1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;; 2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 3;;; The data in this file contains enhancments. ;;;;; 4;;; ;;;;; 5;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;; 6;;; All rights reserved ;;;;; 7;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 8;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;; 9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 10 11(in-package :maxima) 12 13(macsyma-module simp) 14 15(declare-top (special rulesw *inv* substp limitp 16 prods negprods sums negsums 17 $scalarmatrixp *nounl* 18 $keepfloat $ratprint 19 $demoivre $float 20 bigfloatzero bigfloatone $assumescalar 21 opers-list *opers-list $dontfactor *n 22 *out *in varlist genvar $factorflag radcanp 23 *builtin-numeric-constants*)) 24 25;; General purpose simplification and conversion switches. 26 27(defmvar $negdistrib t 28 "Causes negations to be distributed over sums, e.g. -(A+B) is 29 simplified to -A-B.") 30 31(defmvar $numer nil 32 "Causes SOME mathematical functions (including exponentiation) 33 with numerical arguments to be evaluated in floating point. 34 It causes variables in an expression which have been given 35 NUMERVALs to be replaced by their values. It also turns 36 on the FLOAT switch." 37 see-also ($numerval $float)) 38 39(defmvar $simp t "Enables simplification.") 40 41(defmvar $sumexpand nil 42 "If TRUE, products of sums and exponentiated sums go into nested 43 sums.") 44 45(defmvar $numer_pbranch nil) 46 47;; Switches dealing with matrices and non-commutative multiplication. 48 49(defmvar $doscmxplus nil 50 "Causes SCALAR + MATRIX to return a matrix answer. This switch 51 is not subsumed under DOALLMXOPS.") 52 53(defmvar $domxexpt t 54 "Causes SCALAR^MATRIX([1,2],[3,4]) to return 55 MATRIX([SCALAR,SCALAR^2],[SCALAR^3,SCALAR^4]). In general, this 56 transformation affects exponentiations where the *print-base* is a 57 scalar and the power is a matrix or list.") 58 59(defmvar $domxplus nil) 60 61(defmvar $domxtimes nil) 62 63(defmvar $mx0simp t) 64 65;; Switches dealing with expansion. 66 67(defmvar $expop 0 68 "The largest positive exponent which will be automatically 69 expanded. (X+1)^3 will be automatically expanded if 70 EXPOP is greater than or equal to 3." 71 fixnum 72 see-also ($expon $maxposex $expand)) 73 74(defmvar $expon 0 75 "The largest negative exponent which will be automatically 76 expanded. (X+1)^(-3) will be automatically expanded if 77 EXPON is greater than or equal to 3." 78 fixnum 79 see-also ($expop $maxnegex $expand)) 80 81(defmvar $maxposex 1000. 82 "The largest positive exponent which will be expanded by 83 the EXPAND command." 84 fixnum 85 see-also ($maxnegex $expop $expand)) 86 87;; Check assignment to be a positive integer 88(putprop '$maxposex 'posintegerset 'assign) 89 90(defmvar $maxnegex 1000. 91 "The largest negative exponent which will be expanded by 92 the EXPAND command." 93 fixnum 94 see-also ($maxposex $expon $expand)) 95 96;; Check assignment to be a positive integer 97(putprop '$maxnegex 'posintegerset 'assign) 98 99;; Lisp level variables 100 101(defmvar dosimp nil 102 "Causes SIMP flags to be ignored. $EXPAND works by binding 103 $EXPOP to $MAXPOSEX, $EXPON to $MAXNEGEX, and DOSIMP to T.") 104 105(defmvar errorsw nil 106 "Causes a throw to the tag ERRORSW when certain errors occur 107 rather than the printing of a message. Kludgy MAXIMA-SUBSTITUTE for 108 MAXIMA-ERROR signalling.") 109 110(defmvar derivsimp t "Hack in `simpderiv' for `rwg'") 111 112(defmvar $rootsepsilon #+gcl (float 1/10000000) #-gcl 1e-7) 113(defmvar $grindswitch nil) 114(defmvar $algepsilon 100000000) 115(defmvar $true t) 116(defmvar $false nil) 117(defmvar $on t) 118(defmvar $off nil) 119(defmvar $logabs nil) 120(defmvar $limitdomain '$complex) 121(defmvar $listarith t) 122(defmvar $domain '$real) 123(defmvar $m1pbranch nil) 124(defmvar $%e_to_numlog nil) 125(defmvar $%emode t) 126(defmvar $lognegint nil) 127(defmvar $ratsimpexpons nil) 128(defmvar $logexpand t) ; Possible values are T, $ALL and $SUPER 129(defmvar $radexpand t) 130(defmvar $subnumsimp nil) 131(defmvar $logsimp t) 132(defmvar $distribute_over t) ; If T, functions are distributed over bags. 133 134(defvar rischp nil) 135(defvar rp-polylogp nil) 136(defvar wflag nil) 137(defvar expandp nil) 138(defvar timesinp nil) 139(defvar %e-val (mget '$%e '$numer)) 140(defvar %pi-val (mget '$%pi '$numer)) 141(defvar derivflag nil) 142(defvar exptrlsw nil) 143(defvar expandflag nil) 144(defvar *zexptsimp? nil) 145(defvar *const* 0) 146 147(defprop mnctimes t associative) 148(defprop lambda t lisp-no-simp) 149 150;; Local functions should not be simplified. Various lisps 151;; use various names for the list structure defining these: 152(eval-when 153 #+gcl (load) 154 #-gcl (:load-toplevel) 155 (eval '(let* ((x 1) 156 (z #'(lambda () 3))) 157 (dolist (y (list x z)) 158 (and (consp y) 159 (symbolp (car y)) 160 (setf (get (car y) 'lisp-no-simp) t)))))) 161 162(dolist (x '(mplus mtimes mnctimes mexpt mncexpt %sum)) 163 (setf (get x 'msimpind) (cons x '(simp)))) 164 165;; operators properties 166 167(mapc #'(lambda (x) (setf (get (first x) 'operators) (second x))) 168 '((mplus simplus) (mtimes simptimes) (mncexpt simpncexpt) 169 (mminus simpmin) (%gamma simpgamma) (mfactorial simpfact) 170 (mnctimes simpnct) (mquotient simpquot) (mexpt simpexpt) 171 (%log simpln) 172 (%derivative simpderiv) 173 (%signum simpsignum) 174 (%integrate simpinteg) (%limit simp-limit) 175 (bigfloat simpbigfloat) (lambda simplambda) (mdefine simpmdef) 176 (mqapply simpmqapply) (%gamma simpgamma) 177 ($beta simpbeta) (%sum simpsum) (%binomial simpbinocoef) 178 (%plog simpplog) (%product simpprod) (%genfact simpgfact) 179 ($atan2 simpatan2) ($matrix simpmatrix) (%matrix simpmatrix) 180 ($bern simpbern) ($euler simpeuler))) 181 182(defprop $li lisimp specsimp) 183(defprop $psi psisimp specsimp) 184 185(defprop $equal t binary) 186(defprop $notequal t binary) 187 188(defmfun $bfloatp (x) 189 (and (consp x) 190 (consp (car x)) 191 (eq (caar x) 'bigfloat))) 192 193(defun zerop1 (x) 194 (or (and (integerp x) (= 0 x)) 195 (and (floatp x) (= 0.0 x)) 196 (and ($bfloatp x) (= 0 (second x))))) 197 198(defun onep1 (x) 199 (or (and (integerp x) (= 1 x)) 200 (and (floatp x) (= 1.0 x)) 201 (and ($bfloatp x) (zerop1 (sub x 1))))) 202 203(defun mnump (x) 204 (or (numberp x) 205 (and (not (atom x)) (not (atom (car x))) 206 (member (caar x) '(rat bigfloat))))) 207 208;; Does X or a subexpression match PREDICATE? 209;; 210;; If X is a tree then we recurse depth-first down its arguments. The specrep 211;; check is because rat forms are built rather differently from normal Maxima 212;; expressions so we need to unpack them for the recursion to work properly. 213(defun subexpression-matches-p (predicate x) 214 (or (funcall predicate x) 215 (and (consp x) 216 (if (specrepp x) 217 (subexpression-matches-p predicate (specdisrep x)) 218 (some (lambda (arg) (subexpression-matches-p predicate arg)) 219 (cdr x)))))) 220 221;; Is there a bfloat anywhere in X? 222(defun some-bfloatp (x) (subexpression-matches-p '$bfloatp x)) 223 224;; Is there a float anywhere in X? 225(defun some-floatp (x) (subexpression-matches-p 'floatp x)) 226 227;; EVEN works for any arbitrary lisp object since it does an integer 228;; check first. In other cases, you may want the Lisp EVENP function 229;; which only works for integers. 230 231(defun even (a) (and (integerp a) (not (oddp a)))) 232 233(defun ratnump (x) (and (not (atom x)) (eq (caar x) 'rat))) 234 235(defun mplusp (x) (and (not (atom x)) (eq (caar x) 'mplus))) 236 237(defun mtimesp (x) (and (not (atom x)) (eq (caar x) 'mtimes))) 238 239(defun mexptp (x) (and (not (atom x)) (eq (caar x) 'mexpt))) 240 241(defun mnctimesp (x) (and (not (atom x)) (eq (caar x) 'mnctimes))) 242 243(defun mncexptp (x) (and (not (atom x)) (eq (caar x) 'mncexpt))) 244 245(defun mlogp (x) (and (not (atom x)) (eq (caar x) '%log))) 246 247(defun mmminusp (x) (and (not (atom x)) (eq (caar x) 'mminus))) 248 249(defun mnegp (x) 250 (cond ((realp x) (minusp x)) 251 ((or (ratnump x) ($bfloatp x)) (minusp (cadr x))))) 252 253(defun mqapplyp (e) (and (not (atom e)) (eq (caar e) 'mqapply))) 254 255(defun ratdisrep (e) (simplifya ($ratdisrep e) nil)) 256 257(defun sratsimp (e) (simplifya ($ratsimp e) nil)) 258 259(defun simpcheck (e flag) 260 (cond ((specrepp e) (specdisrep e)) 261 (flag e) 262 (t (let (($%enumer $numer)) 263 ;; Switch $%enumer on, when $numer is TRUE to allow 264 ;; simplification of $%e to its numerical value. 265 (simplifya e nil))))) 266 267(defun mratcheck (e) (if ($ratp e) (ratdisrep e) e)) 268 269(defmfun $numberp (e) (or ($ratnump e) ($floatnump e) ($bfloatp e))) 270 271(defmfun $integerp (x) 272 (or (integerp x) 273 (and ($ratp x) 274 (not (member 'trunc (car x))) 275 (integerp (cadr x)) 276 (equal (cddr x) 1)))) 277 278;; The call to $INTEGERP in the following two functions checks for a CRE 279;; rational number with an integral numerator and a unity denominator. 280 281(defmfun $oddp (x) 282 (cond ((integerp x) (oddp x)) 283 (($integerp x) (oddp (cadr x))))) 284 285(defmfun $evenp (x) 286 (cond ((integerp x) (evenp x)) 287 (($integerp x) (not (oddp (cadr x)))))) 288 289(defmfun $floatnump (x) 290 (or (floatp x) 291 (and ($ratp x) (floatp (cadr x)) (onep1 (cddr x))))) 292 293(defmfun $ratnump (x) 294 (or (integerp x) 295 (ratnump x) 296 (and ($ratp x) 297 (not (member 'trunc (car x))) 298 (integerp (cadr x)) 299 (integerp (cddr x))))) 300 301(defmfun $ratp (x) 302 (and (not (atom x)) 303 (consp (car x)) 304 (eq (caar x) 'mrat))) 305 306(defmfun $taylorp (x) 307 (and (not (atom x)) 308 (eq (caar x) 'mrat) 309 (member 'trunc (cdar x) :test #'eq) t)) 310 311(defun specrepcheck (e) (if (specrepp e) (specdisrep e) e)) 312 313;; Note that the following two functions are carefully coupled. 314 315(defun specrepp (e) 316 (and (not (atom e)) 317 (member (caar e) '(mrat mpois) :test #'eq))) 318 319(defun specdisrep (e) 320 (cond ((eq (caar e) 'mrat) (ratdisrep e)) 321 (t ($outofpois e)))) 322 323(defmfun $polysign (x) 324 (setq x (cadr (ratf x))) 325 (cond ((equal x 0) 0) ((pminusp x) -1) (t 1))) 326 327;; These check for the correct number of operands within Macsyma expressions, 328;; not arguments in a procedure call as the name may imply. 329 330(defun arg-count-check (required-arg-count expr) 331 (unless (= required-arg-count (length (rest expr))) 332 (wna-err expr required-arg-count))) 333 334(defun oneargcheck (expr) 335 (arg-count-check 1 expr)) 336 337(defun twoargcheck (expr) 338 (arg-count-check 2 expr)) 339 340;; WNA-ERR: Wrong Number of Arguments error 341;; 342;; If REQUIRED-ARG-COUNT is non-NIL, then we check that EXPR has the 343;; correct number of arguments. A informative error message is shown 344;; if the number of arguments is not given. 345;; 346;; Otherwise, EXPR must be a symbol and a generic message is printed. 347;; (This is for backward compatibility for existing uses of WNA-ERR.) 348(defun wna-err (exprs &optional required-arg-count) 349 (if required-arg-count 350 (let ((op (caar exprs)) 351 (actual-count (length (rest exprs)))) 352 (merror (intl:gettext "~M: expected exactly ~M arguments but got ~M: ~M") 353 op required-arg-count actual-count (list* '(mlist) (rest exprs)))) 354 (merror (intl:gettext "~:@M: wrong number of arguments.") 355 exprs))) 356 357(defun improper-arg-err (exp fn) 358 (merror (intl:gettext "~:M: improper argument: ~M") fn exp)) 359 360(defun subargcheck (form subsharp argsharp fun) 361 (if (or (not (= (length (subfunsubs form)) subsharp)) 362 (not (= (length (subfunargs form)) argsharp))) 363 (merror (intl:gettext "~:@M: wrong number of arguments or subscripts.") fun))) 364 365;; Constructor and extractor primitives for subscripted functions, e.g. 366;; F[1,2](X,Y). SUBL is (1 2) and ARGL is (X Y). 367 368;; These will be flushed when NOPERS is finished. They will be macros in 369;; NOPERS instead of functions, so we have to be careful that they aren't 370;; mapped or applied anyplace. What we really want is open-codable routines. 371 372(defun subfunmakes (fun subl argl) 373 `((mqapply simp) ((,fun simp array) . ,subl) . ,argl)) 374 375(defun subfunmake (fun subl argl) 376 `((mqapply) ((,fun simp array) . ,subl) . ,argl)) 377 378(defun subfunname (exp) (caaadr exp)) 379 380(defun subfunsubs (exp) (cdadr exp)) 381 382(defun subfunargs (exp) (cddr exp)) 383 384(defmfun $numfactor (x) 385 (setq x (specrepcheck x)) 386 (cond ((mnump x) x) 387 ((atom x) 1) 388 ((not (eq (caar x) 'mtimes)) 1) 389 ((mnump (cadr x)) (cadr x)) 390 (t 1))) 391 392(defun scalar-or-constant-p (x flag) 393 (if flag (not ($nonscalarp x)) ($scalarp x))) 394 395(defmfun $constantp (x) 396 (cond ((atom x) (or ($numberp x) (kindp x '$constant))) 397 ((member (caar x) '(rat bigfloat) :test #'eq) t) 398 ((specrepp x) ($constantp (specdisrep x))) 399 ((or (mopp (caar x)) (kindp (caar x) '$constant)) 400 (do ((x (cdr x) (cdr x))) ((null x) t) 401 (if (not ($constantp (car x))) (return nil)))))) 402 403(defun constant (x) 404 (cond ((symbolp x) (kindp x '$constant)) 405 (($subvarp x) 406 (and (kindp (caar x) '$constant) 407 (do ((x (cdr x) (cdr x))) ((null x) t) 408 (if (not ($constantp (car x))) (return nil))))))) 409 410(defun maxima-constantp (x) 411 (or (numberp x) 412 (and (symbolp x) (kindp x '$constant)))) 413 414(defun consttermp (x) (and ($constantp x) (not ($nonscalarp x)))) 415 416(defmfun $scalarp (x) (or (consttermp x) (eq (scalarclass x) '$scalar))) 417 418(defmfun $nonscalarp (x) (eq (scalarclass x) '$nonscalar)) 419 420(defun scalarclass (exp) ; Returns $SCALAR, $NONSCALAR, or NIL (unknown). 421 (cond ((mnump exp) 422 ;; Maxima numbers are scalar. 423 '$scalar) 424 ((atom exp) 425 (cond ((or (mget exp '$nonscalar) 426 (and (not (mget exp '$scalar)) 427 ;; Arrays are nonscalar, but not if declared scalar. 428 (or (arrayp exp) 429 ($member exp $arrays)))) 430 '$nonscalar) 431 ((or (mget exp '$scalar) 432 ;; Include constant atoms which are not declared nonscalar. 433 ($constantp exp)) 434 '$scalar))) 435 ((member 'array (car exp)) 436 (cond ((mget (caar exp) '$scalar) '$scalar) 437 ((mget (caar exp) '$nonscalar) '$nonscalar) 438 (t nil))) 439 ((specrepp exp) (scalarclass (specdisrep exp))) 440 ;; If the function is declared scalar or nonscalar, then return. If it 441 ;; isn't explicitly declared, then try to be intelligent by looking at 442 ;; the arguments to the function. 443 ((scalarclass (caar exp))) 444 ;; <number> + <scalar> is SCALARP because that seems to be useful. 445 ;; This should probably only be true if <number> is a member of the 446 ;; field of scalars. <number> * <scalar> is SCALARP since 447 ;; <scalar> + <scalar> is SCALARP. Also, this has to be done to make 448 ;; <scalar> - <scalar> SCALARP. 449 ((member (caar exp) '(mplus mtimes) :test #'eq) 450 (do ((l (cdr exp) (cdr l))) ((null l) '$scalar) 451 (if (not (consttermp (car l))) 452 (return (scalarclass-list l))))) 453 ((and (eq (caar exp) 'mqapply) (scalarclass (cadr exp)))) 454 ((mxorlistp exp) '$nonscalar) 455 ;; If we can't find out anything about the operator, then look at the 456 ;; arguments to the operator. I think NIL should be returned at this 457 ;; point. -cwh 458 (t 459 (do ((exp (cdr exp) (cdr exp)) (l '(1))) 460 ((null exp) (scalarclass-list l)) 461 (if (not (consttermp (car exp))) 462 (setq l (cons (car exp) l))))))) 463 464;; Could also do <scalar> +|-|*|/ |^ <declared constant>, but this is not 465;; always correct and could screw somebody. 466 467;; SCALARCLASS-LIST takes a list of expressions as its argument. If their 468;; scalarclasses all agree, then that scalarclass is returned. 