1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
27
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
34 };
35
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
41 };
42
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
50 };
51
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
63 };
64
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION,
71
72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
73 to implement:
74
75 for (int i = 0; i < VF; ++i)
76 res = cond[i] ? val[i] : res; */
77 EXTRACT_LAST_REDUCTION,
78
79 /* Use a folding reduction within the loop to implement:
80
81 for (int i = 0; i < VF; ++i)
82 res = res OP val[i];
83
84 (with no reassocation). */
85 FOLD_LEFT_REDUCTION
86 };
87
88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
89 || ((D) == vect_double_reduction_def) \
90 || ((D) == vect_nested_cycle))
91
92 /* Structure to encapsulate information about a group of like
93 instructions to be presented to the target cost model. */
94 struct stmt_info_for_cost {
95 int count;
96 enum vect_cost_for_stmt kind;
97 gimple *stmt;
98 int misalign;
99 };
100
101 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
102
103 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
104 known alignment for that base. */
105 typedef hash_map<tree_operand_hash,
106 innermost_loop_behavior *> vec_base_alignments;
107
108 /************************************************************************
109 SLP
110 ************************************************************************/
111 typedef struct _slp_tree *slp_tree;
112
113 /* A computation tree of an SLP instance. Each node corresponds to a group of
114 stmts to be packed in a SIMD stmt. */
115 struct _slp_tree {
116 /* Nodes that contain def-stmts of this node statements operands. */
117 vec<slp_tree> children;
118 /* A group of scalar stmts to be vectorized together. */
119 vec<gimple *> stmts;
120 /* Load permutation relative to the stores, NULL if there is no
121 permutation. */
122 vec<unsigned> load_permutation;
123 /* Vectorized stmt/s. */
124 vec<gimple *> vec_stmts;
125 /* Number of vector stmts that are created to replace the group of scalar
126 stmts. It is calculated during the transformation phase as the number of
127 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
128 divided by vector size. */
129 unsigned int vec_stmts_size;
130 /* Whether the scalar computations use two different operators. */
131 bool two_operators;
132 /* The DEF type of this node. */
133 enum vect_def_type def_type;
134 };
135
136
137 /* SLP instance is a sequence of stmts in a loop that can be packed into
138 SIMD stmts. */
139 typedef struct _slp_instance {
140 /* The root of SLP tree. */
141 slp_tree root;
142
143 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
144 unsigned int group_size;
145
146 /* The unrolling factor required to vectorized this SLP instance. */
147 poly_uint64 unrolling_factor;
148
149 /* The group of nodes that contain loads of this SLP instance. */
150 vec<slp_tree> loads;
151
152 /* The SLP node containing the reduction PHIs. */
153 slp_tree reduc_phis;
154 } *slp_instance;
155
156
157 /* Access Functions. */
158 #define SLP_INSTANCE_TREE(S) (S)->root
159 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
160 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
161 #define SLP_INSTANCE_LOADS(S) (S)->loads
162
163 #define SLP_TREE_CHILDREN(S) (S)->children
164 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
165 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
166 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
167 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
168 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
169 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
170
171
172
173 /* Describes two objects whose addresses must be unequal for the vectorized
174 loop to be valid. */
175 typedef std::pair<tree, tree> vec_object_pair;
176
177 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
178 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
179 struct vec_lower_bound {
vec_lower_boundvec_lower_bound180 vec_lower_bound () {}
vec_lower_boundvec_lower_bound181 vec_lower_bound (tree e, bool u, poly_uint64 m)
182 : expr (e), unsigned_p (u), min_value (m) {}
183
184 tree expr;
185 bool unsigned_p;
186 poly_uint64 min_value;
187 };
188
189 /* Vectorizer state common between loop and basic-block vectorization. */
190 struct vec_info {
191 enum vec_kind { bb, loop };
192
193 vec_info (vec_kind, void *);
194 ~vec_info ();
195
196 /* The type of vectorization. */
197 vec_kind kind;
198
199 /* All SLP instances. */
200 auto_vec<slp_instance> slp_instances;
201
202 /* All data references. Freed by free_data_refs, so not an auto_vec. */
203 vec<data_reference_p> datarefs;
204
205 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
206 known alignment for that base. */
207 vec_base_alignments base_alignments;
208
209 /* All data dependences. Freed by free_dependence_relations, so not
210 an auto_vec. */
211 vec<ddr_p> ddrs;
212
213 /* All interleaving chains of stores, represented by the first
214 stmt in the chain. */
215 auto_vec<gimple *> grouped_stores;
216
217 /* Cost data used by the target cost model. */
218 void *target_cost_data;
219 };
220
221 struct _loop_vec_info;
222 struct _bb_vec_info;
223
224 template<>
225 template<>
226 inline bool
test(vec_info * i)227 is_a_helper <_loop_vec_info *>::test (vec_info *i)
228 {
229 return i->kind == vec_info::loop;
230 }
231
232 template<>
233 template<>
234 inline bool
test(vec_info * i)235 is_a_helper <_bb_vec_info *>::test (vec_info *i)
236 {
237 return i->kind == vec_info::bb;
238 }
239
240
241 /* In general, we can divide the vector statements in a vectorized loop
242 into related groups ("rgroups") and say that for each rgroup there is
243 some nS such that the rgroup operates on nS values from one scalar
244 iteration followed by nS values from the next. That is, if VF is the
245 vectorization factor of the loop, the rgroup operates on a sequence:
246
247 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
248
249 where (i,j) represents a scalar value with index j in a scalar
250 iteration with index i.
251
252 [ We use the term "rgroup" to emphasise that this grouping isn't
253 necessarily the same as the grouping of statements used elsewhere.
254 For example, if we implement a group of scalar loads using gather
255 loads, we'll use a separate gather load for each scalar load, and
256 thus each gather load will belong to its own rgroup. ]
257
258 In general this sequence will occupy nV vectors concatenated
259 together. If these vectors have nL lanes each, the total number
260 of scalar values N is given by:
261
262 N = nS * VF = nV * nL
263
264 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
265 are compile-time constants but VF and nL can be variable (if the target
266 supports variable-length vectors).
