xref: /netbsd/sys/dev/ic/nvme.c (revision 78d277db)
1 /*	$NetBSD: nvme.c,v 1.67 2022/09/13 10:14:20 riastradh Exp $	*/
2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.67 2022/09/13 10:14:20 riastradh Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36 
37 #include <uvm/uvm_extern.h>
38 
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42 
43 #include "ioconf.h"
44 #include "locators.h"
45 
46 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
47 
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50 
51 static int	nvme_print(void *, const char *);
52 
53 static int	nvme_ready(struct nvme_softc *, uint32_t);
54 static int	nvme_enable(struct nvme_softc *, u_int);
55 static int	nvme_disable(struct nvme_softc *);
56 static int	nvme_shutdown(struct nvme_softc *);
57 
58 uint32_t	nvme_op_sq_enter(struct nvme_softc *,
59 		    struct nvme_queue *, struct nvme_ccb *);
60 void		nvme_op_sq_leave(struct nvme_softc *,
61 		    struct nvme_queue *, struct nvme_ccb *);
62 uint32_t	nvme_op_sq_enter_locked(struct nvme_softc *,
63 		    struct nvme_queue *, struct nvme_ccb *);
64 void		nvme_op_sq_leave_locked(struct nvme_softc *,
65 		    struct nvme_queue *, struct nvme_ccb *);
66 
67 void		nvme_op_cq_done(struct nvme_softc *,
68 		    struct nvme_queue *, struct nvme_ccb *);
69 
70 static const struct nvme_ops nvme_ops = {
71 	.op_sq_enter		= nvme_op_sq_enter,
72 	.op_sq_leave		= nvme_op_sq_leave,
73 	.op_sq_enter_locked	= nvme_op_sq_enter_locked,
74 	.op_sq_leave_locked	= nvme_op_sq_leave_locked,
75 
76 	.op_cq_done		= nvme_op_cq_done,
77 };
78 
79 #ifdef NVME_DEBUG
80 static void	nvme_dumpregs(struct nvme_softc *);
81 #endif
82 static int	nvme_identify(struct nvme_softc *, u_int);
83 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
84 		    void *);
85 
86 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
87 static void	nvme_ccbs_free(struct nvme_queue *);
88 
89 static struct nvme_ccb *
90 		nvme_ccb_get(struct nvme_queue *, bool);
91 static struct nvme_ccb *
92 		nvme_ccb_get_bio(struct nvme_softc *, struct buf *,
93 		    struct nvme_queue **);
94 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
95 
96 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
97 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
98 		    struct nvme_ccb *, void *), int);
99 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
100 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
101 		    struct nvme_cqe *);
102 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
103 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
104 		    struct nvme_cqe *);
105 
106 static struct nvme_queue *
107 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
108 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
109 static void	nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
110 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
111 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
112 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
113 		    struct nvme_ccb *, void *));
114 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
115 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
116 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
117 		    bool (*)(void *), void *);
118 
119 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
120 		    void *);
121 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
122 		    struct nvme_cqe *);
123 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
124 		    void *);
125 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
126 		    struct nvme_cqe *);
127 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
128 		    void *);
129 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
130 		    struct nvme_cqe *);
131 
132 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
133 		    void *);
134 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
135 		    struct nvme_cqe *);
136 static int	nvme_command_passthrough(struct nvme_softc *,
137 		    struct nvme_pt_command *, uint32_t, struct lwp *, bool);
138 
139 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
140 		    u_int *);
141 
142 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
143 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
144 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
145 #define NVME_TIMO_SY		60	/* sync cache timeout */
146 
147 /*
148  * Some controllers, at least Apple NVMe, always require split
149  * transfers, so don't use bus_space_{read,write}_8() on LP64.
150  */
151 uint64_t
nvme_read8(struct nvme_softc * sc,bus_size_t r)152 nvme_read8(struct nvme_softc *sc, bus_size_t r)
153 {
154 	uint64_t v;
155 	uint32_t *a = (uint32_t *)&v;
156 
157 #if _BYTE_ORDER == _LITTLE_ENDIAN
158 	a[0] = nvme_read4(sc, r);
159 	a[1] = nvme_read4(sc, r + 4);
160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
161 	a[1] = nvme_read4(sc, r);
162 	a[0] = nvme_read4(sc, r + 4);
163 #endif
164 
165 	return v;
166 }
167 
168 void
nvme_write8(struct nvme_softc * sc,bus_size_t r,uint64_t v)169 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
170 {
171 	uint32_t *a = (uint32_t *)&v;
172 
173 #if _BYTE_ORDER == _LITTLE_ENDIAN
174 	nvme_write4(sc, r, a[0]);
175 	nvme_write4(sc, r + 4, a[1]);
176 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
177 	nvme_write4(sc, r, a[1]);
178 	nvme_write4(sc, r + 4, a[0]);
179 #endif
180 }
181 
182 #ifdef NVME_DEBUG
183 static __used void
nvme_dumpregs(struct nvme_softc * sc)184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 	uint64_t r8;
187 	uint32_t r4;
188 
189 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 	r8 = nvme_read8(sc, NVME_CAP);
191 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
193 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
195 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203 
204 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205 
206 	r4 = nvme_read4(sc, NVME_CC);
207 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
208 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 	    (1 << NVME_CC_IOCQES_R(r4)));
210 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 	    (1 << NVME_CC_IOSQES_R(r4)));
212 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 	    (1 << NVME_CC_MPS_R(r4)));
216 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218 
219 	r4 = nvme_read4(sc, NVME_CSTS);
220 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224 
225 	r4 = nvme_read4(sc, NVME_AQA);
226 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
227 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229 
230 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef	DEVNAME
233 }
234 #endif	/* NVME_DEBUG */
235 
236 static int
nvme_ready(struct nvme_softc * sc,uint32_t rdy)237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 	u_int i = 0;
240 
241 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
242 		if (i++ > sc->sc_rdy_to)
243 			return ENXIO;
244 
245 		delay(1000);
246 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
247 	}
248 
249 	return 0;
250 }
251 
252 static int
nvme_enable(struct nvme_softc * sc,u_int mps)253 nvme_enable(struct nvme_softc *sc, u_int mps)
254 {
255 	uint32_t cc, csts;
256 	int error;
257 
258 	cc = nvme_read4(sc, NVME_CC);
259 	csts = nvme_read4(sc, NVME_CSTS);
260 
261 	/*
262 	 * See note in nvme_disable. Short circuit if we're already enabled.
263 	 */
264 	if (ISSET(cc, NVME_CC_EN)) {
265 		if (ISSET(csts, NVME_CSTS_RDY))
266 			return 0;
267 
268 		goto waitready;
269 	} else {
270 		/* EN == 0 already wait for RDY == 0 or fail */
271 		error = nvme_ready(sc, 0);
272 		if (error)
273 			return error;
274 	}
275 
276 	if (sc->sc_ops->op_enable != NULL)
277 		sc->sc_ops->op_enable(sc);
278 
279 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
280 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
281 	delay(5000);
282 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
283 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
284 	delay(5000);
285 
286 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
287 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
288 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
289 	delay(5000);
290 
291 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
292 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
293 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
294 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
295 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
296 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
297 	SET(cc, NVME_CC_MPS(mps));
298 	SET(cc, NVME_CC_EN);
299 
300 	nvme_write4(sc, NVME_CC, cc);
301 	nvme_barrier(sc, 0, sc->sc_ios,
302 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
303 
304     waitready:
305 	return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307 
308 static int
nvme_disable(struct nvme_softc * sc)309 nvme_disable(struct nvme_softc *sc)
310 {
311 	uint32_t cc, csts;
312 	int error;
313 
314 	cc = nvme_read4(sc, NVME_CC);
315 	csts = nvme_read4(sc, NVME_CSTS);
316 
317 	/*
318 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
319 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
320 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
321 	 * isn't the desired value. Short circuit if we're already disabled.
322 	 */
323 	if (ISSET(cc, NVME_CC_EN)) {
324 		if (!ISSET(csts, NVME_CSTS_RDY)) {
325 			/* EN == 1, wait for RDY == 1 or fail */
326 			error = nvme_ready(sc, NVME_CSTS_RDY);
327 			if (error)
328 				return error;
329 		}
330 	} else {
331 		/* EN == 0 already wait for RDY == 0 */
332 		if (!ISSET(csts, NVME_CSTS_RDY))
333 			return 0;
334 
335 		goto waitready;
336 	}
337 
338 	CLR(cc, NVME_CC_EN);
339 	nvme_write4(sc, NVME_CC, cc);
340 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
341 
342 	/*
343 	 * Some drives have issues with accessing the mmio after we disable,
344 	 * so delay for a bit after we write the bit to cope with these issues.