469 470(defun scalarclass-list (llist) 471 (cond ((null llist) nil) 472 ((null (cdr llist)) (scalarclass (car llist))) 473 (t (let ((sc-car (scalarclass (car llist))) 474 (sc-cdr (scalarclass-list (cdr llist)))) 475 (cond ((or (eq sc-car '$nonscalar) 476 (eq sc-cdr '$nonscalar)) 477 '$nonscalar) 478 ((and (eq sc-car '$scalar) (eq sc-cdr '$scalar)) 479 '$scalar)))))) 480 481(defun mbagp (x) 482 (and (not (atom x)) 483 (member (caar x) '(mequal mlist $matrix) :test #'eq))) 484 485(defun mequalp (x) (and (not (atom x)) (eq (caar x) 'mequal))) 486 487(defun mxorlistp (x) 488 (and (not (atom x)) 489 (member (caar x) '(mlist $matrix) :test #'eq))) 490 491(defun mxorlistp1 (x) 492 (and (not (atom x)) 493 (or (eq (caar x) '$matrix) 494 (and (eq (caar x) 'mlist) $listarith)))) 495 496(defun constfun (ign) 497 (declare (ignore ign)) ; Arg ignored. Function used for mapping down lists. 498 *const*) 499 500(defun constmx (*const* x) 501 (simplifya (fmapl1 'constfun x) t)) 502 503;;; ISINOP returns the complete subexpression with the operator OP, when the 504;;; operator OP is found in EXPR. 505 506(defun isinop (expr op) ; OP is assumed to be an atom 507 (cond ((atom expr) nil) 508 ((and (eq (caar expr) op) 509 (not (member 'array (cdar expr) :test #'eq))) 510 expr) 511 (t 512 (do ((expr (cdr expr) (cdr expr)) 513 (res nil)) 514 ((null expr)) 515 (when (setq res (isinop (car expr) op)) 516 (return res)))))) 517 518(defun free (exp var) 519 (cond ((alike1 exp var) nil) 520 ((atom exp) t) 521 (t 522 (and (listp (car exp)) 523 (free (caar exp) var) 524 (freel (cdr exp) var))))) 525 526(defun freel (l var) 527 (do ((l l (cdr l))) ((null l) t) 528 (cond 529 ((atom l) (return (free l var))) ;; second element of a pair 530 ((not (free (car l) var)) (return nil))))) 531 532 533(defun freeargs (exp var) 534 (cond ((alike1 exp var) nil) 535 ((atom exp) t) 536 (t (do ((l (margs exp) (cdr l))) ((null l) t) 537 (cond ((not (freeargs (car l) var)) (return nil))))))) 538 539(defun simplifya (x y) 540 (cond ((not $simp) x) 541 ((atom x) 542 (cond ((and $%enumer $numer (eq x '$%e)) 543 ;; Replace $%e with its numerical value, 544 ;; when %enumer and $numer TRUE 545 (setq x %e-val)) 546 (t x))) 547 ((atom (car x)) 548 (cond ((and (cdr x) (atom (cdr x))) 549 (merror (intl:gettext "simplifya: malformed expression (atomic cdr)."))) 550 ((get (car x) 'lisp-no-simp) 551 ;; this feature is to be used with care. it is meant to be 552 ;; used to implement data objects with minimum of consing. 553 ;; forms must not bash the DISPLA package. Only new forms 554 ;; with carefully chosen names should use this feature. 555 x) 556 (t (cons (car x) 557 (mapcar #'(lambda (x) (simplifya x y)) (cdr x)))))) 558 ((eq (caar x) 'rat) (*red1 x)) 559 ;; Enforced resimplification: Reset dosimp and strip 'simp tags from x. 560 (dosimp (let ((dosimp nil)) (simplifya (unsimplify x) y))) 561 ((member 'simp (cdar x) :test #'eq) x) 562 ((eq (caar x) 'mrat) x) 563 ((not (atom (caar x))) 564 (cond ((or (eq (caaar x) 'lambda) 565 (and (not (atom (caaar x))) (eq (caaaar x) 'lambda))) 566 (mapply1 (caar x) (cdr x) (caar x) x)) 567 (t (merror (intl:gettext "simplifya: operator is neither an atom nor a lambda expression: ~S") x)))) 568 ((and $distribute_over 569 (get (caar x) 'distribute_over) 570 ;; A function with the property 'distribute_over. 571 ;; Look, if we have a bag as argument to the function. 572 (distribute-over x))) 573 ((get (caar x) 'opers) 574 (let ((opers-list *opers-list)) (oper-apply x y))) 575 ((and (eq (caar x) 'mqapply) 576 (or (atom (cadr x)) 577 (and (eq substp 'mqapply) 578 (or (eq (car (cadr x)) 'lambda) 579 (eq (caar (cadr x)) 'lambda))))) 580 (cond ((or (symbolp (cadr x)) (not (atom (cadr x)))) 581 (simplifya (cons (cons (cadr x) (cdar x)) (cddr x)) y)) 582 ((or (not (member 'array (cdar x) :test #'eq)) (not $subnumsimp)) 583 (merror (intl:gettext "simplifya: I don't know how to simplify this operator: ~M") x)) 584 (t (cadr x)))) 585 (t (let ((w (get (caar x) 'operators))) 586 (cond ((and w 587 (or (not (member 'array (cdar x) :test #'eq)) 588 (rulechk (caar x)))) 589 (funcall w x 1 y)) 590 (t (simpargs x y))))))) 591 592;; EQTEST returns an expression which is the same as X 593;; except that it is marked with SIMP and maybe other flags from CHECK. 594;; 595;; Following description is inferred from the code. Dunno why the function is named "EQTEST". 596;; 597;; (1) if X is already marked with SIMP flag or doesn't need it: return X. 598;; (2) if X is pretty much the same as CHECK (same operator and same arguments), 599;; then return CHECK after marking it with SIMP flag. 600;; (3) if operator of X has the MSIMPIND property, replace it 601;; with value of MSIMPIND (something like '(MPLUS SIMP)) and return X. 602;; (4) if X or CHECK is an array expression, return X after marking it with SIMP and ARRAY flags. 603;; (5) otherwise, return X after marking it with SIMP flag. 604 605(defun eqtest (x check) 606 (let ((y nil)) 607 (cond ((or (atom x) 608 (eq (caar x) 'rat) 609 (eq (caar x) 'mrat) 610 (member 'simp (cdar x) :test #'eq)) 611 x) 612 ((and (eq (caar x) (caar check)) 613 (equal (cdr x) (cdr check))) 614 (cond ((and (null (cdar check)) 615 (setq y (get (caar check) 'msimpind))) 616 (cons y (cdr check))) 617 ((member 'simp (cdar check) :test #'eq) 618 check) 619 (t 620 (cons (cons (caar check) 621 (if (cdar check) 622 (cons 'simp (cdar check)) 623 '(simp))) 624 (cdr check))))) 625 ((setq y (get (caar x) 'msimpind)) 626 (rplaca x y)) 627 ((or (member 'array (cdar x) :test #'eq) 628 (and (eq (caar x) (caar check)) 629 (member 'array (cdar check) :test #'eq))) 630 (rplaca x (cons (caar x) '(simp array)))) 631 (t 632 (rplaca x (cons (caar x) '(simp))))))) 633 634;; A function, which distributes of bags like a list, matrix, or equation. 635;; Check, if we have to distribute of one of the bags or any other operator. 636(defun distribute-over (expr) 637 (cond ((= 1 (length (cdr expr))) 638 ;; Distribute over for a function with one argument. 639 (cond ((and (not (atom (cadr expr))) 640 (member (caaadr expr) (get (caar expr) 'distribute_over))) 641 (simplify 642 (cons (caadr expr) 643 (mapcar #'(lambda (u) (simplify (list (car expr) u))) 644 (cdadr expr))))) 645 (t nil))) 646 (t 647 ;; A function with more than one argument. 648 (do ((args (cdr expr) (cdr args)) 649 (first-args nil)) 650 ((null args) nil) 651 (when (and (not (atom (car args))) 652 (member (caar (car args)) 653 (get (caar expr) 'distribute_over))) 654 ;; Distribute the function over the arguments and simplify again. 655 (return 656 (simplify 657 (cons (ncons (caar (car args))) 658 (mapcar #'(lambda (u) 659 (simplify 660 (append 661 (append 662 (cons (ncons (caar expr)) 663 (reverse first-args)) 664 (ncons u)) 665 (rest args)))) 666 (cdr (car args))))))) 667 (setq first-args (cons (car args) first-args)))))) 668 669(defun rulechk (x) (or (mget x 'oldrules) (get x 'rules))) 670 671(defun resimplify (x) (let ((dosimp t)) (simplifya x nil))) 672 673(defun unsimplify (x) 674 (if (or (atom x) (specrepp x)) 675 x 676 (cons (remove 'simp (car x) :count 1) (mapcar #'unsimplify (cdr x))))) 677 678(defun simpargs (x y) 679 (if (or (eq (get (caar x) 'dimension) 'dimension-infix) 680 (get (caar x) 'binary)) 681 (twoargcheck x)) 682 (if (and (member 'array (cdar x) :test #'eq) (null (margs x))) 683 (merror (intl:gettext "SIMPARGS: subscripted variable found with no subscripts."))) 684 (eqtest (if y x (let ((flag (member (caar x) '(mlist mequal) :test #'eq))) 685 (cons (ncons (caar x)) 686 (mapcar #'(lambda (u) 687 (if flag (simplifya u nil) 688 (simpcheck u nil))) 689 (cdr x))))) 690 x)) 691 692;;;----------------------------------------------------------------------------- 693;;; ADDK (X Y) 27.09.2010/DK 694;;; 695;;; Arguments and values: 696;;; X - a Maxima number 697;;; Y - a Maxima number 698;;; result - a simplified Maxima number 699;;; 700;;; Description: 701;;; ADDK adds two Maxima numbers and returns a simplified Maxima number. 702;;; ADDK can be called in Lisp code, whenever the arguments are valid 703;;; Maxima numbers, these are integer, float, Maxima rational, or 704;;; Maxima bigfloat numbers. The arguments must not be simplified. The 705;;; precision of a bigfloat result depends on the setting of the 706;;; global variable $FPPREC. If the option variable $FLOAT is T, a 707;;; Maxima rational number as a result is converted to a float number. 708;;; 709;;; Examples: 710;;; (addk 2 3) -> 5 711;;; (addk 2.0 3) -> 5.0 712;;; (addk ($bfloat 2) 3)-> ((BIGFLOAT SIMP 56) 45035996273704960 3) 713;;; (addk 2 '((rat) 1 2)) -> ((RAT SIMP) 5 2) 714;;; (let (($float t)) (addk 2 '((rat) 1 2))) -> 2.5 715;;; 716;;; Affected by: 717;;; The option variables $FLOAT and $FPPREC. 718;;; 719;;; See also: 720;;; TIMESK to multiply and EXPTRL to exponentiate two Maxima numbers. 721;;; 722;;; Notes: 723;;; The routine works for Lisp rational and Lisp complex numbers too. 724;;; This feature is not used in Maxima code. If Lisp complex and 725;;; rational numbers are mixed with Maxima rational or bigfloat 726;;; numbers the result is wrong or a Lisp error is generated. 727;;;----------------------------------------------------------------------------- 728 729(defun addk (x y) 730 (cond ((eql x 0) y) 731 ((eql y 0) x) 732 ((and (numberp x) (numberp y)) (+ x y)) 733 ((or ($bfloatp x) ($bfloatp y)) ($bfloat (list '(mplus) x y))) 734 (t (prog (g a b) 735 (cond ((numberp x) 736 (cond ((floatp x) (return (+ x (fpcofrat y)))) 737 (t (setq x (list '(rat) x 1))))) 738 ((numberp y) 739 (cond ((floatp y) (return (+ y (fpcofrat x)))) 740 (t (setq y (list '(rat) y 1)))))) 741 (setq g (gcd (caddr x) (caddr y))) 742 (setq a (truncate (caddr x) g) 743 b (truncate (caddr y) g)) 744 (return (timeskl (list '(rat) 1 g) 745 (list '(rat) 746 (+ (* (cadr x) b) 747 (* (cadr y) a)) 748 (* a b)))))))) 749 750;;;----------------------------------------------------------------------------- 751;;; *RED1 (X) 27.09.2010/DK 752;;; *RED (N D) 753;;; 754;;; Arguments and values: 755;;; X - a Maxima rational number (for *RED1) 756;;; N - an integer number representing the numerator of a rational 757;;; D - an integer number representing the denominator of a rational 758;;; result - a simplified Maxima rational number 759;;; 760;;; Description: 761;;; *RED1 is called from SIMPLIFYA to reduce and simplify a Maxima rational 762;;; number. *RED1 checks if the rational number is already simplified. If 763;;; the option variable $FLOAT is T, the rational number is converted to a 764;;; float number. If the number is not simplified, *RED is called. 765;;; 766;;; *RED reduces the numerator N and the demoniator D and returns a 767;;; simplified Maxima rational number. The result is converted to a float 768;;; number, if the option variable $FLOAT is T. 769;;; 770;;; Affected by: 771;;; The option variable $FLOAT. 772;;;----------------------------------------------------------------------------- 773 774(defun *red1 (x) 775 (cond ((member 'simp (cdar x) :test #'eq) 776 (if $float (fpcofrat x) x)) 777 (t (*red (cadr x) (caddr x))))) 778 779(defun *red (n d) 780 (cond ((zerop n) 0) 781 ((equal d 1) n) 782 (t (let ((u (gcd n d))) 783 (setq n (truncate n u) 784 d (truncate d u)) 785 (if (minusp d) (setq n (- n) d (- d))) 786 (cond ((equal d 1) n) 787 ($float (fpcofrat1 n d)) 788 (t (list '(rat simp) n d))))))) 789 790;;;----------------------------------------------------------------------------- 791;;; TIMESK (X Y) 27.09.2010/DK 792;;; 793;;; Arguments and values: 794;;; X - a Maxima number 795;;; Y - a Maxima number 796;;; result - a simplified Maxima number 797;;; 798;;; Description: 799;;; TIMESK Multiplies two Maxima numbers and returns a simplified Maxima 800;;; number. TIMESK can be called in Lisp code, whenever the arguments are 801;;; valid Maxima numbers, these are integer, float, Maxima rational, or 802;;; Maxima bigfloat numbers. The arguments must not be simplified. The 803;;; precision of a bigfloat result depends on the setting of the 804;;; global variable $FPPREC. If the option variable $FLOAT is T, a 805;;; Maxima rational number as a result is converted to a float number. 806;;; 807;;; TIMESKL is called from TIMESK to multiply two Maxima rational numbers or 808;;; a rational number with an integer number. 809;;; 810;;; Examples: 811;;; (timesk 2 3) -> 6 812;;; (timesk 2.0 3) -> 6.0 813;;; (timesk ($bfloat 2) 3)-> ((BIGFLOAT SIMP 56) 54043195528445952 3) 814;;; (timesk 3 '((rat) 1 2)) -> ((RAT SIMP) 3 2) 815;;; (let (($float t)) (timesk 3 '((rat) 1 2))) -> 1.5 816;;; 817;;; Affected by: 818;;; The option variables $FLOAT and $FPPREC. 819;;; 820;;; See also: 821;;; ADDK to add and EXPTRL to exponentiate two Maxima numbers. 822;;; 823;;; Notes: 824;;; The routine works for Lisp rational and Lisp complex numbers too. 825;;; This feature is not used in Maxima code. If Lisp complex and 826;;; rational numbers are mixed with Maxima rational or bigfloat 827;;; numbers the result is wrong or a Lisp error is generated. 828;;;----------------------------------------------------------------------------- 829 830;; NUM1 and DENOM1 are helper functions for TIMESKL to get the numerator and the 831;; denominator of an integer or Maxima rational number. For an integer the 832;; denominator is 1. Both functions are used at other places in Maxima code too. 833 834(defun num1 (a) 835 (if (numberp a) a (cadr a))) 836 837(defun denom1 (a) 838 (if (numberp a) 1 (caddr a))) 839 840(defun timesk (x y) ; X and Y are assumed to be already reduced 841 (cond ((equal x 1) y) 842 ((equal y 1) x) 843 ((and (numberp x) (numberp y)) (* x y)) 844 ((or ($bfloatp x) ($bfloatp y)) ($bfloat (list '(mtimes) x y))) 845 ((floatp x) (* x (fpcofrat y))) 846 ((floatp y) (* y (fpcofrat x))) 847 (t (timeskl x y)))) 848 849;; TIMESKL takes one or two Maxima rational numbers, one argument can be an 850;; integer number. The result is a Maxima rational or an integer number. 851;; If the option variable $FLOAT is T, a Maxima rational number in converted 852;; to a float value. 853 854(defun timeskl (x y) 855 (prog (u v g) 856 (setq u (*red (num1 x) (denom1 y))) 857 (setq v (*red (num1 y) (denom1 x))) 858 (setq g (cond ((or (equal u 0) (equal v 0)) 0) 859 ((equal v 1) u) 860 ((and (numberp u) (numberp v)) (* u v)) 861 (t (list '(rat simp) 862 (* (num1 u) (num1 v)) 863 (* (denom1 u) (denom1 v)))))) 864 (return (cond ((numberp g) g) 865 ((equal (caddr g) 1) (cadr g)) 866 ($float (fpcofrat g)) 867 (t g))))) 868 869;;;----------------------------------------------------------------------------- 870;;; FPCOFRAT (RATNO) 27.09.2010/DK 871;;; FPCOFRT1 (NU D) 872;;; 873;;; Arguments and values: 874;;; RATNO - a Maxima rational number (for FPCOFRAT) 875;;; NU - an integer number which represents the numerator of a rational 876;;; D - an integer number which represents the denominator of a rational 877;;; result - floating point approximation of a rational number 878;;; 879;;; Description: 880;;; Floating Point Conversion OF RATional number routine. 881;;; Finds floating point approximation to rational number. 882;;; 883;;; FPCOFRAT1 computes the quotient of NU/D. 884;;; 885;;; Exceptional situations: 886;;; A Lisp error is generated, if the rational number does not fit into a 887;;; float number. 