267
268 In classical vectorization, each iteration of the vector loop would
269 handle exactly VF iterations of the original scalar loop. However,
270 in a fully-masked loop, a particular iteration of the vector loop
271 might handle fewer than VF iterations of the scalar loop. The vector
272 lanes that correspond to iterations of the scalar loop are said to be
273 "active" and the other lanes are said to be "inactive".
274
275 In a fully-masked loop, many rgroups need to be masked to ensure that
276 they have no effect for the inactive lanes. Each such rgroup needs a
277 sequence of booleans in the same order as above, but with each (i,j)
278 replaced by a boolean that indicates whether iteration i is active.
279 This sequence occupies nV vector masks that again have nL lanes each.
280 Thus the mask sequence as a whole consists of VF independent booleans
281 that are each repeated nS times.
282
283 We make the simplifying assumption that if a sequence of nV masks is
284 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
285 VIEW_CONVERTing it. This holds for all current targets that support
286 fully-masked loops. For example, suppose the scalar loop is:
287
288 float *f;
289 double *d;
290 for (int i = 0; i < n; ++i)
291 {
292 f[i * 2 + 0] += 1.0f;
293 f[i * 2 + 1] += 2.0f;
294 d[i] += 3.0;
295 }
296
297 and suppose that vectors have 256 bits. The vectorized f accesses
298 will belong to one rgroup and the vectorized d access to another:
299
300 f rgroup: nS = 2, nV = 1, nL = 8
301 d rgroup: nS = 1, nV = 1, nL = 4
302 VF = 4
303
304 [ In this simple example the rgroups do correspond to the normal
305 SLP grouping scheme. ]
306
307 If only the first three lanes are active, the masks we need are:
308
309 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
310 d rgroup: 1 | 1 | 1 | 0
311
312 Here we can use a mask calculated for f's rgroup for d's, but not
313 vice versa.
314
315 Thus for each value of nV, it is enough to provide nV masks, with the
316 mask being calculated based on the highest nL (or, equivalently, based
317 on the highest nS) required by any rgroup with that nV. We therefore
318 represent the entire collection of masks as a two-level table, with the
319 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
320 the second being indexed by the mask index 0 <= i < nV. */
321
322 /* The masks needed by rgroups with nV vectors, according to the
323 description above. */
324 struct rgroup_masks {
325 /* The largest nS for all rgroups that use these masks. */
326 unsigned int max_nscalars_per_iter;
327
328 /* The type of mask to use, based on the highest nS recorded above. */
329 tree mask_type;
330
331 /* A vector of nV masks, in iteration order. */
332 vec<tree> masks;
333 };
334
335 typedef auto_vec<rgroup_masks> vec_loop_masks;
336
337 /*-----------------------------------------------------------------*/
338 /* Info on vectorized loops. */
339 /*-----------------------------------------------------------------*/
340 typedef struct _loop_vec_info : public vec_info {
341 _loop_vec_info (struct loop *);
342 ~_loop_vec_info ();
343
344 /* The loop to which this info struct refers to. */
345 struct loop *loop;
346
347 /* The loop basic blocks. */
348 basic_block *bbs;
349
350 /* Number of latch executions. */
351 tree num_itersm1;
352 /* Number of iterations. */
353 tree num_iters;
354 /* Number of iterations of the original loop. */
355 tree num_iters_unchanged;
356 /* Condition under which this loop is analyzed and versioned. */
357 tree num_iters_assumptions;
358
359 /* Threshold of number of iterations below which vectorzation will not be
360 performed. It is calculated from MIN_PROFITABLE_ITERS and
361 PARAM_MIN_VECT_LOOP_BOUND. */
362 unsigned int th;
363
364 /* When applying loop versioning, the vector form should only be used
365 if the number of scalar iterations is >= this value, on top of all
366 the other requirements. Ignored when loop versioning is not being
367 used. */
368 poly_uint64 versioning_threshold;
369
370 /* Unrolling factor */
371 poly_uint64 vectorization_factor;
372
373 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
374 if there is no particular limit. */
375 unsigned HOST_WIDE_INT max_vectorization_factor;
376
377 /* The masks that a fully-masked loop should use to avoid operating
378 on inactive scalars. */
379 vec_loop_masks masks;
380
381 /* If we are using a loop mask to align memory addresses, this variable
382 contains the number of vector elements that we should skip in the
383 first iteration of the vector loop (i.e. the number of leading
384 elements that should be false in the first mask). */
385 tree mask_skip_niters;
386
387 /* Type of the variables to use in the WHILE_ULT call for fully-masked
388 loops. */
389 tree mask_compare_type;
390
391 /* Unknown DRs according to which loop was peeled. */
392 struct data_reference *unaligned_dr;
393
394 /* peeling_for_alignment indicates whether peeling for alignment will take
395 place, and what the peeling factor should be:
396 peeling_for_alignment = X means:
397 If X=0: Peeling for alignment will not be applied.
398 If X>0: Peel first X iterations.
399 If X=-1: Generate a runtime test to calculate the number of iterations
400 to be peeled, using the dataref recorded in the field
401 unaligned_dr. */
402 int peeling_for_alignment;
403
404 /* The mask used to check the alignment of pointers or arrays. */
405 int ptr_mask;
406
407 /* The loop nest in which the data dependences are computed. */
408 auto_vec<loop_p> loop_nest;
409
410 /* Data Dependence Relations defining address ranges that are candidates
411 for a run-time aliasing check. */
412 auto_vec<ddr_p> may_alias_ddrs;
413
414 /* Data Dependence Relations defining address ranges together with segment
415 lengths from which the run-time aliasing check is built. */
416 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
417
418 /* Check that the addresses of each pair of objects is unequal. */
419 auto_vec<vec_object_pair> check_unequal_addrs;
420
421 /* List of values that are required to be nonzero. This is used to check
422 whether things like "x[i * n] += 1;" are safe and eventually gets added
423 to the checks for lower bounds below. */
424 auto_vec<tree> check_nonzero;
425
426 /* List of values that need to be checked for a minimum value. */
427 auto_vec<vec_lower_bound> lower_bounds;
428
429 /* Statements in the loop that have data references that are candidates for a
430 runtime (loop versioning) misalignment check. */
431 auto_vec<gimple *> may_misalign_stmts;
432
433 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
434 auto_vec<gimple *> reductions;
435
436 /* All reduction chains in the loop, represented by the first
437 stmt in the chain. */
438 auto_vec<gimple *> reduction_chains;
439
440 /* Cost vector for a single scalar iteration. */
441 auto_vec<stmt_info_for_cost> scalar_cost_vec;
442
443 /* Map of IV base/step expressions to inserted name in the preheader. */
444 hash_map<tree_operand_hash, tree> *ivexpr_map;
445
446 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
447 applied to the loop, i.e., no unrolling is needed, this is 1. */
448 poly_uint64 slp_unrolling_factor;
449
450 /* Cost of a single scalar iteration. */
451 int single_scalar_iteration_cost;
452
453 /* Is the loop vectorizable? */
454 bool vectorizable;
455
456 /* Records whether we still have the option of using a fully-masked loop. */
457 bool can_fully_mask_p;
458
459 /* True if have decided to use a fully-masked loop. */
460 bool fully_masked_p;
461
462 /* When we have grouped data accesses with gaps, we may introduce invalid
463 memory accesses. We peel the last iteration of the loop to prevent
464 this. */
465 bool peeling_for_gaps;
466
467 /* When the number of iterations is not a multiple of the vector size
468 we need to peel off iterations at the end to form an epilogue loop. */
469 bool peeling_for_niter;
470
471 /* Reductions are canonicalized so that the last operand is the reduction
472 operand. If this places a constant into RHS1, this decanonicalizes
473 GIMPLE for other phases, so we must track when this has occurred and
474 fix it up. */
475 bool operands_swapped;
476
477 /* True if there are no loop carried data dependencies in the loop.
478 If loop->safelen <= 1, then this is always true, either the loop
479 didn't have any loop carried data dependencies, or the loop is being
480 vectorized guarded with some runtime alias checks, or couldn't
481 be vectorized at all, but then this field shouldn't be used.
482 For loop->safelen >= 2, the user has asserted that there are no
483 backward dependencies, but there still could be loop carried forward
484 dependencies in such loops. This flag will be false if normal
485 vectorizer data dependency analysis would fail or require versioning
486 for alias, but because of loop->safelen >= 2 it has been vectorized
487 even without versioning for alias. E.g. in:
488 #pragma omp simd
489 for (int i = 0; i < m; i++)
490 a[i] = a[i + k] * c;
491 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
492 DTRT even for k > 0 && k < m, but without safelen we would not
493 vectorize this, so this field would be false. */
494 bool no_data_dependencies;
495
496 /* Mark loops having masked stores. */
497 bool has_mask_store;
498
499 /* If if-conversion versioned this loop before conversion, this is the
500 loop version without if-conversion. */
501 struct loop *scalar_loop;
502
503 /* For loops being epilogues of already vectorized loops
504 this points to the original vectorized loop. Otherwise NULL. */
505 _loop_vec_info *orig_loop_info;
506
507 } *loop_vec_info;
508
509 /* Access Functions. */
510 #define LOOP_VINFO_LOOP(L) (L)->loop
511 #define LOOP_VINFO_BBS(L) (L)->bbs
512 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
513 #define LOOP_VINFO_NITERS(L) (L)->num_iters
514 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
515 prologue peeling retain total unchanged scalar loop iterations for
516 cost model. */
517 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
518 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
519 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
520 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
521 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
522 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
523 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
524 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
525 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
526 #define LOOP_VINFO_MASKS(L) (L)->masks
527 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
528 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
529 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
530 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
531 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
532 #define LOOP_VINFO_DDRS(L) (L)->ddrs
533 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
534 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
535 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
536 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
537 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
538 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
539 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
540 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
541 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
542 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
543 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
544 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
545 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
546 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
547 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
548 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
549 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
550 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
551 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
552 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
553 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
554 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
555 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
556 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
557
558 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
559 ((L)->may_misalign_stmts.length () > 0)
560 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
561 ((L)->comp_alias_ddrs.length () > 0 \
562 || (L)->check_unequal_addrs.length () > 0 \
563 || (L)->lower_bounds.length () > 0)
564 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
565 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
566 #define LOOP_REQUIRES_VERSIONING(L) \
567 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
568 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
569 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
570
571 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
572 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
573
574 #define LOOP_VINFO_EPILOGUE_P(L) \
575 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
576
577 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
578 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
579
580 static inline loop_vec_info
loop_vec_info_for_loop(struct loop * loop)581 loop_vec_info_for_loop (struct loop *loop)
582 {
583 return (loop_vec_info) loop->aux;
584 }
585
586 static inline bool
nested_in_vect_loop_p(struct loop * loop,gimple * stmt)587 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
588 {
589 return (loop->inner
590 && (loop->inner == (gimple_bb (stmt))->loop_father));
591 }
592
593 typedef struct _bb_vec_info : public vec_info
594 {
595 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
596 ~_bb_vec_info ();
597
598 basic_block bb;
599 gimple_stmt_iterator region_begin;
600 gimple_stmt_iterator region_end;
601 } *bb_vec_info;
602
603 #define BB_VINFO_BB(B) (B)->bb
604 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
605 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
606 #define BB_VINFO_DATAREFS(B) (B)->datarefs
607 #define BB_VINFO_DDRS(B) (B)->ddrs
608 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
609
610 static inline bb_vec_info
vec_info_for_bb(basic_block bb)611 vec_info_for_bb (basic_block bb)
612 {
613 return (bb_vec_info) bb->aux;
614 }
615
616 /*-----------------------------------------------------------------*/
617 /* Info on vectorized defs. */
618 /*-----------------------------------------------------------------*/
619 enum stmt_vec_info_type {
620 undef_vec_info_type = 0,
621 load_vec_info_type,
622 store_vec_info_type,
623 shift_vec_info_type,
624 op_vec_info_type,
625 call_vec_info_type,
626 call_simd_clone_vec_info_type,
627 assignment_vec_info_type,
628 condition_vec_info_type,
629 comparison_vec_info_type,
630 reduc_vec_info_type,
631 induc_vec_info_type,
632 type_promotion_vec_info_type,
633 type_demotion_vec_info_type,
634 type_conversion_vec_info_type,
635 loop_exit_ctrl_vec_info_type
636 };
637
638 /* Indicates whether/how a variable is used in the scope of loop/basic
639 block. */
640 enum vect_relevant {
641 vect_unused_in_scope = 0,
642
643 /* The def is only used outside the loop. */
644 vect_used_only_live,
645 /* The def is in the inner loop, and the use is in the outer loop, and the
646 use is a reduction stmt. */
647 vect_used_in_outer_by_reduction,
648 /* The def is in the inner loop, and the use is in the outer loop (and is
649 not part of reduction). */
650 vect_used_in_outer,
651
652 /* defs that feed computations that end up (only) in a reduction. These
653 defs may be used by non-reduction stmts, but eventually, any
654 computations/values that are affected by these defs are used to compute
655 a reduction (i.e. don't get stored to memory, for example). We use this
656 to identify computations that we can change the order in which they are
657 computed. */
658 vect_used_by_reduction,
659
660 vect_used_in_scope
661 };
662
663 /* The type of vectorization that can be applied to the stmt: regular loop-based
664 vectorization; pure SLP - the stmt is a part of SLP instances and does not
665 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
666 a part of SLP instance and also must be loop-based vectorized, since it has
667 uses outside SLP sequences.