345 	 */
346 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
347 		delay(B4_CHK_RDY_DELAY_MS);
348 
349     waitready:
350 	return nvme_ready(sc, 0);
351 }
352 
353 int
nvme_attach(struct nvme_softc * sc)354 nvme_attach(struct nvme_softc *sc)
355 {
356 	uint64_t cap;
357 	uint32_t reg;
358 	u_int mps = PAGE_SHIFT;
359 	u_int ncq, nsq;
360 	uint16_t adminq_entries = nvme_adminq_size;
361 	uint16_t ioq_entries = nvme_ioq_size;
362 	int i;
363 
364 	if (sc->sc_ops == NULL)
365 		sc->sc_ops = &nvme_ops;
366 
367 	reg = nvme_read4(sc, NVME_VS);
368 	if (reg == 0xffffffff) {
369 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
370 		return 1;
371 	}
372 
373 	if (NVME_VS_TER(reg) == 0)
374 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
375 		    NVME_VS_MNR(reg));
376 	else
377 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
378 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
379 
380 	cap = nvme_read8(sc, NVME_CAP);
381 	sc->sc_dstrd = NVME_CAP_DSTRD(cap);
382 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
383 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
384 		    "is greater than CPU page size %u\n",
385 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
386 		return 1;
387 	}
388 	if (NVME_CAP_MPSMAX(cap) < mps)
389 		mps = NVME_CAP_MPSMAX(cap);
390 	if (ioq_entries > NVME_CAP_MQES(cap))
391 		ioq_entries = NVME_CAP_MQES(cap);
392 
393 	/* set initial values to be used for admin queue during probe */
394 	sc->sc_rdy_to = NVME_CAP_TO(cap);
395 	sc->sc_mps = 1 << mps;
396 	sc->sc_mdts = MAXPHYS;
397 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
398 
399 	if (nvme_disable(sc) != 0) {
400 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
401 		return 1;
402 	}
403 
404 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
405 	    sc->sc_dstrd);
406 	if (sc->sc_admin_q == NULL) {
407 		aprint_error_dev(sc->sc_dev,
408 		    "unable to allocate admin queue\n");
409 		return 1;
410 	}
411 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
412 		goto free_admin_q;
413 
414 	if (nvme_enable(sc, mps) != 0) {
415 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
416 		goto disestablish_admin_q;
417 	}
418 
419 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
420 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
421 		goto disable;
422 	}
423 	if (sc->sc_nn == 0) {
424 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
425 		goto disable;
426 	}
427 
428 	/* we know how big things are now */
429 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
430 
431 	/* reallocate ccbs of admin queue with new max sgl. */
432 	nvme_ccbs_free(sc->sc_admin_q);
433 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
434 
435 	if (sc->sc_use_mq) {
436 		/* Limit the number of queues to the number allocated in HW */
437 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
438 			aprint_error_dev(sc->sc_dev,
439 			    "unable to get number of queues\n");
440 			goto disable;
441 		}
442 		if (sc->sc_nq > ncq)
443 			sc->sc_nq = ncq;
444 		if (sc->sc_nq > nsq)
445 			sc->sc_nq = nsq;
446 	}
447 
448 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
449 	for (i = 0; i < sc->sc_nq; i++) {
450 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
451 		    sc->sc_dstrd);
452 		if (sc->sc_q[i] == NULL) {
453 			aprint_error_dev(sc->sc_dev,
454 			    "unable to allocate io queue\n");
455 			goto free_q;
456 		}
457 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
458 			aprint_error_dev(sc->sc_dev,
459 			    "unable to create io queue\n");
460 			nvme_q_free(sc, sc->sc_q[i]);
461 			goto free_q;
462 		}
463 	}
464 
465 	if (!sc->sc_use_mq)
466 		nvme_write4(sc, NVME_INTMC, 1);
467 
468 	/* probe subdevices */
469 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
470 	    KM_SLEEP);
471 	nvme_rescan(sc->sc_dev, NULL, NULL);
472 
473 	return 0;
474 
475 free_q:
476 	while (--i >= 0) {
477 		nvme_q_delete(sc, sc->sc_q[i]);
478 		nvme_q_free(sc, sc->sc_q[i]);
479 	}
480 disable:
481 	nvme_disable(sc);
482 disestablish_admin_q:
483 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
484 free_admin_q:
485 	nvme_q_free(sc, sc->sc_admin_q);
486 
487 	return 1;
488 }
489 
490 int
nvme_rescan(device_t self,const char * ifattr,const int * locs)491 nvme_rescan(device_t self, const char *ifattr, const int *locs)
492 {
493 	struct nvme_softc *sc = device_private(self);
494 	struct nvme_attach_args naa;
495 	struct nvm_namespace_format *f;
496 	struct nvme_namespace *ns;
497 	uint64_t cap;
498 	int ioq_entries = nvme_ioq_size;
499 	int i, mlocs[NVMECF_NLOCS];
500 	int error;
501 
502 	cap = nvme_read8(sc, NVME_CAP);
503 	if (ioq_entries > NVME_CAP_MQES(cap))
504 		ioq_entries = NVME_CAP_MQES(cap);
505 
506 	for (i = 1; i <= sc->sc_nn; i++) {
507 		if (sc->sc_namespaces[i - 1].dev)
508 			continue;
509 
510 		/* identify to check for availability */
511 		error = nvme_ns_identify(sc, i);
512 		if (error) {
513 			aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
514 			continue;
515 		}
516 
517 		ns = nvme_ns_get(sc, i);
518 		KASSERT(ns);
519 
520 		f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
521 
522 		/*
523 		 * NVME1.0e 6.11 Identify command
524 		 *
525 		 * LBADS values smaller than 9 are not supported, a value
526 		 * of zero means that the format is not used.