888;;;----------------------------------------------------------------------------- 889 890;; This constant is only needed in the file float.lisp. 891(eval-when 892 #+gcl (compile load eval) 893 #-gcl (:compile-toplevel :load-toplevel :execute) 894 (defconstant machine-mantissa-precision (float-digits 1.0))) 895 896(defun fpcofrat (ratno) 897 (fpcofrat1 (cadr ratno) (caddr ratno))) 898 899(defun fpcofrat1 (nu d) 900 (float (/ nu d))) 901 902;;;----------------------------------------------------------------------------- 903;;; EXPTA (X Y) 27.09.2010/DK 904;;; 905;;; Arguments and values: 906;;; X - a Maxima number 907;;; Y - an integer number 908;;; result - a simplified Maxima number 909;;; 910;;; Description: 911;;; Computes X^Y, where X is Maxima number and Y an integer. The result is 912;;; a simplified Maxima number. Y can be a rational Maxima number. For this 913;;; case the numerator is taken as the power. 914;;; 915;;; Affected by: 916;;; The option variables $FLOAT and $FPPREC. 917;;; 918;;; Notes: 919;;; This routine is not used within the simplifier. There is only one 920;;; call from the file hayat.lisp. This call can be replaced with a 921;;; call of the function power. 922;;;----------------------------------------------------------------------------- 923 924(defun expta (x y) 925 (cond ((equal y 1) 926 x) 927 ((numberp x) 928 (exptb x (num1 y))) 929 (($bfloatp x) 930 ($bfloat (list '(mexpt) x y))) 931 ((minusp (num1 y)) 932 (*red (exptb (caddr x) (- (num1 y))) 933 (exptb (cadr x) (- (num1 y))))) 934 (t 935 (*red (exptb (cadr x) (num1 y)) 936 (exptb (caddr x) (num1 y)))))) 937 938;;;----------------------------------------------------------------------------- 939;;; EXPTB (A B) 27.09.2010/DK 940;;; 941;;; Arguments and values: 942;;; A - a float or integer number 943;;; B - an integer number 944;;; result - a simplified Maxima number 945;;; 946;;; Description: 947;;; Computes A^B, where A is a float or an integer number and B is an 948;;; integer number. The result is an integer, float, or Maxima 949;;; rational number. 950;;; 951;;; Examples: 952;;; (exptb 3 2) -> 9 953;;; (exptb 3.0 2) -> 9.0 954;;; (exptb 3 -2) -> ((RAT SiMP) 1 9) 955;;; (let (($float t)) (exptb 3 -2)) -> 0.1111111111111111 956;;; 957;;; Affected by: 958;;; The option variable $FLOAT. 959;;; 960;;; Notes: 961;;; EXPTB calls the Lisp functions EXP or EXPT to compute the result. 962;;;----------------------------------------------------------------------------- 963 964(defun exptb (a b) 965 (let ((result 966 (cond ((equal a %e-val) 967 ;; Make B a float so we'll get double-precision result. 968 (exp (float b))) 969 ((or (floatp a) (not (minusp b))) 970 (expt a b)) 971 (t 972 (setq b (expt a (- b))) 973 (*red 1 b))))) 974 (if (float-inf-p result) ;; needed for gcl - no trap of overflow 975 (signal 'floating-point-overflow) 976 result))) 977 978 979;;;----------------------------------------------------------------------------- 980;;; SIMPLUS (X W Z) 27.09.2010/DK 981;;; 982;;; Arguments and values: 983;;; X - a Maxima expression of the form ((mplus) term1 term2 ...) 984;;; W - an arbitrary value, the value is ignored 985;;; Z - T or NIL, if T the arguments are assumed to be simplified 986;;; result - a simplified mplus-expression or an atom 987;;; 988;;; Description: 989;;; Implementation of the simplifier for the "+" operator. 990;;; A general description of SIMPLUS can be found in the paper: 991;;; http://www.cs.berkeley.edu/~fateman/papers/simplifier.txt 992;;; 993;;; Affected by: 994;;; The addition of matrices and lists is affected by the following option 995;;; variables: 996;;; $DOALLMXOPS, $DOMXMXOPS, $DOMXPLUS, $DOSCMXOPPS, $DOSCMXPLUS, $LISTARITH 997;;; 998;;; Notes: 999;;; This routine should not be called directely. It is called by SIMPLIFYA. 1000;;; A save access is to call the function ADD. 1001;;;----------------------------------------------------------------------------- 1002 1003(defun simplus (x w z) 1004 (prog (res check eqnflag matrixflag sumflag) 1005 (if (null (cdr x)) (return 0)) 1006 (setq check x) 1007 start 1008 (setq x (cdr x)) 1009 (if (null x) (go end)) 1010 (setq w (if z (car x) (simplifya (car x) nil))) 1011 st1 1012 (cond ((atom w) nil) 1013 ((eq (caar w) 'mrat) 1014 (cond ((or eqnflag 1015 matrixflag 1016 (and sumflag 1017 (not (member 'trunc (cdar w) :test #'eq))) 1018 (spsimpcases (cdr x) w)) 1019 (setq w (ratdisrep w)) 1020 (go st1)) 1021 (t 1022 (return 1023 (ratf (cons '(mplus) 1024 (nconc (mapcar #'simplify (cons w (cdr x))) 1025 (cdr res)))))))) 1026 ((eq (caar w) 'mequal) 1027 (setq eqnflag 1028 (if (not eqnflag) 1029 w 1030 (list (car eqnflag) 1031 (add2 (cadr eqnflag) (cadr w)) 1032 (add2 (caddr eqnflag) (caddr w))))) 1033 (go start)) 1034 ((member (caar w) '(mlist $matrix) :test #'eq) 1035 (setq matrixflag 1036 (cond ((not matrixflag) w) 1037 ((and (or $doallmxops $domxmxops $domxplus 1038 (and (eq (caar w) 'mlist) 1039 ($listp matrixflag))) 1040 (or (not (eq (caar w) 'mlist)) $listarith)) 1041 (addmx matrixflag w)) 1042 (t (setq res (pls w res)) matrixflag))) 1043 (go start)) 1044 ((eq (caar w) '%sum) 1045 (setq sumflag t res (sumpls w res)) 1046 (setq w (car res) res (cdr res)))) 1047 (setq res (pls w res)) 1048 (go start) 1049 end 1050 (setq res (testp res)) 1051 (if matrixflag 1052 (setq res 1053 (cond ((and (or ($listp matrixflag) 1054 $doallmxops $doscmxplus $doscmxops) 1055 (or (not ($listp matrixflag)) $listarith)) 1056 (mxplusc res matrixflag)) 1057 (t (testp (pls matrixflag (pls res nil))))))) 1058 (setq res (eqtest res check)) 1059 (return (if eqnflag 1060 (list (car eqnflag) 1061 (add2 (cadr eqnflag) res) 1062 (add2 (caddr eqnflag) res)) 1063 res)))) 1064 1065;;;----------------------------------------------------------------------------- 1066;;; PLS (X OUT) 27.09.2010/DK 1067;;; 1068;;; Arguments and values: 1069;;; X - a Maxima expression or an atom 1070;;; OUT - a form ((mplus) <number> term1 term2 ...) or NIL 1071;;; result - a form ((mplus) <number> term1 ...), where x is added in. 1072;;; 1073;;; Description: 1074;;; Adds the argument X into the form OUT. If OUT is NIL a form 1075;;; ((mplus) 0 X) is initialized, if X is an expression or a symbol, 1076;;; or ((mplus) X), if X is a number. Numbers are added to the first 1077;;; term <number> of the form. Any other symbol or expression is added 1078;;; into the canonical ordered list of arguments. The result is in a 1079;;; canonical order, but it is not a valid Maxima expression. To get a 1080;;; valid Maxima expression the result has to be checked with the 1081;;; function TESTP. This is done by the calling routine SIMPLUS. 1082;;; 1083;;; PLS checks the global flag *PLUSFLAG*, which is set in PLUSIN to T, 1084;;; if a mplus-expression is part of the result. 1085;;; 1086;;; Examples: 1087;;; (pls 2 nil) -> ((MPLUS) 2) 1088;;; (pls '$A nil) -> ((MPLUS) 0 $A) 1089;;; (pls '$B '((mplus) 0 $A)) -> ((MPLUS) 0 $A $B) 1090;;; (pls '$A '((mplus) 0 $A)) -> ((MPLUS) 0 ((MTIMES SIMP) 2 $A)) 1091;;; 1092;;; Examples with the option variables $NUMER and $NEGDISTRIB: 1093;;; (let (($numer t)) (pls '$%e nil)) -> ((MPLUS) 2.718281828459045) 1094;;; (let (($negdistrib t)) (pls '((mtimes) -1 ((mplus) $A $B)) nil)) 1095;;; -> ((MPLUS) 0 ((MTIMES SIMP) -1 $A) ((MTIMES SIMP) -1 $B)) 1096;;; (let (($negdistrib nil)) (pls '((mtimes) -1 ((mplus) $A $B)) nil)) 1097;;; -> ((MPLUS) 0 ((MTIMES) -1 ((MPLUS) $A $B))) 1098;;; 1099;;; Affected by: 1100;;; The option variables $NUMER and $NEGDISTRIB and the global flag 1101;;; *PLUSFLAG*, which is set in the routine PLUSIN. 1102;;; 1103;;; See also: 1104;;; PLUSIN and ADDK which are called from PLS and SIMPLUS. 1105;;; 1106;;; Notes: 1107;;; To add an expression into the list (CDR OUT), the list is passed 1108;;; to the routine PLUSIN as an argument. PLUSIN adds the argument to 1109;;; the list of terms by modifying the list (CDR OUT) destructively. 1110;;; The new value of OUT is returned as a result by PLS. 1111;;;----------------------------------------------------------------------------- 1112 1113;; Set in PLUSIN to T to indicate a nested mplus expression. 1114(defvar *plusflag* nil) 1115 1116;; TESTP checks the result of PLS to get a valid Maxima mplus-expression. 1117 1118(defun testp (x) 1119 (cond ((atom x) 0) 1120 ((null (cddr x)) (cadr x)) 1121 ((zerop1 (cadr x)) 1122 (cond ((null (cdddr x)) (caddr x)) (t (rplacd x (cddr x))))) 1123 (t x))) 1124 1125(defun pls (x out) 1126 (prog (fm *plusflag*) 1127 (if (mtimesp x) (setq x (testtneg x))) 1128 (when (and $numer (atom x) (eq x '$%e)) 1129 ;; Replace $%e with its numerical value, when $numer ist TRUE 1130 (setq x %e-val)) 1131 (cond ((null out) 1132 ;; Initialize a form like ((mplus) <number> expr) 1133 (return 1134 (cons '(mplus) 1135 (cond ((mnump x) (ncons x)) 1136 ((not (mplusp x)) 1137 (list 0 (cond ((atom x) x) (t (copy-list x))))) 1138 ((mnump (cadr x)) (copy-list (cdr x) )) 1139 (t (cons 0 (copy-list (cdr x) ))))))) 1140 ((mnump x) 1141 ;; Add a number into the first term of the list out. 1142 (return (cons '(mplus) 1143 (if (mnump (cadr out)) 1144 (cons (addk (cadr out) x) (cddr out)) 1145 (cons x (cdr out)))))) 1146 ((not (mplusp x)) (plusin x (cdr out)) (go end))) 1147 ;; At this point we have a mplus expression as argument x. The following 1148 ;; code assumes that the argument x is already simplified and the terms 1149 ;; are in a canonical order. 1150 ;; First we add the number to the first term of the list out. 1151 (rplaca (cdr out) 1152 (addk (if (mnump (cadr out)) (cadr out) 0) 1153 (cond ((mnump (cadr x)) (setq x (cdr x)) (car x)) (t 0)))) 1154 ;; Initialize fm with the list of terms and start the loop to add the 1155 ;; terms of an mplus expression into the list out. 1156 (setq fm (cdr out)) 1157 start 1158 (if (null (setq x (cdr x))) (go end)) 1159 ;; The return value of PLUSIN is a list, where the first element is the 1160 ;; added argument and the rest are the terms which follow the added 1161 ;; argument. 1162 (setq fm (plusin (car x) fm)) 1163 (go start) 1164 end 1165 (if (not *plusflag*) (return out)) 1166 (setq *plusflag* nil) ; *PLUSFLAG* T handles e.g. a+b+3*(a+b)-2*(a+b) 1167 a 1168 ;; *PLUSFLAG* is set by PLUSIN to indicate that a mplus expression is 1169 ;; part of the result. For this case go again through the terms of the 1170 ;; result and add any term of the mplus expression into the list out. 1171 (setq fm (cdr out)) 1172 loop 1173 (when (mplusp (cadr fm)) 1174 (setq x (cadr fm)) 1175 (rplacd fm (cddr fm)) 1176 (pls x out) 1177 (go a)) 1178 (setq fm (cdr fm)) 1179 (if (null (cdr fm)) (return out)) 1180 (go loop))) 1181 1182;;;----------------------------------------------------------------------------- 1183;;; PLUSIN (X FM) 27.09.2010/DK 1184;;; 1185;;; Arguments and values: 1186;;; X - a Maxima expression or atom 1187;;; FM - a list with the terms of an addition 1188;;; result - part of the list fm, which starts at the inserted expression 1189;;; 1190;;; Description: 1191;;; Adds X into running list of additive terms FM. The routine modifies 1192;;; the argument FM destructively, but does not return the modified list as 1193;;; a result. The return value is a part of the list FM, which starts at the 1194;;; inserted term. PLUSIN can not handle Maxima numbers. PLUSIN is called 1195;;; only from the routine PLS. 1196;;; 1197;;; Examples: 1198;;; (setq fm '(0)) 1199;;; (plusin '$a fm) -> ($A) 1200;;; fm -> (0 $A) 1201;;; (plusin '$b fm) -> ($B) 1202;;; fm -> (0 $A $B) 1203;;; (plusin '$a fm) -> (((MTIMES SIMP) 2 $A) $B) 1204;;; fm -> (0 ((MTIMES SIMP) 2 $A) $B) 1205;;; 1206;;; Side effects: 1207;;; Modifies destructively the argument FM, which contains the result of the 1208;;; addition of the argument X into the list FM. 1209;;; 1210;;; Affected by; 1211;;; The option variables $doallmxops and $listarith. 1212;;; 1213;;; Notes: 1214;;; The return value is used in PLS to go in parallel through the list of 1215;;; terms, when adding a complete mplus-expression into the list of terms. 1216;;; This is triggered by the flag *PLUSFLAG*, which is set in PLUSIN, if 1217;;; a mplus-expression is added to the result list. 1218;;;----------------------------------------------------------------------------- 1219 1220(defun plusin (x fm) 1221 (prog (x1 x2 flag check v w xnew a n m c) 1222 (setq w 1) 1223 (setq v 1) 1224 (cond ((mtimesp x) 1225 (setq check x) 1226 (if (mnump (cadr x)) (setq w (cadr x) x (cddr x)) 1227 (setq x (cdr x)))) 1228 (t (setq x (ncons x)))) 1229 (setq x1 (if (null (cdr x)) (car x) (cons '(mtimes) x)) 1230 xnew (list* '(mtimes) w x)) 1231 start 1232 (cond ((null (cdr fm))) 1233 ((and (alike1 x1 (cadr fm)) (null (cdr x))) 1234 (go equ)) 1235 ;; Implement the simplification of 1236 ;; v*a^(c+n)+w*a^(c+m) -> (v*a^n+w*a^m)*a^c 1237 ;; where a, v, w, and (n-m) are integers. 1238 ((and (or (and (mexptp (setq x2 (cadr fm))) 1239 (setq v 1)) 1240 (and (mtimesp x2) 1241 (not (alike1 x1 x2)) 1242 (null (cadddr x2)) 1243 (integerp (setq v (cadr x2))) 1244 (mexptp (setq x2 (caddr x2))))) 1245 (integerp (setq a (cadr x2))) 1246 (mexptp x1) 1247 (equal a (cadr x1)) 1248 (integerp (sub (caddr x2) (caddr x1)))) 1249 (setq n (if (and (mplusp (caddr x2)) 1250 (mnump (cadr (caddr x2)))) 1251 (cadr (caddr x2)) 1252 (if (mnump (caddr x2)) 1253 (caddr x2) 1254 0))) 1255 (setq m (if (and (mplusp (caddr x1)) 1256 (mnump (cadr (caddr x1)))) 1257 (cadr (caddr x1)) 1258 (if (mnump (caddr x1)) 1259 (caddr x1) 1260 0))) 1261 (setq c (sub (caddr x2) n)) 1262 (cond ((integerp n) 1263 ;; The simple case: 1264 ;; n and m are integers and the result is (v*a^n+w*a^m)*a^c. 1265 (setq x1 (mul (addk (timesk v (exptb a n)) 1266 (timesk w (exptb a m))) 1267 (power a c))) 1268 (go equt2)) 1269 (t 1270 ;; n and m are rational numbers: The difference n-m is an 1271 ;; integer. The rational numbers might be improper fractions. 1272 ;; The mixed numbers are: n = n1 + d1/r and m = n2 + d2/r, 1273 ;; where r is the common denominator. We have two cases: 1274 ;; I) d1 = d2: e.g. 2^(1/3+c)+2^(4/3+c) 1275 ;; The result is (v*a^n1+w*a^n2)*a^(c+d1/r) 1276 ;; II) d1 # d2: e.g. 2^(1/2+c)+2^(-1/2+c) 1277 ;; In this case one of the exponents d1 or d2 must 1278 ;; be negative. The negative exponent is factored out. 1279 ;; This guarantees that the factor (v*a^n1+w*a^n2) 1280 ;; is an integer. But the positive exponent has to be 1281 ;; adjusted accordingly. E.g. when we factor out 1282 ;; a^(d2/r) because d2 is negative, then we have to 1283 ;; adjust the positive exponent to n1 -> n1+(d1-d2)/r. 1284 ;; Remark: 1285 ;; Part of the simplification is done in simptimes. E.g. 1286 ;; this algorithm simplifies the sum sqrt(2)+3*sqrt(2) 1287 ;; to 4*sqrt(2). In simptimes this is further simplified 1288 ;; to 2^(5/2). 1289 (multiple-value-bind (n1 d1) 1290 (truncate (num1 n) (denom1 n)) 1291 (multiple-value-bind (n2 d2) 1292 (truncate (num1 m) (denom1 m)) 1293 (cond ((equal d1 d2) 1294 ;; Case I: -> (v*a^n1+w*a^n2)*a^(c+d1/r) 1295 (setq x1 1296 (mul (addk (timesk v (exptb a n1)) 1297 (timesk w (exptb a n2))) 1298 (power a 1299 (add c 1300 (div d1 (denom1 n)))))) 1301 (go equt2)) 1302 ((minusp d2) 1303 ;; Case II:: d2 is negative, adjust n1. 1304 (setq n1 (add n1 (div (sub d1 d2) (denom1 n)))) 1305 (setq x1 1306 (mul (addk (timesk v (exptb a n1)) 1307 (timesk w (exptb a n2))) 1308 (power a 1309 (add c 1310 (div d2 (denom1 n)))))) 1311 (go equt2)) 1312 ((minusp d1) 1313 ;; Case II: d1 is negative, adjust n2. 1314 (setq n2 (add n2 (div (sub d2 d1) (denom1 n)))) 1315 (setq x1 1316 (mul (addk (timesk v (exptb a n1)) 1317 (timesk w (exptb a n2))) 1318 (power a 1319 (add c 1320 (div d1 (denom1 n)))))) 1321 (go equt2)) 1322 ;; This clause should never be reached. 1323 (t (merror "Internal error in simplus.")))))))) 