrunc .. to``' Instruction
10958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10959
10960Syntax:
10961"""""""
10962
10963::
10964
10965      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
10966
10967Overview:
10968"""""""""
10969
10970The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
10971
10972Arguments:
10973""""""""""
10974
10975The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
10976value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
10977The size of ``value`` must be larger than the size of ``ty2``. This
10978implies that ``fptrunc`` cannot be used to make a *no-op cast*.
10979
10980Semantics:
10981""""""""""
10982
10983The '``fptrunc``' instruction casts a ``value`` from a larger
10984:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
10985<t_floating>` type.
10986This instruction is assumed to execute in the default :ref:`floating-point
10987environment <floatenv>`.
10988
10989Example:
10990""""""""
10991
10992.. code-block:: llvm
10993
10994      %X = fptrunc double 16777217.0 to float    ; yields float:16777216.0
10995      %Y = fptrunc double 1.0E+300 to half       ; yields half:+infinity
10996
10997'``fpext .. to``' Instruction
10998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10999
11000Syntax:
11001"""""""
11002
11003::
11004
11005      <result> = fpext <ty> <value> to <ty2>             ; yields ty2
11006
11007Overview:
11008"""""""""
11009
11010The '``fpext``' extends a floating-point ``value`` to a larger floating-point
11011value.
11012
11013Arguments:
11014""""""""""
11015
11016The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
11017``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
11018to. The source type must be smaller than the destination type.
11019
11020Semantics:
11021""""""""""
11022
11023The '``fpext``' instruction extends the ``value`` from a smaller
11024:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
11025<t_floating>` type. The ``fpext`` cannot be used to make a
11026*no-op cast* because it always changes bits. Use ``bitcast`` to make a
11027*no-op cast* for a floating-point cast.
11028
11029Example:
11030""""""""
11031
11032.. code-block:: llvm
11033
11034      %X = fpext float 3.125 to double         ; yields double:3.125000e+00
11035      %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
11036
11037'``fptoui .. to``' Instruction
11038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11039
11040Syntax:
11041"""""""
11042
11043::
11044
11045      <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
11046
11047Overview:
11048"""""""""
11049
11050The '``fptoui``' converts a floating-point ``value`` to its unsigned
11051integer equivalent of type ``ty2``.
11052
11053Arguments:
11054""""""""""
11055
11056The '``fptoui``' instruction takes a value to cast, which must be a
11057scalar or vector :ref:`floating-point <t_floating>` value, and a type to
11058cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
11059``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
11060type with the same number of elements as ``ty``
11061
11062Semantics:
11063""""""""""
11064
11065The '``fptoui``' instruction converts its :ref:`floating-point
11066<t_floating>` operand into the nearest (rounding towards zero)
11067unsigned integer value. If the value cannot fit in ``ty2``, the result
11068is a :ref:`poison value <poisonvalues>`.
11069
11070Example:
11071""""""""
11072
11073.. code-block:: llvm
11074
11075      %X = fptoui double 123.0 to i32      ; yields i32:123
11076      %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
11077      %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
11078
11079'``fptosi .. to``' Instruction
11080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11081
11082Syntax:
11083"""""""
11084
11085::
11086
11087      <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
11088
11089Overview:
11090"""""""""
11091
11092The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
11093``value`` to type ``ty2``.
11094
11095Arguments:
11096""""""""""
11097
11098The '``fptosi``' instruction takes a value to cast, which must be a
11099scalar or vector :ref:`floating-point <t_floating>` value, and a type to
11100cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
11101``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
11102type with the same number of elements as ``ty``
11103
11104Semantics:
11105""""""""""
11106
11107The '``fptosi``' instruction converts its :ref:`floating-point
11108<t_floating>` operand into the nearest (rounding towards zero)
11109signed integer value. If the value cannot fit in ``ty2``, the result
11110is a :ref:`poison value <poisonvalues>`.
11111
11112Example:
11113""""""""
11114
11115.. code-block:: llvm
11116
11117      %X = fptosi double -123.0 to i32      ; yields i32:-123
11118      %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
11119      %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
11120
11121'``uitofp .. to``' Instruction
11122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11123
11124Syntax:
11125"""""""
11126
11127::
11128
11129      <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
11130
11131Overview:
11132"""""""""
11133
11134The '``uitofp``' instruction regards ``value`` as an unsigned integer
11135and converts that value to the ``ty2`` type.
11136
11137Arguments:
11138""""""""""
11139
11140The '``uitofp``' instruction takes a value to cast, which must be a
11141scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
11142``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
11143``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
11144type with the same number of elements as ``ty``
11145
11146Semantics:
11147""""""""""
11148
11149The '``uitofp``' instruction interprets its operand as an unsigned
11150integer quantity and converts it to the corresponding floating-point
11151value. If the value cannot be exactly represented, it is rounded using
11152the default rounding mode.
11153
11154
11155Example:
11156""""""""
11157
11158.. code-block:: llvm
11159
11160      %X = uitofp i32 257 to float         ; yields float:257.0
11161      %Y = uitofp i8 -1 to double          ; yields double:255.0
11162
11163'``sitofp .. to``' Instruction
11164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11165
11166Syntax:
11167"""""""
11168
11169::
11170
11171      <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
11172
11173Overview:
11174"""""""""
11175
11176The '``sitofp``' instruction regards ``value`` as a signed integer and
11177converts that value to the ``ty2`` type.
11178
11179Arguments:
11180""""""""""
11181
11182The '``sitofp``' instruction takes a value to cast, which must be a
11183scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
11184``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
11185``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
11186type with the same number of elements as ``ty``
11187
11188Semantics:
11189""""""""""
11190
11191The '``sitofp``' instruction interprets its operand as a signed integer
11192quantity and converts it to the corresponding floating-point value. If the
11193value cannot be exactly represented, it is rounded using the default rounding
11194mode.
11195
11196Example:
11197""""""""
11198
11199.. code-block:: llvm
11200
11201      %X = sitofp i32 257 to float         ; yields float:257.0
11202      %Y = sitofp i8 -1 to double          ; yields double:-1.0
11203
11204.. _i_ptrtoint:
11205
11206'``ptrtoint .. to``' Instruction
11207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11208
11209Syntax:
11210"""""""
11211
11212::
11213
11214      <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
11215
11216Overview:
11217"""""""""
11218
11219The '``ptrtoint``' instruction converts the pointer or a vector of
11220pointers ``value`` to the integer (or vector of integers) type ``ty2``.
11221
11222Arguments:
11223""""""""""
11224
11225The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
11226a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
11227type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
11228a vector of integers type.
11229
11230Semantics:
11231""""""""""
11232
11233The '``ptrtoint``' instruction converts ``value`` to integer type
11234``ty2`` by interpreting the pointer value as an integer and either
11235truncating or zero extending that value to the size of the integer type.
11236If ``value`` is smaller than ``ty2`` then a zero extension is done. If
11237``value`` is larger than ``ty2`` then a truncation is done. If they are
11238the same size, then nothing is done (*no-op cast*) other than a type
11239change.
11240
11241Example:
11242""""""""
11243
11244.. code-block:: llvm
11245
11246      %X = ptrtoint ptr %P to i8                         ; yields truncation on 32-bit architecture
11247      %Y = ptrtoint ptr %P to i64                        ; yields zero extension on 32-bit architecture
11248      %Z = ptrtoint <4 x ptr> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
11249
11250.. _i_inttoptr:
11251
11252'``inttoptr .. to``' Instruction
11253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11254
11255Syntax:
11256"""""""
11257
11258::
11259
11260      <result> = inttoptr <ty> <value> to <ty2>[, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>]             ; yields ty2
11261
11262Overview:
11263"""""""""
11264
11265The '``inttoptr``' instruction converts an integer ``value`` to a
11266pointer type, ``ty2``.
11267
11268Arguments:
11269""""""""""
11270
11271The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
11272cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
11273type.
11274
11275The optional ``!dereferenceable`` metadata must reference a single metadata
11276name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
11277entry.
11278See ``dereferenceable`` metadata.
11279
11280The optional ``!dereferenceable_or_null`` metadata must reference a single
11281metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
11282``i64`` entry.
11283See ``dereferenceable_or_null`` metadata.
11284
11285Semantics:
11286""""""""""
11287
11288The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
11289applying either a zero extension or a truncation depending on the size
11290of the integer ``value``. If ``value`` is larger than the size of a
11291pointer then a truncation is done. If ``value`` is smaller than the size
11292of a pointer then a zero extension is done. If they are the same size,
11293nothing is done (*no-op cast*).
11294
11295Example:
11296""""""""
11297
11298.. code-block:: llvm
11299
11300      %X = inttoptr i32 255 to ptr           ; yields zero extension on 64-bit architecture
11301      %Y = inttoptr i32 255 to ptr           ; yields no-op on 32-bit architecture
11302      %Z = inttoptr i64 0 to ptr             ; yields truncation on 32-bit architecture
11303      %Z = inttoptr <4 x i32> %G to <4 x ptr>; yields truncation of vector G to four pointers
11304
11305.. _i_bitcast:
11306
11307'``bitcast .. to``' Instruction
11308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11309
11310Syntax:
11311"""""""
11312
11313::
11314
11315      <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
11316
11317Overview:
11318"""""""""
11319
11320The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
11321changing any bits.
11322
11323Arguments:
11324""""""""""
11325
11326The '``bitcast``' instruction takes a value to cast, which must be a
11327non-aggregate first class value, and a type to cast it to, which must
11328also be a non-aggregate :ref:`first class <t_firstclass>` type. The
11329bit sizes of ``value`` and the destination type, ``ty2``, must be
11330identical. If the source type is a pointer, the destination type must
11331also be a pointer of the same size. This instruction supports bitwise
11332conversion of vectors to integers and to vectors of other types (as
11333long as they have the same size).
11334
11335Semantics:
11336""""""""""
11337
11338The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
11339is always a *no-op cast* because no bits change with this
11340conversion. The conversion is done as if the ``value`` had been stored
11341to memory and read back as type ``ty2``. Pointer (or vector of
11342pointers) types may only be converted to other pointer (or vector of
11343pointers) types with the same address space through this instruction.
11344To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
11345or :ref:`ptrtoint <i_ptrtoint>` instructions first.
11346
11347There is a caveat for bitcasts involving vector types in relation to
11348endianess. For example ``bitcast <2 x i8> <value> to i16`` puts element zero
11349of the vector in the least significant bits of the i16 for little-endian while
11350element zero ends up in the most significant bits for big-endian.
11351
11352Example:
11353""""""""
11354
11355.. code-block:: text
11356
11357      %X = bitcast i8 255 to i8          ; yields i8 :-1
11358      %Y = bitcast i32* %x to i16*       ; yields i16*:%x
11359      %Z = bitcast <2 x i32> %V to i64;  ; yields i64: %V (depends on endianess)
11360      %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
11361
11362.. _i_addrspacecast:
11363
11364'``addrspacecast .. to``' Instruction
11365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11366
11367Syntax:
11368"""""""
11369
11370::
11371
11372      <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
11373
11374Overview:
11375"""""""""
11376
11377The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
11378address space ``n`` to type ``pty2`` in address space ``m``.
11379
11380Arguments:
11381""""""""""
11382
11383The '``addrspacecast``' instruction takes a pointer or vector of pointer value
11384to cast and a pointer type to cast it to, which must have a different
11385address space.
11386
11387Semantics:
11388""""""""""
11389
11390The '``addrspacecast``' instruction converts the pointer value
11391``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
11392value modification, depending on the target and the address space
11393pair. Pointer conversions within the same address space must be
11394performed with the ``bitcast`` instruction. Note that if the address
11395space conversion produces a dereferenceable result then both result
11396and operand refer to the same memory location. The conversion must
11397have no side effects, and must not capture the value of the pointer.
11398
11399If the source is :ref:`poison <poisonvalues>`, the result is
11400:ref:`poison <poisonvalues>`.
11401
11402If the source is not :ref:`poison <poisonvalues>`, and both source and
11403destination are :ref:`integral pointers <nointptrtype>`, and the
11404result pointer is dereferenceable, the cast is assumed to be
11405reversible (i.e. casting the result back to the original address space
11406should yield the original bit pattern).
11407
11408Example:
11409""""""""
11410
11411.. code-block:: llvm
11412
11413      %X = addrspacecast ptr %x to ptr addrspace(1)
11414      %Y = addrspacecast ptr addrspace(1) %y to ptr addrspace(2)
11415      %Z = addrspacecast <4 x ptr> %z to <4 x ptr addrspace(3)>
11416
11417.. _otherops:
11418
11419Other Operations
11420----------------
11421
11422The instructions in this category are the "miscellaneous" instructions,
11423which defy better classification.
11424
11425.. _i_icmp:
11426
11427'``icmp``' Instruction
11428^^^^^^^^^^^^^^^^^^^^^^
11429
11430Syntax:
11431"""""""
11432
11433::
11434
11435      <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
11436
11437Overview:
11438"""""""""
11439
11440The '``icmp``' instruction returns a boolean value or a vector of
11441boolean values based on comparison of its two integer, integer vector,
11442pointer, or pointer vector operands.
11443
11444Arguments:
11445""""""""""
11446
11447The '``icmp``' instruction takes three operands. The first operand is
11448the condition code indicating the kind of comparison to perform. It is
11449not a value, just a keyword. The possible condition codes are:
11450
11451.. _icmp_md_cc:
11452
11453#. ``eq``: equal
11454#. ``ne``: not equal
11455#. ``ugt``: unsigned greater than
11456#. ``uge``: unsigned greater or equal
11457#. ``ult``: unsigned less than
11458#. ``ule``: unsigned less or equal
11459#. ``sgt``: signed greater than
11460#. ``sge``: signed greater or equal
11461#. ``slt``: signed less than
11462#. ``sle``: signed less or equal
11463
11464The remaining two arguments must be :ref:`integer <t_integer>` or
11465:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
11466must also be identical types.
11467
11468Semantics:
11469""""""""""
11470
11471The '``icmp``' compares ``op1`` and ``op2`` according to the condition
11472code given as ``cond``. The comparison performed always yields either an
11473:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
11474
11475.. _icmp_md_cc_sem:
11476
11477#. ``eq``: yields ``true`` if the operands are equal, ``false``
11478   otherwise. No sign interpretation is necessary or performed.
11479#. ``ne``: yields ``true`` if the operands are unequal, ``false``
11480   otherwise. No sign interpretation is necessary or performed.
11481#. ``ugt``: interprets the operands as unsigned values and yields
11482   ``true`` if ``op1`` is greater than ``op2``.
11483#. ``uge``: interprets the operands as unsigned values and yields
11484   ``true`` if ``op1`` is greater than or equal to ``op2``.
11485#. ``ult``: interprets the operands as unsigned values and yields
11486   ``true`` if ``op1`` is less than ``op2``.
11487#. ``ule``: interprets the operands as unsigned values and yields
11488   ``true`` if ``op1`` is less than or equal to ``op2``.
11489#. ``sgt``: interprets the operands as signed values and yields ``true``
11490   if ``op1`` is greater than ``op2``.
11491#. ``sge``: interprets the operands as signed values and yields ``true``
11492   if ``op1`` is greater than or equal to ``op2``.
11493#. ``slt``: interprets the operands as signed values and yields ``true``
11494   if ``op1`` is less than ``op2``.
11495#. ``sle``: interprets the operands as signed values and yields ``true``
11496   if ``op1`` is less than or equal to ``op2``.
11497
11498If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
11499are compared as if they were integers.
11500
11501If the operands are integer vectors, then they are compared element by
11502element. The result is an ``i1`` vector with the same number of elements
11503as the values being compared. Otherwise, the result is an ``i1``.
11504
11505Example:
11506""""""""
11507
11508.. code-block:: text
11509
11510      <result> = icmp eq i32 4, 5          ; yields: result=false
11511      <result> = icmp ne ptr %X, %X        ; yields: result=false
11512      <result> = icmp ult i16  4, 5        ; yields: result=true
11513      <result> = icmp sgt i16  4, 5        ; yields: result=false
11514      <result> = icmp ule i16 -4, 5        ; yields: result=false
11515      <result> = icmp sge i16  4, 5        ; yields: result=false
11516
11517.. _i_fcmp:
11518
11519'``fcmp``' Instruction
11520^^^^^^^^^^^^^^^^^^^^^^
11521
11522Syntax:
11523"""""""
11524
11525::
11526
11527      <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
11528
11529Overview:
11530"""""""""
11531
11532The '``fcmp``' instruction returns a boolean value or vector of boolean
11533values based on comparison of its operands.
11534
11535If the operands are floating-point scalars, then the result type is a
11536boolean (:ref:`i1 <t_integer>`).
11537
11538If the operands are floating-point vectors, then the result type is a
11539vector of boolean with the same number of elements as the operands being
11540compared.
11541
11542Arguments:
11543""""""""""
11544
11545The '``fcmp``' instruction takes three operands. The first operand is
11546the condition code indicating the kind of comparison to perform. It is
11547not a value, just a keyword. The possible condition codes are:
11548
11549#. ``false``: no comparison, always returns false
11550#. ``oeq``: ordered and equal
11551#. ``ogt``: ordered and greater than
11552#. ``oge``: ordered and greater than or equal
11553#. ``olt``: ordered and less than
11554#. ``ole``: ordered and less than or equal
11555#. ``one``: ordered and not equal
11556#. ``ord``: ordered (no nans)
11557#. ``ueq``: unordered or equal
11558#. ``ugt``: unordered or greater than
11559#. ``uge``: unordered or greater than or equal
11560#. ``ult``: unordered or less than
11561#. ``ule``: unordered or less than or equal
11562#. ``une``: unordered or not equal
11563#. ``uno``: unordered (either nans)
11564#. ``true``: no comparison, always returns true
11565
11566*Ordered* means that neither operand is a QNAN while *unordered* means
11567that either operand may be a QNAN.
11568
11569Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
11570<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
11571They must have identical types.
11572
11573Semantics:
11574""""""""""
11575
11576The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
11577condition code given as ``cond``. If the operands are vectors, then the
11578vectors are compared element by element. Each comparison performed
11579always yields an :ref:`i1 <t_integer>` result, as follows:
11580
11581#. ``false``: always yields ``false``, regardless of operands.
11582#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
11583   is equal to ``op2``.
11584#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
11585   is greater than ``op2``.
11586#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
11587   is greater than or equal to ``op2``.
11588#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
11589   is less than ``op2``.
11590#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
11591   is less than or equal to ``op2``.
11592#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
11593   is not equal to ``op2``.
11594#. ``ord``: yields ``true`` if both operands are not a QNAN.
11595#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
11596   equal to ``op2``.
11597#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
11598   greater than ``op2``.
11599#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
11600   greater than or equal to ``op2``.
11601#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
11602   less than ``op2``.
11603#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
11604   less than or equal to ``op2``.
11605#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
11606   not equal to ``op2``.
11607#. ``uno``: yields ``true`` if either operand is a QNAN.
11608#. ``true``: always yields ``true``, regardless of operands.
11609
11610The ``fcmp`` instruction can also optionally take any number of
11611:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
11612otherwise unsafe floating-point optimizations.
11613
11614Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
11615only flags that have any effect on its semantics are those that allow
11616assumptions to be made about the values of input arguments; namely
11617``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
11618
11619Example:
11620""""""""
11621
11622.. code-block:: text
11623
11624      <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
11625      <result> = fcmp one float 4.0, 5.0    ; yields: result=true
11626      <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
11627      <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
11628
11629.. _i_phi:
11630
11631'``phi``' Instruction
11632^^^^^^^^^^^^^^^^^^^^^
11633
11634Syntax:
11635"""""""
11636
11637::
11638
11639      <result> = phi [fast-math-flags] <ty> [ <val0>, <label0>], ...
11640
11641Overview:
11642"""""""""
11643
11644The '``phi``' instruction is used to implement the φ node in the SSA
11645graph representing the function.
11646
11647Arguments:
11648""""""""""
11649
11650The type of the incoming values is specified with the first type field.
11651After this, the '``phi``' instruction takes a list of pairs as
11652arguments, with one pair for each predecessor basic block of the current
11653block. Only values of :ref:`first class <t_firstclass>` type may be used as
11654the value arguments to the PHI node. Only labels may be used as the
11655label arguments.
11656
11657There must be no non-phi instructions between the start of a basic block
11658and the PHI instructions: i.e. PHI instructions must be first in a basic
11659block.
11660
11661For the purposes of the SSA form, the use of each incoming value is
11662deemed to occur on the edge from the corresponding predecessor block to
11663the current block (but after any definition of an '``invoke``'
11664instruction's return value on the same edge).
11665
11666The optional ``fast-math-flags`` marker indicates that the phi has one
11667or more :ref:`fast-math-flags <fastmath>`. These are optimization hints
11668to enable otherwise unsafe floating-point optimizations. Fast-math-flags
11669are only valid for phis that return a floating-point scalar or vector
11670type, or an array (nested to any depth) of floating-point scalar or vector
11671types.
11672
11673Semantics:
11674""""""""""
11675
11676At runtime, the '``phi``' instruction logically takes on the value
11677specified by the pair corresponding to the predecessor basic block that
11678executed just prior to the current block.
11679
11680Example:
11681""""""""
11682
11683.. code-block:: llvm
11684
11685    Loop:       ; Infinite loop that counts from 0 on up...
11686      %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
11687      %nextindvar = add i32 %indvar, 1
11688      br label %Loop
11689
11690.. _i_select:
11691
11692'``select``' Instruction
11693^^^^^^^^^^^^^^^^^^^^^^^^
11694
11695Syntax:
11696"""""""
11697
11698::
11699
11700      <result> = select [fast-math flags] selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
11701
11702      selty is either i1 or {<N x i1>}
11703
11704Overview:
11705"""""""""
11706
11707The '``select``' instruction is used to choose one value based on a
11708condition, without IR-level branching.
11709
11710Arguments:
11711""""""""""
11712
11713The '``select``' instruction requires an 'i1' value or a vector of 'i1'
11714values indicating the condition, and two values of the same :ref:`first
11715class <t_firstclass>` type.
11716
11717#. The optional ``fast-math flags`` marker indicates that the select has one or more
11718   :ref:`fast-math flags <fastmath>`. These are optimization hints to enable
11719   otherwise unsafe floating-point optimizations. Fast-math flags are only valid
11720   for selects that return a floating-point scalar or vector type, or an array
11721   (nested to any depth) of floating-point scalar or vector types.
11722
11723Semantics:
11724""""""""""
11725
11726If the condition is an i1 and it evaluates to 1, the instruction returns
11727the first value argument; otherwise, it returns the second value
11728argument.
11729
11730If the condition is a vector of i1, then the value arguments must be
11731vectors of the same size, and the selection is done element by element.
11732
11733If the condition is an i1 and the value arguments are vectors of the
11734same size, then an entire vector is selected.
11735
11736Example:
11737""""""""
11738
11739.. code-block:: llvm
11740
11741      %X = select i1 true, i8 17, i8 42          ; yields i8:17
11742
11743
11744.. _i_freeze:
11745
11746'``freeze``' Instruction
11747^^^^^^^^^^^^^^^^^^^^^^^^
11748
11749Syntax:
11750"""""""
11751
11752::
11753
11754      <result> = freeze ty <val>    ; yields ty:result
11755
11756Overview:
11757"""""""""
11758
11759The '``freeze``' instruction is used to stop propagation of
11760:ref:`undef <undefvalues>` and :ref:`poison <poisonvalues>` values.
11761
11762Arguments:
11763""""""""""
11764
11765The '``freeze``' instruction takes a single argument.
11766
11767Semantics:
11768""""""""""
11769
11770If the argument is ``undef`` or ``poison``, '``freeze``' returns an
11771arbitrary, but fixed, value of type '``ty``'.
11772Otherwise, this instruction is a no-op and returns the input argument.
11773All uses of a value returned by the same '``freeze``' instruction are
11774guaranteed to always observe the same value, while different '``freeze``'
11775instructions may yield different values.
11776
11777While ``undef`` and ``poison`` pointers can be frozen, the result is a
11778non-dereferenceable pointer. See the
11779:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more information.
11780If an aggregate value or vector is frozen, the operand is frozen element-wise.
11781The padding of an aggregate isn't considered, since it isn't visible
11782without storing it into memory and loading it with a different type.
11783
11784
11785Example:
11786""""""""
11787
11788.. code-block:: text
11789
11790      %w = i32 undef
11791      %x = freeze i32 %w
11792      %y = add i32 %w, %w         ; undef
11793      %z = add i32 %x, %x         ; even number because all uses of %x observe
11794                                  ; the same value
11795      %x2 = freeze i32 %w
11796      %cmp = icmp eq i32 %x, %x2  ; can be true or false
11797
11798      ; example with vectors
11799      %v = <2 x i32> <i32 undef, i32 poison>
11800      %a = extractelement <2 x i32> %v, i32 0    ; undef
11801      %b = extractelement <2 x i32> %v, i32 1    ; poison
11802      %add = add i32 %a, %a                      ; undef
11803
11804      %v.fr = freeze <2 x i32> %v                ; element-wise freeze
11805      %d = extractelement <2 x i32> %v.fr, i32 0 ; not undef
11806      %add.f = add i32 %d, %d                    ; even number
11807
11808      ; branching on frozen value
11809      %poison = add nsw i1 %k, undef   ; poison
11810      %c = freeze i1 %poison
11811      br i1 %c, label %foo, label %bar ; non-deterministic branch to %foo or %bar
11812
11813
11814.. _i_call:
11815
11816'``call``' Instruction
11817^^^^^^^^^^^^^^^^^^^^^^
11818
11819Syntax:
11820"""""""
11821
11822::
11823
11824      <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
11825                 <ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
11826
11827Overview:
11828"""""""""
11829
11830The '``call``' instruction represents a simple function call.
11831
11832Arguments:
11833""""""""""
11834
11835This instruction requires several arguments:
11836
11837#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
11838   should perform tail call optimization. The ``tail`` marker is a hint that
11839   `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
11840   means that the call must be tail call optimized in order for the program to
11841   be correct. This is true even in the presence of attributes like
11842   "disable-tail-calls". The ``musttail`` marker provides these guarantees:
11843
11844   #. The call will not cause unbounded stack growth if it is part of a
11845      recursive cycle in the call graph.
11846   #. Arguments with the :ref:`inalloca <attr_inalloca>` or
11847      :ref:`preallocated <attr_preallocated>` attribute are forwarded in place.
11848   #. If the musttail call appears in a function with the ``"thunk"`` attribute
11849      and the caller and callee both have varargs, than any unprototyped
11850      arguments in register or memory are forwarded to the callee. Similarly,
11851      the return value of the callee is returned to the caller's caller, even
11852      if a void return type is in use.
11853
11854   Both markers imply that the callee does not access allocas from the caller.
11855   The ``tail`` marker additionally implies that the callee does not access
11856   varargs from the caller. Calls marked ``musttail`` must obey the following
11857   additional  rules:
11858
11859   - The call must immediately precede a :ref:`ret <i_ret>` instruction,
11860     or a pointer bitcast followed by a ret instruction.
11861   - The ret instruction must return the (possibly bitcasted) value
11862     produced by the call, undef, or void.
11863   - The calling conventions of the caller and callee must match.
11864   - The callee must be varargs iff the caller is varargs. Bitcasting a
11865     non-varargs function to the appropriate varargs type is legal so
11866     long as the non-varargs prefixes obey the other rules.
11867   - The return type must not undergo automatic conversion to an `sret` pointer.
11868
11869  In addition, if the calling convention is not `swifttailcc` or `tailcc`:
11870
11871   - All ABI-impacting function attributes, such as sret, byval, inreg,
11872     returned, and inalloca, must match.
11873   - The caller and callee prototypes must match. Pointer types of parameters
11874     or return types may differ in pointee type, but not in address space.
11875
11876  On the other hand, if the calling convention is `swifttailcc` or `swiftcc`:
11877
11878   - Only these ABI-impacting attributes attributes are allowed: sret, byval,
11879     swiftself, and swiftasync.
11880   - Prototypes are not required to match.
11881
11882   Tail call optimization for calls marked ``tail`` is guaranteed to occur if
11883   the following conditions are met:
11884
11885   -  Caller and callee both have the calling convention ``fastcc`` or ``tailcc``.
11886   -  The call is in tail position (ret immediately follows call and ret
11887      uses value of call or is void).
11888   -  Option ``-tailcallopt`` is enabled,
11889      ``llvm::GuaranteedTailCallOpt`` is ``true``, or the calling convention
11890      is ``tailcc``
11891   -  `Platform-specific constraints are
11892      met. <CodeGenerator.html#tailcallopt>`_
11893
11894#. The optional ``notail`` marker indicates that the optimizers should not add
11895   ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
11896   call optimization from being performed on the call.
11897
11898#. The optional ``fast-math flags`` marker indicates that the call has one or more
11899   :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
11900   otherwise unsafe floating-point optimizations. Fast-math flags are only valid
11901   for calls that return a floating-point scalar or vector type, or an array
11902   (nested to any depth) of floating-point scalar or vector types.
11903
11904#. The optional "cconv" marker indicates which :ref:`calling
11905   convention <callingconv>` the call should use. If none is
11906   specified, the call defaults to using C calling conventions. The
11907   calling convention of the call must match the calling convention of
11908   the target function, or else the behavior is undefined.
11909#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
11910   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
11911   are valid here.
11912#. The optional addrspace attribute can be used to indicate the address space
11913   of the called function. If it is not specified, the program address space
11914   from the :ref:`datalayout string<langref_datalayout>` will be used.
11915#. '``ty``': the type of the call instruction itself which is also the
11916   type of the return value. Functions that return no value are marked
11917   ``void``.
11918#. '``fnty``': shall be the signature of the function being called. The
11919   argument types must match the types implied by this signature. This
11920   type can be omitted if the function is not varargs.
11921#. '``fnptrval``': An LLVM value containing a pointer to a function to
11922   be called. In most cases, this is a direct function call, but
11923   indirect ``call``'s are just as possible, calling an arbitrary pointer
11924   to function value.
11925#. '``function args``': argument list whose types match the function
11926   signature argument types and parameter attributes. All arguments must
11927   be of :ref:`first class <t_firstclass>` type. If the function signature
11928   indicates the function accepts a variable number of arguments, the
11929   extra arguments can be specified.
11930#. The optional :ref:`function attributes <fnattrs>` list.
11931#. The optional :ref:`operand bundles <opbundles>` list.
11932
11933Semantics:
11934""""""""""
11935
11936The '``call``' instruction is used to cause control flow to transfer to
11937a specified function, with its incoming arguments bound to the specified
11938values. Upon a '``ret``' instruction in the called function, control
11939flow continues with the instruction after the function call, and the
11940return value of the function is bound to the result argument.
11941
11942Example:
11943""""""""
11944
11945.. code-block:: llvm
11946
11947      %retval = call i32 @test(i32 %argc)
11948      call i32 (ptr, ...) @printf(ptr %msg, i32 12, i8 42)        ; yields i32
11949      %X = tail call i32 @foo()                                    ; yields i32
11950      %Y = tail call fastcc i32 @foo()  ; yields i32
11951      call void %foo(i8 signext 97)
11952
11953      %struct.A = type { i32, i8 }
11954      %r = call %struct.A @foo()                        ; yields { i32, i8 }
11955      %gr = extractvalue %struct.A %r, 0                ; yields i32
11956      %gr1 = extractvalue %struct.A %r, 1               ; yields i8
11957      %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
11958      %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
11959
11960llvm treats calls to some functions with names and arguments that match
11961the standard C99 library as being the C99 library functions, and may
11962perform optimizations or generate code for them under that assumption.
11963This is something we'd like to change in the future to provide better
11964support for freestanding environments and non-C-based languages.
11965
11966.. _i_va_arg:
11967
11968'``va_arg``' Instruction
11969^^^^^^^^^^^^^^^^^^^^^^^^
11970
11971Syntax:
11972"""""""
11973
11974::
11975
11976      <resultval> = va_arg <va_list*> <arglist>, <argty>
11977
11978Overview:
11979"""""""""
11980
11981The '``va_arg``' instruction is used to access arguments passed through
11982the "variable argument" area of a function call. It is used to implement
11983the ``va_arg`` macro in C.
11984
11985Arguments:
11986""""""""""
11987
11988This instruction takes a ``va_list*`` value and the type of the
11989argument. It returns a value of the specified argument type and
11990increments the ``va_list`` to point to the next argument. The actual
11991type of ``va_list`` is target specific.
11992
11993Semantics:
11994""""""""""
11995
11996The '``va_arg``' instruction loads an argument of the specified type
11997from the specified ``va_list`` and causes the ``va_list`` to point to
11998the next argument. For more information, see the variable argument
11999handling :ref:`Intrinsic Functions <int_varargs>`.
12000
12001It is legal for this instruction to be called in a function which does
12002not take a variable number of arguments, for example, the ``vfprintf``
12003function.
12004
12005``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
12006function <intrinsics>` because it takes a type as an argument.
12007
12008Example:
12009""""""""
12010
12011See the :ref:`variable argument processing <int_varargs>` section.
12012
12013Note that the code generator does not yet fully support va\_arg on many
12014targets. Also, it does not currently support va\_arg with aggregate
12015types on any target.
12016
12017.. _i_landingpad:
12018
12019'``landingpad``' Instruction
12020^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12021
12022Syntax:
12023"""""""
12024
12025::
12026
12027      <resultval> = landingpad <resultty> <clause>+
12028      <resultval> = landingpad <resultty> cleanup <clause>*
12029
12030      <clause> := catch <type> <value>
12031      <clause> := filter <array constant type> <array constant>
12032
12033Overview:
12034"""""""""
12035
12036The '``landingpad``' instruction is used by `LLVM's exception handling
12037system <ExceptionHandling.html#overview>`_ to specify that a basic block
12038is a landing pad --- one where the exception lands, and corresponds to the
12039code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
12040defines values supplied by the :ref:`personality function <personalityfn>` upon
12041re-entry to the function. The ``resultval`` has the type ``resultty``.
12042
12043Arguments:
12044""""""""""
12045
12046The optional
12047``cleanup`` flag indicates that the landing pad block is a cleanup.
12048
12049A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
12050contains the global variable representing the "type" that may be caught
12051or filtered respectively. Unlike the ``catch`` clause, the ``filter``
12052clause takes an array constant as its argument. Use
12053"``[0 x ptr] undef``" for a filter which cannot throw. The
12054'``landingpad``' instruction must contain *at least* one ``clause`` or
12055the ``cleanup`` flag.
12056
12057Semantics:
12058""""""""""
12059
12060The '``landingpad``' instruction defines the values which are set by the
12061:ref:`personality function <personalityfn>` upon re-entry to the function, and
12062therefore the "result type" of the ``landingpad`` instruction. As with
12063calling conventions, how the personality function results are
12064represented in LLVM IR is target specific.
12065
12066The clauses are applied in order from top to bottom. If two
12067``landingpad`` instructions are merged together through inlining, the
12068clauses from the calling function are appended to the list of clauses.
12069When the call stack is being unwound due to an exception being thrown,
12070the exception is compared against each ``clause`` in turn. If it doesn't
12071match any of the clauses, and the ``cleanup`` flag is not set, then
12072unwinding continues further up the call stack.
12073
12074The ``landingpad`` instruction has several restrictions:
12075
12076-  A landing pad block is a basic block which is the unwind destination
12077   of an '``invoke``' instruction.
12078-  A landing pad block must have a '``landingpad``' instruction as its
12079   first non-PHI instruction.
12080-  There can be only one '``landingpad``' instruction within the landing
12081   pad block.
12082-  A basic block that is not a landing pad block may not include a
12083   '``landingpad``' instruction.
12084
12085Example:
12086""""""""
12087
12088.. code-block:: llvm
12089
12090      ;; A landing pad which can catch an integer.
12091      %res = landingpad { ptr, i32 }
12092               catch ptr @_ZTIi
12093      ;; A landing pad that is a cleanup.
12094      %res = landingpad { ptr, i32 }
12095               cleanup
12096      ;; A landing pad which can catch an integer and can only throw a double.
12097      %res = landingpad { ptr, i32 }
12098               catch ptr @_ZTIi
12099               filter [1 x ptr] [ptr @_ZTId]
12100
12101.. _i_catchpad:
12102
12103'``catchpad``' Instruction
12104^^^^^^^^^^^^^^^^^^^^^^^^^^
12105
12106Syntax:
12107"""""""
12108
12109::
12110
12111      <resultval> = catchpad within <catchswitch> [<args>*]
12112
12113Overview:
12114"""""""""
12115
12116The '``catchpad``' instruction is used by `LLVM's exception handling
12117system <ExceptionHandling.html#overview>`_ to specify that a basic block
12118begins a catch handler --- one where a personality routine attempts to transfer
12119control to catch an exception.
12120
12121Arguments:
12122""""""""""
12123
12124The ``catchswitch`` operand must always be a token produced by a
12125:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
12126ensures that each ``catchpad`` has exactly one predecessor block, and it always
12127terminates in a ``catchswitch``.
12128
12129The ``args`` correspond to whatever information the personality routine
12130requires to know if this is an appropriate handler for the exception. Control
12131will transfer to the ``catchpad`` if this is the first appropriate handler for
12132the exception.
12133
12134The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
12135``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
12136pads.
12137
12138Semantics:
12139""""""""""
12140
12141When the call stack is being unwound due to an exception being thrown, the
12142exception is compared against the ``args``. If it doesn't match, control will
12143not reach the ``catchpad`` instruction.  The representation of ``args`` is
12144entirely target and personality function-specific.
12145
12146Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
12147instruction must be the first non-phi of its parent basic block.
12148
12149The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
12150instructions is described in the
12151`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
12152
12153When a ``catchpad`` has been "entered" but not yet "exited" (as
12154described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
12155it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
12156that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
12157
12158Example:
12159""""""""
12160
12161.. code-block:: text
12162
12163    dispatch:
12164      %cs = catchswitch within none [label %handler0] unwind to caller
12165      ;; A catch block which can catch an integer.
12166    handler0:
12167      %tok = catchpad within %cs [ptr @_ZTIi]
12168
12169.. _i_cleanuppad:
12170
12171'``cleanuppad``' Instruction
12172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12173
12174Syntax:
12175"""""""
12176
12177::
12178
12179      <resultval> = cleanuppad within <parent> [<args>*]
12180
12181Overview:
12182"""""""""
12183
12184The '``cleanuppad``' instruction is used by `LLVM's exception handling
12185system <ExceptionHandling.html#overview>`_ to specify that a basic block
12186is a cleanup block --- one where a personality routine attempts to
12187transfer control to run cleanup actions.
12188The ``args`` correspond to whatever additional
12189information the :ref:`personality function <personalityfn>` requires to
12190execute the cleanup.
12191The ``resultval`` has the type :ref:`token <t_token>` and is used to
12192match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
12193The ``parent`` argument is the token of the funclet that contains the
12194``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
12195this operand may be the token ``none``.
12196
12197Arguments:
12198""""""""""
12199
12200The instruction takes a list of arbitrary values which are interpreted
12201by the :ref:`personality function <personalityfn>`.
12202
12203Semantics:
12204""""""""""
12205
12206When the call stack is being unwound due to an exception being thrown,
12207the :ref:`personality function <personalityfn>` transfers control to the
12208``cleanuppad`` with the aid of the personality-specific arguments.
12209As with calling conventions, how the personality function results are
12210represented in LLVM IR is target specific.
12211
12212The ``cleanuppad`` instruction has several restrictions:
12213
12214-  A cleanup block is a basic block which is the unwind destination of
12215   an exceptional instruction.
12216-  A cleanup block must have a '``cleanuppad``' instruction as its
12217   first non-PHI instruction.
12218-  There can be only one '``cleanuppad``' instruction within the
12219   cleanup block.
12220-  A basic block that is not a cleanup block may not include a
12221   '``cleanuppad``' instruction.
12222
12223When a ``cleanuppad`` has been "entered" but not yet "exited" (as
12224described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
12225it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
12226that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
12227
12228Example:
12229""""""""
12230
12231.. code-block:: text
12232
12233      %tok = cleanuppad within %cs []
12234
12235.. _intrinsics:
12236
12237Intrinsic Functions
12238===================
12239
12240LLVM supports the notion of an "intrinsic function". These functions
12241have well known names and semantics and are required to follow certain
12242restrictions. Overall, these intrinsics represent an extension mechanism
12243for the LLVM language that does not require changing all of the
12244transformations in LLVM when adding to the language (or the bitcode
12245reader/writer, the parser, etc...).
12246
12247Intrinsic function names must all start with an "``llvm.``" prefix. This
12248prefix is reserved in LLVM for intrinsic names; thus, function names may
12249not begin with this prefix. Intrinsic functions must always be external
12250functions: you cannot define the body of intrinsic functions. Intrinsic
12251functions may only be used in call or invoke instructions: it is illegal
12252to take the address of an intrinsic function. Additionally, because
12253intrinsic functions are part of the LLVM language, it is required if any
12254are added that they be documented here.
12255
12256Some intrinsic functions can be overloaded, i.e., the intrinsic
12257represents a family of functions that perform the same operation but on
12258different data types. Because LLVM can represent over 8 million
12259different integer types, overloading is used commonly to allow an
12260intrinsic function to operate on any integer type. One or more of the
12261argument types or the result type can be overloaded to accept any
12262integer type. Argument types may also be defined as exactly matching a
12263previous argument's type or the result type. This allows an intrinsic
12264function which accepts multiple arguments, but needs all of them to be
12265of the same type, to only be overloaded with respect to a single
12266argument or the result.
12267
12268Overloaded intrinsics will have the names of its overloaded argument
12269types encoded into its function name, each preceded by a period. Only
12270those types which are overloaded result in a name suffix. Arguments
12271whose type is matched against another type do not. For example, the
12272``llvm.ctpop`` function can take an integer of any width and returns an
12273integer of exactly the same integer width. This leads to a family of
12274functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
12275``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
12276overloaded, and only one type suffix is required. Because the argument's
12277type is matched against the return type, it does not require its own
12278name suffix.
12279
12280:ref:`Unnamed types <t_opaque>` are encoded as ``s_s``. Overloaded intrinsics
12281that depend on an unnamed type in one of its overloaded argument types get an
12282additional ``.<number>`` suffix. This allows differentiating intrinsics with
12283different unnamed types as arguments. (For example:
12284``llvm.ssa.copy.p0s_s.2(%42*)``) The number is tracked in the LLVM module and
12285it ensures unique names in the module. While linking together two modules, it is
12286still possible to get a name clash. In that case one of the names will be
12287changed by getting a new number.
12288
12289For target developers who are defining intrinsics for back-end code
12290generation, any intrinsic overloads based solely the distinction between
12291integer or floating point types should not be relied upon for correct
12292code generation. In such cases, the recommended approach for target
12293maintainers when defining intrinsics is to create separate integer and
12294FP intrinsics rather than rely on overloading. For example, if different
12295codegen is required for ``llvm.target.foo(<4 x i32>)`` and
12296``llvm.target.foo(<4 x float>)`` then these should be split into
12297different intrinsics.
12298
12299To learn how to add an intrinsic function, please see the `Extending
12300LLVM Guide <ExtendingLLVM.html>`_.
12301
12302.. _int_varargs:
12303
12304Variable Argument Handling Intrinsics
12305-------------------------------------
12306
12307Variable argument support is defined in LLVM with the
12308:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
12309functions. These functions are related to the similarly named macros
12310defined in the ``<stdarg.h>`` header file.
12311
12312All of these functions operate on arguments that use a target-specific
12313value type "``va_list``". The LLVM assembly language reference manual
12314does not define what this type is, so all transformations should be
12315prepared to handle these functions regardless of the type used.
12316
12317This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
12318variable argument handling intrinsic functions are used.
12319
12320.. code-block:: llvm
12321
12322    ; This struct is different for every platform. For most platforms,
12323    ; it is merely a ptr.
12324    %struct.va_list = type { ptr }
12325
12326    ; For Unix x86_64 platforms, va_list is the following struct:
12327    ; %struct.va_list = type { i32, i32, ptr, ptr }
12328
12329    define i32 @test(i32 %X, ...) {
12330      ; Initialize variable argument processing
12331      %ap = alloca %struct.va_list
12332      call void @llvm.va_start(ptr %ap)
12333
12334      ; Read a single integer argument
12335      %tmp = va_arg ptr %ap, i32
12336
12337      ; Demonstrate usage of llvm.va_copy and llvm.va_end
12338      %aq = alloca ptr
12339      call void @llvm.va_copy(ptr %aq, ptr %ap)
12340      call void @llvm.va_end(ptr %aq)
12341
12342      ; Stop processing of arguments.
12343      call void @llvm.va_end(ptr %ap)
12344      ret i32 %tmp
12345    }
12346
12347    declare void @llvm.va_start(ptr)
12348    declare void @llvm.va_copy(ptr, ptr)
12349    declare void @llvm.va_end(ptr)
12350
12351.. _int_va_start:
12352
12353'``llvm.va_start``' Intrinsic
12354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12355
12356Syntax:
12357"""""""
12358
12359::
12360
12361      declare void @llvm.va_start(ptr <arglist>)
12362
12363Overview:
12364"""""""""
12365
12366The '``llvm.va_start``' intrinsic initializes ``<arglist>`` for
12367subsequent use by ``va_arg``.
12368
12369Arguments:
12370""""""""""
12371
12372The argument is a pointer to a ``va_list`` element to initialize.
12373
12374Semantics:
12375""""""""""
12376
12377The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
12378available in C. In a target-dependent way, it initializes the
12379``va_list`` element to which the argument points, so that the next call
12380to ``va_arg`` will produce the first variable argument passed to the
12381function. Unlike the C ``va_start`` macro, this intrinsic does not need
12382to know the last argument of the function as the compiler can figure
12383that out.
12384
12385'``llvm.va_end``' Intrinsic
12386^^^^^^^^^^^^^^^^^^^^^^^^^^^
12387
12388Syntax:
12389"""""""
12390
12391::
12392
12393      declare void @llvm.va_end(ptr <arglist>)
12394
12395Overview:
12396"""""""""
12397
12398The '``llvm.va_end``' intrinsic destroys ``<arglist>``, which has been
12399initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
12400
12401Arguments:
12402""""""""""
12403
12404The argument is a pointer to a ``va_list`` to destroy.
12405
12406Semantics:
12407""""""""""
12408
12409The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
12410available in C. In a target-dependent way, it destroys the ``va_list``
12411element to which the argument points. Calls to
12412:ref:`llvm.va_start <int_va_start>` and
12413:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
12414``llvm.va_end``.
12415
12416.. _int_va_copy:
12417
12418'``llvm.va_copy``' Intrinsic
12419^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12420
12421Syntax:
12422"""""""
12423
12424::
12425
12426      declare void @llvm.va_copy(ptr <destarglist>, ptr <srcarglist>)
12427
12428Overview:
12429"""""""""
12430
12431The '``llvm.va_copy``' intrinsic copies the current argument position
12432from the source argument list to the destination argument list.
12433
12434Arguments:
12435""""""""""
12436
12437The first argument is a pointer to a ``va_list`` element to initialize.
12438The second argument is a pointer to a ``va_list`` element to copy from.
12439
12440Semantics:
12441""""""""""
12442
12443The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
12444available in C. In a target-dependent way, it copies the source
12445``va_list`` element into the destination ``va_list`` element. This
12446intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
12447arbitrarily complex and require, for example, memory allocation.
12448
12449Accurate Garbage Collection Intrinsics
12450--------------------------------------
12451
12452LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
12453(GC) requires the frontend to generate code containing appropriate intrinsic
12454calls and select an appropriate GC strategy which knows how to lower these
12455intrinsics in a manner which is appropriate for the target collector.
12456
12457These intrinsics allow identification of :ref:`GC roots on the
12458stack <int_gcroot>`, as well as garbage collector implementations that
12459require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
12460Frontends for type-safe garbage collected languages should generate
12461these intrinsics to make use of the LLVM garbage collectors. For more
12462details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
12463
12464LLVM provides an second experimental set of intrinsics for describing garbage
12465collection safepoints in compiled code. These intrinsics are an alternative
12466to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
12467:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
12468differences in approach are covered in the `Garbage Collection with LLVM
12469<GarbageCollection.html>`_ documentation. The intrinsics themselves are
12470described in :doc:`Statepoints`.
12471
12472.. _int_gcroot:
12473
12474'``llvm.gcroot``' Intrinsic
12475^^^^^^^^^^^^^^^^^^^^^^^^^^^
12476
12477Syntax:
12478"""""""
12479
12480::
12481
12482      declare void @llvm.gcroot(ptr %ptrloc, ptr %metadata)
12483
12484Overview:
12485"""""""""
12486
12487The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
12488the code generator, and allows some metadata to be associated with it.
12489
12490Arguments:
12491""""""""""
12492
12493The first argument specifies the address of a stack object that contains
12494the root pointer. The second pointer (which must be either a constant or
12495a global value address) contains the meta-data to be associated with the
12496root.
12497
12498Semantics:
12499""""""""""
12500
12501At runtime, a call to this intrinsic stores a null pointer into the
12502"ptrloc" location. At compile-time, the code generator generates
12503information to allow the runtime to find the pointer at GC safe points.
12504The '``llvm.gcroot``' intrinsic may only be used in a function which
12505:ref:`specifies a GC algorithm <gc>`.
12506
12507.. _int_gcread:
12508
12509'``llvm.gcread``' Intrinsic
12510^^^^^^^^^^^^^^^^^^^^^^^^^^^
12511
12512Syntax:
12513"""""""
12514
12515::
12516
12517      declare ptr @llvm.gcread(ptr %ObjPtr, ptr %Ptr)
12518
12519Overview:
12520"""""""""
12521
12522The '``llvm.gcread``' intrinsic identifies reads of references from heap
12523locations, allowing garbage collector implementations that require read
12524barriers.
12525
12526Arguments:
12527""""""""""
12528
12529The second argument is the address to read from, which should be an
12530address allocated from the garbage collector. The first object is a
12531pointer to the start of the referenced object, if needed by the language
12532runtime (otherwise null).
12533
12534Semantics:
12535""""""""""
12536
12537The '``llvm.gcread``' intrinsic has the same semantics as a load
12538instruction, but may be replaced with substantially more complex code by
12539the garbage collector runtime, as needed. The '``llvm.gcread``'
12540intrinsic may only be used in a function which :ref:`specifies a GC
12541algorithm <gc>`.
12542
12543.. _int_gcwrite:
12544
12545'``llvm.gcwrite``' Intrinsic
12546^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12547
12548Syntax:
12549"""""""
12550
12551::
12552
12553      declare void @llvm.gcwrite(ptr %P1, ptr %Obj, ptr %P2)
12554
12555Overview:
12556"""""""""
12557
12558The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
12559locations, allowing garbage collector implementations that require write
12560barriers (such as generational or reference counting collectors).
12561
12562Arguments:
12563""""""""""
12564
12565The first argument is the reference to store, the second is the start of
12566the object to store it to, and the third is the address of the field of
12567Obj to store to. If the runtime does not require a pointer to the
12568object, Obj may be null.
12569
12570Semantics:
12571""""""""""
12572
12573The '``llvm.gcwrite``' intrinsic has the same semantics as a store
12574instruction, but may be replaced with substantially more complex code by
12575the garbage collector runtime, as needed. The '``llvm.gcwrite``'
12576intrinsic may only be used in a function which :ref:`specifies a GC
12577algorithm <gc>`.
12578
12579
12580.. _gc_statepoint:
12581
12582'``llvm.experimental.gc.statepoint``' Intrinsic
12583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12584
12585Syntax:
12586"""""""
12587
12588::
12589
12590      declare token
12591        @llvm.experimental.gc.statepoint(i64 <id>, i32 <num patch bytes>,
12592                       ptr elementtype(func_type) <target>,
12593                       i64 <#call args>, i64 <flags>,
12594                       ... (call parameters),
12595                       i64 0, i64 0)
12596
12597Overview:
12598"""""""""
12599
12600The statepoint intrinsic represents a call which is parse-able by the
12601runtime.
12602
12603Operands:
12604"""""""""
12605
12606The 'id' operand is a constant integer that is reported as the ID
12607field in the generated stackmap.  LLVM does not interpret this
12608parameter in any way and its meaning is up to the statepoint user to
12609decide.  Note that LLVM is free to duplicate code containing
12610statepoint calls, and this may transform IR that had a unique 'id' per
12611lexical call to statepoint to IR that does not.
12612
12613If 'num patch bytes' is non-zero then the call instruction
12614corresponding to the statepoint is not emitted and LLVM emits 'num
12615patch bytes' bytes of nops in its place.  LLVM will emit code to
12616prepare the function arguments and retrieve the function return value
12617in accordance to the calling convention; the former before the nop
12618sequence and the latter after the nop sequence.  It is expected that
12619the user will patch over the 'num patch bytes' bytes of nops with a
12620calling sequence specific to their runtime before executing the
12621generated machine code.  There are no guarantees with respect to the
12622alignment of the nop sequence.  Unlike :doc:`StackMaps` statepoints do
12623not have a concept of shadow bytes.  Note that semantically the
12624statepoint still represents a call or invoke to 'target', and the nop
12625sequence after patching is expected to represent an operation
12626equivalent to a call or invoke to 'target'.
12627
12628The 'target' operand is the function actually being called. The operand
12629must have an :ref:`elementtype <attr_elementtype>` attribute specifying
12630the function type of the target. The target can be specified as either
12631a symbolic LLVM function, or as an arbitrary Value of pointer type. Note
12632that the function type must match the signature of the callee and the
12633types of the 'call parameters' arguments.
12634
12635The '#call args' operand is the number of arguments to the actual
12636call.  It must exactly match the number of arguments passed in the
12637'call parameters' variable length section.
12638
12639The 'flags' operand is used to specify extra information about the
12640statepoint. This is currently only used to mark certain statepoints
12641as GC transitions. This operand is a 64-bit integer with the following
12642layout, where bit 0 is the least significant bit:
12643
12644  +-------+---------------------------------------------------+
12645  | Bit # | Usage                                             |
12646  +=======+===================================================+
12647  |     0 | Set if the statepoint is a GC transition, cleared |
12648  |       | otherwise.                                        |
12649  +-------+---------------------------------------------------+
12650  |  1-63 | Reserved for future use; must be cleared.         |
12651  +-------+---------------------------------------------------+
12652
12653The 'call parameters' arguments are simply the arguments which need to
12654be passed to the call target.  They will be lowered according to the
12655specified calling convention and otherwise handled like a normal call
12656instruction.  The number of arguments must exactly match what is
12657specified in '# call args'.  The types must match the signature of
12658'target'.
12659
12660The 'call parameter' attributes must be followed by two 'i64 0' constants.
12661These were originally the length prefixes for 'gc transition parameter' and
12662'deopt parameter' arguments, but the role of these parameter sets have been
12663entirely replaced with the corresponding operand bundles.  In a future
12664revision, these now redundant arguments will be removed.
12665
12666Semantics:
12667""""""""""
12668
12669A statepoint is assumed to read and write all memory.  As a result,
12670memory operations can not be reordered past a statepoint.  It is
12671illegal to mark a statepoint as being either 'readonly' or 'readnone'.
12672
12673Note that legal IR can not perform any memory operation on a 'gc
12674pointer' argument of the statepoint in a location statically reachable
12675from the statepoint.  Instead, the explicitly relocated value (from a
12676``gc.relocate``) must be used.
12677
12678'``llvm.experimental.gc.result``' Intrinsic
12679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12680
12681Syntax:
12682"""""""
12683
12684::
12685
12686      declare type
12687        @llvm.experimental.gc.result(token %statepoint_token)
12688
12689Overview:
12690"""""""""
12691
12692``gc.result`` extracts the result of the original call instruction
12693which was replaced by the ``gc.statepoint``.  The ``gc.result``
12694intrinsic is actually a family of three intrinsics due to an
12695implementation limitation.  Other than the type of the return value,
12696the semantics are the same.
12697
12698Operands:
12699"""""""""
12700
12701The first and only argument is the ``gc.statepoint`` which starts
12702the safepoint sequence of which this ``gc.result`` is a part.
12703Despite the typing of this as a generic token, *only* the value defined
12704by a ``gc.statepoint`` is legal here.
12705
12706Semantics:
12707""""""""""
12708
12709The ``gc.result`` represents the return value of the call target of
12710the ``statepoint``.  The type of the ``gc.result`` must exactly match
12711the type of the target.  If the call target returns void, there will
12712be no ``gc.result``.
12713
12714A ``gc.result`` is modeled as a 'readnone' pure function.  It has no
12715side effects since it is just a projection of the return value of the
12716previous call represented by the ``gc.statepoint``.
12717
12718'``llvm.experimental.gc.relocate``' Intrinsic
12719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12720
12721Syntax:
12722"""""""
12723
12724::
12725
12726      declare <pointer type>
12727        @llvm.experimental.gc.relocate(token %statepoint_token,
12728                                       i32 %base_offset,
12729                                       i32 %pointer_offset)
12730
12731Overview:
12732"""""""""
12733
12734A ``gc.relocate`` returns the potentially relocated value of a pointer
12735at the safepoint.
12736
12737Operands:
12738"""""""""
12739
12740The first argument is the ``gc.statepoint`` which starts the
12741safepoint sequence of which this ``gc.relocation`` is a part.
12742Despite the typing of this as a generic token, *only* the value defined
12743by a ``gc.statepoint`` is legal here.
12744
12745The second and third arguments are both indices into operands of the
12746corresponding statepoint's :ref:`gc-live <ob_gc_live>` operand bundle.
12747
12748The second argument is an index which specifies the allocation for the pointer
12749being relocated. The associated value must be within the object with which the
12750pointer being relocated is associated. The optimizer is free to change *which*
12751interior derived pointer is reported, provided that it does not replace an
12752actual base pointer with another interior derived pointer. Collectors are
12753allowed to rely on the base pointer operand remaining an actual base pointer if
12754so constructed.
12755
12756The third argument is an index which specify the (potentially) derived pointer
12757being relocated.  It is legal for this index to be the same as the second
12758argument if-and-only-if a base pointer is being relocated.
12759
12760Semantics:
12761""""""""""
12762
12763The return value of ``gc.relocate`` is the potentially relocated value
12764of the pointer specified by its arguments.  It is unspecified how the
12765value of the returned pointer relates to the argument to the
12766``gc.statepoint`` other than that a) it points to the same source
12767language object with the same offset, and b) the 'based-on'
12768relationship of the newly relocated pointers is a projection of the
12769unrelocated pointers.  In particular, the integer value of the pointer
12770returned is unspecified.
12771
12772A ``gc.relocate`` is modeled as a ``readnone`` pure function.  It has no
12773side effects since it is just a way to extract information about work
12774done during the actual call modeled by the ``gc.statepoint``.
12775
12776.. _gc.get.pointer.base:
12777
12778'``llvm.experimental.gc.get.pointer.base``' Intrinsic
12779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12780
12781Syntax:
12782"""""""
12783
12784::
12785
12786      declare <pointer type>
12787        @llvm.experimental.gc.get.pointer.base(
12788          <pointer type> readnone nocapture %derived_ptr)
12789          nounwind readnone willreturn
12790
12791Overview:
12792"""""""""
12793
12794``gc.get.pointer.base`` for a derived pointer returns its base pointer.
12795
12796Operands:
12797"""""""""
12798
12799The only argument is a pointer which is based on some object with
12800an unknown offset from the base of said object.
12801
12802Semantics:
12803""""""""""
12804
12805This intrinsic is used in the abstract machine model for GC to represent
12806the base pointer for an arbitrary derived pointer.
12807
12808This intrinsic is inlined by the :ref:`RewriteStatepointsForGC` pass by
12809replacing all uses of this callsite with the offset of a derived pointer from
12810its base pointer value. The replacement is done as part of the lowering to the
12811explicit statepoint model.
12812
12813The return pointer type must be the same as the type of the parameter.
12814
12815
12816'``llvm.experimental.gc.get.pointer.offset``' Intrinsic
12817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12818
12819Syntax:
12820"""""""
12821
12822::
12823
12824      declare i64
12825        @llvm.experimental.gc.get.pointer.offset(
12826          <pointer type> readnone nocapture %derived_ptr)
12827          nounwind readnone willreturn
12828
12829Overview:
12830"""""""""
12831
12832``gc.get.pointer.offset`` for a derived pointer returns the offset from its
12833base pointer.
12834
12835Operands:
12836"""""""""
12837
12838The only argument is a pointer which is based on some object with
12839an unknown offset from the base of said object.
12840
12841Semantics:
12842""""""""""
12843
12844This intrinsic is used in the abstract machine model for GC to represent
12845the offset of an arbitrary derived pointer from its base pointer.
12846
12847This intrinsic is inlined by the :ref:`RewriteStatepointsForGC` pass by
12848replacing all uses of this callsite with the offset of a derived pointer from
12849its base pointer value. The replacement is done as part of the lowering to the
12850explicit statepoint model.
12851
12852Basically this call calculates difference between the derived pointer and its
12853base pointer (see :ref:`gc.get.pointer.base`) both ptrtoint casted. But
12854this cast done outside the :ref:`RewriteStatepointsForGC` pass could result
12855in the pointers lost for further lowering from the abstract model to the
12856explicit physical one.
12857
12858Code Generator Intrinsics
12859-------------------------
12860
12861These intrinsics are provided by LLVM to expose special features that
12862may only be implemented with code generator support.
12863
12864'``llvm.returnaddress``' Intrinsic
12865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12866
12867Syntax:
12868"""""""
12869
12870::
12871
12872      declare ptr @llvm.returnaddress(i32 <level>)
12873
12874Overview:
12875"""""""""
12876
12877The '``llvm.returnaddress``' intrinsic attempts to compute a
12878target-specific value indicating the return address of the current
12879function or one of its callers.
12880
12881Arguments:
12882""""""""""
12883
12884The argument to this intrinsic indicates which function to return the
12885address for. Zero indicates the calling function, one indicates its
12886caller, etc. The argument is **required** to be a constant integer
12887value.