527 		 */
528 		if (f->lbads < 9) {
529 			if (f->lbads > 0)
530 				aprint_error_dev(self,
531 						 "unsupported logical data size %u\n", f->lbads);
532 			continue;
533 		}
534 
535 		mlocs[NVMECF_NSID] = i;
536 
537 		memset(&naa, 0, sizeof(naa));
538 		naa.naa_nsid = i;
539 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
540 		naa.naa_maxphys = sc->sc_mdts;
541 		naa.naa_typename = sc->sc_modelname;
542 		sc->sc_namespaces[i - 1].dev =
543 		    config_found(sc->sc_dev, &naa, nvme_print,
544 				 CFARGS(.submatch = config_stdsubmatch,
545 					.locators = mlocs));
546 	}
547 	return 0;
548 }
549 
550 static int
nvme_print(void * aux,const char * pnp)551 nvme_print(void *aux, const char *pnp)
552 {
553 	struct nvme_attach_args *naa = aux;
554 
555 	if (pnp)
556 		aprint_normal("ld at %s", pnp);
557 
558 	if (naa->naa_nsid > 0)
559 		aprint_normal(" nsid %d", naa->naa_nsid);
560 
561 	return UNCONF;
562 }
563 
564 int
nvme_detach(struct nvme_softc * sc,int flags)565 nvme_detach(struct nvme_softc *sc, int flags)
566 {
567 	int i, error;
568 
569 	error = config_detach_children(sc->sc_dev, flags);
570 	if (error)
571 		return error;
572 
573 	error = nvme_shutdown(sc);
574 	if (error)
575 		return error;
576 
577 	/* from now on we are committed to detach, following will never fail */
578 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
579 	for (i = 0; i < sc->sc_nq; i++)
580 		nvme_q_free(sc, sc->sc_q[i]);
581 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
582 	nvme_q_free(sc, sc->sc_admin_q);
583 
584 	return 0;
585 }
586 
587 int
nvme_suspend(struct nvme_softc * sc)588 nvme_suspend(struct nvme_softc *sc)
589 {
590 
591 	return nvme_shutdown(sc);
592 }
593 
594 int
nvme_resume(struct nvme_softc * sc)595 nvme_resume(struct nvme_softc *sc)
596 {
597 	int i, error;
598 
599 	error = nvme_disable(sc);
600 	if (error) {
601 		device_printf(sc->sc_dev, "unable to disable controller\n");
602 		return error;
603 	}
604 
605 	nvme_q_reset(sc, sc->sc_admin_q);
606 
607 	error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
608 	if (error) {
609 		device_printf(sc->sc_dev, "unable to enable controller\n");
610 		return error;
611 	}
612 
613 	for (i = 0; i < sc->sc_nq; i++) {
614 		nvme_q_reset(sc, sc->sc_q[i]);
615 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
616 			error = EIO;
617 			device_printf(sc->sc_dev, "unable to create io q %d"
618 			    "\n", i);
619 			goto disable;
620 		}
621 	}
622 
623 	nvme_write4(sc, NVME_INTMC, 1);
624 
625 	return 0;
626 
627 disable:
628 	(void)nvme_disable(sc);
629 
630 	return error;
631 }
632 
633 static int
nvme_shutdown(struct nvme_softc * sc)634 nvme_shutdown(struct nvme_softc *sc)
635 {
636 	uint32_t cc, csts;
637 	bool disabled = false;
638 	int i;
639 
640 	if (!sc->sc_use_mq)
641 		nvme_write4(sc, NVME_INTMS, 1);
642 
643 	for (i = 0; i < sc->sc_nq; i++) {
644 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
645 			aprint_error_dev(sc->sc_dev,
646 			    "unable to delete io queue %d, disabling\n", i + 1);
647 			disabled = true;
648 		}
649 	}
650 	if (disabled)
651 		goto disable;
652 
653 	cc = nvme_read4(sc, NVME_CC);
654 	CLR(cc, NVME_CC_SHN_MASK);
655 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
656 	nvme_write4(sc, NVME_CC, cc);
657 
658 	for (i = 0; i < 4000; i++) {
659 		nvme_barrier(sc, 0, sc->sc_ios,
660 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
661 		csts = nvme_read4(sc, NVME_CSTS);
662 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
663 			return 0;
664 
665 		delay(1000);
666 	}
667 
668 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
669 
670 disable:
671 	nvme_disable(sc);
672 	return 0;
673 }
674 
675 void
nvme_childdet(device_t self,device_t child)676 nvme_childdet(device_t self, device_t child)
677 {
678 	struct nvme_softc *sc = device_private(self);
679 	int i;
680 
681 	for (i = 0; i < sc->sc_nn; i++) {
682 		if (sc->sc_namespaces[i].dev == child) {
683 			/* Already freed ns->ident. */
684 			sc->sc_namespaces[i].dev = NULL;
685 			break;
686 		}
687 	}
688 }
689 
690 int
nvme_ns_identify(struct nvme_softc * sc,uint16_t nsid)691 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
692 {
693 	struct nvme_sqe sqe;
694 	struct nvm_identify_namespace *identify;
695 	struct nvme_dmamem *mem;
696 	struct nvme_ccb *ccb;
697 	struct nvme_namespace *ns;
698 	int rv;
699 
700 	KASSERT(nsid > 0);
701 
702 	ns = nvme_ns_get(sc, nsid);
703 	KASSERT(ns);
704 
705 	if (ns->ident != NULL)
706 		return 0;
707 
708 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
709 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
710 
711 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
712 	if (mem == NULL) {
713 		nvme_ccb_put(sc->sc_admin_q, ccb);
714 		return ENOMEM;
715 	}
716 
717 	memset(&sqe, 0, sizeof(sqe));
718 	sqe.opcode = NVM_ADMIN_IDENTIFY;
719 	htolem32(&sqe.nsid, nsid);
720 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
721 	htolem32(&sqe.cdw10, 0);
722 
723 	ccb->ccb_done = nvme_empty_done;
724 	ccb->ccb_cookie = &sqe;
725 
726 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
727 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
728 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
729 
730 	nvme_ccb_put(sc->sc_admin_q, ccb);
731 
732 	if (rv != 0) {
733 		rv = EIO;
734 		goto done;
735 	}
736 
737 	/* commit */
738 
739 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
740 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
741 
742 	/* Convert data to host endian */
743 	nvme_identify_namespace_swapbytes(identify);
744 
745 	ns->ident = identify;
746 
747 done:
748 	nvme_dmamem_free(sc, mem);
749 
750 	return rv;
751 }
752 
753 int
nvme_ns_dobio(struct nvme_softc * sc,uint16_t nsid,void * cookie,struct buf * bp,void * data,size_t datasize,int secsize,daddr_t blkno,int flags,nvme_nnc_done nnc_done)754 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
755     struct buf *bp, void *data, size_t datasize,
756     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
757 {
758 	struct nvme_queue *q;
759 	struct nvme_ccb *ccb;
760 	bus_dmamap_t dmap;
761 	int i, error;
762 
763 	ccb = nvme_ccb_get_bio(sc, bp, &q);
764 	if (ccb == NULL)
765 		return EAGAIN;
766 
767 	ccb->ccb_done = nvme_ns_io_done;
768 	ccb->ccb_cookie = cookie;
769 
770 	/* namespace context */
771 	ccb->nnc_nsid = nsid;
772 	ccb->nnc_flags = flags;
773 	ccb->nnc_buf = bp;
774 	ccb->nnc_datasize = datasize;
775 	ccb->nnc_secsize = secsize;
776 	ccb->nnc_blkno = blkno;
777 	ccb->nnc_done = nnc_done;
778 
779 	dmap = ccb->ccb_dmamap;
780 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
781 	    datasize, NULL,
782 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
783 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
784 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
785 	      BUS_DMA_READ : BUS_DMA_WRITE));
786 	if (error) {
787 		nvme_ccb_put(q, ccb);
788 		return error;
789 	}
790 
791 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
792 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
793 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
794 
795 	if (dmap->dm_nsegs > 2) {
796 		for (i = 1; i < dmap->dm_nsegs; i++) {
797 			htolem64(&ccb->ccb_prpl[i - 1],
798 			    dmap->dm_segs[i].ds_addr);
799 		}
800 		bus_dmamap_sync(sc->sc_dmat,
801 		    NVME_DMA_MAP(q->q_ccb_prpls),
802 		    ccb->ccb_prpl_off,
803 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
804 		    BUS_DMASYNC_PREWRITE);
805 	}
806 
807 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
808 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
809 			return EIO;
810 		return 0;
811 	}
812 
813 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
814 	return 0;
815 }
816 
817 static void
nvme_ns_io_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)818 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
819 {
820 	struct nvme_sqe_io *sqe = slot;
821 	bus_dmamap_t dmap = ccb->ccb_dmamap;
822 
823 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
824 	    NVM_CMD_READ : NVM_CMD_WRITE;
825 	htolem32(&sqe->nsid, ccb->nnc_nsid);
826 
827 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
828 	switch (dmap->dm_nsegs) {
829 	case 1:
830 		break;
831 	case 2:
832 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
833 		break;
834 	default:
835 		/* the prp list is already set up and synced */
836 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
837 		break;
838 	}
839 
840 	htolem64(&sqe->slba, ccb->nnc_blkno);
841 
842 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
843 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
844 
845 	/* guaranteed by upper layers, but check just in case */
846 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
847 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
848 }
849 
850 static void
nvme_ns_io_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)851 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
852     struct nvme_cqe *cqe)
853 {
854 	struct nvme_softc *sc = q->q_sc;
855 	bus_dmamap_t dmap = ccb->ccb_dmamap;
856 	void *nnc_cookie = ccb->ccb_cookie;
857 	nvme_nnc_done nnc_done = ccb->nnc_done;
858 	struct buf *bp = ccb->nnc_buf;
859 
860 	if (dmap->dm_nsegs > 2) {
861 		bus_dmamap_sync(sc->sc_dmat,
862 		    NVME_DMA_MAP(q->q_ccb_prpls),
863 		    ccb->ccb_prpl_off,
864 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
865 		    BUS_DMASYNC_POSTWRITE);
866 	}
867 
868 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
869 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
870 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
871 
872 	bus_dmamap_unload(sc->sc_dmat, dmap);
873 	nvme_ccb_put(q, ccb);
874 
875 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
876 }
877 
878 /*
879  * If there is no volatile write cache, it makes no sense to issue
880  * flush commands or query for the status.