668
669 In the loop context the meanings of pure and hybrid SLP are slightly
670 different. By saying that pure SLP is applied to the loop, we mean that we
671 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
672 vectorized without doing any conceptual unrolling, cause we don't pack
673 together stmts from different iterations, only within a single iteration.
674 Loop hybrid SLP means that we exploit both intra-iteration and
675 inter-iteration parallelism (e.g., number of elements in the vector is 4
676 and the slp-group-size is 2, in which case we don't have enough parallelism
677 within an iteration, so we obtain the rest of the parallelism from subsequent
678 iterations by unrolling the loop by 2). */
679 enum slp_vect_type {
680 loop_vect = 0,
681 pure_slp,
682 hybrid
683 };
684
685 /* Says whether a statement is a load, a store of a vectorized statement
686 result, or a store of an invariant value. */
687 enum vec_load_store_type {
688 VLS_LOAD,
689 VLS_STORE,
690 VLS_STORE_INVARIANT
691 };
692
693 /* Describes how we're going to vectorize an individual load or store,
694 or a group of loads or stores. */
695 enum vect_memory_access_type {
696 /* An access to an invariant address. This is used only for loads. */
697 VMAT_INVARIANT,
698
699 /* A simple contiguous access. */
700 VMAT_CONTIGUOUS,
701
702 /* A contiguous access that goes down in memory rather than up,
703 with no additional permutation. This is used only for stores
704 of invariants. */
705 VMAT_CONTIGUOUS_DOWN,
706
707 /* A simple contiguous access in which the elements need to be permuted
708 after loading or before storing. Only used for loop vectorization;
709 SLP uses separate permutes. */
710 VMAT_CONTIGUOUS_PERMUTE,
711
712 /* A simple contiguous access in which the elements need to be reversed
713 after loading or before storing. */
714 VMAT_CONTIGUOUS_REVERSE,
715
716 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
717 VMAT_LOAD_STORE_LANES,
718
719 /* An access in which each scalar element is loaded or stored
720 individually. */
721 VMAT_ELEMENTWISE,
722
723 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
724 SLP accesses. Each unrolled iteration uses a contiguous load
725 or store for the whole group, but the groups from separate iterations
726 are combined in the same way as for VMAT_ELEMENTWISE. */
727 VMAT_STRIDED_SLP,
728
729 /* The access uses gather loads or scatter stores. */
730 VMAT_GATHER_SCATTER
731 };
732
733 typedef struct data_reference *dr_p;
734
735 typedef struct _stmt_vec_info {
736
737 enum stmt_vec_info_type type;
738
739 /* Indicates whether this stmts is part of a computation whose result is
740 used outside the loop. */
741 bool live;
742
743 /* Stmt is part of some pattern (computation idiom) */
744 bool in_pattern_p;
745
746 /* Is this statement vectorizable or should it be skipped in (partial)
747 vectorization. */
748 bool vectorizable;
749
750 /* The stmt to which this info struct refers to. */
751 gimple *stmt;
752
753 /* The vec_info with respect to which STMT is vectorized. */
754 vec_info *vinfo;
755
756 /* The vector type to be used for the LHS of this statement. */
757 tree vectype;
758
759 /* The vectorized version of the stmt. */
760 gimple *vectorized_stmt;
761
762
763 /* The following is relevant only for stmts that contain a non-scalar
764 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
765 at most one such data-ref. */
766
767 /* Information about the data-ref (access function, etc),
768 relative to the inner-most containing loop. */
769 struct data_reference *data_ref_info;
770
771 /* Information about the data-ref relative to this loop
772 nest (the loop that is being considered for vectorization). */
773 innermost_loop_behavior dr_wrt_vec_loop;
774
775 /* For loop PHI nodes, the base and evolution part of it. This makes sure
776 this information is still available in vect_update_ivs_after_vectorizer
777 where we may not be able to re-analyze the PHI nodes evolution as
778 peeling for the prologue loop can make it unanalyzable. The evolution
779 part is still correct after peeling, but the base may have changed from
780 the version here. */
781 tree loop_phi_evolution_base_unchanged;
782 tree loop_phi_evolution_part;
783
784 /* Used for various bookkeeping purposes, generally holding a pointer to
785 some other stmt S that is in some way "related" to this stmt.