12888
12889Semantics:
12890""""""""""
12891
12892The '``llvm.returnaddress``' intrinsic either returns a pointer
12893indicating the return address of the specified call frame, or zero if it
12894cannot be identified. The value returned by this intrinsic is likely to
12895be incorrect or 0 for arguments other than zero, so it should only be
12896used for debugging purposes.
12897
12898Note that calling this intrinsic does not prevent function inlining or
12899other aggressive transformations, so the value returned may not be that
12900of the obvious source-language caller.
12901
12902'``llvm.addressofreturnaddress``' Intrinsic
12903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12904
12905Syntax:
12906"""""""
12907
12908::
12909
12910      declare ptr @llvm.addressofreturnaddress()
12911
12912Overview:
12913"""""""""
12914
12915The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
12916pointer to the place in the stack frame where the return address of the
12917current function is stored.
12918
12919Semantics:
12920""""""""""
12921
12922Note that calling this intrinsic does not prevent function inlining or
12923other aggressive transformations, so the value returned may not be that
12924of the obvious source-language caller.
12925
12926This intrinsic is only implemented for x86 and aarch64.
12927
12928'``llvm.sponentry``' Intrinsic
12929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12930
12931Syntax:
12932"""""""
12933
12934::
12935
12936      declare ptr @llvm.sponentry()
12937
12938Overview:
12939"""""""""
12940
12941The '``llvm.sponentry``' intrinsic returns the stack pointer value at
12942the entry of the current function calling this intrinsic.
12943
12944Semantics:
12945""""""""""
12946
12947Note this intrinsic is only verified on AArch64 and ARM.
12948
12949'``llvm.frameaddress``' Intrinsic
12950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12951
12952Syntax:
12953"""""""
12954
12955::
12956
12957      declare ptr @llvm.frameaddress(i32 <level>)
12958
12959Overview:
12960"""""""""
12961
12962The '``llvm.frameaddress``' intrinsic attempts to return the
12963target-specific frame pointer value for the specified stack frame.
12964
12965Arguments:
12966""""""""""
12967
12968The argument to this intrinsic indicates which function to return the
12969frame pointer for. Zero indicates the calling function, one indicates
12970its caller, etc. The argument is **required** to be a constant integer
12971value.
12972
12973Semantics:
12974""""""""""
12975
12976The '``llvm.frameaddress``' intrinsic either returns a pointer
12977indicating the frame address of the specified call frame, or zero if it
12978cannot be identified. The value returned by this intrinsic is likely to
12979be incorrect or 0 for arguments other than zero, so it should only be
12980used for debugging purposes.
12981
12982Note that calling this intrinsic does not prevent function inlining or
12983other aggressive transformations, so the value returned may not be that
12984of the obvious source-language caller.
12985
12986'``llvm.swift.async.context.addr``' Intrinsic
12987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12988
12989Syntax:
12990"""""""
12991
12992::
12993
12994      declare ptr @llvm.swift.async.context.addr()
12995
12996Overview:
12997"""""""""
12998
12999The '``llvm.swift.async.context.addr``' intrinsic returns a pointer to
13000the part of the extended frame record containing the asynchronous
13001context of a Swift execution.
13002
13003Semantics:
13004""""""""""
13005
13006If the caller has a ``swiftasync`` parameter, that argument will initially
13007be stored at the returned address. If not, it will be initialized to null.
13008
13009'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
13010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13011
13012Syntax:
13013"""""""
13014
13015::
13016
13017      declare void @llvm.localescape(...)
13018      declare ptr @llvm.localrecover(ptr %func, ptr %fp, i32 %idx)
13019
13020Overview:
13021"""""""""
13022
13023The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
13024allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
13025live frame pointer to recover the address of the allocation. The offset is
13026computed during frame layout of the caller of ``llvm.localescape``.
13027
13028Arguments:
13029""""""""""
13030
13031All arguments to '``llvm.localescape``' must be pointers to static allocas or
13032casts of static allocas. Each function can only call '``llvm.localescape``'
13033once, and it can only do so from the entry block.
13034
13035The ``func`` argument to '``llvm.localrecover``' must be a constant
13036bitcasted pointer to a function defined in the current module. The code
13037generator cannot determine the frame allocation offset of functions defined in
13038other modules.
13039
13040The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
13041call frame that is currently live. The return value of '``llvm.localaddress``'
13042is one way to produce such a value, but various runtimes also expose a suitable
13043pointer in platform-specific ways.
13044
13045The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
13046'``llvm.localescape``' to recover. It is zero-indexed.
13047
13048Semantics:
13049""""""""""
13050
13051These intrinsics allow a group of functions to share access to a set of local
13052stack allocations of a one parent function. The parent function may call the
13053'``llvm.localescape``' intrinsic once from the function entry block, and the
13054child functions can use '``llvm.localrecover``' to access the escaped allocas.
13055The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
13056the escaped allocas are allocated, which would break attempts to use
13057'``llvm.localrecover``'.
13058
13059'``llvm.seh.try.begin``' and '``llvm.seh.try.end``' Intrinsics
13060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13061
13062Syntax:
13063"""""""
13064
13065::
13066
13067      declare void @llvm.seh.try.begin()
13068      declare void @llvm.seh.try.end()
13069
13070Overview:
13071"""""""""
13072
13073The '``llvm.seh.try.begin``' and '``llvm.seh.try.end``' intrinsics mark
13074the boundary of a _try region for Windows SEH Asynchrous Exception Handling.
13075
13076Semantics:
13077""""""""""
13078
13079When a C-function is compiled with Windows SEH Asynchrous Exception option,
13080-feh_asynch (aka MSVC -EHa), these two intrinsics are injected to mark _try
13081boundary and to prevent potential exceptions from being moved across boundary.
13082Any set of operations can then be confined to the region by reading their leaf
13083inputs via volatile loads and writing their root outputs via volatile stores.
13084
13085'``llvm.seh.scope.begin``' and '``llvm.seh.scope.end``' Intrinsics
13086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13087
13088Syntax:
13089"""""""
13090
13091::
13092
13093      declare void @llvm.seh.scope.begin()
13094      declare void @llvm.seh.scope.end()
13095
13096Overview:
13097"""""""""
13098
13099The '``llvm.seh.scope.begin``' and '``llvm.seh.scope.end``' intrinsics mark
13100the boundary of a CPP object lifetime for Windows SEH Asynchrous Exception
13101Handling (MSVC option -EHa).
13102
13103Semantics:
13104""""""""""
13105
13106LLVM's ordinary exception-handling representation associates EH cleanups and
13107handlers only with ``invoke``s, which normally correspond only to call sites.  To
13108support arbitrary faulting instructions, it must be possible to recover the current
13109EH scope for any instruction.  Turning every operation in LLVM that could fault
13110into an ``invoke`` of a new, potentially-throwing intrinsic would require adding a
13111large number of intrinsics, impede optimization of those operations, and make
13112compilation slower by introducing many extra basic blocks.  These intrinsics can
13113be used instead to mark the region protected by a cleanup, such as for a local
13114C++ object with a non-trivial destructor.  ``llvm.seh.scope.begin`` is used to mark
13115the start of the region; it is always called with ``invoke``, with the unwind block
13116being the desired unwind destination for any potentially-throwing instructions
13117within the region.  `llvm.seh.scope.end` is used to mark when the scope ends
13118and the EH cleanup is no longer required (e.g. because the destructor is being
13119called).
13120
13121.. _int_read_register:
13122.. _int_read_volatile_register:
13123.. _int_write_register:
13124
13125'``llvm.read_register``', '``llvm.read_volatile_register``', and '``llvm.write_register``' Intrinsics
13126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13127
13128Syntax:
13129"""""""
13130
13131::
13132
13133      declare i32 @llvm.read_register.i32(metadata)
13134      declare i64 @llvm.read_register.i64(metadata)
13135      declare i32 @llvm.read_volatile_register.i32(metadata)
13136      declare i64 @llvm.read_volatile_register.i64(metadata)
13137      declare void @llvm.write_register.i32(metadata, i32 @value)
13138      declare void @llvm.write_register.i64(metadata, i64 @value)
13139      !0 = !{!"sp\00"}
13140
13141Overview:
13142"""""""""
13143
13144The '``llvm.read_register``', '``llvm.read_volatile_register``', and
13145'``llvm.write_register``' intrinsics provide access to the named register.
13146The register must be valid on the architecture being compiled to. The type
13147needs to be compatible with the register being read.
13148
13149Semantics:
13150""""""""""
13151
13152The '``llvm.read_register``' and '``llvm.read_volatile_register``' intrinsics
13153return the current value of the register, where possible. The
13154'``llvm.write_register``' intrinsic sets the current value of the register,
13155where possible.
13156
13157A call to '``llvm.read_volatile_register``' is assumed to have side-effects
13158and possibly return a different value each time (e.g. for a timer register).
13159
13160This is useful to implement named register global variables that need
13161to always be mapped to a specific register, as is common practice on
13162bare-metal programs including OS kernels.
13163
13164The compiler doesn't check for register availability or use of the used
13165register in surrounding code, including inline assembly. Because of that,
13166allocatable registers are not supported.
13167
13168Warning: So far it only works with the stack pointer on selected
13169architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
13170work is needed to support other registers and even more so, allocatable
13171registers.
13172
13173.. _int_stacksave:
13174
13175'``llvm.stacksave``' Intrinsic
13176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13177
13178Syntax:
13179"""""""
13180
13181::
13182
13183      declare ptr @llvm.stacksave()
13184
13185Overview:
13186"""""""""
13187
13188The '``llvm.stacksave``' intrinsic is used to remember the current state
13189of the function stack, for use with
13190:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
13191implementing language features like scoped automatic variable sized
13192arrays in C99.
13193
13194Semantics:
13195""""""""""
13196
13197This intrinsic returns an opaque pointer value that can be passed to
13198:ref:`llvm.stackrestore <int_stackrestore>`. When an
13199``llvm.stackrestore`` intrinsic is executed with a value saved from
13200``llvm.stacksave``, it effectively restores the state of the stack to
13201the state it was in when the ``llvm.stacksave`` intrinsic executed. In
13202practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
13203were allocated after the ``llvm.stacksave`` was executed.
13204
13205.. _int_stackrestore:
13206
13207'``llvm.stackrestore``' Intrinsic
13208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13209
13210Syntax:
13211"""""""
13212
13213::
13214
13215      declare void @llvm.stackrestore(ptr %ptr)
13216
13217Overview:
13218"""""""""
13219
13220The '``llvm.stackrestore``' intrinsic is used to restore the state of
13221the function stack to the state it was in when the corresponding
13222:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
13223useful for implementing language features like scoped automatic variable
13224sized arrays in C99.
13225
13226Semantics:
13227""""""""""
13228
13229See the description for :ref:`llvm.stacksave <int_stacksave>`.
13230
13231.. _int_get_dynamic_area_offset:
13232
13233'``llvm.get.dynamic.area.offset``' Intrinsic
13234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13235
13236Syntax:
13237"""""""
13238
13239::
13240
13241      declare i32 @llvm.get.dynamic.area.offset.i32()
13242      declare i64 @llvm.get.dynamic.area.offset.i64()
13243
13244Overview:
13245"""""""""
13246
13247      The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
13248      get the offset from native stack pointer to the address of the most
13249      recent dynamic alloca on the caller's stack. These intrinsics are
13250      intended for use in combination with
13251      :ref:`llvm.stacksave <int_stacksave>` to get a
13252      pointer to the most recent dynamic alloca. This is useful, for example,
13253      for AddressSanitizer's stack unpoisoning routines.
13254
13255Semantics:
13256""""""""""
13257
13258      These intrinsics return a non-negative integer value that can be used to
13259      get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
13260      on the caller's stack. In particular, for targets where stack grows downwards,
13261      adding this offset to the native stack pointer would get the address of the most
13262      recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
13263      complicated, because subtracting this value from stack pointer would get the address
13264      one past the end of the most recent dynamic alloca.
13265
13266      Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
13267      returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
13268      compile-time-known constant value.
13269
13270      The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
13271      must match the target's default address space's (address space 0) pointer type.
13272
13273'``llvm.prefetch``' Intrinsic
13274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13275
13276Syntax:
13277"""""""
13278
13279::
13280
13281      declare void @llvm.prefetch(ptr <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
13282
13283Overview:
13284"""""""""
13285
13286The '``llvm.prefetch``' intrinsic is a hint to the code generator to
13287insert a prefetch instruction if supported; otherwise, it is a noop.
13288Prefetches have no effect on the behavior of the program but can change
13289its performance characteristics.
13290
13291Arguments:
13292""""""""""
13293
13294``address`` is the address to be prefetched, ``rw`` is the specifier
13295determining if the fetch should be for a read (0) or write (1), and
13296``locality`` is a temporal locality specifier ranging from (0) - no
13297locality, to (3) - extremely local keep in cache. The ``cache type``
13298specifies whether the prefetch is performed on the data (1) or
13299instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
13300arguments must be constant integers.
13301
13302Semantics:
13303""""""""""
13304
13305This intrinsic does not modify the behavior of the program. In
13306particular, prefetches cannot trap and do not produce a value. On
13307targets that support this intrinsic, the prefetch can provide hints to
13308the processor cache for better performance.
13309
13310'``llvm.pcmarker``' Intrinsic
13311^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13312
13313Syntax:
13314"""""""
13315
13316::
13317
13318      declare void @llvm.pcmarker(i32 <id>)
13319
13320Overview:
13321"""""""""
13322
13323The '``llvm.pcmarker``' intrinsic is a method to export a Program
13324Counter (PC) in a region of code to simulators and other tools. The
13325method is target specific, but it is expected that the marker will use
13326exported symbols to transmit the PC of the marker. The marker makes no
13327guarantees that it will remain with any specific instruction after
13328optimizations. It is possible that the presence of a marker will inhibit
13329optimizations. The intended use is to be inserted after optimizations to
13330allow correlations of simulation runs.
13331
13332Arguments:
13333""""""""""
13334
13335``id`` is a numerical id identifying the marker.
13336
13337Semantics:
13338""""""""""
13339
13340This intrinsic does not modify the behavior of the program. Backends
13341that do not support this intrinsic may ignore it.
13342
13343'``llvm.readcyclecounter``' Intrinsic
13344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13345
13346Syntax:
13347"""""""
13348
13349::
13350
13351      declare i64 @llvm.readcyclecounter()
13352
13353Overview:
13354"""""""""
13355
13356The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
13357counter register (or similar low latency, high accuracy clocks) on those
13358targets that support it. On X86, it should map to RDTSC. On Alpha, it
13359should map to RPCC. As the backing counters overflow quickly (on the
13360order of 9 seconds on alpha), this should only be used for small
13361timings.
13362
13363Semantics:
13364""""""""""
13365
13366When directly supported, reading the cycle counter should not modify any
13367memory. Implementations are allowed to either return an application
13368specific value or a system wide value. On backends without support, this
13369is lowered to a constant 0.
13370
13371Note that runtime support may be conditional on the privilege-level code is
13372running at and the host platform.
13373
13374'``llvm.clear_cache``' Intrinsic
13375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13376
13377Syntax:
13378"""""""
13379
13380::
13381
13382      declare void @llvm.clear_cache(ptr, ptr)
13383
13384Overview:
13385"""""""""
13386
13387The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
13388in the specified range to the execution unit of the processor. On
13389targets with non-unified instruction and data cache, the implementation
13390flushes the instruction cache.
13391
13392Semantics:
13393""""""""""
13394
13395On platforms with coherent instruction and data caches (e.g. x86), this
13396intrinsic is a nop. On platforms with non-coherent instruction and data
13397cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
13398instructions or a system call, if cache flushing requires special
13399privileges.
13400
13401The default behavior is to emit a call to ``__clear_cache`` from the run
13402time library.
13403
13404This intrinsic does *not* empty the instruction pipeline. Modifications
13405of the current function are outside the scope of the intrinsic.
13406
13407'``llvm.instrprof.increment``' Intrinsic
13408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13409
13410Syntax:
13411"""""""
13412
13413::
13414
13415      declare void @llvm.instrprof.increment(ptr <name>, i64 <hash>,
13416                                             i32 <num-counters>, i32 <index>)
13417
13418Overview:
13419"""""""""
13420
13421The '``llvm.instrprof.increment``' intrinsic can be emitted by a
13422frontend for use with instrumentation based profiling. These will be
13423lowered by the ``-instrprof`` pass to generate execution counts of a
13424program at runtime.
13425
13426Arguments:
13427""""""""""
13428
13429The first argument is a pointer to a global variable containing the
13430name of the entity being instrumented. This should generally be the
13431(mangled) function name for a set of counters.
13432
13433The second argument is a hash value that can be used by the consumer
13434of the profile data to detect changes to the instrumented source, and
13435the third is the number of counters associated with ``name``. It is an
13436error if ``hash`` or ``num-counters`` differ between two instances of
13437``instrprof.increment`` that refer to the same name.
13438
13439The last argument refers to which of the counters for ``name`` should
13440be incremented. It should be a value between 0 and ``num-counters``.
13441
13442Semantics:
13443""""""""""
13444
13445This intrinsic represents an increment of a profiling counter. It will
13446cause the ``-instrprof`` pass to generate the appropriate data
13447structures and the code to increment the appropriate value, in a
13448format that can be written out by a compiler runtime and consumed via
13449the ``llvm-profdata`` tool.
13450
13451'``llvm.instrprof.increment.step``' Intrinsic
13452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13453
13454Syntax:
13455"""""""
13456
13457::
13458
13459      declare void @llvm.instrprof.increment.step(ptr <name>, i64 <hash>,
13460                                                  i32 <num-counters>,
13461                                                  i32 <index>, i64 <step>)
13462
13463Overview:
13464"""""""""
13465
13466The '``llvm.instrprof.increment.step``' intrinsic is an extension to
13467the '``llvm.instrprof.increment``' intrinsic with an additional fifth
13468argument to specify the step of the increment.
13469
13470Arguments:
13471""""""""""
13472The first four arguments are the same as '``llvm.instrprof.increment``'
13473intrinsic.
13474
13475The last argument specifies the value of the increment of the counter variable.
13476
13477Semantics:
13478""""""""""
13479See description of '``llvm.instrprof.increment``' intrinsic.
13480
13481'``llvm.instrprof.cover``' Intrinsic
13482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13483
13484Syntax:
13485"""""""
13486
13487::
13488
13489      declare void @llvm.instrprof.cover(ptr <name>, i64 <hash>,
13490                                         i32 <num-counters>, i32 <index>)
13491
13492Overview:
13493"""""""""
13494
13495The '``llvm.instrprof.cover``' intrinsic is used to implement coverage
13496instrumentation.
13497
13498Arguments:
13499""""""""""
13500The arguments are the same as the first four arguments of
13501'``llvm.instrprof.increment``'.
13502
13503Semantics:
13504""""""""""
13505Similar to the '``llvm.instrprof.increment``' intrinsic, but it stores zero to
13506the profiling variable to signify that the function has been covered. We store
13507zero because this is more efficient on some targets.
13508
13509'``llvm.instrprof.value.profile``' Intrinsic
13510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13511
13512Syntax:
13513"""""""
13514
13515::
13516
13517      declare void @llvm.instrprof.value.profile(ptr <name>, i64 <hash>,
13518                                                 i64 <value>, i32 <value_kind>,
13519                                                 i32 <index>)
13520
13521Overview:
13522"""""""""
13523
13524The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
13525frontend for use with instrumentation based profiling. This will be
13526lowered by the ``-instrprof`` pass to find out the target values,
13527instrumented expressions take in a program at runtime.
13528
13529Arguments:
13530""""""""""
13531
13532The first argument is a pointer to a global variable containing the
13533name of the entity being instrumented. ``name`` should generally be the
13534(mangled) function name for a set of counters.
13535
13536The second argument is a hash value that can be used by the consumer
13537of the profile data to detect changes to the instrumented source. It
13538is an error if ``hash`` differs between two instances of
13539``llvm.instrprof.*`` that refer to the same name.
13540
13541The third argument is the value of the expression being profiled. The profiled
13542expression's value should be representable as an unsigned 64-bit value. The
13543fourth argument represents the kind of value profiling that is being done. The
13544supported value profiling kinds are enumerated through the
13545``InstrProfValueKind`` type declared in the
13546``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
13547index of the instrumented expression within ``name``. It should be >= 0.
13548
13549Semantics:
13550""""""""""
13551
13552This intrinsic represents the point where a call to a runtime routine
13553should be inserted for value profiling of target expressions. ``-instrprof``
13554pass will generate the appropriate data structures and replace the
13555``llvm.instrprof.value.profile`` intrinsic with the call to the profile
13556runtime library with proper arguments.
13557
13558'``llvm.thread.pointer``' Intrinsic
13559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13560
13561Syntax:
13562"""""""
13563
13564::
13565
13566      declare ptr @llvm.thread.pointer()
13567
13568Overview:
13569"""""""""
13570
13571The '``llvm.thread.pointer``' intrinsic returns the value of the thread
13572pointer.
13573
13574Semantics:
13575""""""""""
13576
13577The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
13578for the current thread.  The exact semantics of this value are target
13579specific: it may point to the start of TLS area, to the end, or somewhere
13580in the middle.  Depending on the target, this intrinsic may read a register,
13581call a helper function, read from an alternate memory space, or perform
13582other operations necessary to locate the TLS area.  Not all targets support
13583this intrinsic.
13584
13585'``llvm.call.preallocated.setup``' Intrinsic
13586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13587
13588Syntax:
13589"""""""
13590
13591::
13592
13593      declare token @llvm.call.preallocated.setup(i32 %num_args)
13594
13595Overview:
13596"""""""""
13597
13598The '``llvm.call.preallocated.setup``' intrinsic returns a token which can
13599be used with a call's ``"preallocated"`` operand bundle to indicate that
13600certain arguments are allocated and initialized before the call.
13601
13602Semantics:
13603""""""""""
13604
13605The '``llvm.call.preallocated.setup``' intrinsic returns a token which is
13606associated with at most one call. The token can be passed to
13607'``@llvm.call.preallocated.arg``' to get a pointer to get that
13608corresponding argument. The token must be the parameter to a
13609``"preallocated"`` operand bundle for the corresponding call.
13610
13611Nested calls to '``llvm.call.preallocated.setup``' are allowed, but must
13612be properly nested. e.g.
13613
13614:: code-block:: llvm
13615
13616      %t1 = call token @llvm.call.preallocated.setup(i32 0)
13617      %t2 = call token @llvm.call.preallocated.setup(i32 0)
13618      call void foo() ["preallocated"(token %t2)]
13619      call void foo() ["preallocated"(token %t1)]
13620
13621is allowed, but not
13622
13623:: code-block:: llvm
13624
13625      %t1 = call token @llvm.call.preallocated.setup(i32 0)
13626      %t2 = call token @llvm.call.preallocated.setup(i32 0)
13627      call void foo() ["preallocated"(token %t1)]
13628      call void foo() ["preallocated"(token %t2)]
13629
13630.. _int_call_preallocated_arg:
13631
13632'``llvm.call.preallocated.arg``' Intrinsic
13633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13634
13635Syntax:
13636"""""""
13637
13638::
13639
13640      declare ptr @llvm.call.preallocated.arg(token %setup_token, i32 %arg_index)
13641
13642Overview:
13643"""""""""
13644
13645The '``llvm.call.preallocated.arg``' intrinsic returns a pointer to the
13646corresponding preallocated argument for the preallocated call.
13647
13648Semantics:
13649""""""""""
13650
13651The '``llvm.call.preallocated.arg``' intrinsic returns a pointer to the
13652``%arg_index``th argument with the ``preallocated`` attribute for
13653the call associated with the ``%setup_token``, which must be from
13654'``llvm.call.preallocated.setup``'.
13655
13656A call to '``llvm.call.preallocated.arg``' must have a call site
13657``preallocated`` attribute. The type of the ``preallocated`` attribute must
13658match the type used by the ``preallocated`` attribute of the corresponding
13659argument at the preallocated call. The type is used in the case that an
13660``llvm.call.preallocated.setup`` does not have a corresponding call (e.g. due
13661to DCE), where otherwise we cannot know how large the arguments are.
13662
13663It is undefined behavior if this is called with a token from an
13664'``llvm.call.preallocated.setup``' if another
13665'``llvm.call.preallocated.setup``' has already been called or if the
13666preallocated call corresponding to the '``llvm.call.preallocated.setup``'
13667has already been called.
13668
13669.. _int_call_preallocated_teardown:
13670
13671'``llvm.call.preallocated.teardown``' Intrinsic
13672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13673
13674Syntax:
13675"""""""
13676
13677::
13678
13679      declare ptr @llvm.call.preallocated.teardown(token %setup_token)
13680
13681Overview:
13682"""""""""
13683
13684The '``llvm.call.preallocated.teardown``' intrinsic cleans up the stack
13685created by a '``llvm.call.preallocated.setup``'.
13686
13687Semantics:
13688""""""""""
13689
13690The token argument must be a '``llvm.call.preallocated.setup``'.
13691
13692The '``llvm.call.preallocated.teardown``' intrinsic cleans up the stack
13693allocated by the corresponding '``llvm.call.preallocated.setup``'. Exactly
13694one of this or the preallocated call must be called to prevent stack leaks.
13695It is undefined behavior to call both a '``llvm.call.preallocated.teardown``'
13696and the preallocated call for a given '``llvm.call.preallocated.setup``'.
13697
13698For example, if the stack is allocated for a preallocated call by a
13699'``llvm.call.preallocated.setup``', then an initializer function called on an
13700allocated argument throws an exception, there should be a
13701'``llvm.call.preallocated.teardown``' in the exception handler to prevent
13702stack leaks.
13703
13704Following the nesting rules in '``llvm.call.preallocated.setup``', nested
13705calls to '``llvm.call.preallocated.setup``' and
13706'``llvm.call.preallocated.teardown``' are allowed but must be properly
13707nested.
13708
13709Example:
13710""""""""
13711
13712.. code-block:: llvm
13713
13714        %cs = call token @llvm.call.preallocated.setup(i32 1)
13715        %x = call ptr @llvm.call.preallocated.arg(token %cs, i32 0) preallocated(i32)
13716        invoke void @constructor(ptr %x) to label %conta unwind label %contb
13717    conta:
13718        call void @foo1(ptr preallocated(i32) %x) ["preallocated"(token %cs)]
13719        ret void
13720    contb:
13721        %s = catchswitch within none [label %catch] unwind to caller
13722    catch:
13723        %p = catchpad within %s []
13724        call void @llvm.call.preallocated.teardown(token %cs)
13725        ret void
13726
13727Standard C/C++ Library Intrinsics
13728---------------------------------
13729
13730LLVM provides intrinsics for a few important standard C/C++ library
13731functions. These intrinsics allow source-language front-ends to pass
13732information about the alignment of the pointer arguments to the code
13733generator, providing opportunity for more efficient code generation.
13734
13735.. _int_abs:
13736
13737'``llvm.abs.*``' Intrinsic
13738^^^^^^^^^^^^^^^^^^^^^^^^^^
13739
13740Syntax:
13741"""""""
13742
13743This is an overloaded intrinsic. You can use ``llvm.abs`` on any
13744integer bit width or any vector of integer elements.
13745
13746::
13747
13748      declare i32 @llvm.abs.i32(i32 <src>, i1 <is_int_min_poison>)
13749      declare <4 x i32> @llvm.abs.v4i32(<4 x i32> <src>, i1 <is_int_min_poison>)
13750
13751Overview:
13752"""""""""
13753
13754The '``llvm.abs``' family of intrinsic functions returns the absolute value
13755of an argument.
13756
13757Arguments:
13758""""""""""
13759
13760The first argument is the value for which the absolute value is to be returned.
13761This argument may be of any integer type or a vector with integer element type.
13762The return type must match the first argument type.
13763
13764The second argument must be a constant and is a flag to indicate whether the
13765result value of the '``llvm.abs``' intrinsic is a
13766:ref:`poison value <poisonvalues>` if the argument is statically or dynamically
13767an ``INT_MIN`` value.
13768
13769Semantics:
13770""""""""""
13771
13772The '``llvm.abs``' intrinsic returns the magnitude (always positive) of the
13773argument or each element of a vector argument.". If the argument is ``INT_MIN``,
13774then the result is also ``INT_MIN`` if ``is_int_min_poison == 0`` and
13775``poison`` otherwise.
13776
13777
13778.. _int_smax:
13779
13780'``llvm.smax.*``' Intrinsic
13781^^^^^^^^^^^^^^^^^^^^^^^^^^^
13782
13783Syntax:
13784"""""""
13785
13786This is an overloaded intrinsic. You can use ``@llvm.smax`` on any
13787integer bit width or any vector of integer elements.
13788
13789::
13790
13791      declare i32 @llvm.smax.i32(i32 %a, i32 %b)
13792      declare <4 x i32> @llvm.smax.v4i32(<4 x i32> %a, <4 x i32> %b)
13793
13794Overview:
13795"""""""""
13796
13797Return the larger of ``%a`` and ``%b`` comparing the values as signed integers.
13798Vector intrinsics operate on a per-element basis. The larger element of ``%a``
13799and ``%b`` at a given index is returned for that index.
13800
13801Arguments:
13802""""""""""
13803
13804The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
13805integer element type. The argument types must match each other, and the return
13806type must match the argument type.
13807
13808
13809.. _int_smin:
13810
13811'``llvm.smin.*``' Intrinsic
13812^^^^^^^^^^^^^^^^^^^^^^^^^^^
13813
13814Syntax:
13815"""""""
13816
13817This is an overloaded intrinsic. You can use ``@llvm.smin`` on any
13818integer bit width or any vector of integer elements.
13819
13820::
13821
13822      declare i32 @llvm.smin.i32(i32 %a, i32 %b)
13823      declare <4 x i32> @llvm.smin.v4i32(<4 x i32> %a, <4 x i32> %b)
13824
13825Overview:
13826"""""""""
13827
13828Return the smaller of ``%a`` and ``%b`` comparing the values as signed integers.
13829Vector intrinsics operate on a per-element basis. The smaller element of ``%a``
13830and ``%b`` at a given index is returned for that index.
13831
13832Arguments:
13833""""""""""
13834
13835The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
13836integer element type. The argument types must match each other, and the return
13837type must match the argument type.
13838
13839
13840.. _int_umax:
13841
13842'``llvm.umax.*``' Intrinsic
13843^^^^^^^^^^^^^^^^^^^^^^^^^^^
13844
13845Syntax:
13846"""""""
13847
13848This is an overloaded intrinsic. You can use ``@llvm.umax`` on any
13849integer bit width or any vector of integer elements.
13850
13851::
13852
13853      declare i32 @llvm.umax.i32(i32 %a, i32 %b)
13854      declare <4 x i32> @llvm.umax.v4i32(<4 x i32> %a, <4 x i32> %b)
13855
13856Overview:
13857"""""""""
13858
13859Return the larger of ``%a`` and ``%b`` comparing the values as unsigned
13860integers. Vector intrinsics operate on a per-element basis. The larger element
13861of ``%a`` and ``%b`` at a given index is returned for that index.
13862
13863Arguments:
13864""""""""""
13865
13866The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
13867integer element type. The argument types must match each other, and the return
13868type must match the argument type.
13869
13870
13871.. _int_umin:
13872
13873'``llvm.umin.*``' Intrinsic
13874^^^^^^^^^^^^^^^^^^^^^^^^^^^
13875
13876Syntax:
13877"""""""
13878
13879This is an overloaded intrinsic. You can use ``@llvm.umin`` on any
13880integer bit width or any vector of integer elements.
13881
13882::
13883
13884      declare i32 @llvm.umin.i32(i32 %a, i32 %b)
13885      declare <4 x i32> @llvm.umin.v4i32(<4 x i32> %a, <4 x i32> %b)
13886
13887Overview:
13888"""""""""
13889
13890Return the smaller of ``%a`` and ``%b`` comparing the values as unsigned
13891integers. Vector intrinsics operate on a per-element basis. The smaller element
13892of ``%a`` and ``%b`` at a given index is returned for that index.
13893
13894Arguments:
13895""""""""""
13896
13897The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
13898integer element type. The argument types must match each other, and the return
13899type must match the argument type.
13900
13901
13902.. _int_memcpy:
13903
13904'``llvm.memcpy``' Intrinsic
13905^^^^^^^^^^^^^^^^^^^^^^^^^^^
13906
13907Syntax:
13908"""""""
13909
13910This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
13911integer bit width and for different address spaces. Not all targets
13912support all bit widths however.
13913
13914::
13915
13916      declare void @llvm.memcpy.p0.p0.i32(ptr <dest>, ptr <src>,
13917                                          i32 <len>, i1 <isvolatile>)
13918      declare void @llvm.memcpy.p0.p0.i64(ptr <dest>, ptr <src>,
13919                                          i64 <len>, i1 <isvolatile>)
13920
13921Overview:
13922"""""""""
13923
13924The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
13925source location to the destination location.
13926
13927Note that, unlike the standard libc function, the ``llvm.memcpy.*``
13928intrinsics do not return a value, takes extra isvolatile
13929arguments and the pointers can be in specified address spaces.
13930
13931Arguments:
13932""""""""""
13933
13934The first argument is a pointer to the destination, the second is a
13935pointer to the source. The third argument is an integer argument
13936specifying the number of bytes to copy, and the fourth is a
13937boolean indicating a volatile access.
13938
13939The :ref:`align <attr_align>` parameter attribute can be provided
13940for the first and second arguments.
13941
13942If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
13943a :ref:`volatile operation <volatile>`. The detailed access behavior is not
13944very cleanly specified and it is unwise to depend on it.
13945
13946Semantics:
13947""""""""""
13948
13949The '``llvm.memcpy.*``' intrinsics copy a block of memory from the source
13950location to the destination location, which must either be equal or
13951non-overlapping. It copies "len" bytes of memory over. If the argument is known
13952to be aligned to some boundary, this can be specified as an attribute on the
13953argument.
13954
13955If ``<len>`` is 0, it is no-op modulo the behavior of attributes attached to
13956the arguments.
13957If ``<len>`` is not a well-defined value, the behavior is undefined.
13958If ``<len>`` is not zero, both ``<dest>`` and ``<src>`` should be well-defined,
13959otherwise the behavior is undefined.
13960
13961.. _int_memcpy_inline:
13962
13963'``llvm.memcpy.inline``' Intrinsic
13964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13965
13966Syntax:
13967"""""""
13968
13969This is an overloaded intrinsic. You can use ``llvm.memcpy.inline`` on any
13970integer bit width and for different address spaces. Not all targets
13971support all bit widths however.
13972
13973::
13974
13975      declare void @llvm.memcpy.inline.p0.p0.i32(ptr <dest>, ptr <src>,
13976                                                 i32 <len>, i1 <isvolatile>)
13977      declare void @llvm.memcpy.inline.p0.p0.i64(ptr <dest>, ptr <src>,
13978                                                 i64 <len>, i1 <isvolatile>)
13979
13980Overview:
13981"""""""""
13982
13983The '``llvm.memcpy.inline.*``' intrinsics copy a block of memory from the
13984source location to the destination location and guarantees that no external
13985functions are called.
13986
13987Note that, unlike the standard libc function, the ``llvm.memcpy.inline.*``
13988intrinsics do not return a value, takes extra isvolatile
13989arguments and the pointers can be in specified address spaces.
13990
13991Arguments:
13992""""""""""
13993
13994The first argument is a pointer to the destination, the second is a
13995pointer to the source. The third argument is a constant integer argument
13996specifying the number of bytes to copy, and the fourth is a
13997boolean indicating a volatile access.
13998
13999The :ref:`align <attr_align>` parameter attribute can be provided
14000for the first and second arguments.
14001
14002If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy.inline`` call is
14003a :ref:`volatile operation <volatile>`. The detailed access behavior is not
14004very cleanly specified and it is unwise to depend on it.
14005
14006Semantics:
14007""""""""""
14008
14009The '``llvm.memcpy.inline.*``' intrinsics copy a block of memory from the
14010source location to the destination location, which are not allowed to
14011overlap. It copies "len" bytes of memory over. If the argument is known
14012to be aligned to some boundary, this can be specified as an attribute on
14013the argument.
14014The behavior of '``llvm.memcpy.inline.*``' is equivalent to the behavior of
14015'``llvm.memcpy.*``', but the generated code is guaranteed not to call any
14016external functions.
14017
14018.. _int_memmove:
14019
14020'``llvm.memmove``' Intrinsic
14021^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14022
14023Syntax:
14024"""""""
14025
14026This is an overloaded intrinsic. You can use llvm.memmove on any integer
14027bit width and for different address space. Not all targets support all
14028bit widths however.
14029
14030::
14031
14032      declare void @llvm.memmove.p0.p0.i32(ptr <dest>, ptr <src>,
14033                                           i32 <len>, i1 <isvolatile>)
14034      declare void @llvm.memmove.p0.p0.i64(ptr <dest>, ptr <src>,
14035                                           i64 <len>, i1 <isvolatile>)
14036
14037Overview:
14038"""""""""
14039
14040The '``llvm.memmove.*``' intrinsics move a block of memory from the
14041source location to the destination location. It is similar to the
14042'``llvm.memcpy``' intrinsic but allows the two memory locations to
14043overlap.
14044
14045Note that, unlike the standard libc function, the ``llvm.memmove.*``
14046intrinsics do not return a value, takes an extra isvolatile
14047argument and the pointers can be in specified address spaces.
14048
14049Arguments:
14050""""""""""
14051
14052The first argument is a pointer to the destination, the second is a
14053pointer to the source. The third argument is an integer argument
14054specifying the number of bytes to copy, and the fourth is a
14055boolean indicating a volatile access.
14056
14057The :ref:`align <attr_align>` parameter attribute can be provided
14058for the first and second arguments.
14059
14060If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
14061is a :ref:`volatile operation <volatile>`. The detailed access behavior is
14062not very cleanly specified and it is unwise to depend on it.
14063
14064Semantics:
14065""""""""""
14066
14067The '``llvm.memmove.*``' intrinsics copy a block of memory from the
14068source location to the destination location, which may overlap. It
14069copies "len" bytes of memory over. If the argument is known to be
14070aligned to some boundary, this can be specified as an attribute on
14071the argument.
14072
14073If ``<len>`` is 0, it is no-op modulo the behavior of attributes attached to
14074the arguments.
14075If ``<len>`` is not a well-defined value, the behavior is undefined.
14076If ``<len>`` is not zero, both ``<dest>`` and ``<src>`` should be well-defined,
14077otherwise the behavior is undefined.
14078
14079.. _int_memset:
14080
14081'``llvm.memset.*``' Intrinsics
14082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14083
14084Syntax:
14085"""""""
14086
14087This is an overloaded intrinsic. You can use llvm.memset on any integer
14088bit width and for different address spaces. However, not all targets
14089support all bit widths.
14090
14091::
14092
14093      declare void @llvm.memset.p0.i32(ptr <dest>, i8 <val>,
14094                                       i32 <len>, i1 <isvolatile>)
14095      declare void @llvm.memset.p0.i64(ptr <dest>, i8 <val>,
14096                                       i64 <len>, i1 <isvolatile>)
14097
14098Overview:
14099"""""""""
14100
14101The '``llvm.memset.*``' intrinsics fill a block of memory with a
14102particular byte value.
14103
14104Note that, unlike the standard libc function, the ``llvm.memset``
14105intrinsic does not return a value and takes an extra volatile
14106argument. Also, the destination can be in an arbitrary address space.
14107
14108Arguments:
14109""""""""""
14110
14111The first argument is a pointer to the destination to fill, the second
14112is the byte value with which to fill it, the third argument is an
14113integer argument specifying the number of bytes to fill, and the fourth
14114is a boolean indicating a volatile access.
14115
14116The :ref:`align <attr_align>` parameter attribute can be provided
14117for the first arguments.
14118
14119If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
14120a :ref:`volatile operation <volatile>`. The detailed access behavior is not
14121very cleanly specified and it is unwise to depend on it.
14122
14123Semantics:
14124""""""""""
14125
14126The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
14127at the destination location. If the argument is known to be
14128aligned to some boundary, this can be specified as an attribute on
14129the argument.
14130
14131If ``<len>`` is 0, it is no-op modulo the behavior of attributes attached to
14132the arguments.
14133If ``<len>`` is not a well-defined value, the behavior is undefined.
14134If ``<len>`` is not zero, ``<dest>`` should be well-defined, otherwise the
14135behavior is undefined.
14136
14137.. _int_memset_inline:
14138
14139'``llvm.memset.inline``' Intrinsic
14140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14141
14142Syntax:
14143"""""""
14144
14145This is an overloaded intrinsic. You can use ``llvm.memset.inline`` on any
14146integer bit width and for different address spaces. Not all targets
14147support all bit widths however.
14148
14149::
14150
14151      declare void @llvm.memset.inline.p0.p0i8.i32(ptr <dest>, i8 <val>,
14152                                                   i32 <len>, i1 <isvolatile>)
14153      declare void @llvm.memset.inline.p0.p0.i64(ptr <dest>, i8 <val>,
14154                                                 i64 <len>, i1 <isvolatile>)
14155
14156Overview:
14157"""""""""
14158
14159The '``llvm.memset.inline.*``' intrinsics fill a block of memory with a
14160particular byte value and guarantees that no external functions are called.
14161
14162Note that, unlike the standard libc function, the ``llvm.memset.inline.*``
14163intrinsics do not return a value, take an extra isvolatile argument and the
14164pointer can be in specified address spaces.
14165
14166Arguments:
14167""""""""""
14168
14169The first argument is a pointer to the destination to fill, the second
14170is the byte value with which to fill it, the third argument is a constant
14171integer argument specifying the number of bytes to fill, and the fourth
14172is a boolean indicating a volatile access.
14173
14174The :ref:`align <attr_align>` parameter attribute can be provided
14175for the first argument.
14176
14177If the ``isvolatile`` parameter is ``true``, the ``llvm.memset.inline`` call is
14178a :ref:`volatile operation <volatile>`. The detailed access behavior is not
14179very cleanly specified and it is unwise to depend on it.
14180
14181Semantics:
14182""""""""""
14183
14184The '``llvm.memset.inline.*``' intrinsics fill "len" bytes of memory starting
14185at the destination location. If the argument is known to be
14186aligned to some boundary, this can be specified as an attribute on
14187the argument.
14188
14189``len`` must be a constant expression.
14190If ``<len>`` is 0, it is no-op modulo the behavior of attributes attached to
14191the arguments.
14192If ``<len>`` is not a well-defined value, the behavior is undefined.
14193If ``<len>`` is not zero, ``<dest>`` should be well-defined, otherwise the
14194behavior is undefined.
14195
14196The behavior of '``llvm.memset.inline.*``' is equivalent to the behavior of
14197'``llvm.memset.*``', but the generated code is guaranteed not to call any
14198external functions.
14199
14200.. _int_sqrt:
14201
14202'``llvm.sqrt.*``' Intrinsic
14203^^^^^^^^^^^^^^^^^^^^^^^^^^^
14204
14205Syntax:
14206"""""""
14207
14208This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
14209floating-point or vector of floating-point type. Not all targets support
14210all types however.
14211
14212::
14213
14214      declare float     @llvm.sqrt.f32(float %Val)
14215      declare double    @llvm.sqrt.f64(double %Val)
14216      declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
14217      declare fp128     @llvm.sqrt.f128(fp128 %Val)
14218      declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
14219
14220Overview:
14221"""""""""
14222
14223The '``llvm.sqrt``' intrinsics return the square root of the specified value.
14224
14225Arguments:
14226""""""""""
14227
14228The argument and return value are floating-point numbers of the same type.
14229
14230Semantics:
14231""""""""""
14232
14233Return the same value as a corresponding libm '``sqrt``' function but without
14234trapping or setting ``errno``. For types specified by IEEE-754, the result
14235matches a conforming libm implementation.
14236
14237When specified with the fast-math-flag 'afn', the result may be approximated
14238using a less accurate calculation.
14239
14240'``llvm.powi.*``' Intrinsic
14241^^^^^^^^^^^^^^^^^^^^^^^^^^^
14242
14243Syntax:
14244"""""""
14245
14246This is an overloaded intrinsic. You can use ``llvm.powi`` on any
14247floating-point or vector of floating-point type. Not all targets support
14248all types however.
14249
14250Generally, the only supported type for the exponent is the one matching
14251with the C type ``int``.
14252
14253::
14254
14255      declare float     @llvm.powi.f32.i32(float  %Val, i32 %power)
14256      declare double    @llvm.powi.f64.i16(double %Val, i16 %power)
14257      declare x86_fp80  @llvm.powi.f80.i32(x86_fp80  %Val, i32 %power)
14258      declare fp128     @llvm.powi.f128.i32(fp128 %Val, i32 %power)
14259      declare ppc_fp128 @llvm.powi.ppcf128.i32(ppc_fp128  %Val, i32 %power)
14260
14261Overview:
14262"""""""""
14263
14264The '``llvm.powi.*``' intrinsics return the first operand raised to the
14265specified (positive or negative) power. The order of evaluation of
14266multiplications is not defined. When a vector of floating-point type is
14267used, the second argument remains a scalar integer value.
14268
14269Arguments:
14270""""""""""
14271
14272The second argument is an integer power, and the first is a value to
14273raise to that power.
14274
14275Semantics:
14276""""""""""
14277
14278This function returns the first value raised to the second power with an
14279unspecified sequence of rounding operations.
14280
14281'``llvm.sin.*``' Intrinsic
14282^^^^^^^^^^^^^^^^^^^^^^^^^^
14283
14284Syntax:
14285"""""""
14286
14287This is an overloaded intrinsic. You can use ``llvm.sin`` on any
14288floating-point or vector of floating-point type. Not all targets support
14289all types however.
14290
14291::
14292
14293      declare float     @llvm.sin.f32(float  %Val)
14294      declare double    @llvm.sin.f64(double %Val)
14295      declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
14296      declare fp128     @llvm.sin.f128(fp128 %Val)
14297      declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
14298
14299Overview:
14300"""""""""
14301
14302The '``llvm.sin.*``' intrinsics return the sine of the operand.
14303
14304Arguments:
14305""""""""""
14306
14307The argument and return value are floating-point numbers of the same type.
14308
14309Semantics:
14310""""""""""
14311
14312Return the same value as a corresponding libm '``sin``' function but without
14313trapping or setting ``errno``.
14314
14315When specified with the fast-math-flag 'afn', the result may be approximated
14316using a less accurate calculation.
14317
14318'``llvm.cos.*``' Intrinsic
14319^^^^^^^^^^^^^^^^^^^^^^^^^^
14320
14321Syntax:
14322"""""""
14323
14324This is an overloaded intrinsic. You can use ``llvm.cos`` on any
14325floating-point or vector of floating-point type. Not all targets support
14326all types however.
14327
14328::
14329
14330      declare float     @llvm.cos.f32(float  %Val)
14331      declare double    @llvm.cos.f64(double %Val)
14332      declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
14333      declare fp128     @llvm.cos.f128(fp128 %Val)
14334      declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
14335
14336Overview:
14337"""""""""
14338
14339The '``llvm.cos.*``' intrinsics return the cosine of the operand.
14340
14341Arguments:
14342""""""""""
14343
14344The argument and return value are floating-point numbers of the same type.
14345
14346Semantics:
14347""""""""""
14348
14349Return the same value as a corresponding libm '``cos``' function but without
14350trapping or setting ``errno``.
14351
14352When specified with the fast-math-flag 'afn', the result may be approximated
14353using a less accurate calculation.
14354
14355'``llvm.pow.*``' Intrinsic
14356^^^^^^^^^^^^^^^^^^^^^^^^^^
14357
14358Syntax:
14359"""""""
14360
14361This is an overloaded intrinsic. You can use ``llvm.pow`` on any
14362floating-point or vector of floating-point type. Not all targets support
14363all types however.
14364
14365::
14366
14367      declare float     @llvm.pow.f32(float  %Val, float %Power)
14368      declare double    @llvm.pow.f64(double %Val, double %Power)
14369      declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
14370      declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
14371      declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
14372
14373Overview:
14374"""""""""
14375
14376The '``llvm.pow.*``' intrinsics return the first operand raised to the
14377specified (positive or negative) power.
14378
14379Arguments:
14380""""""""""
14381
14382The arguments and return value are floating-point numbers of the same type.
14383
14384Semantics:
14385""""""""""
14386
14387Return the same value as a corresponding libm '``pow``' function but without
14388trapping or setting ``errno``.
14389
14390When specified with the fast-math-flag 'afn', the result may be approximated
14391using a less accurate calculation.
14392
14393'``llvm.exp.*``' Intrinsic
14394^^^^^^^^^^^^^^^^^^^^^^^^^^
14395
14396Syntax:
14397"""""""
14398
14399This is an overloaded intrinsic. You can use ``llvm.exp`` on any
14400floating-point or vector of floating-point type. Not all targets support
14401all types however.
14402
14403::
14404
14405      declare float     @llvm.exp.f32(float  %Val)
14406      declare double    @llvm.exp.f64(double %Val)
14407      declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
14408      declare fp128     @llvm.exp.f128(fp128 %Val)
14409      declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
14410
14411Overview:
14412"""""""""
14413
14414The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
14415value.
14416
14417Arguments:
14418""""""""""
14419
14420The argument and return value are floating-point numbers of the same type.
14421
14422Semantics:
14423""""""""""
14424
14425Return the same value as a corresponding libm '``exp``' function but without
14426trapping or setting ``errno``.
14427
14428When specified with the fast-math-flag 'afn', the result may be approximated
14429using a less accurate calculation.
14430
14431'``llvm.exp2.*``' Intrinsic
14432^^^^^^^^^^^^^^^^^^^^^^^^^^^
14433
14434Syntax:
14435"""""""
14436
14437This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
14438floating-point or vector of floating-point type. Not all targets support
14439all types however.
14440
14441::
14442
14443      declare float     @llvm.exp2.f32(float  %Val)
14444      declare double    @llvm.exp2.f64(double %Val)
14445      declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
14446      declare fp128     @llvm.exp2.f128(fp128 %Val)
14447      declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
14448
14449Overview:
14450"""""""""
14451
14452The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
14453specified value.
14454
14455Arguments:
14456""""""""""
14457
14458The argument and return value are floating-point numbers of the same type.
14459
14460Semantics:
14461""""""""""
14462
14463Return the same value as a corresponding libm '``exp2``' function but without
14464trapping or setting ``errno``.
14465
14466When specified with the fast-math-flag 'afn', the result may be approximated
14467using a less accurate calculation.
14468
14469'``llvm.log.*``' Intrinsic
14470^^^^^^^^^^^^^^^^^^^^^^^^^^
14471
14472Syntax:
14473"""""""
14474
14475This is an overloaded intrinsic. You can use ``llvm.log`` on any
14476floating-point or vector of floating-point type. Not all targets support
14477all types however.
14478
14479::
14480
14481      declare float     @llvm.log.f32(float  %Val)
14482      declare double    @llvm.log.f64(double %Val)
14483      declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
14484      declare fp128     @llvm.log.f128(fp128 %Val)
14485      declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
14486
14487Overview:
14488"""""""""
14489
14490The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
14491value.
14492
14493Arguments:
14494""""""""""
14495
14496The argument and return value are floating-point numbers of the same type.
14497
14498Semantics:
14499""""""""""
14500
14501Return the same value as a corresponding libm '``log``' function but without
14502trapping or setting ``errno``.
14503
14504When specified with the fast-math-flag 'afn', the result may be approximated
14505using a less accurate calculation.
14506
14507'``llvm.log10.*``' Intrinsic
14508^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14509
14510Syntax:
14511"""""""
14512
14513This is an overloaded intrinsic. You can use ``llvm.log10`` on any
14514floating-point or vector of floating-point type. Not all targets support
14515all types however.
14516
14517::
14518
14519      declare float     @llvm.log10.f32(float  %Val)
14520      declare double    @llvm.log10.f64(double %Val)
14521      declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
14522      declare fp128     @llvm.log10.f128(fp128 %Val)
14523      declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
14524
14525Overview:
14526"""""""""
14527
14528The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
14529specified value.
14530
14531Arguments:
14532""""""""""
14533
14534The argument and return value are floating-point numbers of the same type.
14535
14536Semantics:
14537""""""""""
14538
14539Return the same value as a corresponding libm '``log10``' function but without
14540trapping or setting ``errno``.
14541
14542When specified with the fast-math-flag 'afn', the result may be approximated
14543using a less accurate calculation.
14544
14545'``llvm.log2.*``' Intrinsic
14546^^^^^^^^^^^^^^^^^^^^^^^^^^^
14547
14548Syntax:
14549"""""""
14550
14551This is an overloaded intrinsic. You can use ``llvm.log2`` on any
14552floating-point or vector of floating-point type. Not all targets support
14553all types however.
14554
14555::
14556
14557      declare float     @llvm.log2.f32(float  %Val)
14558      declare double    @llvm.log2.f64(double %Val)
14559      declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
14560      declare fp128     @llvm.log2.f128(fp128 %Val)
14561      declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
14562
14563Overview:
14564"""""""""
14565
14566The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
14567value.
14568
14569Arguments:
14570""""""""""
14571
14572The argument and return value are floating-point numbers of the same type.
14573
14574Semantics:
14575""""""""""
14576
14577Return the same value as a corresponding libm '``log2``' function but without
14578trapping or setting ``errno``.
14579
14580When specified with the fast-math-flag 'afn', the result may be approximated
14581using a less accurate calculation.
14582
14583.. _int_fma:
14584
14585'``llvm.fma.*``' Intrinsic
14586^^^^^^^^^^^^^^^^^^^^^^^^^^
14587
14588Syntax:
14589"""""""
14590
14591This is an overloaded intrinsic. You can use ``llvm.fma`` on any
14592floating-point or vector of floating-point type. Not all targets support
14593all types however.
14594
14595::
14596
14597      declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
14598      declare double    @llvm.fma.f64(double %a, double %b, double %c)
14599      declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
14600      declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
14601      declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
14602
14603Overview:
14604"""""""""
14605
14606The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
14607
14608Arguments:
14609""""""""""
14610
14611The arguments and return value are floating-point numbers of the same type.
14612
14613Semantics:
14614""""""""""
14615
14616Return the same value as a corresponding libm '``fma``' function but without
14617trapping or setting ``errno``.
14618
14619When specified with the fast-math-flag 'afn', the result may be approximated
14620using a less accurate calculation.
14621
14622.. _int_fabs:
14623
14624'``llvm.fabs.*``' Intrinsic
14625^^^^^^^^^^^^^^^^^^^^^^^^^^^
14626
14627Syntax:
14628"""""""
14629
14630This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
14631floating-point or vector of floating-point type. Not all targets support
14632all types however.
14633
14634::
14635
14636      declare float     @llvm.fabs.f32(float  %Val)
14637      declare double    @llvm.fabs.f64(double %Val)
14638      declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
14639      declare fp128     @llvm.fabs.f128(fp128 %Val)
14640      declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
14641
14642Overview:
14643"""""""""
14644
14645The '``llvm.fabs.*``' intrinsics return the absolute value of the
14646operand.
14647
14648Arguments:
14649""""""""""
14650
14651The argument and return value are floating-point numbers of the same
14652type.
14653
14654Semantics:
14655""""""""""
14656
14657This function returns the same values as the libm ``fabs`` functions
14658would, and handles error conditions in the same way.
14659
14660.. _i_minnum:
14661
14662'``llvm.minnum.*``' Intrinsic
14663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14664
14665Syntax:
14666"""""""
14667
14668This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
14669floating-point or vector of floating-point type. Not all targets support
14670all types however.
14671
14672::
14673
14674      declare float     @llvm.minnum.f32(float %Val0, float %Val1)
14675      declare double    @llvm.minnum.f64(double %Val0, double %Val1)
14676      declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
14677      declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
14678      declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
14679
14680Overview:
14681"""""""""
14682
14683The '``llvm.minnum.*``' intrinsics return the minimum of the two
14684arguments.
14685
14686
14687Arguments:
14688""""""""""
14689
14690The arguments and return value are floating-point numbers of the same
14691type.
14692
14693Semantics:
14694""""""""""
14695
14696Follows the IEEE-754 semantics for minNum, except for handling of
14697signaling NaNs. This match's the behavior of libm's fmin.
14698
14699If either operand is a NaN, returns the other non-NaN operand. Returns
14700NaN only if both operands are NaN. The returned NaN is always
14701quiet. If the operands compare equal, returns a value that compares
14702equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
14703return either -0.0 or 0.0.
14704
14705Unlike the IEEE-754 2008 behavior, this does not distinguish between
14706signaling and quiet NaN inputs. If a target's implementation follows
14707the standard and returns a quiet NaN if either input is a signaling
14708NaN, the intrinsic lowering is responsible for quieting the inputs to
14709correctly return the non-NaN input (e.g. by using the equivalent of
14710``llvm.canonicalize``).
14711
14712.. _i_maxnum:
14713
14714'``llvm.maxnum.*``' Intrinsic
14715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14716
14717Syntax:
14718"""""""
14719
14720This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
14721floating-point or vector of floating-point type. Not all targets support
14722all types however.
14723
14724::
14725
14726      declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1)
14727      declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
14728      declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
14729      declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
14730      declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)
14731
14732Overview:
14733"""""""""
14734
14735The '``llvm.maxnum.*``' intrinsics return the maximum of the two
14736arguments.
14737
14738
14739Arguments:
14740""""""""""
14741
14742The arguments and return value are floating-point numbers of the same
14743type.
14744
14745Semantics:
14746""""""""""
14747Follows the IEEE-754 semantics for maxNum except for the handling of
14748signaling NaNs. This matches the behavior of libm's fmax.
14749
14750If either operand is a NaN, returns the other non-NaN operand. Returns
14751NaN only if both operands are NaN. The returned NaN is always
14752quiet. If the operands compare equal, returns a value that compares
14753equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
14754return either -0.0 or 0.0.
14755
14756Unlike the IEEE-754 2008 behavior, this does not distinguish between
14757signaling and quiet NaN inputs. If a target's implementation follows
14758the standard and returns a quiet NaN if either input is a signaling
14759NaN, the intrinsic lowering is responsible for quieting the inputs to
14760correctly return the non-NaN input (e.g. by using the equivalent of
14761``llvm.canonicalize``).
14762
14763'``llvm.minimum.*``' Intrinsic
14764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14765
14766Syntax:
14767"""""""
14768
14769This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
14770floating-point or vector of floating-point type. Not all targets support
14771all types however.
14772
14773::
14774
14775      declare float     @llvm.minimum.f32(float %Val0, float %Val1)
14776      declare double    @llvm.minimum.f64(double %Val0, double %Val1)
14777      declare x86_fp80  @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
14778      declare fp128     @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
14779      declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
14780
14781Overview:
14782"""""""""
14783
14784The '``llvm.minimum.*``' intrinsics return the minimum of the two
14785arguments, propagating NaNs and treating -0.0 as less than +0.0.
14786
14787
14788Arguments:
14789""""""""""
14790
14791The arguments and return value are floating-point numbers of the same
14792type.
14793
14794Semantics:
14795""""""""""
14796If either operand is a NaN, returns NaN. Otherwise returns the lesser
14797of the two arguments. -0.0 is considered to be less than +0.0 for this
14798intrinsic. Note that these are the semantics specified in the draft of
14799IEEE 754-2018.
14800
14801'``llvm.maximum.*``' Intrinsic
14802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14803
14804Syntax:
14805"""""""
14806
14807This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
14808floating-point or vector of floating-point type. Not all targets support
14809all types however.
14810
14811::
14812
14813      declare float     @llvm.maximum.f32(float %Val0, float %Val1)
14814      declare double    @llvm.maximum.f64(double %Val0, double %Val1)
14815      declare x86_fp80  @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
14816      declare fp128     @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
14817      declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
14818
14819Overview:
14820"""""""""
14821
14822The '``llvm.maximum.*``' intrinsics return the maximum of the two
14823arguments, propagating NaNs and treating -0.0 as less than +0.0.
14824
14825
14826Arguments:
14827""""""""""
14828
14829The arguments and return value are floating-point numbers of the same
14830type.
14831
14832Semantics:
14833""""""""""
14834If either operand is a NaN, returns NaN. Otherwise returns the greater
14835of the two arguments. -0.0 is considered to be less than +0.0 for this
14836intrinsic. Note that these are the semantics specified in the draft of
14837IEEE 754-2018.
14838
14839.. _int_copysign:
14840
14841'``llvm.copysign.*``' Intrinsic
14842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14843
14844Syntax:
14845"""""""
14846
14847This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
14848floating-point or vector of floating-point type. Not all targets support
14849all types however.
14850
14851::
14852
14853      declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
14854      declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
14855      declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
14856      declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
14857      declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
14858
14859Overview:
14860"""""""""
14861
14862The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
14863first operand and the sign of the second operand.
14864
14865Arguments:
14866""""""""""
14867
14868The arguments and return value are floating-point numbers of the same
14869type.
14870
14871Semantics:
14872""""""""""
14873
14874This function returns the same values as the libm ``copysign``
14875functions would, and handles error conditions in the same way.
14876
14877.. _int_floor:
14878
14879'``llvm.floor.*``' Intrinsic
14880^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14881
14882Syntax:
14883"""""""
14884
14885This is an overloaded intrinsic. You can use ``llvm.floor`` on any
14886floating-point or vector of floating-point type. Not all targets support
14887all types however.
14888
14889::
14890
14891      declare float     @llvm.floor.f32(float  %Val)
14892      declare double    @llvm.floor.f64(double %Val)
14893      declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
14894      declare fp128     @llvm.floor.f128(fp128 %Val)
14895      declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
14896
14897Overview:
14898"""""""""
14899
14900The '``llvm.floor.*``' intrinsics return the floor of the operand.
14901
14902Arguments:
14903""""""""""
14904
14905The argument and return value are floating-point numbers of the same
14906type.