881  */
882 static bool
nvme_has_volatile_write_cache(struct nvme_softc * sc)883 nvme_has_volatile_write_cache(struct nvme_softc *sc)
884 {
885 	/* sc_identify is filled during attachment */
886 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
887 }
888 
889 static bool
nvme_ns_sync_finished(void * cookie)890 nvme_ns_sync_finished(void *cookie)
891 {
892 	int *result = cookie;
893 
894 	return (*result != 0);
895 }
896 
897 int
nvme_ns_sync(struct nvme_softc * sc,uint16_t nsid,int flags)898 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
899 {
900 	struct nvme_queue *q = nvme_get_q(sc);
901 	struct nvme_ccb *ccb;
902 	int result = 0;
903 
904 	if (!nvme_has_volatile_write_cache(sc)) {
905 		/* cache not present, no value in trying to flush it */
906 		return 0;
907 	}
908 
909 	ccb = nvme_ccb_get(q, true);
910 	KASSERT(ccb != NULL);
911 
912 	ccb->ccb_done = nvme_ns_sync_done;
913 	ccb->ccb_cookie = &result;
914 
915 	/* namespace context */
916 	ccb->nnc_nsid = nsid;
917 	ccb->nnc_flags = flags;
918 	ccb->nnc_done = NULL;
919 
920 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
921 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
922 			return EIO;
923 		return 0;
924 	}
925 
926 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
927 
928 	/* wait for completion */
929 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
930 	KASSERT(result != 0);
931 
932 	return (result > 0) ? 0 : EIO;
933 }
934 
935 static void
nvme_ns_sync_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)936 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
937 {
938 	struct nvme_sqe *sqe = slot;
939 
940 	sqe->opcode = NVM_CMD_FLUSH;
941 	htolem32(&sqe->nsid, ccb->nnc_nsid);
942 }
943 
944 static void
nvme_ns_sync_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)945 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
946     struct nvme_cqe *cqe)
947 {
948 	int *result = ccb->ccb_cookie;
949 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
950 
951 	if (status == NVME_CQE_SC_SUCCESS)
952 		*result = 1;
953 	else
954 		*result = -1;
955 
956 	nvme_ccb_put(q, ccb);
957 }
958 
959 static bool
nvme_getcache_finished(void * xc)960 nvme_getcache_finished(void *xc)
961 {
962 	int *addr = xc;
963 
964 	return (*addr != 0);
965 }
966 
967 /*
968  * Get status of volatile write cache. Always asynchronous.
969  */
970 int
nvme_admin_getcache(struct nvme_softc * sc,int * addr)971 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
972 {
973 	struct nvme_ccb *ccb;
974 	struct nvme_queue *q = sc->sc_admin_q;
975 	int result = 0, error;
976 
977 	if (!nvme_has_volatile_write_cache(sc)) {
978 		/* cache simply not present */
979 		*addr = 0;
980 		return 0;
981 	}
982 
983 	ccb = nvme_ccb_get(q, true);
984 	KASSERT(ccb != NULL);
985 
986 	ccb->ccb_done = nvme_getcache_done;
987 	ccb->ccb_cookie = &result;
988 
989 	/* namespace context */
990 	ccb->nnc_flags = 0;
991 	ccb->nnc_done = NULL;
992 
993 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
994 
995 	/* wait for completion */
996 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
997 	KASSERT(result != 0);
998 
999 	if (result > 0) {
1000 		*addr = result;
1001 		error = 0;
1002 	} else
1003 		error = EINVAL;
1004 
1005 	return error;
1006 }
1007 
1008 static void
nvme_getcache_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1009 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1010 {
1011 	struct nvme_sqe *sqe = slot;
1012 
1013 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
1014 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1015 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1016 }
1017 
1018 static void
nvme_getcache_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1019 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1020     struct nvme_cqe *cqe)
1021 {
1022 	int *addr = ccb->ccb_cookie;
1023 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1024 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1025 	int result;
1026 
1027 	if (status == NVME_CQE_SC_SUCCESS) {
1028 		result = 0;
1029 
1030 		/*
1031 		 * DPO not supported, Dataset Management (DSM) field doesn't
1032 		 * specify the same semantics. FUA is always supported.
1033 		 */
1034 		result = DKCACHE_FUA;
1035 
1036 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1037 			result |= DKCACHE_WRITE;
1038 
1039 		/*
1040 		 * If volatile write cache is present, the flag shall also be
1041 		 * settable.
1042 		 */
1043 		result |= DKCACHE_WCHANGE;
1044 
1045 		/*
1046 		 * ONCS field indicates whether the optional SAVE is also
1047 		 * supported for Set Features. According to spec v1.3,
1048 		 * Volatile Write Cache however doesn't support persistency
1049 		 * across power cycle/reset.
1050 		 */
1051 
1052 	} else {
1053 		result = -1;
1054 	}
1055 
1056 	*addr = result;
1057 
1058 	nvme_ccb_put(q, ccb);
1059 }
1060 
1061 struct nvme_setcache_state {
1062 	int dkcache;
1063 	int result;
1064 };
1065 
1066 static bool
nvme_setcache_finished(void * xc)1067 nvme_setcache_finished(void *xc)
1068 {
1069 	struct nvme_setcache_state *st = xc;
1070 
1071 	return (st->result != 0);
1072 }
1073 
1074 static void
nvme_setcache_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1075 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1076 {
1077 	struct nvme_sqe *sqe = slot;
1078 	struct nvme_setcache_state *st = ccb->ccb_cookie;
1079 
1080 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
1081 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1082 	if (st->dkcache & DKCACHE_WRITE)
1083 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1084 }
1085 
1086 static void
nvme_setcache_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1087 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1088     struct nvme_cqe *cqe)
1089 {
1090 	struct nvme_setcache_state *st = ccb->ccb_cookie;
1091 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1092 
1093 	if (status == NVME_CQE_SC_SUCCESS) {
1094 		st->result = 1;
1095 	} else {
1096 		st->result = -1;
1097 	}
1098 
1099 	nvme_ccb_put(q, ccb);
1100 }
1101 
1102 /*
1103  * Set status of volatile write cache. Always asynchronous.