786 Current use of this field is:
787 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
788 true): S is the "pattern stmt" that represents (and replaces) the
789 sequence of stmts that constitutes the pattern. Similarly, the
790 related_stmt of the "pattern stmt" points back to this stmt (which is
791 the last stmt in the original sequence of stmts that constitutes the
792 pattern). */
793 gimple *related_stmt;
794
795 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
796 gimple_seq pattern_def_seq;
797
798 /* List of datarefs that are known to have the same alignment as the dataref
799 of this stmt. */
800 vec<dr_p> same_align_refs;
801
802 /* Selected SIMD clone's function info. First vector element
803 is SIMD clone's function decl, followed by a pair of trees (base + step)
804 for linear arguments (pair of NULLs for other arguments). */
805 vec<tree> simd_clone_info;
806
807 /* Classify the def of this stmt. */
808 enum vect_def_type def_type;
809
810 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
811 enum slp_vect_type slp_type;
812
813 /* Interleaving and reduction chains info. */
814 /* First element in the group. */
815 gimple *first_element;
816 /* Pointer to the next element in the group. */
817 gimple *next_element;
818 /* For data-refs, in case that two or more stmts share data-ref, this is the
819 pointer to the previously detected stmt with the same dr. */
820 gimple *same_dr_stmt;
821 /* The size of the group. */
822 unsigned int size;
823 /* For stores, number of stores from this group seen. We vectorize the last
824 one. */
825 unsigned int store_count;
826 /* For loads only, the gap from the previous load. For consecutive loads, GAP
827 is 1. */
828 unsigned int gap;
829
830 /* The minimum negative dependence distance this stmt participates in
831 or zero if none. */
832 unsigned int min_neg_dist;
833
834 /* Not all stmts in the loop need to be vectorized. e.g, the increment
835 of the loop induction variable and computation of array indexes. relevant
836 indicates whether the stmt needs to be vectorized. */
837 enum vect_relevant relevant;
838
839 /* For loads if this is a gather, for stores if this is a scatter. */
840 bool gather_scatter_p;
841
842 /* True if this is an access with loop-invariant stride. */
843 bool strided_p;
844
845 /* For both loads and stores. */
846 bool simd_lane_access_p;
847
848 /* Classifies how the load or store is going to be implemented
849 for loop vectorization. */
850 vect_memory_access_type memory_access_type;
851
852 /* For reduction loops, this is the type of reduction. */
853 enum vect_reduction_type v_reduc_type;
854
855 /* For CONST_COND_REDUCTION, record the reduc code. */
856 enum tree_code const_cond_reduc_code;
857
858 /* On a reduction PHI the reduction type as detected by
859 vect_force_simple_reduction. */
860 enum vect_reduction_type reduc_type;
861
862 /* On a reduction PHI the def returned by vect_force_simple_reduction.
863 On the def returned by vect_force_simple_reduction the
864 corresponding PHI. */
865 gimple *reduc_def;
866
867 /* The number of scalar stmt references from active SLP instances. */
868 unsigned int num_slp_uses;
869 } *stmt_vec_info;
870
871 /* Information about a gather/scatter call. */
872 struct gather_scatter_info {
873 /* The internal function to use for the gather/scatter operation,
874 or IFN_LAST if a built-in function should be used instead. */
875 internal_fn ifn;
876
877 /* The FUNCTION_DECL for the built-in gather/scatter function,
878 or null if an internal function should be used instead. */
879 tree decl;
880
881 /* The loop-invariant base value. */
882 tree base;
883
884 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
885 tree offset;
886
887 /* Each offset element should be multiplied by this amount before
888 being added to the base. */
889 int scale;
890
891 /* The definition type for the vectorized offset. */
892 enum vect_def_type offset_dt;
893
894 /* The type of the vectorized offset. */
895 tree offset_vectype;
896
897 /* The type of the scalar elements after loading or before storing. */
898 tree element_type;
899
900 /* The type of the scalar elements being loaded or stored. */
901 tree memory_type;
902 };
903
904 /* Access Functions. */
905 #define STMT_VINFO_TYPE(S) (S)->type
906 #define STMT_VINFO_STMT(S) (S)->stmt
907 inline loop_vec_info
STMT_VINFO_LOOP_VINFO(stmt_vec_info stmt_vinfo)908 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
909 {
910 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
911 return loop_vinfo;
912 return NULL;
913 }
914 inline bb_vec_info
STMT_VINFO_BB_VINFO(stmt_vec_info stmt_vinfo)915 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
916 {
917 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
918 return bb_vinfo;
919 return NULL;
920 }
921 #define STMT_VINFO_RELEVANT(S) (S)->relevant
922 #define STMT_VINFO_LIVE_P(S) (S)->live
923 #define STMT_VINFO_VECTYPE(S) (S)->vectype
924 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
925 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
926 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
927 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
928 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
929 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
930 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
931 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
932 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
933
934 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
935 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
936 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
937 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
938 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
939 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
940 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
941 (S)->dr_wrt_vec_loop.base_misalignment
942 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
943 (S)->dr_wrt_vec_loop.offset_alignment
944 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
945 (S)->dr_wrt_vec_loop.step_alignment
946
947 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
948 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
949 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
950 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
951 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
952 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
953 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element
954 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element
955 #define STMT_VINFO_GROUP_SIZE(S) (S)->size
956 #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count
957 #define STMT_VINFO_GROUP_GAP(S) (S)->gap
958 #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