1324 ((mtimesp (cadr fm)) 1325 (cond ((alike1 x1 (cadr fm)) 1326 (go equt)) 1327 ((and (mnump (cadadr fm)) (alike x (cddadr fm))) 1328 (setq flag t) ; found common factor 1329 (go equt)) 1330 ((great xnew (cadr fm)) (go gr)))) 1331 ((great x1 (cadr fm)) (go gr))) 1332 (setq xnew (eqtest (testt xnew) (or check '((foo))))) 1333 (return (cdr (rplacd fm (cons xnew (cdr fm))))) 1334 gr 1335 (setq fm (cdr fm)) 1336 (go start) 1337 equ 1338 (rplaca (cdr fm) 1339 (if (equal w -1) 1340 (list* '(mtimes simp) 0 x) 1341 ;; Call muln to get a simplified product. 1342 (if (mtimesp (setq x1 (muln (cons (addk 1 w) x) t))) 1343 (testtneg x1) 1344 x1))) 1345 del 1346 (cond ((not (mtimesp (cadr fm))) 1347 (go check)) 1348 ((onep (cadadr fm)) 1349 ;; Do this simplification for an integer 1, not for 1.0 and 1.0b0 1350 (rplacd (cadr fm) (cddadr fm)) 1351 (return (cdr fm))) 1352 ((not (zerop1 (cadadr fm))) 1353 (return (cdr fm))) 1354 ;; Handle the multiplication with a zero. 1355 ((and (or (not $listarith) (not $doallmxops)) 1356 (mxorlistp (caddr (cadr fm)))) 1357 (return (rplacd fm 1358 (cons (constmx 0 (caddr (cadr fm))) (cddr fm)))))) 1359 ;; (cadadr fm) is zero. If the first term of fm is a number, 1360 ;; add it to preserve the type. 1361 (when (mnump (car fm)) 1362 (rplaca fm (addk (car fm) (cadadr fm)))) 1363 (return (rplacd fm (cddr fm))) 1364 equt 1365 ;; Call muln to get a simplified product. 1366 (setq x1 (muln (cons (addk w (if flag (cadadr fm) 1)) x) t)) 1367 ;; Make a mplus expression to guarantee that x1 is added again into the sum 1368 (setq x1 (list '(mplus) x1)) 1369 equt2 1370 (rplaca (cdr fm) 1371 (if (zerop1 x1) 1372 (list* '(mtimes) x1 x) 1373 (if (mtimesp x1) (testtneg x1) x1))) 1374 (if (not (mtimesp (cadr fm))) (go check)) 1375 (when (and (onep (cadadr fm)) flag (null (cdddr (cadr fm)))) 1376 ;; Do this simplification for an integer 1, not for 1.0 and 1.0b0 1377 (rplaca (cdr fm) (caddr (cadr fm))) (go check)) 1378 (go del) 1379 check 1380 (if (mplusp (cadr fm)) (setq *plusflag* t)) ; A nested mplus expression 1381 (return (cdr fm)))) 1382 1383;;;----------------------------------------------------------------------------- 1384 1385;; Routines to add matrices 1386 1387(defun mxplusc (sc mx) 1388 (cond ((mplusp sc) 1389 (setq sc (partition-ns (cdr sc))) 1390 (cond ((null (car sc)) (cons '(mplus) (cons mx (cadr sc)))) 1391 ((not (null (cadr sc))) 1392 (cons '(mplus) 1393 (cons (simplify 1394 (outermap1 'mplus (cons '(mplus) (car sc)) mx)) 1395 (cadr sc)))) 1396 (t (simplify (outermap1 'mplus (cons '(mplus) (car sc)) mx))))) 1397 ((not (scalar-or-constant-p sc $assumescalar)) 1398 (testp (pls mx (pls sc nil)))) 1399 (t (simplify (outermap1 'mplus sc mx))))) 1400 1401(defun partition-ns (x) 1402 (let (sp nsp) ; SP = scalar part, NSP = nonscalar part 1403 (mapc #'(lambda (z) (if (scalar-or-constant-p z $assumescalar) 1404 (setq sp (cons z sp)) 1405 (setq nsp (cons z nsp)))) 1406 x) 1407 (list (nreverse sp) (nreverse nsp)))) 1408 1409(defun addmx (x1 x2) 1410 (let (($doscmxops t) ($domxmxops t) ($listarith t)) 1411 (simplify (fmapl1 'mplus x1 x2)))) 1412 1413;;; ---------------------------------------------------------------------------- 1414 1415;;; Simplification of the Log function 1416 1417;; The log function distributes over lists, matrices, and equations 1418(defprop %log (mlist $matrix mequal) distribute_over) 1419 1420(defun simpln (x y z) 1421 (oneargcheck x) 1422 (setq y (simpcheck (cadr x) z)) 1423 (cond ((onep1 y) (addk -1 y)) 1424 ((zerop1 y) 1425 (cond (radcanp (list '(%log simp) 0)) 1426 ((not errorsw) 1427 (merror (intl:gettext "log: encountered log(0)."))) 1428 (t (throw 'errorsw t)))) 1429 ;; Check evaluation in floating point precision. 1430 ((flonum-eval (mop x) y)) 1431 ;; Check evaluation in bigfloag precision. 1432 ((and (not (member 'simp (car x) :test #'eq)) 1433 (big-float-eval (mop x) y))) 1434 ((eq y '$%e) 1) 1435 ((mexptp y) 1436 (cond ((or (and $logexpand (eq $domain '$real)) 1437 (member $logexpand '($all $super)) 1438 (and (eq ($csign (cadr y)) '$pos) 1439 (not (member ($csign (caddr y)) 1440 '($complex $imaginary))))) 1441 ;; Simplify log(x^a) -> a*log(x), where x > 0 and a is real 1442 (mul (caddr y) (take '(%log) (cadr y)))) 1443 ((or (and (ratnump (caddr y)) 1444 (or (eql 1 (cadr (caddr y))) 1445 (eql -1 (cadr (caddr y))))) 1446 (maxima-integerp (inv (caddr y)))) 1447 ;; Simplify log(z^(1/n)) -> log(z)/n, where n is an integer 1448 (mul (caddr y) 1449 (take '(%log) (cadr y)))) 1450 ((and (eq (cadr y) '$%e) 1451 (or (not (member ($csign (caddr y)) 1452 '($complex $imaginary))) 1453 (not (member ($csign (mul '$%i (caddr y))) 1454 '($complex $imaginary))))) 1455 ;; Simplify log(exp(x)) and log(exp(%i*x)), where x is a real 1456 (caddr y)) 1457 (t (eqtest (list '(%log) y) x)))) 1458 ((ratnump y) 1459 ;; Simplify log(n/d) 1460 (cond ((eql (cadr y) 1) 1461 (mul -1 (take '(%log) (caddr y)))) 1462 ((eq $logexpand '$super) 1463 (sub (take '(%log) (cadr y)) (take '(%log) (caddr y)))) 1464 (t (eqtest (list '(%log) y) x)))) 1465 ((and (member $logexpand '($all $super) :test #'eq) 1466 (mtimesp y)) 1467 (do ((y (cdr y) (cdr y)) 1468 (b nil)) 1469 ((null y) (return (addn b t))) 1470 (setq b (cons (take '(%log) (car y)) b)))) 1471 ((and (member $logexpand '($all $super)) 1472 (consp y) 1473 (member (caar y) '(%product $product))) 1474 (let ((new-op (if (char= (get-first-char (caar y)) #\%) '%sum '$sum))) 1475 (simplifya `((,new-op) ((%log) ,(cadr y)) ,@(cddr y)) t))) 1476 ((and $lognegint 1477 (maxima-integerp y) 1478 (eq ($sign y) '$neg)) 1479 (add (mul '$%i '$%pi) (take '(%log) (neg y)))) 1480 ((taylorize (mop x) (second x))) 1481 (t (eqtest (list '(%log) y) x)))) 1482 1483(defun simpln1 (w) 1484 (simplifya (list '(mtimes) (caddr w) 1485 (simplifya (list '(%log) (cadr w)) t)) t)) 1486 1487;;; ---------------------------------------------------------------------------- 1488 1489;;; Implementation of the Square root function 1490 1491(defprop $sqrt %sqrt verb) 1492(defprop $sqrt %sqrt alias) 1493 1494(defprop %sqrt $sqrt noun) 1495(defprop %sqrt $sqrt reversealias) 1496 1497(defprop %sqrt simp-sqrt operators) 1498 1499(defmfun $sqrt (z) 1500 (simplify (list '(%sqrt) z))) 1501 1502(defun simp-sqrt (x ignored z) 1503 (declare (ignore ignored)) 1504 (oneargcheck x) 1505 (simplifya (list '(mexpt) (cadr x) '((rat simp) 1 2)) z)) 1506 1507;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1508 1509;;; Simplification of the "/" operator. 1510 1511(defun simpquot (x y z) 1512 (twoargcheck x) 1513 (cond ((and (integerp (cadr x)) (integerp (caddr x)) (not (zerop (caddr x)))) 1514 (*red (cadr x) (caddr x))) 1515 ((and (numberp (cadr x)) (numberp (caddr x)) (not (zerop (caddr x)))) 1516 (/ (cadr x) (caddr x))) 1517 ((and (floatp (cadr x)) (floatp (caddr x)) #-ieee-floating-point (not (zerop (caddr x)))) 1518 (/ (cadr x) (caddr x))) 1519 ((and ($bfloatp (cadr x)) ($bfloatp (caddr x)) (not (equal bigfloatzero (caddr x)))) 1520 ;; Call BIGFLOATP to ensure that arguments have same precision. 1521 ;; Otherwise FPQUOTIENT could return a spurious value. 1522 (bcons (fpquotient (cdr (bigfloatp (cadr x))) (cdr (bigfloatp (caddr x)))))) 1523 (t (setq y (simplifya (cadr x) z)) 1524 (setq x (simplifya (list '(mexpt) (caddr x) -1) z)) 1525 (if (equal y 1) x (simplifya (list '(mtimes) y x) t))))) 1526 1527;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1528 1529;;; Implementation of the abs function. 1530 1531;; Put the properties alias, reversealiases, noun and verb on the property list. 1532(defprop $abs mabs alias) 1533(defprop $abs mabs verb) 1534(defprop mabs $abs reversealias) 1535(defprop mabs $abs noun) 1536 1537;; The abs function distributes over bags. 1538(defprop mabs (mlist $matrix mequal) distribute_over) 1539 1540;; Define a verb function $abs 1541(defmfun $abs (x) 1542 (simplify (list '(mabs) x))) 1543 1544;; The abs function is a simplifying function. 1545(defprop mabs simpabs operators) 1546 1547(defun simpabs (e y z) 1548 (declare (ignore y)) 1549 (oneargcheck e) 1550 (let ((sgn) 1551 (x (simpcheck (second e) z))) 1552 1553 (cond ((complex-number-p x #'(lambda (s) (or (floatp s) ($bfloatp s)))) 1554 (maxima::to (bigfloat::abs (bigfloat:to x)))) 1555 1556 ((complex-number-p x #'mnump) 1557 ($cabs x)) 1558 1559 ;; nounform for arrays... 1560 ((or (arrayp x) ($member x $arrays)) `((mabs simp) ,x)) 1561 1562 ;; taylor polynomials 1563 ((taylorize 'mabs x)) 1564 1565 ;; values for extended real arguments: 1566 ((member x '($inf $infinity $minf) :test #'eq) '$inf) 1567 ((member x '($ind $und) :test #'eq) x) 1568 1569 ;; abs(abs(expr)) --> abs(expr). Since x is simplified, it's OK to return x. 1570 ((and (consp x) (consp (car x)) (eq (caar x) 'mabs)) 1571 x) 1572 1573 ;; abs(conjugate(expr)) = abs(expr). 1574 ((and (consp x) (consp (car x)) (eq (caar x) '$conjugate)) 1575 (take '(mabs) (cadr x))) 1576 1577 (t 1578 (setq sgn ($csign x)) 1579 (cond ((member sgn '($neg $nz) :test #'eq) (mul -1 x)) 1580 ((eq '$zero sgn) (mul 0 x)) 1581 ((member sgn '($pos $pz) :test #'eq) x) 1582 1583 ;; for complex constant expressions, use $cabs 1584 ((and (eq sgn '$complex) ($constantp x)) 1585 ($cabs x)) 1586 1587 ;; abs(pos^complex) --> pos^(realpart(complex)). 1588 ((and (eq sgn '$complex) (mexptp x) (eq '$pos ($csign (second x)))) 1589 (power (second x) ($realpart (third x)))) 1590 1591 ;; for abs(neg^z), use cabs. 1592 ((and (mexptp x) (eq '$neg ($csign (second x)))) 1593 ($cabs x)) 1594 1595 ;; When x # 0, we have abs(signum(x)) = 1. 1596 ((and (eq '$pn sgn) (consp x) (consp (car x)) (eq (caar x) '%signum)) 1) 1597 1598 ;; multiplicative property: abs(x*y) = abs(x) * abs(y). We would like 1599 ;; assume(a*b > 0), abs(a*b) --> a*b. Thus the multiplicative property 1600 ;; is applied after the sign test. 1601 ((mtimesp x) 1602 (muln (mapcar #'(lambda (u) (take '(mabs) u)) (margs x)) t)) 1603 1604 ;; abs(x^n) = abs(x)^n for integer n. Is the featurep check worthwhile? 1605 ;; Again the sign check is done first because we'd like abs(x^2) --> x^2. 1606 ((and (mexptp x) ($featurep (caddr x) '$integer)) 1607 (power (take '(mabs) (cadr x)) (caddr x))) 1608 1609 ;; Reflection rule: abs(-x) --> abs(x) 1610 ((great (neg x) x) (take '(mabs) (neg x))) 1611 1612 ;; nounform return 1613 (t (eqtest (list '(mabs) x) e))))))) 1614 1615(defun abs-integral (x) 1616 (mul (div 1 2) x (take '(mabs) x))) 1617 1618(putprop 'mabs `((x) ,#'abs-integral) 'integral) 1619 1620;; I (rtoy) think this does some simple optimizations of x * y. 1621(defun testt (x) 1622 (cond ((mnump x) 1623 x) 1624 ((null (cddr x)) 1625 ;; We have something like ((mtimes) foo). This is the same as foo. 1626 (cadr x)) 1627 ((eql 1 (cadr x)) 1628 ;; We have 1*foo. Which is the same as foo. This should not 1629 ;; be applied to 1.0 or 1b0! 1630 (cond ((null (cdddr x)) 1631 (caddr x)) 1632 (t (rplacd x (cddr x))))) 1633 (t 1634 (testtneg x)))) 1635 1636;; This basically converts -(a+b) to -a-b. 1637(defun testtneg (x) 1638 (cond ((and (equal (cadr x) -1) 1639 (null (cdddr x)) 1640 (mplusp (caddr x)) 1641 $negdistrib) 1642 ;; If x is exactly of the form -1*(sum), and $negdistrib is 1643 ;; true, we distribute the -1 across the sum. 1644 (addn (mapcar #'(lambda (z) 1645 (mul2 -1 z)) 1646 (cdaddr x)) 1647 t)) 1648 (t x))) 1649 1650;; Simplification of the "-" operator 1651(defun simpmin (x vestigial z) 1652 (declare (ignore vestigial)) 1653 (cond ((null (cdr x)) 0) 1654 ((null (cddr x)) 1655 (mul -1 (simplifya (cadr x) z))) 1656 (t 1657 ;; ((mminus) a b ...) -> ((mplus) a ((mtimes) -1 b) ...) 1658 (sub (simplifya (cadr x) z) (addn (cddr x) z))))) 1659 1660(defun simptimes (x w z) ; W must be 1 1661 (prog (res check eqnflag matrixflag sumflag) 1662 (if (null (cdr x)) (return 1)) 1663 (setq check x) 1664 start 1665 (setq x (cdr x)) 1666 (cond ((zerop1 res) 1667 (cond ($mx0simp 1668 (cond ((and matrixflag (mxorlistp1 matrixflag)) 1669 (return (constmx res matrixflag))) 1670 (eqnflag (return (list '(mequal simp) 1671 (mul2 res (cadr eqnflag)) 1672 (mul2 res (caddr eqnflag))))) 1673 (t 1674 (dolist (u x) 1675 (cond ((mxorlistp u) 1676 (return (setq res (constmx res u)))) 1677 ((and (mexptp u) 1678 (mxorlistp1 (cadr u)) 1679 ($numberp (caddr u))) 1680 (return (setq res (constmx res (cadr u))))) 1681 ((mequalp u) 1682 (return 1683 (setq res 1684 (list '(mequal simp) 1685 (mul2 res (cadr u)) 1686 (mul2 res (caddr u)))))))))))) 1687 (return res)) 1688 ((null x) (go end))) 1689 (setq w (if z (car x) (simplifya (car x) nil))) 1690 st1 1691 (cond ((atom w) nil) 1692 ((eq (caar w) 'mrat) 1693 (cond ((or eqnflag matrixflag 1694 (and sumflag 1695 (not (member 'trunc (cdar w) :test #'eq))) 1696 (spsimpcases (cdr x) w)) 1697 (setq w (ratdisrep w)) 1698 (go st1)) 1699 (t 1700 (return 1701 (ratf (cons '(mtimes) 1702 (nconc (mapcar #'simplify (cons w (cdr x))) 1703 (cdr res)))))))) 1704 ((eq (caar w) 'mequal) 1705 (setq eqnflag 1706 (if (not eqnflag) 1707 w 1708 (list (car eqnflag) 1709 (mul2 (cadr eqnflag) (cadr w)) 1710 (mul2 (caddr eqnflag) (caddr w))))) 1711 (go start)) 1712 ((member (caar w) '(mlist $matrix) :test #'eq) 1713 (setq matrixflag 1714 (cond ((not matrixflag) w) 1715 ((and (or $doallmxops $domxmxops $domxtimes) 1716 (or (not (eq (caar w) 'mlist)) $listarith) 1717 (not (eq *inv* '$detout))) 1718 (stimex matrixflag w)) 1719 (t (setq res (tms (copy-tree w) 1 (copy-tree res))) matrixflag))) 1720 (go start)) 1721 ((and (eq (caar w) '%sum) $sumexpand) 1722 (setq sumflag (sumtimes sumflag w)) 1723 (go start))) 1724 (setq res (tms (copy-tree w) 1 (copy-tree res))) 1725 (go start) 1726 end 1727 (cond ((mtimesp res) (setq res (testt res)))) 1728 (cond (sumflag (setq res (cond ((or (null res) (equal res 1)) sumflag) 1729 ((not (mtimesp res)) 1730 (list '(mtimes) res sumflag)) 1731 (t (nconc res (list sumflag))))))) 1732 (cond ((or (atom res) 1733 (not (member (caar res) '(mexpt mtimes) :test #'eq)) 1734 (and (zerop $expop) (zerop $expon)) 1735 expandflag)) 1736 ((eq (caar res) 'mtimes) (setq res (expandtimes res))) 1737 ((and (mplusp (cadr res)) 1738 (fixnump (caddr res)) 1739 (not (or (> (caddr res) $expop) 1740 (> (- (caddr res)) $expon)))) 1741 (setq res (expandexpt (cadr res) (caddr res))))) 1742 (cond (matrixflag 1743 (setq res 1744 (cond ((null res) matrixflag) 1745 ((and (or ($listp matrixflag) 1746 $doallmxops 1747 (and $doscmxops 1748 (not (member res '(-1 -1.0) :test #'equal))) 1749 ;; RES should only be -1 here (not = 1) 1750 (and $domxmxops 1751 (member res '(-1 -1.0) :test #'equal))) 1752 (or (not ($listp matrixflag)) $listarith)) 1753 (mxtimesc res matrixflag)) 1754 (t (testt (tms matrixflag 1 (tms res 1 nil)))))))) 1755 (if res (setq res (eqtest res check))) 1756 (return (cond (eqnflag 1757 (if (null res) (setq res 1)) 1758 (list (car eqnflag) 1759 (mul2 (cadr eqnflag) res) 1760 (mul2 (caddr eqnflag) res))) 1761 (t res))))) 1762 1763(defun spsimpcases (l e) 1764 (dolist (u l) 1765 (if (or (mbagp u) (and (not (atom u)) 1766 (eq (caar u) '%sum) 1767 (not (member 'trunc (cdar e) :test #'eq)))) 1768 (return t)))) 1769 1770(defun mxtimesc (sc mx) 1771 (let (sign out) 1772 (and (mtimesp sc) (member (cadr sc) '(-1 -1.0) :test #'equal) 1773 $doscmxops (not (or $doallmxops $domxmxops $domxtimes)) 1774 (setq sign (cadr sc)) (rplaca (cdr sc) nil)) 1775 (setq out (let ((scp* (cond ((mtimesp sc) (partition-ns (cdr sc))) 1776 ((not (scalar-or-constant-p sc $assumescalar)) 1777 nil) 1778 (t sc)))) 1779 (cond ((null scp*) (list '(mtimes simp) sc mx)) 1780 ((and (not (atom scp*)) (null (car scp*))) 1781 (append '((mtimes)) (cadr scp*) (list mx))) 1782 ((or (atom scp*) (and (null (cdr scp*)) 1783 (not (null (cdr sc))) 1784 (setq scp* (cons '(mtimes) (car scp*)))) 1785 (not (mtimesp sc))) 1786 (simplifya (outermap1 'mtimes scp* mx) nil)) 1787 (t (append '((mtimes)) 1788 (list (simplifya 1789 (outermap1 'mtimes 1790 (cons '(mtimes) (car scp*)) mx) 1791 t)) 1792 (cadr scp*)))))) 1793 (cond (sign (if (mtimesp out) 1794 (rplacd out (cons sign (cdr out))) 1795 (list '(mtimes) sign out))) 1796 ((mtimesp out) (testt out)) 1797 (t out)))) 1798 1799(defun stimex (x y) 1800 (let (($doscmxops t) ($domxmxops t) ($listarith t)) 1801 (simplify (fmapl1 'mtimes x y)))) 1802 1803;; TMS takes a simplified expression FACTOR and a cumulative 1804;; PRODUCT as arguments and modifies the cumulative product so 1805;; that the expression is now one of its factors. The 1806;; exception to this occurs when a tellsimp rule is triggered. 