1104  */
1105 int
nvme_admin_setcache(struct nvme_softc * sc,int dkcache)1106 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1107 {
1108 	struct nvme_ccb *ccb;
1109 	struct nvme_queue *q = sc->sc_admin_q;
1110 	int error;
1111 	struct nvme_setcache_state st;
1112 
1113 	if (!nvme_has_volatile_write_cache(sc)) {
1114 		/* cache simply not present */
1115 		return EOPNOTSUPP;
1116 	}
1117 
1118 	if (dkcache & ~(DKCACHE_WRITE)) {
1119 		/* unsupported parameters */
1120 		return EOPNOTSUPP;
1121 	}
1122 
1123 	ccb = nvme_ccb_get(q, true);
1124 	KASSERT(ccb != NULL);
1125 
1126 	memset(&st, 0, sizeof(st));
1127 	st.dkcache = dkcache;
1128 
1129 	ccb->ccb_done = nvme_setcache_done;
1130 	ccb->ccb_cookie = &st;
1131 
1132 	/* namespace context */
1133 	ccb->nnc_flags = 0;
1134 	ccb->nnc_done = NULL;
1135 
1136 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1137 
1138 	/* wait for completion */
1139 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1140 	KASSERT(st.result != 0);
1141 
1142 	if (st.result > 0)
1143 		error = 0;
1144 	else
1145 		error = EINVAL;
1146 
1147 	return error;
1148 }
1149 
1150 void
nvme_ns_free(struct nvme_softc * sc,uint16_t nsid)1151 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1152 {
1153 	struct nvme_namespace *ns;
1154 	struct nvm_identify_namespace *identify;
1155 
1156 	ns = nvme_ns_get(sc, nsid);
1157 	KASSERT(ns);
1158 
1159 	identify = ns->ident;
1160 	ns->ident = NULL;
1161 	if (identify != NULL)
1162 		kmem_free(identify, sizeof(*identify));
1163 }
1164 
1165 struct nvme_pt_state {
1166 	struct nvme_pt_command *pt;
1167 	bool finished;
1168 };
1169 
1170 static void
nvme_pt_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1171 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1172 {
1173 	struct nvme_softc *sc = q->q_sc;
1174 	struct nvme_sqe *sqe = slot;
1175 	struct nvme_pt_state *state = ccb->ccb_cookie;
1176 	struct nvme_pt_command *pt = state->pt;
1177 	bus_dmamap_t dmap = ccb->ccb_dmamap;
1178 	int i;
1179 
1180 	sqe->opcode = pt->cmd.opcode;
1181 	htolem32(&sqe->nsid, pt->cmd.nsid);
1182 
1183 	if (pt->buf != NULL && pt->len > 0) {
1184 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1185 		switch (dmap->dm_nsegs) {
1186 		case 1:
1187 			break;
1188 		case 2:
1189 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1190 			break;
1191 		default:
1192 			for (i = 1; i < dmap->dm_nsegs; i++) {
1193 				htolem64(&ccb->ccb_prpl[i - 1],
1194 				    dmap->dm_segs[i].ds_addr);
1195 			}
1196 			bus_dmamap_sync(sc->sc_dmat,
1197 			    NVME_DMA_MAP(q->q_ccb_prpls),
1198 			    ccb->ccb_prpl_off,
1199 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1200 			    BUS_DMASYNC_PREWRITE);
1201 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1202 			break;
1203 		}
1204 	}
1205 
1206 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
1207 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
1208 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
1209 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
1210 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
1211 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
1212 }
1213 
1214 static void
nvme_pt_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1215 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1216 {
1217 	struct nvme_softc *sc = q->q_sc;
1218 	struct nvme_pt_state *state = ccb->ccb_cookie;
1219 	struct nvme_pt_command *pt = state->pt;
1220 	bus_dmamap_t dmap = ccb->ccb_dmamap;
1221 
1222 	if (pt->buf != NULL && pt->len > 0) {
1223 		if (dmap->dm_nsegs > 2) {
1224 			bus_dmamap_sync(sc->sc_dmat,
1225 			    NVME_DMA_MAP(q->q_ccb_prpls),
1226 			    ccb->ccb_prpl_off,
1227 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1228 			    BUS_DMASYNC_POSTWRITE);
1229 		}
1230 
1231 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1232 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1233 		bus_dmamap_unload(sc->sc_dmat, dmap);
1234 	}
1235 
1236 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1237 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1238 
1239 	state->finished = true;
1240 
1241 	nvme_ccb_put(q, ccb);
1242 }
1243 
1244 static bool
nvme_pt_finished(void * cookie)1245 nvme_pt_finished(void *cookie)
1246 {
1247 	struct nvme_pt_state *state = cookie;
1248 
1249 	return state->finished;
1250 }
1251 
1252 static int
nvme_command_passthrough(struct nvme_softc * sc,struct nvme_pt_command * pt,uint32_t nsid,struct lwp * l,bool is_adminq)1253 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1254     uint32_t nsid, struct lwp *l, bool is_adminq)
1255 {
1256 	struct nvme_queue *q;
1257 	struct nvme_ccb *ccb;
1258 	void *buf = NULL;
1259 	struct nvme_pt_state state;
1260 	int error;
1261 
1262 	/* limit command size to maximum data transfer size */
1263 	if ((pt->buf == NULL && pt->len > 0) ||
1264 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1265 		return EINVAL;
1266 
1267 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1268 	ccb = nvme_ccb_get(q, true);
1269 	KASSERT(ccb != NULL);
1270 
1271 	if (pt->buf != NULL) {
1272 		KASSERT(pt->len > 0);
1273 		buf = kmem_alloc(pt->len, KM_SLEEP);
1274 		if (!pt->is_read) {
1275 			error = copyin(pt->buf, buf, pt->len);
1276 			if (error)
1277 				goto kmem_free;
1278 		}
1279 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1280 		    pt->len, NULL,
1281 		    BUS_DMA_WAITOK |
1282 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1283 		if (error)
1284 			goto kmem_free;
1285 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1286 		    0, ccb->ccb_dmamap->dm_mapsize,
1287 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1288 	}
1289 
1290 	memset(&state, 0, sizeof(state));
1291 	state.pt = pt;
1292 	state.finished = false;
1293 
1294 	ccb->ccb_done = nvme_pt_done;
1295 	ccb->ccb_cookie = &state;
1296 
1297 	pt->cmd.nsid = nsid;
1298 
1299 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1300 
1301 	/* wait for completion */
1302 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1303 	KASSERT(state.finished);
1304 
1305 	error = 0;
1306 
1307 	if (buf != NULL) {
1308 		if (error == 0 && pt->is_read)
1309 			error = copyout(buf, pt->buf, pt->len);
1310 kmem_free:
1311 		kmem_free(buf, pt->len);
1312 	}
1313 
1314 	return error;
1315 }
1316 
1317 uint32_t
nvme_op_sq_enter(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1318 nvme_op_sq_enter(struct nvme_softc *sc,
1319     struct nvme_queue *q, struct nvme_ccb *ccb)
1320 {
1321 	mutex_enter(&q->q_sq_mtx);
1322 
1323 	return nvme_op_sq_enter_locked(sc, q, ccb);
1324 }
1325 
1326 uint32_t
nvme_op_sq_enter_locked(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1327 nvme_op_sq_enter_locked(struct nvme_softc *sc,
1328     struct nvme_queue *q, struct nvme_ccb *ccb)
1329 {
1330 	return q->q_sq_tail;
1331 }
1332 
1333 void
nvme_op_sq_leave_locked(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1334 nvme_op_sq_leave_locked(struct nvme_softc *sc,
1335     struct nvme_queue *q, struct nvme_ccb *ccb)
1336 {
1337 	uint32_t tail;
1338 
1339 	tail = ++q->q_sq_tail;
1340 	if (tail >= q->q_entries)
1341 		tail = 0;
1342 	q->q_sq_tail = tail;
1343 	nvme_write4(sc, q->q_sqtdbl, tail);
1344 }
1345 
1346 void
nvme_op_sq_leave(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1347 nvme_op_sq_leave(struct nvme_softc *sc,
1348     struct nvme_queue *q, struct nvme_ccb *ccb)
1349 {
1350 	nvme_op_sq_leave_locked(sc, q, ccb);
1351 
1352 	mutex_exit(&q->q_sq_mtx);
1353 }
1354 
1355 static void
nvme_q_submit(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb,void (* fill)(struct nvme_queue *,struct nvme_ccb *,void *))1356 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1357     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1358 {
1359 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1360 	uint32_t tail;
1361 
1362 	tail = sc->sc_ops->op_sq_enter(sc, q, ccb);
1363 
1364 	sqe += tail;
1365 
1366 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1367 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1368 	memset(sqe, 0, sizeof(*sqe));
1369 	(*fill)(q, ccb, sqe);
1370 	htolem16(&sqe->cid, ccb->ccb_id);
1371 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1372 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1373 
1374 	sc->sc_ops->op_sq_leave(sc, q, ccb);
1375 }
1376 
1377 struct nvme_poll_state {
1378 	struct nvme_sqe s;
1379 	struct nvme_cqe c;
1380 	void *cookie;
1381 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1382 };
1383 
1384 static int
nvme_poll(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb,void (* fill)(struct nvme_queue *,struct nvme_ccb *,void *),int timo_sec)1385 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1386     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1387 {
1388 	struct nvme_poll_state state;
1389 	uint16_t flags;
1390 	int step = 10;
1391 	int maxloop = timo_sec * 1000000 / step;
1392 	int error = 0;
1393 
1394 	memset(&state, 0, sizeof(state));
1395 	(*fill)(q, ccb, &state.s);
1396 
1397 	state.done = ccb->ccb_done;
1398 	state.cookie = ccb->ccb_cookie;
1399 
1400 	ccb->ccb_done = nvme_poll_done;
1401 	ccb->ccb_cookie = &state;
1402 
1403 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1404 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1405 		if (nvme_q_complete(sc, q) == 0)
1406 			delay(step);
1407 
1408 		if (timo_sec >= 0 && --maxloop <= 0) {
1409 			error = ETIMEDOUT;
1410 			break;
1411 		}
1412 	}
1413 
1414 	if (error == 0) {
1415 		flags = lemtoh16(&state.c.flags);
1416 		return flags & ~NVME_CQE_PHASE;
1417 	} else {
1418 		/*
1419 		 * If it succeds later, it would hit ccb which will have been
1420 		 * already reused for something else. Not good. Cross
1421 		 * fingers and hope for best. XXX do controller reset?