959 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info)
960 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
961 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
962 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
963 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
964 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
965 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
966
967 #define GROUP_FIRST_ELEMENT(S) (S)->first_element
968 #define GROUP_NEXT_ELEMENT(S) (S)->next_element
969 #define GROUP_SIZE(S) (S)->size
970 #define GROUP_STORE_COUNT(S) (S)->store_count
971 #define GROUP_GAP(S) (S)->gap
972 #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
973
974 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
975
976 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
977 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
978 #define STMT_SLP_TYPE(S) (S)->slp_type
979
980 struct dataref_aux {
981 /* The misalignment in bytes of the reference, or -1 if not known. */
982 int misalignment;
983 /* The byte alignment that we'd ideally like the reference to have,
984 and the value that misalignment is measured against. */
985 int target_alignment;
986 /* If true the alignment of base_decl needs to be increased. */
987 bool base_misaligned;
988 tree base_decl;
989 };
990
991 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
992
993 #define VECT_MAX_COST 1000
994
995 /* The maximum number of intermediate steps required in multi-step type
996 conversion. */
997 #define MAX_INTERM_CVT_STEPS 3
998
999 #define MAX_VECTORIZATION_FACTOR INT_MAX
1000
1001 /* Nonzero if TYPE represents a (scalar) boolean type or type
1002 in the middle-end compatible with it (unsigned precision 1 integral
1003 types). Used to determine which types should be vectorized as
1004 VECTOR_BOOLEAN_TYPE_P. */
1005
1006 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1007 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1008 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1009 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1010 && TYPE_PRECISION (TYPE) == 1 \
1011 && TYPE_UNSIGNED (TYPE)))
1012
1013 extern vec<stmt_vec_info> stmt_vec_info_vec;
1014
1015 void init_stmt_vec_info_vec (void);
1016 void free_stmt_vec_info_vec (void);
1017
1018 /* Return a stmt_vec_info corresponding to STMT. */
1019
1020 static inline stmt_vec_info
vinfo_for_stmt(gimple * stmt)1021 vinfo_for_stmt (gimple *stmt)
1022 {
1023 int uid = gimple_uid (stmt);
1024 if (uid <= 0)
1025 return NULL;
1026
1027 return stmt_vec_info_vec[uid - 1];
1028 }
1029
1030 /* Set vectorizer information INFO for STMT. */
1031
1032 static inline void
set_vinfo_for_stmt(gimple * stmt,stmt_vec_info info)1033 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1034 {
1035 unsigned int uid = gimple_uid (stmt);
1036 if (uid == 0)
1037 {
1038 gcc_checking_assert (info);
1039 uid = stmt_vec_info_vec.length () + 1;
1040 gimple_set_uid (stmt, uid);
1041 stmt_vec_info_vec.safe_push (info);
1042 }
1043 else
1044 {
1045 gcc_checking_assert (info == NULL);
1046 stmt_vec_info_vec[uid - 1] = info;
1047 }
1048 }
1049
1050 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1051 pattern. */
1052
1053 static inline bool
is_pattern_stmt_p(stmt_vec_info stmt_info)1054 is_pattern_stmt_p (stmt_vec_info stmt_info)
1055 {
1056 gimple *related_stmt;
1057 stmt_vec_info related_stmt_info;
1058
1059 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1060 if (related_stmt
1061 && (related_stmt_info = vinfo_for_stmt (related_stmt))
1062 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
1063 return true;
1064
1065 return false;
1066 }
1067
1068 /* Return the later statement between STMT1 and STMT2. */
1069
1070 static inline gimple *
get_later_stmt(gimple * stmt1,gimple * stmt2)1071 get_later_stmt (gimple *stmt1, gimple *stmt2)
1072 {
1073 unsigned int uid1, uid2;
1074
1075 if (stmt1 == NULL)
1076 return stmt2;
1077
1078 if (stmt2 == NULL)
1079 return stmt1;
1080
1081 stmt_vec_info stmt_info1 = vinfo_for_stmt (stmt1);
1082 stmt_vec_info stmt_info2 = vinfo_for_stmt (stmt2);
1083 uid1 = gimple_uid (is_pattern_stmt_p (stmt_info1)
1084 ? STMT_VINFO_RELATED_STMT (stmt_info1) : stmt1);
1085 uid2 = gimple_uid (is_pattern_stmt_p (stmt_info2)
1086 ? STMT_VINFO_RELATED_STMT (stmt_info2) : stmt2);
1087
1088 if (uid1 == 0 || uid2 == 0)
1089 return NULL;
1090
1091 gcc_assert (uid1 <= stmt_vec_info_vec.length ());
1092 gcc_assert (uid2 <= stmt_vec_info_vec.length ());
1093
1094 if (uid1 > uid2)
1095 return stmt1;
1096 else
1097 return stmt2;
1098 }
1099
1100 /* Return true if BB is a loop header. */
1101
1102 static inline bool
is_loop_header_bb_p(basic_block bb)1103 is_loop_header_bb_p (basic_block bb)
1104 {
1105 if (bb == (bb->loop_father)->header)
1106 return true;
1107 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1108 return false;
1109 }
1110
1111 /* Return pow2 (X). */
1112
1113 static inline int
vect_pow2(int x)1114 vect_pow2 (int x)
1115 {
1116 int i, res = 1;
1117
1118 for (i = 0; i < x; i++)
1119 res *= 2;
1120
1121 return res;
1122 }
1123
1124 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1125
1126 static inline int
builtin_vectorization_cost(enum vect_cost_for_stmt type_of_cost,tree vectype,int misalign)1127 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1128 tree vectype, int misalign)
1129 {
1130 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1131 vectype, misalign);
1132 }
1133
1134 /* Get cost by calling cost target builtin. */
1135
1136 static inline
vect_get_stmt_cost(enum vect_cost_for_stmt type_of_cost)1137 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1138 {
1139 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1140 }
1141
1142 /* Alias targetm.vectorize.init_cost. */
1143
1144 static inline void *
init_cost(struct loop * loop_info)1145 init_cost (struct loop *loop_info)
1146 {
1147 return targetm.vectorize.init_cost (loop_info);
1148 }
1149
1150 /* Alias targetm.vectorize.add_stmt_cost. */
1151
1152 static inline unsigned
add_stmt_cost(void * data,int count,enum vect_cost_for_stmt kind,stmt_vec_info stmt_info,int misalign,enum vect_cost_model_location where)1153 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1154 stmt_vec_info stmt_info, int misalign,
1155 enum vect_cost_model_location where)
1156 {
1157 return targetm.vectorize.add_stmt_cost (data, count, kind,
1158 stmt_info, misalign, where);
1159 }
1160
1161 /* Alias targetm.vectorize.finish_cost. */
1162
1163 static inline void
finish_cost(void * data,unsigned * prologue_cost,unsigned * body_cost,unsigned * epilogue_cost)1164 finish_cost (void *data, unsigned *prologue_cost,
1165 unsigned *body_cost, unsigned *epilogue_cost)
1166 {
1167 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1168 }
1169