1807;; The second argument is the POWER to which the expression is 1808;; to be raised within the product. 1809 1810(defun tms (factor power product &aux tem) 1811 (let ((rulesw nil) 1812 (z nil)) 1813 (when (mplusp product) (setq product (list '(mtimes simp) product))) 1814 (cond ((zerop1 factor) 1815 (cond ((mnegp power) 1816 (if errorsw 1817 (throw 'errorsw t) 1818 (merror (intl:gettext "Division by 0")))) 1819 (t factor))) 1820 ((and (null product) 1821 (or (and (mtimesp factor) (equal power 1)) 1822 (and (setq product (list '(mtimes) 1)) nil))) 1823 (setq tem (append '((mtimes)) (if (mnump (cadr factor)) nil '(1)) 1824 (cdr factor) nil)) 1825 (if (= (length tem) 1) 1826 (setq tem (copy-list tem)) 1827 tem)) 1828 ((mtimesp factor) 1829 (do ((factor-list (cdr factor) (cdr factor-list))) 1830 ((or (null factor-list) (zerop1 product)) product) 1831 (setq z (timesin (car factor-list) (cdr product) power)) 1832 (when rulesw 1833 (setq rulesw nil) 1834 (setq product (tms-format-product z))))) 1835 (t 1836 (setq z (timesin factor (cdr product) power)) 1837 (if rulesw 1838 (tms-format-product z) 1839 product))))) 1840 1841(defun tms-format-product (x) 1842 (cond ((zerop1 x) x) 1843 ((mnump x) (list '(mtimes) x)) 1844 ((not (mtimesp x)) (list '(mtimes) 1 x)) 1845 ((not (mnump (cadr x))) (cons '(mtimes) (cons 1 (cdr x)))) 1846 (t x))) 1847 1848(defun plsk (x y) 1849 (cond ($ratsimpexpons (sratsimp (list '(mplus) x y))) 1850 ((and (mnump x) (mnump y)) (addk x y)) 1851 (t (add2 x y)))) 1852 1853(defun mult (x y) 1854 (if (and (mnump x) (mnump y)) 1855 (timesk x y) 1856 (mul2 x y))) 1857 1858(defun simp-limit (x vestigial z) 1859 (declare (ignore vestigial)) 1860 (let ((l1 (length x)) 1861 y) 1862 (unless (or (= l1 2) (= l1 4) (= l1 5)) 1863 (merror (intl:gettext "limit: wrong number of arguments."))) 1864 (setq y (simpmap (cdr x) z)) 1865 (cond ((and (= l1 5) (not (member (cadddr y) '($plus $minus) :test #'eq))) 1866 (merror (intl:gettext "limit: direction must be either 'plus' or 'minus': ~M") (cadddr y))) 1867 ((mnump (cadr y)) 1868 (merror (intl:gettext "limit: variable must not be a number; found: ~M") (cadr y))) 1869 ((equal (car y) 1) 1870 1) 1871 (t 1872 (eqtest (cons '(%limit) y) x))))) 1873 1874(defun simpinteg (x vestigial z) 1875 (declare (ignore vestigial)) 1876 (let ((l1 (length x)) 1877 y) 1878 (unless (or (= l1 3) (= l1 5)) 1879 (merror (intl:gettext "integrate: wrong number of arguments."))) 1880 (setq y (simpmap (cdr x) z)) 1881 (cond ((mnump (cadr y)) 1882 (merror (intl:gettext "integrate: variable must not be a number; found: ~M") (cadr y))) 1883 ((and (= l1 5) (alike1 (caddr y) (cadddr y))) 1884 0) 1885 ((and (= l1 5) 1886 (free (setq z (sub (cadddr y) (caddr y))) '$%i) 1887 (eq ($sign z) '$neg)) 1888 (neg (simplifya (list '(%integrate) (car y) (cadr y) (cadddr y) (caddr y)) t))) 1889 ((equal (car y) 1) 1890 (if (= l1 3) 1891 (cadr y) 1892 (if (or (among '$inf z) (among '$minf z)) 1893 (infsimp z) 1894 z))) 1895 (t 1896 (eqtest (cons '(%integrate) y) x))))) 1897 1898(defun simpbigfloat (x vestigial simp-flag) 1899 (declare (ignore vestigial simp-flag)) 1900 (bigfloatm* x)) 1901 1902;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1903 1904;;; Implementation of the Exp function. 1905 1906(defprop $exp %exp verb) 1907(defprop $exp %exp alias) 1908 1909(defprop %exp $exp noun) 1910(defprop %exp $exp reversealias) 1911 1912(defprop %exp simp-exp operators) 1913 1914(defmfun $exp (z) 1915 (simplify (list '(%exp) z))) 1916 1917;; Support a function for code, 1918;; which depends on an unsimplified noun form. 1919(defmfun $exp-form (z) 1920 (list '(mexpt) '$%e z)) 1921 1922(defun simp-exp (x ignored z) 1923 (declare (ignore ignored)) 1924 (oneargcheck x) 1925 (simplifya (list '(mexpt) '$%e (cadr x)) z)) 1926 1927;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1928 1929(defun simplambda (x vestigial simp-flag) 1930 (declare (ignore vestigial simp-flag)) 1931 ; Check for malformed lambda expressions. 1932 ; We verify that we have a valid list of parameters and a non-empty body. 1933 (let ((params (cadr x))) 1934 (unless ($listp params) 1935 (merror (intl:gettext "lambda: first argument must be a list; found: ~M") params)) 1936 (do ((params (cdr params) (cdr params)) 1937 (seen-params nil)) 1938 ((null params)) 1939 (when (mdeflistp params) 1940 (setq params (cdar params))) 1941 (let ((p (car params))) 1942 (unless (or (mdefparam p) 1943 (and (op-equalp p 'mquote) 1944 (mdefparam (cadr p)))) 1945 (merror (intl:gettext "lambda: parameter must be a symbol and must not be a system constant; found: ~M") p)) 1946 (setq p (mparam p)) 1947 (when (member p seen-params :test #'eq) 1948 (merror (intl:gettext "lambda: ~M occurs more than once in the parameter list") p)) 1949 (push p seen-params)))) 1950 (when (null (cddr x)) 1951 (merror (intl:gettext "lambda: no body present"))) 1952 (cons '(lambda simp) (cdr x))) 1953 1954(defun simpmdef (x vestigial simp-flag) 1955 (declare (ignore vestigial simp-flag)) 1956 (twoargcheck x) 1957 (cons '(mdefine simp) (cdr x))) 1958 1959(defun simpmap (e z) 1960 (mapcar #'(lambda (u) (simpcheck u z)) e)) 1961 1962(defun infsimp (e) 1963 (let ((x ($expand e 1 1))) 1964 (cond ((or (not (free x '$ind)) (not (free x '$und)) 1965 (not (free x '$zeroa)) (not (free x '$zerob)) 1966 (not (free x '$infinity)) 1967 (mbagp x)) 1968 (infsimp2 x e)) 1969 ((and (free x '$inf) (free x '$minf)) x) 1970 (t (infsimp1 x e))))) 1971 1972(defun infsimp1 (x e) 1973 (let ((minf-coef (coeff x '$minf 1)) 1974 (inf-coef (coeff x '$inf 1))) 1975 (cond ((or (and (equal minf-coef 0) 1976 (equal inf-coef 0)) 1977 (and (not (free minf-coef '$inf)) 1978 (not (free inf-coef '$minf))) 1979 (let ((new-exp (sub (add2 (mul2 minf-coef '$minf) 1980 (mul2 inf-coef '$inf)) 1981 x))) 1982 (and (not (free new-exp '$inf)) 1983 (not (free new-exp '$minf))))) 1984 (infsimp2 x e)) 1985 (t (let ((sign-minf-coef ($asksign minf-coef)) 1986 (sign-inf-coef ($asksign inf-coef))) 1987 (cond ((or (and (eq sign-inf-coef '$zero) 1988 (eq sign-minf-coef '$neg)) 1989 (and (eq sign-inf-coef '$pos) 1990 (eq sign-minf-coef '$zero)) 1991 (and (eq sign-inf-coef '$pos) 1992 (eq sign-minf-coef '$neg))) '$inf) 1993 ((or (and (eq sign-inf-coef '$zero) 1994 (eq sign-minf-coef '$pos)) 1995 (and (eq sign-inf-coef '$neg) 1996 (eq sign-minf-coef '$zero)) 1997 (and (eq sign-inf-coef '$neg) 1998 (eq sign-minf-coef '$pos))) '$minf) 1999 ((or (and (eq sign-inf-coef '$pos) 2000 (eq sign-minf-coef '$pos)) 2001 (and (eq sign-inf-coef '$neg) 2002 (eq sign-minf-coef '$neg))) '$und))))))) 2003 2004(defun infsimp2 (x e) 2005 (setq x ($limit x)) 2006 (if (isinop x '%limit) e x)) 2007 2008(defun simpderiv (x y z) 2009 (prog (flag w u) 2010 (cond ((not (even (length x))) 2011 (cond ((and (cdr x) (null (cdddr x))) (nconc x '(1))) 2012 (t (wna-err '%derivative))))) 2013 (setq w (cons '(%derivative) (simpmap (cdr x) z))) 2014 (setq y (cadr w)) 2015 (do ((u (cddr w) (cddr u))) ((null u)) 2016 (cond ((mnump (car u)) 2017 (merror (intl:gettext "diff: variable must not be a number; found: ~M") (car u))))) 2018 (cond ((or (zerop1 y) 2019 (and (or (mnump y) (and (atom y) (constant y))) 2020 (or (null (cddr w)) 2021 (and (not (alike1 y (caddr w))) 2022 (do ((u (cddr w) (cddr u))) ((null u)) 2023 (cond ((and (numberp (cadr u)) 2024 (not (zerop (cadr u)))) 2025 (return t)))))))) 2026 (return 0)) 2027 ((and (not (atom y)) (eq (caar y) '%derivative) derivsimp) 2028 (rplacd w (append (cdr y) (cddr w))))) 2029 (if (null (cddr w)) 2030 (return (if (null derivflag) (list '(%del simp) y) (deriv (cdr w))))) 2031 (setq u (cdr w)) 2032 ztest 2033 (cond ((null u) (go next)) 2034 ((zerop1 (caddr u)) (rplacd u (cdddr u))) 2035 (t (setq u (cddr u)))) 2036 (go ztest) 2037 next 2038 (cond ((null (cddr w)) (return y)) 2039 ((and (null (cddddr w)) 2040 (onep (cadddr w)) 2041 (alike1 (cadr w) (caddr w))) 2042 (return 1))) 2043 again 2044 (setq z (cddr w)) 2045 sort 2046 (cond ((null (cddr z)) (go loop)) 2047 ((alike1 (car z) (caddr z)) 2048 (rplaca (cdddr z) (add2 (cadr z) (cadddr z))) 2049 (rplacd z (cdddr z))) 2050 ((great (car z) (caddr z)) 2051 (let ((u1 (car z)) (u2 (cadr z)) (v1 (caddr z)) (v2 (cadddr z))) 2052 (setq flag t) 2053 (rplaca z v1) 2054 (rplacd z (cons v2 (cons u1 (cons u2 (cddddr z)))))))) 2055 (cond ((setq z (cddr z)) (go sort))) 2056 loop 2057 (cond ((null flag) (return (cond ((null derivflag) (eqtest w x)) 2058 (t (deriv (cdr w))))))) 2059 (setq flag nil) 2060 (go again))) 2061 2062(defun signum1 (x) 2063 (cond ((mnump x) 2064 (setq x (num1 x)) (cond ((plusp x) 1) ((minusp x) -1) (t 0))) 2065 ((atom x) 1) 2066 ((mplusp x) (if expandp 1 (signum1 (car (last x))))) 2067 ((mtimesp x) (if (mplusp (cadr x)) 1 (signum1 (cadr x)))) 2068 (t 1))) 2069 2070(defprop %signum (mlist $matrix mequal) distribute_over) 2071 2072(defun simpsignum (e y z) 2073 (declare (ignore y)) 2074 (oneargcheck e) 2075 (let ((x (simpcheck (second e) z)) (sgn)) 2076 2077 (cond ((complex-number-p x #'mnump) 2078 (if (complex-number-p x #'$ratnump) ;; nonfloat complex 2079 (if (zerop1 x) 0 ($rectform (div x ($cabs x)))) 2080 (maxima::to (bigfloat::signum (bigfloat::to x))))) 2081 2082 ;; idempotent: signum(signum(z)) = signum(z). 2083 ((and (consp x) (consp (car x)) (eq '%signum (mop x))) x) 2084 2085 (t 2086 (setq sgn ($csign x)) 2087 (cond ((eq sgn '$neg) -1) 2088 ((eq sgn '$zero) 0) 2089 ((eq sgn '$pos) 1) 2090 2091 ;; multiplicative: signum(ab) = signum(a) * signum(b). 2092 ((mtimesp x) 2093 (muln (mapcar #'(lambda (s) (take '(%signum) s)) (margs x)) t)) 2094 2095 ;; Reflection rule: signum(-x) --> -signum(x). 2096 ((great (neg x) x) (neg (take '(%signum) (neg x)))) 2097 2098 ;; nounform return 2099 (t (eqtest (list '(%signum) x) e))))))) 2100 2101(defun exptrl (r1 r2) 2102 (cond ((equal r2 1) r1) 2103 ((equal r2 1.0) 2104 (cond ((mnump r1) (addk 0.0 r1)) 2105 ;; Do not simplify the type of the number away. 2106 (t (list '(mexpt simp) r1 1.0)))) 2107 ((equal r2 bigfloatone) 2108 (cond ((mnump r1) ($bfloat r1)) 2109 ;; Do not simplify the type of the number away. 2110 (t (list '(mexpt simp) r1 bigfloatone)))) 2111 ((zerop1 r1) 2112 (cond ((or (zerop1 r2) (mnegp r2)) 2113 (if (not errorsw) 2114 (merror (intl:gettext "expt: undefined: ~M") (list '(mexpt) r1 r2)) 2115 (throw 'errorsw t))) 2116 (t (zerores r1 r2)))) 2117 ((or (zerop1 r2) (onep1 r1)) 2118 (cond ((or ($bfloatp r1) ($bfloatp r2)) bigfloatone) 2119 ((or (floatp r1) (floatp r2)) 1.0) 2120 (t 1))) 2121 ((or ($bfloatp r1) ($bfloatp r2)) ($bfloat (list '(mexpt) r1 r2))) 2122 ((and (numberp r1) (integerp r2)) (exptb r1 r2)) 2123 ((and (numberp r1) (floatp r2) (equal r2 (float (floor r2)))) 2124 (exptb (float r1) (floor r2))) 2125 ((or $numer (and (floatp r2) (or (plusp (num1 r1)) $numer_pbranch))) 2126 (let (y #+kcl(r1 r1) #+kcl(r2 r2)) 2127 (cond ((minusp (setq r1 (addk 0.0 r1))) 2128 (cond ((or $numer_pbranch (eq $domain '$complex)) 2129 ;; for R1<0: 2130 ;; R1^R2 = (-R1)^R2*cos(pi*R2) + i*(-R1)^R2*sin(pi*R2) 2131 (setq r2 (addk 0.0 r2)) 2132 (setq y (exptrl (- r1) r2) r2 (* %pi-val r2)) 2133 (add2 (* y (cos r2)) 2134 (list '(mtimes simp) (* y (sin r2)) '$%i))) 2135 (t (setq y (let ($numer $float $keepfloat $ratprint) 2136 (power -1 r2))) 2137 (mul2 y (exptrl (- r1) r2))))) 2138 ((equal (setq r2 (addk 0.0 r2)) (float (floor r2))) 2139 (exptb r1 (floor r2))) 2140 ((and (equal (setq y (* 2.0 r2)) (float (floor y))) 2141 (not (equal r1 %e-val))) 2142 (exptb (sqrt r1) (floor y))) 2143 (t (exp (* r2 (log r1))))))) 2144 ((floatp r2) (list '(mexpt simp) r1 r2)) 2145 ((integerp r2) 2146 (cond ((minusp r2) 2147 (exptrl (cond ((equal (abs (cadr r1)) 1) 2148 (* (cadr r1) (caddr r1))) 2149 ;; We set the simp flag at this place. This 2150 ;; changes nothing for an exponent r2 # -1. 2151 ;; exptrl is called again and does not look at 2152 ;; the simp flag. For the case r2 = -1 exptrl 2153 ;; is called with an exponent 1. For this case 2154 ;; the base is immediately returned. Now the 2155 ;; base has the correct simp flag. (DK 02/2010) 2156 ((minusp (cadr r1)) 2157 (list '(rat simp) (- (caddr r1)) (- (cadr r1)))) 2158 (t (list '(rat simp) (caddr r1) (cadr r1)))) 2159 (- r2))) 2160 (t (list '(rat simp) (exptb (cadr r1) r2) (exptb (caddr r1) r2))))) 2161 ((and (floatp r1) (alike1 r2 '((rat) 1 2))) 2162 (if (minusp r1) 2163 (list '(mtimes simp) (sqrt (- r1)) '$%i) 2164 (sqrt r1))) 2165 ((and (floatp r1) (alike1 r2 '((rat) -1 2))) 2166 (if (minusp r1) 2167 (list '(mtimes simp) (/ -1.0 (sqrt (- r1))) '$%i) 2168 (/ (sqrt r1)))) 2169 ((floatp r1) 2170 (if (plusp r1) 2171 (exptrl r1 (fpcofrat r2)) 2172 (mul2 (exptrl -1 r2) ;; (-4.5)^(1/4) -> (4.5)^(1/4) * (-1)^(1/4) 2173 (exptrl (- r1) r2)))) 2174 (exptrlsw (list '(mexpt simp) r1 r2)) 2175 (t 2176 (let ((exptrlsw t)) 2177 (simptimes (list '(mtimes) 2178 (exptrl r1 (truncate (cadr r2) (caddr r2))) 2179 (let ((y (let ($keepfloat $ratprint) 2180 (simpnrt r1 (caddr r2)))) 2181 (z (rem (cadr r2) (caddr r2)))) 2182 (if (mexptp y) 2183 (list (car y) (cadr y) (mul2 (caddr y) z)) 2184 (power y z)))) 2185 1 t))))) 2186 2187(defun simpexpt (x y z) 2188 (prog (gr pot check res rulesw w mlpgr mlppot) 2189 (setq check x) 2190 (cond (z (setq gr (cadr x) pot (caddr x)) (go cont))) 2191 (twoargcheck x) 2192 (setq gr (simplifya (cadr x) nil)) 2193 (setq pot 2194 (let (($%enumer $numer)) 2195 ;; Switch $%enumer on, when $numer is TRUE to allow 2196 ;; simplification of $%e to its numerical value. 2197 (simplifya (if $ratsimpexpons ($ratsimp (caddr x)) (caddr x)) 2198 nil))) 2199 cont 2200 (cond (($ratp pot) 2201 (setq pot (ratdisrep pot)) 2202 (go cont)) 2203 (($ratp gr) 2204 (cond ((member 'trunc (car gr) :test #'eq) 2205 (return (srf (list '(mexpt) gr pot)))) 2206 ((integerp pot) 2207 (let ((varlist (caddar gr)) (genvar (cadddr (car gr)))) 2208 (return (ratrep* (list '(mexpt) gr pot))))) 2209 (t 2210 (setq gr (ratdisrep gr)) 2211 (go cont)))) 2212 ((or (setq mlpgr (mxorlistp gr)) 2213 (setq mlppot (mxorlistp pot))) 2214 (go matrix)) 2215 ((onep1 pot) (go atgr)) 2216 ((or (zerop1 pot) (onep1 gr)) (go retno)) 2217 2218 ;; This code tries to handle 0^a more complete. 2219 ;; If the sign of realpart(a) is not known return an unsimplified 2220 ;; expression. The handling of the flag *zexptsimp? is not changed. 2221 ;; Reverting the return of an unsimplified 0^a, because timesin 2222 ;; can not handle such expressions. (DK 02/2010) 2223 ((zerop1 gr) 2224 (cond ((or (member (setq z ($csign pot)) '($neg $nz)) 2225 (and *zexptsimp? (eq ($asksign pot) '$neg))) 2226 ;; A negative exponent. Maxima error. 2227 (cond ((not errorsw) (merror (intl:gettext "expt: undefined: 0 to a negative exponent."))) 2228 (t (throw 'errorsw t)))) 2229 ((and (member z '($complex $imaginary)) 2230 ;; A complex exponent. Look at the sign of the realpart. 2231 (member (setq z ($sign ($realpart pot))) 2232 '($neg $nz $zero))) 2233 (cond ((not errorsw) 2234 (merror (intl:gettext "expt: undefined: 0 to a complex exponent."))) 