1422 		 */
1423 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1424 
1425 		/* Invoke the callback to clean state anyway */
1426 		struct nvme_cqe cqe;
1427 		memset(&cqe, 0, sizeof(cqe));
1428 		ccb->ccb_done(q, ccb, &cqe);
1429 
1430 		return 1;
1431 	}
1432 }
1433 
1434 static void
nvme_poll_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1435 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1436 {
1437 	struct nvme_sqe *sqe = slot;
1438 	struct nvme_poll_state *state = ccb->ccb_cookie;
1439 
1440 	*sqe = state->s;
1441 }
1442 
1443 static void
nvme_poll_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1444 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1445     struct nvme_cqe *cqe)
1446 {
1447 	struct nvme_poll_state *state = ccb->ccb_cookie;
1448 
1449 	state->c = *cqe;
1450 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
1451 
1452 	ccb->ccb_cookie = state->cookie;
1453 	state->done(q, ccb, &state->c);
1454 }
1455 
1456 static void
nvme_sqe_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1457 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1458 {
1459 	struct nvme_sqe *src = ccb->ccb_cookie;
1460 	struct nvme_sqe *dst = slot;
1461 
1462 	*dst = *src;
1463 }
1464 
1465 static void
nvme_empty_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1466 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1467     struct nvme_cqe *cqe)
1468 {
1469 }
1470 
1471 void
nvme_op_cq_done(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1472 nvme_op_cq_done(struct nvme_softc *sc,
1473     struct nvme_queue *q, struct nvme_ccb *ccb)
1474 {
1475 	/* nop */
1476 }
1477 
1478 static int
nvme_q_complete(struct nvme_softc * sc,struct nvme_queue * q)1479 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1480 {
1481 	struct nvme_ccb *ccb;
1482 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1483 	uint16_t flags;
1484 	int rv = 0;
1485 
1486 	mutex_enter(&q->q_cq_mtx);
1487 
1488 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1489 	for (;;) {
1490 		cqe = &ring[q->q_cq_head];
1491 		flags = lemtoh16(&cqe->flags);
1492 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1493 			break;
1494 
1495 		/*
1496 		 * Make sure we have read the flags _before_ we read
1497 		 * the cid.  Otherwise the CPU might speculatively read
1498 		 * the cid before the entry has been assigned to our
1499 		 * phase.
1500 		 */
1501 		nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1502 
1503 		ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1504 
1505 		if (++q->q_cq_head >= q->q_entries) {
1506 			q->q_cq_head = 0;
1507 			q->q_cq_phase ^= NVME_CQE_PHASE;
1508 		}
1509 
1510 #ifdef DEBUG
1511 		/*
1512 		 * If we get spurious completion notification, something
1513 		 * is seriously hosed up. Very likely DMA to some random
1514 		 * memory place happened, so just bail out.
1515 		 */
1516 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1517 			panic("%s: invalid ccb detected",
1518 			    device_xname(sc->sc_dev));
1519 			/* NOTREACHED */
1520 		}
1521 #endif
1522 
1523 		rv++;
1524 
1525 		sc->sc_ops->op_cq_done(sc, q, ccb);
1526 
1527 		/*
1528 		 * Unlock the mutex before calling the ccb_done callback
1529 		 * and re-lock afterwards. The callback triggers lddone()
1530 		 * which schedules another i/o, and also calls nvme_ccb_put().
1531 		 * Unlock/relock avoids possibility of deadlock.
1532 		 */
1533 		mutex_exit(&q->q_cq_mtx);
1534 		ccb->ccb_done(q, ccb, cqe);
1535 		mutex_enter(&q->q_cq_mtx);
1536 	}
1537 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1538 
1539 	if (rv)
1540 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1541 
1542 	mutex_exit(&q->q_cq_mtx);
1543 
1544 	return rv;
1545 }
1546 
1547 static void
nvme_q_wait_complete(struct nvme_softc * sc,struct nvme_queue * q,bool (* finished)(void *),void * cookie)1548 nvme_q_wait_complete(struct nvme_softc *sc,
1549     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1550 {
1551 	mutex_enter(&q->q_ccb_mtx);
1552 	if (finished(cookie))
1553 		goto out;
1554 
1555 	for(;;) {
1556 		q->q_ccb_waiting = true;
1557 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1558 
1559 		if (finished(cookie))
1560 			break;
1561 	}
1562 
1563 out:
1564 	mutex_exit(&q->q_ccb_mtx);
1565 }
1566 
1567 static int
nvme_identify(struct nvme_softc * sc,u_int mps)1568 nvme_identify(struct nvme_softc *sc, u_int mps)
1569 {
1570 	char sn[41], mn[81], fr[17];
1571 	struct nvm_identify_controller *identify;
1572 	struct nvme_dmamem *mem;
1573 	struct nvme_ccb *ccb;
1574 	u_int mdts;
1575 	int rv = 1;
1576 
1577 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1578 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1579 
1580 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1581 	if (mem == NULL)
1582 		return 1;
1583 
1584 	ccb->ccb_done = nvme_empty_done;
1585 	ccb->ccb_cookie = mem;
1586 
1587 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1588 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1589 	    NVME_TIMO_IDENT);
1590 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1591 
1592 	nvme_ccb_put(sc->sc_admin_q, ccb);
1593 
1594 	if (rv != 0)
1595 		goto done;
1596 
1597 	identify = NVME_DMA_KVA(mem);
1598 	sc->sc_identify = *identify;
1599 	identify = NULL;
1600 
1601 	/* Convert data to host endian */
1602 	nvme_identify_controller_swapbytes(&sc->sc_identify);
1603 
1604 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1605 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1606 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1607 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1608 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1609 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1610 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1611 	    sn);
1612 
1613 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1614 
1615 	if (sc->sc_identify.mdts > 0) {
1616 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1617 		if (mdts < sc->sc_mdts)
1618 			sc->sc_mdts = mdts;
1619 	}
1620 
1621 	sc->sc_nn = sc->sc_identify.nn;
1622 
1623 done:
1624 	nvme_dmamem_free(sc, mem);
1625 
1626 	return rv;
1627 }
1628 
1629 static int
nvme_q_create(struct nvme_softc * sc,struct nvme_queue * q)1630 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1631 {
1632 	struct nvme_sqe_q sqe;
1633 	struct nvme_ccb *ccb;
1634 	int rv;
1635 
1636 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1637 		return 1;
1638 
1639 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1640 	KASSERT(ccb != NULL);
1641 
1642 	ccb->ccb_done = nvme_empty_done;
1643 	ccb->ccb_cookie = &sqe;
1644 
1645 	memset(&sqe, 0, sizeof(sqe));
1646 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1647 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1648 	htolem16(&sqe.qsize, q->q_entries - 1);
1649 	htolem16(&sqe.qid, q->q_id);
1650 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1651 	if (sc->sc_use_mq)
1652 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
1653 
1654 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1655 	if (rv != 0)
1656 		goto fail;
1657 
1658 	ccb->ccb_done = nvme_empty_done;
1659 	ccb->ccb_cookie = &sqe;
1660 
1661 	memset(&sqe, 0, sizeof(sqe));
1662 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1663 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1664 	htolem16(&sqe.qsize, q->q_entries - 1);
1665 	htolem16(&sqe.qid, q->q_id);
1666 	htolem16(&sqe.cqid, q->q_id);
1667 	sqe.qflags = NVM_SQE_Q_PC;
1668 
1669 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1670 	if (rv != 0)
1671 		goto fail;
1672 
1673 	nvme_ccb_put(sc->sc_admin_q, ccb);
1674 	return 0;
1675 
1676 fail:
1677 	if (sc->sc_use_mq)
1678 		sc->sc_intr_disestablish(sc, q->q_id);
1679 
1680 	nvme_ccb_put(sc->sc_admin_q, ccb);
1681 	return rv;
1682 }
1683 
1684 static int
nvme_q_delete(struct nvme_softc * sc,struct nvme_queue * q)1685 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1686 {
1687 	struct nvme_sqe_q sqe;
1688 	struct nvme_ccb *ccb;
1689 	int rv;
1690 
1691 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1692 	KASSERT(ccb != NULL);
1693 
1694 	ccb->ccb_done = nvme_empty_done;
1695 	ccb->ccb_cookie = &sqe;
1696 
1697 	memset(&sqe, 0, sizeof(sqe));