1170 /* Alias targetm.vectorize.destroy_cost_data. */
1171
1172 static inline void
destroy_cost_data(void * data)1173 destroy_cost_data (void *data)
1174 {
1175 targetm.vectorize.destroy_cost_data (data);
1176 }
1177
1178 /*-----------------------------------------------------------------*/
1179 /* Info on data references alignment. */
1180 /*-----------------------------------------------------------------*/
1181 inline void
set_dr_misalignment(struct data_reference * dr,int val)1182 set_dr_misalignment (struct data_reference *dr, int val)
1183 {
1184 dataref_aux *data_aux = DR_VECT_AUX (dr);
1185
1186 if (!data_aux)
1187 {
1188 data_aux = XCNEW (dataref_aux);
1189 dr->aux = data_aux;
1190 }
1191
1192 data_aux->misalignment = val;
1193 }
1194
1195 inline int
dr_misalignment(struct data_reference * dr)1196 dr_misalignment (struct data_reference *dr)
1197 {
1198 return DR_VECT_AUX (dr)->misalignment;
1199 }
1200
1201 /* Reflects actual alignment of first access in the vectorized loop,
1202 taking into account peeling/versioning if applied. */
1203 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1204 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1205 #define DR_MISALIGNMENT_UNKNOWN (-1)
1206
1207 /* Only defined once DR_MISALIGNMENT is defined. */
1208 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1209
1210 /* Return true if data access DR is aligned to its target alignment
1211 (which may be less than a full vector). */
1212
1213 static inline bool
aligned_access_p(struct data_reference * data_ref_info)1214 aligned_access_p (struct data_reference *data_ref_info)
1215 {
1216 return (DR_MISALIGNMENT (data_ref_info) == 0);
1217 }
1218
1219 /* Return TRUE if the alignment of the data access is known, and FALSE
1220 otherwise. */
1221
1222 static inline bool
known_alignment_for_access_p(struct data_reference * data_ref_info)1223 known_alignment_for_access_p (struct data_reference *data_ref_info)
1224 {
1225 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1226 }
1227
1228 /* Return the minimum alignment in bytes that the vectorized version
1229 of DR is guaranteed to have. */
1230
1231 static inline unsigned int
vect_known_alignment_in_bytes(struct data_reference * dr)1232 vect_known_alignment_in_bytes (struct data_reference *dr)
1233 {
1234 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1235 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1236 if (DR_MISALIGNMENT (dr) == 0)
1237 return DR_TARGET_ALIGNMENT (dr);
1238 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1239 }
1240
1241 /* Return the behavior of DR with respect to the vectorization context
1242 (which for outer loop vectorization might not be the behavior recorded
1243 in DR itself). */
1244
1245 static inline innermost_loop_behavior *
vect_dr_behavior(data_reference * dr)1246 vect_dr_behavior (data_reference *dr)
1247 {
1248 gimple *stmt = DR_STMT (dr);
1249 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1250 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1251 if (loop_vinfo == NULL
1252 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1253 return &DR_INNERMOST (dr);
1254 else
1255 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1256 }
1257
1258 /* Return true if the vect cost model is unlimited. */
1259 static inline bool
unlimited_cost_model(loop_p loop)1260 unlimited_cost_model (loop_p loop)
1261 {
1262 if (loop != NULL && loop->force_vectorize
1263 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1264 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1265 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1266 }
1267
1268 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1269 if the first iteration should use a partial mask in order to achieve
1270 alignment. */
1271
1272 static inline bool
vect_use_loop_mask_for_alignment_p(loop_vec_info loop_vinfo)1273 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1274 {
1275 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1276 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1277 }
1278
1279 /* Return the number of vectors of type VECTYPE that are needed to get
1280 NUNITS elements. NUNITS should be based on the vectorization factor,
1281 so it is always a known multiple of the number of elements in VECTYPE. */
1282
1283 static inline unsigned int
vect_get_num_vectors(poly_uint64 nunits,tree vectype)1284 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1285 {
1286 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1287 }
1288
1289 /* Return the number of copies needed for loop vectorization when
1290 a statement operates on vectors of type VECTYPE. This is the
1291 vectorization factor divided by the number of elements in
1292 VECTYPE and is always known at compile time. */
1293
1294 static inline unsigned int
vect_get_num_copies(loop_vec_info loop_vinfo,tree vectype)1295 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1296 {
1297 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1298 }
1299
1300 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1301 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1302 if we haven't yet recorded any vector types. */
1303
1304 static inline void
vect_update_max_nunits(poly_uint64 * max_nunits,tree vectype)1305 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1306 {
1307 /* All unit counts have the form current_vector_size * X for some
1308 rational X, so two unit sizes must have a common multiple.
1309 Everything is a multiple of the initial value of 1. */
1310 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1311 *max_nunits = force_common_multiple (*max_nunits, nunits);
1312 }
1313
1314 /* Return the vectorization factor that should be used for costing
1315 purposes while vectorizing the loop described by LOOP_VINFO.
1316 Pick a reasonable estimate if the vectorization factor isn't
1317 known at compile time. */
1318
1319 static inline unsigned int
vect_vf_for_cost(loop_vec_info loop_vinfo)1320 vect_vf_for_cost (loop_vec_info loop_vinfo)
1321 {
1322 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1323 }
1324
1325 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1326 Pick a reasonable estimate if the exact number isn't known at
1327 compile time. */
1328
1329 static inline unsigned int
vect_nunits_for_cost(tree vec_type)1330 vect_nunits_for_cost (tree vec_type)
1331 {
1332 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1333 }
1334
1335 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1336
1337 static inline unsigned HOST_WIDE_INT
vect_max_vf(loop_vec_info loop_vinfo)1338 vect_max_vf (loop_vec_info loop_vinfo)
1339 {
1340 unsigned HOST_WIDE_INT vf;
1341 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1342 return vf;
1343 return MAX_VECTORIZATION_FACTOR;
1344 }
1345
1346 /* Return the size of the value accessed by unvectorized data reference DR.