14907
14908Semantics:
14909""""""""""
14910
14911This function returns the same values as the libm ``floor`` functions
14912would, and handles error conditions in the same way.
14913
14914.. _int_ceil:
14915
14916'``llvm.ceil.*``' Intrinsic
14917^^^^^^^^^^^^^^^^^^^^^^^^^^^
14918
14919Syntax:
14920"""""""
14921
14922This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
14923floating-point or vector of floating-point type. Not all targets support
14924all types however.
14925
14926::
14927
14928      declare float     @llvm.ceil.f32(float  %Val)
14929      declare double    @llvm.ceil.f64(double %Val)
14930      declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
14931      declare fp128     @llvm.ceil.f128(fp128 %Val)
14932      declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
14933
14934Overview:
14935"""""""""
14936
14937The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
14938
14939Arguments:
14940""""""""""
14941
14942The argument and return value are floating-point numbers of the same
14943type.
14944
14945Semantics:
14946""""""""""
14947
14948This function returns the same values as the libm ``ceil`` functions
14949would, and handles error conditions in the same way.
14950
14951
14952.. _int_llvm_trunc:
14953
14954'``llvm.trunc.*``' Intrinsic
14955^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14956
14957Syntax:
14958"""""""
14959
14960This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
14961floating-point or vector of floating-point type. Not all targets support
14962all types however.
14963
14964::
14965
14966      declare float     @llvm.trunc.f32(float  %Val)
14967      declare double    @llvm.trunc.f64(double %Val)
14968      declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
14969      declare fp128     @llvm.trunc.f128(fp128 %Val)
14970      declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
14971
14972Overview:
14973"""""""""
14974
14975The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
14976nearest integer not larger in magnitude than the operand.
14977
14978Arguments:
14979""""""""""
14980
14981The argument and return value are floating-point numbers of the same
14982type.
14983
14984Semantics:
14985""""""""""
14986
14987This function returns the same values as the libm ``trunc`` functions
14988would, and handles error conditions in the same way.
14989
14990.. _int_rint:
14991
14992'``llvm.rint.*``' Intrinsic
14993^^^^^^^^^^^^^^^^^^^^^^^^^^^
14994
14995Syntax:
14996"""""""
14997
14998This is an overloaded intrinsic. You can use ``llvm.rint`` on any
14999floating-point or vector of floating-point type. Not all targets support
15000all types however.
15001
15002::
15003
15004      declare float     @llvm.rint.f32(float  %Val)
15005      declare double    @llvm.rint.f64(double %Val)
15006      declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
15007      declare fp128     @llvm.rint.f128(fp128 %Val)
15008      declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
15009
15010Overview:
15011"""""""""
15012
15013The '``llvm.rint.*``' intrinsics returns the operand rounded to the
15014nearest integer. It may raise an inexact floating-point exception if the
15015operand isn't an integer.
15016
15017Arguments:
15018""""""""""
15019
15020The argument and return value are floating-point numbers of the same
15021type.
15022
15023Semantics:
15024""""""""""
15025
15026This function returns the same values as the libm ``rint`` functions
15027would, and handles error conditions in the same way.
15028
15029.. _int_nearbyint:
15030
15031'``llvm.nearbyint.*``' Intrinsic
15032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15033
15034Syntax:
15035"""""""
15036
15037This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
15038floating-point or vector of floating-point type. Not all targets support
15039all types however.
15040
15041::
15042
15043      declare float     @llvm.nearbyint.f32(float  %Val)
15044      declare double    @llvm.nearbyint.f64(double %Val)
15045      declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
15046      declare fp128     @llvm.nearbyint.f128(fp128 %Val)
15047      declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
15048
15049Overview:
15050"""""""""
15051
15052The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
15053nearest integer.
15054
15055Arguments:
15056""""""""""
15057
15058The argument and return value are floating-point numbers of the same
15059type.
15060
15061Semantics:
15062""""""""""
15063
15064This function returns the same values as the libm ``nearbyint``
15065functions would, and handles error conditions in the same way.
15066
15067.. _int_round:
15068
15069'``llvm.round.*``' Intrinsic
15070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15071
15072Syntax:
15073"""""""
15074
15075This is an overloaded intrinsic. You can use ``llvm.round`` on any
15076floating-point or vector of floating-point type. Not all targets support
15077all types however.
15078
15079::
15080
15081      declare float     @llvm.round.f32(float  %Val)
15082      declare double    @llvm.round.f64(double %Val)
15083      declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
15084      declare fp128     @llvm.round.f128(fp128 %Val)
15085      declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
15086
15087Overview:
15088"""""""""
15089
15090The '``llvm.round.*``' intrinsics returns the operand rounded to the
15091nearest integer.
15092
15093Arguments:
15094""""""""""
15095
15096The argument and return value are floating-point numbers of the same
15097type.
15098
15099Semantics:
15100""""""""""
15101
15102This function returns the same values as the libm ``round``
15103functions would, and handles error conditions in the same way.
15104
15105.. _int_roundeven:
15106
15107'``llvm.roundeven.*``' Intrinsic
15108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15109
15110Syntax:
15111"""""""
15112
15113This is an overloaded intrinsic. You can use ``llvm.roundeven`` on any
15114floating-point or vector of floating-point type. Not all targets support
15115all types however.
15116
15117::
15118
15119      declare float     @llvm.roundeven.f32(float  %Val)
15120      declare double    @llvm.roundeven.f64(double %Val)
15121      declare x86_fp80  @llvm.roundeven.f80(x86_fp80  %Val)
15122      declare fp128     @llvm.roundeven.f128(fp128 %Val)
15123      declare ppc_fp128 @llvm.roundeven.ppcf128(ppc_fp128  %Val)
15124
15125Overview:
15126"""""""""
15127
15128The '``llvm.roundeven.*``' intrinsics returns the operand rounded to the nearest
15129integer in floating-point format rounding halfway cases to even (that is, to the
15130nearest value that is an even integer).
15131
15132Arguments:
15133""""""""""
15134
15135The argument and return value are floating-point numbers of the same type.
15136
15137Semantics:
15138""""""""""
15139
15140This function implements IEEE-754 operation ``roundToIntegralTiesToEven``. It
15141also behaves in the same way as C standard function ``roundeven``, except that
15142it does not raise floating point exceptions.
15143
15144
15145'``llvm.lround.*``' Intrinsic
15146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15147
15148Syntax:
15149"""""""
15150
15151This is an overloaded intrinsic. You can use ``llvm.lround`` on any
15152floating-point type. Not all targets support all types however.
15153
15154::
15155
15156      declare i32 @llvm.lround.i32.f32(float %Val)
15157      declare i32 @llvm.lround.i32.f64(double %Val)
15158      declare i32 @llvm.lround.i32.f80(float %Val)
15159      declare i32 @llvm.lround.i32.f128(double %Val)
15160      declare i32 @llvm.lround.i32.ppcf128(double %Val)
15161
15162      declare i64 @llvm.lround.i64.f32(float %Val)
15163      declare i64 @llvm.lround.i64.f64(double %Val)
15164      declare i64 @llvm.lround.i64.f80(float %Val)
15165      declare i64 @llvm.lround.i64.f128(double %Val)
15166      declare i64 @llvm.lround.i64.ppcf128(double %Val)
15167
15168Overview:
15169"""""""""
15170
15171The '``llvm.lround.*``' intrinsics return the operand rounded to the nearest
15172integer with ties away from zero.
15173
15174
15175Arguments:
15176""""""""""
15177
15178The argument is a floating-point number and the return value is an integer
15179type.
15180
15181Semantics:
15182""""""""""
15183
15184This function returns the same values as the libm ``lround`` functions
15185would, but without setting errno. If the rounded value is too large to
15186be stored in the result type, the return value is a non-deterministic
15187value (equivalent to `freeze poison`).
15188
15189'``llvm.llround.*``' Intrinsic
15190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15191
15192Syntax:
15193"""""""
15194
15195This is an overloaded intrinsic. You can use ``llvm.llround`` on any
15196floating-point type. Not all targets support all types however.
15197
15198::
15199
15200      declare i64 @llvm.lround.i64.f32(float %Val)
15201      declare i64 @llvm.lround.i64.f64(double %Val)
15202      declare i64 @llvm.lround.i64.f80(float %Val)
15203      declare i64 @llvm.lround.i64.f128(double %Val)
15204      declare i64 @llvm.lround.i64.ppcf128(double %Val)
15205
15206Overview:
15207"""""""""
15208
15209The '``llvm.llround.*``' intrinsics return the operand rounded to the nearest
15210integer with ties away from zero.
15211
15212Arguments:
15213""""""""""
15214
15215The argument is a floating-point number and the return value is an integer
15216type.
15217
15218Semantics:
15219""""""""""
15220
15221This function returns the same values as the libm ``llround``
15222functions would, but without setting errno. If the rounded value is
15223too large to be stored in the result type, the return value is a
15224non-deterministic value (equivalent to `freeze poison`).
15225
15226'``llvm.lrint.*``' Intrinsic
15227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15228
15229Syntax:
15230"""""""
15231
15232This is an overloaded intrinsic. You can use ``llvm.lrint`` on any
15233floating-point type. Not all targets support all types however.
15234
15235::
15236
15237      declare i32 @llvm.lrint.i32.f32(float %Val)
15238      declare i32 @llvm.lrint.i32.f64(double %Val)
15239      declare i32 @llvm.lrint.i32.f80(float %Val)
15240      declare i32 @llvm.lrint.i32.f128(double %Val)
15241      declare i32 @llvm.lrint.i32.ppcf128(double %Val)
15242
15243      declare i64 @llvm.lrint.i64.f32(float %Val)
15244      declare i64 @llvm.lrint.i64.f64(double %Val)
15245      declare i64 @llvm.lrint.i64.f80(float %Val)
15246      declare i64 @llvm.lrint.i64.f128(double %Val)
15247      declare i64 @llvm.lrint.i64.ppcf128(double %Val)
15248
15249Overview:
15250"""""""""
15251
15252The '``llvm.lrint.*``' intrinsics return the operand rounded to the nearest
15253integer.
15254
15255
15256Arguments:
15257""""""""""
15258
15259The argument is a floating-point number and the return value is an integer
15260type.
15261
15262Semantics:
15263""""""""""
15264
15265This function returns the same values as the libm ``lrint`` functions
15266would, but without setting errno. If the rounded value is too large to
15267be stored in the result type, the return value is a non-deterministic
15268value (equivalent to `freeze poison`).
15269
15270'``llvm.llrint.*``' Intrinsic
15271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15272
15273Syntax:
15274"""""""
15275
15276This is an overloaded intrinsic. You can use ``llvm.llrint`` on any
15277floating-point type. Not all targets support all types however.
15278
15279::
15280
15281      declare i64 @llvm.llrint.i64.f32(float %Val)
15282      declare i64 @llvm.llrint.i64.f64(double %Val)
15283      declare i64 @llvm.llrint.i64.f80(float %Val)
15284      declare i64 @llvm.llrint.i64.f128(double %Val)
15285      declare i64 @llvm.llrint.i64.ppcf128(double %Val)
15286
15287Overview:
15288"""""""""
15289
15290The '``llvm.llrint.*``' intrinsics return the operand rounded to the nearest
15291integer.
15292
15293Arguments:
15294""""""""""
15295
15296The argument is a floating-point number and the return value is an integer
15297type.
15298
15299Semantics:
15300""""""""""
15301
15302This function returns the same values as the libm ``llrint`` functions
15303would, but without setting errno. If the rounded value is too large to
15304be stored in the result type, the return value is a non-deterministic
15305value (equivalent to `freeze poison`).
15306
15307Bit Manipulation Intrinsics
15308---------------------------
15309
15310LLVM provides intrinsics for a few important bit manipulation
15311operations. These allow efficient code generation for some algorithms.
15312
15313.. _int_bitreverse:
15314
15315'``llvm.bitreverse.*``' Intrinsics
15316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15317
15318Syntax:
15319"""""""
15320
15321This is an overloaded intrinsic function. You can use bitreverse on any
15322integer type.
15323
15324::
15325
15326      declare i16 @llvm.bitreverse.i16(i16 <id>)
15327      declare i32 @llvm.bitreverse.i32(i32 <id>)
15328      declare i64 @llvm.bitreverse.i64(i64 <id>)
15329      declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)
15330
15331Overview:
15332"""""""""
15333
15334The '``llvm.bitreverse``' family of intrinsics is used to reverse the
15335bitpattern of an integer value or vector of integer values; for example
15336``0b10110110`` becomes ``0b01101101``.
15337
15338Semantics:
15339""""""""""
15340
15341The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
15342``M`` in the input moved to bit ``N-M-1`` in the output. The vector
15343intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
15344basis and the element order is not affected.
15345
15346.. _int_bswap:
15347
15348'``llvm.bswap.*``' Intrinsics
15349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15350
15351Syntax:
15352"""""""
15353
15354This is an overloaded intrinsic function. You can use bswap on any
15355integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
15356
15357::
15358
15359      declare i16 @llvm.bswap.i16(i16 <id>)
15360      declare i32 @llvm.bswap.i32(i32 <id>)
15361      declare i64 @llvm.bswap.i64(i64 <id>)
15362      declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)
15363
15364Overview:
15365"""""""""
15366
15367The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
15368value or vector of integer values with an even number of bytes (positive
15369multiple of 16 bits).
15370
15371Semantics:
15372""""""""""
15373
15374The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
15375and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
15376intrinsic returns an i32 value that has the four bytes of the input i32
15377swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
15378returned i32 will have its bytes in 3, 2, 1, 0 order. The
15379``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
15380concept to additional even-byte lengths (6 bytes, 8 bytes and more,
15381respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
15382operate on a per-element basis and the element order is not affected.
15383
15384.. _int_ctpop:
15385
15386'``llvm.ctpop.*``' Intrinsic
15387^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15388
15389Syntax:
15390"""""""
15391
15392This is an overloaded intrinsic. You can use llvm.ctpop on any integer
15393bit width, or on any vector with integer elements. Not all targets
15394support all bit widths or vector types, however.
15395
15396::
15397
15398      declare i8 @llvm.ctpop.i8(i8  <src>)
15399      declare i16 @llvm.ctpop.i16(i16 <src>)
15400      declare i32 @llvm.ctpop.i32(i32 <src>)
15401      declare i64 @llvm.ctpop.i64(i64 <src>)
15402      declare i256 @llvm.ctpop.i256(i256 <src>)
15403      declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
15404
15405Overview:
15406"""""""""
15407
15408The '``llvm.ctpop``' family of intrinsics counts the number of bits set
15409in a value.
15410
15411Arguments:
15412""""""""""
15413
15414The only argument is the value to be counted. The argument may be of any
15415integer type, or a vector with integer elements. The return type must
15416match the argument type.
15417
15418Semantics:
15419""""""""""
15420
15421The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
15422each element of a vector.
15423
15424.. _int_ctlz:
15425
15426'``llvm.ctlz.*``' Intrinsic
15427^^^^^^^^^^^^^^^^^^^^^^^^^^^
15428
15429Syntax:
15430"""""""
15431
15432This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
15433integer bit width, or any vector whose elements are integers. Not all
15434targets support all bit widths or vector types, however.
15435
15436::
15437
15438      declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_poison>)
15439      declare <2 x i37> @llvm.ctlz.v2i37(<2 x i37> <src>, i1 <is_zero_poison>)
15440
15441Overview:
15442"""""""""
15443
15444The '``llvm.ctlz``' family of intrinsic functions counts the number of
15445leading zeros in a variable.
15446
15447Arguments:
15448""""""""""
15449
15450The first argument is the value to be counted. This argument may be of
15451any integer type, or a vector with integer element type. The return
15452type must match the first argument type.
15453
15454The second argument is a constant flag that indicates whether the intrinsic
15455returns a valid result if the first argument is zero. If the first
15456argument is zero and the second argument is true, the result is poison.
15457Historically some architectures did not provide a defined result for zero
15458values as efficiently, and many algorithms are now predicated on avoiding
15459zero-value inputs.
15460
15461Semantics:
15462""""""""""
15463
15464The '``llvm.ctlz``' intrinsic counts the leading (most significant)
15465zeros in a variable, or within each element of the vector. If
15466``src == 0`` then the result is the size in bits of the type of ``src``
15467if ``is_zero_poison == 0`` and ``poison`` otherwise. For example,
15468``llvm.ctlz(i32 2) = 30``.
15469
15470.. _int_cttz:
15471
15472'``llvm.cttz.*``' Intrinsic
15473^^^^^^^^^^^^^^^^^^^^^^^^^^^
15474
15475Syntax:
15476"""""""
15477
15478This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
15479integer bit width, or any vector of integer elements. Not all targets
15480support all bit widths or vector types, however.
15481
15482::
15483
15484      declare i42   @llvm.cttz.i42  (i42   <src>, i1 <is_zero_poison>)
15485      declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_poison>)
15486
15487Overview:
15488"""""""""
15489
15490The '``llvm.cttz``' family of intrinsic functions counts the number of
15491trailing zeros.
15492
15493Arguments:
15494""""""""""
15495
15496The first argument is the value to be counted. This argument may be of
15497any integer type, or a vector with integer element type. The return
15498type must match the first argument type.
15499
15500The second argument is a constant flag that indicates whether the intrinsic
15501returns a valid result if the first argument is zero. If the first
15502argument is zero and the second argument is true, the result is poison.
15503Historically some architectures did not provide a defined result for zero
15504values as efficiently, and many algorithms are now predicated on avoiding
15505zero-value inputs.
15506
15507Semantics:
15508""""""""""
15509
15510The '``llvm.cttz``' intrinsic counts the trailing (least significant)
15511zeros in a variable, or within each element of a vector. If ``src == 0``
15512then the result is the size in bits of the type of ``src`` if
15513``is_zero_poison == 0`` and ``poison`` otherwise. For example,
15514``llvm.cttz(2) = 1``.
15515
15516.. _int_overflow:
15517
15518.. _int_fshl:
15519
15520'``llvm.fshl.*``' Intrinsic
15521^^^^^^^^^^^^^^^^^^^^^^^^^^^
15522
15523Syntax:
15524"""""""
15525
15526This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
15527integer bit width or any vector of integer elements. Not all targets
15528support all bit widths or vector types, however.
15529
15530::
15531
15532      declare i8  @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
15533      declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
15534      declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
15535
15536Overview:
15537"""""""""
15538
15539The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
15540the first two values are concatenated as { %a : %b } (%a is the most significant
15541bits of the wide value), the combined value is shifted left, and the most
15542significant bits are extracted to produce a result that is the same size as the
15543original arguments. If the first 2 arguments are identical, this is equivalent
15544to a rotate left operation. For vector types, the operation occurs for each
15545element of the vector. The shift argument is treated as an unsigned amount
15546modulo the element size of the arguments.
15547
15548Arguments:
15549""""""""""
15550
15551The first two arguments are the values to be concatenated. The third
15552argument is the shift amount. The arguments may be any integer type or a
15553vector with integer element type. All arguments and the return value must
15554have the same type.
15555
15556Example:
15557""""""""
15558
15559.. code-block:: text
15560
15561      %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z)  ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
15562      %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15)  ; %r = i8: 128 (0b10000000)
15563      %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11)  ; %r = i8: 120 (0b01111000)
15564      %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8)   ; %r = i8: 0   (0b00000000)
15565
15566.. _int_fshr:
15567
15568'``llvm.fshr.*``' Intrinsic
15569^^^^^^^^^^^^^^^^^^^^^^^^^^^
15570
15571Syntax:
15572"""""""
15573
15574This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
15575integer bit width or any vector of integer elements. Not all targets
15576support all bit widths or vector types, however.
15577
15578::
15579
15580      declare i8  @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
15581      declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
15582      declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
15583
15584Overview:
15585"""""""""
15586
15587The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
15588the first two values are concatenated as { %a : %b } (%a is the most significant
15589bits of the wide value), the combined value is shifted right, and the least
15590significant bits are extracted to produce a result that is the same size as the
15591original arguments. If the first 2 arguments are identical, this is equivalent
15592to a rotate right operation. For vector types, the operation occurs for each
15593element of the vector. The shift argument is treated as an unsigned amount
15594modulo the element size of the arguments.
15595
15596Arguments:
15597""""""""""
15598
15599The first two arguments are the values to be concatenated. The third
15600argument is the shift amount. The arguments may be any integer type or a
15601vector with integer element type. All arguments and the return value must
15602have the same type.
15603
15604Example:
15605""""""""
15606
15607.. code-block:: text
15608
15609      %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z)  ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
15610      %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15)  ; %r = i8: 254 (0b11111110)
15611      %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11)  ; %r = i8: 225 (0b11100001)
15612      %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8)   ; %r = i8: 255 (0b11111111)
15613
15614Arithmetic with Overflow Intrinsics
15615-----------------------------------
15616
15617LLVM provides intrinsics for fast arithmetic overflow checking.
15618
15619Each of these intrinsics returns a two-element struct. The first
15620element of this struct contains the result of the corresponding
15621arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
15622the result. Therefore, for example, the first element of the struct
15623returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
15624result of a 32-bit ``add`` instruction with the same operands, where
15625the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
15626
15627The second element of the result is an ``i1`` that is 1 if the
15628arithmetic operation overflowed and 0 otherwise. An operation
15629overflows if, for any values of its operands ``A`` and ``B`` and for
15630any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
15631not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
15632``sext`` for signed overflow and ``zext`` for unsigned overflow, and
15633``op`` is the underlying arithmetic operation.
15634
15635The behavior of these intrinsics is well-defined for all argument
15636values.
15637
15638'``llvm.sadd.with.overflow.*``' Intrinsics
15639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15640
15641Syntax:
15642"""""""
15643
15644This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
15645on any integer bit width or vectors of integers.
15646
15647::
15648
15649      declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
15650      declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
15651      declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
15652      declare {<4 x i32>, <4 x i1>} @llvm.sadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
15653
15654Overview:
15655"""""""""
15656
15657The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
15658a signed addition of the two arguments, and indicate whether an overflow
15659occurred during the signed summation.
15660
15661Arguments:
15662""""""""""
15663
15664The arguments (%a and %b) and the first element of the result structure
15665may be of integer types of any bit width, but they must have the same
15666bit width. The second element of the result structure must be of type
15667``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
15668addition.
15669
15670Semantics:
15671""""""""""
15672
15673The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
15674a signed addition of the two variables. They return a structure --- the
15675first element of which is the signed summation, and the second element
15676of which is a bit specifying if the signed summation resulted in an
15677overflow.
15678
15679Examples:
15680"""""""""
15681
15682.. code-block:: llvm
15683
15684      %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
15685      %sum = extractvalue {i32, i1} %res, 0
15686      %obit = extractvalue {i32, i1} %res, 1
15687      br i1 %obit, label %overflow, label %normal
15688
15689'``llvm.uadd.with.overflow.*``' Intrinsics
15690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15691
15692Syntax:
15693"""""""
15694
15695This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
15696on any integer bit width or vectors of integers.
15697
15698::
15699
15700      declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
15701      declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
15702      declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
15703      declare {<4 x i32>, <4 x i1>} @llvm.uadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
15704
15705Overview:
15706"""""""""
15707
15708The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
15709an unsigned addition of the two arguments, and indicate whether a carry
15710occurred during the unsigned summation.
15711
15712Arguments:
15713""""""""""
15714
15715The arguments (%a and %b) and the first element of the result structure
15716may be of integer types of any bit width, but they must have the same
15717bit width. The second element of the result structure must be of type
15718``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
15719addition.
15720
15721Semantics:
15722""""""""""
15723
15724The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
15725an unsigned addition of the two arguments. They return a structure --- the
15726first element of which is the sum, and the second element of which is a
15727bit specifying if the unsigned summation resulted in a carry.
15728
15729Examples:
15730"""""""""
15731
15732.. code-block:: llvm
15733
15734      %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
15735      %sum = extractvalue {i32, i1} %res, 0
15736      %obit = extractvalue {i32, i1} %res, 1
15737      br i1 %obit, label %carry, label %normal
15738
15739'``llvm.ssub.with.overflow.*``' Intrinsics
15740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15741
15742Syntax:
15743"""""""
15744
15745This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
15746on any integer bit width or vectors of integers.
15747
15748::
15749
15750      declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
15751      declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
15752      declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
15753      declare {<4 x i32>, <4 x i1>} @llvm.ssub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
15754
15755Overview:
15756"""""""""
15757
15758The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
15759a signed subtraction of the two arguments, and indicate whether an
15760overflow occurred during the signed subtraction.
15761
15762Arguments:
15763""""""""""
15764
15765The arguments (%a and %b) and the first element of the result structure
15766may be of integer types of any bit width, but they must have the same
15767bit width. The second element of the result structure must be of type
15768``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
15769subtraction.
15770
15771Semantics:
15772""""""""""
15773
15774The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
15775a signed subtraction of the two arguments. They return a structure --- the
15776first element of which is the subtraction, and the second element of
15777which is a bit specifying if the signed subtraction resulted in an
15778overflow.
15779
15780Examples:
15781"""""""""
15782
15783.. code-block:: llvm
15784
15785      %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
15786      %sum = extractvalue {i32, i1} %res, 0
15787      %obit = extractvalue {i32, i1} %res, 1
15788      br i1 %obit, label %overflow, label %normal
15789
15790'``llvm.usub.with.overflow.*``' Intrinsics
15791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15792
15793Syntax:
15794"""""""
15795
15796This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
15797on any integer bit width or vectors of integers.
15798
15799::
15800
15801      declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
15802      declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
15803      declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
15804      declare {<4 x i32>, <4 x i1>} @llvm.usub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
15805
15806Overview:
15807"""""""""
15808
15809The '``llvm.usub.with.overflow``' family of intrinsic functions perform
15810an unsigned subtraction of the two arguments, and indicate whether an
15811overflow occurred during the unsigned subtraction.
15812
15813Arguments:
15814""""""""""
15815
15816The arguments (%a and %b) and the first element of the result structure
15817may be of integer types of any bit width, but they must have the same
15818bit width. The second element of the result structure must be of type
15819``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
15820subtraction.
15821
15822Semantics:
15823""""""""""
15824
15825The '``llvm.usub.with.overflow``' family of intrinsic functions perform
15826an unsigned subtraction of the two arguments. They return a structure ---
15827the first element of which is the subtraction, and the second element of
15828which is a bit specifying if the unsigned subtraction resulted in an
15829overflow.
15830
15831Examples:
15832"""""""""
15833
15834.. code-block:: llvm
15835
15836      %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
15837      %sum = extractvalue {i32, i1} %res, 0
15838      %obit = extractvalue {i32, i1} %res, 1
15839      br i1 %obit, label %overflow, label %normal
15840
15841'``llvm.smul.with.overflow.*``' Intrinsics
15842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15843
15844Syntax:
15845"""""""
15846
15847This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
15848on any integer bit width or vectors of integers.
15849
15850::
15851
15852      declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
15853      declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
15854      declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
15855      declare {<4 x i32>, <4 x i1>} @llvm.smul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
15856
15857Overview:
15858"""""""""
15859
15860The '``llvm.smul.with.overflow``' family of intrinsic functions perform
15861a signed multiplication of the two arguments, and indicate whether an
15862overflow occurred during the signed multiplication.
15863
15864Arguments:
15865""""""""""
15866
15867The arguments (%a and %b) and the first element of the result structure
15868may be of integer types of any bit width, but they must have the same
15869bit width. The second element of the result structure must be of type
15870``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
15871multiplication.
15872
15873Semantics:
15874""""""""""
15875
15876The '``llvm.smul.with.overflow``' family of intrinsic functions perform
15877a signed multiplication of the two arguments. They return a structure ---
15878the first element of which is the multiplication, and the second element
15879of which is a bit specifying if the signed multiplication resulted in an
15880overflow.
15881
15882Examples:
15883"""""""""
15884
15885.. code-block:: llvm
15886
15887      %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
15888      %sum = extractvalue {i32, i1} %res, 0
15889      %obit = extractvalue {i32, i1} %res, 1
15890      br i1 %obit, label %overflow, label %normal
15891
15892'``llvm.umul.with.overflow.*``' Intrinsics
15893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15894
15895Syntax:
15896"""""""
15897
15898This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
15899on any integer bit width or vectors of integers.
15900
15901::
15902
15903      declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
15904      declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
15905      declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
15906      declare {<4 x i32>, <4 x i1>} @llvm.umul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
15907
15908Overview:
15909"""""""""
15910
15911The '``llvm.umul.with.overflow``' family of intrinsic functions perform
15912a unsigned multiplication of the two arguments, and indicate whether an
15913overflow occurred during the unsigned multiplication.
15914
15915Arguments:
15916""""""""""
15917
15918The arguments (%a and %b) and the first element of the result structure
15919may be of integer types of any bit width, but they must have the same
15920bit width. The second element of the result structure must be of type
15921``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
15922multiplication.
15923
15924Semantics:
15925""""""""""
15926
15927The '``llvm.umul.with.overflow``' family of intrinsic functions perform
15928an unsigned multiplication of the two arguments. They return a structure ---
15929the first element of which is the multiplication, and the second
15930element of which is a bit specifying if the unsigned multiplication
15931resulted in an overflow.
15932
15933Examples:
15934"""""""""
15935
15936.. code-block:: llvm
15937
15938      %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
15939      %sum = extractvalue {i32, i1} %res, 0
15940      %obit = extractvalue {i32, i1} %res, 1
15941      br i1 %obit, label %overflow, label %normal
15942
15943Saturation Arithmetic Intrinsics
15944---------------------------------
15945
15946Saturation arithmetic is a version of arithmetic in which operations are
15947limited to a fixed range between a minimum and maximum value. If the result of
15948an operation is greater than the maximum value, the result is set (or
15949"clamped") to this maximum. If it is below the minimum, it is clamped to this
15950minimum.
15951
15952
15953'``llvm.sadd.sat.*``' Intrinsics
15954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15955
15956Syntax
15957"""""""
15958
15959This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
15960on any integer bit width or vectors of integers.
15961
15962::
15963
15964      declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
15965      declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
15966      declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
15967      declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
15968
15969Overview
15970"""""""""
15971
15972The '``llvm.sadd.sat``' family of intrinsic functions perform signed
15973saturating addition on the 2 arguments.
15974
15975Arguments
15976""""""""""
15977
15978The arguments (%a and %b) and the result may be of integer types of any bit
15979width, but they must have the same bit width. ``%a`` and ``%b`` are the two
15980values that will undergo signed addition.
15981
15982Semantics:
15983""""""""""
15984
15985The maximum value this operation can clamp to is the largest signed value
15986representable by the bit width of the arguments. The minimum value is the
15987smallest signed value representable by this bit width.
15988
15989
15990Examples
15991"""""""""
15992
15993.. code-block:: llvm
15994
15995      %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2)  ; %res = 3
15996      %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6)  ; %res = 7
15997      %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2)  ; %res = -2
15998      %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5)  ; %res = -8
15999
16000
16001'``llvm.uadd.sat.*``' Intrinsics
16002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16003
16004Syntax
16005"""""""
16006
16007This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
16008on any integer bit width or vectors of integers.
16009
16010::
16011
16012      declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
16013      declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
16014      declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
16015      declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
16016
16017Overview
16018"""""""""
16019
16020The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
16021saturating addition on the 2 arguments.
16022
16023Arguments
16024""""""""""
16025
16026The arguments (%a and %b) and the result may be of integer types of any bit
16027width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16028values that will undergo unsigned addition.
16029
16030Semantics:
16031""""""""""
16032
16033The maximum value this operation can clamp to is the largest unsigned value
16034representable by the bit width of the arguments. Because this is an unsigned
16035operation, the result will never saturate towards zero.
16036
16037
16038Examples
16039"""""""""
16040
16041.. code-block:: llvm
16042
16043      %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2)  ; %res = 3
16044      %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6)  ; %res = 11
16045      %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8)  ; %res = 15
16046
16047
16048'``llvm.ssub.sat.*``' Intrinsics
16049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16050
16051Syntax
16052"""""""
16053
16054This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
16055on any integer bit width or vectors of integers.
16056
16057::
16058
16059      declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
16060      declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
16061      declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
16062      declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
16063
16064Overview
16065"""""""""
16066
16067The '``llvm.ssub.sat``' family of intrinsic functions perform signed
16068saturating subtraction on the 2 arguments.
16069
16070Arguments
16071""""""""""
16072
16073The arguments (%a and %b) and the result may be of integer types of any bit
16074width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16075values that will undergo signed subtraction.
16076
16077Semantics:
16078""""""""""
16079
16080The maximum value this operation can clamp to is the largest signed value
16081representable by the bit width of the arguments. The minimum value is the
16082smallest signed value representable by this bit width.
16083
16084
16085Examples
16086"""""""""
16087
16088.. code-block:: llvm
16089
16090      %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1)  ; %res = 1
16091      %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6)  ; %res = -4
16092      %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5)  ; %res = -8
16093      %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5)  ; %res = 7
16094
16095
16096'``llvm.usub.sat.*``' Intrinsics
16097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16098
16099Syntax
16100"""""""
16101
16102This is an overloaded intrinsic. You can use ``llvm.usub.sat``
16103on any integer bit width or vectors of integers.
16104
16105::
16106
16107      declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
16108      declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
16109      declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
16110      declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
16111
16112Overview
16113"""""""""
16114
16115The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
16116saturating subtraction on the 2 arguments.
16117
16118Arguments
16119""""""""""
16120
16121The arguments (%a and %b) and the result may be of integer types of any bit
16122width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16123values that will undergo unsigned subtraction.
16124
16125Semantics:
16126""""""""""
16127
16128The minimum value this operation can clamp to is 0, which is the smallest
16129unsigned value representable by the bit width of the unsigned arguments.
16130Because this is an unsigned operation, the result will never saturate towards
16131the largest possible value representable by this bit width.
16132
16133
16134Examples
16135"""""""""
16136
16137.. code-block:: llvm
16138
16139      %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1)  ; %res = 1
16140      %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6)  ; %res = 0
16141
16142
16143'``llvm.sshl.sat.*``' Intrinsics
16144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16145
16146Syntax
16147"""""""
16148
16149This is an overloaded intrinsic. You can use ``llvm.sshl.sat``
16150on integers or vectors of integers of any bit width.
16151
16152::
16153
16154      declare i16 @llvm.sshl.sat.i16(i16 %a, i16 %b)
16155      declare i32 @llvm.sshl.sat.i32(i32 %a, i32 %b)
16156      declare i64 @llvm.sshl.sat.i64(i64 %a, i64 %b)
16157      declare <4 x i32> @llvm.sshl.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
16158
16159Overview
16160"""""""""
16161
16162The '``llvm.sshl.sat``' family of intrinsic functions perform signed
16163saturating left shift on the first argument.
16164
16165Arguments
16166""""""""""
16167
16168The arguments (``%a`` and ``%b``) and the result may be of integer types of any
16169bit width, but they must have the same bit width. ``%a`` is the value to be
16170shifted, and ``%b`` is the amount to shift by. If ``b`` is (statically or
16171dynamically) equal to or larger than the integer bit width of the arguments,
16172the result is a :ref:`poison value <poisonvalues>`. If the arguments are
16173vectors, each vector element of ``a`` is shifted by the corresponding shift
16174amount in ``b``.
16175
16176
16177Semantics:
16178""""""""""
16179
16180The maximum value this operation can clamp to is the largest signed value
16181representable by the bit width of the arguments. The minimum value is the
16182smallest signed value representable by this bit width.
16183
16184
16185Examples
16186"""""""""
16187
16188.. code-block:: llvm
16189
16190      %res = call i4 @llvm.sshl.sat.i4(i4 2, i4 1)  ; %res = 4
16191      %res = call i4 @llvm.sshl.sat.i4(i4 2, i4 2)  ; %res = 7
16192      %res = call i4 @llvm.sshl.sat.i4(i4 -5, i4 1)  ; %res = -8
16193      %res = call i4 @llvm.sshl.sat.i4(i4 -1, i4 1)  ; %res = -2
16194
16195
16196'``llvm.ushl.sat.*``' Intrinsics
16197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16198
16199Syntax
16200"""""""
16201
16202This is an overloaded intrinsic. You can use ``llvm.ushl.sat``
16203on integers or vectors of integers of any bit width.
16204
16205::
16206
16207      declare i16 @llvm.ushl.sat.i16(i16 %a, i16 %b)
16208      declare i32 @llvm.ushl.sat.i32(i32 %a, i32 %b)
16209      declare i64 @llvm.ushl.sat.i64(i64 %a, i64 %b)
16210      declare <4 x i32> @llvm.ushl.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
16211
16212Overview
16213"""""""""
16214
16215The '``llvm.ushl.sat``' family of intrinsic functions perform unsigned
16216saturating left shift on the first argument.
16217
16218Arguments
16219""""""""""
16220
16221The arguments (``%a`` and ``%b``) and the result may be of integer types of any
16222bit width, but they must have the same bit width. ``%a`` is the value to be
16223shifted, and ``%b`` is the amount to shift by. If ``b`` is (statically or
16224dynamically) equal to or larger than the integer bit width of the arguments,
16225the result is a :ref:`poison value <poisonvalues>`. If the arguments are
16226vectors, each vector element of ``a`` is shifted by the corresponding shift
16227amount in ``b``.
16228
16229Semantics:
16230""""""""""
16231
16232The maximum value this operation can clamp to is the largest unsigned value
16233representable by the bit width of the arguments.
16234
16235
16236Examples
16237"""""""""
16238
16239.. code-block:: llvm
16240
16241      %res = call i4 @llvm.ushl.sat.i4(i4 2, i4 1)  ; %res = 4
16242      %res = call i4 @llvm.ushl.sat.i4(i4 3, i4 3)  ; %res = 15
16243
16244
16245Fixed Point Arithmetic Intrinsics
16246---------------------------------
16247
16248A fixed point number represents a real data type for a number that has a fixed
16249number of digits after a radix point (equivalent to the decimal point '.').
16250The number of digits after the radix point is referred as the `scale`. These
16251are useful for representing fractional values to a specific precision. The
16252following intrinsics perform fixed point arithmetic operations on 2 operands
16253of the same scale, specified as the third argument.
16254
16255The ``llvm.*mul.fix`` family of intrinsic functions represents a multiplication
16256of fixed point numbers through scaled integers. Therefore, fixed point
16257multiplication can be represented as
16258
16259.. code-block:: llvm
16260
16261        %result = call i4 @llvm.smul.fix.i4(i4 %a, i4 %b, i32 %scale)
16262
16263        ; Expands to
16264        %a2 = sext i4 %a to i8
16265        %b2 = sext i4 %b to i8
16266        %mul = mul nsw nuw i8 %a2, %b2
16267        %scale2 = trunc i32 %scale to i8
16268        %r = ashr i8 %mul, i8 %scale2  ; this is for a target rounding down towards negative infinity
16269        %result = trunc i8 %r to i4
16270
16271The ``llvm.*div.fix`` family of intrinsic functions represents a division of
16272fixed point numbers through scaled integers. Fixed point division can be
16273represented as:
16274
16275.. code-block:: llvm
16276
16277        %result call i4 @llvm.sdiv.fix.i4(i4 %a, i4 %b, i32 %scale)
16278
16279        ; Expands to
16280        %a2 = sext i4 %a to i8
16281        %b2 = sext i4 %b to i8
16282        %scale2 = trunc i32 %scale to i8
16283        %a3 = shl i8 %a2, %scale2
16284        %r = sdiv i8 %a3, %b2 ; this is for a target rounding towards zero
16285        %result = trunc i8 %r to i4
16286
16287For each of these functions, if the result cannot be represented exactly with
16288the provided scale, the result is rounded. Rounding is unspecified since
16289preferred rounding may vary for different targets. Rounding is specified
16290through a target hook. Different pipelines should legalize or optimize this
16291using the rounding specified by this hook if it is provided. Operations like
16292constant folding, instruction combining, KnownBits, and ValueTracking should
16293also use this hook, if provided, and not assume the direction of rounding. A
16294rounded result must always be within one unit of precision from the true
16295result. That is, the error between the returned result and the true result must
16296be less than 1/2^(scale).
16297
16298
16299'``llvm.smul.fix.*``' Intrinsics
16300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16301
16302Syntax
16303"""""""
16304
16305This is an overloaded intrinsic. You can use ``llvm.smul.fix``
16306on any integer bit width or vectors of integers.
16307
16308::
16309
16310      declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
16311      declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
16312      declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
16313      declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16314
16315Overview
16316"""""""""
16317
16318The '``llvm.smul.fix``' family of intrinsic functions perform signed
16319fixed point multiplication on 2 arguments of the same scale.
16320
16321Arguments
16322""""""""""
16323
16324The arguments (%a and %b) and the result may be of integer types of any bit
16325width, but they must have the same bit width. The arguments may also work with
16326int vectors of the same length and int size. ``%a`` and ``%b`` are the two
16327values that will undergo signed fixed point multiplication. The argument
16328``%scale`` represents the scale of both operands, and must be a constant
16329integer.
16330
16331Semantics:
16332""""""""""
16333
16334This operation performs fixed point multiplication on the 2 arguments of a
16335specified scale. The result will also be returned in the same scale specified
16336in the third argument.
16337
16338If the result value cannot be precisely represented in the given scale, the
16339value is rounded up or down to the closest representable value. The rounding
16340direction is unspecified.
16341
16342It is undefined behavior if the result value does not fit within the range of
16343the fixed point type.
16344
16345
16346Examples
16347"""""""""
16348
16349.. code-block:: llvm
16350
16351      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
16352      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
16353      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1)  ; %res = -3 (1.5 x -1 = -1.5)
16354
16355      ; The result in the following could be rounded up to -2 or down to -2.5
16356      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1)  ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
16357
16358
16359'``llvm.umul.fix.*``' Intrinsics
16360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16361
16362Syntax
16363"""""""
16364
16365This is an overloaded intrinsic. You can use ``llvm.umul.fix``
16366on any integer bit width or vectors of integers.
16367
16368::
16369
16370      declare i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 %scale)
16371      declare i32 @llvm.umul.fix.i32(i32 %a, i32 %b, i32 %scale)
16372      declare i64 @llvm.umul.fix.i64(i64 %a, i64 %b, i32 %scale)
16373      declare <4 x i32> @llvm.umul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16374
16375Overview
16376"""""""""
16377
16378The '``llvm.umul.fix``' family of intrinsic functions perform unsigned
16379fixed point multiplication on 2 arguments of the same scale.
16380
16381Arguments
16382""""""""""
16383
16384The arguments (%a and %b) and the result may be of integer types of any bit
16385width, but they must have the same bit width. The arguments may also work with
16386int vectors of the same length and int size. ``%a`` and ``%b`` are the two
16387values that will undergo unsigned fixed point multiplication. The argument
16388``%scale`` represents the scale of both operands, and must be a constant
16389integer.
16390
16391Semantics:
16392""""""""""
16393
16394This operation performs unsigned fixed point multiplication on the 2 arguments of a
16395specified scale. The result will also be returned in the same scale specified
16396in the third argument.
16397
16398If the result value cannot be precisely represented in the given scale, the
16399value is rounded up or down to the closest representable value. The rounding
16400direction is unspecified.
16401
16402It is undefined behavior if the result value does not fit within the range of
16403the fixed point type.
16404
16405
16406Examples
16407"""""""""
16408
16409.. code-block:: llvm
16410
16411      %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
16412      %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
16413
16414      ; The result in the following could be rounded down to 3.5 or up to 4
16415      %res = call i4 @llvm.umul.fix.i4(i4 15, i4 1, i32 1)  ; %res = 7 (or 8) (7.5 x 0.5 = 3.75)
16416
16417
16418'``llvm.smul.fix.sat.*``' Intrinsics
16419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16420
16421Syntax
16422"""""""
16423
16424This is an overloaded intrinsic. You can use ``llvm.smul.fix.sat``
16425on any integer bit width or vectors of integers.
16426
16427::
16428
16429      declare i16 @llvm.smul.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
16430      declare i32 @llvm.smul.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
16431      declare i64 @llvm.smul.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
16432      declare <4 x i32> @llvm.smul.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16433
16434Overview
16435"""""""""
16436
16437The '``llvm.smul.fix.sat``' family of intrinsic functions perform signed
16438fixed point saturating multiplication on 2 arguments of the same scale.
16439
16440Arguments
16441""""""""""
16442
16443The arguments (%a and %b) and the result may be of integer types of any bit
16444width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16445values that will undergo signed fixed point multiplication. The argument
16446``%scale`` represents the scale of both operands, and must be a constant
16447integer.
16448
16449Semantics:
16450""""""""""
16451
16452This operation performs fixed point multiplication on the 2 arguments of a
16453specified scale. The result will also be returned in the same scale specified
16454in the third argument.
16455
16456If the result value cannot be precisely represented in the given scale, the
16457value is rounded up or down to the closest representable value. The rounding
16458direction is unspecified.
16459
16460The maximum value this operation can clamp to is the largest signed value
16461representable by the bit width of the first 2 arguments. The minimum value is the
16462smallest signed value representable by this bit width.
16463
16464
16465Examples
16466"""""""""
16467
16468.. code-block:: llvm
16469
16470      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
16471      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
16472      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 -2, i32 1)  ; %res = -3 (1.5 x -1 = -1.5)
16473
16474      ; The result in the following could be rounded up to -2 or down to -2.5
16475      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 -3, i32 1)  ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
16476
16477      ; Saturation
16478      %res = call i4 @llvm.smul.fix.sat.i4(i4 7, i4 2, i32 0)  ; %res = 7
16479      %res = call i4 @llvm.smul.fix.sat.i4(i4 7, i4 4, i32 2)  ; %res = 7
16480      %res = call i4 @llvm.smul.fix.sat.i4(i4 -8, i4 5, i32 2)  ; %res = -8
16481      %res = call i4 @llvm.smul.fix.sat.i4(i4 -8, i4 -2, i32 1)  ; %res = 7
16482
16483      ; Scale can affect the saturation result
16484      %res = call i4 @llvm.smul.fix.sat.i4(i4 2, i4 4, i32 0)  ; %res = 7 (2 x 4 -> clamped to 7)
16485      %res = call i4 @llvm.smul.fix.sat.i4(i4 2, i4 4, i32 1)  ; %res = 4 (1 x 2 = 2)
16486
16487
16488'``llvm.umul.fix.sat.*``' Intrinsics
16489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16490
16491Syntax
16492"""""""
16493
16494This is an overloaded intrinsic. You can use ``llvm.umul.fix.sat``
16495on any integer bit width or vectors of integers.
16496
16497::
16498
16499      declare i16 @llvm.umul.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
16500      declare i32 @llvm.umul.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
16501      declare i64 @llvm.umul.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
16502      declare <4 x i32> @llvm.umul.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16503
16504Overview
16505"""""""""
16506
16507The '``llvm.umul.fix.sat``' family of intrinsic functions perform unsigned
16508fixed point saturating multiplication on 2 arguments of the same scale.
16509
16510Arguments
16511""""""""""
16512
16513The arguments (%a and %b) and the result may be of integer types of any bit
16514width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16515values that will undergo unsigned fixed point multiplication. The argument
16516``%scale`` represents the scale of both operands, and must be a constant
16517integer.
16518
16519Semantics:
16520""""""""""
16521
16522This operation performs fixed point multiplication on the 2 arguments of a
16523specified scale. The result will also be returned in the same scale specified
16524in the third argument.
16525
16526If the result value cannot be precisely represented in the given scale, the
16527value is rounded up or down to the closest representable value. The rounding
16528direction is unspecified.
16529
16530The maximum value this operation can clamp to is the largest unsigned value
16531representable by the bit width of the first 2 arguments. The minimum value is the
16532smallest unsigned value representable by this bit width (zero).
16533
16534
16535Examples
16536"""""""""
16537
16538.. code-block:: llvm
16539
16540      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
16541      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
16542
16543      ; The result in the following could be rounded down to 2 or up to 2.5
16544      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 3, i32 1)  ; %res = 4 (or 5) (1.5 x 1.5 = 2.25)
16545
16546      ; Saturation
16547      %res = call i4 @llvm.umul.fix.sat.i4(i4 8, i4 2, i32 0)  ; %res = 15 (8 x 2 -> clamped to 15)
16548      %res = call i4 @llvm.umul.fix.sat.i4(i4 8, i4 8, i32 2)  ; %res = 15 (2 x 2 -> clamped to 3.75)
16549
16550      ; Scale can affect the saturation result
16551      %res = call i4 @llvm.umul.fix.sat.i4(i4 2, i4 4, i32 0)  ; %res = 7 (2 x 4 -> clamped to 7)
16552      %res = call i4 @llvm.umul.fix.sat.i4(i4 2, i4 4, i32 1)  ; %res = 4 (1 x 2 = 2)
16553
16554
16555'``llvm.sdiv.fix.*``' Intrinsics
16556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16557
16558Syntax
16559"""""""
16560
16561This is an overloaded intrinsic. You can use ``llvm.sdiv.fix``
16562on any integer bit width or vectors of integers.
16563
16564::
16565
16566      declare i16 @llvm.sdiv.fix.i16(i16 %a, i16 %b, i32 %scale)
16567      declare i32 @llvm.sdiv.fix.i32(i32 %a, i32 %b, i32 %scale)
16568      declare i64 @llvm.sdiv.fix.i64(i64 %a, i64 %b, i32 %scale)
16569      declare <4 x i32> @llvm.sdiv.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16570
16571Overview
16572"""""""""
16573
16574The '``llvm.sdiv.fix``' family of intrinsic functions perform signed
16575fixed point division on 2 arguments of the same scale.
16576
16577Arguments
16578""""""""""
16579
16580The arguments (%a and %b) and the result may be of integer types of any bit
16581width, but they must have the same bit width. The arguments may also work with
16582int vectors of the same length and int size. ``%a`` and ``%b`` are the two
16583values that will undergo signed fixed point division. The argument
16584``%scale`` represents the scale of both operands, and must be a constant
16585integer.
16586
16587Semantics:
16588""""""""""
16589
16590This operation performs fixed point division on the 2 arguments of a
16591specified scale. The result will also be returned in the same scale specified
16592in the third argument.
16593
16594If the result value cannot be precisely represented in the given scale, the
16595value is rounded up or down to the closest representable value. The rounding
16596direction is unspecified.
16597
16598It is undefined behavior if the result value does not fit within the range of
16599the fixed point type, or if the second argument is zero.
16600
16601
16602Examples
16603"""""""""
16604
16605.. code-block:: llvm
16606
16607      %res = call i4 @llvm.sdiv.fix.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
16608      %res = call i4 @llvm.sdiv.fix.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
16609      %res = call i4 @llvm.sdiv.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 / -1 = -1.5)
16610
16611      ; The result in the following could be rounded up to 1 or down to 0.5
16612      %res = call i4 @llvm.sdiv.fix.i4(i4 3, i4 4, i32 1)  ; %res = 2 (or 1) (1.5 / 2 = 0.75)
16613
16614
16615'``llvm.udiv.fix.*``' Intrinsics
16616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16617
16618Syntax
16619"""""""
16620
16621This is an overloaded intrinsic. You can use ``llvm.udiv.fix``
16622on any integer bit width or vectors of integers.
16623
16624::
16625
16626      declare i16 @llvm.udiv.fix.i16(i16 %a, i16 %b, i32 %scale)
16627      declare i32 @llvm.udiv.fix.i32(i32 %a, i32 %b, i32 %scale)
16628      declare i64 @llvm.udiv.fix.i64(i64 %a, i64 %b, i32 %scale)
16629      declare <4 x i32> @llvm.udiv.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16630
16631Overview
16632"""""""""
16633
16634The '``llvm.udiv.fix``' family of intrinsic functions perform unsigned
16635fixed point division on 2 arguments of the same scale.
16636
16637Arguments
16638""""""""""
16639
16640The arguments (%a and %b) and the result may be of integer types of any bit
16641width, but they must have the same bit width. The arguments may also work with
16642int vectors of the same length and int size. ``%a`` and ``%b`` are the two
16643values that will undergo unsigned fixed point division. The argument
16644``%scale`` represents the scale of both operands, and must be a constant
16645integer.
16646
16647Semantics:
16648""""""""""
16649
16650This operation performs fixed point division on the 2 arguments of a
16651specified scale. The result will also be returned in the same scale specified
16652in the third argument.
16653
16654If the result value cannot be precisely represented in the given scale, the
16655value is rounded up or down to the closest representable value. The rounding
16656direction is unspecified.
16657
16658It is undefined behavior if the result value does not fit within the range of
16659the fixed point type, or if the second argument is zero.
16660
16661
16662Examples
16663"""""""""
16664
16665.. code-block:: llvm
16666
16667      %res = call i4 @llvm.udiv.fix.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
16668      %res = call i4 @llvm.udiv.fix.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
16669      %res = call i4 @llvm.udiv.fix.i4(i4 1, i4 -8, i32 4) ; %res = 2 (0.0625 / 0.5 = 0.125)
16670
16671      ; The result in the following could be rounded up to 1 or down to 0.5
16672      %res = call i4 @llvm.udiv.fix.i4(i4 3, i4 4, i32 1)  ; %res = 2 (or 1) (1.5 / 2 = 0.75)
16673
16674
16675'``llvm.sdiv.fix.sat.*``' Intrinsics
16676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16677
16678Syntax
16679"""""""
16680
16681This is an overloaded intrinsic. You can use ``llvm.sdiv.fix.sat``
16682on any integer bit width or vectors of integers.
16683
16684::
16685
16686      declare i16 @llvm.sdiv.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
16687      declare i32 @llvm.sdiv.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
16688      declare i64 @llvm.sdiv.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
16689      declare <4 x i32> @llvm.sdiv.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16690
16691Overview
16692"""""""""
16693
16694The '``llvm.sdiv.fix.sat``' family of intrinsic functions perform signed
16695fixed point saturating division on 2 arguments of the same scale.
16696
16697Arguments
16698""""""""""
16699
16700The arguments (%a and %b) and the result may be of integer types of any bit
16701width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16702values that will undergo signed fixed point division. The argument
16703``%scale`` represents the scale of both operands, and must be a constant
16704integer.
16705
16706Semantics:
16707""""""""""
16708
16709This operation performs fixed point division on the 2 arguments of a
16710specified scale. The result will also be returned in the same scale specified
16711in the third argument.
16712
16713If the result value cannot be precisely represented in the given scale, the
16714value is rounded up or down to the closest representable value. The rounding
16715direction is unspecified.
16716
16717The maximum value this operation can clamp to is the largest signed value
16718representable by the bit width of the first 2 arguments. The minimum value is the
16719smallest signed value representable by this bit width.
16720
16721It is undefined behavior if the second argument is zero.
16722
16723
16724Examples
16725"""""""""
16726
16727.. code-block:: llvm
16728
16729      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
16730      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
16731      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 / -1 = -1.5)
16732
16733      ; The result in the following could be rounded up to 1 or down to 0.5
16734      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 3, i4 4, i32 1)  ; %res = 2 (or 1) (1.5 / 2 = 0.75)
16735
16736      ; Saturation
16737      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 -8, i4 -1, i32 0)  ; %res = 7 (-8 / -1 = 8 => 7)
16738      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 4, i4 2, i32 2)  ; %res = 7 (1 / 0.5 = 2 => 1.75)
16739      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 -4, i4 1, i32 2)  ; %res = -8 (-1 / 0.25 = -4 => -2)
16740
16741
16742'``llvm.udiv.fix.sat.*``' Intrinsics
16743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16744
16745Syntax
16746"""""""
16747
16748This is an overloaded intrinsic. You can use ``llvm.udiv.fix.sat``
16749on any integer bit width or vectors of integers.
16750
16751::
16752
16753      declare i16 @llvm.udiv.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
16754      declare i32 @llvm.udiv.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
16755      declare i64 @llvm.udiv.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
16756      declare <4 x i32> @llvm.udiv.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
16757
16758Overview
16759"""""""""
16760
16761The '``llvm.udiv.fix.sat``' family of intrinsic functions perform unsigned
16762fixed point saturating division on 2 arguments of the same scale.
16763
16764Arguments
16765""""""""""
16766
16767The arguments (%a and %b) and the result may be of integer types of any bit
16768width, but they must have the same bit width. ``%a`` and ``%b`` are the two
16769values that will undergo unsigned fixed point division. The argument
16770``%scale`` represents the scale of both operands, and must be a constant
16771integer.
16772
16773Semantics:
16774""""""""""
16775
16776This operation performs fixed point division on the 2 arguments of a
16777specified scale. The result will also be returned in the same scale specified
16778in the third argument.
16779
16780If the result value cannot be precisely represented in the given scale, the
16781value is rounded up or down to the closest representable value. The rounding
16782direction is unspecified.
16783
16784The maximum value this operation can clamp to is the largest unsigned value
16785representable by the bit width of the first 2 arguments. The minimum value is the
16786smallest unsigned value representable by this bit width (zero).
16787
16788It is undefined behavior if the second argument is zero.
16789
16790Examples
16791"""""""""
16792
16793.. code-block:: llvm
16794
16795      %res = call i4 @llvm.udiv.fix.sat.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
16796      %res = call i4 @llvm.udiv.fix.sat.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
16797
16798      ; The result in the following could be rounded down to 0.5 or up to 1
16799      %res = call i4 @llvm.udiv.fix.sat.i4(i4 3, i4 4, i32 1)  ; %res = 1 (or 2) (1.5 / 2 = 0.75)
16800
16801      ; Saturation
16802      %res = call i4 @llvm.udiv.fix.sat.i4(i4 8, i4 2, i32 2)  ; %res = 15 (2 / 0.5 = 4 => 3.75)
16803
16804
16805Specialised Arithmetic Intrinsics
16806---------------------------------
16807
16808.. _i_intr_llvm_canonicalize:
16809
16810'``llvm.canonicalize.*``' Intrinsic
16811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16812
16813Syntax:
16814"""""""
16815
16816::
16817
16818      declare float @llvm.canonicalize.f32(float %a)
16819      declare double @llvm.canonicalize.f64(double %b)
16820
16821Overview:
16822"""""""""
16823
16824The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
16825encoding of a floating-point number. This canonicalization is useful for
16826implementing certain numeric primitives such as frexp. The canonical encoding is
16827defined by IEEE-754-2008 to be:
16828
16829::
16830
16831      2.1.8 canonical encoding: The preferred encoding of a floating-point
16832      representation in a format. Applied to declets, significands of finite
16833      numbers, infinities, and NaNs, especially in decimal formats.
16834
16835This operation can also be considered equivalent to the IEEE-754-2008
16836conversion of a floating-point value to the same format. NaNs are handled
16837according to section 6.2.
16838
16839Examples of non-canonical encodings:
16840
16841- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
16842  converted to a canonical representation per hardware-specific protocol.
16843- Many normal decimal floating-point numbers have non-canonical alternative
16844  encodings.
16845- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
16846  These are treated as non-canonical encodings of zero and will be flushed to
16847  a zero of the same sign by this operation.
16848
16849Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
16850default exception handling must signal an invalid exception, and produce a
16851quiet NaN result.
16852
16853This function should always be implementable as multiplication by 1.0, provided
16854that the compiler does not constant fold the operation. Likewise, division by
168551.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
16856-0.0 is also sufficient provided that the rounding mode is not -Infinity.
16857
16858``@llvm.canonicalize`` must preserve the equality relation. That is:
16859
16860- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
16861- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent
16862  to ``(x == y)``
16863
16864Additionally, the sign of zero must be conserved:
16865``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
16866
16867The payload bits of a NaN must be conserved, with two exceptions.
16868First, environments which use only a single canonical representation of NaN
16869must perform said canonicalization. Second, SNaNs must be quieted per the
16870usual methods.
16871
16872The canonicalization operation may be optimized away if:
16873
16874- The input is known to be canonical. For example, it was produced by a
16875  floating-point operation that is required by the standard to be canonical.
16876- The result is consumed only by (or fused with) other floating-point
16877  operations. That is, the bits of the floating-point value are not examined.
16878
16879.. _int_fmuladd:
16880
16881'``llvm.fmuladd.*``' Intrinsic
16882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16883
16884Syntax:
16885"""""""
16886
16887::
16888
16889      declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
16890      declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
16891
16892Overview:
16893"""""""""
16894
16895The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
16896expressions that can be fused if the code generator determines that (a) the
16897target instruction set has support for a fused operation, and (b) that the
16898fused operation is more efficient than the equivalent, separate pair of mul
16899and add instructions.
16900
16901Arguments:
16902""""""""""
16903
16904The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
16905multiplicands, a and b, and an addend c.
16906
16907Semantics:
16908""""""""""
16909
16910The expression:
16911
16912::
16913
16914      %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
16915
16916is equivalent to the expression a \* b + c, except that it is unspecified
16917whether rounding will be performed between the multiplication and addition
16918steps. Fusion is not guaranteed, even if the target platform supports it.
16919If a fused multiply-add is required, the corresponding
16920:ref:`llvm.fma <int_fma>` intrinsic function should be used instead.
16921This never sets errno, just as '``llvm.fma.*``'.
16922
16923Examples:
16924"""""""""
16925
16926.. code-block:: llvm
16927
16928      %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
16929
16930
16931Hardware-Loop Intrinsics
16932------------------------
16933
16934LLVM support several intrinsics to mark a loop as a hardware-loop. They are
16935hints to the backend which are required to lower these intrinsics further to target
16936specific instructions, or revert the hardware-loop to a normal loop if target
16937specific restriction are not met and a hardware-loop can't be generated.
16938
16939These intrinsics may be modified in the future and are not intended to be used
16940outside the backend. Thus, front-end and mid-level optimizations should not be
16941generating these intrinsics.
16942
16943
16944'``llvm.set.loop.iterations.*``' Intrinsic
16945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16946
16947Syntax:
16948"""""""
16949
16950This is an overloaded intrinsic.