1698 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1699 	htolem16(&sqe.qid, q->q_id);
1700 
1701 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1702 	if (rv != 0)
1703 		goto fail;
1704 
1705 	ccb->ccb_done = nvme_empty_done;
1706 	ccb->ccb_cookie = &sqe;
1707 
1708 	memset(&sqe, 0, sizeof(sqe));
1709 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1710 	htolem16(&sqe.qid, q->q_id);
1711 
1712 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1713 	if (rv != 0)
1714 		goto fail;
1715 
1716 fail:
1717 	nvme_ccb_put(sc->sc_admin_q, ccb);
1718 
1719 	if (rv == 0 && sc->sc_use_mq) {
1720 		if (sc->sc_intr_disestablish(sc, q->q_id))
1721 			rv = 1;
1722 	}
1723 
1724 	return rv;
1725 }
1726 
1727 static void
nvme_fill_identify(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1728 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1729 {
1730 	struct nvme_sqe *sqe = slot;
1731 	struct nvme_dmamem *mem = ccb->ccb_cookie;
1732 
1733 	sqe->opcode = NVM_ADMIN_IDENTIFY;
1734 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1735 	htolem32(&sqe->cdw10, 1);
1736 }
1737 
1738 static int
nvme_set_number_of_queues(struct nvme_softc * sc,u_int nq,u_int * ncqa,u_int * nsqa)1739 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1740     u_int *nsqa)
1741 {
1742 	struct nvme_pt_state state;
1743 	struct nvme_pt_command pt;
1744 	struct nvme_ccb *ccb;
1745 	int rv;
1746 
1747 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1748 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1749 
1750 	memset(&pt, 0, sizeof(pt));
1751 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1752 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1753 	pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1754 
1755 	memset(&state, 0, sizeof(state));
1756 	state.pt = &pt;
1757 	state.finished = false;
1758 
1759 	ccb->ccb_done = nvme_pt_done;
1760 	ccb->ccb_cookie = &state;
1761 
1762 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1763 
1764 	if (rv != 0) {
1765 		*ncqa = *nsqa = 0;
1766 		return EIO;
1767 	}
1768 
1769 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
1770 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1771 
1772 	return 0;
1773 }
1774 
1775 static int
nvme_ccbs_alloc(struct nvme_queue * q,uint16_t nccbs)1776 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1777 {
1778 	struct nvme_softc *sc = q->q_sc;
1779 	struct nvme_ccb *ccb;
1780 	bus_addr_t off;
1781 	uint64_t *prpl;
1782 	u_int i;
1783 
1784 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1785 	cv_init(&q->q_ccb_wait, "nvmeqw");
1786 	q->q_ccb_waiting = false;
1787 	SIMPLEQ_INIT(&q->q_ccb_list);
1788 
1789 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1790 
1791 	q->q_nccbs = nccbs;
1792 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1793 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1794 
1795 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1796 	off = 0;
1797 
1798 	for (i = 0; i < nccbs; i++) {
1799 		ccb = &q->q_ccbs[i];
1800 
1801 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1802 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1803 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1804 		    &ccb->ccb_dmamap) != 0)
1805 			goto free_maps;
1806 
1807 		ccb->ccb_id = i;
1808 		ccb->ccb_prpl = prpl;
1809 		ccb->ccb_prpl_off = off;
1810 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1811 
1812 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1813 
1814 		prpl += sc->sc_max_sgl;
1815 		off += sizeof(*prpl) * sc->sc_max_sgl;
1816 	}
1817 
1818 	return 0;
1819 
1820 free_maps:
1821 	nvme_ccbs_free(q);
1822 	return 1;
1823 }
1824 
1825 static struct nvme_ccb *
nvme_ccb_get(struct nvme_queue * q,bool wait)1826 nvme_ccb_get(struct nvme_queue *q, bool wait)
1827 {
1828 	struct nvme_ccb *ccb = NULL;
1829 
1830 	mutex_enter(&q->q_ccb_mtx);
1831 again:
1832 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1833 	if (ccb != NULL) {
1834 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1835 #ifdef DEBUG
1836 		ccb->ccb_cookie = NULL;
1837 #endif
1838 	} else {
1839 		if (__predict_false(wait)) {
1840 			q->q_ccb_waiting = true;
1841 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1842 			goto again;
1843 		}
1844 	}
1845 	mutex_exit(&q->q_ccb_mtx);
1846 
1847 	return ccb;
1848 }
1849 
1850 static struct nvme_ccb *
nvme_ccb_get_bio(struct nvme_softc * sc,struct buf * bp,struct nvme_queue ** selq)1851 nvme_ccb_get_bio(struct nvme_softc *sc, struct buf *bp,
1852     struct nvme_queue **selq)
1853 {
1854 	u_int cpuindex = cpu_index((bp && bp->b_ci) ? bp->b_ci : curcpu());
1855 
1856 	/*
1857 	 * Find a queue with available ccbs, preferring the originating
1858 	 * CPU's queue.
1859 	 */
1860 
1861 	for (u_int qoff = 0; qoff < sc->sc_nq; qoff++) {
1862 		struct nvme_queue *q = sc->sc_q[(cpuindex + qoff) % sc->sc_nq];
1863 		struct nvme_ccb *ccb;
1864 
1865 		mutex_enter(&q->q_ccb_mtx);
1866 		ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1867 		if (ccb != NULL) {
1868 			SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1869 #ifdef DEBUG
1870 			ccb->ccb_cookie = NULL;
1871 #endif
1872 		}
1873 		mutex_exit(&q->q_ccb_mtx);
1874 
1875 		if (ccb != NULL) {
1876 			*selq = q;
1877 			return ccb;
1878 		}
1879 	}
1880 
1881 	return NULL;
1882 }
1883 
1884 static void
nvme_ccb_put(struct nvme_queue * q,struct nvme_ccb * ccb)1885 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1886 {
1887 
1888 	mutex_enter(&q->q_ccb_mtx);
1889 #ifdef DEBUG
1890 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1891 #endif
1892 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1893 
1894 	/* It's unlikely there are any waiters, it's not used for regular I/O */
1895 	if (__predict_false(q->q_ccb_waiting)) {
1896 		q->q_ccb_waiting = false;
1897 		cv_broadcast(&q->q_ccb_wait);
1898 	}
1899 
1900 	mutex_exit(&q->q_ccb_mtx);
1901 }
1902 
1903 static void
nvme_ccbs_free(struct nvme_queue * q)1904 nvme_ccbs_free(struct nvme_queue *q)
1905 {
1906 	struct nvme_softc *sc = q->q_sc;
1907 	struct nvme_ccb *ccb;
1908 
1909 	mutex_enter(&q->q_ccb_mtx);
1910 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1911 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1912 		/*
1913 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1914 		 * internally. don't hold spin mutex
1915 		 */
1916 		mutex_exit(&q->q_ccb_mtx);
1917 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1918 		mutex_enter(&q->q_ccb_mtx);
1919 	}
1920 	mutex_exit(&q->q_ccb_mtx);
1921 
1922 	nvme_dmamem_free(sc, q->q_ccb_prpls);
1923 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1924 	q->q_ccbs = NULL;
1925 	cv_destroy(&q->q_ccb_wait);
1926 	mutex_destroy(&q->q_ccb_mtx);
1927 }
1928 
1929 static struct nvme_queue *
nvme_q_alloc(struct nvme_softc * sc,uint16_t id,u_int entries,u_int dstrd)1930 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1931 {
1932 	struct nvme_queue *q;
1933 
1934 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
1935 	q->q_sc = sc;
1936 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1937 	    sizeof(struct nvme_sqe) * entries);
1938 	if (q->q_sq_dmamem == NULL)
1939 		goto free;
1940 
1941 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1942 	    sizeof(struct nvme_cqe) * entries);
1943 	if (q->q_cq_dmamem == NULL)
1944 		goto free_sq;
1945 
1946 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1947 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1948 
1949 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1950 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1951 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1952 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1953 	q->q_id = id;
1954 	q->q_entries = entries;
1955 	q->q_sq_tail = 0;
1956 	q->q_cq_head = 0;
1957 	q->q_cq_phase = NVME_CQE_PHASE;
1958 
1959 	if (sc->sc_ops->op_q_alloc != NULL) {
1960 		if (sc->sc_ops->op_q_alloc(sc, q) != 0)
1961 			goto free_cq;
1962 	}
1963 
1964 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1965 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1966 
1967 	/*
1968 	 * Due to definition of full and empty queue (queue is empty
1969 	 * when head == tail, full when tail is one less then head),
1970 	 * we can actually only have (entries - 1) in-flight commands.