2235 (t (throw 'errorsw t)))) 2236 ((and *zexptsimp? (eq ($asksign pot) '$zero)) 2237 (cond ((not errorsw) 2238 (merror (intl:gettext "expt: undefined: 0^0"))) 2239 (t (throw 'errorsw t)))) 2240 ((not (member z '($pos $pz))) 2241 ;; The sign of realpart(pot) is not known. We can not return 2242 ;; an unsimplified 0^a expression, because timesin can not 2243 ;; handle it. We return ZERO. That is the old behavior. 2244 ;; Look for the imaginary symbol to be consistent with 2245 ;; old code. 2246 (cond ((not (free pot '$%i)) 2247 (cond ((not errorsw) 2248 (merror (intl:gettext "expt: undefined: 0 to a complex exponent."))) 2249 (t (throw 'errorsw t)))) 2250 (t 2251 ;; Return ZERO and not an unsimplified expression. 2252 (return (zerores gr pot))))) 2253 (t (return (zerores gr pot))))) 2254 2255 ((and (mnump gr) 2256 (mnump pot) 2257 (or (not (ratnump gr)) (not (ratnump pot)))) 2258 (return (eqtest (exptrl gr pot) check))) 2259 ;; Check for numerical evaluation of the sqrt. 2260 ((and (alike1 pot '((rat) 1 2)) 2261 (or (setq res (flonum-eval '%sqrt gr)) 2262 (and (not (member 'simp (car x) :test #'eq)) 2263 (setq res (big-float-eval '%sqrt gr))))) 2264 (return res)) 2265 ((eq gr '$%i) 2266 (return (%itopot pot))) 2267 ((and (realp gr) (minusp gr) (mevenp pot)) 2268 (setq gr (- gr)) 2269 (go cont)) 2270 ((and (realp gr) (minusp gr) (moddp pot)) 2271 (return (mul2 -1 (power (- gr) pot)))) 2272 ((and (equal gr -1) (maxima-integerp pot) (mminusp pot)) 2273 (setq pot (neg pot)) 2274 (go cont)) 2275 ((and (equal gr -1) 2276 (maxima-integerp pot) 2277 (mtimesp pot) 2278 (= (length pot) 3) 2279 (fixnump (cadr pot)) 2280 (oddp (cadr pot)) 2281 (maxima-integerp (caddr pot))) 2282 (setq pot (caddr pot)) 2283 (go cont)) 2284 ((atom gr) (go atgr)) 2285 ((and (eq (caar gr) 'mabs) 2286 (or (evnump pot) 2287 (mevenp pot)) 2288 (or (and (eq $domain '$real) (not (apparently-complex-to-judge-by-$csign-p (cadr gr)))) 2289 (and (eq $domain '$complex) (apparently-real-to-judge-by-$csign-p (cadr gr))))) 2290 (return (power (cadr gr) pot))) 2291 ((and (eq (caar gr) 'mabs) 2292 (integerp pot) 2293 (oddp pot) 2294 (not (equal pot -1)) 2295 (or (and (eq $domain '$real) (not (apparently-complex-to-judge-by-$csign-p (cadr gr)))) 2296 (and (eq $domain '$complex) (apparently-real-to-judge-by-$csign-p (cadr gr))))) 2297 ;; abs(x)^(2*n+1) -> abs(x)*x^(2*n), n an integer number 2298 (if (plusp pot) 2299 (return (mul (power (cadr gr) (add pot -1)) 2300 gr)) 2301 (return (mul (power (cadr gr) (add pot 1)) 2302 (inv gr))))) 2303 ((eq (caar gr) 'mequal) 2304 (return (eqtest (list (ncons (caar gr)) 2305 (power (cadr gr) pot) 2306 (power (caddr gr) pot)) 2307 gr))) 2308 ((symbolp pot) (go opp)) 2309 ((eq (caar gr) 'mexpt) (go e1)) 2310 ((and (eq (caar gr) '%sum) 2311 $sumexpand 2312 (integerp pot) 2313 (signp g pot) 2314 (< pot $maxposex)) 2315 (return (do ((i (1- pot) (1- i)) 2316 (an gr (simptimes (list '(mtimes) an gr) 1 t))) 2317 ((signp e i) an)))) 2318 ((equal pot -1) 2319 (return (eqtest (testt (tms gr pot nil)) check))) 2320 ((fixnump pot) 2321 (return (eqtest (cond ((and (mplusp gr) 2322 (not (or (> pot $expop) 2323 (> (- pot) $expon)))) 2324 (expandexpt gr pot)) 2325 (t (simplifya (tms gr pot nil) t))) 2326 check)))) 2327 2328 opp 2329 (cond ((eq (caar gr) 'mexpt) (go e1)) 2330 ((eq (caar gr) 'rat) 2331 (return (mul2 (power (cadr gr) pot) 2332 (power (caddr gr) (mul2 -1 pot))))) 2333 ((not (eq (caar gr) 'mtimes)) (go up)) 2334 ((or (eq $radexpand '$all) (and $radexpand (simplexpon pot))) 2335 (setq res (list 1)) 2336 (go start)) 2337 ((and (or (not (numberp (cadr gr))) 2338 (equal (cadr gr) -1)) 2339 (equal -1 ($num gr)) ; only for -1 2340 ;; Do not simplify for a complex base. 2341 (not (member ($csign gr) '($complex $imaginary))) 2342 (and (eq $domain '$real) $radexpand)) 2343 ;; (-1/x)^a -> 1/(-x)^a for x negative 2344 ;; For all other cases (-1)^a/x^a 2345 (if (eq ($csign (setq w ($denom gr))) '$neg) 2346 (return (inv (power (neg w) pot))) 2347 (return (div (power -1 pot) 2348 (power w pot))))) 2349 ((or (eq $domain '$complex) (not $radexpand)) (go up))) 2350 (return (do ((l (cdr gr) (cdr l)) (res (ncons 1)) (rad)) 2351 ((null l) 2352 (cond ((equal res '(1)) 2353 (eqtest (list '(mexpt) gr pot) check)) 2354 ((null rad) 2355 (testt (cons '(mtimes simp) res))) 2356 (t 2357 (setq rad (power* ; RADEXPAND=()? 2358 (cons '(mtimes) (nreverse rad)) pot)) 2359 (cond ((not (onep1 rad)) 2360 (setq rad 2361 (testt (tms rad 1 (cons '(mtimes) res)))) 2362 (cond (rulesw 2363 (setq rulesw nil res (cdr rad)))))) 2364 (eqtest (testt (cons '(mtimes) res)) check)))) 2365 ;; Check with $csign to be more complete. This prevents wrong 2366 ;; simplifications like sqrt(-z^2)->%i*sqrt(z^2) for z complex. 2367 (setq z ($csign (car l))) 2368 (if (member z '($complex $imaginary)) 2369 (setq z '$pnz)) ; if appears complex, unknown sign 2370 (setq w (cond ((member z '($neg $nz) :test #'eq) 2371 (setq rad (cons -1 rad)) 2372 (mult -1 (car l))) 2373 (t (car l)))) 2374 (cond ((onep1 w)) 2375 ((alike1 w gr) (return (list '(mexpt simp) gr pot))) 2376 ((member z '($pn $pnz) :test #'eq) 2377 (setq rad (cons w rad))) 2378 (t 2379 (setq w (testt (tms (simplifya (list '(mexpt) w pot) t) 2380 1 (cons '(mtimes) res)))))) 2381 (cond (rulesw (setq rulesw nil res (cdr w)))))) 2382 2383 start 2384 (cond ((and (cdr res) (onep1 (car res)) (ratnump (cadr res))) 2385 (setq res (cdr res)))) 2386 (cond ((null (setq gr (cdr gr))) 2387 (return (eqtest (testt (cons '(mtimes) res)) check))) 2388 ((mexptp (car gr)) 2389 (setq y (power (cadar gr) (mult (caddar gr) pot)))) 2390 ((eq (car gr) '$%i) 2391 (setq y (%itopot pot))) 2392 ((mnump (car gr)) 2393 (setq y (list '(mexpt) (car gr) pot))) 2394 (t (setq y (list '(mexpt simp) (car gr) pot)))) 2395 (setq w (testt (tms (simplifya y t) 1 (cons '(mtimes) res)))) 2396 (cond (rulesw (setq rulesw nil res (cdr w)))) 2397 (go start) 2398 2399 retno 2400 (return (exptrl gr pot)) 2401 2402 atgr 2403 (cond ((zerop1 pot) (go retno)) 2404 ((onep1 pot) 2405 (let ((y (mget gr '$numer))) 2406 (if (and y (floatp y) (or $numer (not (equal pot 1)))) 2407 ;; A numeric constant like %e, %pi, ... and 2408 ;; exponent is a float or bigfloat value. 2409 (return (if (and (member gr *builtin-numeric-constants*) 2410 (equal pot bigfloatone)) 2411 ;; Return a bigfloat value. 2412 ($bfloat gr) 2413 ;; Return a float value. 2414 y)) 2415 ;; In all other cases exptrl simplifies accordingly. 2416 (return (exptrl gr pot))))) 2417 ((eq gr '$%e) 2418 ;; Numerically evaluate if the power is a flonum. 2419 (when $%emode 2420 (let ((val (flonum-eval '%exp pot))) 2421 (if (float-inf-p val) 2422 ;; needed for gcl - no trap of overflow 2423 (signal 'floating-point-overflow)) 2424 (when val 2425 (return val))) 2426 ;; Numerically evaluate if the power is a (complex) 2427 ;; big-float. (This is basically the guts of 2428 ;; big-float-eval, but we can't use big-float-eval.) 2429 (when (and (not (member 'simp (car x) :test #'eq)) 2430 (complex-number-p pot 'bigfloat-or-number-p)) 2431 (let ((x ($realpart pot)) 2432 (y ($imagpart pot))) 2433 (cond ((and ($bfloatp x) (like 0 y)) 2434 (return ($bfloat `((mexpt simp) $%e ,pot)))) 2435 ((or ($bfloatp x) ($bfloatp y)) 2436 (let ((z (add ($bfloat x) (mul '$%i ($bfloat y))))) 2437 (setq z ($rectform `((mexpt simp) $%e ,z))) 2438 (return ($bfloat z)))))))) 2439 (cond ((and $logsimp (among '%log pot)) (return (%etolog pot))) 2440 ((and $demoivre (setq z (demoivre pot))) (return z)) 2441 ((and $%emode 2442 (among '$%i pot) 2443 (among '$%pi pot) 2444 ;; Exponent contains %i and %pi and %emode is TRUE: 2445 ;; Check simplification of exp(%i*%pi*p/q*x) 2446 (setq z (%especial pot))) 2447 (return z)) 2448 (($taylorp (third x)) 2449 ;; taylorize %e^taylor(...) 2450 (return ($taylor x))))) 2451 (t 2452 (let ((y (mget gr '$numer))) 2453 ;; Check for a numeric constant. 2454 (and y 2455 (floatp y) 2456 (or (floatp pot) 2457 ;; The exponent is a bigfloat. Convert base to bigfloat. 2458 (and ($bfloatp pot) 2459 (member gr *builtin-numeric-constants*) 2460 (setq y ($bfloat gr))) 2461 (and $numer (integerp pot))) 2462 (return (exptrl y pot)))))) 2463 2464 up 2465 (return (eqtest (list '(mexpt) gr pot) check)) 2466 2467 matrix 2468 (cond ((zerop1 pot) 2469 (cond ((mxorlistp1 gr) (return (constmx (addk 1 pot) gr))) 2470 (t (go retno)))) 2471 ((onep1 pot) (return gr)) 2472 ((or $doallmxops $doscmxops $domxexpt) 2473 (cond ((or (and mlpgr 2474 (or (not ($listp gr)) $listarith) 2475 (scalar-or-constant-p pot $assumescalar)) 2476 (and $domxexpt 2477 mlppot 2478 (or (not ($listp pot)) $listarith) 2479 (scalar-or-constant-p gr $assumescalar))) 2480 (return (simplifya (outermap1 'mexpt gr pot) t))) 2481 (t (go up)))) 2482 ((and $domxmxops (member pot '(-1 -1.0) :test #'equal)) 2483 (return (simplifya (outermap1 'mexpt gr pot) t))) 2484 (t (go up))) 2485 e1 2486 ;; At this point we have an expression: (z^a)^b with gr = z^a and pot = b 2487 (cond ((or (eq $radexpand '$all) 2488 ;; b is an integer or an odd rational 2489 (simplexpon pot) 2490 (and (eq $domain '$complex) 2491 (not (member ($csign (caddr gr)) '($complex $imaginary))) 2492 ;; z >= 0 and a not a complex 2493 (or (member ($csign (cadr gr)) '($pos $pz $zero)) 2494 ;; -1 < a <= 1 2495 (and (mnump (caddr gr)) 2496 (eq ($sign (sub 1 (take '(mabs) (caddr gr)))) 2497 '$pos)))) 2498 (and (eq $domain '$real) 2499 (member ($csign (cadr gr)) '($pos $pz $zero))) 2500 ;; (1/z)^a -> 1/z^a when z a constant complex 2501 (and (eql (caddr gr) -1) 2502 (or (and $radexpand 2503 (eq $domain '$real)) 2504 (and (eq ($csign (cadr gr)) '$complex) 2505 ($constantp (cadr gr))))) 2506 ;; This does (1/z)^a -> 1/z^a. This is in general wrong. 2507 ;; We switch this type of simplification on, when 2508 ;; $ratsimpexpons is T. E.g. radcan sets this flag to T. 2509 ;; radcan hangs for expressions like sqrt(1/(1+x)) without 2510 ;; this simplification. 2511 (and $ratsimpexpons 2512 (equal (caddr gr) -1)) 2513 (and $radexpand 2514 (eq $domain '$real) 2515 (odnump (caddr gr)))) 2516 ;; Simplify (z^a)^b -> z^(a*b) 2517 (setq pot (mul pot (caddr gr)) 2518 gr (cadr gr))) 2519 ((and (eq $domain '$real) 2520 (free gr '$%i) 2521 $radexpand 2522 (not (apparently-complex-to-judge-by-$csign-p (cadr gr))) 2523 (evnump (caddr gr))) 2524 ;; Simplify (x^a)^b -> abs(x)^(a*b) 2525 (setq pot (mul pot (caddr gr)) 2526 gr (radmabs (cadr gr)))) 2527 ((and $radexpand 2528 (eq $domain '$real) 2529 (mminusp (caddr gr))) 2530 ;; Simplify (1/z^a)^b -> 1/(z^a)^b 2531 (setq pot (neg pot) 2532 gr (power (cadr gr) (neg (caddr gr))))) 2533 (t (go up))) 2534 (go cont))) 2535 2536(defun apparently-complex-to-judge-by-$csign-p (e) 2537 (let ((s ($csign e))) 2538 (member s '($complex $imaginary)))) 2539 2540(defun apparently-real-to-judge-by-$csign-p (e) 2541 (let ((s ($csign e))) 2542 (member s '($pos $neg $zero $pn $pnz $pz $nz)))) 2543 2544;; Basically computes log of m base b. Except if m is not a power 2545;; of b, we return nil. m is a positive integer and base an integer 2546;; not equal to +/-1. 2547(defun exponent-of (m base) 2548 ;; Just compute base^k until base^k >= m. Then check if they're equal. 2549 ;; If so, we have the exponent. Otherwise, give up. 2550 (let ((expo 0)) 2551 (loop 2552 (multiple-value-bind (q r) 2553 (floor m base) 2554 (cond ((zerop r) 2555 (setf m q) 2556 (incf expo)) 2557 (t (return nil))))) 2558 (if (zerop expo) nil expo))) 2559 2560(defun timesin (x y w) ; Multiply X^W into Y 2561 (prog (fm temp z check u expo) 2562 (if (mexptp x) (setq check x)) 2563 top 2564 ;; Prepare the factor x^w and initialize the work of timesin 2565 (cond ((equal w 1) 2566 (setq temp x)) 2567 (t 2568 (setq temp (cons '(mexpt) (if check 2569 (list (cadr x) (mult (caddr x) w)) 2570 (list x w)))) 2571 (if (and (not timesinp) (not (eq x '$%i))) 2572 (let ((timesinp t)) 2573 (setq temp (simplifya temp t)))))) 2574 (setq x (if (mexptp temp) 2575 (cdr temp) 2576 (list temp 1))) 2577 (setq w (cadr x) 2578 fm y) 2579 start 2580 ;; Go through the list of terms in fm and look what is to do. 2581 (cond ((null (cdr fm)) 2582 ;; The list of terms is empty. The loop is finshed. 2583 (go less)) 2584 ((or (and (mnump temp) 2585 (not (or (integerp temp) 2586 (ratnump temp)))) 2587 (and (integerp temp) 2588 (equal temp -1))) 2589 ;; Stop the loop for a float or bigfloat number, or number -1. 2590 (go less)) 2591 ((mexptp (cadr fm)) 2592 (cond ((alike1 (car x) (cadadr fm)) 2593 (cond ((zerop1 (setq w (plsk (caddr (cadr fm)) w))) 2594 (go del)) 2595 ((and (mnump w) 2596 (or (mnump (car x)) 2597 (eq (car x) '$%i))) 2598 (rplacd fm (cddr fm)) 2599 (cond ((mnump (setq x (if (mnump (car x)) 2600 (exptrl (car x) w) 2601 (power (car x) w)))) 2602 (return (rplaca y (timesk (car y) x)))) 2603 ((mtimesp x) 2604 (go times)) 2605 (t 2606 (setq temp x 2607 x (if (mexptp x) (cdr x) (list x 1))) 2608 (setq w (cadr x) 2609 fm y) 2610 (go start)))) 2611 ((maxima-constantp (car x)) 2612 (go const)) 2613 ((onep1 w) 2614 (cond ((mtimesp (car x)) 2615 ;; A base which is a mtimes expression. Remove 2616 ;; the factor from the lists of products. 2617 (rplacd fm (cddr fm)) 2618 ;; Multiply the factors of the base with 2619 ;; the list of all remaining products. 2620 (setq rulesw t) 2621 (return (muln (nconc y (cdar x)) t))) 2622 (t (return (rplaca (cdr fm) (car x)))))) 2623 (t 2624 (go spcheck)))) 2625 ;; At this place we have to add code for a rational number 2626 ;; as a factor to the list of products. 2627 ((and (onep1 w) 2628 (or (ratnump (car x)) 2629 (and (integerp (car x)) 2630 (not (onep (car x)))))) 2631 ;; Multiplying bas^k * num/den 2632 (let ((num (num1 (car x))) 2633 (den (denom1 (car x))) 2634 (bas (second (cadr fm)))) 2635 (cond ((and (integerp bas) 2636 (not (eql 1 (abs bas))) 2637 (setq expo (exponent-of (abs num) bas))) 2638 ;; We have bas^m*bas^k = bas^(k+m). 2639 (setq temp (power bas 2640 (add (third (cadr fm)) expo))) 2641 ;; Set fm to have 1/denom term. 2642 (setq x (mul (car y) 2643 (div (div num 2644 (exptrl bas expo)) 2645 den)))) 2646 ((and (integerp bas) 2647 (not (eql 1 (abs bas))) 2648 (setq expo (exponent-of den bas))) 2649 (setq expo (- expo)) 2650 ;; We have bas^(-m)*bas^k = bas^(k-m). 2651 (setq temp (power bas 2652 (add (third (cadr fm)) expo))) 2653 ;; Set fm to have the numerator term. 2654 (setq x (mul (car y) 2655 (div num 2656 (div den 2657 (exptrl bas (- expo))))))) 2658 (t 2659 ;; Next term in list of products. 2660 (setq fm (cdr fm)) 2661 (go start))) 2662 ;; Add in the bas^(k+m) term or bas^(k-m) 2663 (setf y (rplaca y 1)) 2664 (rplacd fm (cddr fm)) 2665 (rplacd fm (cons temp (cdr fm))) 2666 (setq temp x 2667 x (list x 1) 2668 w 1 2669 fm y) 2670 (go start))) 2671 ((and (not (atom (car x))) 2672 (eq (caar (car x)) 'mabs) 2673 (equal (cadr x) 1) 2674 (integerp (caddr (cadr fm))) 2675 (< (caddr (cadr fm)) -1) 2676 (alike1 (cadr (car x)) (cadr (cadr fm))) 2677 (not (member ($csign (cadr (car x))) 2678 '($complex imaginary)))) 2679 ;; 1/x^n*abs(x) -> 1/(x^(n-2)*abs(x)), where n an integer 2680 ;; Replace 1/x^n -> 1/x^(n-2) 2681 (setq temp (power (cadr (cadr fm)) 2682 (add (caddr (cadr fm)) 2))) 2683 (rplacd fm (cddr fm)) 2684 (if (not (equal temp 1)) 2685 (rplacd fm (cons temp (cdr fm)))) 2686 ;; Multiply factor 1/abs(x) into list of products. 2687 (setq x (list (car x) -1)) 2688 (setq temp (power (car x) (cadr x))) 2689 (setq w (cadr x)) 2690 (go start)) 2691 2692 ((and (not (atom (car x))) 2693 (eq (caar (car x)) 'mabs) 2694 (equal (cadr x) -1) 2695 (integerp (caddr (cadr fm))) 2696 (> (caddr (cadr fm)) 1) 2697 (alike1 (cadr (car x)) (cadr (cadr fm))) 2698 (not (member ($csign (cadr (car x))) 2699 '($complex imaginary)))) 2700 ;; x^n/abs(x) -> x^(n-2)*abs(x), where n an integer. 