16951
16952::
16953
16954      declare void @llvm.set.loop.iterations.i32(i32)
16955      declare void @llvm.set.loop.iterations.i64(i64)
16956
16957Overview:
16958"""""""""
16959
16960The '``llvm.set.loop.iterations.*``' intrinsics are used to specify the
16961hardware-loop trip count. They are placed in the loop preheader basic block and
16962are marked as ``IntrNoDuplicate`` to avoid optimizers duplicating these
16963instructions.
16964
16965Arguments:
16966""""""""""
16967
16968The integer operand is the loop trip count of the hardware-loop, and thus
16969not e.g. the loop back-edge taken count.
16970
16971Semantics:
16972""""""""""
16973
16974The '``llvm.set.loop.iterations.*``' intrinsics do not perform any arithmetic
16975on their operand. It's a hint to the backend that can use this to set up the
16976hardware-loop count with a target specific instruction, usually a move of this
16977value to a special register or a hardware-loop instruction.
16978
16979
16980'``llvm.start.loop.iterations.*``' Intrinsic
16981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16982
16983Syntax:
16984"""""""
16985
16986This is an overloaded intrinsic.
16987
16988::
16989
16990      declare i32 @llvm.start.loop.iterations.i32(i32)
16991      declare i64 @llvm.start.loop.iterations.i64(i64)
16992
16993Overview:
16994"""""""""
16995
16996The '``llvm.start.loop.iterations.*``' intrinsics are similar to the
16997'``llvm.set.loop.iterations.*``' intrinsics, used to specify the
16998hardware-loop trip count but also produce a value identical to the input
16999that can be used as the input to the loop. They are placed in the loop
17000preheader basic block and the output is expected to be the input to the
17001phi for the induction variable of the loop, decremented by the
17002'``llvm.loop.decrement.reg.*``'.
17003
17004Arguments:
17005""""""""""
17006
17007The integer operand is the loop trip count of the hardware-loop, and thus
17008not e.g. the loop back-edge taken count.
17009
17010Semantics:
17011""""""""""
17012
17013The '``llvm.start.loop.iterations.*``' intrinsics do not perform any arithmetic
17014on their operand. It's a hint to the backend that can use this to set up the
17015hardware-loop count with a target specific instruction, usually a move of this
17016value to a special register or a hardware-loop instruction.
17017
17018'``llvm.test.set.loop.iterations.*``' Intrinsic
17019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17020
17021Syntax:
17022"""""""
17023
17024This is an overloaded intrinsic.
17025
17026::
17027
17028      declare i1 @llvm.test.set.loop.iterations.i32(i32)
17029      declare i1 @llvm.test.set.loop.iterations.i64(i64)
17030
17031Overview:
17032"""""""""
17033
17034The '``llvm.test.set.loop.iterations.*``' intrinsics are used to specify the
17035the loop trip count, and also test that the given count is not zero, allowing
17036it to control entry to a while-loop.  They are placed in the loop preheader's
17037predecessor basic block, and are marked as ``IntrNoDuplicate`` to avoid
17038optimizers duplicating these instructions.
17039
17040Arguments:
17041""""""""""
17042
17043The integer operand is the loop trip count of the hardware-loop, and thus
17044not e.g. the loop back-edge taken count.
17045
17046Semantics:
17047""""""""""
17048
17049The '``llvm.test.set.loop.iterations.*``' intrinsics do not perform any
17050arithmetic on their operand. It's a hint to the backend that can use this to
17051set up the hardware-loop count with a target specific instruction, usually a
17052move of this value to a special register or a hardware-loop instruction.
17053The result is the conditional value of whether the given count is not zero.
17054
17055
17056'``llvm.test.start.loop.iterations.*``' Intrinsic
17057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17058
17059Syntax:
17060"""""""
17061
17062This is an overloaded intrinsic.
17063
17064::
17065
17066      declare {i32, i1} @llvm.test.start.loop.iterations.i32(i32)
17067      declare {i64, i1} @llvm.test.start.loop.iterations.i64(i64)
17068
17069Overview:
17070"""""""""
17071
17072The '``llvm.test.start.loop.iterations.*``' intrinsics are similar to the
17073'``llvm.test.set.loop.iterations.*``' and '``llvm.start.loop.iterations.*``'
17074intrinsics, used to specify the hardware-loop trip count, but also produce a
17075value identical to the input that can be used as the input to the loop. The
17076second i1 output controls entry to a while-loop.
17077
17078Arguments:
17079""""""""""
17080
17081The integer operand is the loop trip count of the hardware-loop, and thus
17082not e.g. the loop back-edge taken count.
17083
17084Semantics:
17085""""""""""
17086
17087The '``llvm.test.start.loop.iterations.*``' intrinsics do not perform any
17088arithmetic on their operand. It's a hint to the backend that can use this to
17089set up the hardware-loop count with a target specific instruction, usually a
17090move of this value to a special register or a hardware-loop instruction.
17091The result is a pair of the input and a conditional value of whether the
17092given count is not zero.
17093
17094
17095'``llvm.loop.decrement.reg.*``' Intrinsic
17096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17097
17098Syntax:
17099"""""""
17100
17101This is an overloaded intrinsic.
17102
17103::
17104
17105      declare i32 @llvm.loop.decrement.reg.i32(i32, i32)
17106      declare i64 @llvm.loop.decrement.reg.i64(i64, i64)
17107
17108Overview:
17109"""""""""
17110
17111The '``llvm.loop.decrement.reg.*``' intrinsics are used to lower the loop
17112iteration counter and return an updated value that will be used in the next
17113loop test check.
17114
17115Arguments:
17116""""""""""
17117
17118Both arguments must have identical integer types. The first operand is the
17119loop iteration counter. The second operand is the maximum number of elements
17120processed in an iteration.
17121
17122Semantics:
17123""""""""""
17124
17125The '``llvm.loop.decrement.reg.*``' intrinsics do an integer ``SUB`` of its
17126two operands, which is not allowed to wrap. They return the remaining number of
17127iterations still to be executed, and can be used together with a ``PHI``,
17128``ICMP`` and ``BR`` to control the number of loop iterations executed. Any
17129optimisations are allowed to treat it is a ``SUB``, and it is supported by
17130SCEV, so it's the backends responsibility to handle cases where it may be
17131optimised. These intrinsics are marked as ``IntrNoDuplicate`` to avoid
17132optimizers duplicating these instructions.
17133
17134
17135'``llvm.loop.decrement.*``' Intrinsic
17136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17137
17138Syntax:
17139"""""""
17140
17141This is an overloaded intrinsic.
17142
17143::
17144
17145      declare i1 @llvm.loop.decrement.i32(i32)
17146      declare i1 @llvm.loop.decrement.i64(i64)
17147
17148Overview:
17149"""""""""
17150
17151The HardwareLoops pass allows the loop decrement value to be specified with an
17152option. It defaults to a loop decrement value of 1, but it can be an unsigned
17153integer value provided by this option.  The '``llvm.loop.decrement.*``'
17154intrinsics decrement the loop iteration counter with this value, and return a
17155false predicate if the loop should exit, and true otherwise.
17156This is emitted if the loop counter is not updated via a ``PHI`` node, which
17157can also be controlled with an option.
17158
17159Arguments:
17160""""""""""
17161
17162The integer argument is the loop decrement value used to decrement the loop
17163iteration counter.
17164
17165Semantics:
17166""""""""""
17167
17168The '``llvm.loop.decrement.*``' intrinsics do a ``SUB`` of the loop iteration
17169counter with the given loop decrement value, and return false if the loop
17170should exit, this ``SUB`` is not allowed to wrap. The result is a condition
17171that is used by the conditional branch controlling the loop.
17172
17173
17174Vector Reduction Intrinsics
17175---------------------------
17176
17177Horizontal reductions of vectors can be expressed using the following
17178intrinsics. Each one takes a vector operand as an input and applies its
17179respective operation across all elements of the vector, returning a single
17180scalar result of the same element type.
17181
17182.. _int_vector_reduce_add:
17183
17184'``llvm.vector.reduce.add.*``' Intrinsic
17185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17186
17187Syntax:
17188"""""""
17189
17190::
17191
17192      declare i32 @llvm.vector.reduce.add.v4i32(<4 x i32> %a)
17193      declare i64 @llvm.vector.reduce.add.v2i64(<2 x i64> %a)
17194
17195Overview:
17196"""""""""
17197
17198The '``llvm.vector.reduce.add.*``' intrinsics do an integer ``ADD``
17199reduction of a vector, returning the result as a scalar. The return type matches
17200the element-type of the vector input.
17201
17202Arguments:
17203""""""""""
17204The argument to this intrinsic must be a vector of integer values.
17205
17206.. _int_vector_reduce_fadd:
17207
17208'``llvm.vector.reduce.fadd.*``' Intrinsic
17209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17210
17211Syntax:
17212"""""""
17213
17214::
17215
17216      declare float @llvm.vector.reduce.fadd.v4f32(float %start_value, <4 x float> %a)
17217      declare double @llvm.vector.reduce.fadd.v2f64(double %start_value, <2 x double> %a)
17218
17219Overview:
17220"""""""""
17221
17222The '``llvm.vector.reduce.fadd.*``' intrinsics do a floating-point
17223``ADD`` reduction of a vector, returning the result as a scalar. The return type
17224matches the element-type of the vector input.
17225
17226If the intrinsic call has the 'reassoc' flag set, then the reduction will not
17227preserve the associativity of an equivalent scalarized counterpart. Otherwise
17228the reduction will be *sequential*, thus implying that the operation respects
17229the associativity of a scalarized reduction. That is, the reduction begins with
17230the start value and performs an fadd operation with consecutively increasing
17231vector element indices. See the following pseudocode:
17232
17233::
17234
17235    float sequential_fadd(start_value, input_vector)
17236      result = start_value
17237      for i = 0 to length(input_vector)
17238        result = result + input_vector[i]
17239      return result
17240
17241
17242Arguments:
17243""""""""""
17244The first argument to this intrinsic is a scalar start value for the reduction.
17245The type of the start value matches the element-type of the vector input.
17246The second argument must be a vector of floating-point values.
17247
17248To ignore the start value, negative zero (``-0.0``) can be used, as it is
17249the neutral value of floating point addition.
17250
17251Examples:
17252"""""""""
17253
17254::
17255
17256      %unord = call reassoc float @llvm.vector.reduce.fadd.v4f32(float -0.0, <4 x float> %input) ; relaxed reduction
17257      %ord = call float @llvm.vector.reduce.fadd.v4f32(float %start_value, <4 x float> %input) ; sequential reduction
17258
17259
17260.. _int_vector_reduce_mul:
17261
17262'``llvm.vector.reduce.mul.*``' Intrinsic
17263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17264
17265Syntax:
17266"""""""
17267
17268::
17269
17270      declare i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %a)
17271      declare i64 @llvm.vector.reduce.mul.v2i64(<2 x i64> %a)
17272
17273Overview:
17274"""""""""
17275
17276The '``llvm.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
17277reduction of a vector, returning the result as a scalar. The return type matches
17278the element-type of the vector input.
17279
17280Arguments:
17281""""""""""
17282The argument to this intrinsic must be a vector of integer values.
17283
17284.. _int_vector_reduce_fmul:
17285
17286'``llvm.vector.reduce.fmul.*``' Intrinsic
17287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17288
17289Syntax:
17290"""""""
17291
17292::
17293
17294      declare float @llvm.vector.reduce.fmul.v4f32(float %start_value, <4 x float> %a)
17295      declare double @llvm.vector.reduce.fmul.v2f64(double %start_value, <2 x double> %a)
17296
17297Overview:
17298"""""""""
17299
17300The '``llvm.vector.reduce.fmul.*``' intrinsics do a floating-point
17301``MUL`` reduction of a vector, returning the result as a scalar. The return type
17302matches the element-type of the vector input.
17303
17304If the intrinsic call has the 'reassoc' flag set, then the reduction will not
17305preserve the associativity of an equivalent scalarized counterpart. Otherwise
17306the reduction will be *sequential*, thus implying that the operation respects
17307the associativity of a scalarized reduction. That is, the reduction begins with
17308the start value and performs an fmul operation with consecutively increasing
17309vector element indices. See the following pseudocode:
17310
17311::
17312
17313    float sequential_fmul(start_value, input_vector)
17314      result = start_value
17315      for i = 0 to length(input_vector)
17316        result = result * input_vector[i]
17317      return result
17318
17319
17320Arguments:
17321""""""""""
17322The first argument to this intrinsic is a scalar start value for the reduction.
17323The type of the start value matches the element-type of the vector input.
17324The second argument must be a vector of floating-point values.
17325
17326To ignore the start value, one (``1.0``) can be used, as it is the neutral
17327value of floating point multiplication.
17328
17329Examples:
17330"""""""""
17331
17332::
17333
17334      %unord = call reassoc float @llvm.vector.reduce.fmul.v4f32(float 1.0, <4 x float> %input) ; relaxed reduction
17335      %ord = call float @llvm.vector.reduce.fmul.v4f32(float %start_value, <4 x float> %input) ; sequential reduction
17336
17337.. _int_vector_reduce_and:
17338
17339'``llvm.vector.reduce.and.*``' Intrinsic
17340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17341
17342Syntax:
17343"""""""
17344
17345::
17346
17347      declare i32 @llvm.vector.reduce.and.v4i32(<4 x i32> %a)
17348
17349Overview:
17350"""""""""
17351
17352The '``llvm.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
17353reduction of a vector, returning the result as a scalar. The return type matches
17354the element-type of the vector input.
17355
17356Arguments:
17357""""""""""
17358The argument to this intrinsic must be a vector of integer values.
17359
17360.. _int_vector_reduce_or:
17361
17362'``llvm.vector.reduce.or.*``' Intrinsic
17363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17364
17365Syntax:
17366"""""""
17367
17368::
17369
17370      declare i32 @llvm.vector.reduce.or.v4i32(<4 x i32> %a)
17371
17372Overview:
17373"""""""""
17374
17375The '``llvm.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
17376of a vector, returning the result as a scalar. The return type matches the
17377element-type of the vector input.
17378
17379Arguments:
17380""""""""""
17381The argument to this intrinsic must be a vector of integer values.
17382
17383.. _int_vector_reduce_xor:
17384
17385'``llvm.vector.reduce.xor.*``' Intrinsic
17386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17387
17388Syntax:
17389"""""""
17390
17391::
17392
17393      declare i32 @llvm.vector.reduce.xor.v4i32(<4 x i32> %a)
17394
17395Overview:
17396"""""""""
17397
17398The '``llvm.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
17399reduction of a vector, returning the result as a scalar. The return type matches
17400the element-type of the vector input.
17401
17402Arguments:
17403""""""""""
17404The argument to this intrinsic must be a vector of integer values.
17405
17406.. _int_vector_reduce_smax:
17407
17408'``llvm.vector.reduce.smax.*``' Intrinsic
17409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17410
17411Syntax:
17412"""""""
17413
17414::
17415
17416      declare i32 @llvm.vector.reduce.smax.v4i32(<4 x i32> %a)
17417
17418Overview:
17419"""""""""
17420
17421The '``llvm.vector.reduce.smax.*``' intrinsics do a signed integer
17422``MAX`` reduction of a vector, returning the result as a scalar. The return type
17423matches the element-type of the vector input.
17424
17425Arguments:
17426""""""""""
17427The argument to this intrinsic must be a vector of integer values.
17428
17429.. _int_vector_reduce_smin:
17430
17431'``llvm.vector.reduce.smin.*``' Intrinsic
17432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17433
17434Syntax:
17435"""""""
17436
17437::
17438
17439      declare i32 @llvm.vector.reduce.smin.v4i32(<4 x i32> %a)
17440
17441Overview:
17442"""""""""
17443
17444The '``llvm.vector.reduce.smin.*``' intrinsics do a signed integer
17445``MIN`` reduction of a vector, returning the result as a scalar. The return type
17446matches the element-type of the vector input.
17447
17448Arguments:
17449""""""""""
17450The argument to this intrinsic must be a vector of integer values.
17451
17452.. _int_vector_reduce_umax:
17453
17454'``llvm.vector.reduce.umax.*``' Intrinsic
17455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17456
17457Syntax:
17458"""""""
17459
17460::
17461
17462      declare i32 @llvm.vector.reduce.umax.v4i32(<4 x i32> %a)
17463
17464Overview:
17465"""""""""
17466
17467The '``llvm.vector.reduce.umax.*``' intrinsics do an unsigned
17468integer ``MAX`` reduction of a vector, returning the result as a scalar. The
17469return type matches the element-type of the vector input.
17470
17471Arguments:
17472""""""""""
17473The argument to this intrinsic must be a vector of integer values.
17474
17475.. _int_vector_reduce_umin:
17476
17477'``llvm.vector.reduce.umin.*``' Intrinsic
17478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17479
17480Syntax:
17481"""""""
17482
17483::
17484
17485      declare i32 @llvm.vector.reduce.umin.v4i32(<4 x i32> %a)
17486
17487Overview:
17488"""""""""
17489
17490The '``llvm.vector.reduce.umin.*``' intrinsics do an unsigned
17491integer ``MIN`` reduction of a vector, returning the result as a scalar. The
17492return type matches the element-type of the vector input.
17493
17494Arguments:
17495""""""""""
17496The argument to this intrinsic must be a vector of integer values.
17497
17498.. _int_vector_reduce_fmax:
17499
17500'``llvm.vector.reduce.fmax.*``' Intrinsic
17501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17502
17503Syntax:
17504"""""""
17505
17506::
17507
17508      declare float @llvm.vector.reduce.fmax.v4f32(<4 x float> %a)
17509      declare double @llvm.vector.reduce.fmax.v2f64(<2 x double> %a)
17510
17511Overview:
17512"""""""""
17513
17514The '``llvm.vector.reduce.fmax.*``' intrinsics do a floating-point
17515``MAX`` reduction of a vector, returning the result as a scalar. The return type
17516matches the element-type of the vector input.
17517
17518This instruction has the same comparison semantics as the '``llvm.maxnum.*``'
17519intrinsic. That is, the result will always be a number unless all elements of
17520the vector are NaN. For a vector with maximum element magnitude 0.0 and
17521containing both +0.0 and -0.0 elements, the sign of the result is unspecified.
17522
17523If the intrinsic call has the ``nnan`` fast-math flag, then the operation can
17524assume that NaNs are not present in the input vector.
17525
17526Arguments:
17527""""""""""
17528The argument to this intrinsic must be a vector of floating-point values.
17529
17530.. _int_vector_reduce_fmin:
17531
17532'``llvm.vector.reduce.fmin.*``' Intrinsic
17533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17534
17535Syntax:
17536"""""""
17537This is an overloaded intrinsic.
17538
17539::
17540
17541      declare float @llvm.vector.reduce.fmin.v4f32(<4 x float> %a)
17542      declare double @llvm.vector.reduce.fmin.v2f64(<2 x double> %a)
17543
17544Overview:
17545"""""""""
17546
17547The '``llvm.vector.reduce.fmin.*``' intrinsics do a floating-point
17548``MIN`` reduction of a vector, returning the result as a scalar. The return type
17549matches the element-type of the vector input.
17550
17551This instruction has the same comparison semantics as the '``llvm.minnum.*``'
17552intrinsic. That is, the result will always be a number unless all elements of
17553the vector are NaN. For a vector with minimum element magnitude 0.0 and
17554containing both +0.0 and -0.0 elements, the sign of the result is unspecified.
17555
17556If the intrinsic call has the ``nnan`` fast-math flag, then the operation can
17557assume that NaNs are not present in the input vector.
17558
17559Arguments:
17560""""""""""
17561The argument to this intrinsic must be a vector of floating-point values.
17562
17563'``llvm.vector.insert``' Intrinsic
17564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17565
17566Syntax:
17567"""""""
17568This is an overloaded intrinsic.
17569
17570::
17571
17572      ; Insert fixed type into scalable type
17573      declare <vscale x 4 x float> @llvm.vector.insert.nxv4f32.v4f32(<vscale x 4 x float> %vec, <4 x float> %subvec, i64 <idx>)
17574      declare <vscale x 2 x double> @llvm.vector.insert.nxv2f64.v2f64(<vscale x 2 x double> %vec, <2 x double> %subvec, i64 <idx>)
17575
17576      ; Insert scalable type into scalable type
17577      declare <vscale x 4 x float> @llvm.vector.insert.nxv4f64.nxv2f64(<vscale x 4 x float> %vec, <vscale x 2 x float> %subvec, i64 <idx>)
17578
17579      ; Insert fixed type into fixed type
17580      declare <4 x double> @llvm.vector.insert.v4f64.v2f64(<4 x double> %vec, <2 x double> %subvec, i64 <idx>)
17581
17582Overview:
17583"""""""""
17584
17585The '``llvm.vector.insert.*``' intrinsics insert a vector into another vector
17586starting from a given index. The return type matches the type of the vector we
17587insert into. Conceptually, this can be used to build a scalable vector out of
17588non-scalable vectors, however this intrinsic can also be used on purely fixed
17589types.
17590
17591Scalable vectors can only be inserted into other scalable vectors.
17592
17593Arguments:
17594""""""""""
17595
17596The ``vec`` is the vector which ``subvec`` will be inserted into.
17597The ``subvec`` is the vector that will be inserted.
17598
17599``idx`` represents the starting element number at which ``subvec`` will be
17600inserted. ``idx`` must be a constant multiple of ``subvec``'s known minimum
17601vector length. If ``subvec`` is a scalable vector, ``idx`` is first scaled by
17602the runtime scaling factor of ``subvec``. The elements of ``vec`` starting at
17603``idx`` are overwritten with ``subvec``. Elements ``idx`` through (``idx`` +
17604num_elements(``subvec``) - 1) must be valid ``vec`` indices. If this condition
17605cannot be determined statically but is false at runtime, then the result vector
17606is a :ref:`poison value <poisonvalues>`.
17607
17608
17609'``llvm.vector.extract``' Intrinsic
17610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17611
17612Syntax:
17613"""""""
17614This is an overloaded intrinsic.
17615
17616::
17617
17618      ; Extract fixed type from scalable type
17619      declare <4 x float> @llvm.vector.extract.v4f32.nxv4f32(<vscale x 4 x float> %vec, i64 <idx>)
17620      declare <2 x double> @llvm.vector.extract.v2f64.nxv2f64(<vscale x 2 x double> %vec, i64 <idx>)
17621
17622      ; Extract scalable type from scalable type
17623      declare <vscale x 2 x float> @llvm.vector.extract.nxv2f32.nxv4f32(<vscale x 4 x float> %vec, i64 <idx>)
17624
17625      ; Extract fixed type from fixed type
17626      declare <2 x double> @llvm.vector.extract.v2f64.v4f64(<4 x double> %vec, i64 <idx>)
17627
17628Overview:
17629"""""""""
17630
17631The '``llvm.vector.extract.*``' intrinsics extract a vector from within another
17632vector starting from a given index. The return type must be explicitly
17633specified. Conceptually, this can be used to decompose a scalable vector into
17634non-scalable parts, however this intrinsic can also be used on purely fixed
17635types.
17636
17637Scalable vectors can only be extracted from other scalable vectors.
17638
17639Arguments:
17640""""""""""
17641
17642The ``vec`` is the vector from which we will extract a subvector.
17643
17644The ``idx`` specifies the starting element number within ``vec`` from which a
17645subvector is extracted. ``idx`` must be a constant multiple of the known-minimum
17646vector length of the result type. If the result type is a scalable vector,
17647``idx`` is first scaled by the result type's runtime scaling factor. Elements
17648``idx`` through (``idx`` + num_elements(result_type) - 1) must be valid vector
17649indices. If this condition cannot be determined statically but is false at
17650runtime, then the result vector is a :ref:`poison value <poisonvalues>`. The
17651``idx`` parameter must be a vector index constant type (for most targets this
17652will be an integer pointer type).
17653
17654'``llvm.experimental.vector.reverse``' Intrinsic
17655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17656
17657Syntax:
17658"""""""
17659This is an overloaded intrinsic.
17660
17661::
17662
17663      declare <2 x i8> @llvm.experimental.vector.reverse.v2i8(<2 x i8> %a)
17664      declare <vscale x 4 x i32> @llvm.experimental.vector.reverse.nxv4i32(<vscale x 4 x i32> %a)
17665
17666Overview:
17667"""""""""
17668
17669The '``llvm.experimental.vector.reverse.*``' intrinsics reverse a vector.
17670The intrinsic takes a single vector and returns a vector of matching type but
17671with the original lane order reversed. These intrinsics work for both fixed
17672and scalable vectors. While this intrinsic is marked as experimental the
17673recommended way to express reverse operations for fixed-width vectors is still
17674to use a shufflevector, as that may allow for more optimization opportunities.
17675
17676Arguments:
17677""""""""""
17678
17679The argument to this intrinsic must be a vector.
17680
17681'``llvm.experimental.vector.splice``' Intrinsic
17682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17683
17684Syntax:
17685"""""""
17686This is an overloaded intrinsic.
17687
17688::
17689
17690      declare <2 x double> @llvm.experimental.vector.splice.v2f64(<2 x double> %vec1, <2 x double> %vec2, i32 %imm)
17691      declare <vscale x 4 x i32> @llvm.experimental.vector.splice.nxv4i32(<vscale x 4 x i32> %vec1, <vscale x 4 x i32> %vec2, i32 %imm)
17692
17693Overview:
17694"""""""""
17695
17696The '``llvm.experimental.vector.splice.*``' intrinsics construct a vector by
17697concatenating elements from the first input vector with elements of the second
17698input vector, returning a vector of the same type as the input vectors. The
17699signed immediate, modulo the number of elements in the vector, is the index
17700into the first vector from which to extract the result value. This means
17701conceptually that for a positive immediate, a vector is extracted from
17702``concat(%vec1, %vec2)`` starting at index ``imm``, whereas for a negative
17703immediate, it extracts ``-imm`` trailing elements from the first vector, and
17704the remaining elements from ``%vec2``.
17705
17706These intrinsics work for both fixed and scalable vectors. While this intrinsic
17707is marked as experimental, the recommended way to express this operation for
17708fixed-width vectors is still to use a shufflevector, as that may allow for more
17709optimization opportunities.
17710
17711For example:
17712
17713.. code-block:: text
17714
17715 llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1)  ==> <B, C, D, E> ; index
17716 llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing elements
17717
17718
17719Arguments:
17720""""""""""
17721
17722The first two operands are vectors with the same type. The start index is imm
17723modulo the runtime number of elements in the source vector. For a fixed-width
17724vector <N x eltty>, imm is a signed integer constant in the range
17725-N <= imm < N. For a scalable vector <vscale x N x eltty>, imm is a signed
17726integer constant in the range -X <= imm < X where X=vscale_range_min * N.
17727
17728'``llvm.experimental.stepvector``' Intrinsic
17729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17730
17731This is an overloaded intrinsic. You can use ``llvm.experimental.stepvector``
17732to generate a vector whose lane values comprise the linear sequence
17733<0, 1, 2, ...>. It is primarily intended for scalable vectors.
17734
17735::
17736
17737      declare <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
17738      declare <vscale x 8 x i16> @llvm.experimental.stepvector.nxv8i16()
17739
17740The '``llvm.experimental.stepvector``' intrinsics are used to create vectors
17741of integers whose elements contain a linear sequence of values starting from 0
17742with a step of 1.  This experimental intrinsic can only be used for vectors
17743with integer elements that are at least 8 bits in size. If the sequence value
17744exceeds the allowed limit for the element type then the result for that lane is
17745undefined.
17746
17747These intrinsics work for both fixed and scalable vectors. While this intrinsic
17748is marked as experimental, the recommended way to express this operation for
17749fixed-width vectors is still to generate a constant vector instead.
17750
17751
17752Arguments:
17753""""""""""
17754
17755None.
17756
17757
17758Matrix Intrinsics
17759-----------------
17760
17761Operations on matrixes requiring shape information (like number of rows/columns
17762or the memory layout) can be expressed using the matrix intrinsics. These
17763intrinsics require matrix dimensions to be passed as immediate arguments, and
17764matrixes are passed and returned as vectors. This means that for a ``R`` x
17765``C`` matrix, element ``i`` of column ``j`` is at index ``j * R + i`` in the
17766corresponding vector, with indices starting at 0. Currently column-major layout
17767is assumed.  The intrinsics support both integer and floating point matrixes.
17768
17769
17770'``llvm.matrix.transpose.*``' Intrinsic
17771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17772
17773Syntax:
17774"""""""
17775This is an overloaded intrinsic.
17776
17777::
17778
17779      declare vectorty @llvm.matrix.transpose.*(vectorty %In, i32 <Rows>, i32 <Cols>)
17780
17781Overview:
17782"""""""""
17783
17784The '``llvm.matrix.transpose.*``' intrinsics treat ``%In`` as a ``<Rows> x
17785<Cols>`` matrix and return the transposed matrix in the result vector.
17786
17787Arguments:
17788""""""""""
17789
17790The first argument ``%In`` is a vector that corresponds to a ``<Rows> x
17791<Cols>`` matrix. Thus, arguments ``<Rows>`` and ``<Cols>`` correspond to the
17792number of rows and columns, respectively, and must be positive, constant
17793integers. The returned vector must have ``<Rows> * <Cols>`` elements, and have
17794the same float or integer element type as ``%In``.
17795
17796'``llvm.matrix.multiply.*``' Intrinsic
17797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17798
17799Syntax:
17800"""""""
17801This is an overloaded intrinsic.
17802
17803::
17804
17805      declare vectorty @llvm.matrix.multiply.*(vectorty %A, vectorty %B, i32 <OuterRows>, i32 <Inner>, i32 <OuterColumns>)
17806
17807Overview:
17808"""""""""
17809
17810The '``llvm.matrix.multiply.*``' intrinsics treat ``%A`` as a ``<OuterRows> x
17811<Inner>`` matrix, ``%B`` as a ``<Inner> x <OuterColumns>`` matrix, and
17812multiplies them. The result matrix is returned in the result vector.
17813
17814Arguments:
17815""""""""""
17816
17817The first vector argument ``%A`` corresponds to a matrix with ``<OuterRows> *
17818<Inner>`` elements, and the second argument ``%B`` to a matrix with
17819``<Inner> * <OuterColumns>`` elements. Arguments ``<OuterRows>``,
17820``<Inner>`` and ``<OuterColumns>`` must be positive, constant integers. The
17821returned vector must have ``<OuterRows> * <OuterColumns>`` elements.
17822Vectors ``%A``, ``%B``, and the returned vector all have the same float or
17823integer element type.
17824
17825
17826'``llvm.matrix.column.major.load.*``' Intrinsic
17827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17828
17829Syntax:
17830"""""""
17831This is an overloaded intrinsic.
17832
17833::
17834
17835      declare vectorty @llvm.matrix.column.major.load.*(
17836          ptrty %Ptr, i64 %Stride, i1 <IsVolatile>, i32 <Rows>, i32 <Cols>)
17837
17838Overview:
17839"""""""""
17840
17841The '``llvm.matrix.column.major.load.*``' intrinsics load a ``<Rows> x <Cols>``
17842matrix using a stride of ``%Stride`` to compute the start address of the
17843different columns.  The offset is computed using ``%Stride``'s bitwidth. This
17844allows for convenient loading of sub matrixes. If ``<IsVolatile>`` is true, the
17845intrinsic is considered a :ref:`volatile memory access <volatile>`. The result
17846matrix is returned in the result vector. If the ``%Ptr`` argument is known to
17847be aligned to some boundary, this can be specified as an attribute on the
17848argument.
17849
17850Arguments:
17851""""""""""
17852
17853The first argument ``%Ptr`` is a pointer type to the returned vector type, and
17854corresponds to the start address to load from. The second argument ``%Stride``
17855is a positive, constant integer with ``%Stride >= <Rows>``. ``%Stride`` is used
17856to compute the column memory addresses. I.e., for a column ``C``, its start
17857memory addresses is calculated with ``%Ptr + C * %Stride``. The third Argument
17858``<IsVolatile>`` is a boolean value.  The fourth and fifth arguments,
17859``<Rows>`` and ``<Cols>``, correspond to the number of rows and columns,
17860respectively, and must be positive, constant integers. The returned vector must
17861have ``<Rows> * <Cols>`` elements.
17862
17863The :ref:`align <attr_align>` parameter attribute can be provided for the
17864``%Ptr`` arguments.
17865
17866
17867'``llvm.matrix.column.major.store.*``' Intrinsic
17868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17869
17870Syntax:
17871"""""""
17872
17873::
17874
17875      declare void @llvm.matrix.column.major.store.*(
17876          vectorty %In, ptrty %Ptr, i64 %Stride, i1 <IsVolatile>, i32 <Rows>, i32 <Cols>)
17877
17878Overview:
17879"""""""""
17880
17881The '``llvm.matrix.column.major.store.*``' intrinsics store the ``<Rows> x
17882<Cols>`` matrix in ``%In`` to memory using a stride of ``%Stride`` between
17883columns. The offset is computed using ``%Stride``'s bitwidth. If
17884``<IsVolatile>`` is true, the intrinsic is considered a
17885:ref:`volatile memory access <volatile>`.
17886
17887If the ``%Ptr`` argument is known to be aligned to some boundary, this can be
17888specified as an attribute on the argument.
17889
17890Arguments:
17891""""""""""
17892
17893The first argument ``%In`` is a vector that corresponds to a ``<Rows> x
17894<Cols>`` matrix to be stored to memory. The second argument ``%Ptr`` is a
17895pointer to the vector type of ``%In``, and is the start address of the matrix
17896in memory. The third argument ``%Stride`` is a positive, constant integer with
17897``%Stride >= <Rows>``.  ``%Stride`` is used to compute the column memory
17898addresses. I.e., for a column ``C``, its start memory addresses is calculated
17899with ``%Ptr + C * %Stride``.  The fourth argument ``<IsVolatile>`` is a boolean
17900value. The arguments ``<Rows>`` and ``<Cols>`` correspond to the number of rows
17901and columns, respectively, and must be positive, constant integers.
17902
17903The :ref:`align <attr_align>` parameter attribute can be provided
17904for the ``%Ptr`` arguments.
17905
17906
17907Half Precision Floating-Point Intrinsics
17908----------------------------------------
17909
17910For most target platforms, half precision floating-point is a
17911storage-only format. This means that it is a dense encoding (in memory)
17912but does not support computation in the format.
17913
17914This means that code must first load the half-precision floating-point
17915value as an i16, then convert it to float with
17916:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
17917then be performed on the float value (including extending to double
17918etc). To store the value back to memory, it is first converted to float
17919if needed, then converted to i16 with
17920:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
17921i16 value.
17922
17923.. _int_convert_to_fp16:
17924
17925'``llvm.convert.to.fp16``' Intrinsic
17926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17927
17928Syntax:
17929"""""""
17930
17931::
17932
17933      declare i16 @llvm.convert.to.fp16.f32(float %a)
17934      declare i16 @llvm.convert.to.fp16.f64(double %a)
17935
17936Overview:
17937"""""""""
17938
17939The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
17940conventional floating-point type to half precision floating-point format.
17941
17942Arguments:
17943""""""""""
17944
17945The intrinsic function contains single argument - the value to be
17946converted.
17947
17948Semantics:
17949""""""""""
17950
17951The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
17952conventional floating-point format to half precision floating-point format. The
17953return value is an ``i16`` which contains the converted number.
17954
17955Examples:
17956"""""""""
17957
17958.. code-block:: llvm
17959
17960      %res = call i16 @llvm.convert.to.fp16.f32(float %a)
17961      store i16 %res, i16* @x, align 2
17962
17963.. _int_convert_from_fp16:
17964
17965'``llvm.convert.from.fp16``' Intrinsic
17966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17967
17968Syntax:
17969"""""""
17970
17971::
17972
17973      declare float @llvm.convert.from.fp16.f32(i16 %a)
17974      declare double @llvm.convert.from.fp16.f64(i16 %a)
17975
17976Overview:
17977"""""""""
17978
17979The '``llvm.convert.from.fp16``' intrinsic function performs a
17980conversion from half precision floating-point format to single precision
17981floating-point format.
17982
17983Arguments:
17984""""""""""
17985
17986The intrinsic function contains single argument - the value to be
17987converted.
17988
17989Semantics:
17990""""""""""
17991
17992The '``llvm.convert.from.fp16``' intrinsic function performs a
17993conversion from half single precision floating-point format to single
17994precision floating-point format. The input half-float value is
17995represented by an ``i16`` value.
17996
17997Examples:
17998"""""""""
17999
18000.. code-block:: llvm
18001
18002      %a = load i16, ptr @x, align 2
18003      %res = call float @llvm.convert.from.fp16(i16 %a)
18004
18005Saturating floating-point to integer conversions
18006------------------------------------------------
18007
18008The ``fptoui`` and ``fptosi`` instructions return a
18009:ref:`poison value <poisonvalues>` if the rounded-towards-zero value is not
18010representable by the result type. These intrinsics provide an alternative
18011conversion, which will saturate towards the smallest and largest representable
18012integer values instead.
18013
18014'``llvm.fptoui.sat.*``' Intrinsic
18015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18016
18017Syntax:
18018"""""""
18019
18020This is an overloaded intrinsic. You can use ``llvm.fptoui.sat`` on any
18021floating-point argument type and any integer result type, or vectors thereof.
18022Not all targets may support all types, however.
18023
18024::
18025
18026      declare i32 @llvm.fptoui.sat.i32.f32(float %f)
18027      declare i19 @llvm.fptoui.sat.i19.f64(double %f)
18028      declare <4 x i100> @llvm.fptoui.sat.v4i100.v4f128(<4 x fp128> %f)
18029
18030Overview:
18031"""""""""
18032
18033This intrinsic converts the argument into an unsigned integer using saturating
18034semantics.
18035
18036Arguments:
18037""""""""""
18038
18039The argument may be any floating-point or vector of floating-point type. The
18040return value may be any integer or vector of integer type. The number of vector
18041elements in argument and return must be the same.
18042
18043Semantics:
18044""""""""""
18045
18046The conversion to integer is performed subject to the following rules:
18047
18048- If the argument is any NaN, zero is returned.
18049- If the argument is smaller than zero (this includes negative infinity),
18050  zero is returned.
18051- If the argument is larger than the largest representable unsigned integer of
18052  the result type (this includes positive infinity), the largest representable
18053  unsigned integer is returned.
18054- Otherwise, the result of rounding the argument towards zero is returned.
18055
18056Example:
18057""""""""
18058
18059.. code-block:: text
18060
18061      %a = call i8 @llvm.fptoui.sat.i8.f32(float 123.9)              ; yields i8: 123
18062      %b = call i8 @llvm.fptoui.sat.i8.f32(float -5.7)               ; yields i8:   0
18063      %c = call i8 @llvm.fptoui.sat.i8.f32(float 377.0)              ; yields i8: 255
18064      %d = call i8 @llvm.fptoui.sat.i8.f32(float 0xFFF8000000000000) ; yields i8:   0
18065
18066'``llvm.fptosi.sat.*``' Intrinsic
18067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18068
18069Syntax:
18070"""""""
18071
18072This is an overloaded intrinsic. You can use ``llvm.fptosi.sat`` on any
18073floating-point argument type and any integer result type, or vectors thereof.
18074Not all targets may support all types, however.
18075
18076::
18077
18078      declare i32 @llvm.fptosi.sat.i32.f32(float %f)
18079      declare i19 @llvm.fptosi.sat.i19.f64(double %f)
18080      declare <4 x i100> @llvm.fptosi.sat.v4i100.v4f128(<4 x fp128> %f)
18081
18082Overview:
18083"""""""""
18084
18085This intrinsic converts the argument into a signed integer using saturating
18086semantics.
18087
18088Arguments:
18089""""""""""
18090
18091The argument may be any floating-point or vector of floating-point type. The
18092return value may be any integer or vector of integer type. The number of vector
18093elements in argument and return must be the same.
18094
18095Semantics:
18096""""""""""
18097
18098The conversion to integer is performed subject to the following rules:
18099
18100- If the argument is any NaN, zero is returned.
18101- If the argument is smaller than the smallest representable signed integer of
18102  the result type (this includes negative infinity), the smallest
18103  representable signed integer is returned.
18104- If the argument is larger than the largest representable signed integer of
18105  the result type (this includes positive infinity), the largest representable
18106  signed integer is returned.
18107- Otherwise, the result of rounding the argument towards zero is returned.
18108
18109Example:
18110""""""""
18111
18112.. code-block:: text
18113
18114      %a = call i8 @llvm.fptosi.sat.i8.f32(float 23.9)               ; yields i8:   23
18115      %b = call i8 @llvm.fptosi.sat.i8.f32(float -130.8)             ; yields i8: -128
18116      %c = call i8 @llvm.fptosi.sat.i8.f32(float 999.0)              ; yields i8:  127
18117      %d = call i8 @llvm.fptosi.sat.i8.f32(float 0xFFF8000000000000) ; yields i8:    0
18118
18119.. _dbg_intrinsics:
18120
18121Debugger Intrinsics
18122-------------------
18123
18124The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
18125prefix), are described in the `LLVM Source Level
18126Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
18127document.
18128
18129Exception Handling Intrinsics
18130-----------------------------
18131
18132The LLVM exception handling intrinsics (which all start with
18133``llvm.eh.`` prefix), are described in the `LLVM Exception
18134Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
18135
18136Pointer Authentication Intrinsics
18137---------------------------------
18138
18139The LLVM pointer authentication intrinsics (which all start with
18140``llvm.ptrauth.`` prefix), are described in the `Pointer Authentication
18141<PointerAuth.html#intrinsics>`_ document.
18142
18143.. _int_trampoline:
18144
18145Trampoline Intrinsics
18146---------------------
18147
18148These intrinsics make it possible to excise one parameter, marked with
18149the :ref:`nest <nest>` attribute, from a function. The result is a
18150callable function pointer lacking the nest parameter - the caller does
18151not need to provide a value for it. Instead, the value to use is stored
18152in advance in a "trampoline", a block of memory usually allocated on the
18153stack, which also contains code to splice the nest value into the
18154argument list. This is used to implement the GCC nested function address
18155extension.
18156
18157For example, if the function is ``i32 f(ptr nest %c, i32 %x, i32 %y)``
18158then the resulting function pointer has signature ``i32 (i32, i32)``.
18159It can be created as follows:
18160
18161.. code-block:: llvm
18162
18163      %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
18164      call ptr @llvm.init.trampoline(ptr %tramp, ptr @f, ptr %nval)
18165      %fp = call ptr @llvm.adjust.trampoline(ptr %tramp)
18166
18167The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
18168``%val = call i32 %f(ptr %nval, i32 %x, i32 %y)``.
18169
18170.. _int_it:
18171
18172'``llvm.init.trampoline``' Intrinsic
18173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18174
18175Syntax:
18176"""""""
18177
18178::
18179
18180      declare void @llvm.init.trampoline(ptr <tramp>, ptr <func>, ptr <nval>)
18181
18182Overview:
18183"""""""""
18184
18185This fills the memory pointed to by ``tramp`` with executable code,
18186turning it into a trampoline.
18187
18188Arguments:
18189""""""""""
18190
18191The ``llvm.init.trampoline`` intrinsic takes three arguments, all
18192pointers. The ``tramp`` argument must point to a sufficiently large and
18193sufficiently aligned block of memory; this memory is written to by the
18194intrinsic. Note that the size and the alignment are target-specific -
18195LLVM currently provides no portable way of determining them, so a
18196front-end that generates this intrinsic needs to have some
18197target-specific knowledge. The ``func`` argument must hold a function.
18198
18199Semantics:
18200""""""""""
18201
18202The block of memory pointed to by ``tramp`` is filled with target
18203dependent code, turning it into a function. Then ``tramp`` needs to be
18204passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
18205be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
18206function's signature is the same as that of ``func`` with any arguments
18207marked with the ``nest`` attribute removed. At most one such ``nest``
18208argument is allowed, and it must be of pointer type. Calling the new
18209function is equivalent to calling ``func`` with the same argument list,
18210but with ``nval`` used for the missing ``nest`` argument. If, after
18211calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
18212modified, then the effect of any later call to the returned function
18213pointer is undefined.
18214
18215.. _int_at:
18216
18217'``llvm.adjust.trampoline``' Intrinsic
18218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18219
18220Syntax:
18221"""""""
18222
18223::
18224
18225      declare ptr @llvm.adjust.trampoline(ptr <tramp>)
18226
18227Overview:
18228"""""""""
18229
18230This performs any required machine-specific adjustment to the address of
18231a trampoline (passed as ``tramp``).
18232
18233Arguments:
18234""""""""""
18235
18236``tramp`` must point to a block of memory which already has trampoline
18237code filled in by a previous call to
18238:ref:`llvm.init.trampoline <int_it>`.
18239
18240Semantics:
18241""""""""""
18242
18243On some architectures the address of the code to be executed needs to be
18244different than the address where the trampoline is actually stored. This
18245intrinsic returns the executable address corresponding to ``tramp``
18246after performing the required machine specific adjustments. The pointer
18247returned can then be :ref:`bitcast and executed <int_trampoline>`.
18248
18249
18250.. _int_vp:
18251
18252Vector Predication Intrinsics
18253-----------------------------
18254VP intrinsics are intended for predicated SIMD/vector code.  A typical VP
18255operation takes a vector mask and an explicit vector length parameter as in:
18256
18257::
18258
18259      <W x T> llvm.vp.<opcode>.*(<W x T> %x, <W x T> %y, <W x i1> %mask, i32 %evl)
18260
18261The vector mask parameter (%mask) always has a vector of `i1` type, for example
18262`<32 x i1>`.  The explicit vector length parameter always has the type `i32` and
18263is an unsigned integer value.  The explicit vector length parameter (%evl) is in
18264the range:
18265
18266::
18267
18268      0 <= %evl <= W,  where W is the number of vector elements
18269
18270Note that for :ref:`scalable vector types <t_vector>` ``W`` is the runtime
18271length of the vector.
18272
18273The VP intrinsic has undefined behavior if ``%evl > W``.  The explicit vector
18274length (%evl) creates a mask, %EVLmask, with all elements ``0 <= i < %evl`` set
18275to True, and all other lanes ``%evl <= i < W`` to False.  A new mask %M is
18276calculated with an element-wise AND from %mask and %EVLmask:
18277
18278::
18279
18280      M = %mask AND %EVLmask
18281
18282A vector operation ``<opcode>`` on vectors ``A`` and ``B`` calculates:
18283
18284::
18285
18286       A <opcode> B =  {  A[i] <opcode> B[i]   M[i] = True, and
18287                       {  undef otherwise
18288
18289Optimization Hint
18290^^^^^^^^^^^^^^^^^
18291
18292Some targets, such as AVX512, do not support the %evl parameter in hardware.
18293The use of an effective %evl is discouraged for those targets.  The function
18294``TargetTransformInfo::hasActiveVectorLength()`` returns true when the target
18295has native support for %evl.
18296
18297.. _int_vp_select:
18298
18299'``llvm.vp.select.*``' Intrinsics
18300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18301
18302Syntax:
18303"""""""
18304This is an overloaded intrinsic.
18305
18306::
18307
18308      declare <16 x i32>  @llvm.vp.select.v16i32 (<16 x i1> <condition>, <16 x i32> <on_true>, <16 x i32> <on_false>, i32 <evl>)
18309      declare <vscale x 4 x i64>  @llvm.vp.select.nxv4i64 (<vscale x 4 x i1> <condition>, <vscale x 4 x i64> <on_true>, <vscale x 4 x i64> <on_false>, i32 <evl>)
18310
18311Overview:
18312"""""""""
18313
18314The '``llvm.vp.select``' intrinsic is used to choose one value based on a
18315condition vector, without IR-level branching.
18316
18317Arguments:
18318""""""""""
18319
18320The first operand is a vector of ``i1`` and indicates the condition.  The
18321second operand is the value that is selected where the condition vector is
18322true.  The third operand is the value that is selected where the condition
18323vector is false.  The vectors must be of the same size.  The fourth operand is
18324the explicit vector length.
18325
18326#. The optional ``fast-math flags`` marker indicates that the select has one or
18327   more :ref:`fast-math flags <fastmath>`. These are optimization hints to
18328   enable otherwise unsafe floating-point optimizations. Fast-math flags are
18329   only valid for selects that return a floating-point scalar or vector type,
18330   or an array (nested to any depth) of floating-point scalar or vector types.
18331
18332Semantics:
18333""""""""""
18334
18335The intrinsic selects lanes from the second and third operand depending on a
18336condition vector.
18337
18338All result lanes at positions greater or equal than ``%evl`` are undefined.
18339For all lanes below ``%evl`` where the condition vector is true the lane is
18340taken from the second operand.  Otherwise, the lane is taken from the third
18341operand.
18342
18343Example:
18344""""""""
18345
18346.. code-block:: llvm
18347
18348      %r = call <4 x i32> @llvm.vp.select.v4i32(<4 x i1> %cond, <4 x i32> %on_true, <4 x i32> %on_false, i32 %evl)
18349
18350      ;;; Expansion.
18351      ;; Any result is legal on lanes at and above %evl.
18352      %also.r = select <4 x i1> %cond, <4 x i32> %on_true, <4 x i32> %on_false
18353
18354
18355.. _int_vp_merge:
18356
18357'``llvm.vp.merge.*``' Intrinsics
18358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18359
18360Syntax:
18361"""""""
18362This is an overloaded intrinsic.
18363
18364::
18365
18366      declare <16 x i32>  @llvm.vp.merge.v16i32 (<16 x i1> <condition>, <16 x i32> <on_true>, <16 x i32> <on_false>, i32 <pivot>)
18367      declare <vscale x 4 x i64>  @llvm.vp.merge.nxv4i64 (<vscale x 4 x i1> <condition>, <vscale x 4 x i64> <on_true>, <vscale x 4 x i64> <on_false>, i32 <pivot>)
18368
18369Overview:
18370"""""""""
18371
18372The '``llvm.vp.merge``' intrinsic is used to choose one value based on a
18373condition vector and an index operand, without IR-level branching.
18374
18375Arguments:
18376""""""""""
18377
18378The first operand is a vector of ``i1`` and indicates the condition.  The
18379second operand is the value that is merged where the condition vector is true.
18380The third operand is the value that is selected where the condition vector is
18381false or the lane position is greater equal than the pivot. The fourth operand
18382is the pivot.
18383
18384#. The optional ``fast-math flags`` marker indicates that the merge has one or
18385   more :ref:`fast-math flags <fastmath>`. These are optimization hints to
18386   enable otherwise unsafe floating-point optimizations. Fast-math flags are
18387   only valid for merges that return a floating-point scalar or vector type,
18388   or an array (nested to any depth) of floating-point scalar or vector types.
18389
18390Semantics:
18391""""""""""
18392
18393The intrinsic selects lanes from the second and third operand depending on a
18394condition vector and pivot value.
18395
18396For all lanes where the condition vector is true and the lane position is less
18397than ``%pivot`` the lane is taken from the second operand.  Otherwise, the lane
18398is taken from the third operand.
18399
18400Example:
18401""""""""
18402
18403.. code-block:: llvm
18404
18405      %r = call <4 x i32> @llvm.vp.merge.v4i32(<4 x i1> %cond, <4 x i32> %on_true, <4 x i32> %on_false, i32 %pivot)
18406
18407      ;;; Expansion.
18408      ;; Lanes at and above %pivot are taken from %on_false
18409      %atfirst = insertelement <4 x i32> undef, i32 %pivot, i32 0
18410      %splat = shufflevector <4 x i32> %atfirst, <4 x i32> poison, <4 x i32> zeroinitializer
18411      %pivotmask = icmp ult <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> %splat
18412      %mergemask = and <4 x i1> %cond, <4 x i1> %pivotmask
18413      %also.r = select <4 x i1> %mergemask, <4 x i32> %on_true, <4 x i32> %on_false
18414
18415
18416
18417.. _int_vp_add:
18418
18419'``llvm.vp.add.*``' Intrinsics
18420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18421
18422Syntax:
18423"""""""
18424This is an overloaded intrinsic.
18425
18426::
18427
18428      declare <16 x i32>  @llvm.vp.add.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18429      declare <vscale x 4 x i32>  @llvm.vp.add.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18430      declare <256 x i64>  @llvm.vp.add.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18431
18432Overview:
18433"""""""""
18434
18435Predicated integer addition of two vectors of integers.
18436
18437
18438Arguments:
18439""""""""""
18440
18441The first two operands and the result have the same vector of integer type. The
18442third operand is the vector mask and has the same number of elements as the
18443result vector type. The fourth operand is the explicit vector length of the
18444operation.
18445
18446Semantics:
18447""""""""""
18448
18449The '``llvm.vp.add``' intrinsic performs integer addition (:ref:`add <i_add>`)
18450of the first and second vector operand on each enabled lane.  The result on
18451disabled lanes is a :ref:`poison value <poisonvalues>`.
18452
18453Examples:
18454"""""""""
18455
18456.. code-block:: llvm
18457
18458      %r = call <4 x i32> @llvm.vp.add.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18459      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18460
18461      %t = add <4 x i32> %a, %b
18462      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18463
18464.. _int_vp_sub:
18465
18466'``llvm.vp.sub.*``' Intrinsics
18467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18468
18469Syntax:
18470"""""""
18471This is an overloaded intrinsic.
18472
18473::
18474
18475      declare <16 x i32>  @llvm.vp.sub.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18476      declare <vscale x 4 x i32>  @llvm.vp.sub.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18477      declare <256 x i64>  @llvm.vp.sub.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18478
18479Overview:
18480"""""""""
18481
18482Predicated integer subtraction of two vectors of integers.
18483
18484
18485Arguments:
18486""""""""""
18487
18488The first two operands and the result have the same vector of integer type. The
18489third operand is the vector mask and has the same number of elements as the
18490result vector type. The fourth operand is the explicit vector length of the
18491operation.
18492
18493Semantics:
18494""""""""""
18495
18496The '``llvm.vp.sub``' intrinsic performs integer subtraction
18497(:ref:`sub <i_sub>`)  of the first and second vector operand on each enabled
18498lane. The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
18499
18500Examples:
18501"""""""""
18502
18503.. code-block:: llvm
18504
18505      %r = call <4 x i32> @llvm.vp.sub.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18506      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18507
18508      %t = sub <4 x i32> %a, %b
18509      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18510
18511
18512
18513.. _int_vp_mul:
18514
18515'``llvm.vp.mul.*``' Intrinsics
18516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18517
18518Syntax:
18519"""""""
18520This is an overloaded intrinsic.
18521
18522::
18523
18524      declare <16 x i32>  @llvm.vp.mul.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18525      declare <vscale x 4 x i32>  @llvm.vp.mul.nxv46i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18526      declare <256 x i64>  @llvm.vp.mul.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18527
18528Overview:
18529"""""""""
18530
18531Predicated integer multiplication of two vectors of integers.
18532
18533
18534Arguments:
18535""""""""""
18536
18537The first two operands and the result have the same vector of integer type. The
18538third operand is the vector mask and has the same number of elements as the
18539result vector type. The fourth operand is the explicit vector length of the
18540operation.
18541
18542Semantics:
18543""""""""""
18544The '``llvm.vp.mul``' intrinsic performs integer multiplication
18545(:ref:`mul <i_mul>`) of the first and second vector operand on each enabled
18546lane. The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
18547
18548Examples:
18549"""""""""
18550
18551.. code-block:: llvm
18552
18553      %r = call <4 x i32> @llvm.vp.mul.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18554      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18555
18556      %t = mul <4 x i32> %a, %b
18557      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18558
18559
18560.. _int_vp_sdiv:
18561
18562'``llvm.vp.sdiv.*``' Intrinsics
18563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18564
18565Syntax:
18566"""""""
18567This is an overloaded intrinsic.
18568
18569::
18570
18571      declare <16 x i32>  @llvm.vp.sdiv.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18572      declare <vscale x 4 x i32>  @llvm.vp.sdiv.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18573      declare <256 x i64>  @llvm.vp.sdiv.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18574
18575Overview:
18576"""""""""
18577
18578Predicated, signed division of two vectors of integers.
18579
18580
18581Arguments:
18582""""""""""
18583
18584The first two operands and the result have the same vector of integer type. The
18585third operand is the vector mask and has the same number of elements as the
18586result vector type. The fourth operand is the explicit vector length of the
18587operation.
18588
18589Semantics:
18590""""""""""
18591
18592The '``llvm.vp.sdiv``' intrinsic performs signed division (:ref:`sdiv <i_sdiv>`)
18593of the first and second vector operand on each enabled lane.  The result on
18594disabled lanes is a :ref:`poison value <poisonvalues>`.
18595
18596Examples:
18597"""""""""
18598
18599.. code-block:: llvm
18600
18601      %r = call <4 x i32> @llvm.vp.sdiv.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18602      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18603
18604      %t = sdiv <4 x i32> %a, %b
18605      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18606
18607
18608.. _int_vp_udiv:
18609
18610'``llvm.vp.udiv.*``' Intrinsics
18611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18612
18613Syntax:
18614"""""""
18615This is an overloaded intrinsic.
18616
18617::
18618
18619      declare <16 x i32>  @llvm.vp.udiv.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18620      declare <vscale x 4 x i32>  @llvm.vp.udiv.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18621      declare <256 x i64>  @llvm.vp.udiv.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18622
18623Overview:
18624"""""""""
18625
18626Predicated, unsigned division of two vectors of integers.
18627
18628
18629Arguments:
18630""""""""""
18631
18632The first two operands and the result have the same vector of integer type. The third operand is the vector mask and has the same number of elements as the result vector type. The fourth operand is the explicit vector length of the operation.
18633
18634Semantics:
18635""""""""""
18636
18637The '``llvm.vp.udiv``' intrinsic performs unsigned division
18638(:ref:`udiv <i_udiv>`) of the first and second vector operand on each enabled
18639lane. The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
18640
18641Examples:
18642"""""""""
18643
18644.. code-block:: llvm
18645
18646      %r = call <4 x i32> @llvm.vp.udiv.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18647      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18648
18649      %t = udiv <4 x i32> %a, %b
18650      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18651
18652
18653
18654.. _int_vp_srem:
18655
18656'``llvm.vp.srem.*``' Intrinsics
18657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18658
18659Syntax:
18660"""""""
18661This is an overloaded intrinsic.
18662
18663::
18664
18665      declare <16 x i32>  @llvm.vp.srem.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18666      declare <vscale x 4 x i32>  @llvm.vp.srem.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18667      declare <256 x i64>  @llvm.vp.srem.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18668
18669Overview:
18670"""""""""
18671
18672Predicated computations of the signed remainder of two integer vectors.
18673
18674
18675Arguments:
18676""""""""""
18677
18678The first two operands and the result have the same vector of integer type. The
18679third operand is the vector mask and has the same number of elements as the
18680result vector type. The fourth operand is the explicit vector length of the
18681operation.
18682
18683Semantics:
18684""""""""""
18685
18686The '``llvm.vp.srem``' intrinsic computes the remainder of the signed division
18687(:ref:`srem <i_srem>`) of the first and second vector operand on each enabled
18688lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
18689
18690Examples:
18691"""""""""
18692
18693.. code-block:: llvm
18694
18695      %r = call <4 x i32> @llvm.vp.srem.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18696      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18697
18698      %t = srem <4 x i32> %a, %b
18699      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18700
18701
18702
18703.. _int_vp_urem:
18704
18705'``llvm.vp.urem.*``' Intrinsics
18706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18707
18708Syntax:
18709"""""""
18710This is an overloaded intrinsic.
18711
18712::
18713
18714      declare <16 x i32>  @llvm.vp.urem.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18715      declare <vscale x 4 x i32>  @llvm.vp.urem.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18716      declare <256 x i64>  @llvm.vp.urem.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18717
18718Overview:
18719"""""""""
18720
18721Predicated computation of the unsigned remainder of two integer vectors.
18722
18723
18724Arguments:
18725""""""""""
18726
18727The first two operands and the result have the same vector of integer type. The
18728third operand is the vector mask and has the same number of elements as the
18729result vector type. The fourth operand is the explicit vector length of the
18730operation.
18731
18732Semantics:
18733""""""""""
18734
18735The '``llvm.vp.urem``' intrinsic computes the remainder of the unsigned division
18736(:ref:`urem <i_urem>`) of the first and second vector operand on each enabled
18737lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
18738
18739Examples:
18740"""""""""
18741
18742.. code-block:: llvm
18743
18744      %r = call <4 x i32> @llvm.vp.urem.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18745      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18746
18747      %t = urem <4 x i32> %a, %b
18748      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18749
18750
18751.. _int_vp_ashr:
18752
18753'``llvm.vp.ashr.*``' Intrinsics
18754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18755
18756Syntax:
18757"""""""
18758This is an overloaded intrinsic.
18759
18760::
18761
18762      declare <16 x i32>  @llvm.vp.ashr.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18763      declare <vscale x 4 x i32>  @llvm.vp.ashr.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18764      declare <256 x i64>  @llvm.vp.ashr.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18765
18766Overview:
18767"""""""""
18768
18769Vector-predicated arithmetic right-shift.
18770
18771
18772Arguments:
18773""""""""""
18774
18775The first two operands and the result have the same vector of integer type. The
18776third operand is the vector mask and has the same number of elements as the
18777result vector type. The fourth operand is the explicit vector length of the
18778operation.
18779
18780Semantics:
18781""""""""""
18782
18783The '``llvm.vp.ashr``' intrinsic computes the arithmetic right shift
18784(:ref:`ashr <i_ashr>`) of the first operand by the second operand on each
18785enabled lane. The result on disabled lanes is a
18786:ref:`poison value <poisonvalues>`.
18787
18788Examples:
18789"""""""""
18790
18791.. code-block:: llvm
18792
18793      %r = call <4 x i32> @llvm.vp.ashr.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18794      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18795
18796      %t = ashr <4 x i32> %a, %b
18797      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18798
18799
18800.. _int_vp_lshr:
18801
18802
18803'``llvm.vp.lshr.*``' Intrinsics
18804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18805
18806Syntax:
18807"""""""
18808This is an overloaded intrinsic.