1971 	 */
1972 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1973 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1974 		goto free_cq;
1975 	}
1976 
1977 	return q;
1978 
1979 free_cq:
1980 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1981 free_sq:
1982 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1983 free:
1984 	kmem_free(q, sizeof(*q));
1985 
1986 	return NULL;
1987 }
1988 
1989 static void
nvme_q_reset(struct nvme_softc * sc,struct nvme_queue * q)1990 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1991 {
1992 
1993 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1994 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1995 
1996 	q->q_sq_tail = 0;
1997 	q->q_cq_head = 0;
1998 	q->q_cq_phase = NVME_CQE_PHASE;
1999 
2000 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
2001 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
2002 }
2003 
2004 static void
nvme_q_free(struct nvme_softc * sc,struct nvme_queue * q)2005 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
2006 {
2007 	nvme_ccbs_free(q);
2008 	mutex_destroy(&q->q_sq_mtx);
2009 	mutex_destroy(&q->q_cq_mtx);
2010 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
2011 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
2012 
2013 	if (sc->sc_ops->op_q_alloc != NULL)
2014 		sc->sc_ops->op_q_free(sc, q);
2015 
2016 	nvme_dmamem_free(sc, q->q_cq_dmamem);
2017 	nvme_dmamem_free(sc, q->q_sq_dmamem);
2018 	kmem_free(q, sizeof(*q));
2019 }
2020 
2021 int
nvme_intr(void * xsc)2022 nvme_intr(void *xsc)
2023 {
2024 	struct nvme_softc *sc = xsc;
2025 
2026 	/*
2027 	 * INTx is level triggered, controller deasserts the interrupt only
2028 	 * when we advance command queue head via write to the doorbell.
2029 	 * Tell the controller to block the interrupts while we process
2030 	 * the queue(s).
2031 	 */
2032 	nvme_write4(sc, NVME_INTMS, 1);
2033 
2034 	softint_schedule(sc->sc_softih[0]);
2035 
2036 	/* don't know, might not have been for us */
2037 	return 1;
2038 }
2039 
2040 void
nvme_softintr_intx(void * xq)2041 nvme_softintr_intx(void *xq)
2042 {
2043 	struct nvme_queue *q = xq;
2044 	struct nvme_softc *sc = q->q_sc;
2045 
2046 	nvme_q_complete(sc, sc->sc_admin_q);
2047 	if (sc->sc_q != NULL)
2048 	        nvme_q_complete(sc, sc->sc_q[0]);
2049 
2050 	/*
2051 	 * Processing done, tell controller to issue interrupts again. There
2052 	 * is no race, as NVMe spec requires the controller to maintain state,
2053 	 * and assert the interrupt whenever there are unacknowledged
2054 	 * completion queue entries.
2055 	 */
2056 	nvme_write4(sc, NVME_INTMC, 1);
2057 }
2058 
2059 int
nvme_intr_msi(void * xq)2060 nvme_intr_msi(void *xq)
2061 {
2062 	struct nvme_queue *q = xq;
2063 
2064 	KASSERT(q);
2065 	KASSERT(q->q_sc);
2066 	KASSERT(q->q_sc->sc_softih);
2067 	KASSERT(q->q_sc->sc_softih[q->q_id]);
2068 
2069 	/*
2070 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
2071 	 * without masking the interrupt.
2072 	 */
2073 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
2074 
2075 	return 1;
2076 }
2077 
2078 void
nvme_softintr_msi(void * xq)2079 nvme_softintr_msi(void *xq)
2080 {
2081 	struct nvme_queue *q = xq;
2082 	struct nvme_softc *sc = q->q_sc;
2083 
2084 	nvme_q_complete(sc, q);
2085 }
2086 
2087 struct nvme_dmamem *
nvme_dmamem_alloc(struct nvme_softc * sc,size_t size)2088 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
2089 {
2090 	struct nvme_dmamem *ndm;
2091 	int nsegs;
2092 
2093 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
2094 	if (ndm == NULL)
2095 		return NULL;
2096 
2097 	ndm->ndm_size = size;
2098 
2099 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
2100 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
2101 		goto ndmfree;
2102 
2103 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
2104 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
2105 		goto destroy;
2106 
2107 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2108 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2109 		goto free;
2110 
2111 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2112 	    NULL, BUS_DMA_WAITOK) != 0)
2113 		goto unmap;
2114 
2115 	memset(ndm->ndm_kva, 0, size);
2116 	bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
2117 
2118 	return ndm;
2119 
2120 unmap:
2121 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2122 free:
2123 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2124 destroy:
2125 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2126 ndmfree:
2127 	kmem_free(ndm, sizeof(*ndm));
2128 	return NULL;
2129 }
2130 
2131 void
nvme_dmamem_sync(struct nvme_softc * sc,struct nvme_dmamem * mem,int ops)2132 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2133 {
2134 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2135 	    0, NVME_DMA_LEN(mem), ops);
2136 }
2137 
2138 void
nvme_dmamem_free(struct nvme_softc * sc,struct nvme_dmamem * ndm)2139 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2140 {
2141 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2142 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2143 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2144 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2145 	kmem_free(ndm, sizeof(*ndm));
2146 }
2147 
2148 /*
2149  * ioctl
2150  */
2151 
2152 dev_type_open(nvmeopen);
2153 dev_type_close(nvmeclose);
2154 dev_type_ioctl(nvmeioctl);
2155 
2156 const struct cdevsw nvme_cdevsw = {
2157 	.d_open = nvmeopen,
2158 	.d_close = nvmeclose,
2159 	.d_read = noread,
2160 	.d_write = nowrite,
2161 	.d_ioctl = nvmeioctl,
2162 	.d_stop = nostop,
2163 	.d_tty = notty,
2164 	.d_poll = nopoll,
2165 	.d_mmap = nommap,
2166 	.d_kqfilter = nokqfilter,
2167 	.d_discard = nodiscard,
2168 	.d_flag = D_OTHER,
2169 };
2170 
2171 /*
2172  * Accept an open operation on the control device.
2173  */
2174 int
nvmeopen(dev_t dev,int flag,int mode,struct lwp * l)2175 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2176 {
2177 	struct nvme_softc *sc;
2178 	int unit = minor(dev) / 0x10000;
2179 	int nsid = minor(dev) & 0xffff;
2180 	int nsidx;
2181 
2182 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2183 		return ENXIO;
2184 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2185 		return ENXIO;
2186 
2187 	if (nsid == 0) {
2188 		/* controller */
2189 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
2190 			return EBUSY;
2191 		SET(sc->sc_flags, NVME_F_OPEN);
2192 	} else {
2193 		/* namespace */
2194 		nsidx = nsid - 1;
2195 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2196 			return ENXIO;
2197 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2198 			return EBUSY;
2199 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2200 	}
2201 	return 0;
2202 }
2203 
2204 /*
2205  * Accept the last close on the control device.
2206  */
2207 int
nvmeclose(dev_t dev,int flag,int mode,struct lwp * l)2208 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2209 {
2210 	struct nvme_softc *sc;
2211 	int unit = minor(dev) / 0x10000;
2212 	int nsid = minor(dev) & 0xffff;
2213 	int nsidx;
2214 
2215 	sc = device_lookup_private(&nvme_cd, unit);
2216 	if (sc == NULL)
2217 		return ENXIO;
2218 
2219 	if (nsid == 0) {
2220 		/* controller */
2221 		CLR(sc->sc_flags, NVME_F_OPEN);
2222 	} else {
2223 		/* namespace */
2224 		nsidx = nsid - 1;
2225 		if (nsidx >= sc->sc_nn)
2226 			return ENXIO;
2227 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 /*
2234  * Handle control operations.
2235  */
2236 int
nvmeioctl(dev_t dev,u_long cmd,void * data,int flag,struct lwp * l)2237 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2238 {
2239 	struct nvme_softc *sc;
2240 	int unit = minor(dev) / 0x10000;
2241 	int nsid = minor(dev) & 0xffff;
2242 	struct nvme_pt_command *pt;
2243 
2244 	sc = device_lookup_private(&nvme_cd, unit);
2245 	if (sc == NULL)
2246 		return ENXIO;
2247 
2248 	switch (cmd) {
2249 	case NVME_PASSTHROUGH_CMD:
2250 		pt = data;
2251 		return nvme_command_passthrough(sc, data,
2252 		    nsid == 0 ? pt->cmd.nsid : (uint32_t)nsid, l, nsid == 0);
2253 	}
2254 
2255 	return ENOTTY;
2256 }
2257