2701 ;; Replace x^n -> x^(n-2) 2702 (setq temp (power (cadr (cadr fm)) 2703 (add (caddr (cadr fm)) -2))) 2704 (rplacd fm (cddr fm)) 2705 (if (not (equal temp 1)) 2706 (rplacd fm (cons temp (cdr fm)))) 2707 ;; Multiply factor abs(x) into list of products. 2708 (setq x (list (car x) 1)) 2709 (setq temp (power (car x) (cadr x))) 2710 (setq w (cadr x)) 2711 (go start)) 2712 2713 ((and (not (atom (cadr fm))) 2714 (not (atom (cadr (cadr fm)))) 2715 (eq (caaadr (cadr fm)) 'mabs) 2716 (equal (caddr (cadr fm)) -1) 2717 (integerp (cadr x)) 2718 (> (cadr x) 1) 2719 (alike1 (cadadr (cadr fm)) (car x)) 2720 (not (member ($csign (cadadr (cadr fm))) 2721 '($complex imaginary)))) 2722 ;; 1/abs(x)*x^n -> x^(n-2)*abs(x), where n an integer. 2723 ;; Replace 1/abs(x) -> abs(x) 2724 (setq temp (cadr (cadr fm))) 2725 (rplacd fm (cddr fm)) 2726 (rplacd fm (cons temp (cdr fm))) 2727 ;; Multiply factor x^(n-2) into list of products. 2728 (setq x (list (car x) (add (cadr x) -2))) 2729 (setq temp (power (car x) (cadr x))) 2730 (setq w (cadr x)) 2731 (go start)) 2732 2733 ((or (maxima-constantp (car x)) 2734 (maxima-constantp (cadadr fm))) 2735 (if (great temp (cadr fm)) 2736 (go gr))) 2737 ((great (car x) (cadadr fm)) 2738 (go gr))) 2739 (go less)) 2740 ((alike1 (car x) (cadr fm)) 2741 (go equ)) 2742 ((mnump temp) 2743 ;; When a number goto start and look in the next term. 2744 (setq fm (cdr fm)) 2745 (go start)) 2746 2747 ((and (not (atom (cadr fm))) 2748 (eq (caar (cadr fm)) 'mabs) 2749 (integerp (cadr x)) 2750 (< (cadr x) -1) 2751 (alike1 (cadr (cadr fm)) (car x)) 2752 (not (member ($csign (cadr (cadr fm))) 2753 '($complex imaginary)))) 2754 ;; abs(x)/x^n -> 1/(x^(n-2)*abs(x)), where n an integer. 2755 ;; Replace abs(x) -> 1/abs(x). 2756 (setq temp (power (cadr fm) -1)) 2757 (rplacd fm (cddr fm)) 2758 (rplacd fm (cons temp (cdr fm))) 2759 ;; Multiply factor x^(-n+2) into list of products. 2760 (setq x (list (car x) (add (cadr x) 2))) 2761 (setq temp (power (car x) (cadr x))) 2762 (setq w (cadr x)) 2763 (go start)) 2764 2765 ((maxima-constantp (car x)) 2766 (when (great temp (cadr fm)) 2767 (go gr))) 2768 ((great (car x) (cadr fm)) 2769 (go gr))) 2770 less 2771 (cond ((mnump temp) 2772 ;; Multiply a number into the list of products. 2773 (return (rplaca y (timesk (car y) temp)))) 2774 ((and (eq (car x) '$%i) 2775 (fixnump w)) 2776 (go %i)) 2777 ((and (eq (car x) '$%e) 2778 $numer 2779 (integerp w)) 2780 (return (rplaca y (timesk (car y) (exp (float w)))))) 2781 ((and (onep1 w) 2782 (not (constant (car x)))) 2783 (go less1)) 2784 ;; At this point we will insert a mexpt expression, 2785 ;; but first we look at the car of the list of products and 2786 ;; modify the expression if we found a rational number. 2787 ((and (mexptp temp) 2788 (not (onep1 (car y))) 2789 (or (integerp (car y)) 2790 (ratnump (car y)))) 2791 ;; Multiplying bas^k * num/den. 2792 (let ((num (num1 (car y))) 2793 (den (denom1 (car y))) 2794 (bas (car x))) 2795 (cond ((and (integerp bas) 2796 (not (eql 1 (abs bas))) 2797 (setq expo (exponent-of (abs num) bas))) 2798 ;; We have bas^m*bas^k. 2799 (setq temp (power bas (add (cadr x) expo))) 2800 ;; Set fm to have 1/denom term. 2801 (setq x (div (div num (exptrl bas expo)) den))) 2802 ((and (integerp bas) 2803 (not (eql 1 (abs bas))) 2804 (setq expo (exponent-of den bas))) 2805 (setq expo (- expo)) 2806 ;; We have bas^(-m)*bas^k. 2807 (setq temp (power bas (add (cadr x) expo))) 2808 ;; Set fm to have the numerator term. 2809 (setq x (div num (div den (exptrl bas (- expo)))))) 2810 (t 2811 ;; The rational doesn't contain any (simple) powers of 2812 ;; the exponential term. We're done. 2813 (return (cdr (rplacd fm (cons temp (cdr fm))))))) 2814 ;; Add in the a^(m+k) or a^(k-m) term. 2815 (setf y (rplaca y 1)) 2816 (rplacd fm (cons temp (cdr fm))) 2817 (setq temp x 2818 x (list x 1) 2819 w 1 2820 fm y) 2821 (go start))) 2822 ((and (maxima-constantp (car x)) 2823 (do ((l (cdr fm) (cdr l))) 2824 ((null (cdr l))) 2825 (when (and (mexptp (cadr l)) 2826 (alike1 (car x) (cadadr l))) 2827 (setq fm l) 2828 (return t)))) 2829 (go start)) 2830 ((or (and (mnump (car x)) 2831 (mnump w)) 2832 (and (eq (car x) '$%e) 2833 $%emode 2834 (among '$%i w) 2835 (among '$%pi w) 2836 (setq u (%especial w)))) 2837 (setq x (cond (u) 2838 ((alike (cdr check) x) 2839 check) 2840 (t 2841 (exptrl (car x) w)))) 2842 (cond ((mnump x) 2843 (return (rplaca y (timesk (car y) x)))) 2844 ((mtimesp x) 2845 (go times)) 2846 ((mexptp x) 2847 (return (cdr (rplacd fm (cons x (cdr fm)))))) 2848 (t 2849 (setq temp x 2850 x (list x 1) 2851 w 1 2852 fm y) 2853 (go start)))) 2854 ((onep1 w) 2855 (go less1)) 2856 (t 2857 (setq temp (list '(mexpt) (car x) w)) 2858 (setq temp (eqtest temp (or check '((foo))))) 2859 (return (cdr (rplacd fm (cons temp (cdr fm))))))) 2860 less1 2861 (return (cdr (rplacd fm (cons (car x) (cdr fm))))) 2862 gr 2863 (setq fm (cdr fm)) 2864 (go start) 2865 equ 2866 (cond ((and (eq (car x) '$%i) (equal w 1)) 2867 (rplacd fm (cddr fm)) 2868 (return (rplaca y (timesk -1 (car y))))) 2869 ((zerop1 (setq w (plsk 1 w))) 2870 (go del)) 2871 ((and (mnump (car x)) (mnump w)) 2872 (return (rplaca (cdr fm) (exptrl (car x) w)))) 2873 ((maxima-constantp (car x)) 2874 (go const))) 2875 spcheck 2876 (setq z (list '(mexpt) (car x) w)) 2877 (cond ((alike1 (setq x (simplifya z t)) z) 2878 (return (rplaca (cdr fm) x))) 2879 (t 2880 (rplacd fm (cddr fm)) 2881 (setq rulesw t) 2882 (return (muln (cons x y) t)))) 2883 const 2884 (rplacd fm (cddr fm)) 2885 (setq x (car x) check nil) 2886 (go top) 2887 times 2888 (setq z (tms x 1 (setq temp (cons '(mtimes) y)))) 2889 (return (cond ((eq z temp) 2890 (cdr z)) 2891 (t 2892 (setq rulesw t) z))) 2893 del 2894 (return (rplacd fm (cddr fm))) 2895 %i 2896 (if (minusp (setq w (rem w 4))) 2897 (incf w 4)) 2898 (return (cond ((zerop w) 2899 fm) 2900 ((= w 2) 2901 (rplaca y (timesk -1 (car y)))) 2902 ((= w 3) 2903 (rplaca y (timesk -1 (car y))) 2904 (rplacd fm (cons '$%i (cdr fm)))) 2905 (t 2906 (rplacd fm (cons '$%i (cdr fm)))))))) 2907 2908(defun simpmatrix (x vestigial z) 2909 (declare (ignore vestigial)) 2910 (if (and (null (cddr x)) 2911 $scalarmatrixp 2912 (or (eq $scalarmatrixp '$all) (member 'mult (cdar x) :test #'eq)) 2913 ($listp (cadr x)) (cdadr x) (null (cddadr x))) 2914 (simplifya (cadadr x) z) 2915 (let ((badp (dolist (row (cdr x)) (if (not ($listp row)) (return t)))) 2916 (args (simpmap (cdr x) z))) 2917 (if (and args (not badp)) (matcheck args)) 2918 (cons (if badp '(%matrix simp) '($matrix simp)) args)))) 2919 2920(defun %itopot (pot) 2921 (if (fixnump pot) 2922 (let ((i (boole boole-and pot 3))) 2923 (cond ((= i 0) 1) 2924 ((= i 1) '$%i) 2925 ((= i 2) -1) 2926 (t (list '(mtimes simp) -1 '$%i)))) 2927 (power -1 (mul2 pot '((rat simp) 1 2))))) 2928 2929(defun mnlogp (pot) 2930 (cond ((eq (caar pot) '%log) (simplifya (cadr pot) nil)) 2931 ((and (eq (caar pot) 'mtimes) 2932 (or (maxima-integerp (cadr pot)) 2933 (and $%e_to_numlog ($numberp (cadr pot)))) 2934 (not (atom (caddr pot))) (eq (caar (caddr pot)) '%log) 2935 (null (cdddr pot))) 2936 (power (cadr (caddr pot)) (cadr pot))))) 2937 2938(defun mnlog (pot) 2939 (prog (a b c) 2940 loop (cond ((null pot) 2941 (cond (a (setq a (cons '(mtimes) a)))) 2942 (cond (c (setq c (list '(mexpt simp) '$%e (addn c nil))))) 2943 (return (cond ((null c) (simptimes a 1 nil)) 2944 ((null a) c) 2945 (t (simptimes (append a (list c)) 1 nil))))) 2946 ((and (among '%log (car pot)) (setq b (mnlogp (car pot)))) 2947 (setq a (cons b a))) 2948 (t (setq c (cons (car pot) c)))) 2949 (setq pot (cdr pot)) 2950 (go loop))) 2951 2952(defun %etolog (pot) (cond ((mnlogp pot)) 2953 ((eq (caar pot) 'mplus) (mnlog (cdr pot))) 2954 (t (list '(mexpt simp) '$%e pot)))) 2955 2956(defun zerores (r1 r2) 2957 (cond ((or ($bfloatp r1) ($bfloatp r2)) bigfloatzero) 2958 ((or (floatp r1) (floatp r2)) 0.0) 2959 (t 0))) 2960 2961(defmfun $orderlessp (a b) 2962 (setq a ($totaldisrep (specrepcheck a)) 2963 b ($totaldisrep (specrepcheck b))) 2964 (and (not (alike1 a b)) (great b a) t)) 2965 2966(defmfun $ordergreatp (a b) 2967 (setq a ($totaldisrep (specrepcheck a)) 2968 b ($totaldisrep (specrepcheck b))) 2969 (and (not (alike1 a b)) (great a b) t)) 2970 2971;; Test function to order a and b by magnitude. If it is not possible to 2972;; order a and b by magnitude they are ordered by great. This function 2973;; can be used by sort, e.g. sort([3,1,7,x,sin(1),minf],ordermagnitudep) 2974(defmfun $ordermagnitudep (a b) 2975 (let (sgn) 2976 (setq a ($totaldisrep (specrepcheck a)) 2977 b ($totaldisrep (specrepcheck b))) 2978 (cond ((and (or (constp a) (member a '($inf $minf))) 2979 (or (constp b) (member b '($inf $minf))) 2980 (member (setq sgn ($csign (sub b a))) '($pos $neg $zero))) 2981 (cond ((eq sgn '$pos) t) 2982 ((eq sgn '$zero) (and (not (alike1 a b)) (great b a))) 2983 (t nil))) 2984 ((or (constp a) (member a '($inf $minf))) t) 2985 ((or (constp b) (member b '($inf $minf))) nil) 2986 (t (and (not (alike1 a b)) (great b a)))))) 2987 2988(defun evnump (n) (or (even n) (and (ratnump n) (even (cadr n))))) 2989(defun odnump (n) (or (and (integerp n) (oddp n)) 2990 (and (ratnump n) (oddp (cadr n))))) 2991 2992(defun simplexpon (e) 2993 (or (maxima-integerp e) 2994 (and (eq $domain '$real) (ratnump e) (oddp (caddr e))))) 2995 2996;; This function is not called in Maxima core or share code 2997;; and can be cut out. 2998(defun noneg (p) 2999 (and (free p '$%i) (member ($sign p) '($pos $pz $zero) :test #'eq))) 3000 3001(defun radmabs (e) 3002 (if (and limitp (free e '$%i)) (asksign-p-or-n e)) 3003 (simplifya (list '(mabs) e) t)) 3004 3005(defun simpmqapply (exp y z) 3006 (let ((simpfun (and (not (atom (cadr exp))) (safe-get (caaadr exp) 'specsimp))) u) 3007 (if simpfun 3008 (funcall simpfun exp y z) 3009 (progn (setq u (simpargs exp z)) 3010 (if (symbolp (cadr u)) 3011 (simplifya (cons (cons (cadr u) (cdar u)) (cddr u)) z) 3012 u))))) 3013 3014;; TRUE, if the symbol e is declared to be $complex or $imaginary. 3015(defun decl-complexp (e) 3016 (and (symbolp e) 3017 (kindp e '$complex))) 3018 3019;; TRUE, if the symbol e is declared to be $real, $rational, $irrational 3020;; or $integer 3021(defun decl-realp (e) 3022 (and (symbolp e) 3023 (or (kindp e '$real) 3024 (kindp e '$rational) 3025 (kindp e '$irrational) 3026 (kindp e '$integer)))) 3027 3028;; WARNING: Exercise extreme caution when modifying this function! 3029;; 3030;; Richard Fateman and Stavros Macrakis both say that changing the 3031;; actual ordering relations (as opposed to making them faster to 3032;; determine) could have very subtle and wide-ranging effects. Also, 3033;; the simplifier spends the vast majority of its time here, so be 3034;; very careful about changes that may drastically slow down the 3035;; simplifier. 3036(defun great (x y) 3037 (cond ((atom x) 3038 (cond ((atom y) 3039 (cond ((numberp x) 3040 (cond ((numberp y) 3041 (setq y (- x y)) 3042 (cond ((zerop y) (floatp x)) (t (plusp y)))))) 3043 ((constant x) 3044 (cond ((constant y) (alphalessp y x)) (t (numberp y)))) 3045 ((mget x '$scalar) 3046 (cond ((mget y '$scalar) (alphalessp y x)) 3047 (t (maxima-constantp y)))) 3048 ((mget x '$mainvar) 3049 (cond ((mget y '$mainvar) (alphalessp y x)) (t t))) 3050 (t (or (maxima-constantp y) (mget y '$scalar) 3051 (and (not (mget y '$mainvar)) (not (null (alphalessp y x)))))))) 3052 (t (not (ordfna y x))))) 3053 ((atom y) (ordfna x y)) 3054 ((eq (caar x) 'rat) 3055 (cond ((eq (caar y) 'rat) 3056 (> (* (caddr y) (cadr x)) (* (caddr x) (cadr y)))))) 3057 ((eq (caar y) 'rat)) 3058 ((or (member (caar x) '(mtimes mplus mexpt %del) :test #'eq) 3059 (member (caar y) '(mtimes mplus mexpt %del) :test #'eq)) 3060 (ordfn x y)) 3061 ((and (eq (caar x) 'bigfloat) (eq (caar y) 'bigfloat)) (mgrp x y)) 3062 ((or (eq (caar x) 'mrat) (eq (caar y) 'mrat)) 3063 (error "GREAT: internal error: unexpected MRAT argument")) 3064 (t (do ((x1 (margs x) (cdr x1)) (y1 (margs y) (cdr y1))) (()) 3065 (cond ((null x1) 3066 (return (cond (y1 nil) 3067 ((not (alike1 (mop x) (mop y))) 3068 (great (mop x) (mop y))) 3069 ((member 'array (cdar x) :test #'eq) t)))) 3070 ((null y1) (return t)) 3071 ((not (alike1 (car x1) (car y1))) 3072 (return (great (car x1) (car y1))))))))) 3073 3074;; Trivial function used only in ALIKE1. 3075;; Should be defined as an open-codable subr. 3076 3077(defmacro memqarr (l) 3078 `(if (member 'array ,l :test #'eq) t)) 3079 3080;; Compares two Macsyma expressions ignoring SIMP flags and all other 3081;; items in the header except for the ARRAY flag. 3082 3083(defun alike1 (x y) 3084 (cond ((eq x y)) 3085 ((atom x) 3086 (cond 3087 ((arrayp x) 3088 (and (arrayp y) (lisp-array-alike1 x y))) 3089 3090 ;; NOT SURE IF WE WANT TO ENABLE COMPARISON OF MAXIMA ARRAYS 3091 ;; ASIDE FROM THAT, ADD2LNC CALLS ALIKE1 (VIA MEMALIKE) AND THAT CAUSES TROUBLE 3092 ;; ((maxima-declared-arrayp x) 3093 ;; (and (maxima-declared-arrayp y) (maxima-declared-array-alike1 x y))) 3094 ;; ((maxima-undeclared-arrayp x) 3095 ;; (and (maxima-undeclared-arrayp y) (maxima-undeclared-array-alike1 x y))) 3096 3097 (t (equal x y)))) 3098 ((atom y) nil) 3099 ((and 3100 (not (atom (car x))) 3101 (not (atom (car y))) 3102 (eq (caar x) (caar y))) 3103 (cond 3104 ((eq (caar x) 'mrat) 3105 ;; Punt back to LIKE, which handles CREs. 3106 (like x y)) 3107 (t (and 3108 (eq (memqarr (cdar x)) (memqarr (cdar y))) 3109 (alike (cdr x) (cdr y)))))))) 3110 3111(defun lisp-array-alike1 (x y) 3112 (and 3113 (equal (array-dimensions x) (array-dimensions y)) 3114 (progn 3115 (dotimes (i (array-total-size x)) 3116 (if (not (alike1 (row-major-aref x i) (row-major-aref y i))) 3117 (return-from lisp-array-alike1 nil))) 3118 t))) 3119 3120(defun maxima-declared-array-alike1 (x y) 3121 (lisp-array-alike1 (get (mget x 'array) 'array) (get (mget y 'array) 'array))) 3122 3123(defun maxima-undeclared-array-alike1 (x y) 3124 (and 3125 (alike1 (mfuncall '$arrayinfo x) (mfuncall '$arrayinfo y)) 3126 (alike1 ($listarray x) ($listarray y)))) 3127 3128;; Maps ALIKE1 down two lists. 