18809
18810::
18811
18812      declare <16 x i32>  @llvm.vp.lshr.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18813      declare <vscale x 4 x i32>  @llvm.vp.lshr.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18814      declare <256 x i64>  @llvm.vp.lshr.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18815
18816Overview:
18817"""""""""
18818
18819Vector-predicated logical right-shift.
18820
18821
18822Arguments:
18823""""""""""
18824
18825The first two operands and the result have the same vector of integer type. The
18826third operand is the vector mask and has the same number of elements as the
18827result vector type. The fourth operand is the explicit vector length of the
18828operation.
18829
18830Semantics:
18831""""""""""
18832
18833The '``llvm.vp.lshr``' intrinsic computes the logical right shift
18834(:ref:`lshr <i_lshr>`) of the first operand by the second operand on each
18835enabled lane. The result on disabled lanes is a
18836:ref:`poison value <poisonvalues>`.
18837
18838Examples:
18839"""""""""
18840
18841.. code-block:: llvm
18842
18843      %r = call <4 x i32> @llvm.vp.lshr.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18844      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18845
18846      %t = lshr <4 x i32> %a, %b
18847      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18848
18849
18850.. _int_vp_shl:
18851
18852'``llvm.vp.shl.*``' Intrinsics
18853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18854
18855Syntax:
18856"""""""
18857This is an overloaded intrinsic.
18858
18859::
18860
18861      declare <16 x i32>  @llvm.vp.shl.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18862      declare <vscale x 4 x i32>  @llvm.vp.shl.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18863      declare <256 x i64>  @llvm.vp.shl.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18864
18865Overview:
18866"""""""""
18867
18868Vector-predicated left shift.
18869
18870
18871Arguments:
18872""""""""""
18873
18874The first two operands and the result have the same vector of integer type. The
18875third operand is the vector mask and has the same number of elements as the
18876result vector type. The fourth operand is the explicit vector length of the
18877operation.
18878
18879Semantics:
18880""""""""""
18881
18882The '``llvm.vp.shl``' intrinsic computes the left shift (:ref:`shl <i_shl>`) of
18883the first operand by the second operand on each enabled lane.  The result on
18884disabled lanes is a :ref:`poison value <poisonvalues>`.
18885
18886Examples:
18887"""""""""
18888
18889.. code-block:: llvm
18890
18891      %r = call <4 x i32> @llvm.vp.shl.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18892      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18893
18894      %t = shl <4 x i32> %a, %b
18895      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18896
18897
18898.. _int_vp_or:
18899
18900'``llvm.vp.or.*``' Intrinsics
18901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18902
18903Syntax:
18904"""""""
18905This is an overloaded intrinsic.
18906
18907::
18908
18909      declare <16 x i32>  @llvm.vp.or.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18910      declare <vscale x 4 x i32>  @llvm.vp.or.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18911      declare <256 x i64>  @llvm.vp.or.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18912
18913Overview:
18914"""""""""
18915
18916Vector-predicated or.
18917
18918
18919Arguments:
18920""""""""""
18921
18922The first two operands and the result have the same vector of integer type. The
18923third operand is the vector mask and has the same number of elements as the
18924result vector type. The fourth operand is the explicit vector length of the
18925operation.
18926
18927Semantics:
18928""""""""""
18929
18930The '``llvm.vp.or``' intrinsic performs a bitwise or (:ref:`or <i_or>`) of the
18931first two operands on each enabled lane.  The result on disabled lanes is
18932a :ref:`poison value <poisonvalues>`.
18933
18934Examples:
18935"""""""""
18936
18937.. code-block:: llvm
18938
18939      %r = call <4 x i32> @llvm.vp.or.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18940      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18941
18942      %t = or <4 x i32> %a, %b
18943      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18944
18945
18946.. _int_vp_and:
18947
18948'``llvm.vp.and.*``' Intrinsics
18949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18950
18951Syntax:
18952"""""""
18953This is an overloaded intrinsic.
18954
18955::
18956
18957      declare <16 x i32>  @llvm.vp.and.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
18958      declare <vscale x 4 x i32>  @llvm.vp.and.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
18959      declare <256 x i64>  @llvm.vp.and.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
18960
18961Overview:
18962"""""""""
18963
18964Vector-predicated and.
18965
18966
18967Arguments:
18968""""""""""
18969
18970The first two operands and the result have the same vector of integer type. The
18971third operand is the vector mask and has the same number of elements as the
18972result vector type. The fourth operand is the explicit vector length of the
18973operation.
18974
18975Semantics:
18976""""""""""
18977
18978The '``llvm.vp.and``' intrinsic performs a bitwise and (:ref:`and <i_or>`) of
18979the first two operands on each enabled lane.  The result on disabled lanes is
18980a :ref:`poison value <poisonvalues>`.
18981
18982Examples:
18983"""""""""
18984
18985.. code-block:: llvm
18986
18987      %r = call <4 x i32> @llvm.vp.and.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
18988      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
18989
18990      %t = and <4 x i32> %a, %b
18991      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
18992
18993
18994.. _int_vp_xor:
18995
18996'``llvm.vp.xor.*``' Intrinsics
18997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18998
18999Syntax:
19000"""""""
19001This is an overloaded intrinsic.
19002
19003::
19004
19005      declare <16 x i32>  @llvm.vp.xor.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19006      declare <vscale x 4 x i32>  @llvm.vp.xor.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19007      declare <256 x i64>  @llvm.vp.xor.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19008
19009Overview:
19010"""""""""
19011
19012Vector-predicated, bitwise xor.
19013
19014
19015Arguments:
19016""""""""""
19017
19018The first two operands and the result have the same vector of integer type. The
19019third operand is the vector mask and has the same number of elements as the
19020result vector type. The fourth operand is the explicit vector length of the
19021operation.
19022
19023Semantics:
19024""""""""""
19025
19026The '``llvm.vp.xor``' intrinsic performs a bitwise xor (:ref:`xor <i_xor>`) of
19027the first two operands on each enabled lane.
19028The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
19029
19030Examples:
19031"""""""""
19032
19033.. code-block:: llvm
19034
19035      %r = call <4 x i32> @llvm.vp.xor.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
19036      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19037
19038      %t = xor <4 x i32> %a, %b
19039      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
19040
19041.. _int_vp_abs:
19042
19043'``llvm.vp.abs.*``' Intrinsics
19044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19045
19046Syntax:
19047"""""""
19048This is an overloaded intrinsic.
19049
19050::
19051
19052      declare <16 x i32>  @llvm.vp.abs.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>, i1 <is_int_min_poison>)
19053      declare <vscale x 4 x i32>  @llvm.vp.abs.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>, i1 <is_int_min_poison>)
19054      declare <256 x i64>  @llvm.vp.abs.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>, i1 <is_int_min_poison>)
19055
19056Overview:
19057"""""""""
19058
19059Predicated abs of a vector of integers.
19060
19061
19062Arguments:
19063""""""""""
19064
19065The first operand and the result have the same vector of integer type. The
19066second operand is the vector mask and has the same number of elements as the
19067result vector type. The third operand is the explicit vector length of the
19068operation. The fourth argument must be a constant and is a flag to indicate
19069whether the result value of the '``llvm.vp.abs``' intrinsic is a
19070:ref:`poison value <poisonvalues>` if the argument is statically or dynamically
19071an ``INT_MIN`` value.
19072
19073Semantics:
19074""""""""""
19075
19076The '``llvm.vp.abs``' intrinsic performs abs (:ref:`abs <int_abs>`) of the first operand on each
19077enabled lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
19078
19079Examples:
19080"""""""""
19081
19082.. code-block:: llvm
19083
19084      %r = call <4 x i32> @llvm.vp.abs.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl, i1 false)
19085      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19086
19087      %t = call <4 x i32> @llvm.abs.v4i32(<4 x i32> %a, i1 false)
19088      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
19089
19090
19091
19092.. _int_vp_smax:
19093
19094'``llvm.vp.smax.*``' Intrinsics
19095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19096
19097Syntax:
19098"""""""
19099This is an overloaded intrinsic.
19100
19101::
19102
19103      declare <16 x i32>  @llvm.vp.smax.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19104      declare <vscale x 4 x i32>  @llvm.vp.smax.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19105      declare <256 x i64>  @llvm.vp.smax.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19106
19107Overview:
19108"""""""""
19109
19110Predicated integer signed maximum of two vectors of integers.
19111
19112
19113Arguments:
19114""""""""""
19115
19116The first two operands and the result have the same vector of integer type. The
19117third operand is the vector mask and has the same number of elements as the
19118result vector type. The fourth operand is the explicit vector length of the
19119operation.
19120
19121Semantics:
19122""""""""""
19123
19124The '``llvm.vp.smax``' intrinsic performs integer signed maximum (:ref:`smax <int_smax>`)
19125of the first and second vector operand on each enabled lane.  The result on
19126disabled lanes is a :ref:`poison value <poisonvalues>`.
19127
19128Examples:
19129"""""""""
19130
19131.. code-block:: llvm
19132
19133      %r = call <4 x i32> @llvm.vp.smax.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
19134      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19135
19136      %t = call <4 x i32> @llvm.smax.v4i32(<4 x i32> %a, <4 x i32> %b)
19137      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
19138
19139
19140.. _int_vp_smin:
19141
19142'``llvm.vp.smin.*``' Intrinsics
19143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19144
19145Syntax:
19146"""""""
19147This is an overloaded intrinsic.
19148
19149::
19150
19151      declare <16 x i32>  @llvm.vp.smin.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19152      declare <vscale x 4 x i32>  @llvm.vp.smin.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19153      declare <256 x i64>  @llvm.vp.smin.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19154
19155Overview:
19156"""""""""
19157
19158Predicated integer signed minimum of two vectors of integers.
19159
19160
19161Arguments:
19162""""""""""
19163
19164The first two operands and the result have the same vector of integer type. The
19165third operand is the vector mask and has the same number of elements as the
19166result vector type. The fourth operand is the explicit vector length of the
19167operation.
19168
19169Semantics:
19170""""""""""
19171
19172The '``llvm.vp.smin``' intrinsic performs integer signed minimum (:ref:`smin <int_smin>`)
19173of the first and second vector operand on each enabled lane.  The result on
19174disabled lanes is a :ref:`poison value <poisonvalues>`.
19175
19176Examples:
19177"""""""""
19178
19179.. code-block:: llvm
19180
19181      %r = call <4 x i32> @llvm.vp.smin.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
19182      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19183
19184      %t = call <4 x i32> @llvm.smin.v4i32(<4 x i32> %a, <4 x i32> %b)
19185      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
19186
19187
19188.. _int_vp_umax:
19189
19190'``llvm.vp.umax.*``' Intrinsics
19191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19192
19193Syntax:
19194"""""""
19195This is an overloaded intrinsic.
19196
19197::
19198
19199      declare <16 x i32>  @llvm.vp.umax.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19200      declare <vscale x 4 x i32>  @llvm.vp.umax.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19201      declare <256 x i64>  @llvm.vp.umax.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19202
19203Overview:
19204"""""""""
19205
19206Predicated integer unsigned maximum of two vectors of integers.
19207
19208
19209Arguments:
19210""""""""""
19211
19212The first two operands and the result have the same vector of integer type. The
19213third operand is the vector mask and has the same number of elements as the
19214result vector type. The fourth operand is the explicit vector length of the
19215operation.
19216
19217Semantics:
19218""""""""""
19219
19220The '``llvm.vp.umax``' intrinsic performs integer unsigned maximum (:ref:`umax <int_umax>`)
19221of the first and second vector operand on each enabled lane.  The result on
19222disabled lanes is a :ref:`poison value <poisonvalues>`.
19223
19224Examples:
19225"""""""""
19226
19227.. code-block:: llvm
19228
19229      %r = call <4 x i32> @llvm.vp.umax.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
19230      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19231
19232      %t = call <4 x i32> @llvm.umax.v4i32(<4 x i32> %a, <4 x i32> %b)
19233      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
19234
19235
19236.. _int_vp_umin:
19237
19238'``llvm.vp.umin.*``' Intrinsics
19239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19240
19241Syntax:
19242"""""""
19243This is an overloaded intrinsic.
19244
19245::
19246
19247      declare <16 x i32>  @llvm.vp.umin.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19248      declare <vscale x 4 x i32>  @llvm.vp.umin.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19249      declare <256 x i64>  @llvm.vp.umin.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19250
19251Overview:
19252"""""""""
19253
19254Predicated integer unsigned minimum of two vectors of integers.
19255
19256
19257Arguments:
19258""""""""""
19259
19260The first two operands and the result have the same vector of integer type. The
19261third operand is the vector mask and has the same number of elements as the
19262result vector type. The fourth operand is the explicit vector length of the
19263operation.
19264
19265Semantics:
19266""""""""""
19267
19268The '``llvm.vp.umin``' intrinsic performs integer unsigned minimum (:ref:`umin <int_umin>`)
19269of the first and second vector operand on each enabled lane.  The result on
19270disabled lanes is a :ref:`poison value <poisonvalues>`.
19271
19272Examples:
19273"""""""""
19274
19275.. code-block:: llvm
19276
19277      %r = call <4 x i32> @llvm.vp.umin.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
19278      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19279
19280      %t = call <4 x i32> @llvm.umin.v4i32(<4 x i32> %a, <4 x i32> %b)
19281      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
19282
19283
19284.. _int_vp_copysign:
19285
19286'``llvm.vp.copysign.*``' Intrinsics
19287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19288
19289Syntax:
19290"""""""
19291This is an overloaded intrinsic.
19292
19293::
19294
19295      declare <16 x float>  @llvm.vp.copysign.v16f32 (<16 x float> <mag_op>, <16 x float> <sign_op>, <16 x i1> <mask>, i32 <vector_length>)
19296      declare <vscale x 4 x float>  @llvm.vp.copysign.nxv4f32 (<vscale x 4 x float> <mag_op>, <vscale x 4 x float> <sign_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19297      declare <256 x double>  @llvm.vp.copysign.v256f64 (<256 x double> <mag_op>, <256 x double> <sign_op>, <256 x i1> <mask>, i32 <vector_length>)
19298
19299Overview:
19300"""""""""
19301
19302Predicated floating-point copysign of two vectors of floating-point values.
19303
19304
19305Arguments:
19306""""""""""
19307
19308The first two operands and the result have the same vector of floating-point type. The
19309third operand is the vector mask and has the same number of elements as the
19310result vector type. The fourth operand is the explicit vector length of the
19311operation.
19312
19313Semantics:
19314""""""""""
19315
19316The '``llvm.vp.copysign``' intrinsic performs floating-point copysign (:ref:`copysign <int_copysign>`)
19317of the first and second vector operand on each enabled lane.  The result on
19318disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19319performed in the default floating-point environment.
19320
19321Examples:
19322"""""""""
19323
19324.. code-block:: llvm
19325
19326      %r = call <4 x float> @llvm.vp.copysign.v4f32(<4 x float> %mag, <4 x float> %sign, <4 x i1> %mask, i32 %evl)
19327      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19328
19329      %t = call <4 x float> @llvm.copysign.v4f32(<4 x float> %mag, <4 x float> %sign)
19330      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19331
19332
19333.. _int_vp_minnum:
19334
19335'``llvm.vp.minnum.*``' Intrinsics
19336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19337
19338Syntax:
19339"""""""
19340This is an overloaded intrinsic.
19341
19342::
19343
19344      declare <16 x float>  @llvm.vp.minnum.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19345      declare <vscale x 4 x float>  @llvm.vp.minnum.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19346      declare <256 x double>  @llvm.vp.minnum.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19347
19348Overview:
19349"""""""""
19350
19351Predicated floating-point IEEE-754 minNum of two vectors of floating-point values.
19352
19353
19354Arguments:
19355""""""""""
19356
19357The first two operands and the result have the same vector of floating-point type. The
19358third operand is the vector mask and has the same number of elements as the
19359result vector type. The fourth operand is the explicit vector length of the
19360operation.
19361
19362Semantics:
19363""""""""""
19364
19365The '``llvm.vp.minnum``' intrinsic performs floating-point minimum (:ref:`minnum <i_minnum>`)
19366of the first and second vector operand on each enabled lane.  The result on
19367disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19368performed in the default floating-point environment.
19369
19370Examples:
19371"""""""""
19372
19373.. code-block:: llvm
19374
19375      %r = call <4 x float> @llvm.vp.minnum.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19376      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19377
19378      %t = call <4 x float> @llvm.minnum.v4f32(<4 x float> %a, <4 x float> %b)
19379      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19380
19381
19382.. _int_vp_maxnum:
19383
19384'``llvm.vp.maxnum.*``' Intrinsics
19385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19386
19387Syntax:
19388"""""""
19389This is an overloaded intrinsic.
19390
19391::
19392
19393      declare <16 x float>  @llvm.vp.maxnum.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19394      declare <vscale x 4 x float>  @llvm.vp.maxnum.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19395      declare <256 x double>  @llvm.vp.maxnum.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19396
19397Overview:
19398"""""""""
19399
19400Predicated floating-point IEEE-754 maxNum of two vectors of floating-point values.
19401
19402
19403Arguments:
19404""""""""""
19405
19406The first two operands and the result have the same vector of floating-point type. The
19407third operand is the vector mask and has the same number of elements as the
19408result vector type. The fourth operand is the explicit vector length of the
19409operation.
19410
19411Semantics:
19412""""""""""
19413
19414The '``llvm.vp.maxnum``' intrinsic performs floating-point maximum (:ref:`maxnum <i_maxnum>`)
19415of the first and second vector operand on each enabled lane.  The result on
19416disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19417performed in the default floating-point environment.
19418
19419Examples:
19420"""""""""
19421
19422.. code-block:: llvm
19423
19424      %r = call <4 x float> @llvm.vp.maxnum.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19425      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19426
19427      %t = call <4 x float> @llvm.maxnum.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19428      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19429
19430
19431.. _int_vp_fadd:
19432
19433'``llvm.vp.fadd.*``' Intrinsics
19434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19435
19436Syntax:
19437"""""""
19438This is an overloaded intrinsic.
19439
19440::
19441
19442      declare <16 x float>  @llvm.vp.fadd.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19443      declare <vscale x 4 x float>  @llvm.vp.fadd.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19444      declare <256 x double>  @llvm.vp.fadd.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19445
19446Overview:
19447"""""""""
19448
19449Predicated floating-point addition of two vectors of floating-point values.
19450
19451
19452Arguments:
19453""""""""""
19454
19455The first two operands and the result have the same vector of floating-point type. The
19456third operand is the vector mask and has the same number of elements as the
19457result vector type. The fourth operand is the explicit vector length of the
19458operation.
19459
19460Semantics:
19461""""""""""
19462
19463The '``llvm.vp.fadd``' intrinsic performs floating-point addition (:ref:`fadd <i_fadd>`)
19464of the first and second vector operand on each enabled lane.  The result on
19465disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19466performed in the default floating-point environment.
19467
19468Examples:
19469"""""""""
19470
19471.. code-block:: llvm
19472
19473      %r = call <4 x float> @llvm.vp.fadd.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19474      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19475
19476      %t = fadd <4 x float> %a, %b
19477      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19478
19479
19480.. _int_vp_fsub:
19481
19482'``llvm.vp.fsub.*``' Intrinsics
19483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19484
19485Syntax:
19486"""""""
19487This is an overloaded intrinsic.
19488
19489::
19490
19491      declare <16 x float>  @llvm.vp.fsub.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19492      declare <vscale x 4 x float>  @llvm.vp.fsub.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19493      declare <256 x double>  @llvm.vp.fsub.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19494
19495Overview:
19496"""""""""
19497
19498Predicated floating-point subtraction of two vectors of floating-point values.
19499
19500
19501Arguments:
19502""""""""""
19503
19504The first two operands and the result have the same vector of floating-point type. The
19505third operand is the vector mask and has the same number of elements as the
19506result vector type. The fourth operand is the explicit vector length of the
19507operation.
19508
19509Semantics:
19510""""""""""
19511
19512The '``llvm.vp.fsub``' intrinsic performs floating-point subtraction (:ref:`fsub <i_fsub>`)
19513of the first and second vector operand on each enabled lane.  The result on
19514disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19515performed in the default floating-point environment.
19516
19517Examples:
19518"""""""""
19519
19520.. code-block:: llvm
19521
19522      %r = call <4 x float> @llvm.vp.fsub.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19523      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19524
19525      %t = fsub <4 x float> %a, %b
19526      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19527
19528
19529.. _int_vp_fmul:
19530
19531'``llvm.vp.fmul.*``' Intrinsics
19532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19533
19534Syntax:
19535"""""""
19536This is an overloaded intrinsic.
19537
19538::
19539
19540      declare <16 x float>  @llvm.vp.fmul.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19541      declare <vscale x 4 x float>  @llvm.vp.fmul.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19542      declare <256 x double>  @llvm.vp.fmul.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19543
19544Overview:
19545"""""""""
19546
19547Predicated floating-point multiplication of two vectors of floating-point values.
19548
19549
19550Arguments:
19551""""""""""
19552
19553The first two operands and the result have the same vector of floating-point type. The
19554third operand is the vector mask and has the same number of elements as the
19555result vector type. The fourth operand is the explicit vector length of the
19556operation.
19557
19558Semantics:
19559""""""""""
19560
19561The '``llvm.vp.fmul``' intrinsic performs floating-point multiplication (:ref:`fmul <i_fmul>`)
19562of the first and second vector operand on each enabled lane.  The result on
19563disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19564performed in the default floating-point environment.
19565
19566Examples:
19567"""""""""
19568
19569.. code-block:: llvm
19570
19571      %r = call <4 x float> @llvm.vp.fmul.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19572      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19573
19574      %t = fmul <4 x float> %a, %b
19575      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19576
19577
19578.. _int_vp_fdiv:
19579
19580'``llvm.vp.fdiv.*``' Intrinsics
19581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19582
19583Syntax:
19584"""""""
19585This is an overloaded intrinsic.
19586
19587::
19588
19589      declare <16 x float>  @llvm.vp.fdiv.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19590      declare <vscale x 4 x float>  @llvm.vp.fdiv.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19591      declare <256 x double>  @llvm.vp.fdiv.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19592
19593Overview:
19594"""""""""
19595
19596Predicated floating-point division of two vectors of floating-point values.
19597
19598
19599Arguments:
19600""""""""""
19601
19602The first two operands and the result have the same vector of floating-point type. The
19603third operand is the vector mask and has the same number of elements as the
19604result vector type. The fourth operand is the explicit vector length of the
19605operation.
19606
19607Semantics:
19608""""""""""
19609
19610The '``llvm.vp.fdiv``' intrinsic performs floating-point division (:ref:`fdiv <i_fdiv>`)
19611of the first and second vector operand on each enabled lane.  The result on
19612disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19613performed in the default floating-point environment.
19614
19615Examples:
19616"""""""""
19617
19618.. code-block:: llvm
19619
19620      %r = call <4 x float> @llvm.vp.fdiv.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19621      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19622
19623      %t = fdiv <4 x float> %a, %b
19624      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19625
19626
19627.. _int_vp_frem:
19628
19629'``llvm.vp.frem.*``' Intrinsics
19630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19631
19632Syntax:
19633"""""""
19634This is an overloaded intrinsic.
19635
19636::
19637
19638      declare <16 x float>  @llvm.vp.frem.v16f32 (<16 x float> <left_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19639      declare <vscale x 4 x float>  @llvm.vp.frem.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19640      declare <256 x double>  @llvm.vp.frem.v256f64 (<256 x double> <left_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19641
19642Overview:
19643"""""""""
19644
19645Predicated floating-point remainder of two vectors of floating-point values.
19646
19647
19648Arguments:
19649""""""""""
19650
19651The first two operands and the result have the same vector of floating-point type. The
19652third operand is the vector mask and has the same number of elements as the
19653result vector type. The fourth operand is the explicit vector length of the
19654operation.
19655
19656Semantics:
19657""""""""""
19658
19659The '``llvm.vp.frem``' intrinsic performs floating-point remainder (:ref:`frem <i_frem>`)
19660of the first and second vector operand on each enabled lane.  The result on
19661disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19662performed in the default floating-point environment.
19663
19664Examples:
19665"""""""""
19666
19667.. code-block:: llvm
19668
19669      %r = call <4 x float> @llvm.vp.frem.v4f32(<4 x float> %a, <4 x float> %b, <4 x i1> %mask, i32 %evl)
19670      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19671
19672      %t = frem <4 x float> %a, %b
19673      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19674
19675
19676.. _int_vp_fneg:
19677
19678'``llvm.vp.fneg.*``' Intrinsics
19679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19680
19681Syntax:
19682"""""""
19683This is an overloaded intrinsic.
19684
19685::
19686
19687      declare <16 x float>  @llvm.vp.fneg.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
19688      declare <vscale x 4 x float>  @llvm.vp.fneg.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19689      declare <256 x double>  @llvm.vp.fneg.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
19690
19691Overview:
19692"""""""""
19693
19694Predicated floating-point negation of a vector of floating-point values.
19695
19696
19697Arguments:
19698""""""""""
19699
19700The first operand and the result have the same vector of floating-point type.
19701The second operand is the vector mask and has the same number of elements as the
19702result vector type. The third operand is the explicit vector length of the
19703operation.
19704
19705Semantics:
19706""""""""""
19707
19708The '``llvm.vp.fneg``' intrinsic performs floating-point negation (:ref:`fneg <i_fneg>`)
19709of the first vector operand on each enabled lane.  The result on disabled lanes
19710is a :ref:`poison value <poisonvalues>`.
19711
19712Examples:
19713"""""""""
19714
19715.. code-block:: llvm
19716
19717      %r = call <4 x float> @llvm.vp.fneg.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
19718      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19719
19720      %t = fneg <4 x float> %a
19721      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19722
19723
19724.. _int_vp_fabs:
19725
19726'``llvm.vp.fabs.*``' Intrinsics
19727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19728
19729Syntax:
19730"""""""
19731This is an overloaded intrinsic.
19732
19733::
19734
19735      declare <16 x float>  @llvm.vp.fabs.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
19736      declare <vscale x 4 x float>  @llvm.vp.fabs.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19737      declare <256 x double>  @llvm.vp.fabs.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
19738
19739Overview:
19740"""""""""
19741
19742Predicated floating-point absolute value of a vector of floating-point values.
19743
19744
19745Arguments:
19746""""""""""
19747
19748The first operand and the result have the same vector of floating-point type.
19749The second operand is the vector mask and has the same number of elements as the
19750result vector type. The third operand is the explicit vector length of the
19751operation.
19752
19753Semantics:
19754""""""""""
19755
19756The '``llvm.vp.fabs``' intrinsic performs floating-point absolute value
19757(:ref:`fabs <int_fabs>`) of the first vector operand on each enabled lane.  The
19758result on disabled lanes is a :ref:`poison value <poisonvalues>`.
19759
19760Examples:
19761"""""""""
19762
19763.. code-block:: llvm
19764
19765      %r = call <4 x float> @llvm.vp.fabs.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
19766      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19767
19768      %t = call <4 x float> @llvm.fabs.v4f32(<4 x float> %a)
19769      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19770
19771
19772.. _int_vp_sqrt:
19773
19774'``llvm.vp.sqrt.*``' Intrinsics
19775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19776
19777Syntax:
19778"""""""
19779This is an overloaded intrinsic.
19780
19781::
19782
19783      declare <16 x float>  @llvm.vp.sqrt.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
19784      declare <vscale x 4 x float>  @llvm.vp.sqrt.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19785      declare <256 x double>  @llvm.vp.sqrt.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
19786
19787Overview:
19788"""""""""
19789
19790Predicated floating-point square root of a vector of floating-point values.
19791
19792
19793Arguments:
19794""""""""""
19795
19796The first operand and the result have the same vector of floating-point type.
19797The second operand is the vector mask and has the same number of elements as the
19798result vector type. The third operand is the explicit vector length of the
19799operation.
19800
19801Semantics:
19802""""""""""
19803
19804The '``llvm.vp.sqrt``' intrinsic performs floating-point square root (:ref:`sqrt <int_sqrt>`) of
19805the first vector operand on each enabled lane.  The result on disabled lanes is
19806a :ref:`poison value <poisonvalues>`. The operation is performed in the default
19807floating-point environment.
19808
19809Examples:
19810"""""""""
19811
19812.. code-block:: llvm
19813
19814      %r = call <4 x float> @llvm.vp.sqrt.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
19815      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19816
19817      %t = call <4 x float> @llvm.sqrt.v4f32(<4 x float> %a)
19818      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19819
19820
19821.. _int_vp_fma:
19822
19823'``llvm.vp.fma.*``' Intrinsics
19824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19825
19826Syntax:
19827"""""""
19828This is an overloaded intrinsic.
19829
19830::
19831
19832      declare <16 x float>  @llvm.vp.fma.v16f32 (<16 x float> <left_op>, <16 x float> <middle_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19833      declare <vscale x 4 x float>  @llvm.vp.fma.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <middle_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19834      declare <256 x double>  @llvm.vp.fma.v256f64 (<256 x double> <left_op>, <256 x double> <middle_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19835
19836Overview:
19837"""""""""
19838
19839Predicated floating-point fused multiply-add of two vectors of floating-point values.
19840
19841
19842Arguments:
19843""""""""""
19844
19845The first three operands and the result have the same vector of floating-point type. The
19846fourth operand is the vector mask and has the same number of elements as the
19847result vector type. The fifth operand is the explicit vector length of the
19848operation.
19849
19850Semantics:
19851""""""""""
19852
19853The '``llvm.vp.fma``' intrinsic performs floating-point fused multiply-add (:ref:`llvm.fma <int_fma>`)
19854of the first, second, and third vector operand on each enabled lane.  The result on
19855disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19856performed in the default floating-point environment.
19857
19858Examples:
19859"""""""""
19860
19861.. code-block:: llvm
19862
19863      %r = call <4 x float> @llvm.vp.fma.v4f32(<4 x float> %a, <4 x float> %b, <4 x float> %c, <4 x i1> %mask, i32 %evl)
19864      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19865
19866      %t = call <4 x float> @llvm.fma(<4 x float> %a, <4 x float> %b, <4 x float> %c)
19867      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19868
19869
19870.. _int_vp_fmuladd:
19871
19872'``llvm.vp.fmuladd.*``' Intrinsics
19873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19874
19875Syntax:
19876"""""""
19877This is an overloaded intrinsic.
19878
19879::
19880
19881      declare <16 x float>  @llvm.vp.fmuladd.v16f32 (<16 x float> <left_op>, <16 x float> <middle_op>, <16 x float> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
19882      declare <vscale x 4 x float>  @llvm.vp.fmuladd.nxv4f32 (<vscale x 4 x float> <left_op>, <vscale x 4 x float> <middle_op>, <vscale x 4 x float> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
19883      declare <256 x double>  @llvm.vp.fmuladd.v256f64 (<256 x double> <left_op>, <256 x double> <middle_op>, <256 x double> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
19884
19885Overview:
19886"""""""""
19887
19888Predicated floating-point multiply-add of two vectors of floating-point values
19889that can be fused if code generator determines that (a) the target instruction
19890set has support for a fused operation, and (b) that the fused operation is more
19891efficient than the equivalent, separate pair of mul and add instructions.
19892
19893Arguments:
19894""""""""""
19895
19896The first three operands and the result have the same vector of floating-point
19897type. The fourth operand is the vector mask and has the same number of elements
19898as the result vector type. The fifth operand is the explicit vector length of
19899the operation.
19900
19901Semantics:
19902""""""""""
19903
19904The '``llvm.vp.fmuladd``' intrinsic performs floating-point multiply-add (:ref:`llvm.fuladd <int_fmuladd>`)
19905of the first, second, and third vector operand on each enabled lane.  The result
19906on disabled lanes is a :ref:`poison value <poisonvalues>`.  The operation is
19907performed in the default floating-point environment.
19908
19909Examples:
19910"""""""""
19911
19912.. code-block:: llvm
19913
19914      %r = call <4 x float> @llvm.vp.fmuladd.v4f32(<4 x float> %a, <4 x float> %b, <4 x float> %c, <4 x i1> %mask, i32 %evl)
19915      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
19916
19917      %t = call <4 x float> @llvm.fmuladd(<4 x float> %a, <4 x float> %b, <4 x float> %c)
19918      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
19919
19920
19921.. _int_vp_reduce_add:
19922
19923'``llvm.vp.reduce.add.*``' Intrinsics
19924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19925
19926Syntax:
19927"""""""
19928This is an overloaded intrinsic.
19929
19930::
19931
19932      declare i32 @llvm.vp.reduce.add.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
19933      declare i16 @llvm.vp.reduce.add.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
19934
19935Overview:
19936"""""""""
19937
19938Predicated integer ``ADD`` reduction of a vector and a scalar starting value,
19939returning the result as a scalar.
19940
19941Arguments:
19942""""""""""
19943
19944The first operand is the start value of the reduction, which must be a scalar
19945integer type equal to the result type. The second operand is the vector on
19946which the reduction is performed and must be a vector of integer values whose
19947element type is the result/start type. The third operand is the vector mask and
19948is a vector of boolean values with the same number of elements as the vector
19949operand. The fourth operand is the explicit vector length of the operation.
19950
19951Semantics:
19952""""""""""
19953
19954The '``llvm.vp.reduce.add``' intrinsic performs the integer ``ADD`` reduction
19955(:ref:`llvm.vector.reduce.add <int_vector_reduce_add>`) of the vector operand
19956``val`` on each enabled lane, adding it to the scalar ``start_value``. Disabled
19957lanes are treated as containing the neutral value ``0`` (i.e. having no effect
19958on the reduction operation). If the vector length is zero, the result is equal
19959to ``start_value``.
19960
19961To ignore the start value, the neutral value can be used.
19962
19963Examples:
19964"""""""""
19965
19966.. code-block:: llvm
19967
19968      %r = call i32 @llvm.vp.reduce.add.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
19969      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
19970      ; are treated as though %mask were false for those lanes.
19971
19972      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> zeroinitializer
19973      %reduction = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> %masked.a)
19974      %also.r = add i32 %reduction, %start
19975
19976
19977.. _int_vp_reduce_fadd:
19978
19979'``llvm.vp.reduce.fadd.*``' Intrinsics
19980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19981
19982Syntax:
19983"""""""
19984This is an overloaded intrinsic.
19985
19986::
19987
19988      declare float @llvm.vp.reduce.fadd.v4f32(float <start_value>, <4 x float> <val>, <4 x i1> <mask>, i32 <vector_length>)
19989      declare double @llvm.vp.reduce.fadd.nxv8f64(double <start_value>, <vscale x 8 x double> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
19990
19991Overview:
19992"""""""""
19993
19994Predicated floating-point ``ADD`` reduction of a vector and a scalar starting
19995value, returning the result as a scalar.
19996
19997Arguments:
19998""""""""""
19999
20000The first operand is the start value of the reduction, which must be a scalar
20001floating-point type equal to the result type. The second operand is the vector
20002on which the reduction is performed and must be a vector of floating-point
20003values whose element type is the result/start type. The third operand is the
20004vector mask and is a vector of boolean values with the same number of elements
20005as the vector operand. The fourth operand is the explicit vector length of the
20006operation.
20007
20008Semantics:
20009""""""""""
20010
20011The '``llvm.vp.reduce.fadd``' intrinsic performs the floating-point ``ADD``
20012reduction (:ref:`llvm.vector.reduce.fadd <int_vector_reduce_fadd>`) of the
20013vector operand ``val`` on each enabled lane, adding it to the scalar
20014``start_value``. Disabled lanes are treated as containing the neutral value
20015``-0.0`` (i.e. having no effect on the reduction operation). If no lanes are
20016enabled, the resulting value will be equal to ``start_value``.
20017
20018To ignore the start value, the neutral value can be used.
20019
20020See the unpredicated version (:ref:`llvm.vector.reduce.fadd
20021<int_vector_reduce_fadd>`) for more detail on the semantics of the reduction.
20022
20023Examples:
20024"""""""""
20025
20026.. code-block:: llvm
20027
20028      %r = call float @llvm.vp.reduce.fadd.v4f32(float %start, <4 x float> %a, <4 x i1> %mask, i32 %evl)
20029      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20030      ; are treated as though %mask were false for those lanes.
20031
20032      %masked.a = select <4 x i1> %mask, <4 x float> %a, <4 x float> <float -0.0, float -0.0, float -0.0, float -0.0>
20033      %also.r = call float @llvm.vector.reduce.fadd.v4f32(float %start, <4 x float> %masked.a)
20034
20035
20036.. _int_vp_reduce_mul:
20037
20038'``llvm.vp.reduce.mul.*``' Intrinsics
20039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20040
20041Syntax:
20042"""""""
20043This is an overloaded intrinsic.
20044
20045::
20046
20047      declare i32 @llvm.vp.reduce.mul.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20048      declare i16 @llvm.vp.reduce.mul.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20049
20050Overview:
20051"""""""""
20052
20053Predicated integer ``MUL`` reduction of a vector and a scalar starting value,
20054returning the result as a scalar.
20055
20056
20057Arguments:
20058""""""""""
20059
20060The first operand is the start value of the reduction, which must be a scalar
20061integer type equal to the result type. The second operand is the vector on
20062which the reduction is performed and must be a vector of integer values whose
20063element type is the result/start type. The third operand is the vector mask and
20064is a vector of boolean values with the same number of elements as the vector
20065operand. The fourth operand is the explicit vector length of the operation.
20066
20067Semantics:
20068""""""""""
20069
20070The '``llvm.vp.reduce.mul``' intrinsic performs the integer ``MUL`` reduction
20071(:ref:`llvm.vector.reduce.mul <int_vector_reduce_mul>`) of the vector operand ``val``
20072on each enabled lane, multiplying it by the scalar ``start_value``. Disabled
20073lanes are treated as containing the neutral value ``1`` (i.e. having no effect
20074on the reduction operation). If the vector length is zero, the result is the
20075start value.
20076
20077To ignore the start value, the neutral value can be used.
20078
20079Examples:
20080"""""""""
20081
20082.. code-block:: llvm
20083
20084      %r = call i32 @llvm.vp.reduce.mul.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
20085      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20086      ; are treated as though %mask were false for those lanes.
20087
20088      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> <i32 1, i32 1, i32 1, i32 1>
20089      %reduction = call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %masked.a)
20090      %also.r = mul i32 %reduction, %start
20091
20092.. _int_vp_reduce_fmul:
20093
20094'``llvm.vp.reduce.fmul.*``' Intrinsics
20095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20096
20097Syntax:
20098"""""""
20099This is an overloaded intrinsic.
20100
20101::
20102
20103      declare float @llvm.vp.reduce.fmul.v4f32(float <start_value>, <4 x float> <val>, <4 x i1> <mask>, i32 <vector_length>)
20104      declare double @llvm.vp.reduce.fmul.nxv8f64(double <start_value>, <vscale x 8 x double> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20105
20106Overview:
20107"""""""""
20108
20109Predicated floating-point ``MUL`` reduction of a vector and a scalar starting
20110value, returning the result as a scalar.
20111
20112
20113Arguments:
20114""""""""""
20115
20116The first operand is the start value of the reduction, which must be a scalar
20117floating-point type equal to the result type. The second operand is the vector
20118on which the reduction is performed and must be a vector of floating-point
20119values whose element type is the result/start type. The third operand is the
20120vector mask and is a vector of boolean values with the same number of elements
20121as the vector operand. The fourth operand is the explicit vector length of the
20122operation.
20123
20124Semantics:
20125""""""""""
20126
20127The '``llvm.vp.reduce.fmul``' intrinsic performs the floating-point ``MUL``
20128reduction (:ref:`llvm.vector.reduce.fmul <int_vector_reduce_fmul>`) of the
20129vector operand ``val`` on each enabled lane, multiplying it by the scalar
20130`start_value``. Disabled lanes are treated as containing the neutral value
20131``1.0`` (i.e. having no effect on the reduction operation). If no lanes are
20132enabled, the resulting value will be equal to the starting value.
20133
20134To ignore the start value, the neutral value can be used.
20135
20136See the unpredicated version (:ref:`llvm.vector.reduce.fmul
20137<int_vector_reduce_fmul>`) for more detail on the semantics.
20138
20139Examples:
20140"""""""""
20141
20142.. code-block:: llvm
20143
20144      %r = call float @llvm.vp.reduce.fmul.v4f32(float %start, <4 x float> %a, <4 x i1> %mask, i32 %evl)
20145      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20146      ; are treated as though %mask were false for those lanes.
20147
20148      %masked.a = select <4 x i1> %mask, <4 x float> %a, <4 x float> <float 1.0, float 1.0, float 1.0, float 1.0>
20149      %also.r = call float @llvm.vector.reduce.fmul.v4f32(float %start, <4 x float> %masked.a)
20150
20151
20152.. _int_vp_reduce_and:
20153
20154'``llvm.vp.reduce.and.*``' Intrinsics
20155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20156
20157Syntax:
20158"""""""
20159This is an overloaded intrinsic.
20160
20161::
20162
20163      declare i32 @llvm.vp.reduce.and.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20164      declare i16 @llvm.vp.reduce.and.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20165
20166Overview:
20167"""""""""
20168
20169Predicated integer ``AND`` reduction of a vector and a scalar starting value,
20170returning the result as a scalar.
20171
20172
20173Arguments:
20174""""""""""
20175
20176The first operand is the start value of the reduction, which must be a scalar
20177integer type equal to the result type. The second operand is the vector on
20178which the reduction is performed and must be a vector of integer values whose
20179element type is the result/start type. The third operand is the vector mask and
20180is a vector of boolean values with the same number of elements as the vector
20181operand. The fourth operand is the explicit vector length of the operation.
20182
20183Semantics:
20184""""""""""
20185
20186The '``llvm.vp.reduce.and``' intrinsic performs the integer ``AND`` reduction
20187(:ref:`llvm.vector.reduce.and <int_vector_reduce_and>`) of the vector operand
20188``val`` on each enabled lane, performing an '``and``' of that with with the
20189scalar ``start_value``. Disabled lanes are treated as containing the neutral
20190value ``UINT_MAX``, or ``-1`` (i.e. having no effect on the reduction
20191operation). If the vector length is zero, the result is the start value.
20192
20193To ignore the start value, the neutral value can be used.
20194
20195Examples:
20196"""""""""
20197
20198.. code-block:: llvm
20199
20200      %r = call i32 @llvm.vp.reduce.and.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
20201      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20202      ; are treated as though %mask were false for those lanes.
20203
20204      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>
20205      %reduction = call i32 @llvm.vector.reduce.and.v4i32(<4 x i32> %masked.a)
20206      %also.r = and i32 %reduction, %start
20207
20208
20209.. _int_vp_reduce_or:
20210
20211'``llvm.vp.reduce.or.*``' Intrinsics
20212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20213
20214Syntax:
20215"""""""
20216This is an overloaded intrinsic.
20217
20218::
20219
20220      declare i32 @llvm.vp.reduce.or.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20221      declare i16 @llvm.vp.reduce.or.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20222
20223Overview:
20224"""""""""
20225
20226Predicated integer ``OR`` reduction of a vector and a scalar starting value,
20227returning the result as a scalar.
20228
20229
20230Arguments:
20231""""""""""
20232
20233The first operand is the start value of the reduction, which must be a scalar
20234integer type equal to the result type. The second operand is the vector on
20235which the reduction is performed and must be a vector of integer values whose
20236element type is the result/start type. The third operand is the vector mask and
20237is a vector of boolean values with the same number of elements as the vector
20238operand. The fourth operand is the explicit vector length of the operation.
20239
20240Semantics:
20241""""""""""
20242
20243The '``llvm.vp.reduce.or``' intrinsic performs the integer ``OR`` reduction
20244(:ref:`llvm.vector.reduce.or <int_vector_reduce_or>`) of the vector operand
20245``val`` on each enabled lane, performing an '``or``' of that with the scalar
20246``start_value``. Disabled lanes are treated as containing the neutral value
20247``0`` (i.e. having no effect on the reduction operation). If the vector length
20248is zero, the result is the start value.
20249
20250To ignore the start value, the neutral value can be used.
20251
20252Examples:
20253"""""""""
20254
20255.. code-block:: llvm
20256
20257      %r = call i32 @llvm.vp.reduce.or.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
20258      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20259      ; are treated as though %mask were false for those lanes.
20260
20261      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> <i32 0, i32 0, i32 0, i32 0>
20262      %reduction = call i32 @llvm.vector.reduce.or.v4i32(<4 x i32> %masked.a)
20263      %also.r = or i32 %reduction, %start
20264
20265.. _int_vp_reduce_xor:
20266
20267'``llvm.vp.reduce.xor.*``' Intrinsics
20268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20269
20270Syntax:
20271"""""""
20272This is an overloaded intrinsic.
20273
20274::
20275
20276      declare i32 @llvm.vp.reduce.xor.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20277      declare i16 @llvm.vp.reduce.xor.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20278
20279Overview:
20280"""""""""
20281
20282Predicated integer ``XOR`` reduction of a vector and a scalar starting value,
20283returning the result as a scalar.
20284
20285
20286Arguments:
20287""""""""""
20288
20289The first operand is the start value of the reduction, which must be a scalar
20290integer type equal to the result type. The second operand is the vector on
20291which the reduction is performed and must be a vector of integer values whose
20292element type is the result/start type. The third operand is the vector mask and
20293is a vector of boolean values with the same number of elements as the vector
20294operand. The fourth operand is the explicit vector length of the operation.
20295
20296Semantics:
20297""""""""""
20298
20299The '``llvm.vp.reduce.xor``' intrinsic performs the integer ``XOR`` reduction
20300(:ref:`llvm.vector.reduce.xor <int_vector_reduce_xor>`) of the vector operand
20301``val`` on each enabled lane, performing an '``xor``' of that with the scalar
20302``start_value``. Disabled lanes are treated as containing the neutral value
20303``0`` (i.e. having no effect on the reduction operation). If the vector length
20304is zero, the result is the start value.
20305
20306To ignore the start value, the neutral value can be used.
20307
20308Examples:
20309"""""""""
20310
20311.. code-block:: llvm
20312
20313      %r = call i32 @llvm.vp.reduce.xor.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
20314      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20315      ; are treated as though %mask were false for those lanes.
20316
20317      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> <i32 0, i32 0, i32 0, i32 0>
20318      %reduction = call i32 @llvm.vector.reduce.xor.v4i32(<4 x i32> %masked.a)
20319      %also.r = xor i32 %reduction, %start
20320
20321
20322.. _int_vp_reduce_smax:
20323
20324'``llvm.vp.reduce.smax.*``' Intrinsics
20325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20326
20327Syntax:
20328"""""""
20329This is an overloaded intrinsic.
20330
20331::
20332
20333      declare i32 @llvm.vp.reduce.smax.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20334      declare i16 @llvm.vp.reduce.smax.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20335
20336Overview:
20337"""""""""
20338
20339Predicated signed-integer ``MAX`` reduction of a vector and a scalar starting
20340value, returning the result as a scalar.
20341
20342
20343Arguments:
20344""""""""""
20345
20346The first operand is the start value of the reduction, which must be a scalar
20347integer type equal to the result type. The second operand is the vector on
20348which the reduction is performed and must be a vector of integer values whose
20349element type is the result/start type. The third operand is the vector mask and
20350is a vector of boolean values with the same number of elements as the vector
20351operand. The fourth operand is the explicit vector length of the operation.
20352
20353Semantics:
20354""""""""""
20355
20356The '``llvm.vp.reduce.smax``' intrinsic performs the signed-integer ``MAX``
20357reduction (:ref:`llvm.vector.reduce.smax <int_vector_reduce_smax>`) of the
20358vector operand ``val`` on each enabled lane, and taking the maximum of that and
20359the scalar ``start_value``. Disabled lanes are treated as containing the
20360neutral value ``INT_MIN`` (i.e. having no effect on the reduction operation).
20361If the vector length is zero, the result is the start value.
20362
20363To ignore the start value, the neutral value can be used.
20364
20365Examples:
20366"""""""""
20367
20368.. code-block:: llvm
20369
20370      %r = call i8 @llvm.vp.reduce.smax.v4i8(i8 %start, <4 x i8> %a, <4 x i1> %mask, i32 %evl)
20371      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20372      ; are treated as though %mask were false for those lanes.
20373
20374      %masked.a = select <4 x i1> %mask, <4 x i8> %a, <4 x i8> <i8 -128, i8 -128, i8 -128, i8 -128>
20375      %reduction = call i8 @llvm.vector.reduce.smax.v4i8(<4 x i8> %masked.a)
20376      %also.r = call i8 @llvm.smax.i8(i8 %reduction, i8 %start)
20377
20378
20379.. _int_vp_reduce_smin:
20380
20381'``llvm.vp.reduce.smin.*``' Intrinsics
20382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20383
20384Syntax:
20385"""""""
20386This is an overloaded intrinsic.
20387
20388::
20389
20390      declare i32 @llvm.vp.reduce.smin.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20391      declare i16 @llvm.vp.reduce.smin.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20392
20393Overview:
20394"""""""""
20395
20396Predicated signed-integer ``MIN`` reduction of a vector and a scalar starting
20397value, returning the result as a scalar.
20398
20399
20400Arguments:
20401""""""""""
20402
20403The first operand is the start value of the reduction, which must be a scalar
20404integer type equal to the result type. The second operand is the vector on
20405which the reduction is performed and must be a vector of integer values whose
20406element type is the result/start type. The third operand is the vector mask and
20407is a vector of boolean values with the same number of elements as the vector
20408operand. The fourth operand is the explicit vector length of the operation.
20409
20410Semantics:
20411""""""""""
20412
20413The '``llvm.vp.reduce.smin``' intrinsic performs the signed-integer ``MIN``
20414reduction (:ref:`llvm.vector.reduce.smin <int_vector_reduce_smin>`) of the
20415vector operand ``val`` on each enabled lane, and taking the minimum of that and
20416the scalar ``start_value``. Disabled lanes are treated as containing the
20417neutral value ``INT_MAX`` (i.e. having no effect on the reduction operation).
20418If the vector length is zero, the result is the start value.
20419
20420To ignore the start value, the neutral value can be used.
20421
20422Examples:
20423"""""""""
20424
20425.. code-block:: llvm
20426
20427      %r = call i8 @llvm.vp.reduce.smin.v4i8(i8 %start, <4 x i8> %a, <4 x i1> %mask, i32 %evl)
20428      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20429      ; are treated as though %mask were false for those lanes.
20430
20431      %masked.a = select <4 x i1> %mask, <4 x i8> %a, <4 x i8> <i8 127, i8 127, i8 127, i8 127>
20432      %reduction = call i8 @llvm.vector.reduce.smin.v4i8(<4 x i8> %masked.a)
20433      %also.r = call i8 @llvm.smin.i8(i8 %reduction, i8 %start)
20434
20435
20436.. _int_vp_reduce_umax:
20437
20438'``llvm.vp.reduce.umax.*``' Intrinsics
20439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20440
20441Syntax:
20442"""""""
20443This is an overloaded intrinsic.
20444
20445::
20446
20447      declare i32 @llvm.vp.reduce.umax.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20448      declare i16 @llvm.vp.reduce.umax.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20449
20450Overview:
20451"""""""""
20452
20453Predicated unsigned-integer ``MAX`` reduction of a vector and a scalar starting
20454value, returning the result as a scalar.
20455
20456
20457Arguments:
20458""""""""""
20459
20460The first operand is the start value of the reduction, which must be a scalar
20461integer type equal to the result type. The second operand is the vector on
20462which the reduction is performed and must be a vector of integer values whose
20463element type is the result/start type. The third operand is the vector mask and
20464is a vector of boolean values with the same number of elements as the vector
20465operand. The fourth operand is the explicit vector length of the operation.
20466
20467Semantics:
20468""""""""""
20469
20470The '``llvm.vp.reduce.umax``' intrinsic performs the unsigned-integer ``MAX``
20471reduction (:ref:`llvm.vector.reduce.umax <int_vector_reduce_umax>`) of the
20472vector operand ``val`` on each enabled lane, and taking the maximum of that and
20473the scalar ``start_value``. Disabled lanes are treated as containing the
20474neutral value ``0`` (i.e. having no effect on the reduction operation). If the
20475vector length is zero, the result is the start value.
20476
20477To ignore the start value, the neutral value can be used.
20478
20479Examples:
20480"""""""""
20481
20482.. code-block:: llvm
20483
20484      %r = call i32 @llvm.vp.reduce.umax.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
20485      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20486      ; are treated as though %mask were false for those lanes.
20487
20488      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> <i32 0, i32 0, i32 0, i32 0>
20489      %reduction = call i32 @llvm.vector.reduce.umax.v4i32(<4 x i32> %masked.a)
20490      %also.r = call i32 @llvm.umax.i32(i32 %reduction, i32 %start)
20491
20492
20493.. _int_vp_reduce_umin:
20494
20495'``llvm.vp.reduce.umin.*``' Intrinsics
20496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20497
20498Syntax:
20499"""""""
20500This is an overloaded intrinsic.
20501
20502::
20503
20504      declare i32 @llvm.vp.reduce.umin.v4i32(i32 <start_value>, <4 x i32> <val>, <4 x i1> <mask>, i32 <vector_length>)
20505      declare i16 @llvm.vp.reduce.umin.nxv8i16(i16 <start_value>, <vscale x 8 x i16> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20506
20507Overview:
20508"""""""""
20509
20510Predicated unsigned-integer ``MIN`` reduction of a vector and a scalar starting
20511value, returning the result as a scalar.
20512
20513
20514Arguments:
20515""""""""""
20516
20517The first operand is the start value of the reduction, which must be a scalar
20518integer type equal to the result type. The second operand is the vector on
20519which the reduction is performed and must be a vector of integer values whose
20520element type is the result/start type. The third operand is the vector mask and
20521is a vector of boolean values with the same number of elements as the vector
20522operand. The fourth operand is the explicit vector length of the operation.
20523
20524Semantics:
20525""""""""""
20526
20527The '``llvm.vp.reduce.umin``' intrinsic performs the unsigned-integer ``MIN``
20528reduction (:ref:`llvm.vector.reduce.umin <int_vector_reduce_umin>`) of the
20529vector operand ``val`` on each enabled lane, taking the minimum of that and the
20530scalar ``start_value``. Disabled lanes are treated as containing the neutral
20531value ``UINT_MAX``, or ``-1`` (i.e. having no effect on the reduction
20532operation). If the vector length is zero, the result is the start value.
20533
20534To ignore the start value, the neutral value can be used.
20535
20536Examples:
20537"""""""""
20538
20539.. code-block:: llvm
20540
20541      %r = call i32 @llvm.vp.reduce.umin.v4i32(i32 %start, <4 x i32> %a, <4 x i1> %mask, i32 %evl)
20542      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20543      ; are treated as though %mask were false for those lanes.
20544
20545      %masked.a = select <4 x i1> %mask, <4 x i32> %a, <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>
20546      %reduction = call i32 @llvm.vector.reduce.umin.v4i32(<4 x i32> %masked.a)
20547      %also.r = call i32 @llvm.umin.i32(i32 %reduction, i32 %start)
20548
20549
20550.. _int_vp_reduce_fmax:
20551
20552'``llvm.vp.reduce.fmax.*``' Intrinsics
20553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20554
20555Syntax:
20556"""""""
20557This is an overloaded intrinsic.
20558
20559::
20560
20561      declare float @llvm.vp.reduce.fmax.v4f32(float <start_value>, <4 x float> <val>, <4 x i1> <mask>, float <vector_length>)
20562      declare double @llvm.vp.reduce.fmax.nxv8f64(double <start_value>, <vscale x 8 x double> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20563
20564Overview:
20565"""""""""
20566
20567Predicated floating-point ``MAX`` reduction of a vector and a scalar starting
20568value, returning the result as a scalar.
20569
20570
20571Arguments:
20572""""""""""
20573
20574The first operand is the start value of the reduction, which must be a scalar
20575floating-point type equal to the result type. The second operand is the vector
20576on which the reduction is performed and must be a vector of floating-point
20577values whose element type is the result/start type. The third operand is the
20578vector mask and is a vector of boolean values with the same number of elements
20579as the vector operand. The fourth operand is the explicit vector length of the
20580operation.
20581
20582Semantics:
20583""""""""""
20584
20585The '``llvm.vp.reduce.fmax``' intrinsic performs the floating-point ``MAX``
20586reduction (:ref:`llvm.vector.reduce.fmax <int_vector_reduce_fmax>`) of the
20587vector operand ``val`` on each enabled lane, taking the maximum of that and the
20588scalar ``start_value``. Disabled lanes are treated as containing the neutral
20589value (i.e. having no effect on the reduction operation). If the vector length
20590is zero, the result is the start value.
20591
20592The neutral value is dependent on the :ref:`fast-math flags <fastmath>`. If no
20593flags are set, the neutral value is ``-QNAN``. If ``nnan``  and ``ninf`` are
20594both set, then the neutral value is the smallest floating-point value for the
20595result type. If only ``nnan`` is set then the neutral value is ``-Infinity``.
20596
20597This instruction has the same comparison semantics as the
20598:ref:`llvm.vector.reduce.fmax <int_vector_reduce_fmax>` intrinsic (and thus the
20599'``llvm.maxnum.*``' intrinsic). That is, the result will always be a number
20600unless all elements of the vector and the starting value are ``NaN``. For a
20601vector with maximum element magnitude ``0.0`` and containing both ``+0.0`` and
20602``-0.0`` elements, the sign of the result is unspecified.
20603
20604To ignore the start value, the neutral value can be used.
20605
20606Examples:
20607"""""""""
20608
20609.. code-block:: llvm
20610
20611      %r = call float @llvm.vp.reduce.fmax.v4f32(float %float, <4 x float> %a, <4 x i1> %mask, i32 %evl)
20612      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20613      ; are treated as though %mask were false for those lanes.
20614
20615      %masked.a = select <4 x i1> %mask, <4 x float> %a, <4 x float> <float QNAN, float QNAN, float QNAN, float QNAN>
20616      %reduction = call float @llvm.vector.reduce.fmax.v4f32(<4 x float> %masked.a)
20617      %also.r = call float @llvm.maxnum.f32(float %reduction, float %start)
20618
20619
20620.. _int_vp_reduce_fmin:
20621
20622'``llvm.vp.reduce.fmin.*``' Intrinsics
20623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20624
20625Syntax:
20626"""""""
20627This is an overloaded intrinsic.
20628
20629::
20630
20631      declare float @llvm.vp.reduce.fmin.v4f32(float <start_value>, <4 x float> <val>, <4 x i1> <mask>, float <vector_length>)
20632      declare double @llvm.vp.reduce.fmin.nxv8f64(double <start_value>, <vscale x 8 x double> <val>, <vscale x 8 x i1> <mask>, i32 <vector_length>)
20633
20634Overview:
20635"""""""""
20636
20637Predicated floating-point ``MIN`` reduction of a vector and a scalar starting
20638value, returning the result as a scalar.
20639
20640
20641Arguments:
20642""""""""""
20643
20644The first operand is the start value of the reduction, which must be a scalar
20645floating-point type equal to the result type. The second operand is the vector
20646on which the reduction is performed and must be a vector of floating-point
20647values whose element type is the result/start type. The third operand is the
20648vector mask and is a vector of boolean values with the same number of elements
20649as the vector operand. The fourth operand is the explicit vector length of the
20650operation.
20651
20652Semantics:
20653""""""""""
20654
20655The '``llvm.vp.reduce.fmin``' intrinsic performs the floating-point ``MIN``
20656reduction (:ref:`llvm.vector.reduce.fmin <int_vector_reduce_fmin>`) of the
20657vector operand ``val`` on each enabled lane, taking the minimum of that and the
20658scalar ``start_value``. Disabled lanes are treated as containing the neutral
20659value (i.e. having no effect on the reduction operation). If the vector length
20660is zero, the result is the start value.
20661
20662The neutral value is dependent on the :ref:`fast-math flags <fastmath>`. If no
20663flags are set, the neutral value is ``+QNAN``. If ``nnan``  and ``ninf`` are
20664both set, then the neutral value is the largest floating-point value for the
20665result type. If only ``nnan`` is set then the neutral value is ``+Infinity``.
20666
20667This instruction has the same comparison semantics as the
20668:ref:`llvm.vector.reduce.fmin <int_vector_reduce_fmin>` intrinsic (and thus the
20669'``llvm.minnum.*``' intrinsic). That is, the result will always be a number
20670unless all elements of the vector and the starting value are ``NaN``. For a
20671vector with maximum element magnitude ``0.0`` and containing both ``+0.0`` and
20672``-0.0`` elements, the sign of the result is unspecified.
20673
20674To ignore the start value, the neutral value can be used.
20675
20676Examples:
20677"""""""""
20678
20679.. code-block:: llvm
20680
20681      %r = call float @llvm.vp.reduce.fmin.v4f32(float %start, <4 x float> %a, <4 x i1> %mask, i32 %evl)
20682      ; %r is equivalent to %also.r, where lanes greater than or equal to %evl
20683      ; are treated as though %mask were false for those lanes.
20684
20685      %masked.a = select <4 x i1> %mask, <4 x float> %a, <4 x float> <float QNAN, float QNAN, float QNAN, float QNAN>
20686      %reduction = call float @llvm.vector.reduce.fmin.v4f32(<4 x float> %masked.a)
20687      %also.r = call float @llvm.minnum.f32(float %reduction, float %start)
20688
20689
20690.. _int_get_active_lane_mask:
20691
20692'``llvm.get.active.lane.mask.*``' Intrinsics
20693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20694
20695Syntax:
20696"""""""
20697This is an overloaded intrinsic.
20698
20699::
20700
20701      declare <4 x i1> @llvm.get.active.lane.mask.v4i1.i32(i32 %base, i32 %n)
20702      declare <8 x i1> @llvm.get.active.lane.mask.v8i1.i64(i64 %base, i64 %n)
20703      declare <16 x i1> @llvm.get.active.lane.mask.v16i1.i64(i64 %base, i64 %n)
20704      declare <vscale x 16 x i1> @llvm.get.active.lane.mask.nxv16i1.i64(i64 %base, i64 %n)
20705
20706
20707Overview:
20708"""""""""
20709
20710Create a mask representing active and inactive vector lanes.