1347 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1348 associated gimple statement, since that guarantees that DR accesses
1349 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1350 includes things like V1SI, which can be vectorized in the same way
1351 as a plain SI.) */
1352
1353 inline unsigned int
vect_get_scalar_dr_size(struct data_reference * dr)1354 vect_get_scalar_dr_size (struct data_reference *dr)
1355 {
1356 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1357 }
1358
1359 /* Source location */
1360 extern source_location vect_location;
1361
1362 /*-----------------------------------------------------------------*/
1363 /* Function prototypes. */
1364 /*-----------------------------------------------------------------*/
1365
1366 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1367 in tree-vect-loop-manip.c. */
1368 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1369 tree, tree, tree, bool);
1370 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1371 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1372 struct loop *, edge);
1373 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1374 poly_uint64);
1375 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1376 tree *, tree *, tree *, int, bool, bool);
1377 extern void vect_prepare_for_masked_peels (loop_vec_info);
1378 extern source_location find_loop_location (struct loop *);
1379 extern bool vect_can_advance_ivs_p (loop_vec_info);
1380
1381 /* In tree-vect-stmts.c. */
1382 extern poly_uint64 current_vector_size;
1383 extern tree get_vectype_for_scalar_type (tree);
1384 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1385 extern tree get_mask_type_for_scalar_type (tree);
1386 extern tree get_same_sized_vectype (tree, tree);
1387 extern bool vect_get_loop_mask_type (loop_vec_info);
1388 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1389 enum vect_def_type *);
1390 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1391 enum vect_def_type *, tree *);
1392 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1393 tree, enum tree_code *,
1394 enum tree_code *, int *,
1395 vec<tree> *);
1396 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1397 enum tree_code *,
1398 int *, vec<tree> *);
1399 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1400 extern void free_stmt_vec_info (gimple *stmt);
1401 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
1402 int, stmt_vector_for_cost *,
1403 stmt_vector_for_cost *);
1404 extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type,
1405 vec_load_store_type, slp_tree,
1406 stmt_vector_for_cost *,
1407 stmt_vector_for_cost *);
1408 extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type,
1409 slp_tree, stmt_vector_for_cost *,
1410 stmt_vector_for_cost *);
1411 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1412 enum vect_cost_for_stmt, stmt_vec_info,
1413 int, enum vect_cost_model_location);
1414 extern void vect_finish_replace_stmt (gimple *, gimple *);
1415 extern void vect_finish_stmt_generation (gimple *, gimple *,
1416 gimple_stmt_iterator *);
1417 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1418 extern tree vect_get_store_rhs (gimple *);
1419 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1420 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1421 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1422 vec<tree> *, slp_tree);
1423 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1424 vec<tree> *, vec<tree> *);
1425 extern tree vect_init_vector (gimple *, tree, tree,
1426 gimple_stmt_iterator *);
1427 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1428 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1429 bool *, slp_tree, slp_instance);
1430 extern void vect_remove_stores (gimple *);
1431 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance);
1432 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1433 gimple **, tree, int, slp_tree);
1434 extern void vect_get_load_cost (struct data_reference *, int, bool,
1435 unsigned int *, unsigned int *,
1436 stmt_vector_for_cost *,
1437 stmt_vector_for_cost *, bool);
1438 extern void vect_get_store_cost (struct data_reference *, int,
1439 unsigned int *, stmt_vector_for_cost *);
1440 extern bool vect_supportable_shift (enum tree_code, tree);
1441 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1442 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1443 extern void optimize_mask_stores (struct loop*);
1444 extern gcall *vect_gen_while (tree, tree, tree);
1445 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1446
1447 /* In tree-vect-data-refs.c. */
1448 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1449 extern enum dr_alignment_support vect_supportable_dr_alignment
1450 (struct data_reference *, bool);
1451 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1452 HOST_WIDE_INT *);
1453 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1454 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1455 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1456 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1457 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1458 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1459 extern bool vect_analyze_data_ref_accesses (vec_info *);
1460 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1461 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1462 signop, int, internal_fn *, tree *);
1463 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1464 gather_scatter_info *);
1465 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1466 extern void vect_record_base_alignments (vec_info *);
1467 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1468 tree *, gimple_stmt_iterator *,
1469 gimple **, bool, bool *,
1470 tree = NULL_TREE, tree = NULL_TREE);
1471 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1472 tree);
1473 extern void vect_copy_ref_info (tree, tree);
1474 extern tree vect_create_destination_var (tree, tree);
1475 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1476 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1477 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1478 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1479 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1480 gimple_stmt_iterator *, vec<tree> *);
1481 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1482 enum dr_alignment_support, tree,
1483 struct loop **);
1484 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1485 gimple_stmt_iterator *);
1486 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1487 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1488 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1489 const char * = NULL);
1490 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1491 tree, tree = NULL_TREE);
1492
1493 /* In tree-vect-loop.c. */
1494 /* FORNOW: Used in tree-parloops.c. */
1495 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1496 bool *, bool);
1497 /* Used in gimple-loop-interchange.c. */
1498 extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
1499 enum tree_code);
1500 /* Drive for loop analysis stage. */
1501 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1502 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1503 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1504 tree *, bool);
1505 extern tree vect_halve_mask_nunits (tree);
1506 extern tree vect_double_mask_nunits (tree);
1507 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1508 unsigned int, tree);
1509 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1510 unsigned int, tree, unsigned int);
1511
1512 /* Drive for loop transformation stage. */
1513 extern struct loop *vect_transform_loop (loop_vec_info);
1514 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1515 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1516 slp_tree, int, gimple **);
1517 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1518 gimple **, slp_tree, slp_instance);
1519 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1520 gimple **, slp_tree);
1521 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1522 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1523 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1524 stmt_vector_for_cost *,
1525 stmt_vector_for_cost *,
1526 stmt_vector_for_cost *);
1527 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1528
1529 /* In tree-vect-slp.c. */
1530 extern void vect_free_slp_instance (slp_instance);
1531 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1532 gimple_stmt_iterator *, poly_uint64,
1533 slp_instance, bool, unsigned *);
1534 extern bool vect_slp_analyze_operations (vec_info *);
1535 extern bool vect_schedule_slp (vec_info *);
1536 extern bool vect_analyze_slp (vec_info *, unsigned);
1537 extern bool vect_make_slp_decision (loop_vec_info);
1538 extern void vect_detect_hybrid_slp (loop_vec_info);
1539 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1540 extern bool vect_slp_bb (basic_block);
1541 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1542 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1543 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1544 unsigned int * = NULL,
1545 tree * = NULL, tree * = NULL);
1546 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1547 unsigned int, vec<tree> &);
1548 extern int vect_get_place_in_interleaving_chain (gimple *, gimple *);
1549
1550 /* In tree-vect-patterns.c. */
1551 /* Pattern recognition functions.
1552 Additional pattern recognition functions can (and will) be added
1553 in the future. */
1554 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1555 #define NUM_PATTERNS 15
1556 void vect_pattern_recog (vec_info *);
1557
1558 /* In tree-vectorizer.c. */
1559 unsigned vectorize_loops (void);
1560 bool vect_stmt_in_region_p (vec_info *, gimple *);
1561 void vect_free_loop_info_assumptions (struct loop *);
1562
1563 #endif /* GCC_TREE_VECTORIZER_H */
1564