3129 3130(defun alike (x y) 3131 (do ((x x (cdr x)) (y y (cdr y))) ((atom x) (equal x y)) 3132 (cond ((or (atom y) (not (alike1 (car x) (car y)))) 3133 (return nil))))) 3134 3135(defun ordfna (e a) ; A is an atom 3136 (cond ((numberp a) 3137 (or (not (eq (caar e) 'rat)) 3138 (> (cadr e) (* (caddr e) a)))) 3139 ((and (constant a) 3140 (not (member (caar e) '(mplus mtimes mexpt) :test #'eq))) 3141 (not (member (caar e) '(rat bigfloat) :test #'eq))) 3142 ((eq (caar e) 'mrat)) ;; all MRATs succeed all atoms 3143 ((null (margs e)) nil) 3144 ((eq (caar e) 'mexpt) 3145 (cond ((and (maxima-constantp (cadr e)) 3146 (or (not (constant a)) (not (maxima-constantp (caddr e))))) 3147 (or (not (free (caddr e) a)) (great (caddr e) a))) 3148 ((eq (cadr e) a) (great (caddr e) 1)) 3149 (t (great (cadr e) a)))) 3150 ((member (caar e) '(mplus mtimes) :test #'eq) 3151 (let ((u (car (last e)))) 3152 (cond ((eq u a) (not (ordhack e))) (t (great u a))))) 3153 ((eq (caar e) '%del)) 3154 ((prog2 (setq e (car (margs e))) ; use first arg of e 3155 (and (not (atom e)) (member (caar e) '(mplus mtimes) :test #'eq))) 3156 (let ((u (car (last e)))) ; and compare using 3157 (cond ((eq u a) (not (ordhack e))) ; same procedure as above 3158 (t (great u a))))) 3159 ((eq e a)) 3160 (t (great e a)))) 3161 3162;; compare lists a and b elementwise from back to front 3163(defun ordlist (a b cx cy) 3164 (prog (l1 l2 c d) 3165 (setq l1 (length a) l2 (length b)) 3166 loop (cond ((= l1 0) 3167 (return (cond ((= l2 0) (eq cx 'mplus)) 3168 ((and (eq cx cy) (= l2 1)) 3169 (great (cond ((eq cx 'mplus) 0) (t 1)) (car b)))))) 3170 ((= l2 0) (return (not (ordlist b a cy cx))))) 3171 (setq c (nthelem l1 a) d (nthelem l2 b)) 3172 (cond ((not (alike1 c d)) (return (great c d)))) 3173 (setq l1 (1- l1) l2 (1- l2)) 3174 (go loop))) 3175 3176(defun term-list (x) 3177 (if (mplusp x) 3178 (cdr x) 3179 (list x))) 3180 3181(defun factor-list (x) 3182 (if (mtimesp x) 3183 (cdr x) 3184 (list x))) 3185 3186;; one of the exprs x or y should be one of: 3187;; %del, mexpt, mplus, mtimes 3188(defun ordfn (x y) 3189 (let ((cx (caar x)) (cy (caar y))) 3190 (cond ((eq cx '%del) (if (eq cy '%del) (great (cadr x) (cadr y)) t)) 3191 ((eq cy '%del) nil) 3192 ((or (eq cx 'mtimes) (eq cy 'mtimes)) 3193 (ordlist (factor-list x) (factor-list y) 'mtimes 'mtimes)) 3194 ((or (eq cx 'mplus) (eq cy 'mplus)) 3195 (ordlist (term-list x) (term-list y) 'mplus 'mplus)) 3196 ((eq cx 'mexpt) (ordmexpt x y)) 3197 ((eq cy 'mexpt) (not (ordmexpt y x)))))) 3198 3199(defun ordhack (x) 3200 (if (and (cddr x) (null (cdddr x))) 3201 (great (if (eq (caar x) 'mplus) 0 1) (cadr x)))) 3202 3203(defun ordmexpt (x y) 3204 (cond ((eq (caar y) 'mexpt) 3205 (cond ((alike1 (cadr x) (cadr y)) (great (caddr x) (caddr y))) 3206 ((maxima-constantp (cadr x)) 3207 (if (maxima-constantp (cadr y)) 3208 (if (or (alike1 (caddr x) (caddr y)) 3209 (and (mnump (caddr x)) (mnump (caddr y)))) 3210 (great (cadr x) (cadr y)) 3211 (great (caddr x) (caddr y))) 3212 (great x (cadr y)))) 3213 ((maxima-constantp (cadr y)) (great (cadr x) y)) 3214 ((mnump (caddr x)) 3215 (great (cadr x) (if (mnump (caddr y)) (cadr y) y))) 3216 ((mnump (caddr y)) (great x (cadr y))) 3217 (t (let ((x1 (simpln1 x)) (y1 (simpln1 y))) 3218 (if (alike1 x1 y1) (great (cadr x) (cadr y)) 3219 (great x1 y1)))))) 3220 ((alike1 (cadr x) y) (great (caddr x) 1)) 3221 ((mnump (caddr x)) (great (cadr x) y)) 3222 (t (great (simpln1 x) (simpln (list '(%log) y) 1 t))))) 3223 3224(defmfun $multthru (e1 &optional e2) 3225 (let (arg1 arg2) 3226 (cond (e2 ;called with two args 3227 (setq arg1 (specrepcheck e1) 3228 arg2 (specrepcheck e2)) 3229 (cond ((or (atom arg2) 3230 (not (member (caar arg2) '(mplus mequal) :test #'eq))) 3231 (mul2 arg1 arg2)) 3232 ((eq (caar arg2) 'mequal) 3233 (list (car arg2) ($multthru arg1 (cadr arg2)) 3234 ($multthru arg1 (caddr arg2)))) 3235 (t (expandterms arg1 (cdr arg2))))) 3236 (t ;called with only one arg 3237 (prog (l1) 3238 (setq arg1 (setq arg2 (specrepcheck e1))) 3239 (cond ((atom arg1) (return arg1)) 3240 ((eq (caar arg1) 'mnctimes) 3241 (setq arg1 (cdr arg1)) (go nct)) 3242 ((not (eq (caar arg1) 'mtimes)) (return arg1))) 3243 (setq arg1 (reverse (cdr arg1))) 3244 times (when (mplusp (car arg1)) 3245 (setq l1 (nconc l1 (cdr arg1))) 3246 (return (expandterms (muln l1 t) (cdar arg1)))) 3247 (setq l1 (cons (car arg1) l1)) 3248 (setq arg1 (cdr arg1)) 3249 (if (null arg1) (return arg2)) 3250 (go times) 3251 nct (when (mplusp (car arg1)) 3252 (setq l1 (nreverse l1)) 3253 (return (addn (mapcar 3254 #'(lambda (u) 3255 (simplifya 3256 (cons '(mnctimes) 3257 (append l1 (ncons u) (cdr arg1))) 3258 t)) 3259 (cdar arg1)) 3260 t))) 3261 (setq l1 (cons (car arg1) l1)) 3262 (setq arg1 (cdr arg1)) 3263 (if (null arg1) (return arg2)) 3264 (go nct)))))) 3265 3266;; EXPANDEXPT computes the expansion of (x1 + x2 + ... + xm)^n 3267;; taking a sum and integer power as arguments. 3268;; Its theory is to recurse down the binomial expansion of 3269;; (x1 + (x2 + x3 + ... + xm))^n using the Binomial Expansion 3270;; Thus it does a sigma: 3271;; 3272;; n 3273;; ------- 3274;; \ / n \ k (n - k) 3275;; > | | x1 (x2 + x3 + ... + xm) 3276;; / \ k / 3277;; ------- 3278;; k=0 3279;; 3280;; The function EXPONENTIATE-SUM does this and recurses through the second 3281;; sum raised to a power. It takes a list of terms and a positive integer 3282;; power as arguments. 3283 3284 3285(defun expandexpt (sum power) 3286 (declare (fixnum power)) 3287 (let ((expansion (exponentiate-sum (cdr sum) (abs power)))) 3288 (cond ((plusp power) expansion) 3289 (t `((mexpt simp) ,expansion -1))))) 3290 3291(defun exponentiate-sum (terms rpower) 3292 (declare (fixnum rpower)) 3293 (cond ((= rpower 0) 1) 3294 ((null (cdr terms)) (power (car terms) rpower)) 3295 ((= rpower 1) (cons '(mplus simp) terms)) 3296 (t (do ((i 0 (1+ i)) 3297 (result 0 (add2 result 3298 (muln (list (combination rpower i) 3299 (exponentiate-sum (cdr terms) 3300 (- rpower i)) 3301 (power (car terms) i)) t)))) 3302 ((> i rpower) result) 3303 (declare (fixnum i)))))) 3304 3305;; Computes the combination of n elements taken m at a time by the formula 3306;; 3307;; (n * (n-1) * ... * (n - m + 1)) / m! = 3308;; (n / 1) * ((n - 1) / 2) * ... * ((n - m + 1) / m) 3309;; 3310;; Checks for the case when m is greater than n/2 and translates 3311;; to an equivalent expression. 3312 3313(defun combination (n m) 3314 (declare (fixnum n m)) 3315 (cond ((> m (truncate n 2)) 3316 (combination n (- n m))) 3317 (t 3318 (do ((result 1 (truncate (* result n1) m1)) 3319 (n1 n (1- n1)) 3320 (m1 1 (1+ m1))) 3321 ((> m1 m) result) 3322 (declare (fixnum n1 m1)))))) 3323 3324(defun expandsums (a b) 3325 (addn (prog (c) 3326 (setq a (fixexpand a) b (cdr b)) 3327 loop 3328 (when (null a) (return c)) 3329 (setq c (cons (expandterms (car a) b) c)) 3330 (setq a (cdr a)) 3331 (go loop)) 3332 t)) 3333 3334(defun expandterms (a b) 3335 (addn (prog (c) 3336 loop 3337 (when (null b) (return c)) 3338 (setq c (cons (mul2 a (car b)) c)) 3339 (setq b (cdr b)) 3340 (go loop)) 3341 t)) 3342 3343(defun genexpands (l) 3344 (prog () 3345 loop 3346 (setq l (cdr l)) 3347 (cond ((null l) 3348 (setq prods (nreverse prods) 3349 negprods (nreverse negprods) 3350 sums (nreverse sums) 3351 negsums (nreverse negsums)) 3352 (return nil)) 3353 ((atom (car l)) 3354 (push (car l) prods)) 3355 ((eq (caaar l) 'rat) 3356 (unless (equal (cadar l) 1) 3357 (push (cadar l) prods)) 3358 (push (caddar l) negprods)) 3359 ((eq (caaar l) 'mplus) 3360 (push (car l) sums)) 3361 ((and (eq (caaar l) 'mexpt) 3362 (equal (caddar l) -1) (mplusp (cadar l))) 3363 (push (cadar l) negsums)) 3364 ((and (eq (caaar l) 'mexpt) 3365 (let ((expandp t)) 3366 (mminusp (caddar l)))) 3367 (push (if (equal (caddar l) -1) 3368 (cadar l) 3369 (list (caar l) (cadar l) (neg (caddar l)))) 3370 negprods)) 3371 (t 3372 (push (car l) prods))) 3373 (go loop))) 3374 3375(defun expandtimes (a) 3376 (prog (prods negprods sums negsums expsums expnegsums) 3377 (genexpands a) 3378 (setq prods (cond ((null prods) 1) 3379 ((null (cdr prods)) (car prods)) 3380 (t (cons '(mtimes simp) prods)))) 3381 (setq negprods (cond ((null negprods) 1) 3382 ((null (cdr negprods)) (car negprods)) 3383 (t (cons '(mtimes simp) negprods)))) 3384 (cond ((null sums) (go down)) 3385 (t (setq expsums (car sums)) 3386 (mapc #'(lambda (c) 3387 (setq expsums (expandsums expsums c))) 3388 (cdr sums)))) 3389 (setq prods (cond ((equal prods 1) expsums) 3390 (t (expandterms prods (fixexpand expsums))))) 3391 down (cond ((null negsums) 3392 (cond ((equal 1 negprods) (return prods)) 3393 ((mplusp prods) 3394 (return (expandterms (power negprods -1) (cdr prods)))) 3395 (t (return (let ((expandflag t)) 3396 (mul2 prods (power negprods -1))))))) 3397 (t 3398 (setq expnegsums (car negsums)) 3399 (mapc #'(lambda (c) 3400 (setq expnegsums (expandsums expnegsums c))) 3401 (cdr negsums)))) 3402 (setq expnegsums (expandterms negprods (fixexpand expnegsums))) 3403 (return (if (mplusp prods) 3404 (expandterms (list '(mexpt simp) expnegsums -1) (cdr prods)) 3405 (let ((expandflag t)) 3406 (mul2 prods (list '(mexpt simp) expnegsums -1))))))) 3407 3408(defun expand1 (exp $expop $expon) 3409 (unless (and (integerp $expop) (> $expop -1)) 3410 (merror (intl:gettext "expand: expop must be a nonnegative integer; found: ~M") $expop)) 3411 (unless (and (integerp $expon) (> $expon -1)) 3412 (merror (intl:gettext "expand: expon must be a nonnegative integer; found: ~M") $expon)) 3413 (resimplify (specrepcheck exp))) 3414 3415(defmfun $expand (exp &optional (expop $maxposex) (expon $maxnegex)) 3416 (expand1 exp expop expon)) 3417 3418(defun fixexpand (a) 3419 (if (not (mplusp a)) 3420 (ncons a) 3421 (cdr a))) 3422 3423(defun simpnrt (x *n) ; computes X^(1/*N) 3424 (prog (*in *out varlist genvar $factorflag $dontfactor) 3425 (setq $factorflag t) 3426 (newvar x) 3427 (setq x (ratrep* x)) 3428 (when (equal (cadr x) 0) (return 0)) 3429 (setq x (ratfact (cdr x) 'psqfr)) 3430 (simpnrt1 (mapcar #'pdis x)) 3431 (setq *out (if *out (muln *out nil) 1)) 3432 (setq *in (cond (*in 3433 (setq *in (muln *in nil)) 3434 (nrthk *in *n)) 3435 (t 1))) 3436 (return (let (($%emode t)) 3437 (simplifya (list '(mtimes) *in *out) 3438 (not (or (atom *in) 3439 (atom (cadr *in)) 3440 (member (caaadr *in) '(mplus mtimes rat) :test #'eq)))))))) 3441 3442(defun simpnrt1 (x) 3443 (do ((x x (cddr x)) (y)) 3444 ((null x)) 3445 (cond ((not (equal 1 (setq y (gcd (cadr x) *n)))) 3446 (push (simpnrt (list '(mexpt) (car x) (quotient (cadr x) y)) 3447 (quotient *n y)) 3448 *out)) 3449 ((and (equal (cadr x) 1) (integerp (car x)) (plusp (car x)) 3450 (setq y (pnthrootp (car x) *n))) 3451 (push y *out)) 3452 (t 3453 (unless (> *n (abs (cadr x))) 3454 (push (list '(mexpt) (car x) (quotient (cadr x) *n)) *out)) 3455 (push (list '(mexpt) (car x) (rem (cadr x) *n)) *in))))) 3456 3457(defun nrthk (in *n) 3458 (cond ((equal in 1) 3459 1) 3460 ((equal in -1) 3461 (cond ((equal *n 2) 3462 '$%i) 3463 ((eq $domain '$real) 3464 (if (even *n) 3465 (nrthk2 -1 *n) 3466 -1)) 3467 ($m1pbranch 3468 (let (($%emode t)) 3469 (power* '$%e (list '(mtimes) (list '(rat) 1 *n) '$%pi '$%i)))) 3470 (t 3471 (nrthk2 -1 *n)))) 3472 ((or (and wflag (eq ($asksign in) '$neg)) 3473 (and (mnump in) (equal ($sign in) '$neg))) 3474 (nrthk1 (mul2* -1 in) *n)) 3475 (t 3476 (nrthk2 in *n)))) 3477 3478(defun nrthk1 (in *n) ; computes (-IN)^(1/*N) 3479 (if $radexpand 3480 (mul2 (nrthk2 in *n) (nrthk -1 *n)) 3481 (nrthk2 (mul2* -1 in) *n))) 3482 3483(defun nrthk2 (in *n) 3484 (power* in (list '(rat) 1 *n))) ; computes IN^(1/*N) 3485 3486;; The following was formerly in SININT. This code was placed here because 3487;; SININT is now an out-of-core file on MC, and this code is needed in-core 3488;; because of the various calls to it. - BMT & JPG 3489 3490(declare-top (special var $ratfac ratform context)) 3491 3492(defmfun $integrate (expr x &optional lo hi) 3493 (let ($ratfac) 3494 (if (not hi) 3495 (with-new-context (context) 3496 (if (member '%risch *nounl* :test #'eq) 3497 (rischint expr x) 3498 (sinint expr x))) 3499 ($defint expr x lo hi)))) 3500 3501(defun ratp (a var) 3502 (cond ((atom a) t) 3503 ((member (caar a) '(mplus mtimes) :test #'eq) 3504 (do ((l (cdr a) (cdr l))) ((null l) t) 3505 (or (ratp (car l) var) (return nil)))) 3506 ((eq (caar a) 'mexpt) 3507 (if (free (cadr a) var) 3508 (free (caddr a) var) 3509 (and (integerp (caddr a)) (ratp (cadr a) var)))) 3510 (t (free a var)))) 3511 3512(defun ratnumerator (r) 3513 (cond ((atom r) r) 3514 ((atom (cdr r)) (car r)) 3515 ((numberp (cadr r)) r) 3516 (t (car r)))) 3517 3518(defun ratdenominator (r) 3519 (cond ((atom r) 1) 3520 ((atom (cdr r)) (cdr r)) 3521 ((numberp (cadr r)) 1) 3522 (t (cdr r)))) 3523 3524(declare-top (special var)) 3525 3526;; (BPROG U V) appears to return A and B (as ((A1 . A2) B1 . B2) with A = A1/A2, B = B1/B2) 3527;; such that B/U + A/V = 1/(U*V), where U, V are polynomials represented as a list of 3528;; exponents and coefficients, (<gensym> E1 C1 E2 C2 ...) = C1*<gensym>^E1 + C2*<gensym>^E2 + .... 3529;; Example: 3530;; (%i73) partfrac ((2*x^2-3)/(x^4-3*x^2+2), x); 3531;; 1. Trace: (PARTFRAC '((#:X16910 2 2 0 -3) #:X16910 4 1 2 -3 0 2) '#:X16910) 3532;; 2. Trace: (BPROG '(#:X16910 2 1 0 -2) '(#:X16910 2 1 0 -1)) 3533;; 2. Trace: BPROG ==> ((-1 . 1) 1 . 1) 3534;; 2. Trace: (BPROG '(#:X16910 1 1 0 1) '(#:X16910 1 1 0 -1)) 3535;; 2. Trace: BPROG ==> ((1 . 2) -1 . 2) 3536;; 2. Trace: (BPROG '(#:X16910 1 1 0 -1) '1) 3537;; 2. Trace: BPROG ==> ((0 . 1) 1 . 1) 3538;; 1. Trace: PARTFRAC ==> ((0 . 1) ((1 . 2) (#:X16910 1 1 0 -1) 1) ((-1 . 2) (#:X16910 1 1 0 1) 1) ((1 . 1) (#:X16910 2 1 0 -2) 1)) 3539;; (%o73) 1/(x^2-2)-1/(2*(x+1))+1/(2*(x-1)) 3540 3541(defun bprog (r s) 3542 (prog (p1b p2b coef1r coef2r coef1s coef2s f1 f2 a egcd state seen-state) 3543 (setq r (ratfix r)) 3544 (setq s (ratfix s)) 3545 (setq coef2r (setq coef1s 0)) 3546 (setq coef2s (setq coef1r 1)) 3547 (setq a 1 egcd 1) 3548 (setq p1b (car r)) 3549 (unless (zerop (pdegree p1b var)) (setq egcd (pgcdexpon p1b))) 3550 (setq p2b (car s)) 3551 (setq seen-state nil) 3552 (unless (or (zerop (pdegree p2b var)) (= egcd 1)) 3553 (setq egcd (gcd egcd (pgcdexpon p2b))) 3554 (setq p1b (pexpon*// p1b egcd nil) 3555 p2b (pexpon*// p2b egcd nil))) 3556 b1 (cond ((< (pdegree p1b var) (pdegree p2b var)) 3557 (rotatef p1b p2b) 3558 (rotatef coef1r coef2r) 3559 (rotatef coef1s coef2s))) 3560 (when (zerop (pdegree p2b var)) 3561 (unless (zerop (pdegree coef2r var)) 3562 (setq coef2r (pexpon*// coef2r egcd t))) 3563 (unless (zerop (pdegree coef2s var)) 3564 (setq coef2s (pexpon*// coef2s egcd t))) 3565 (return (cons (ratreduce (ptimes (cdr r) coef2r) p2b) 3566 (ratreduce (ptimes (cdr s) coef2s) p2b)))) 3567 (setq f1 (psquorem1 (cdr p1b) (cdr p2b) t)) 3568 (setq f2 (psimp var (cadr f1))) 3569 (setq p1b (pquotientchk (psimp var (caddr f1)) a)) 3570 (setq f1 (car f1)) 3571 (setq coef1r (pquotientchk (pdifference (ptimes f1 coef1r) 3572 (ptimes f2 coef2r)) 3573 a)) 3574 (setq coef1s (pquotientchk (pdifference (ptimes f1 coef1s) 3575 (ptimes f2 coef2s)) 3576 a)) 3577 (setq a f1) 3578 ;; Catch an endless loop by keeping track of (p1b, p2b) combinations seen. 3579 ;; Without this, rat(1/(x^(2/3)+1)) with algebraic = true loops forever. 3580 (when (member (setq state (cons p1b p2b)) seen-state :test #'equal) 3581 (rat-error (intl:gettext "BPROG: Failed to apply Bezout's identity"))) 3582 (push state seen-state) 3583 (go b1))) 3584 3585(defun ratdifference (a b) (ratplus a (ratminus b))) 3586 3587(defun ratpl (a b) (ratplus (ratfix a) (ratfix b))) 3588 3589(defun ratti (a b c) (rattimes (ratfix a) (ratfix b) c)) 3590 3591(defun ratqu (a b) (ratquotient (ratfix a) (ratfix b))) 3592 3593(defun ratfix (a) (cond ((equal a (ratnumerator a)) (cons a 1)) (t a))) 3594 3595(defun ratdivide (f g) 3596 (destructuring-let* (((fnum . fden) (ratfix f)) 3597 ((gnum . gden) (ratfix g)) 3598 ((q r) (pdivide fnum gnum))) 3599 (cons (ratqu (ratti q gden t) fden) 3600 (ratqu r fden)))) 3601 3602(defun polcoef (l n) (cond ((or (atom l) (pointergp var (car l))) 3603 (cond ((equal n 0) l) (t 0))) 3604 (t (ptterm (cdr l) n)))) 3605 3606(defun disrep (l) (cond ((equal (ratnumerator l) l) 3607 ($ratdisrep (cons ratform (cons l 1)))) 3608 (t ($ratdisrep (cons ratform l))))) 3609 3610(declare-top (unspecial var)) 3611 3612 3613;; The following was formerly in MATRUN. This code was placed here because 3614;; MATRUN is now an out-of-core file on MC, and this code is needed in-core 3615;; so that MACSYMA SAVE files will work. - JPG 3616 3617(defun matcherr () 3618 (throw 'match nil)) 3619 3620(defun kar (x) (if (atom x) (matcherr) (car x))) 3621 3622(defun kaar (x) (kar (kar x))) 3623 3624(defun kdr (x) (if (atom x) (matcherr) (cdr x))) 3625 3626(defun simpargs1 (a vestigial c) 3627 (declare (ignore vestigial)) 3628 (simpargs a c)) 3629 3630(defun *kar (x) 3631 (if (not (atom x)) (car x))) 3632 3633(defquote retlist (&rest l) 3634 (cons '(mlist simp) 3635 (mapcar #'(lambda (z) (list '(mequal simp) z (meval z))) l))) 3636 3637(defun nthkdr (x c) 3638 (if (zerop c) x (nthkdr (kdr x) (1- c)))) 3639