20711
20712
20713Arguments:
20714""""""""""
20715
20716Both operands have the same scalar integer type. The result is a vector with
20717the i1 element type.
20718
20719Semantics:
20720""""""""""
20721
20722The '``llvm.get.active.lane.mask.*``' intrinsics are semantically equivalent
20723to:
20724
20725::
20726
20727      %m[i] = icmp ult (%base + i), %n
20728
20729where ``%m`` is a vector (mask) of active/inactive lanes with its elements
20730indexed by ``i``,  and ``%base``, ``%n`` are the two arguments to
20731``llvm.get.active.lane.mask.*``, ``%icmp`` is an integer compare and ``ult``
20732the unsigned less-than comparison operator.  Overflow cannot occur in
20733``(%base + i)`` and its comparison against ``%n`` as it is performed in integer
20734numbers and not in machine numbers.  If ``%n`` is ``0``, then the result is a
20735poison value. The above is equivalent to:
20736
20737::
20738
20739      %m = @llvm.get.active.lane.mask(%base, %n)
20740
20741This can, for example, be emitted by the loop vectorizer in which case
20742``%base`` is the first element of the vector induction variable (VIV) and
20743``%n`` is the loop tripcount. Thus, these intrinsics perform an element-wise
20744less than comparison of VIV with the loop tripcount, producing a mask of
20745true/false values representing active/inactive vector lanes, except if the VIV
20746overflows in which case they return false in the lanes where the VIV overflows.
20747The arguments are scalar types to accommodate scalable vector types, for which
20748it is unknown what the type of the step vector needs to be that enumerate its
20749lanes without overflow.
20750
20751This mask ``%m`` can e.g. be used in masked load/store instructions. These
20752intrinsics provide a hint to the backend. I.e., for a vector loop, the
20753back-edge taken count of the original scalar loop is explicit as the second
20754argument.
20755
20756
20757Examples:
20758"""""""""
20759
20760.. code-block:: llvm
20761
20762      %active.lane.mask = call <4 x i1> @llvm.get.active.lane.mask.v4i1.i64(i64 %elem0, i64 429)
20763      %wide.masked.load = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %3, i32 4, <4 x i1> %active.lane.mask, <4 x i32> poison)
20764
20765
20766.. _int_experimental_vp_splice:
20767
20768'``llvm.experimental.vp.splice``' Intrinsic
20769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20770
20771Syntax:
20772"""""""
20773This is an overloaded intrinsic.
20774
20775::
20776
20777      declare <2 x double> @llvm.experimental.vp.splice.v2f64(<2 x double> %vec1, <2 x double> %vec2, i32 %imm, <2 x i1> %mask, i32 %evl1, i32 %evl2)
20778      declare <vscale x 4 x i32> @llvm.experimental.vp.splice.nxv4i32(<vscale x 4 x i32> %vec1, <vscale x 4 x i32> %vec2, i32 %imm, <vscale x 4 x i1> %mask, i32 %evl1, i32 %evl2)
20779
20780Overview:
20781"""""""""
20782
20783The '``llvm.experimental.vp.splice.*``' intrinsic is the vector length
20784predicated version of the '``llvm.experimental.vector.splice.*``' intrinsic.
20785
20786Arguments:
20787""""""""""
20788
20789The result and the first two arguments ``vec1`` and ``vec2`` are vectors with
20790the same type.  The third argument ``imm`` is an immediate signed integer that
20791indicates the offset index.  The fourth argument ``mask`` is a vector mask and
20792has the same number of elements as the result.  The last two arguments ``evl1``
20793and ``evl2`` are unsigned integers indicating the explicit vector lengths of
20794``vec1`` and ``vec2`` respectively.  ``imm``, ``evl1`` and ``evl2`` should
20795respect the following constraints: ``-evl1 <= imm < evl1``, ``0 <= evl1 <= VL``
20796and ``0 <= evl2 <= VL``, where ``VL`` is the runtime vector factor. If these
20797constraints are not satisfied the intrinsic has undefined behaviour.
20798
20799Semantics:
20800""""""""""
20801
20802Effectively, this intrinsic concatenates ``vec1[0..evl1-1]`` and
20803``vec2[0..evl2-1]`` and creates the result vector by selecting the elements in a
20804window of size ``evl2``, starting at index ``imm`` (for a positive immediate) of
20805the concatenated vector. Elements in the result vector beyond ``evl2`` are
20806``undef``.  If ``imm`` is negative the starting index is ``evl1 + imm``.  The result
20807vector of active vector length ``evl2`` contains ``evl1 - imm`` (``-imm`` for
20808negative ``imm``) elements from indices ``[imm..evl1 - 1]``
20809(``[evl1 + imm..evl1 -1]`` for negative ``imm``) of ``vec1`` followed by the
20810first ``evl2 - (evl1 - imm)`` (``evl2 + imm`` for negative ``imm``) elements of
20811``vec2``. If ``evl1 - imm`` (``-imm``) >= ``evl2``, only the first ``evl2``
20812elements are considered and the remaining are ``undef``.  The lanes in the result
20813vector disabled by ``mask`` are ``poison``.
20814
20815Examples:
20816"""""""""
20817
20818.. code-block:: text
20819
20820 llvm.experimental.vp.splice(<A,B,C,D>, <E,F,G,H>, 1, 2, 3)  ==> <B, E, F, poison> ; index
20821 llvm.experimental.vp.splice(<A,B,C,D>, <E,F,G,H>, -2, 3, 2) ==> <B, C, poison, poison> ; trailing elements
20822
20823
20824.. _int_vp_load:
20825
20826'``llvm.vp.load``' Intrinsic
20827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20828
20829Syntax:
20830"""""""
20831This is an overloaded intrinsic.
20832
20833::
20834
20835    declare <4 x float> @llvm.vp.load.v4f32.p0(ptr %ptr, <4 x i1> %mask, i32 %evl)
20836    declare <vscale x 2 x i16> @llvm.vp.load.nxv2i16.p0(ptr %ptr, <vscale x 2 x i1> %mask, i32 %evl)
20837    declare <8 x float> @llvm.vp.load.v8f32.p1(ptr addrspace(1) %ptr, <8 x i1> %mask, i32 %evl)
20838    declare <vscale x 1 x i64> @llvm.vp.load.nxv1i64.p6(ptr addrspace(6) %ptr, <vscale x 1 x i1> %mask, i32 %evl)
20839
20840Overview:
20841"""""""""
20842
20843The '``llvm.vp.load.*``' intrinsic is the vector length predicated version of
20844the :ref:`llvm.masked.load <int_mload>` intrinsic.
20845
20846Arguments:
20847""""""""""
20848
20849The first operand is the base pointer for the load. The second operand is a
20850vector of boolean values with the same number of elements as the return type.
20851The third is the explicit vector length of the operation. The return type and
20852underlying type of the base pointer are the same vector types.
20853
20854The :ref:`align <attr_align>` parameter attribute can be provided for the first
20855operand.
20856
20857Semantics:
20858""""""""""
20859
20860The '``llvm.vp.load``' intrinsic reads a vector from memory in the same way as
20861the '``llvm.masked.load``' intrinsic, where the mask is taken from the
20862combination of the '``mask``' and '``evl``' operands in the usual VP way.
20863Certain '``llvm.masked.load``' operands do not have corresponding operands in
20864'``llvm.vp.load``': the '``passthru``' operand is implicitly ``poison``; the
20865'``alignment``' operand is taken as the ``align`` parameter attribute, if
20866provided. The default alignment is taken as the ABI alignment of the return
20867type as specified by the :ref:`datalayout string<langref_datalayout>`.
20868
20869Examples:
20870"""""""""
20871
20872.. code-block:: text
20873
20874     %r = call <8 x i8> @llvm.vp.load.v8i8.p0(ptr align 2 %ptr, <8 x i1> %mask, i32 %evl)
20875     ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
20876
20877     %also.r = call <8 x i8> @llvm.masked.load.v8i8.p0(ptr %ptr, i32 2, <8 x i1> %mask, <8 x i8> poison)
20878
20879
20880.. _int_vp_store:
20881
20882'``llvm.vp.store``' Intrinsic
20883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20884
20885Syntax:
20886"""""""
20887This is an overloaded intrinsic.
20888
20889::
20890
20891    declare void @llvm.vp.store.v4f32.p0(<4 x float> %val, ptr %ptr, <4 x i1> %mask, i32 %evl)
20892    declare void @llvm.vp.store.nxv2i16.p0(<vscale x 2 x i16> %val, ptr %ptr, <vscale x 2 x i1> %mask, i32 %evl)
20893    declare void @llvm.vp.store.v8f32.p1(<8 x float> %val, ptr addrspace(1) %ptr, <8 x i1> %mask, i32 %evl)
20894    declare void @llvm.vp.store.nxv1i64.p6(<vscale x 1 x i64> %val, ptr addrspace(6) %ptr, <vscale x 1 x i1> %mask, i32 %evl)
20895
20896Overview:
20897"""""""""
20898
20899The '``llvm.vp.store.*``' intrinsic is the vector length predicated version of
20900the :ref:`llvm.masked.store <int_mstore>` intrinsic.
20901
20902Arguments:
20903""""""""""
20904
20905The first operand is the vector value to be written to memory. The second
20906operand is the base pointer for the store. It has the same underlying type as
20907the value operand. The third operand is a vector of boolean values with the
20908same number of elements as the return type. The fourth is the explicit vector
20909length of the operation.
20910
20911The :ref:`align <attr_align>` parameter attribute can be provided for the
20912second operand.
20913
20914Semantics:
20915""""""""""
20916
20917The '``llvm.vp.store``' intrinsic reads a vector from memory in the same way as
20918the '``llvm.masked.store``' intrinsic, where the mask is taken from the
20919combination of the '``mask``' and '``evl``' operands in the usual VP way. The
20920alignment of the operation (corresponding to the '``alignment``' operand of
20921'``llvm.masked.store``') is specified by the ``align`` parameter attribute (see
20922above). If it is not provided then the ABI alignment of the type of the
20923'``value``' operand as specified by the :ref:`datalayout
20924string<langref_datalayout>` is used instead.
20925
20926Examples:
20927"""""""""
20928
20929.. code-block:: text
20930
20931     call void @llvm.vp.store.v8i8.p0(<8 x i8> %val, ptr align 4 %ptr, <8 x i1> %mask, i32 %evl)
20932     ;; For all lanes below %evl, the call above is lane-wise equivalent to the call below.
20933
20934     call void @llvm.masked.store.v8i8.p0(<8 x i8> %val, ptr %ptr, i32 4, <8 x i1> %mask)
20935
20936
20937.. _int_experimental_vp_strided_load:
20938
20939'``llvm.experimental.vp.strided.load``' Intrinsic
20940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20941
20942Syntax:
20943"""""""
20944This is an overloaded intrinsic.
20945
20946::
20947
20948    declare <4 x float> @llvm.experimental.vp.strided.load.v4f32.i64(ptr %ptr, i64 %stride, <4 x i1> %mask, i32 %evl)
20949    declare <vscale x 2 x i16> @llvm.experimental.vp.strided.load.nxv2i16.i64(ptr %ptr, i64 %stride, <vscale x 2 x i1> %mask, i32 %evl)
20950
20951Overview:
20952"""""""""
20953
20954The '``llvm.experimental.vp.strided.load``' intrinsic loads, into a vector, scalar values from
20955memory locations evenly spaced apart by '``stride``' number of bytes, starting from '``ptr``'.
20956
20957Arguments:
20958""""""""""
20959
20960The first operand is the base pointer for the load. The second operand is the stride
20961value expressed in bytes. The third operand is a vector of boolean values
20962with the same number of elements as the return type. The fourth is the explicit
20963vector length of the operation. The base pointer underlying type matches the type of the scalar
20964elements of the return operand.
20965
20966The :ref:`align <attr_align>` parameter attribute can be provided for the first
20967operand.
20968
20969Semantics:
20970""""""""""
20971
20972The '``llvm.experimental.vp.strided.load``' intrinsic loads, into a vector, multiple scalar
20973values from memory in the same way as the :ref:`llvm.vp.gather <int_vp_gather>` intrinsic,
20974where the vector of pointers is in the form:
20975
20976   ``%ptrs = <%ptr, %ptr + %stride, %ptr + 2 * %stride, ... >``,
20977
20978with '``ptr``' previously casted to a pointer '``i8``', '``stride``' always interpreted as a signed
20979integer and all arithmetic occurring in the pointer type.
20980
20981Examples:
20982"""""""""
20983
20984.. code-block:: text
20985
20986	 %r = call <8 x i64> @llvm.experimental.vp.strided.load.v8i64.i64(i64* %ptr, i64 %stride, <8 x i64> %mask, i32 %evl)
20987	 ;; The operation can also be expressed like this:
20988
20989	 %addr = bitcast i64* %ptr to i8*
20990	 ;; Create a vector of pointers %addrs in the form:
20991	 ;; %addrs = <%addr, %addr + %stride, %addr + 2 * %stride, ...>
20992	 %ptrs = bitcast <8 x i8* > %addrs to <8 x i64* >
20993	 %also.r = call <8 x i64> @llvm.vp.gather.v8i64.v8p0i64(<8 x i64* > %ptrs, <8 x i64> %mask, i32 %evl)
20994
20995
20996.. _int_experimental_vp_strided_store:
20997
20998'``llvm.experimental.vp.strided.store``' Intrinsic
20999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21000
21001Syntax:
21002"""""""
21003This is an overloaded intrinsic.
21004
21005::
21006
21007    declare void @llvm.experimental.vp.strided.store.v4f32.i64(<4 x float> %val, ptr %ptr, i64 %stride, <4 x i1> %mask, i32 %evl)
21008    declare void @llvm.experimental.vp.strided.store.nxv2i16.i64(<vscale x 2 x i16> %val, ptr %ptr, i64 %stride, <vscale x 2 x i1> %mask, i32 %evl)
21009
21010Overview:
21011"""""""""
21012
21013The '``@llvm.experimental.vp.strided.store``' intrinsic stores the elements of
21014'``val``' into memory locations evenly spaced apart by '``stride``' number of
21015bytes, starting from '``ptr``'.
21016
21017Arguments:
21018""""""""""
21019
21020The first operand is the vector value to be written to memory. The second
21021operand is the base pointer for the store. Its underlying type matches the
21022scalar element type of the value operand. The third operand is the stride value
21023expressed in bytes. The fourth operand is a vector of boolean values with the
21024same number of elements as the return type. The fifth is the explicit vector
21025length of the operation.
21026
21027The :ref:`align <attr_align>` parameter attribute can be provided for the
21028second operand.
21029
21030Semantics:
21031""""""""""
21032
21033The '``llvm.experimental.vp.strided.store``' intrinsic stores the elements of
21034'``val``' in the same way as the :ref:`llvm.vp.scatter <int_vp_scatter>` intrinsic,
21035where the vector of pointers is in the form:
21036
21037	``%ptrs = <%ptr, %ptr + %stride, %ptr + 2 * %stride, ... >``,
21038
21039with '``ptr``' previously casted to a pointer '``i8``', '``stride``' always interpreted as a signed
21040integer and all arithmetic occurring in the pointer type.
21041
21042Examples:
21043"""""""""
21044
21045.. code-block:: text
21046
21047	 call void @llvm.experimental.vp.strided.store.v8i64.i64(<8 x i64> %val, i64* %ptr, i64 %stride, <8 x i1> %mask, i32 %evl)
21048	 ;; The operation can also be expressed like this:
21049
21050	 %addr = bitcast i64* %ptr to i8*
21051	 ;; Create a vector of pointers %addrs in the form:
21052	 ;; %addrs = <%addr, %addr + %stride, %addr + 2 * %stride, ...>
21053	 %ptrs = bitcast <8 x i8* > %addrs to <8 x i64* >
21054	 call void @llvm.vp.scatter.v8i64.v8p0i64(<8 x i64> %val, <8 x i64*> %ptrs, <8 x i1> %mask, i32 %evl)
21055
21056
21057.. _int_vp_gather:
21058
21059'``llvm.vp.gather``' Intrinsic
21060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21061
21062Syntax:
21063"""""""
21064This is an overloaded intrinsic.
21065
21066::
21067
21068    declare <4 x double> @llvm.vp.gather.v4f64.v4p0(<4 x ptr> %ptrs, <4 x i1> %mask, i32 %evl)
21069    declare <vscale x 2 x i8> @llvm.vp.gather.nxv2i8.nxv2p0(<vscale x 2 x ptr> %ptrs, <vscale x 2 x i1> %mask, i32 %evl)
21070    declare <2 x float> @llvm.vp.gather.v2f32.v2p2(<2 x ptr addrspace(2)> %ptrs, <2 x i1> %mask, i32 %evl)
21071    declare <vscale x 4 x i32> @llvm.vp.gather.nxv4i32.nxv4p4(<vscale x 4 x ptr addrspace(4)> %ptrs, <vscale x 4 x i1> %mask, i32 %evl)
21072
21073Overview:
21074"""""""""
21075
21076The '``llvm.vp.gather.*``' intrinsic is the vector length predicated version of
21077the :ref:`llvm.masked.gather <int_mgather>` intrinsic.
21078
21079Arguments:
21080""""""""""
21081
21082The first operand is a vector of pointers which holds all memory addresses to
21083read. The second operand is a vector of boolean values with the same number of
21084elements as the return type. The third is the explicit vector length of the
21085operation. The return type and underlying type of the vector of pointers are
21086the same vector types.
21087
21088The :ref:`align <attr_align>` parameter attribute can be provided for the first
21089operand.
21090
21091Semantics:
21092""""""""""
21093
21094The '``llvm.vp.gather``' intrinsic reads multiple scalar values from memory in
21095the same way as the '``llvm.masked.gather``' intrinsic, where the mask is taken
21096from the combination of the '``mask``' and '``evl``' operands in the usual VP
21097way. Certain '``llvm.masked.gather``' operands do not have corresponding
21098operands in '``llvm.vp.gather``': the '``passthru``' operand is implicitly
21099``poison``; the '``alignment``' operand is taken as the ``align`` parameter, if
21100provided. The default alignment is taken as the ABI alignment of the source
21101addresses as specified by the :ref:`datalayout string<langref_datalayout>`.
21102
21103Examples:
21104"""""""""
21105
21106.. code-block:: text
21107
21108     %r = call <8 x i8> @llvm.vp.gather.v8i8.v8p0(<8 x ptr>  align 8 %ptrs, <8 x i1> %mask, i32 %evl)
21109     ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21110
21111     %also.r = call <8 x i8> @llvm.masked.gather.v8i8.v8p0(<8 x ptr> %ptrs, i32 8, <8 x i1> %mask, <8 x i8> poison)
21112
21113
21114.. _int_vp_scatter:
21115
21116'``llvm.vp.scatter``' Intrinsic
21117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21118
21119Syntax:
21120"""""""
21121This is an overloaded intrinsic.
21122
21123::
21124
21125    declare void @llvm.vp.scatter.v4f64.v4p0(<4 x double> %val, <4 x ptr> %ptrs, <4 x i1> %mask, i32 %evl)
21126    declare void @llvm.vp.scatter.nxv2i8.nxv2p0(<vscale x 2 x i8> %val, <vscale x 2 x ptr> %ptrs, <vscale x 2 x i1> %mask, i32 %evl)
21127    declare void @llvm.vp.scatter.v2f32.v2p2(<2 x float> %val, <2 x ptr addrspace(2)> %ptrs, <2 x i1> %mask, i32 %evl)
21128    declare void @llvm.vp.scatter.nxv4i32.nxv4p4(<vscale x 4 x i32> %val, <vscale x 4 x ptr addrspace(4)> %ptrs, <vscale x 4 x i1> %mask, i32 %evl)
21129
21130Overview:
21131"""""""""
21132
21133The '``llvm.vp.scatter.*``' intrinsic is the vector length predicated version of
21134the :ref:`llvm.masked.scatter <int_mscatter>` intrinsic.
21135
21136Arguments:
21137""""""""""
21138
21139The first operand is a vector value to be written to memory. The second operand
21140is a vector of pointers, pointing to where the value elements should be stored.
21141The third operand is a vector of boolean values with the same number of
21142elements as the return type. The fourth is the explicit vector length of the
21143operation.
21144
21145The :ref:`align <attr_align>` parameter attribute can be provided for the
21146second operand.
21147
21148Semantics:
21149""""""""""
21150
21151The '``llvm.vp.scatter``' intrinsic writes multiple scalar values to memory in
21152the same way as the '``llvm.masked.scatter``' intrinsic, where the mask is
21153taken from the combination of the '``mask``' and '``evl``' operands in the
21154usual VP way. The '``alignment``' operand of the '``llvm.masked.scatter``' does
21155not have a corresponding operand in '``llvm.vp.scatter``': it is instead
21156provided via the optional ``align`` parameter attribute on the
21157vector-of-pointers operand. Otherwise it is taken as the ABI alignment of the
21158destination addresses as specified by the :ref:`datalayout
21159string<langref_datalayout>`.
21160
21161Examples:
21162"""""""""
21163
21164.. code-block:: text
21165
21166     call void @llvm.vp.scatter.v8i8.v8p0(<8 x i8> %val, <8 x ptr> align 1 %ptrs, <8 x i1> %mask, i32 %evl)
21167     ;; For all lanes below %evl, the call above is lane-wise equivalent to the call below.
21168
21169     call void @llvm.masked.scatter.v8i8.v8p0(<8 x i8> %val, <8 x ptr> %ptrs, i32 1, <8 x i1> %mask)
21170
21171
21172.. _int_vp_trunc:
21173
21174'``llvm.vp.trunc.*``' Intrinsics
21175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21176
21177Syntax:
21178"""""""
21179This is an overloaded intrinsic.
21180
21181::
21182
21183      declare <16 x i16>  @llvm.vp.trunc.v16i16.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
21184      declare <vscale x 4 x i16>  @llvm.vp.trunc.nxv4i16.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21185
21186Overview:
21187"""""""""
21188
21189The '``llvm.vp.trunc``' intrinsic truncates its first operand to the return
21190type. The operation has a mask and an explicit vector length parameter.
21191
21192
21193Arguments:
21194""""""""""
21195
21196The '``llvm.vp.trunc``' intrinsic takes a value to cast as its first operand.
21197The return type is the type to cast the value to. Both types must be vector of
21198:ref:`integer <t_integer>` type. The bit size of the value must be larger than
21199the bit size of the return type. The second operand is the vector mask. The
21200return type, the value to cast, and the vector mask have the same number of
21201elements.  The third operand is the explicit vector length of the operation.
21202
21203Semantics:
21204""""""""""
21205
21206The '``llvm.vp.trunc``' intrinsic truncates the high order bits in value and
21207converts the remaining bits to return type. Since the source size must be larger
21208than the destination size, '``llvm.vp.trunc``' cannot be a *no-op cast*. It will
21209always truncate bits. The conversion is performed on lane positions below the
21210explicit vector length and where the vector mask is true.  Masked-off lanes are
21211``poison``.
21212
21213Examples:
21214"""""""""
21215
21216.. code-block:: llvm
21217
21218      %r = call <4 x i16> @llvm.vp.trunc.v4i16.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
21219      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21220
21221      %t = trunc <4 x i32> %a to <4 x i16>
21222      %also.r = select <4 x i1> %mask, <4 x i16> %t, <4 x i16> poison
21223
21224
21225.. _int_vp_zext:
21226
21227'``llvm.vp.zext.*``' Intrinsics
21228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21229
21230Syntax:
21231"""""""
21232This is an overloaded intrinsic.
21233
21234::
21235
21236      declare <16 x i32>  @llvm.vp.zext.v16i32.v16i16 (<16 x i16> <op>, <16 x i1> <mask>, i32 <vector_length>)
21237      declare <vscale x 4 x i32>  @llvm.vp.zext.nxv4i32.nxv4i16 (<vscale x 4 x i16> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21238
21239Overview:
21240"""""""""
21241
21242The '``llvm.vp.zext``' intrinsic zero extends its first operand to the return
21243type. The operation has a mask and an explicit vector length parameter.
21244
21245
21246Arguments:
21247""""""""""
21248
21249The '``llvm.vp.zext``' intrinsic takes a value to cast as its first operand.
21250The return type is the type to cast the value to. Both types must be vectors of
21251:ref:`integer <t_integer>` type. The bit size of the value must be smaller than
21252the bit size of the return type. The second operand is the vector mask. The
21253return type, the value to cast, and the vector mask have the same number of
21254elements.  The third operand is the explicit vector length of the operation.
21255
21256Semantics:
21257""""""""""
21258
21259The '``llvm.vp.zext``' intrinsic fill the high order bits of the value with zero
21260bits until it reaches the size of the return type. When zero extending from i1,
21261the result will always be either 0 or 1. The conversion is performed on lane
21262positions below the explicit vector length and where the vector mask is true.
21263Masked-off lanes are ``poison``.
21264
21265Examples:
21266"""""""""
21267
21268.. code-block:: llvm
21269
21270      %r = call <4 x i32> @llvm.vp.zext.v4i32.v4i16(<4 x i16> %a, <4 x i1> %mask, i32 %evl)
21271      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21272
21273      %t = zext <4 x i16> %a to <4 x i32>
21274      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
21275
21276
21277.. _int_vp_sext:
21278
21279'``llvm.vp.sext.*``' Intrinsics
21280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21281
21282Syntax:
21283"""""""
21284This is an overloaded intrinsic.
21285
21286::
21287
21288      declare <16 x i32>  @llvm.vp.sext.v16i32.v16i16 (<16 x i16> <op>, <16 x i1> <mask>, i32 <vector_length>)
21289      declare <vscale x 4 x i32>  @llvm.vp.sext.nxv4i32.nxv4i16 (<vscale x 4 x i16> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21290
21291Overview:
21292"""""""""
21293
21294The '``llvm.vp.sext``' intrinsic sign extends its first operand to the return
21295type. The operation has a mask and an explicit vector length parameter.
21296
21297
21298Arguments:
21299""""""""""
21300
21301The '``llvm.vp.sext``' intrinsic takes a value to cast as its first operand.
21302The return type is the type to cast the value to. Both types must be vectors of
21303:ref:`integer <t_integer>` type. The bit size of the value must be smaller than
21304the bit size of the return type. The second operand is the vector mask. The
21305return type, the value to cast, and the vector mask have the same number of
21306elements.  The third operand is the explicit vector length of the operation.
21307
21308Semantics:
21309""""""""""
21310
21311The '``llvm.vp.sext``' intrinsic performs a sign extension by copying the sign
21312bit (highest order bit) of the value until it reaches the size of the return
21313type. When sign extending from i1, the result will always be either -1 or 0.
21314The conversion is performed on lane positions below the explicit vector length
21315and where the vector mask is true. Masked-off lanes are ``poison``.
21316
21317Examples:
21318"""""""""
21319
21320.. code-block:: llvm
21321
21322      %r = call <4 x i32> @llvm.vp.sext.v4i32.v4i16(<4 x i16> %a, <4 x i1> %mask, i32 %evl)
21323      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21324
21325      %t = sext <4 x i16> %a to <4 x i32>
21326      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
21327
21328
21329.. _int_vp_fptrunc:
21330
21331'``llvm.vp.fptrunc.*``' Intrinsics
21332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21333
21334Syntax:
21335"""""""
21336This is an overloaded intrinsic.
21337
21338::
21339
21340      declare <16 x float>  @llvm.vp.fptrunc.v16f32.v16f64 (<16 x double> <op>, <16 x i1> <mask>, i32 <vector_length>)
21341      declare <vscale x 4 x float>  @llvm.vp.trunc.nxv4f32.nxv4f64 (<vscale x 4 x double> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21342
21343Overview:
21344"""""""""
21345
21346The '``llvm.vp.fptrunc``' intrinsic truncates its first operand to the return
21347type. The operation has a mask and an explicit vector length parameter.
21348
21349
21350Arguments:
21351""""""""""
21352
21353The '``llvm.vp.fptrunc``' intrinsic takes a value to cast as its first operand.
21354The return type is the type to cast the value to. Both types must be vector of
21355:ref:`floating-point <t_floating>` type. The bit size of the value must be
21356larger than the bit size of the return type. This implies that
21357'``llvm.vp.fptrunc``' cannot be used to make a *no-op cast*. The second operand
21358is the vector mask. The return type, the value to cast, and the vector mask have
21359the same number of elements.  The third operand is the explicit vector length of
21360the operation.
21361
21362Semantics:
21363""""""""""
21364
21365The '``llvm.vp.fptrunc``' intrinsic casts a ``value`` from a larger
21366:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
21367<t_floating>` type.
21368This instruction is assumed to execute in the default :ref:`floating-point
21369environment <floatenv>`. The conversion is performed on lane positions below the
21370explicit vector length and where the vector mask is true.  Masked-off lanes are
21371``poison``.
21372
21373Examples:
21374"""""""""
21375
21376.. code-block:: llvm
21377
21378      %r = call <4 x float> @llvm.vp.fptrunc.v4f32.v4f64(<4 x double> %a, <4 x i1> %mask, i32 %evl)
21379      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21380
21381      %t = fptrunc <4 x double> %a to <4 x float>
21382      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
21383
21384
21385.. _int_vp_fpext:
21386
21387'``llvm.vp.fpext.*``' Intrinsics
21388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21389
21390Syntax:
21391"""""""
21392This is an overloaded intrinsic.
21393
21394::
21395
21396      declare <16 x double>  @llvm.vp.fpext.v16f64.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
21397      declare <vscale x 4 x double>  @llvm.vp.fpext.nxv4f64.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21398
21399Overview:
21400"""""""""
21401
21402The '``llvm.vp.fpext``' intrinsic extends its first operand to the return
21403type. The operation has a mask and an explicit vector length parameter.
21404
21405
21406Arguments:
21407""""""""""
21408
21409The '``llvm.vp.fpext``' intrinsic takes a value to cast as its first operand.
21410The return type is the type to cast the value to. Both types must be vector of
21411:ref:`floating-point <t_floating>` type. The bit size of the value must be
21412smaller than the bit size of the return type. This implies that
21413'``llvm.vp.fpext``' cannot be used to make a *no-op cast*. The second operand
21414is the vector mask. The return type, the value to cast, and the vector mask have
21415the same number of elements.  The third operand is the explicit vector length of
21416the operation.
21417
21418Semantics:
21419""""""""""
21420
21421The '``llvm.vp.fpext``' intrinsic extends the ``value`` from a smaller
21422:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
21423<t_floating>` type. The '``llvm.vp.fpext``' cannot be used to make a
21424*no-op cast* because it always changes bits. Use ``bitcast`` to make a
21425*no-op cast* for a floating-point cast.
21426The conversion is performed on lane positions below the explicit vector length
21427and where the vector mask is true.  Masked-off lanes are ``poison``.
21428
21429Examples:
21430"""""""""
21431
21432.. code-block:: llvm
21433
21434      %r = call <4 x double> @llvm.vp.fpext.v4f64.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
21435      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21436
21437      %t = fpext <4 x float> %a to <4 x double>
21438      %also.r = select <4 x i1> %mask, <4 x double> %t, <4 x double> poison
21439
21440
21441.. _int_vp_fptoui:
21442
21443'``llvm.vp.fptoui.*``' Intrinsics
21444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21445
21446Syntax:
21447"""""""
21448This is an overloaded intrinsic.
21449
21450::
21451
21452      declare <16 x i32>  @llvm.vp.fptoui.v16i32.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
21453      declare <vscale x 4 x i32>  @llvm.vp.fptoui.nxv4i32.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21454      declare <256 x i64>  @llvm.vp.fptoui.v256i64.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
21455
21456Overview:
21457"""""""""
21458
21459The '``llvm.vp.fptoui``' intrinsic converts the :ref:`floating-point
21460<t_floating>` operand to the unsigned integer return type.
21461The operation has a mask and an explicit vector length parameter.
21462
21463
21464Arguments:
21465""""""""""
21466
21467The '``llvm.vp.fptoui``' intrinsic takes a value to cast as its first operand.
21468The value to cast must be a vector of :ref:`floating-point <t_floating>` type.
21469The return type is the type to cast the value to. The return type must be
21470vector of :ref:`integer <t_integer>` type.  The second operand is the vector
21471mask. The return type, the value to cast, and the vector mask have the same
21472number of elements.  The third operand is the explicit vector length of the
21473operation.
21474
21475Semantics:
21476""""""""""
21477
21478The '``llvm.vp.fptoui``' intrinsic converts its :ref:`floating-point
21479<t_floating>` operand into the nearest (rounding towards zero) unsigned integer
21480value where the lane position is below the explicit vector length and the
21481vector mask is true.  Masked-off lanes are ``poison``. On enabled lanes where
21482conversion takes place and the value cannot fit in the return type, the result
21483on that lane is a :ref:`poison value <poisonvalues>`.
21484
21485Examples:
21486"""""""""
21487
21488.. code-block:: llvm
21489
21490      %r = call <4 x i32> @llvm.vp.fptoui.v4i32.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
21491      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21492
21493      %t = fptoui <4 x float> %a to <4 x i32>
21494      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
21495
21496
21497.. _int_vp_fptosi:
21498
21499'``llvm.vp.fptosi.*``' Intrinsics
21500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21501
21502Syntax:
21503"""""""
21504This is an overloaded intrinsic.
21505
21506::
21507
21508      declare <16 x i32>  @llvm.vp.fptosi.v16i32.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
21509      declare <vscale x 4 x i32>  @llvm.vp.fptosi.nxv4i32.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21510      declare <256 x i64>  @llvm.vp.fptosi.v256i64.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
21511
21512Overview:
21513"""""""""
21514
21515The '``llvm.vp.fptosi``' intrinsic converts the :ref:`floating-point
21516<t_floating>` operand to the signed integer return type.
21517The operation has a mask and an explicit vector length parameter.
21518
21519
21520Arguments:
21521""""""""""
21522
21523The '``llvm.vp.fptosi``' intrinsic takes a value to cast as its first operand.
21524The value to cast must be a vector of :ref:`floating-point <t_floating>` type.
21525The return type is the type to cast the value to. The return type must be
21526vector of :ref:`integer <t_integer>` type.  The second operand is the vector
21527mask. The return type, the value to cast, and the vector mask have the same
21528number of elements.  The third operand is the explicit vector length of the
21529operation.
21530
21531Semantics:
21532""""""""""
21533
21534The '``llvm.vp.fptosi``' intrinsic converts its :ref:`floating-point
21535<t_floating>` operand into the nearest (rounding towards zero) signed integer
21536value where the lane position is below the explicit vector length and the
21537vector mask is true.  Masked-off lanes are ``poison``. On enabled lanes where
21538conversion takes place and the value cannot fit in the return type, the result
21539on that lane is a :ref:`poison value <poisonvalues>`.
21540
21541Examples:
21542"""""""""
21543
21544.. code-block:: llvm
21545
21546      %r = call <4 x i32> @llvm.vp.fptosi.v4i32.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
21547      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21548
21549      %t = fptosi <4 x float> %a to <4 x i32>
21550      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
21551
21552
21553.. _int_vp_uitofp:
21554
21555'``llvm.vp.uitofp.*``' Intrinsics
21556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21557
21558Syntax:
21559"""""""
21560This is an overloaded intrinsic.
21561
21562::
21563
21564      declare <16 x float>  @llvm.vp.uitofp.v16f32.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
21565      declare <vscale x 4 x float>  @llvm.vp.uitofp.nxv4f32.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21566      declare <256 x double>  @llvm.vp.uitofp.v256f64.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>)
21567
21568Overview:
21569"""""""""
21570
21571The '``llvm.vp.uitofp``' intrinsic converts its unsigned integer operand to the
21572:ref:`floating-point <t_floating>` return type.  The operation has a mask and
21573an explicit vector length parameter.
21574
21575
21576Arguments:
21577""""""""""
21578
21579The '``llvm.vp.uitofp``' intrinsic takes a value to cast as its first operand.
21580The value to cast must be vector of :ref:`integer <t_integer>` type.  The
21581return type is the type to cast the value to.  The return type must be a vector
21582of :ref:`floating-point <t_floating>` type.  The second operand is the vector
21583mask. The return type, the value to cast, and the vector mask have the same
21584number of elements.  The third operand is the explicit vector length of the
21585operation.
21586
21587Semantics:
21588""""""""""
21589
21590The '``llvm.vp.uitofp``' intrinsic interprets its first operand as an unsigned
21591integer quantity and converts it to the corresponding floating-point value. If
21592the value cannot be exactly represented, it is rounded using the default
21593rounding mode.  The conversion is performed on lane positions below the
21594explicit vector length and where the vector mask is true.  Masked-off lanes are
21595``poison``.
21596
21597Examples:
21598"""""""""
21599
21600.. code-block:: llvm
21601
21602      %r = call <4 x float> @llvm.vp.uitofp.v4f32.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
21603      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21604
21605      %t = uitofp <4 x i32> %a to <4 x float>
21606      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
21607
21608
21609.. _int_vp_sitofp:
21610
21611'``llvm.vp.sitofp.*``' Intrinsics
21612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21613
21614Syntax:
21615"""""""
21616This is an overloaded intrinsic.
21617
21618::
21619
21620      declare <16 x float>  @llvm.vp.sitofp.v16f32.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
21621      declare <vscale x 4 x float>  @llvm.vp.sitofp.nxv4f32.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21622      declare <256 x double>  @llvm.vp.sitofp.v256f64.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>)
21623
21624Overview:
21625"""""""""
21626
21627The '``llvm.vp.sitofp``' intrinsic converts its signed integer operand to the
21628:ref:`floating-point <t_floating>` return type.  The operation has a mask and
21629an explicit vector length parameter.
21630
21631
21632Arguments:
21633""""""""""
21634
21635The '``llvm.vp.sitofp``' intrinsic takes a value to cast as its first operand.
21636The value to cast must be vector of :ref:`integer <t_integer>` type.  The
21637return type is the type to cast the value to.  The return type must be a vector
21638of :ref:`floating-point <t_floating>` type.  The second operand is the vector
21639mask. The return type, the value to cast, and the vector mask have the same
21640number of elements.  The third operand is the explicit vector length of the
21641operation.
21642
21643Semantics:
21644""""""""""
21645
21646The '``llvm.vp.sitofp``' intrinsic interprets its first operand as a signed
21647integer quantity and converts it to the corresponding floating-point value. If
21648the value cannot be exactly represented, it is rounded using the default
21649rounding mode.  The conversion is performed on lane positions below the
21650explicit vector length and where the vector mask is true.  Masked-off lanes are
21651``poison``.
21652
21653Examples:
21654"""""""""
21655
21656.. code-block:: llvm
21657
21658      %r = call <4 x float> @llvm.vp.sitofp.v4f32.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
21659      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21660
21661      %t = sitofp <4 x i32> %a to <4 x float>
21662      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
21663
21664
21665.. _int_vp_ptrtoint:
21666
21667'``llvm.vp.ptrtoint.*``' Intrinsics
21668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21669
21670Syntax:
21671"""""""
21672This is an overloaded intrinsic.
21673
21674::
21675
21676      declare <16 x i8>  @llvm.vp.ptrtoint.v16i8.v16p0(<16 x ptr> <op>, <16 x i1> <mask>, i32 <vector_length>)
21677      declare <vscale x 4 x i8>  @llvm.vp.ptrtoint.nxv4i8.nxv4p0(<vscale x 4 x ptr> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21678      declare <256 x i64>  @llvm.vp.ptrtoint.v16i64.v16p0(<256 x ptr> <op>, <256 x i1> <mask>, i32 <vector_length>)
21679
21680Overview:
21681"""""""""
21682
21683The '``llvm.vp.ptrtoint``' intrinsic converts its pointer to the integer return
21684type.  The operation has a mask and an explicit vector length parameter.
21685
21686
21687Arguments:
21688""""""""""
21689
21690The '``llvm.vp.ptrtoint``' intrinsic takes a value to cast as its first operand
21691, which must be a vector of pointers, and a type to cast it to return type,
21692which must be a vector of :ref:`integer <t_integer>` type.
21693The second operand is the vector mask. The return type, the value to cast, and
21694the vector mask have the same number of elements.
21695The third operand is the explicit vector length of the operation.
21696
21697Semantics:
21698""""""""""
21699
21700The '``llvm.vp.ptrtoint``' intrinsic converts value to return type by
21701interpreting the pointer value as an integer and either truncating or zero
21702extending that value to the size of the integer type.
21703If ``value`` is smaller than return type, then a zero extension is done. If
21704``value`` is larger than return type, then a truncation is done. If they are
21705the same size, then nothing is done (*no-op cast*) other than a type
21706change.
21707The conversion is performed on lane positions below the explicit vector length
21708and where the vector mask is true.  Masked-off lanes are ``poison``.
21709
21710Examples:
21711"""""""""
21712
21713.. code-block:: llvm
21714
21715      %r = call <4 x i8> @llvm.vp.ptrtoint.v4i8.v4p0i32(<4 x ptr> %a, <4 x i1> %mask, i32 %evl)
21716      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21717
21718      %t = ptrtoint <4 x ptr> %a to <4 x i8>
21719      %also.r = select <4 x i1> %mask, <4 x i8> %t, <4 x i8> poison
21720
21721
21722.. _int_vp_inttoptr:
21723
21724'``llvm.vp.inttoptr.*``' Intrinsics
21725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21726
21727Syntax:
21728"""""""
21729This is an overloaded intrinsic.
21730
21731::
21732
21733      declare <16 x ptr>  @llvm.vp.inttoptr.v16p0.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
21734      declare <vscale x 4 x ptr>  @llvm.vp.inttoptr.nxv4p0.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21735      declare <256 x ptr>  @llvm.vp.inttoptr.v256p0.v256i32 (<256 x i32> <op>, <256 x i1> <mask>, i32 <vector_length>)
21736
21737Overview:
21738"""""""""
21739
21740The '``llvm.vp.inttoptr``' intrinsic converts its integer value to the point
21741return type. The operation has a mask and an explicit vector length parameter.
21742
21743
21744Arguments:
21745""""""""""
21746
21747The '``llvm.vp.inttoptr``' intrinsic takes a value to cast as its first operand
21748, which must be a vector of :ref:`integer <t_integer>` type, and a type to cast
21749it to return type, which must be a vector of pointers type.
21750The second operand is the vector mask. The return type, the value to cast, and
21751the vector mask have the same number of elements.
21752The third operand is the explicit vector length of the operation.
21753
21754Semantics:
21755""""""""""
21756
21757The '``llvm.vp.inttoptr``' intrinsic converts ``value`` to return type by
21758applying either a zero extension or a truncation depending on the size of the
21759integer ``value``. If ``value`` is larger than the size of a pointer, then a
21760truncation is done. If ``value`` is smaller than the size of a pointer, then a
21761zero extension is done. If they are the same size, nothing is done (*no-op cast*).
21762The conversion is performed on lane positions below the explicit vector length
21763and where the vector mask is true.  Masked-off lanes are ``poison``.
21764
21765Examples:
21766"""""""""
21767
21768.. code-block:: llvm
21769
21770      %r = call <4 x ptr> @llvm.vp.inttoptr.v4p0i32.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
21771      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21772
21773      %t = inttoptr <4 x i32> %a to <4 x ptr>
21774      %also.r = select <4 x i1> %mask, <4 x ptr> %t, <4 x ptr> poison
21775
21776
21777.. _int_vp_fcmp:
21778
21779'``llvm.vp.fcmp.*``' Intrinsics
21780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21781
21782Syntax:
21783"""""""
21784This is an overloaded intrinsic.
21785
21786::
21787
21788      declare <16 x i1> @llvm.vp.fcmp.v16f32(<16 x float> <left_op>, <16 x float> <right_op>, metadata <condition code>, <16 x i1> <mask>, i32 <vector_length>)
21789      declare <vscale x 4 x i1> @llvm.vp.fcmp.nxv4f32(<vscale x 4 x float> <left_op>, <vscale x 4 x float> <right_op>, metadata <condition code>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21790      declare <256 x i1> @llvm.vp.fcmp.v256f64(<256 x double> <left_op>, <256 x double> <right_op>, metadata <condition code>, <256 x i1> <mask>, i32 <vector_length>)
21791
21792Overview:
21793"""""""""
21794
21795The '``llvm.vp.fcmp``' intrinsic returns a vector of boolean values based on
21796the comparison of its operands. The operation has a mask and an explicit vector
21797length parameter.
21798
21799
21800Arguments:
21801""""""""""
21802
21803The '``llvm.vp.fcmp``' intrinsic takes the two values to compare as its first
21804and second operands. These two values must be vectors of :ref:`floating-point
21805<t_floating>` types.
21806The return type is the result of the comparison. The return type must be a
21807vector of :ref:`i1 <t_integer>` type. The fourth operand is the vector mask.
21808The return type, the values to compare, and the vector mask have the same
21809number of elements. The third operand is the condition code indicating the kind
21810of comparison to perform. It must be a metadata string with :ref:`one of the
21811supported floating-point condition code values <fcmp_md_cc>`. The fifth operand
21812is the explicit vector length of the operation.
21813
21814Semantics:
21815""""""""""
21816
21817The '``llvm.vp.fcmp``' compares its first two operands according to the
21818condition code given as the third operand. The operands are compared element by
21819element on each enabled lane, where the the semantics of the comparison are
21820defined :ref:`according to the condition code <fcmp_md_cc_sem>`. Masked-off
21821lanes are ``poison``.
21822
21823Examples:
21824"""""""""
21825
21826.. code-block:: llvm
21827
21828      %r = call <4 x i1> @llvm.vp.fcmp.v4f32(<4 x float> %a, <4 x float> %b, metadata !"oeq", <4 x i1> %mask, i32 %evl)
21829      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21830
21831      %t = fcmp oeq <4 x float> %a, %b
21832      %also.r = select <4 x i1> %mask, <4 x i1> %t, <4 x i1> poison
21833
21834
21835.. _int_vp_icmp:
21836
21837'``llvm.vp.icmp.*``' Intrinsics
21838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21839
21840Syntax:
21841"""""""
21842This is an overloaded intrinsic.
21843
21844::
21845
21846      declare <32 x i1> @llvm.vp.icmp.v32i32(<32 x i32> <left_op>, <32 x i32> <right_op>, metadata <condition code>, <32 x i1> <mask>, i32 <vector_length>)
21847      declare <vscale x 2 x i1> @llvm.vp.icmp.nxv2i32(<vscale x 2 x i32> <left_op>, <vscale x 2 x i32> <right_op>, metadata <condition code>, <vscale x 2 x i1> <mask>, i32 <vector_length>)
21848      declare <128 x i1> @llvm.vp.icmp.v128i8(<128 x i8> <left_op>, <128 x i8> <right_op>, metadata <condition code>, <128 x i1> <mask>, i32 <vector_length>)
21849
21850Overview:
21851"""""""""
21852
21853The '``llvm.vp.icmp``' intrinsic returns a vector of boolean values based on
21854the comparison of its operands. The operation has a mask and an explicit vector
21855length parameter.
21856
21857
21858Arguments:
21859""""""""""
21860
21861The '``llvm.vp.icmp``' intrinsic takes the two values to compare as its first
21862and second operands. These two values must be vectors of :ref:`integer
21863<t_integer>` types.
21864The return type is the result of the comparison. The return type must be a
21865vector of :ref:`i1 <t_integer>` type. The fourth operand is the vector mask.
21866The return type, the values to compare, and the vector mask have the same
21867number of elements. The third operand is the condition code indicating the kind
21868of comparison to perform. It must be a metadata string with :ref:`one of the
21869supported integer condition code values <icmp_md_cc>`. The fifth operand is the
21870explicit vector length of the operation.
21871
21872Semantics:
21873""""""""""
21874
21875The '``llvm.vp.icmp``' compares its first two operands according to the
21876condition code given as the third operand. The operands are compared element by
21877element on each enabled lane, where the the semantics of the comparison are
21878defined :ref:`according to the condition code <icmp_md_cc_sem>`. Masked-off
21879lanes are ``poison``.
21880
21881Examples:
21882"""""""""
21883
21884.. code-block:: llvm
21885
21886      %r = call <4 x i1> @llvm.vp.icmp.v4i32(<4 x i32> %a, <4 x i32> %b, metadata !"ne", <4 x i1> %mask, i32 %evl)
21887      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21888
21889      %t = icmp ne <4 x i32> %a, %b
21890      %also.r = select <4 x i1> %mask, <4 x i1> %t, <4 x i1> poison
21891
21892.. _int_vp_ceil:
21893
21894'``llvm.vp.ceil.*``' Intrinsics
21895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21896
21897Syntax:
21898"""""""
21899This is an overloaded intrinsic.
21900
21901::
21902
21903      declare <16 x float>  @llvm.vp.ceil.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
21904      declare <vscale x 4 x float>  @llvm.vp.ceil.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21905      declare <256 x double>  @llvm.vp.ceil.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
21906
21907Overview:
21908"""""""""
21909
21910Predicated floating-point ceiling of a vector of floating-point values.
21911
21912
21913Arguments:
21914""""""""""
21915
21916The first operand and the result have the same vector of floating-point type.
21917The second operand is the vector mask and has the same number of elements as the
21918result vector type. The third operand is the explicit vector length of the
21919operation.
21920
21921Semantics:
21922""""""""""
21923
21924The '``llvm.vp.ceil``' intrinsic performs floating-point ceiling
21925(:ref:`ceil <int_ceil>`) of the first vector operand on each enabled lane. The
21926result on disabled lanes is a :ref:`poison value <poisonvalues>`.
21927
21928Examples:
21929"""""""""
21930
21931.. code-block:: llvm
21932
21933      %r = call <4 x float> @llvm.vp.ceil.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
21934      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21935
21936      %t = call <4 x float> @llvm.ceil.v4f32(<4 x float> %a)
21937      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
21938
21939.. _int_vp_floor:
21940
21941'``llvm.vp.floor.*``' Intrinsics
21942^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21943
21944Syntax:
21945"""""""
21946This is an overloaded intrinsic.
21947
21948::
21949
21950      declare <16 x float>  @llvm.vp.floor.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
21951      declare <vscale x 4 x float>  @llvm.vp.floor.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21952      declare <256 x double>  @llvm.vp.floor.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
21953
21954Overview:
21955"""""""""
21956
21957Predicated floating-point floor of a vector of floating-point values.
21958
21959
21960Arguments:
21961""""""""""
21962
21963The first operand and the result have the same vector of floating-point type.
21964The second operand is the vector mask and has the same number of elements as the
21965result vector type. The third operand is the explicit vector length of the
21966operation.
21967
21968Semantics:
21969""""""""""
21970
21971The '``llvm.vp.floor``' intrinsic performs floating-point floor
21972(:ref:`floor <int_floor>`) of the first vector operand on each enabled lane.
21973The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
21974
21975Examples:
21976"""""""""
21977
21978.. code-block:: llvm
21979
21980      %r = call <4 x float> @llvm.vp.floor.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
21981      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
21982
21983      %t = call <4 x float> @llvm.floor.v4f32(<4 x float> %a)
21984      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
21985
21986.. _int_vp_rint:
21987
21988'``llvm.vp.rint.*``' Intrinsics
21989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21990
21991Syntax:
21992"""""""
21993This is an overloaded intrinsic.
21994
21995::
21996
21997      declare <16 x float>  @llvm.vp.rint.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
21998      declare <vscale x 4 x float>  @llvm.vp.rint.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
21999      declare <256 x double>  @llvm.vp.rint.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
22000
22001Overview:
22002"""""""""
22003
22004Predicated floating-point rint of a vector of floating-point values.
22005
22006
22007Arguments:
22008""""""""""
22009
22010The first operand and the result have the same vector of floating-point type.
22011The second operand is the vector mask and has the same number of elements as the
22012result vector type. The third operand is the explicit vector length of the
22013operation.
22014
22015Semantics:
22016""""""""""
22017
22018The '``llvm.vp.rint``' intrinsic performs floating-point rint
22019(:ref:`rint <int_rint>`) of the first vector operand on each enabled lane.
22020The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22021
22022Examples:
22023"""""""""
22024
22025.. code-block:: llvm
22026
22027      %r = call <4 x float> @llvm.vp.rint.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
22028      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22029
22030      %t = call <4 x float> @llvm.rint.v4f32(<4 x float> %a)
22031      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
22032
22033.. _int_vp_nearbyint:
22034
22035'``llvm.vp.nearbyint.*``' Intrinsics
22036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22037
22038Syntax:
22039"""""""
22040This is an overloaded intrinsic.
22041
22042::
22043
22044      declare <16 x float>  @llvm.vp.nearbyint.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
22045      declare <vscale x 4 x float>  @llvm.vp.nearbyint.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22046      declare <256 x double>  @llvm.vp.nearbyint.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
22047
22048Overview:
22049"""""""""
22050
22051Predicated floating-point nearbyint of a vector of floating-point values.
22052
22053
22054Arguments:
22055""""""""""
22056
22057The first operand and the result have the same vector of floating-point type.
22058The second operand is the vector mask and has the same number of elements as the
22059result vector type. The third operand is the explicit vector length of the
22060operation.
22061
22062Semantics:
22063""""""""""
22064
22065The '``llvm.vp.nearbyint``' intrinsic performs floating-point nearbyint
22066(:ref:`nearbyint <int_nearbyint>`) of the first vector operand on each enabled lane.
22067The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22068
22069Examples:
22070"""""""""
22071
22072.. code-block:: llvm
22073
22074      %r = call <4 x float> @llvm.vp.nearbyint.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
22075      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22076
22077      %t = call <4 x float> @llvm.nearbyint.v4f32(<4 x float> %a)
22078      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
22079
22080.. _int_vp_round:
22081
22082'``llvm.vp.round.*``' Intrinsics
22083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22084
22085Syntax:
22086"""""""
22087This is an overloaded intrinsic.
22088
22089::
22090
22091      declare <16 x float>  @llvm.vp.round.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
22092      declare <vscale x 4 x float>  @llvm.vp.round.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22093      declare <256 x double>  @llvm.vp.round.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
22094
22095Overview:
22096"""""""""
22097
22098Predicated floating-point round of a vector of floating-point values.
22099
22100
22101Arguments:
22102""""""""""
22103
22104The first operand and the result have the same vector of floating-point type.
22105The second operand is the vector mask and has the same number of elements as the
22106result vector type. The third operand is the explicit vector length of the
22107operation.
22108
22109Semantics:
22110""""""""""
22111
22112The '``llvm.vp.round``' intrinsic performs floating-point round
22113(:ref:`round <int_round>`) of the first vector operand on each enabled lane.
22114The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22115
22116Examples:
22117"""""""""
22118
22119.. code-block:: llvm
22120
22121      %r = call <4 x float> @llvm.vp.round.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
22122      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22123
22124      %t = call <4 x float> @llvm.round.v4f32(<4 x float> %a)
22125      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
22126
22127.. _int_vp_roundeven:
22128
22129'``llvm.vp.roundeven.*``' Intrinsics
22130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22131
22132Syntax:
22133"""""""
22134This is an overloaded intrinsic.
22135
22136::
22137
22138      declare <16 x float>  @llvm.vp.roundeven.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
22139      declare <vscale x 4 x float>  @llvm.vp.roundeven.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22140      declare <256 x double>  @llvm.vp.roundeven.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
22141
22142Overview:
22143"""""""""
22144
22145Predicated floating-point roundeven of a vector of floating-point values.
22146
22147
22148Arguments:
22149""""""""""
22150
22151The first operand and the result have the same vector of floating-point type.
22152The second operand is the vector mask and has the same number of elements as the
22153result vector type. The third operand is the explicit vector length of the
22154operation.
22155
22156Semantics:
22157""""""""""
22158
22159The '``llvm.vp.roundeven``' intrinsic performs floating-point roundeven
22160(:ref:`roundeven <int_roundeven>`) of the first vector operand on each enabled
22161lane. The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22162
22163Examples:
22164"""""""""
22165
22166.. code-block:: llvm
22167
22168      %r = call <4 x float> @llvm.vp.roundeven.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
22169      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22170
22171      %t = call <4 x float> @llvm.roundeven.v4f32(<4 x float> %a)
22172      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
22173
22174.. _int_vp_roundtozero:
22175
22176'``llvm.vp.roundtozero.*``' Intrinsics
22177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22178
22179Syntax:
22180"""""""
22181This is an overloaded intrinsic.
22182
22183::
22184
22185      declare <16 x float>  @llvm.vp.roundtozero.v16f32 (<16 x float> <op>, <16 x i1> <mask>, i32 <vector_length>)
22186      declare <vscale x 4 x float>  @llvm.vp.roundtozero.nxv4f32 (<vscale x 4 x float> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22187      declare <256 x double>  @llvm.vp.roundtozero.v256f64 (<256 x double> <op>, <256 x i1> <mask>, i32 <vector_length>)
22188
22189Overview:
22190"""""""""
22191
22192Predicated floating-point round-to-zero of a vector of floating-point values.
22193
22194
22195Arguments:
22196""""""""""
22197
22198The first operand and the result have the same vector of floating-point type.
22199The second operand is the vector mask and has the same number of elements as the
22200result vector type. The third operand is the explicit vector length of the
22201operation.
22202
22203Semantics:
22204""""""""""
22205
22206The '``llvm.vp.roundtozero``' intrinsic performs floating-point roundeven
22207(:ref:`llvm.trunc <int_llvm_trunc>`) of the first vector operand on each enabled lane.  The
22208result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22209
22210Examples:
22211"""""""""
22212
22213.. code-block:: llvm
22214
22215      %r = call <4 x float> @llvm.vp.roundtozero.v4f32(<4 x float> %a, <4 x i1> %mask, i32 %evl)
22216      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22217
22218      %t = call <4 x float> @llvm.trunc.v4f32(<4 x float> %a)
22219      %also.r = select <4 x i1> %mask, <4 x float> %t, <4 x float> poison
22220
22221.. _int_vp_bitreverse:
22222
22223'``llvm.vp.bitreverse.*``' Intrinsics
22224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22225
22226Syntax:
22227"""""""
22228This is an overloaded intrinsic.
22229
22230::
22231
22232      declare <16 x i32>  @llvm.vp.bitreverse.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
22233      declare <vscale x 4 x i32>  @llvm.vp.bitreverse.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22234      declare <256 x i64>  @llvm.vp.bitreverse.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>)
22235
22236Overview:
22237"""""""""
22238
22239Predicated bitreverse of a vector of integers.
22240
22241
22242Arguments:
22243""""""""""
22244
22245The first operand and the result have the same vector of integer type. The
22246second operand is the vector mask and has the same number of elements as the
22247result vector type. The third operand is the explicit vector length of the
22248operation.
22249
22250Semantics:
22251""""""""""
22252
22253The '``llvm.vp.bitreverse``' intrinsic performs bitreverse (:ref:`bitreverse <int_bitreverse>`) of the first operand on each
22254enabled lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22255
22256Examples:
22257"""""""""
22258
22259.. code-block:: llvm
22260
22261      %r = call <4 x i32> @llvm.vp.bitreverse.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
22262      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22263
22264      %t = call <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> %a)
22265      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22266
22267
22268.. _int_vp_bswap:
22269
22270'``llvm.vp.bswap.*``' Intrinsics
22271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22272
22273Syntax:
22274"""""""
22275This is an overloaded intrinsic.
22276
22277::
22278
22279      declare <16 x i32>  @llvm.vp.bswap.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
22280      declare <vscale x 4 x i32>  @llvm.vp.bswap.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22281      declare <256 x i64>  @llvm.vp.bswap.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>)
22282
22283Overview:
22284"""""""""
22285
22286Predicated bswap of a vector of integers.
22287
22288
22289Arguments:
22290""""""""""
22291
22292The first operand and the result have the same vector of integer type. The
22293second operand is the vector mask and has the same number of elements as the
22294result vector type. The third operand is the explicit vector length of the
22295operation.
22296
22297Semantics:
22298""""""""""
22299
22300The '``llvm.vp.bswap``' intrinsic performs bswap (:ref:`bswap <int_bswap>`) of the first operand on each
22301enabled lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22302
22303Examples:
22304"""""""""
22305
22306.. code-block:: llvm
22307
22308      %r = call <4 x i32> @llvm.vp.bswap.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
22309      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22310
22311      %t = call <4 x i32> @llvm.bswap.v4i32(<4 x i32> %a)
22312      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22313
22314
22315.. _int_vp_ctpop:
22316
22317'``llvm.vp.ctpop.*``' Intrinsics
22318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22319
22320Syntax:
22321"""""""
22322This is an overloaded intrinsic.
22323
22324::
22325
22326      declare <16 x i32>  @llvm.vp.ctpop.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>)
22327      declare <vscale x 4 x i32>  @llvm.vp.ctpop.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22328      declare <256 x i64>  @llvm.vp.ctpop.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>)
22329
22330Overview:
22331"""""""""
22332
22333Predicated ctpop of a vector of integers.
22334
22335
22336Arguments:
22337""""""""""
22338
22339The first operand and the result have the same vector of integer type. The
22340second operand is the vector mask and has the same number of elements as the
22341result vector type. The third operand is the explicit vector length of the
22342operation.
22343
22344Semantics:
22345""""""""""
22346
22347The '``llvm.vp.ctpop``' intrinsic performs ctpop (:ref:`ctpop <int_ctpop>`) of the first operand on each
22348enabled lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22349
22350Examples:
22351"""""""""
22352
22353.. code-block:: llvm
22354
22355      %r = call <4 x i32> @llvm.vp.ctpop.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl)
22356      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22357
22358      %t = call <4 x i32> @llvm.ctpop.v4i32(<4 x i32> %a)
22359      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22360
22361
22362.. _int_vp_ctlz:
22363
22364'``llvm.vp.ctlz.*``' Intrinsics
22365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22366
22367Syntax:
22368"""""""
22369This is an overloaded intrinsic.
22370
22371::
22372
22373      declare <16 x i32>  @llvm.vp.ctlz.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>, i1 <is_zero_poison>)
22374      declare <vscale x 4 x i32>  @llvm.vp.ctlz.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>, i1 <is_zero_poison>)
22375      declare <256 x i64>  @llvm.vp.ctlz.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>, i1 <is_zero_poison>)
22376
22377Overview:
22378"""""""""
22379
22380Predicated ctlz of a vector of integers.
22381
22382
22383Arguments:
22384""""""""""
22385
22386The first operand and the result have the same vector of integer type. The
22387second operand is the vector mask and has the same number of elements as the
22388result vector type. The third operand is the explicit vector length of the
22389operation.
22390
22391Semantics:
22392""""""""""
22393
22394The '``llvm.vp.ctlz``' intrinsic performs ctlz (:ref:`ctlz <int_ctlz>`) of the first operand on each
22395enabled lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22396
22397Examples:
22398"""""""""
22399
22400.. code-block:: llvm
22401
22402      %r = call <4 x i32> @llvm.vp.ctlz.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl, i1 false)
22403      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22404
22405      %t = call <4 x i32> @llvm.ctlz.v4i32(<4 x i32> %a, i1 false)
22406      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22407
22408
22409.. _int_vp_cttz:
22410
22411'``llvm.vp.cttz.*``' Intrinsics
22412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22413
22414Syntax:
22415"""""""
22416This is an overloaded intrinsic.
22417
22418::
22419
22420      declare <16 x i32>  @llvm.vp.cttz.v16i32 (<16 x i32> <op>, <16 x i1> <mask>, i32 <vector_length>, i1 <is_zero_poison>)
22421      declare <vscale x 4 x i32>  @llvm.vp.cttz.nxv4i32 (<vscale x 4 x i32> <op>, <vscale x 4 x i1> <mask>, i32 <vector_length>, i1 <is_zero_poison>)
22422      declare <256 x i64>  @llvm.vp.cttz.v256i64 (<256 x i64> <op>, <256 x i1> <mask>, i32 <vector_length>, i1 <is_zero_poison>)
22423
22424Overview:
22425"""""""""
22426
22427Predicated cttz of a vector of integers.
22428
22429
22430Arguments:
22431""""""""""
22432
22433The first operand and the result have the same vector of integer type. The
22434second operand is the vector mask and has the same number of elements as the
22435result vector type. The third operand is the explicit vector length of the
22436operation.
22437
22438Semantics:
22439""""""""""
22440
22441The '``llvm.vp.cttz``' intrinsic performs cttz (:ref:`cttz <int_cttz>`) of the first operand on each
22442enabled lane.  The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22443
22444Examples:
22445"""""""""
22446
22447.. code-block:: llvm
22448
22449      %r = call <4 x i32> @llvm.vp.cttz.v4i32(<4 x i32> %a, <4 x i1> %mask, i32 %evl, i1 false)
22450      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22451
22452      %t = call <4 x i32> @llvm.cttz.v4i32(<4 x i32> %a, i1 false)
22453      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22454
22455
22456.. _int_vp_fshl:
22457
22458'``llvm.vp.fshl.*``' Intrinsics
22459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22460
22461Syntax:
22462"""""""
22463This is an overloaded intrinsic.
22464
22465::
22466
22467      declare <16 x i32>  @llvm.vp.fshl.v16i32 (<16 x i32> <left_op>, <16 x i32> <middle_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
22468      declare <vscale x 4 x i32>  @llvm.vp.fshl.nxv4i32  (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <middle_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22469      declare <256 x i64>  @llvm.vp.fshl.v256i64 (<256 x i64> <left_op>, <256 x i64> <middle_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
22470
22471Overview:
22472"""""""""
22473
22474Predicated fshl of three vectors of integers.
22475
22476
22477Arguments:
22478""""""""""
22479
22480The first three operand and the result have the same vector of integer type. The
22481fourth operand is the vector mask and has the same number of elements as the
22482result vector type. The fifth operand is the explicit vector length of the
22483operation.
22484
22485Semantics:
22486""""""""""
22487
22488The '``llvm.vp.fshl``' intrinsic performs fshl (:ref:`fshl <int_fshl>`) of the first, second, and third
22489vector operand on each enabled lane. The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22490
22491
22492Examples:
22493"""""""""
22494
22495.. code-block:: llvm
22496
22497      %r = call <4 x i32> @llvm.vp.fshl.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c, <4 x i1> %mask, i32 %evl)
22498      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22499
22500      %t = call <4 x i32> @llvm.fshl.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c)
22501      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22502
22503
22504'``llvm.vp.fshr.*``' Intrinsics
22505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22506
22507Syntax:
22508"""""""
22509This is an overloaded intrinsic.
22510
22511::
22512
22513      declare <16 x i32>  @llvm.vp.fshr.v16i32 (<16 x i32> <left_op>, <16 x i32> <middle_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
22514      declare <vscale x 4 x i32>  @llvm.vp.fshr.nxv4i32  (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <middle_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
22515      declare <256 x i64>  @llvm.vp.fshr.v256i64 (<256 x i64> <left_op>, <256 x i64> <middle_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
22516
22517Overview:
22518"""""""""
22519
22520Predicated fshr of three vectors of integers.
22521
22522
22523Arguments:
22524""""""""""
22525
22526The first three operand and the result have the same vector of integer type. The
22527fourth operand is the vector mask and has the same number of elements as the
22528result vector type. The fifth operand is the explicit vector length of the
22529operation.
22530
22531Semantics:
22532""""""""""
22533
22534The '``llvm.vp.fshr``' intrinsic performs fshr (:ref:`fshr <int_fshr>`) of the first, second, and third
22535vector operand on each enabled lane. The result on disabled lanes is a :ref:`poison value <poisonvalues>`.
22536
22537
22538Examples:
22539"""""""""
22540
22541.. code-block:: llvm
22542
22543      %r = call <4 x i32> @llvm.vp.fshr.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c, <4 x i1> %mask, i32 %evl)
22544      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
22545
22546      %t = call <4 x i32> @llvm.fshr.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c)
22547      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> poison
22548
22549
22550.. _int_mload_mstore:
22551
22552Masked Vector Load and Store Intrinsics
22553---------------------------------------
22554
22555LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
22556
22557.. _int_mload:
22558
22559'``llvm.masked.load.*``' Intrinsics
22560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22561
22562Syntax:
22563"""""""
22564This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
22565
22566::
22567
22568      declare <16 x float>  @llvm.masked.load.v16f32.p0(ptr <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
22569      declare <2 x double>  @llvm.masked.load.v2f64.p0(ptr <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
22570      ;; The data is a vector of pointers
22571      declare <8 x ptr> @llvm.masked.load.v8p0.p0(ptr <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x ptr> <passthru>)
22572
22573Overview:
22574"""""""""
22575
22576Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
22577
22578
22579Arguments:
22580""""""""""
22581
22582The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a power of two constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
22583
22584Semantics:
22585""""""""""
22586
22587The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
22588The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
22589
22590
22591::
22592
22593       %res = call <16 x float> @llvm.masked.load.v16f32.p0(ptr %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
22594
22595       ;; The result of the two following instructions is identical aside from potential memory access exception
22596       %loadlal = load <16 x float>, ptr %ptr, align 4
22597       %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
22598
22599.. _int_mstore:
22600
22601'``llvm.masked.store.*``' Intrinsics
22602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22603
22604Syntax:
22605"""""""
22606This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
22607
22608::
22609
22610       declare void @llvm.masked.store.v8i32.p0 (<8  x i32>   <value>, ptr <ptr>, i32 <alignment>, <8  x i1> <mask>)
22611       declare void @llvm.masked.store.v16f32.p0(<16 x float> <value>, ptr <ptr>, i32 <alignment>, <16 x i1> <mask>)
22612       ;; The data is a vector of pointers
22613       declare void @llvm.masked.store.v8p0.p0  (<8 x ptr>    <value>, ptr <ptr>, i32 <alignment>, <8 x i1> <mask>)
22614
22615Overview:
22616"""""""""
22617
22618Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
22619
22620Arguments:
22621""""""""""
22622
22623The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. It must be a power of two constant integer value. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
22624
22625
22626Semantics:
22627""""""""""
22628
22629The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
22630The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
22631
22632::
22633
22634       call void @llvm.masked.store.v16f32.p0(<16 x float> %value, ptr %ptr, i32 4,  <16 x i1> %mask)
22635
22636       ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
22637       %oldval = load <16 x float>, ptr %ptr, align 4
22638       %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
22639       store <16 x float> %res, ptr %ptr, align 4
22640
22641
22642Masked Vector Gather and Scatter Intrinsics
22643-------------------------------------------
22644
22645LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
22646
22647.. _int_mgather:
22648
22649'``llvm.masked.gather.*``' Intrinsics
22650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22651
22652Syntax:
22653"""""""
22654This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
22655
22656::
22657
22658      declare <16 x float> @llvm.masked.gather.v16f32.v16p0(<16 x ptr> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
22659      declare <2 x double> @llvm.masked.gather.v2f64.v2p1(<2 x ptr addrspace(1)> <ptrs>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
22660      declare <8 x ptr> @llvm.masked.gather.v8p0.v8p0(<8 x ptr> <ptrs>, i32 <alignment>, <8 x i1>  <mask>, <8 x ptr> <passthru>)
22661
22662Overview:
22663"""""""""
22664
22665Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
22666
22667
22668Arguments:
22669""""""""""
22670
22671The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be 0 or a power of two constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
22672
22673Semantics:
22674""""""""""
22675
22676The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
22677The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
22678
22679
22680::
22681
22682       %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0(<4 x ptr> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> poison)
22683
22684       ;; The gather with all-true mask is equivalent to the following instruction sequence
22685       %ptr0 = extractelement <4 x ptr> %ptrs, i32 0
22686       %ptr1 = extractelement <4 x ptr> %ptrs, i32 1
22687       %ptr2 = extractelement <4 x ptr> %ptrs, i32 2
22688       %ptr3 = extractelement <4 x ptr> %ptrs, i32 3
22689
22690       %val0 = load double, ptr %ptr0, align 8
22691       %val1 = load double, ptr %ptr1, align 8
22692       %val2 = load double, ptr %ptr2, align 8
22693       %val3 = load double, ptr %ptr3, align 8
22694
22695       %vec0    = insertelement <4 x double> poison, %val0, 0
22696       %vec01   = insertelement <4 x double> %vec0, %val1, 1
22697       %vec012  = insertelement <4 x double> %vec01, %val2, 2
22698       %vec0123 = insertelement <4 x double> %vec012, %val3, 3
22699
22700.. _int_mscatter:
22701
22702'``llvm.masked.scatter.*``' Intrinsics
22703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22704
22705Syntax:
22706"""""""
22707This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
22708
22709::
22710
22711       declare void @llvm.masked.scatter.v8i32.v8p0  (<8 x i32>    <value>, <8 x ptr>               <ptrs>, i32 <alignment>, <8 x i1>  <mask>)
22712       declare void @llvm.masked.scatter.v16f32.v16p1(<16 x float> <value>, <16 x ptr addrspace(1)> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
22713       declare void @llvm.masked.scatter.v4p0.v4p0   (<4 x ptr>    <value>, <4 x ptr>               <ptrs>, i32 <alignment>, <4 x i1>  <mask>)
22714
22715Overview:
22716"""""""""
22717
22718Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
22719
22720Arguments:
22721""""""""""
22722
22723The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. It must be 0 or a power of two constant integer value. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
22724
22725Semantics:
22726""""""""""
22727
22728The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
22729
22730::
22731
22732       ;; This instruction unconditionally stores data vector in multiple addresses
22733       call @llvm.masked.scatter.v8i32.v8p0(<8 x i32> %value, <8 x ptr> %ptrs, i32 4,  <8 x i1>  <true, true, .. true>)
22734
22735       ;; It is equivalent to a list of scalar stores
22736       %val0 = extractelement <8 x i32> %value, i32 0
22737       %val1 = extractelement <8 x i32> %value, i32 1
22738       ..
22739       %val7 = extractelement <8 x i32> %value, i32 7
22740       %ptr0 = extractelement <8 x ptr> %ptrs, i32 0
22741       %ptr1 = extractelement <8 x ptr> %ptrs, i32 1
22742       ..
22743       %ptr7 = extractelement <8 x ptr> %ptrs, i32 7
22744       ;; Note: the order of the following stores is important when they overlap:
22745       store i32 %val0, ptr %ptr0, align 4
22746       store i32 %val1, ptr %ptr1, align 4
22747       ..
22748       store i32 %val7, ptr %ptr7, align 4
22749
22750
22751Masked Vector Expanding Load and Compressing Store Intrinsics
22752-------------------------------------------------------------
22753
22754LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
22755
22756.. _int_expandload:
22757
22758'``llvm.masked.expandload.*``' Intrinsics
22759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22760
22761Syntax:
22762"""""""
22763This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
22764
22765::
22766
22767      declare <16 x float>  @llvm.masked.expandload.v16f32 (ptr <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
22768      declare <2 x i64>     @llvm.masked.expandload.v2i64 (ptr <ptr>, <2 x i1>  <mask>, <2 x i64> <passthru>)
22769
22770Overview:
22771"""""""""
22772
22773Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "expandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
22774
22775
22776Arguments:
22777""""""""""
22778
22779The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
22780
22781Semantics:
22782""""""""""
22783
22784The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
22785
22786.. code-block:: c
22787
22788    // In this loop we load from B and spread the elements into array A.
22789    double *A, B; int *C;
22790    for (int i = 0; i < size; ++i) {
22791      if (C[i] != 0)
22792        A[i] = B[j++];
22793    }
22794
22795
22796.. code-block:: llvm
22797
22798    ; Load several elements from array B and expand them in a vector.
22799    ; The number of loaded elements is equal to the number of '1' elements in the Mask.
22800    %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(ptr %Bptr, <8 x i1> %Mask, <8 x double> poison)
22801    ; Store the result in A
22802    call void @llvm.masked.store.v8f64.p0(<8 x double> %Tmp, ptr %Aptr, i32 8, <8 x i1> %Mask)
22803
22804    ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
22805    %MaskI = bitcast <8 x i1> %Mask to i8
22806    %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
22807    %MaskI64 = zext i8 %MaskIPopcnt to i64
22808    %BNextInd = add i64 %BInd, %MaskI64
22809
22810
22811Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
22812If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
22813
22814.. _int_compressstore:
22815
22816'``llvm.masked.compressstore.*``' Intrinsics
22817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22818
22819Syntax:
22820"""""""
22821This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
22822
22823::
22824
22825      declare void @llvm.masked.compressstore.v8i32  (<8  x i32>   <value>, ptr <ptr>, <8  x i1> <mask>)
22826      declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, ptr <ptr>, <16 x i1> <mask>)
22827
22828Overview:
22829"""""""""
22830
22831Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
22832
22833Arguments:
22834""""""""""
22835
22836The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
22837
22838
22839Semantics:
22840""""""""""
22841
22842The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
22843
22844.. code-block:: c
22845
22846    // In this loop we load elements from A and store them consecutively in B
22847    double *A, B; int *C;
22848    for (int i = 0; i < size; ++i) {
22849      if (C[i] != 0)
22850        B[j++] = A[i]
22851    }
22852
22853
22854.. code-block:: llvm
22855
22856    ; Load elements from A.
22857    %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0(ptr %Aptr, i32 8, <8 x i1> %Mask, <8 x double> poison)
22858    ; Store all selected elements consecutively in array B
22859    call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, ptr %Bptr, <8 x i1> %Mask)
22860
22861    ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
22862    %MaskI = bitcast <8 x i1> %Mask to i8
22863    %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
22864    %MaskI64 = zext i8 %MaskIPopcnt to i64
22865    %BNextInd = add i64 %BInd, %MaskI64
22866
22867
22868Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
22869
22870
22871Memory Use Markers
22872------------------
22873
22874This class of intrinsics provides information about the
22875:ref:`lifetime of memory objects <objectlifetime>` and ranges where variables
22876are immutable.
22877
22878.. _int_lifestart:
22879
22880'``llvm.lifetime.start``' Intrinsic
22881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22882
22883Syntax:
22884"""""""
22885
22886::
22887
22888      declare void @llvm.lifetime.start(i64 <size>, ptr nocapture <ptr>)
22889
22890Overview:
22891"""""""""
22892
22893The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
22894object's lifetime.
22895
22896Arguments:
22897""""""""""
22898
22899The first argument is a constant integer representing the size of the
22900object, or -1 if it is variable sized. The second argument is a pointer
22901to the object.
22902
22903Semantics:
22904""""""""""
22905
22906If ``ptr`` is a stack-allocated object and it points to the first byte of
22907the object, the object is initially marked as dead.
22908``ptr`` is conservatively considered as a non-stack-allocated object if
22909the stack coloring algorithm that is used in the optimization pipeline cannot
22910conclude that ``ptr`` is a stack-allocated object.
22911
22912After '``llvm.lifetime.start``', the stack object that ``ptr`` points is marked
22913as alive and has an uninitialized value.
22914The stack object is marked as dead when either
22915:ref:`llvm.lifetime.end <int_lifeend>` to the alloca is executed or the
22916function returns.
22917
22918After :ref:`llvm.lifetime.end <int_lifeend>` is called,
22919'``llvm.lifetime.start``' on the stack object can be called again.
22920The second '``llvm.lifetime.start``' call marks the object as alive, but it
22921does not change the address of the object.
22922
22923If ``ptr`` is a non-stack-allocated object, it does not point to the first
22924byte of the object or it is a stack object that is already alive, it simply
22925fills all bytes of the object with ``poison``.
22926
22927
22928.. _int_lifeend:
22929
22930'``llvm.lifetime.end``' Intrinsic
22931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22932
22933Syntax:
22934"""""""
22935
22936::
22937
22938      declare void @llvm.lifetime.end(i64 <size>, ptr nocapture <ptr>)
22939
22940Overview:
22941"""""""""
22942
22943The '``llvm.lifetime.end``' intrinsic specifies the end of a memory object's
22944lifetime.
22945
22946Arguments:
22947""""""""""
22948
22949The first argument is a constant integer representing the size of the
22950object, or -1 if it is variable sized. The second argument is a pointer
22951to the object.
22952
22953Semantics:
22954""""""""""
22955
22956If ``ptr`` is a stack-allocated object and it points to the first byte of the
22957object, the object is dead.
22958``ptr`` is conservatively considered as a non-stack-allocated object if
22959the stack coloring algorithm that is used in the optimization pipeline cannot
22960conclude that ``ptr`` is a stack-allocated object.
22961
22962Calling ``llvm.lifetime.end`` on an already dead alloca is no-op.
22963
22964If ``ptr`` is a non-stack-allocated object or it does not point to the first
22965byte of the object, it is equivalent to simply filling all bytes of the object
22966with ``poison``.
22967
22968
22969'``llvm.invariant.start``' Intrinsic
22970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22971
22972Syntax:
22973"""""""
22974This is an overloaded intrinsic. The memory object can belong to any address space.
22975
22976::
22977
22978      declare ptr @llvm.invariant.start.p0(i64 <size>, ptr nocapture <ptr>)
22979
22980Overview:
22981"""""""""
22982
22983The '``llvm.invariant.start``' intrinsic specifies that the contents of
22984a memory object will not change.
22985
22986Arguments:
22987""""""""""
22988
22989The first argument is a constant integer representing the size of the
22990object, or -1 if it is variable sized. The second argument is a pointer
22991to the object.
22992
22993Semantics:
22994""""""""""
22995
22996This intrinsic indicates that until an ``llvm.invariant.end`` that uses
22997the return value, the referenced memory location is constant and
22998unchanging.
22999
23000'``llvm.invariant.end``' Intrinsic
23001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23002
23003Syntax:
23004"""""""
23005This is an overloaded intrinsic. The memory object can belong to any address space.
23006
23007::
23008
23009      declare void @llvm.invariant.end.p0(ptr <start>, i64 <size>, ptr nocapture <ptr>)
23010
23011Overview:
23012"""""""""
23013
23014The '``llvm.invariant.end``' intrinsic specifies that the contents of a
23015memory object are mutable.
23016
23017Arguments:
23018""""""""""
23019
23020The first argument is the matching ``llvm.invariant.start`` intrinsic.
23021The second argument is a constant integer representing the size of the
23022object, or -1 if it is variable sized and the third argument is a
23023pointer to the object.
23024
23025Semantics:
23026""""""""""
23027
23028This intrinsic indicates that the memory is mutable again.
23029
23030'``llvm.launder.invariant.group``' Intrinsic
23031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23032
23033Syntax:
23034"""""""
23035This is an overloaded intrinsic. The memory object can belong to any address
23036space. The returned pointer must belong to the same address space as the
23037argument.
23038
23039::
23040
23041      declare ptr @llvm.launder.invariant.group.p0(ptr <ptr>)
23042
23043Overview:
23044"""""""""
23045
23046The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
23047established by ``invariant.group`` metadata no longer holds, to obtain a new
23048pointer value that carries fresh invariant group information. It is an
23049experimental intrinsic, which means that its semantics might change in the
23050future.
23051
23052
23053Arguments:
23054""""""""""
23055
23056The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
23057to the memory.
23058
23059Semantics:
23060""""""""""
23061
23062Returns another pointer that aliases its argument but which is considered different
23063for the purposes of ``load``/``store`` ``invariant.group`` metadata.
23064It does not read any accessible memory and the execution can be speculated.
23065
23066'``llvm.strip.invariant.group``' Intrinsic
23067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23068
23069Syntax:
23070"""""""
23071This is an overloaded intrinsic. The memory object can belong to any address
23072space. The returned pointer must belong to the same address space as the
23073argument.
23074
23075::
23076
23077      declare ptr @llvm.strip.invariant.group.p0(ptr <ptr>)
23078
23079Overview:
23080"""""""""
23081
23082The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
23083established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
23084value that does not carry the invariant information. It is an experimental
23085intrinsic, which means that its semantics might change in the future.
23086
23087
23088Arguments:
23089""""""""""
23090
23091The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
23092to the memory.
23093
23094Semantics:
23095""""""""""
23096
23097Returns another pointer that aliases its argument but which has no associated
23098``invariant.group`` metadata.
23099It does not read any memory and can be speculated.
23100
23101
23102
23103.. _constrainedfp:
23104
23105Constrained Floating-Point Intrinsics
23106-------------------------------------
23107
23108These intrinsics are used to provide special handling of floating-point
23109operations when specific rounding mode or floating-point exception behavior is
23110required.  By default, LLVM optimization passes assume that the rounding mode is
23111round-to-nearest and that floating-point exceptions will not be monitored.
23112Constrained FP intrinsics are used to support non-default rounding modes and
23113accurately preserve exception behavior without compromising LLVM's ability to
23114optimize FP code when the default behavior is used.
23115
23116If any FP operation in a function is constrained then they all must be
23117constrained. This is required for correct LLVM IR. Optimizations that
23118move code around can create miscompiles if mixing of constrained and normal
23119operations is done. The correct way to mix constrained and less constrained
23120operations is to use the rounding mode and exception handling metadata to
23121mark constrained intrinsics as having LLVM's default behavior.
23122
23123Each of these intrinsics corresponds to a normal floating-point operation. The
23124data arguments and the return value are the same as the corresponding FP
23125operation.
23126
23127The rounding mode argument is a metadata string specifying what
23128assumptions, if any, the optimizer can make when transforming constant
23129values. Some constrained FP intrinsics omit this argument. If required
23130by the intrinsic, this argument must be one of the following strings:
23131
23132::
23133
23134      "round.dynamic"
23135      "round.tonearest"
23136      "round.downward"
23137      "round.upward"
23138      "round.towardzero"
23139      "round.tonearestaway"
23140
23141If this argument is "round.dynamic" optimization passes must assume that the
23142rounding mode is unknown and may change at runtime.  No transformations that
23143depend on rounding mode may be performed in this case.
23144
23145The other possible values for the rounding mode argument correspond to the
23146similarly named IEEE rounding modes.  If the argument is any of these values
23147optimization passes may perform transformations as long as they are consistent
23148with the specified rounding mode.
23149
23150For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
23151"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
23152'x-0' should evaluate to '-0' when rounding downward.  However, this
23153transformation is legal for all other rounding modes.
23154
23155For values other than "round.dynamic" optimization passes may assume that the
23156actual runtime rounding mode (as defined in a target-specific manner) matches
23157the specified rounding mode, but this is not guaranteed.  Using a specific
23158non-dynamic rounding mode which does not match the actual rounding mode at
23159runtime results in undefined behavior.
23160
23161The exception behavior argument is a metadata string describing the floating
23162point exception semantics that required for the intrinsic. This argument
23163must be one of the following strings:
23164
23165::
23166
23167      "fpexcept.ignore"
23168      "fpexcept.maytrap"
23169      "fpexcept.strict"
23170
23171If this argument is "fpexcept.ignore" optimization passes may assume that the
23172exception status flags will not be read and that floating-point exceptions will
23173be masked.  This allows transformations to be performed that may change the
23174exception semantics of the original code.  For example, FP operations may be
23175speculatively executed in this case whereas they must not be for either of the
23176other possible values of this argument.
23177
23178If the exception behavior argument is "fpexcept.maytrap" optimization passes
23179must avoid transformations that may raise exceptions that would not have been
23180raised by the original code (such as speculatively executing FP operations), but
23181passes are not required to preserve all exceptions that are implied by the
23182original code.  For example, exceptions may be potentially hidden by constant
23183folding.
23184
23185If the exception behavior argument is "fpexcept.strict" all transformations must
23186strictly preserve the floating-point exception semantics of the original code.
23187Any FP exception that would have been raised by the original code must be raised
23188by the transformed code, and the transformed code must not raise any FP
23189exceptions that would not have been raised by the original code.  This is the
23190exception behavior argument that will be used if the code being compiled reads
23191the FP exception status flags, but this mode can also be used with code that
23192unmasks FP exceptions.
23193
23194The number and order of floating-point exceptions is NOT guaranteed.  For
23195example, a series of FP operations that each may raise exceptions may be
23196vectorized into a single instruction that raises each unique exception a single
23197time.
23198
23199Proper :ref:`function attributes <fnattrs>` usage is required for the
23200constrained intrinsics to function correctly.
23201
23202All function *calls* done in a function that uses constrained floating
23203point intrinsics must have the ``strictfp`` attribute.
23204
23205All function *definitions* that use constrained floating point intrinsics
23206must have the ``strictfp`` attribute.
23207
23208'``llvm.experimental.constrained.fadd``' Intrinsic
23209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23210
23211Syntax:
23212"""""""
23213
23214::
23215
23216      declare <type>
23217      @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
23218                                          metadata <rounding mode>,
23219                                          metadata <exception behavior>)
23220
23221Overview:
23222"""""""""
23223
23224The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
23225two operands.
23226
23227
23228Arguments:
23229""""""""""
23230
23231The first two arguments to the '``llvm.experimental.constrained.fadd``'
23232intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
23233of floating-point values. Both arguments must have identical types.
23234
23235The third and fourth arguments specify the rounding mode and exception
23236behavior as described above.
23237
23238Semantics:
23239""""""""""
23240
23241The value produced is the floating-point sum of the two value operands and has
23242the same type as the operands.
23243
23244
23245'``llvm.experimental.constrained.fsub``' Intrinsic
23246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23247
23248Syntax:
23249"""""""
23250
23251::
23252
23253      declare <type>
23254      @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
23255                                          metadata <rounding mode>,
23256                                          metadata <exception behavior>)
23257
23258Overview:
23259"""""""""
23260
23261The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
23262of its two operands.
23263
23264
23265Arguments:
23266""""""""""
23267
23268The first two arguments to the '``llvm.experimental.constrained.fsub``'
23269intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
23270of floating-point values. Both arguments must have identical types.
23271
23272The third and fourth arguments specify the rounding mode and exception
23273behavior as described above.
23274
23275Semantics:
23276""""""""""
23277
23278The value produced is the floating-point difference of the two value operands
23279and has the same type as the operands.
23280
23281
23282'``llvm.experimental.constrained.fmul``' Intrinsic
23283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23284
23285Syntax:
23286"""""""
23287
23288::
23289
23290      declare <type>
23291      @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
23292                                          metadata <rounding mode>,
23293                                          metadata <exception behavior>)
23294
23295Overview:
23296"""""""""
23297
23298The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
23299its two operands.
23300
23301
23302Arguments:
23303""""""""""
23304
23305The first two arguments to the '``llvm.experimental.constrained.fmul``'
23306intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
23307of floating-point values. Both arguments must have identical types.
23308
23309The third and fourth arguments specify the rounding mode and exception
23310behavior as described above.
23311
23312Semantics:
23313""""""""""
23314
23315The value produced is the floating-point product of the two value operands and
23316has the same type as the operands.
23317
23318
23319'``llvm.experimental.constrained.fdiv``' Intrinsic
23320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23321
23322Syntax:
23323"""""""
23324
23325::
23326
23327      declare <type>
23328      @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
23329                                          metadata <rounding mode>,
23330                                          metadata <exception behavior>)
23331
23332Overview:
23333"""""""""
23334
23335The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
23336its two operands.
23337
23338
23339Arguments:
23340""""""""""
23341
23342The first two arguments to the '``llvm.experimental.constrained.fdiv``'
23343intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
23344of floating-point values. Both arguments must have identical types.
23345
23346The third and fourth arguments specify the rounding mode and exception
23347behavior as described above.
23348
23349Semantics:
23350""""""""""
23351
23352The value produced is the floating-point quotient of the two value operands and
23353has the same type as the operands.
23354
23355
23356'``llvm.experimental.constrained.frem``' Intrinsic
23357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23358
23359Syntax:
23360"""""""
23361
23362::
23363
23364      declare <type>
23365      @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
23366                                          metadata <rounding mode>,
23367                                          metadata <exception behavior>)
23368
23369Overview:
23370"""""""""
23371
23372The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
23373from the division of its two operands.
23374
23375
23376Arguments:
23377""""""""""
23378
23379The first two arguments to the '``llvm.experimental.constrained.frem``'
23380intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
23381of floating-point values. Both arguments must have identical types.
23382
23383The third and fourth arguments specify the rounding mode and exception
23384behavior as described above.  The rounding mode argument has no effect, since
23385the result of frem is never rounded, but the argument is included for
23386consistency with the other constrained floating-point intrinsics.
23387
23388Semantics:
23389""""""""""
23390
23391The value produced is the floating-point remainder from the division of the two
23392value operands and has the same type as the operands.  The remainder has the
23393same sign as the dividend.
23394
23395'``llvm.experimental.constrained.fma``' Intrinsic
23396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23397
23398Syntax:
23399"""""""
23400
23401::
23402
23403      declare <type>
23404      @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
23405                                          metadata <rounding mode>,
23406                                          metadata <exception behavior>)
23407
23408Overview:
23409"""""""""
23410
23411The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
23412fused-multiply-add operation on its operands.
23413
23414Arguments:
23415""""""""""
23416
23417The first three arguments to the '``llvm.experimental.constrained.fma``'
23418intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
23419<t_vector>` of floating-point values. All arguments must have identical types.
23420
23421The fourth and fifth arguments specify the rounding mode and exception behavior
23422as described above.
23423
23424Semantics:
23425""""""""""
23426
23427The result produced is the product of the first two operands added to the third
23428operand computed with infinite precision, and then rounded to the target
23429precision.
23430
23431'``llvm.experimental.constrained.fptoui``' Intrinsic
23432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23433
23434Syntax:
23435"""""""
23436
23437::
23438
23439      declare <ty2>
23440      @llvm.experimental.constrained.fptoui(<type> <value>,
23441                                          metadata <exception behavior>)
23442
23443Overview:
23444"""""""""
23445
23446The '``llvm.experimental.constrained.fptoui``' intrinsic converts a
23447floating-point ``value`` to its unsigned integer equivalent of type ``ty2``.
23448
23449Arguments:
23450""""""""""
23451
23452The first argument to the '``llvm.experimental.constrained.fptoui``'
23453intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
23454<t_vector>` of floating point values.
23455
23456The second argument specifies the exception behavior as described above.
23457
23458Semantics:
23459""""""""""
23460
23461The result produced is an unsigned integer converted from the floating
23462point operand. The value is truncated, so it is rounded towards zero.
23463
23464'``llvm.experimental.constrained.fptosi``' Intrinsic
23465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23466
23467Syntax:
23468"""""""
23469
23470::
23471
23472      declare <ty2>
23473      @llvm.experimental.constrained.fptosi(<type> <value>,
23474                                          metadata <exception behavior>)
23475
23476Overview:
23477"""""""""
23478
23479The '``llvm.experimental.constrained.fptosi``' intrinsic converts
23480:ref:`floating-point <t_floating>` ``value`` to type ``ty2``.
23481
23482Arguments:
23483""""""""""
23484
23485The first argument to the '``llvm.experimental.constrained.fptosi``'
23486intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
23487<t_vector>` of floating point values.
23488
23489The second argument specifies the exception behavior as described above.
23490
23491Semantics:
23492""""""""""
23493
23494The result produced is a signed integer converted from the floating
23495point operand. The value is truncated, so it is rounded towards zero.
23496
23497'``llvm.experimental.constrained.uitofp``' Intrinsic
23498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23499
23500Syntax:
23501"""""""
23502
23503::
23504
23505      declare <ty2>
23506      @llvm.experimental.constrained.uitofp(<type> <value>,
23507                                          metadata <rounding mode>,
23508                                          metadata <exception behavior>)
23509
23510Overview:
23511"""""""""
23512
23513The '``llvm.experimental.constrained.uitofp``' intrinsic converts an
23514unsigned integer ``value`` to a floating-point of type ``ty2``.
23515
23516Arguments:
23517""""""""""
23518
23519The first argument to the '``llvm.experimental.constrained.uitofp``'
23520intrinsic must be an :ref:`integer <t_integer>` or :ref:`vector
23521<t_vector>` of integer values.
23522
23523The second and third arguments specify the rounding mode and exception
23524behavior as described above.
23525
23526Semantics:
23527""""""""""
23528
23529An inexact floating-point exception will be raised if rounding is required.
23530Any result produced is a floating point value converted from the input
23531integer operand.
23532
23533'``llvm.experimental.constrained.sitofp``' Intrinsic
23534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23535
23536Syntax:
23537"""""""
23538
23539::
23540
23541      declare <ty2>
23542      @llvm.experimental.constrained.sitofp(<type> <value>,
23543                                          metadata <rounding mode>,
23544                                          metadata <exception behavior>)
23545
23546Overview:
23547"""""""""
23548
23549The '``llvm.experimental.constrained.sitofp``' intrinsic converts a
23550signed integer ``value`` to a floating-point of type ``ty2``.
23551
23552Arguments:
23553""""""""""
23554
23555The first argument to the '``llvm.experimental.constrained.sitofp``'
23556intrinsic must be an :ref:`integer <t_integer>` or :ref:`vector
23557<t_vector>` of integer values.
23558
23559The second and third arguments specify the rounding mode and exception
23560behavior as described above.
23561
23562Semantics:
23563""""""""""
23564
23565An inexact floating-point exception will be raised if rounding is required.
23566Any result produced is a floating point value converted from the input
23567integer operand.
23568
23569'``llvm.experimental.constrained.fptrunc``' Intrinsic
23570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23571
23572Syntax:
23573"""""""
23574
23575::
23576
23577      declare <ty2>
23578      @llvm.experimental.constrained.fptrunc(<type> <value>,
23579                                          metadata <rounding mode>,
23580                                          metadata <exception behavior>)
23581
23582Overview:
23583"""""""""
23584
23585The '``llvm.experimental.constrained.fptrunc``' intrinsic truncates ``value``
23586to type ``ty2``.
23587
23588Arguments:
23589""""""""""
23590
23591The first argument to the '``llvm.experimental.constrained.fptrunc``'
23592intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
23593<t_vector>` of floating point values. This argument must be larger in size
23594than the result.
23595
23596The second and third arguments specify the rounding mode and exception
23597behavior as described above.
23598
23599Semantics:
23600""""""""""
23601
23602The result produced is a floating point value truncated to be smaller in size
23603than the operand.
23604
23605'``llvm.experimental.constrained.fpext``' Intrinsic
23606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23607
23608Syntax:
23609"""""""
23610
23611::
23612
23613      declare <ty2>
23614      @llvm.experimental.constrained.fpext(<type> <value>,
23615                                          metadata <exception behavior>)
23616
23617Overview:
23618"""""""""
23619
23620The '``llvm.experimental.constrained.fpext``' intrinsic extends a
23621floating-point ``value`` to a larger floating-point value.
23622
23623Arguments:
23624""""""""""
23625
23626The first argument to the '``llvm.experimental.constrained.fpext``'
23627intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
23628<t_vector>` of floating point values. This argument must be smaller in size
23629than the result.
23630
23631The second argument specifies the exception behavior as described above.
23632
23633Semantics:
23634""""""""""
23635
23636The result produced is a floating point value extended to be larger in size
23637than the operand. All restrictions that apply to the fpext instruction also
23638apply to this intrinsic.
23639
23640'``llvm.experimental.constrained.fcmp``' and '``llvm.experimental.constrained.fcmps``' Intrinsics
23641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23642
23643Syntax:
23644"""""""
23645
23646::
23647
23648      declare <ty2>
23649      @llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
23650                                          metadata <condition code>,
23651                                          metadata <exception behavior>)
23652      declare <ty2>
23653      @llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
23654                                           metadata <condition code>,
23655                                           metadata <exception behavior>)
23656
23657Overview:
23658"""""""""
23659
23660The '``llvm.experimental.constrained.fcmp``' and
23661'``llvm.experimental.constrained.fcmps``' intrinsics return a boolean
23662value or vector of boolean values based on comparison of its operands.
23663
23664If the operands are floating-point scalars, then the result type is a
23665boolean (:ref:`i1 <t_integer>`).
23666
23667If the operands are floating-point vectors, then the result type is a
23668vector of boolean with the same number of elements as the operands being
23669compared.
23670
23671The '``llvm.experimental.constrained.fcmp``' intrinsic performs a quiet
23672comparison operation while the '``llvm.experimental.constrained.fcmps``'
23673intrinsic performs a signaling comparison operation.
23674
23675Arguments:
23676""""""""""
23677
23678The first two arguments to the '``llvm.experimental.constrained.fcmp``'
23679and '``llvm.experimental.constrained.fcmps``' intrinsics must be
23680:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
23681of floating-point values. Both arguments must have identical types.
23682
23683The third argument is the condition code indicating the kind of comparison
23684to perform. It must be a metadata string with one of the following values:
23685
23686.. _fcmp_md_cc:
23687
23688- "``oeq``": ordered and equal
23689- "``ogt``": ordered and greater than
23690- "``oge``": ordered and greater than or equal
23691- "``olt``": ordered and less than
23692- "``ole``": ordered and less than or equal
23693- "``one``": ordered and not equal
23694- "``ord``": ordered (no nans)
23695- "``ueq``": unordered or equal
23696- "``ugt``": unordered or greater than
23697- "``uge``": unordered or greater than or equal
23698- "``ult``": unordered or less than
23699- "``ule``": unordered or less than or equal
23700- "``une``": unordered or not equal
23701- "``uno``": unordered (either nans)
23702
23703*Ordered* means that neither operand is a NAN while *unordered* means
23704that either operand may be a NAN.
23705
23706The fourth argument specifies the exception behavior as described above.
23707
23708Semantics:
23709""""""""""
23710
23711``op1`` and ``op2`` are compared according to the condition code given
23712as the third argument. If the operands are vectors, then the
23713vectors are compared element by element. Each comparison performed
23714always yields an :ref:`i1 <t_integer>` result, as follows:
23715
23716.. _fcmp_md_cc_sem:
23717
23718- "``oeq``": yields ``true`` if both operands are not a NAN and ``op1``
23719  is equal to ``op2``.
23720- "``ogt``": yields ``true`` if both operands are not a NAN and ``op1``
23721  is greater than ``op2``.
23722- "``oge``": yields ``true`` if both operands are not a NAN and ``op1``
23723  is greater than or equal to ``op2``.
23724- "``olt``": yields ``true`` if both operands are not a NAN and ``op1``
23725  is less than ``op2``.
23726- "``ole``": yields ``true`` if both operands are not a NAN and ``op1``
23727  is less than or equal to ``op2``.
23728- "``one``": yields ``true`` if both operands are not a NAN and ``op1``
23729  is not equal to ``op2``.
23730- "``ord``": yields ``true`` if both operands are not a NAN.
23731- "``ueq``": yields ``true`` if either operand is a NAN or ``op1`` is
23732  equal to ``op2``.
23733- "``ugt``": yields ``true`` if either operand is a NAN or ``op1`` is
23734  greater than ``op2``.
23735- "``uge``": yields ``true`` if either operand is a NAN or ``op1`` is
23736  greater than or equal to ``op2``.
23737- "``ult``": yields ``true`` if either operand is a NAN or ``op1`` is
23738  less than ``op2``.
23739- "``ule``": yields ``true`` if either operand is a NAN or ``op1`` is
23740  less than or equal to ``op2``.
23741- "``une``": yields ``true`` if either operand is a NAN or ``op1`` is
23742  not equal to ``op2``.
23743- "``uno``": yields ``true`` if either operand is a NAN.
23744
23745The quiet comparison operation performed by
23746'``llvm.experimental.constrained.fcmp``' will only raise an exception
23747if either operand is a SNAN.  The signaling comparison operation
23748performed by '``llvm.experimental.constrained.fcmps``' will raise an
23749exception if either operand is a NAN (QNAN or SNAN). Such an exception
23750does not preclude a result being produced (e.g. exception might only
23751set a flag), therefore the distinction between ordered and unordered
23752comparisons is also relevant for the
23753'``llvm.experimental.constrained.fcmps``' intrinsic.
23754
23755'``llvm.experimental.constrained.fmuladd``' Intrinsic
23756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23757
23758Syntax:
23759"""""""
23760
23761::
23762
23763      declare <type>
23764      @llvm.experimental.constrained.fmuladd(<type> <op1>, <type> <op2>,
23765                                             <type> <op3>,
23766                                             metadata <rounding mode>,
23767                                             metadata <exception behavior>)
23768
23769Overview:
23770"""""""""
23771
23772The '``llvm.experimental.constrained.fmuladd``' intrinsic represents
23773multiply-add expressions that can be fused if the code generator determines
23774that (a) the target instruction set has support for a fused operation,
23775and (b) that the fused operation is more efficient than the equivalent,
23776separate pair of mul and add instructions.
23777
23778Arguments:
23779""""""""""
23780
23781The first three arguments to the '``llvm.experimental.constrained.fmuladd``'
23782intrinsic must be floating-point or vector of floating-point values.
23783All three arguments must have identical types.
23784
23785The fourth and fifth arguments specify the rounding mode and exception behavior
23786as described above.
23787
23788Semantics:
23789""""""""""
23790
23791The expression:
23792
23793::
23794
23795      %0 = call float @llvm.experimental.constrained.fmuladd.f32(%a, %b, %c,
23796                                                                 metadata <rounding mode>,
23797                                                                 metadata <exception behavior>)
23798
23799is equivalent to the expression:
23800
23801::
23802
23803      %0 = call float @llvm.experimental.constrained.fmul.f32(%a, %b,
23804                                                              metadata <rounding mode>,
23805                                                              metadata <exception behavior>)
23806      %1 = call float @llvm.experimental.constrained.fadd.f32(%0, %c,
23807                                                              metadata <rounding mode>,
23808                                                              metadata <exception behavior>)
23809
23810except that it is unspecified whether rounding will be performed between the
23811multiplication and addition steps. Fusion is not guaranteed, even if the target
23812platform supports it.
23813If a fused multiply-add is required, the corresponding
23814:ref:`llvm.experimental.constrained.fma <int_fma>` intrinsic function should be
23815used instead.
23816This never sets errno, just as '``llvm.experimental.constrained.fma.*``'.
23817
23818Constrained libm-equivalent Intrinsics
23819--------------------------------------
23820
23821In addition to the basic floating-point operations for which constrained
23822intrinsics are described above, there are constrained versions of various
23823operations which provide equivalent behavior to a corresponding libm function.
23824These intrinsics allow the precise behavior of these operations with respect to
23825rounding mode and exception behavior to be controlled.
23826
23827As with the basic constrained floating-point intrinsics, the rounding mode
23828and exception behavior arguments only control the behavior of the optimizer.
23829They do not change the runtime floating-point environment.
23830
23831
23832'``llvm.experimental.constrained.sqrt``' Intrinsic
23833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23834
23835Syntax:
23836"""""""
23837
23838::
23839
23840      declare <type>
23841      @llvm.experimental.constrained.sqrt(<type> <op1>,
23842                                          metadata <rounding mode>,
23843                                          metadata <exception behavior>)
23844
23845Overview:
23846"""""""""
23847
23848The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
23849of the specified value, returning the same value as the libm '``sqrt``'
23850functions would, but without setting ``errno``.
23851
23852Arguments:
23853""""""""""
23854
23855The first argument and the return type are floating-point numbers of the same
23856type.
23857
23858The second and third arguments specify the rounding mode and exception
23859behavior as described above.
23860
23861Semantics:
23862""""""""""
23863
23864This function returns the nonnegative square root of the specified value.
23865If the value is less than negative zero, a floating-point exception occurs
23866and the return value is architecture specific.
23867
23868
23869'``llvm.experimental.constrained.pow``' Intrinsic
23870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23871
23872Syntax:
23873"""""""
23874
23875::
23876
23877      declare <type>
23878      @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
23879                                         metadata <rounding mode>,
23880                                         metadata <exception behavior>)
23881
23882Overview:
23883"""""""""
23884
23885The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
23886raised to the (positive or negative) power specified by the second operand.
23887
23888Arguments:
23889""""""""""
23890
23891The first two arguments and the return value are floating-point numbers of the
23892same type.  The second argument specifies the power to which the first argument
23893should be raised.
23894
23895The third and fourth arguments specify the rounding mode and exception
23896behavior as described above.
23897
23898Semantics:
23899""""""""""
23900
23901This function returns the first value raised to the second power,
23902returning the same values as the libm ``pow`` functions would, and
23903handles error conditions in the same way.
23904
23905
23906'``llvm.experimental.constrained.powi``' Intrinsic
23907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23908
23909Syntax:
23910"""""""
23911
23912::
23913
23914      declare <type>
23915      @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
23916                                          metadata <rounding mode>,
23917                                          metadata <exception behavior>)
23918
23919Overview:
23920"""""""""
23921
23922The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
23923raised to the (positive or negative) power specified by the second operand. The
23924order of evaluation of multiplications is not defined. When a vector of
23925floating-point type is used, the second argument remains a scalar integer value.
23926
23927
23928Arguments:
23929""""""""""
23930
23931The first argument and the return value are floating-point numbers of the same
23932type.  The second argument is a 32-bit signed integer specifying the power to
23933which the first argument should be raised.
23934
23935The third and fourth arguments specify the rounding mode and exception
23936behavior as described above.
23937
23938Semantics:
23939""""""""""
23940
23941This function returns the first value raised to the second power with an
23942unspecified sequence of rounding operations.
23943
23944
23945'``llvm.experimental.constrained.sin``' Intrinsic
23946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23947
23948Syntax:
23949"""""""
23950
23951::
23952
23953      declare <type>
23954      @llvm.experimental.constrained.sin(<type> <op1>,
23955                                         metadata <rounding mode>,
23956                                         metadata <exception behavior>)
23957
23958Overview:
23959"""""""""
23960
23961The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
23962first operand.
23963
23964Arguments:
23965""""""""""
23966
23967The first argument and the return type are floating-point numbers of the same
23968type.
23969
23970The second and third arguments specify the rounding mode and exception
23971behavior as described above.
23972
23973Semantics:
23974""""""""""
23975
23976This function returns the sine of the specified operand, returning the
23977same values as the libm ``sin`` functions would, and handles error
23978conditions in the same way.
23979
23980
23981'``llvm.experimental.constrained.cos``' Intrinsic
23982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
23983
23984Syntax:
23985"""""""
23986
23987::
23988
23989      declare <type>
23990      @llvm.experimental.constrained.cos(<type> <op1>,
23991                                         metadata <rounding mode>,
23992                                         metadata <exception behavior>)
23993
23994Overview:
23995"""""""""
23996
23997The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
23998first operand.
23999
24000Arguments:
24001""""""""""
24002
24003The first argument and the return type are floating-point numbers of the same
24004type.
24005
24006The second and third arguments specify the rounding mode and exception
24007behavior as described above.
24008
24009Semantics:
24010""""""""""
24011
24012This function returns the cosine of the specified operand, returning the
24013same values as the libm ``cos`` functions would, and handles error
24014conditions in the same way.
24015
24016
24017'``llvm.experimental.constrained.exp``' Intrinsic
24018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24019
24020Syntax:
24021"""""""
24022
24023::
24024
24025      declare <type>
24026      @llvm.experimental.constrained.exp(<type> <op1>,
24027                                         metadata <rounding mode>,
24028                                         metadata <exception behavior>)
24029
24030Overview:
24031"""""""""
24032
24033The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
24034exponential of the specified value.
24035
24036Arguments:
24037""""""""""
24038
24039The first argument and the return value are floating-point numbers of the same
24040type.
24041
24042The second and third arguments specify the rounding mode and exception
24043behavior as described above.
24044
24045Semantics:
24046""""""""""
24047
24048This function returns the same values as the libm ``exp`` functions
24049would, and handles error conditions in the same way.
24050
24051
24052'``llvm.experimental.constrained.exp2``' Intrinsic
24053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24054
24055Syntax:
24056"""""""
24057
24058::
24059
24060      declare <type>
24061      @llvm.experimental.constrained.exp2(<type> <op1>,
24062                                          metadata <rounding mode>,
24063                                          metadata <exception behavior>)
24064
24065Overview:
24066"""""""""
24067
24068The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
24069exponential of the specified value.
24070
24071
24072Arguments:
24073""""""""""
24074
24075The first argument and the return value are floating-point numbers of the same
24076type.
24077
24078The second and third arguments specify the rounding mode and exception
24079behavior as described above.
24080
24081Semantics:
24082""""""""""
24083
24084This function returns the same values as the libm ``exp2`` functions
24085would, and handles error conditions in the same way.
24086
24087
24088'``llvm.experimental.constrained.log``' Intrinsic
24089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24090
24091Syntax:
24092"""""""
24093
24094::
24095
24096      declare <type>
24097      @llvm.experimental.constrained.log(<type> <op1>,
24098                                         metadata <rounding mode>,
24099                                         metadata <exception behavior>)
24100
24101Overview:
24102"""""""""
24103
24104The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
24105logarithm of the specified value.
24106
24107Arguments:
24108""""""""""
24109
24110The first argument and the return value are floating-point numbers of the same
24111type.
24112
24113The second and third arguments specify the rounding mode and exception
24114behavior as described above.
24115
24116
24117Semantics:
24118""""""""""
24119
24120This function returns the same values as the libm ``log`` functions
24121would, and handles error conditions in the same way.
24122
24123
24124'``llvm.experimental.constrained.log10``' Intrinsic
24125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24126
24127Syntax:
24128"""""""
24129
24130::
24131
24132      declare <type>
24133      @llvm.experimental.constrained.log10(<type> <op1>,
24134                                           metadata <rounding mode>,
24135                                           metadata <exception behavior>)
24136
24137Overview:
24138"""""""""
24139
24140The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
24141logarithm of the specified value.
24142
24143Arguments:
24144""""""""""
24145
24146The first argument and the return value are floating-point numbers of the same
24147type.
24148
24149The second and third arguments specify the rounding mode and exception
24150behavior as described above.
24151
24152Semantics:
24153""""""""""
24154
24155This function returns the same values as the libm ``log10`` functions
24156would, and handles error conditions in the same way.
24157
24158
24159'``llvm.experimental.constrained.log2``' Intrinsic
24160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24161
24162Syntax:
24163"""""""
24164
24165::
24166
24167      declare <type>
24168      @llvm.experimental.constrained.log2(<type> <op1>,
24169                                          metadata <rounding mode>,
24170                                          metadata <exception behavior>)
24171
24172Overview:
24173"""""""""
24174
24175The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
24176logarithm of the specified value.
24177
24178Arguments:
24179""""""""""
24180
24181The first argument and the return value are floating-point numbers of the same
24182type.
24183
24184The second and third arguments specify the rounding mode and exception
24185behavior as described above.
24186
24187Semantics:
24188""""""""""
24189
24190This function returns the same values as the libm ``log2`` functions
24191would, and handles error conditions in the same way.
24192
24193
24194'``llvm.experimental.constrained.rint``' Intrinsic
24195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24196
24197Syntax:
24198"""""""
24199
24200::
24201
24202      declare <type>
24203      @llvm.experimental.constrained.rint(<type> <op1>,
24204                                          metadata <rounding mode>,
24205                                          metadata <exception behavior>)
24206
24207Overview:
24208"""""""""
24209
24210The '``llvm.experimental.constrained.rint``' intrinsic returns the first
24211operand rounded to the nearest integer. It may raise an inexact floating-point
24212exception if the operand is not an integer.
24213
24214Arguments:
24215""""""""""
24216
24217The first argument and the return value are floating-point numbers of the same
24218type.
24219
24220The second and third arguments specify the rounding mode and exception
24221behavior as described above.
24222
24223Semantics:
24224""""""""""
24225
24226This function returns the same values as the libm ``rint`` functions
24227would, and handles error conditions in the same way.  The rounding mode is
24228described, not determined, by the rounding mode argument.  The actual rounding
24229mode is determined by the runtime floating-point environment.  The rounding
24230mode argument is only intended as information to the compiler.
24231
24232
24233'``llvm.experimental.constrained.lrint``' Intrinsic
24234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24235
24236Syntax:
24237"""""""
24238
24239::
24240
24241      declare <inttype>
24242      @llvm.experimental.constrained.lrint(<fptype> <op1>,
24243                                           metadata <rounding mode>,
24244                                           metadata <exception behavior>)
24245
24246Overview:
24247"""""""""
24248
24249The '``llvm.experimental.constrained.lrint``' intrinsic returns the first
24250operand rounded to the nearest integer. An inexact floating-point exception
24251will be raised if the operand is not an integer. An invalid exception is
24252raised if the result is too large to fit into a supported integer type,
24253and in this case the result is undefined.
24254
24255Arguments:
24256""""""""""
24257
24258The first argument is a floating-point number. The return value is an
24259integer type. Not all types are supported on all targets. The supported
24260types are the same as the ``llvm.lrint`` intrinsic and the ``lrint``
24261libm functions.
24262
24263The second and third arguments specify the rounding mode and exception
24264behavior as described above.
24265
24266Semantics:
24267""""""""""
24268
24269This function returns the same values as the libm ``lrint`` functions
24270would, and handles error conditions in the same way.
24271
24272The rounding mode is described, not determined, by the rounding mode
24273argument.  The actual rounding mode is determined by the runtime floating-point
24274environment.  The rounding mode argument is only intended as information
24275to the compiler.
24276
24277If the runtime floating-point environment is using the default rounding mode
24278then the results will be the same as the llvm.lrint intrinsic.
24279
24280
24281'``llvm.experimental.constrained.llrint``' Intrinsic
24282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24283
24284Syntax:
24285"""""""
24286
24287::
24288
24289      declare <inttype>
24290      @llvm.experimental.constrained.llrint(<fptype> <op1>,
24291                                            metadata <rounding mode>,
24292                                            metadata <exception behavior>)
24293
24294Overview:
24295"""""""""
24296
24297The '``llvm.experimental.constrained.llrint``' intrinsic returns the first
24298operand rounded to the nearest integer. An inexact floating-point exception
24299will be raised if the operand is not an integer. An invalid exception is
24300raised if the result is too large to fit into a supported integer type,
24301and in this case the result is undefined.
24302
24303Arguments:
24304""""""""""
24305
24306The first argument is a floating-point number. The return value is an
24307integer type. Not all types are supported on all targets. The supported
24308types are the same as the ``llvm.llrint`` intrinsic and the ``llrint``
24309libm functions.
24310
24311The second and third arguments specify the rounding mode and exception
24312behavior as described above.
24313
24314Semantics:
24315""""""""""
24316
24317This function returns the same values as the libm ``llrint`` functions
24318would, and handles error conditions in the same way.
24319
24320The rounding mode is described, not determined, by the rounding mode
24321argument.  The actual rounding mode is determined by the runtime floating-point
24322environment.  The rounding mode argument is only intended as information
24323to the compiler.
24324
24325If the runtime floating-point environment is using the default rounding mode
24326then the results will be the same as the llvm.llrint intrinsic.
24327
24328
24329'``llvm.experimental.constrained.nearbyint``' Intrinsic
24330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24331
24332Syntax:
24333"""""""
24334
24335::
24336
24337      declare <type>
24338      @llvm.experimental.constrained.nearbyint(<type> <op1>,
24339                                               metadata <rounding mode>,
24340                                               metadata <exception behavior>)
24341
24342Overview:
24343"""""""""
24344
24345The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
24346operand rounded to the nearest integer. It will not raise an inexact
24347floating-point exception if the operand is not an integer.
24348
24349
24350Arguments:
24351""""""""""
24352
24353The first argument and the return value are floating-point numbers of the same
24354type.
24355
24356The second and third arguments specify the rounding mode and exception
24357behavior as described above.
24358
24359Semantics:
24360""""""""""
24361
24362This function returns the same values as the libm ``nearbyint`` functions
24363would, and handles error conditions in the same way.  The rounding mode is
24364described, not determined, by the rounding mode argument.  The actual rounding
24365mode is determined by the runtime floating-point environment.  The rounding
24366mode argument is only intended as information to the compiler.
24367
24368
24369'``llvm.experimental.constrained.maxnum``' Intrinsic
24370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24371
24372Syntax:
24373"""""""
24374
24375::
24376
24377      declare <type>
24378      @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
24379                                            metadata <exception behavior>)
24380
24381Overview:
24382"""""""""
24383
24384The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
24385of the two arguments.
24386
24387Arguments:
24388""""""""""
24389
24390The first two arguments and the return value are floating-point numbers
24391of the same type.
24392
24393The third argument specifies the exception behavior as described above.
24394
24395Semantics:
24396""""""""""
24397
24398This function follows the IEEE-754 semantics for maxNum.
24399
24400
24401'``llvm.experimental.constrained.minnum``' Intrinsic
24402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24403
24404Syntax:
24405"""""""
24406
24407::
24408
24409      declare <type>
24410      @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
24411                                            metadata <exception behavior>)
24412
24413Overview:
24414"""""""""
24415
24416The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
24417of the two arguments.
24418
24419Arguments:
24420""""""""""
24421
24422The first two arguments and the return value are floating-point numbers
24423of the same type.
24424
24425The third argument specifies the exception behavior as described above.
24426
24427Semantics:
24428""""""""""
24429
24430This function follows the IEEE-754 semantics for minNum.
24431
24432
24433'``llvm.experimental.constrained.maximum``' Intrinsic
24434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24435
24436Syntax:
24437"""""""
24438
24439::
24440
24441      declare <type>
24442      @llvm.experimental.constrained.maximum(<type> <op1>, <type> <op2>
24443                                             metadata <exception behavior>)
24444
24445Overview:
24446"""""""""
24447
24448The '``llvm.experimental.constrained.maximum``' intrinsic returns the maximum
24449of the two arguments, propagating NaNs and treating -0.0 as less than +0.0.
24450
24451Arguments:
24452""""""""""
24453
24454The first two arguments and the return value are floating-point numbers
24455of the same type.
24456
24457The third argument specifies the exception behavior as described above.
24458
24459Semantics:
24460""""""""""
24461
24462This function follows semantics specified in the draft of IEEE 754-2018.
24463
24464
24465'``llvm.experimental.constrained.minimum``' Intrinsic
24466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24467
24468Syntax:
24469"""""""
24470
24471::
24472
24473      declare <type>
24474      @llvm.experimental.constrained.minimum(<type> <op1>, <type> <op2>
24475                                             metadata <exception behavior>)
24476
24477Overview:
24478"""""""""
24479
24480The '``llvm.experimental.constrained.minimum``' intrinsic returns the minimum
24481of the two arguments, propagating NaNs and treating -0.0 as less than +0.0.
24482
24483Arguments:
24484""""""""""
24485
24486The first two arguments and the return value are floating-point numbers
24487of the same type.
24488
24489The third argument specifies the exception behavior as described above.
24490
24491Semantics:
24492""""""""""
24493
24494This function follows semantics specified in the draft of IEEE 754-2018.
24495
24496
24497'``llvm.experimental.constrained.ceil``' Intrinsic
24498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24499
24500Syntax:
24501"""""""
24502
24503::
24504
24505      declare <type>
24506      @llvm.experimental.constrained.ceil(<type> <op1>,
24507                                          metadata <exception behavior>)
24508
24509Overview:
24510"""""""""
24511
24512The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
24513first operand.
24514
24515Arguments:
24516""""""""""
24517
24518The first argument and the return value are floating-point numbers of the same
24519type.
24520
24521The second argument specifies the exception behavior as described above.
24522
24523Semantics:
24524""""""""""
24525
24526This function returns the same values as the libm ``ceil`` functions
24527would and handles error conditions in the same way.
24528
24529
24530'``llvm.experimental.constrained.floor``' Intrinsic
24531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24532
24533Syntax:
24534"""""""
24535
24536::
24537
24538      declare <type>
24539      @llvm.experimental.constrained.floor(<type> <op1>,
24540                                           metadata <exception behavior>)
24541
24542Overview:
24543"""""""""
24544
24545The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
24546first operand.
24547
24548Arguments:
24549""""""""""
24550
24551The first argument and the return value are floating-point numbers of the same
24552type.
24553
24554The second argument specifies the exception behavior as described above.
24555
24556Semantics:
24557""""""""""
24558
24559This function returns the same values as the libm ``floor`` functions
24560would and handles error conditions in the same way.
24561
24562
24563'``llvm.experimental.constrained.round``' Intrinsic
24564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24565
24566Syntax:
24567"""""""
24568
24569::
24570
24571      declare <type>
24572      @llvm.experimental.constrained.round(<type> <op1>,
24573                                           metadata <exception behavior>)
24574
24575Overview:
24576"""""""""
24577
24578The '``llvm.experimental.constrained.round``' intrinsic returns the first
24579operand rounded to the nearest integer.
24580
24581Arguments:
24582""""""""""
24583
24584The first argument and the return value are floating-point numbers of the same
24585type.
24586
24587The second argument specifies the exception behavior as described above.
24588
24589Semantics:
24590""""""""""
24591
24592This function returns the same values as the libm ``round`` functions
24593would and handles error conditions in the same way.
24594
24595
24596'``llvm.experimental.constrained.roundeven``' Intrinsic
24597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24598
24599Syntax:
24600"""""""
24601
24602::
24603
24604      declare <type>
24605      @llvm.experimental.constrained.roundeven(<type> <op1>,
24606                                               metadata <exception behavior>)
24607
24608Overview:
24609"""""""""
24610
24611The '``llvm.experimental.constrained.roundeven``' intrinsic returns the first
24612operand rounded to the nearest integer in floating-point format, rounding
24613halfway cases to even (that is, to the nearest value that is an even integer),
24614regardless of the current rounding direction.
24615
24616Arguments:
24617""""""""""
24618
24619The first argument and the return value are floating-point numbers of the same
24620type.
24621
24622The second argument specifies the exception behavior as described above.
24623
24624Semantics:
24625""""""""""
24626
24627This function implements IEEE-754 operation ``roundToIntegralTiesToEven``. It
24628also behaves in the same way as C standard function ``roundeven`` and can signal
24629the invalid operation exception for a SNAN operand.
24630
24631
24632'``llvm.experimental.constrained.lround``' Intrinsic
24633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24634
24635Syntax:
24636"""""""
24637
24638::
24639
24640      declare <inttype>
24641      @llvm.experimental.constrained.lround(<fptype> <op1>,
24642                                            metadata <exception behavior>)
24643
24644Overview:
24645"""""""""
24646
24647The '``llvm.experimental.constrained.lround``' intrinsic returns the first
24648operand rounded to the nearest integer with ties away from zero.  It will
24649raise an inexact floating-point exception if the operand is not an integer.
24650An invalid exception is raised if the result is too large to fit into a
24651supported integer type, and in this case the result is undefined.
24652
24653Arguments:
24654""""""""""
24655
24656The first argument is a floating-point number. The return value is an
24657integer type. Not all types are supported on all targets. The supported
24658types are the same as the ``llvm.lround`` intrinsic and the ``lround``
24659libm functions.
24660
24661The second argument specifies the exception behavior as described above.
24662
24663Semantics:
24664""""""""""
24665
24666This function returns the same values as the libm ``lround`` functions
24667would and handles error conditions in the same way.
24668
24669
24670'``llvm.experimental.constrained.llround``' Intrinsic
24671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24672
24673Syntax:
24674"""""""
24675
24676::
24677
24678      declare <inttype>
24679      @llvm.experimental.constrained.llround(<fptype> <op1>,
24680                                             metadata <exception behavior>)
24681
24682Overview:
24683"""""""""
24684
24685The '``llvm.experimental.constrained.llround``' intrinsic returns the first
24686operand rounded to the nearest integer with ties away from zero. It will
24687raise an inexact floating-point exception if the operand is not an integer.
24688An invalid exception is raised if the result is too large to fit into a
24689supported integer type, and in this case the result is undefined.
24690
24691Arguments:
24692""""""""""
24693
24694The first argument is a floating-point number. The return value is an
24695integer type. Not all types are supported on all targets. The supported
24696types are the same as the ``llvm.llround`` intrinsic and the ``llround``
24697libm functions.
24698
24699The second argument specifies the exception behavior as described above.
24700
24701Semantics:
24702""""""""""
24703
24704This function returns the same values as the libm ``llround`` functions
24705would and handles error conditions in the same way.
24706
24707
24708'``llvm.experimental.constrained.trunc``' Intrinsic
24709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24710
24711Syntax:
24712"""""""
24713
24714::
24715
24716      declare <type>
24717      @llvm.experimental.constrained.trunc(<type> <op1>,
24718                                           metadata <exception behavior>)
24719
24720Overview:
24721"""""""""
24722
24723The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
24724operand rounded to the nearest integer not larger in magnitude than the
24725operand.
24726
24727Arguments:
24728""""""""""
24729
24730The first argument and the return value are floating-point numbers of the same
24731type.
24732
24733The second argument specifies the exception behavior as described above.
24734
24735Semantics:
24736""""""""""
24737
24738This function returns the same values as the libm ``trunc`` functions
24739would and handles error conditions in the same way.
24740
24741.. _int_experimental_noalias_scope_decl:
24742
24743'``llvm.experimental.noalias.scope.decl``' Intrinsic
24744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24745
24746Syntax:
24747"""""""
24748
24749
24750::
24751
24752      declare void @llvm.experimental.noalias.scope.decl(metadata !id.scope.list)
24753
24754Overview:
24755"""""""""
24756
24757The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a
24758noalias scope is declared. When the intrinsic is duplicated, a decision must
24759also be made about the scope: depending on the reason of the duplication,
24760the scope might need to be duplicated as well.
24761
24762
24763Arguments:
24764""""""""""
24765
24766The ``!id.scope.list`` argument is metadata that is a list of ``noalias``
24767metadata references. The format is identical to that required for ``noalias``
24768metadata. This list must have exactly one element.
24769
24770Semantics:
24771""""""""""
24772
24773The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a
24774noalias scope is declared. When the intrinsic is duplicated, a decision must
24775also be made about the scope: depending on the reason of the duplication,
24776the scope might need to be duplicated as well.
24777
24778For example, when the intrinsic is used inside a loop body, and that loop is
24779unrolled, the associated noalias scope must also be duplicated. Otherwise, the
24780noalias property it signifies would spill across loop iterations, whereas it
24781was only valid within a single iteration.
24782
24783.. code-block:: llvm
24784
24785  ; This examples shows two possible positions for noalias.decl and how they impact the semantics:
24786  ; If it is outside the loop (Version 1), then %a and %b are noalias across *all* iterations.
24787  ; If it is inside the loop (Version 2), then %a and %b are noalias only within *one* iteration.
24788  declare void @decl_in_loop(ptr %a.base, ptr %b.base) {
24789  entry:
24790    ; call void @llvm.experimental.noalias.scope.decl(metadata !2) ; Version 1: noalias decl outside loop
24791    br label %loop
24792
24793  loop:
24794    %a = phi ptr [ %a.base, %entry ], [ %a.inc, %loop ]
24795    %b = phi ptr [ %b.base, %entry ], [ %b.inc, %loop ]
24796    ; call void @llvm.experimental.noalias.scope.decl(metadata !2) ; Version 2: noalias decl inside loop
24797    %val = load i8, ptr %a, !alias.scope !2
24798    store i8 %val, ptr %b, !noalias !2
24799    %a.inc = getelementptr inbounds i8, ptr %a, i64 1
24800    %b.inc = getelementptr inbounds i8, ptr %b, i64 1
24801    %cond = call i1 @cond()
24802    br i1 %cond, label %loop, label %exit
24803
24804  exit:
24805    ret void
24806  }
24807
24808  !0 = !{!0} ; domain
24809  !1 = !{!1, !0} ; scope
24810  !2 = !{!1} ; scope list
24811
24812Multiple calls to `@llvm.experimental.noalias.scope.decl` for the same scope
24813are possible, but one should never dominate another. Violations are pointed out
24814by the verifier as they indicate a problem in either a transformation pass or
24815the input.
24816
24817
24818Floating Point Environment Manipulation intrinsics
24819--------------------------------------------------
24820
24821These functions read or write floating point environment, such as rounding
24822mode or state of floating point exceptions. Altering the floating point
24823environment requires special care. See :ref:`Floating Point Environment <floatenv>`.
24824
24825'``llvm.get.rounding``' Intrinsic
24826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24827
24828Syntax:
24829"""""""
24830
24831::
24832
24833      declare i32 @llvm.get.rounding()
24834
24835Overview:
24836"""""""""
24837
24838The '``llvm.get.rounding``' intrinsic reads the current rounding mode.
24839
24840Semantics:
24841""""""""""
24842
24843The '``llvm.get.rounding``' intrinsic returns the current rounding mode.
24844Encoding of the returned values is same as the result of ``FLT_ROUNDS``,
24845specified by C standard:
24846
24847::
24848
24849    0  - toward zero
24850    1  - to nearest, ties to even
24851    2  - toward positive infinity
24852    3  - toward negative infinity
24853    4  - to nearest, ties away from zero
24854
24855Other values may be used to represent additional rounding modes, supported by a
24856target. These values are target-specific.
24857
24858'``llvm.set.rounding``' Intrinsic
24859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24860
24861Syntax:
24862"""""""
24863
24864::
24865
24866      declare void @llvm.set.rounding(i32 <val>)
24867
24868Overview:
24869"""""""""
24870
24871The '``llvm.set.rounding``' intrinsic sets current rounding mode.
24872
24873Arguments:
24874""""""""""
24875
24876The argument is the required rounding mode. Encoding of rounding mode is
24877the same as used by '``llvm.get.rounding``'.
24878
24879Semantics:
24880""""""""""
24881
24882The '``llvm.set.rounding``' intrinsic sets the current rounding mode. It is
24883similar to C library function 'fesetround', however this intrinsic does not
24884return any value and uses platform-independent representation of IEEE rounding
24885modes.
24886
24887
24888Floating-Point Test Intrinsics
24889------------------------------
24890
24891These functions get properties of floating-point values.
24892
24893
24894'``llvm.is.fpclass``' Intrinsic
24895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24896
24897Syntax:
24898"""""""
24899
24900::
24901
24902      declare i1 @llvm.is.fpclass(<fptype> <op>, i32 <test>)
24903      declare <N x i1> @llvm.is.fpclass(<vector-fptype> <op>, i32 <test>)
24904
24905Overview:
24906"""""""""
24907
24908The '``llvm.is.fpclass``' intrinsic returns a boolean value or vector of boolean
24909values depending on whether the first argument satisfies the test specified by
24910the second argument.
24911
24912If the first argument is a floating-point scalar, then the result type is a
24913boolean (:ref:`i1 <t_integer>`).
24914
24915If the first argument is a floating-point vector, then the result type is a
24916vector of boolean with the same number of elements as the first argument.
24917
24918Arguments:
24919""""""""""
24920
24921The first argument to the '``llvm.is.fpclass``' intrinsic must be
24922:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
24923of floating-point values.
24924
24925The second argument specifies, which tests to perform. It must be a compile-time
24926integer constant, each bit in which specifies floating-point class:
24927
24928+-------+----------------------+
24929| Bit # | floating-point class |
24930+=======+======================+
24931| 0     | Signaling NaN        |
24932+-------+----------------------+
24933| 1     | Quiet NaN            |
24934+-------+----------------------+
24935| 2     | Negative infinity    |
24936+-------+----------------------+
24937| 3     | Negative normal      |
24938+-------+----------------------+
24939| 4     | Negative subnormal   |
24940+-------+----------------------+
24941| 5     | Negative zero        |
24942+-------+----------------------+
24943| 6     | Positive zero        |
24944+-------+----------------------+
24945| 7     | Positive subnormal   |
24946+-------+----------------------+
24947| 8     | Positive normal      |
24948+-------+----------------------+
24949| 9     | Positive infinity    |
24950+-------+----------------------+
24951
24952Semantics:
24953""""""""""
24954
24955The function checks if ``op`` belongs to any of the floating-point classes
24956specified by ``test``. If ``op`` is a vector, then the check is made element by
24957element. Each check yields an :ref:`i1 <t_integer>` result, which is ``true``,
24958if the element value satisfies the specified test. The argument ``test`` is a
24959bit mask where each bit specifies floating-point class to test. For example, the
24960value 0x108 makes test for normal value, - bits 3 and 8 in it are set, which
24961means that the function returns ``true`` if ``op`` is a positive or negative
24962normal value. The function never raises floating-point exceptions.
24963
24964
24965General Intrinsics
24966------------------
24967
24968This class of intrinsics is designed to be generic and has no specific
24969purpose.
24970
24971'``llvm.var.annotation``' Intrinsic
24972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24973
24974Syntax:
24975"""""""
24976
24977::
24978
24979      declare void @llvm.var.annotation(ptr <val>, ptr <str>, ptr <str>, i32  <int>)
24980
24981Overview:
24982"""""""""
24983
24984The '``llvm.var.annotation``' intrinsic.
24985
24986Arguments:
24987""""""""""
24988
24989The first argument is a pointer to a value, the second is a pointer to a
24990global string, the third is a pointer to a global string which is the
24991source file name, and the last argument is the line number.
24992
24993Semantics:
24994""""""""""
24995
24996This intrinsic allows annotation of local variables with arbitrary
24997strings. This can be useful for special purpose optimizations that want
24998to look for these annotations. These have no other defined use; they are
24999ignored by code generation and optimization.
25000
25001'``llvm.ptr.annotation.*``' Intrinsic
25002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25003
25004Syntax:
25005"""""""
25006
25007This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
25008pointer to an integer of any width. *NOTE* you must specify an address space for
25009the pointer. The identifier for the default address space is the integer
25010'``0``'.
25011
25012::
25013
25014      declare ptr @llvm.ptr.annotation.p0(ptr <val>, ptr <str>, ptr <str>, i32 <int>)
25015      declare ptr @llvm.ptr.annotation.p1(ptr addrspace(1) <val>, ptr <str>, ptr <str>, i32 <int>)
25016
25017Overview:
25018"""""""""
25019
25020The '``llvm.ptr.annotation``' intrinsic.
25021
25022Arguments:
25023""""""""""
25024
25025The first argument is a pointer to an integer value of arbitrary bitwidth
25026(result of some expression), the second is a pointer to a global string, the
25027third is a pointer to a global string which is the source file name, and the
25028last argument is the line number. It returns the value of the first argument.
25029
25030Semantics:
25031""""""""""
25032
25033This intrinsic allows annotation of a pointer to an integer with arbitrary
25034strings. This can be useful for special purpose optimizations that want to look
25035for these annotations. These have no other defined use; transformations preserve
25036annotations on a best-effort basis but are allowed to replace the intrinsic with
25037its first argument without breaking semantics and the intrinsic is completely
25038dropped during instruction selection.
25039
25040'``llvm.annotation.*``' Intrinsic
25041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25042
25043Syntax:
25044"""""""
25045
25046This is an overloaded intrinsic. You can use '``llvm.annotation``' on
25047any integer bit width.
25048
25049::
25050
25051      declare i8 @llvm.annotation.i8(i8 <val>, ptr <str>, ptr <str>, i32  <int>)
25052      declare i16 @llvm.annotation.i16(i16 <val>, ptr <str>, ptr <str>, i32  <int>)
25053      declare i32 @llvm.annotation.i32(i32 <val>, ptr <str>, ptr <str>, i32  <int>)
25054      declare i64 @llvm.annotation.i64(i64 <val>, ptr <str>, ptr <str>, i32  <int>)
25055      declare i256 @llvm.annotation.i256(i256 <val>, ptr <str>, ptr <str>, i32  <int>)
25056
25057Overview:
25058"""""""""
25059
25060The '``llvm.annotation``' intrinsic.
25061
25062Arguments:
25063""""""""""
25064
25065The first argument is an integer value (result of some expression), the
25066second is a pointer to a global string, the third is a pointer to a
25067global string which is the source file name, and the last argument is
25068the line number. It returns the value of the first argument.
25069
25070Semantics:
25071""""""""""
25072
25073This intrinsic allows annotations to be put on arbitrary expressions with
25074arbitrary strings. This can be useful for special purpose optimizations that
25075want to look for these annotations. These have no other defined use;
25076transformations preserve annotations on a best-effort basis but are allowed to
25077replace the intrinsic with its first argument without breaking semantics and the
25078intrinsic is completely dropped during instruction selection.
25079
25080'``llvm.codeview.annotation``' Intrinsic
25081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25082
25083Syntax:
25084"""""""
25085
25086This annotation emits a label at its program point and an associated
25087``S_ANNOTATION`` codeview record with some additional string metadata. This is
25088used to implement MSVC's ``__annotation`` intrinsic. It is marked
25089``noduplicate``, so calls to this intrinsic prevent inlining and should be
25090considered expensive.
25091
25092::
25093
25094      declare void @llvm.codeview.annotation(metadata)
25095
25096Arguments:
25097""""""""""
25098
25099The argument should be an MDTuple containing any number of MDStrings.
25100
25101'``llvm.trap``' Intrinsic
25102^^^^^^^^^^^^^^^^^^^^^^^^^
25103
25104Syntax:
25105"""""""
25106
25107::
25108
25109      declare void @llvm.trap() cold noreturn nounwind
25110
25111Overview:
25112"""""""""
25113
25114The '``llvm.trap``' intrinsic.
25115
25116Arguments:
25117""""""""""
25118
25119None.
25120
25121Semantics:
25122""""""""""
25123
25124This intrinsic is lowered to the target dependent trap instruction. If
25125the target does not have a trap instruction, this intrinsic will be
25126lowered to a call of the ``abort()`` function.
25127
25128'``llvm.debugtrap``' Intrinsic
25129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25130
25131Syntax:
25132"""""""
25133
25134::
25135
25136      declare void @llvm.debugtrap() nounwind
25137
25138Overview:
25139"""""""""
25140
25141The '``llvm.debugtrap``' intrinsic.
25142
25143Arguments:
25144""""""""""
25145
25146None.
25147
25148Semantics:
25149""""""""""
25150
25151This intrinsic is lowered to code which is intended to cause an
25152execution trap with the intention of requesting the attention of a
25153debugger.
25154
25155'``llvm.ubsantrap``' Intrinsic
25156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25157
25158Syntax:
25159"""""""
25160
25161::
25162
25163      declare void @llvm.ubsantrap(i8 immarg) cold noreturn nounwind
25164
25165Overview:
25166"""""""""
25167
25168The '``llvm.ubsantrap``' intrinsic.
25169
25170Arguments:
25171""""""""""
25172
25173An integer describing the kind of failure detected.
25174
25175Semantics:
25176""""""""""
25177
25178This intrinsic is lowered to code which is intended to cause an execution trap,
25179embedding the argument into encoding of that trap somehow to discriminate
25180crashes if possible.
25181
25182Equivalent to ``@llvm.trap`` for targets that do not support this behaviour.
25183
25184'``llvm.stackprotector``' Intrinsic
25185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25186
25187Syntax:
25188"""""""
25189
25190::
25191
25192      declare void @llvm.stackprotector(ptr <guard>, ptr <slot>)
25193
25194Overview:
25195"""""""""
25196
25197The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
25198onto the stack at ``slot``. The stack slot is adjusted to ensure that it
25199is placed on the stack before local variables.
25200
25201Arguments:
25202""""""""""
25203
25204The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
25205The first argument is the value loaded from the stack guard
25206``@__stack_chk_guard``. The second variable is an ``alloca`` that has
25207enough space to hold the value of the guard.
25208
25209Semantics:
25210""""""""""
25211
25212This intrinsic causes the prologue/epilogue inserter to force the position of
25213the ``AllocaInst`` stack slot to be before local variables on the stack. This is
25214to ensure that if a local variable on the stack is overwritten, it will destroy
25215the value of the guard. When the function exits, the guard on the stack is
25216checked against the original guard by ``llvm.stackprotectorcheck``. If they are
25217different, then ``llvm.stackprotectorcheck`` causes the program to abort by
25218calling the ``__stack_chk_fail()`` function.
25219
25220'``llvm.stackguard``' Intrinsic
25221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25222
25223Syntax:
25224"""""""
25225
25226::
25227
25228      declare ptr @llvm.stackguard()
25229
25230Overview:
25231"""""""""
25232
25233The ``llvm.stackguard`` intrinsic returns the system stack guard value.
25234
25235It should not be generated by frontends, since it is only for internal usage.
25236The reason why we create this intrinsic is that we still support IR form Stack
25237Protector in FastISel.
25238
25239Arguments:
25240""""""""""
25241
25242None.
25243
25244Semantics:
25245""""""""""
25246
25247On some platforms, the value returned by this intrinsic remains unchanged
25248between loads in the same thread. On other platforms, it returns the same
25249global variable value, if any, e.g. ``@__stack_chk_guard``.
25250
25251Currently some platforms have IR-level customized stack guard loading (e.g.
25252X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
25253in the future.
25254
25255'``llvm.objectsize``' Intrinsic
25256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25257
25258Syntax:
25259"""""""
25260
25261::
25262
25263      declare i32 @llvm.objectsize.i32(ptr <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
25264      declare i64 @llvm.objectsize.i64(ptr <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
25265
25266Overview:
25267"""""""""
25268
25269The ``llvm.objectsize`` intrinsic is designed to provide information to the
25270optimizer to determine whether a) an operation (like memcpy) will overflow a
25271buffer that corresponds to an object, or b) that a runtime check for overflow
25272isn't necessary. An object in this context means an allocation of a specific
25273class, structure, array, or other object.
25274
25275Arguments:
25276""""""""""
25277
25278The ``llvm.objectsize`` intrinsic takes four arguments. The first argument is a
25279pointer to or into the ``object``. The second argument determines whether
25280``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size is
25281unknown. The third argument controls how ``llvm.objectsize`` acts when ``null``
25282in address space 0 is used as its pointer argument. If it's ``false``,
25283``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
25284the ``null`` is in a non-zero address space or if ``true`` is given for the
25285third argument of ``llvm.objectsize``, we assume its size is unknown. The fourth
25286argument to ``llvm.objectsize`` determines if the value should be evaluated at
25287runtime.
25288
25289The second, third, and fourth arguments only accept constants.
25290
25291Semantics:
25292""""""""""
25293
25294The ``llvm.objectsize`` intrinsic is lowered to a value representing the size of
25295the object concerned. If the size cannot be determined, ``llvm.objectsize``
25296returns ``i32/i64 -1 or 0`` (depending on the ``min`` argument).
25297
25298'``llvm.expect``' Intrinsic
25299^^^^^^^^^^^^^^^^^^^^^^^^^^^
25300
25301Syntax:
25302"""""""
25303
25304This is an overloaded intrinsic. You can use ``llvm.expect`` on any
25305integer bit width.
25306
25307::
25308
25309      declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
25310      declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
25311      declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
25312
25313Overview:
25314"""""""""
25315
25316The ``llvm.expect`` intrinsic provides information about expected (the
25317most probable) value of ``val``, which can be used by optimizers.
25318
25319Arguments:
25320""""""""""
25321
25322The ``llvm.expect`` intrinsic takes two arguments. The first argument is
25323a value. The second argument is an expected value.
25324
25325Semantics:
25326""""""""""
25327
25328This intrinsic is lowered to the ``val``.
25329
25330'``llvm.expect.with.probability``' Intrinsic
25331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25332
25333Syntax:
25334"""""""
25335
25336This intrinsic is similar to ``llvm.expect``. This is an overloaded intrinsic.
25337You can use ``llvm.expect.with.probability`` on any integer bit width.
25338
25339::
25340
25341      declare i1 @llvm.expect.with.probability.i1(i1 <val>, i1 <expected_val>, double <prob>)
25342      declare i32 @llvm.expect.with.probability.i32(i32 <val>, i32 <expected_val>, double <prob>)
25343      declare i64 @llvm.expect.with.probability.i64(i64 <val>, i64 <expected_val>, double <prob>)
25344
25345Overview:
25346"""""""""
25347
25348The ``llvm.expect.with.probability`` intrinsic provides information about
25349expected value of ``val`` with probability(or confidence) ``prob``, which can
25350be used by optimizers.
25351
25352Arguments:
25353""""""""""
25354
25355The ``llvm.expect.with.probability`` intrinsic takes three arguments. The first
25356argument is a value. The second argument is an expected value. The third
25357argument is a probability.
25358
25359Semantics:
25360""""""""""
25361
25362This intrinsic is lowered to the ``val``.
25363
25364.. _int_assume:
25365
25366'``llvm.assume``' Intrinsic
25367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25368
25369Syntax:
25370"""""""
25371
25372::
25373
25374      declare void @llvm.assume(i1 %cond)
25375
25376Overview:
25377"""""""""
25378
25379The ``llvm.assume`` allows the optimizer to assume that the provided
25380condition is true. This information can then be used in simplifying other parts
25381of the code.
25382
25383More complex assumptions can be encoded as
25384:ref:`assume operand bundles <assume_opbundles>`.
25385
25386Arguments:
25387""""""""""
25388
25389The argument of the call is the condition which the optimizer may assume is
25390always true.
25391
25392Semantics:
25393""""""""""
25394
25395The intrinsic allows the optimizer to assume that the provided condition is
25396always true whenever the control flow reaches the intrinsic call. No code is
25397generated for this intrinsic, and instructions that contribute only to the
25398provided condition are not used for code generation. If the condition is
25399violated during execution, the behavior is undefined.
25400
25401Note that the optimizer might limit the transformations performed on values
25402used by the ``llvm.assume`` intrinsic in order to preserve the instructions
25403only used to form the intrinsic's input argument. This might prove undesirable
25404if the extra information provided by the ``llvm.assume`` intrinsic does not cause
25405sufficient overall improvement in code quality. For this reason,
25406``llvm.assume`` should not be used to document basic mathematical invariants
25407that the optimizer can otherwise deduce or facts that are of little use to the
25408optimizer.
25409
25410.. _int_ssa_copy:
25411
25412'``llvm.ssa.copy``' Intrinsic
25413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25414
25415Syntax:
25416"""""""
25417
25418::
25419
25420      declare type @llvm.ssa.copy(type %operand) returned(1) readnone
25421
25422Arguments:
25423""""""""""
25424
25425The first argument is an operand which is used as the returned value.
25426
25427Overview:
25428""""""""""
25429
25430The ``llvm.ssa.copy`` intrinsic can be used to attach information to
25431operations by copying them and giving them new names.  For example,
25432the PredicateInfo utility uses it to build Extended SSA form, and
25433attach various forms of information to operands that dominate specific
25434uses.  It is not meant for general use, only for building temporary
25435renaming forms that require value splits at certain points.
25436
25437.. _type.test:
25438
25439'``llvm.type.test``' Intrinsic
25440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25441
25442Syntax:
25443"""""""
25444
25445::
25446
25447      declare i1 @llvm.type.test(ptr %ptr, metadata %type) nounwind readnone
25448
25449
25450Arguments:
25451""""""""""
25452
25453The first argument is a pointer to be tested. The second argument is a
25454metadata object representing a :doc:`type identifier <TypeMetadata>`.
25455
25456Overview:
25457"""""""""
25458
25459The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
25460with the given type identifier.
25461
25462.. _type.checked.load:
25463
25464'``llvm.type.checked.load``' Intrinsic
25465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25466
25467Syntax:
25468"""""""
25469
25470::
25471
25472      declare {ptr, i1} @llvm.type.checked.load(ptr %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
25473
25474
25475Arguments:
25476""""""""""
25477
25478The first argument is a pointer from which to load a function pointer. The
25479second argument is the byte offset from which to load the function pointer. The
25480third argument is a metadata object representing a :doc:`type identifier
25481<TypeMetadata>`.
25482
25483Overview:
25484"""""""""
25485
25486The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
25487virtual table pointer using type metadata. This intrinsic is used to implement
25488control flow integrity in conjunction with virtual call optimization. The
25489virtual call optimization pass will optimize away ``llvm.type.checked.load``
25490intrinsics associated with devirtualized calls, thereby removing the type
25491check in cases where it is not needed to enforce the control flow integrity
25492constraint.
25493
25494If the given pointer is associated with a type metadata identifier, this
25495function returns true as the second element of its return value. (Note that
25496the function may also return true if the given pointer is not associated
25497with a type metadata identifier.) If the function's return value's second
25498element is true, the following rules apply to the first element:
25499
25500- If the given pointer is associated with the given type metadata identifier,
25501  it is the function pointer loaded from the given byte offset from the given
25502  pointer.
25503
25504- If the given pointer is not associated with the given type metadata
25505  identifier, it is one of the following (the choice of which is unspecified):
25506
25507  1. The function pointer that would have been loaded from an arbitrarily chosen
25508     (through an unspecified mechanism) pointer associated with the type
25509     metadata.
25510
25511  2. If the function has a non-void return type, a pointer to a function that
25512     returns an unspecified value without causing side effects.
25513
25514If the function's return value's second element is false, the value of the
25515first element is undefined.
25516
25517
25518'``llvm.arithmetic.fence``' Intrinsic
25519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25520
25521Syntax:
25522"""""""
25523
25524::
25525
25526      declare <type>
25527      @llvm.arithmetic.fence(<type> <op>)
25528
25529Overview:
25530"""""""""
25531
25532The purpose of the ``llvm.arithmetic.fence`` intrinsic
25533is to prevent the optimizer from performing fast-math optimizations,
25534particularly reassociation,
25535between the argument and the expression that contains the argument.
25536It can be used to preserve the parentheses in the source language.
25537
25538Arguments:
25539""""""""""
25540
25541The ``llvm.arithmetic.fence`` intrinsic takes only one argument.
25542The argument and the return value are floating-point numbers,
25543or vector floating-point numbers, of the same type.
25544
25545Semantics:
25546""""""""""
25547
25548This intrinsic returns the value of its operand. The optimizer can optimize
25549the argument, but the optimizer cannot hoist any component of the operand
25550to the containing context, and the optimizer cannot move the calculation of
25551any expression in the containing context into the operand.
25552
25553
25554'``llvm.donothing``' Intrinsic
25555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25556
25557Syntax:
25558"""""""
25559
25560::
25561
25562      declare void @llvm.donothing() nounwind readnone
25563
25564Overview:
25565"""""""""
25566
25567The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
25568three intrinsics (besides ``llvm.experimental.patchpoint`` and
25569``llvm.experimental.gc.statepoint``) that can be called with an invoke
25570instruction.
25571
25572Arguments:
25573""""""""""
25574
25575None.
25576
25577Semantics:
25578""""""""""
25579
25580This intrinsic does nothing, and it's removed by optimizers and ignored
25581by codegen.
25582
25583'``llvm.experimental.deoptimize``' Intrinsic
25584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25585
25586Syntax:
25587"""""""
25588
25589::
25590
25591      declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
25592
25593Overview:
25594"""""""""
25595
25596This intrinsic, together with :ref:`deoptimization operand bundles
25597<deopt_opbundles>`, allow frontends to express transfer of control and
25598frame-local state from the currently executing (typically more specialized,
25599hence faster) version of a function into another (typically more generic, hence
25600slower) version.
25601
25602In languages with a fully integrated managed runtime like Java and JavaScript
25603this intrinsic can be used to implement "uncommon trap" or "side exit" like
25604functionality.  In unmanaged languages like C and C++, this intrinsic can be
25605used to represent the slow paths of specialized functions.
25606
25607
25608Arguments:
25609""""""""""
25610
25611The intrinsic takes an arbitrary number of arguments, whose meaning is
25612decided by the :ref:`lowering strategy<deoptimize_lowering>`.
25613
25614Semantics:
25615""""""""""
25616
25617The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
25618deoptimization continuation (denoted using a :ref:`deoptimization
25619operand bundle <deopt_opbundles>`) and returns the value returned by
25620the deoptimization continuation.  Defining the semantic properties of
25621the continuation itself is out of scope of the language reference --
25622as far as LLVM is concerned, the deoptimization continuation can
25623invoke arbitrary side effects, including reading from and writing to
25624the entire heap.
25625
25626Deoptimization continuations expressed using ``"deopt"`` operand bundles always
25627continue execution to the end of the physical frame containing them, so all
25628calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
25629
25630   - ``@llvm.experimental.deoptimize`` cannot be invoked.
25631   - The call must immediately precede a :ref:`ret <i_ret>` instruction.
25632   - The ``ret`` instruction must return the value produced by the
25633     ``@llvm.experimental.deoptimize`` call if there is one, or void.
25634
25635Note that the above restrictions imply that the return type for a call to
25636``@llvm.experimental.deoptimize`` will match the return type of its immediate
25637caller.
25638
25639The inliner composes the ``"deopt"`` continuations of the caller into the
25640``"deopt"`` continuations present in the inlinee, and also updates calls to this
25641intrinsic to return directly from the frame of the function it inlined into.
25642
25643All declarations of ``@llvm.experimental.deoptimize`` must share the
25644same calling convention.
25645
25646.. _deoptimize_lowering:
25647
25648Lowering:
25649"""""""""
25650
25651Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
25652symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
25653ensure that this symbol is defined).  The call arguments to
25654``@llvm.experimental.deoptimize`` are lowered as if they were formal
25655arguments of the specified types, and not as varargs.
25656
25657
25658'``llvm.experimental.guard``' Intrinsic
25659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25660
25661Syntax:
25662"""""""
25663
25664::
25665
25666      declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
25667
25668Overview:
25669"""""""""
25670
25671This intrinsic, together with :ref:`deoptimization operand bundles
25672<deopt_opbundles>`, allows frontends to express guards or checks on
25673optimistic assumptions made during compilation.  The semantics of
25674``@llvm.experimental.guard`` is defined in terms of
25675``@llvm.experimental.deoptimize`` -- its body is defined to be
25676equivalent to:
25677
25678.. code-block:: text
25679
25680  define void @llvm.experimental.guard(i1 %pred, <args...>) {
25681    %realPred = and i1 %pred, undef
25682    br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
25683
25684  leave:
25685    call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
25686    ret void
25687
25688  continue:
25689    ret void
25690  }
25691
25692
25693with the optional ``[, !make.implicit !{}]`` present if and only if it
25694is present on the call site.  For more details on ``!make.implicit``,
25695see :doc:`FaultMaps`.
25696
25697In words, ``@llvm.experimental.guard`` executes the attached
25698``"deopt"`` continuation if (but **not** only if) its first argument
25699is ``false``.  Since the optimizer is allowed to replace the ``undef``
25700with an arbitrary value, it can optimize guard to fail "spuriously",
25701i.e. without the original condition being false (hence the "not only
25702if"); and this allows for "check widening" type optimizations.
25703
25704``@llvm.experimental.guard`` cannot be invoked.
25705
25706After ``@llvm.experimental.guard`` was first added, a more general
25707formulation was found in ``@llvm.experimental.widenable.condition``.
25708Support for ``@llvm.experimental.guard`` is slowly being rephrased in
25709terms of this alternate.
25710
25711'``llvm.experimental.widenable.condition``' Intrinsic
25712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25713
25714Syntax:
25715"""""""
25716
25717::
25718
25719      declare i1 @llvm.experimental.widenable.condition()
25720
25721Overview:
25722"""""""""
25723
25724This intrinsic represents a "widenable condition" which is
25725boolean expressions with the following property: whether this
25726expression is `true` or `false`, the program is correct and
25727well-defined.
25728
25729Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
25730``@llvm.experimental.widenable.condition`` allows frontends to
25731express guards or checks on optimistic assumptions made during
25732compilation and represent them as branch instructions on special
25733conditions.
25734
25735While this may appear similar in semantics to `undef`, it is very
25736different in that an invocation produces a particular, singular
25737value. It is also intended to be lowered late, and remain available
25738for specific optimizations and transforms that can benefit from its
25739special properties.
25740
25741Arguments:
25742""""""""""
25743
25744None.
25745
25746Semantics:
25747""""""""""
25748
25749The intrinsic ``@llvm.experimental.widenable.condition()``
25750returns either `true` or `false`. For each evaluation of a call
25751to this intrinsic, the program must be valid and correct both if
25752it returns `true` and if it returns `false`. This allows
25753transformation passes to replace evaluations of this intrinsic
25754with either value whenever one is beneficial.
25755
25756When used in a branch condition, it allows us to choose between
25757two alternative correct solutions for the same problem, like
25758in example below:
25759
25760.. code-block:: text
25761
25762    %cond = call i1 @llvm.experimental.widenable.condition()
25763    br i1 %cond, label %solution_1, label %solution_2
25764
25765  label %fast_path:
25766    ; Apply memory-consuming but fast solution for a task.
25767
25768  label %slow_path:
25769    ; Cheap in memory but slow solution.
25770
25771Whether the result of intrinsic's call is `true` or `false`,
25772it should be correct to pick either solution. We can switch
25773between them by replacing the result of
25774``@llvm.experimental.widenable.condition`` with different
25775`i1` expressions.
25776
25777This is how it can be used to represent guards as widenable branches:
25778
25779.. code-block:: text
25780
25781  block:
25782    ; Unguarded instructions
25783    call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
25784    ; Guarded instructions
25785
25786Can be expressed in an alternative equivalent form of explicit branch using
25787``@llvm.experimental.widenable.condition``:
25788
25789.. code-block:: text
25790
25791  block:
25792    ; Unguarded instructions
25793    %widenable_condition = call i1 @llvm.experimental.widenable.condition()
25794    %guard_condition = and i1 %cond, %widenable_condition
25795    br i1 %guard_condition, label %guarded, label %deopt
25796
25797  guarded:
25798    ; Guarded instructions
25799
25800  deopt:
25801    call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
25802
25803So the block `guarded` is only reachable when `%cond` is `true`,
25804and it should be valid to go to the block `deopt` whenever `%cond`
25805is `true` or `false`.
25806
25807``@llvm.experimental.widenable.condition`` will never throw, thus
25808it cannot be invoked.
25809
25810Guard widening:
25811"""""""""""""""
25812
25813When ``@llvm.experimental.widenable.condition()`` is used in
25814condition of a guard represented as explicit branch, it is
25815legal to widen the guard's condition with any additional
25816conditions.
25817
25818Guard widening looks like replacement of
25819
25820.. code-block:: text
25821
25822  %widenable_cond = call i1 @llvm.experimental.widenable.condition()
25823  %guard_cond = and i1 %cond, %widenable_cond
25824  br i1 %guard_cond, label %guarded, label %deopt
25825
25826with
25827
25828.. code-block:: text
25829
25830  %widenable_cond = call i1 @llvm.experimental.widenable.condition()
25831  %new_cond = and i1 %any_other_cond, %widenable_cond
25832  %new_guard_cond = and i1 %cond, %new_cond
25833  br i1 %new_guard_cond, label %guarded, label %deopt
25834
25835for this branch. Here `%any_other_cond` is an arbitrarily chosen
25836well-defined `i1` value. By making guard widening, we may
25837impose stricter conditions on `guarded` block and bail to the
25838deopt when the new condition is not met.
25839
25840Lowering:
25841"""""""""
25842
25843Default lowering strategy is replacing the result of
25844call of ``@llvm.experimental.widenable.condition``  with
25845constant `true`. However it is always correct to replace
25846it with any other `i1` value. Any pass can
25847freely do it if it can benefit from non-default lowering.
25848
25849
25850'``llvm.load.relative``' Intrinsic
25851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25852
25853Syntax:
25854"""""""
25855
25856::
25857
25858      declare ptr @llvm.load.relative.iN(ptr %ptr, iN %offset) argmemonly nounwind readonly
25859
25860Overview:
25861"""""""""
25862
25863This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
25864adds ``%ptr`` to that value and returns it. The constant folder specifically
25865recognizes the form of this intrinsic and the constant initializers it may
25866load from; if a loaded constant initializer is known to have the form
25867``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
25868
25869LLVM provides that the calculation of such a constant initializer will
25870not overflow at link time under the medium code model if ``x`` is an
25871``unnamed_addr`` function. However, it does not provide this guarantee for
25872a constant initializer folded into a function body. This intrinsic can be
25873used to avoid the possibility of overflows when loading from such a constant.
25874
25875.. _llvm_sideeffect:
25876
25877'``llvm.sideeffect``' Intrinsic
25878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25879
25880Syntax:
25881"""""""
25882
25883::
25884
25885      declare void @llvm.sideeffect() inaccessiblememonly nounwind willreturn
25886
25887Overview:
25888"""""""""
25889
25890The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
25891treat it as having side effects, so it can be inserted into a loop to
25892indicate that the loop shouldn't be assumed to terminate (which could
25893potentially lead to the loop being optimized away entirely), even if it's
25894an infinite loop with no other side effects.
25895
25896Arguments:
25897""""""""""
25898
25899None.
25900
25901Semantics:
25902""""""""""
25903
25904This intrinsic actually does nothing, but optimizers must assume that it
25905has externally observable side effects.
25906
25907'``llvm.is.constant.*``' Intrinsic
25908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25909
25910Syntax:
25911"""""""
25912
25913This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
25914
25915::
25916
25917      declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
25918      declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
25919      declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
25920
25921Overview:
25922"""""""""
25923
25924The '``llvm.is.constant``' intrinsic will return true if the argument
25925is known to be a manifest compile-time constant. It is guaranteed to
25926fold to either true or false before generating machine code.
25927
25928Semantics:
25929""""""""""
25930
25931This intrinsic generates no code. If its argument is known to be a
25932manifest compile-time constant value, then the intrinsic will be
25933converted to a constant true value. Otherwise, it will be converted to
25934a constant false value.
25935
25936In particular, note that if the argument is a constant expression
25937which refers to a global (the address of which _is_ a constant, but
25938not manifest during the compile), then the intrinsic evaluates to
25939false.
25940
25941The result also intentionally depends on the result of optimization
25942passes -- e.g., the result can change depending on whether a
25943function gets inlined or not. A function's parameters are
25944obviously not constant. However, a call like
25945``llvm.is.constant.i32(i32 %param)`` *can* return true after the
25946function is inlined, if the value passed to the function parameter was
25947a constant.
25948
25949On the other hand, if constant folding is not run, it will never
25950evaluate to true, even in simple cases.
25951
25952.. _int_ptrmask:
25953
25954'``llvm.ptrmask``' Intrinsic
25955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25956
25957Syntax:
25958"""""""
25959
25960::
25961
25962      declare ptrty llvm.ptrmask(ptrty %ptr, intty %mask) readnone speculatable
25963
25964Arguments:
25965""""""""""
25966
25967The first argument is a pointer. The second argument is an integer.
25968
25969Overview:
25970""""""""""
25971
25972The ``llvm.ptrmask`` intrinsic masks out bits of the pointer according to a mask.
25973This allows stripping data from tagged pointers without converting them to an
25974integer (ptrtoint/inttoptr). As a consequence, we can preserve more information
25975to facilitate alias analysis and underlying-object detection.
25976
25977Semantics:
25978""""""""""
25979
25980The result of ``ptrmask(ptr, mask)`` is equivalent to
25981``getelementptr ptr, (ptrtoint(ptr) & mask) - ptrtoint(ptr)``. Both the returned
25982pointer and the first argument are based on the same underlying object (for more
25983information on the *based on* terminology see
25984:ref:`the pointer aliasing rules <pointeraliasing>`). If the bitwidth of the
25985mask argument does not match the pointer size of the target, the mask is
25986zero-extended or truncated accordingly.
25987
25988.. _int_threadlocal_address:
25989
25990'``llvm.threadlocal.address``' Intrinsic
25991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25992
25993Syntax:
25994"""""""
25995
25996::
25997
25998      declare ptr @llvm.threadlocal.address(ptr) nounwind readnone willreturn
25999
26000Arguments:
26001""""""""""
26002
26003The first argument is a pointer, which refers to a thread local global.
26004
26005Semantics:
26006""""""""""
26007
26008The address of a thread local global is not a constant, since it depends on
26009the calling thread. The `llvm.threadlocal.address` intrinsic returns the
26010address of the given thread local global in the calling thread.
26011
26012.. _int_vscale:
26013
26014'``llvm.vscale``' Intrinsic
26015^^^^^^^^^^^^^^^^^^^^^^^^^^^
26016
26017Syntax:
26018"""""""
26019
26020::
26021
26022      declare i32 llvm.vscale.i32()
26023      declare i64 llvm.vscale.i64()
26024
26025Overview:
26026"""""""""
26027
26028The ``llvm.vscale`` intrinsic returns the value for ``vscale`` in scalable
26029vectors such as ``<vscale x 16 x i8>``.
26030
26031Semantics:
26032""""""""""
26033
26034``vscale`` is a positive value that is constant throughout program
26035execution, but is unknown at compile time.
26036If the result value does not fit in the result type, then the result is
26037a :ref:`poison value <poisonvalues>`.
26038
26039
26040Stack Map Intrinsics
26041--------------------
26042
26043LLVM provides experimental intrinsics to support runtime patching
26044mechanisms commonly desired in dynamic language JITs. These intrinsics
26045are described in :doc:`StackMaps`.
26046
26047Element Wise Atomic Memory Intrinsics
26048-------------------------------------
26049
26050These intrinsics are similar to the standard library memory intrinsics except
26051that they perform memory transfer as a sequence of atomic memory accesses.
26052
26053.. _int_memcpy_element_unordered_atomic:
26054
26055'``llvm.memcpy.element.unordered.atomic``' Intrinsic
26056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26057
26058Syntax:
26059"""""""
26060
26061This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
26062any integer bit width and for different address spaces. Not all targets
26063support all bit widths however.
26064
26065::
26066
26067      declare void @llvm.memcpy.element.unordered.atomic.p0.p0.i32(ptr <dest>,
26068                                                                   ptr <src>,
26069                                                                   i32 <len>,
26070                                                                   i32 <element_size>)
26071      declare void @llvm.memcpy.element.unordered.atomic.p0.p0.i64(ptr <dest>,
26072                                                                   ptr <src>,
26073                                                                   i64 <len>,
26074                                                                   i32 <element_size>)
26075
26076Overview:
26077"""""""""
26078
26079The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
26080'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
26081as arrays with elements that are exactly ``element_size`` bytes, and the copy between
26082buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
26083that are a positive integer multiple of the ``element_size`` in size.
26084
26085Arguments:
26086""""""""""
26087
26088The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
26089intrinsic, with the added constraint that ``len`` is required to be a positive integer
26090multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
26091``element_size``, then the behaviour of the intrinsic is undefined.
26092
26093``element_size`` must be a compile-time constant positive power of two no greater than
26094target-specific atomic access size limit.
26095
26096For each of the input pointers ``align`` parameter attribute must be specified. It
26097must be a power of two no less than the ``element_size``. Caller guarantees that
26098both the source and destination pointers are aligned to that boundary.
26099
26100Semantics:
26101""""""""""
26102
26103The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
26104memory from the source location to the destination location. These locations are not
26105allowed to overlap. The memory copy is performed as a sequence of load/store operations
26106where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
26107aligned at an ``element_size`` boundary.
26108
26109The order of the copy is unspecified. The same value may be read from the source
26110buffer many times, but only one write is issued to the destination buffer per
26111element. It is well defined to have concurrent reads and writes to both source and
26112destination provided those reads and writes are unordered atomic when specified.
26113
26114This intrinsic does not provide any additional ordering guarantees over those
26115provided by a set of unordered loads from the source location and stores to the
26116destination.
26117
26118Lowering:
26119"""""""""
26120
26121In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
26122lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
26123is replaced with an actual element size. See :ref:`RewriteStatepointsForGC intrinsic
26124lowering <RewriteStatepointsForGC_intrinsic_lowering>` for details on GC specific
26125lowering.
26126
26127Optimizer is allowed to inline memory copy when it's profitable to do so.
26128
26129'``llvm.memmove.element.unordered.atomic``' Intrinsic
26130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26131
26132Syntax:
26133"""""""
26134
26135This is an overloaded intrinsic. You can use
26136``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
26137different address spaces. Not all targets support all bit widths however.
26138
26139::
26140
26141      declare void @llvm.memmove.element.unordered.atomic.p0.p0.i32(ptr <dest>,
26142                                                                    ptr <src>,
26143                                                                    i32 <len>,
26144                                                                    i32 <element_size>)
26145      declare void @llvm.memmove.element.unordered.atomic.p0.p0.i64(ptr <dest>,
26146                                                                    ptr <src>,
26147                                                                    i64 <len>,
26148                                                                    i32 <element_size>)
26149
26150Overview:
26151"""""""""
26152
26153The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
26154of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
26155``src`` are treated as arrays with elements that are exactly ``element_size``
26156bytes, and the copy between buffers uses a sequence of
26157:ref:`unordered atomic <ordering>` load/store operations that are a positive
26158integer multiple of the ``element_size`` in size.
26159
26160Arguments:
26161""""""""""
26162
26163The first three arguments are the same as they are in the
26164:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
26165``len`` is required to be a positive integer multiple of the ``element_size``.
26166If ``len`` is not a positive integer multiple of ``element_size``, then the
26167behaviour of the intrinsic is undefined.
26168
26169``element_size`` must be a compile-time constant positive power of two no
26170greater than a target-specific atomic access size limit.
26171
26172For each of the input pointers the ``align`` parameter attribute must be
26173specified. It must be a power of two no less than the ``element_size``. Caller
26174guarantees that both the source and destination pointers are aligned to that
26175boundary.
26176
26177Semantics:
26178""""""""""
26179
26180The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
26181of memory from the source location to the destination location. These locations
26182are allowed to overlap. The memory copy is performed as a sequence of load/store
26183operations where each access is guaranteed to be a multiple of ``element_size``
26184bytes wide and aligned at an ``element_size`` boundary.
26185
26186The order of the copy is unspecified. The same value may be read from the source
26187buffer many times, but only one write is issued to the destination buffer per
26188element. It is well defined to have concurrent reads and writes to both source
26189and destination provided those reads and writes are unordered atomic when
26190specified.
26191
26192This intrinsic does not provide any additional ordering guarantees over those
26193provided by a set of unordered loads from the source location and stores to the
26194destination.
26195
26196Lowering:
26197"""""""""
26198
26199In the most general case call to the
26200'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
26201``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
26202actual element size. See :ref:`RewriteStatepointsForGC intrinsic lowering
26203<RewriteStatepointsForGC_intrinsic_lowering>` for details on GC specific
26204lowering.
26205
26206The optimizer is allowed to inline the memory copy when it's profitable to do so.
26207
26208.. _int_memset_element_unordered_atomic:
26209
26210'``llvm.memset.element.unordered.atomic``' Intrinsic
26211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26212
26213Syntax:
26214"""""""
26215
26216This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
26217any integer bit width and for different address spaces. Not all targets
26218support all bit widths however.
26219
26220::
26221
26222      declare void @llvm.memset.element.unordered.atomic.p0.i32(ptr <dest>,
26223                                                                i8 <value>,
26224                                                                i32 <len>,
26225                                                                i32 <element_size>)
26226      declare void @llvm.memset.element.unordered.atomic.p0.i64(ptr <dest>,
26227                                                                i8 <value>,
26228                                                                i64 <len>,
26229                                                                i32 <element_size>)
26230
26231Overview:
26232"""""""""
26233
26234The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
26235'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
26236with elements that are exactly ``element_size`` bytes, and the assignment to that array
26237uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
26238that are a positive integer multiple of the ``element_size`` in size.
26239
26240Arguments:
26241""""""""""
26242
26243The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
26244intrinsic, with the added constraint that ``len`` is required to be a positive integer
26245multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
26246``element_size``, then the behaviour of the intrinsic is undefined.
26247
26248``element_size`` must be a compile-time constant positive power of two no greater than
26249target-specific atomic access size limit.
26250
26251The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
26252must be a power of two no less than the ``element_size``. Caller guarantees that
26253the destination pointer is aligned to that boundary.
26254
26255Semantics:
26256""""""""""
26257
26258The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
26259memory starting at the destination location to the given ``value``. The memory is
26260set with a sequence of store operations where each access is guaranteed to be a
26261multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
26262
26263The order of the assignment is unspecified. Only one write is issued to the
26264destination buffer per element. It is well defined to have concurrent reads and
26265writes to the destination provided those reads and writes are unordered atomic
26266when specified.
26267
26268This intrinsic does not provide any additional ordering guarantees over those
26269provided by a set of unordered stores to the destination.
26270
26271Lowering:
26272"""""""""
26273
26274In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
26275lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
26276is replaced with an actual element size.
26277
26278The optimizer is allowed to inline the memory assignment when it's profitable to do so.
26279
26280Objective-C ARC Runtime Intrinsics
26281----------------------------------
26282
26283LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
26284LLVM is aware of the semantics of these functions, and optimizes based on that
26285knowledge. You can read more about the details of Objective-C ARC `here
26286<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
26287
26288'``llvm.objc.autorelease``' Intrinsic
26289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26290
26291Syntax:
26292"""""""
26293::
26294
26295      declare ptr @llvm.objc.autorelease(ptr)
26296
26297Lowering:
26298"""""""""
26299
26300Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
26301
26302'``llvm.objc.autoreleasePoolPop``' Intrinsic
26303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26304
26305Syntax:
26306"""""""
26307::
26308
26309      declare void @llvm.objc.autoreleasePoolPop(ptr)
26310
26311Lowering:
26312"""""""""
26313
26314Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
26315
26316'``llvm.objc.autoreleasePoolPush``' Intrinsic
26317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26318
26319Syntax:
26320"""""""
26321::
26322
26323      declare ptr @llvm.objc.autoreleasePoolPush()
26324
26325Lowering:
26326"""""""""
26327
26328Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
26329
26330'``llvm.objc.autoreleaseReturnValue``' Intrinsic
26331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26332
26333Syntax:
26334"""""""
26335::
26336
26337      declare ptr @llvm.objc.autoreleaseReturnValue(ptr)
26338
26339Lowering:
26340"""""""""
26341
26342Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
26343
26344'``llvm.objc.copyWeak``' Intrinsic
26345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26346
26347Syntax:
26348"""""""
26349::
26350
26351      declare void @llvm.objc.copyWeak(ptr, ptr)
26352
26353Lowering:
26354"""""""""
26355
26356Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
26357
26358'``llvm.objc.destroyWeak``' Intrinsic
26359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26360
26361Syntax:
26362"""""""
26363::
26364
26365      declare void @llvm.objc.destroyWeak(ptr)
26366
26367Lowering:
26368"""""""""
26369
26370Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
26371
26372'``llvm.objc.initWeak``' Intrinsic
26373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26374
26375Syntax:
26376"""""""
26377::
26378
26379      declare ptr @llvm.objc.initWeak(ptr, ptr)
26380
26381Lowering:
26382"""""""""
26383
26384Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
26385
26386'``llvm.objc.loadWeak``' Intrinsic
26387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26388
26389Syntax:
26390"""""""
26391::
26392
26393      declare ptr @llvm.objc.loadWeak(ptr)
26394
26395Lowering:
26396"""""""""
26397
26398Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
26399
26400'``llvm.objc.loadWeakRetained``' Intrinsic
26401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26402
26403Syntax:
26404"""""""
26405::
26406
26407      declare ptr @llvm.objc.loadWeakRetained(ptr)
26408
26409Lowering:
26410"""""""""
26411
26412Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
26413
26414'``llvm.objc.moveWeak``' Intrinsic
26415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26416
26417Syntax:
26418"""""""
26419::
26420
26421      declare void @llvm.objc.moveWeak(ptr, ptr)
26422
26423Lowering:
26424"""""""""
26425
26426Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
26427
26428'``llvm.objc.release``' Intrinsic
26429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26430
26431Syntax:
26432"""""""
26433::
26434
26435      declare void @llvm.objc.release(ptr)
26436
26437Lowering:
26438"""""""""
26439
26440Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
26441
26442'``llvm.objc.retain``' Intrinsic
26443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26444
26445Syntax:
26446"""""""
26447::
26448
26449      declare ptr @llvm.objc.retain(ptr)
26450
26451Lowering:
26452"""""""""
26453
26454Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
26455
26456'``llvm.objc.retainAutorelease``' Intrinsic
26457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26458
26459Syntax:
26460"""""""
26461::
26462
26463      declare ptr @llvm.objc.retainAutorelease(ptr)
26464
26465Lowering:
26466"""""""""
26467
26468Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
26469
26470'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
26471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26472
26473Syntax:
26474"""""""
26475::
26476
26477      declare ptr @llvm.objc.retainAutoreleaseReturnValue(ptr)
26478
26479Lowering:
26480"""""""""
26481
26482Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
26483
26484'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
26485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26486
26487Syntax:
26488"""""""
26489::
26490
26491      declare ptr @llvm.objc.retainAutoreleasedReturnValue(ptr)
26492
26493Lowering:
26494"""""""""
26495
26496Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
26497
26498'``llvm.objc.retainBlock``' Intrinsic
26499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26500
26501Syntax:
26502"""""""
26503::
26504
26505      declare ptr @llvm.objc.retainBlock(ptr)
26506
26507Lowering:
26508"""""""""
26509
26510Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
26511
26512'``llvm.objc.storeStrong``' Intrinsic
26513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26514
26515Syntax:
26516"""""""
26517::
26518
26519      declare void @llvm.objc.storeStrong(ptr, ptr)
26520
26521Lowering:
26522"""""""""
26523
26524Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
26525
26526'``llvm.objc.storeWeak``' Intrinsic
26527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26528
26529Syntax:
26530"""""""
26531::
26532
26533      declare ptr @llvm.objc.storeWeak(ptr, ptr)
26534
26535Lowering:
26536"""""""""
26537
26538Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.
26539
26540Preserving Debug Information Intrinsics
26541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26542
26543These intrinsics are used to carry certain debuginfo together with
26544IR-level operations. For example, it may be desirable to
26545know the structure/union name and the original user-level field
26546indices. Such information got lost in IR GetElementPtr instruction
26547since the IR types are different from debugInfo types and unions
26548are converted to structs in IR.
26549
26550'``llvm.preserve.array.access.index``' Intrinsic
26551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26552
26553Syntax:
26554"""""""
26555::
26556
26557      declare <ret_type>
26558      @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(<type> base,
26559                                                                           i32 dim,
26560                                                                           i32 index)
26561
26562Overview:
26563"""""""""
26564
26565The '``llvm.preserve.array.access.index``' intrinsic returns the getelementptr address
26566based on array base ``base``, array dimension ``dim`` and the last access index ``index``
26567into the array. The return type ``ret_type`` is a pointer type to the array element.
26568The array ``dim`` and ``index`` are preserved which is more robust than
26569getelementptr instruction which may be subject to compiler transformation.
26570The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
26571to provide array or pointer debuginfo type.
26572The metadata is a ``DICompositeType`` or ``DIDerivedType`` representing the
26573debuginfo version of ``type``.
26574
26575Arguments:
26576""""""""""
26577
26578The ``base`` is the array base address.  The ``dim`` is the array dimension.
26579The ``base`` is a pointer if ``dim`` equals 0.
26580The ``index`` is the last access index into the array or pointer.
26581
26582The ``base`` argument must be annotated with an :ref:`elementtype
26583<attr_elementtype>` attribute at the call-site. This attribute specifies the
26584getelementptr element type.
26585
26586Semantics:
26587""""""""""
26588
26589The '``llvm.preserve.array.access.index``' intrinsic produces the same result
26590as a getelementptr with base ``base`` and access operands ``{dim's 0's, index}``.
26591
26592'``llvm.preserve.union.access.index``' Intrinsic
26593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26594
26595Syntax:
26596"""""""
26597::
26598
26599      declare <type>
26600      @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(<type> base,
26601                                                                        i32 di_index)
26602
26603Overview:
26604"""""""""
26605
26606The '``llvm.preserve.union.access.index``' intrinsic carries the debuginfo field index
26607``di_index`` and returns the ``base`` address.
26608The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
26609to provide union debuginfo type.
26610The metadata is a ``DICompositeType`` representing the debuginfo version of ``type``.
26611The return type ``type`` is the same as the ``base`` type.
26612
26613Arguments:
26614""""""""""
26615
26616The ``base`` is the union base address. The ``di_index`` is the field index in debuginfo.
26617
26618Semantics:
26619""""""""""
26620
26621The '``llvm.preserve.union.access.index``' intrinsic returns the ``base`` address.
26622
26623'``llvm.preserve.struct.access.index``' Intrinsic
26624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26625
26626Syntax:
26627"""""""
26628::
26629
26630      declare <ret_type>
26631      @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(<type> base,
26632                                                                 i32 gep_index,
26633                                                                 i32 di_index)
26634
26635Overview:
26636"""""""""
26637
26638The '``llvm.preserve.struct.access.index``' intrinsic returns the getelementptr address
26639based on struct base ``base`` and IR struct member index ``gep_index``.
26640The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
26641to provide struct debuginfo type.
26642The metadata is a ``DICompositeType`` representing the debuginfo version of ``type``.
26643The return type ``ret_type`` is a pointer type to the structure member.
26644
26645Arguments:
26646""""""""""
26647
26648The ``base`` is the structure base address. The ``gep_index`` is the struct member index
26649based on IR structures. The ``di_index`` is the struct member index based on debuginfo.
26650
26651The ``base`` argument must be annotated with an :ref:`elementtype
26652<attr_elementtype>` attribute at the call-site. This attribute specifies the
26653getelementptr element type.
26654
26655Semantics:
26656""""""""""
26657
26658The '``llvm.preserve.struct.access.index``' intrinsic produces the same result
26659as a getelementptr with base ``base`` and access operands ``{0, gep_index}``.
26660
26661'``llvm.fptrunc.round``' Intrinsic
26662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26663
26664Syntax:
26665"""""""
26666
26667::
26668
26669      declare <ty2>
26670      @llvm.fptrunc.round(<type> <value>, metadata <rounding mode>)
26671
26672Overview:
26673"""""""""
26674
26675The '``llvm.fptrunc.round``' intrinsic truncates
26676:ref:`floating-point <t_floating>` ``value`` to type ``ty2``
26677with a specified rounding mode.
26678
26679Arguments:
26680""""""""""
26681
26682The '``llvm.fptrunc.round``' intrinsic takes a :ref:`floating-point
26683<t_floating>` value to cast and a :ref:`floating-point <t_floating>` type
26684to cast it to. This argument must be larger in size than the result.
26685
26686The second argument specifies the rounding mode as described in the constrained
26687intrinsics section.
26688For this intrinsic, the "round.dynamic" mode is not supported.
26689
26690Semantics:
26691""""""""""
26692
26693The '``llvm.fptrunc.round``' intrinsic casts a ``value`` from a larger
26694:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
26695<t_floating>` type.
26696This intrinsic is assumed to execute in the default :ref:`floating-point
26697environment <floatenv>` *except* for the rounding mode.
26698This intrinsic is not supported on all targets. Some targets may not support
26699all rounding modes.
26700