1 /*
2 * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <openssl/crypto.h>
12 #include <openssl/bn.h>
13 #include "crypto/sparse_array.h"
14
15 /*
16 * How many bits are used to index each level in the tree structure?
17 * This setting determines the number of pointers stored in each node of the
18 * tree used to represent the sparse array. Having more pointers reduces the
19 * depth of the tree but potentially wastes more memory. That is, this is a
20 * direct space versus time tradeoff.
21 *
22 * The default is to use four bits which means that the are 16
23 * pointers in each tree node.
24 *
25 * The library builder is also permitted to define other sizes in the closed
26 * interval [2, sizeof(ossl_uintmax_t) * 8]. Space use generally scales
27 * exponentially with the block size, although the implementation only
28 * creates enough blocks to support the largest used index. The depth is:
29 * ceil(log_2(largest index) / 2^{block size})
30 * E.g. with a block size of 4, and a largest index of 1000, the depth
31 * will be three.
32 */
33 #ifndef OPENSSL_SA_BLOCK_BITS
34 # define OPENSSL_SA_BLOCK_BITS 4
35 #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)
36 # error OPENSSL_SA_BLOCK_BITS is out of range
37 #endif
38
39 /*
40 * From the number of bits, work out:
41 * the number of pointers in a tree node;
42 * a bit mask to quickly extract an index and
43 * the maximum depth of the tree structure.
44 */
45 #define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
46 #define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
47 #define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \
48 + OPENSSL_SA_BLOCK_BITS - 1) \
49 / OPENSSL_SA_BLOCK_BITS)
50
51 struct sparse_array_st {
52 int levels;
53 ossl_uintmax_t top;
54 size_t nelem;
55 void **nodes;
56 };
57
ossl_sa_new(void)58 OPENSSL_SA *ossl_sa_new(void)
59 {
60 OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
61
62 return res;
63 }
64
sa_doall(const OPENSSL_SA * sa,void (* node)(void **),void (* leaf)(ossl_uintmax_t,void *,void *),void * arg)65 static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
66 void (*leaf)(ossl_uintmax_t, void *, void *), void *arg)
67 {
68 int i[SA_BLOCK_MAX_LEVELS];
69 void *nodes[SA_BLOCK_MAX_LEVELS];
70 ossl_uintmax_t idx = 0;
71 int l = 0;
72
73 i[0] = 0;
74 nodes[0] = sa->nodes;
75 while (l >= 0) {
76 const int n = i[l];
77 void ** const p = nodes[l];
78
79 if (n >= SA_BLOCK_MAX) {
80 if (p != NULL && node != NULL)
81 (*node)(p);
82 l--;
83 idx >>= OPENSSL_SA_BLOCK_BITS;
84 } else {
85 i[l] = n + 1;
86 if (p != NULL && p[n] != NULL) {
87 idx = (idx & ~SA_BLOCK_MASK) | n;
88 if (l < sa->levels - 1) {
89 i[++l] = 0;
90 nodes[l] = p[n];
91 idx <<= OPENSSL_SA_BLOCK_BITS;
92 } else if (leaf != NULL) {
93 (*leaf)(idx, p[n], arg);
94 }
95 }
96 }
97 }
98 }
99
sa_free_node(void ** p)100 static void sa_free_node(void **p)
101 {
102 OPENSSL_free(p);
103 }
104
sa_free_leaf(ossl_uintmax_t n,void * p,void * arg)105 static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg)
106 {
107 OPENSSL_free(p);
108 }
109
ossl_sa_free(OPENSSL_SA * sa)110 void ossl_sa_free(OPENSSL_SA *sa)
111 {
112 if (sa != NULL) {
113 sa_doall(sa, &sa_free_node, NULL, NULL);
114 OPENSSL_free(sa);
115 }
116 }
117
ossl_sa_free_leaves(OPENSSL_SA * sa)118 void ossl_sa_free_leaves(OPENSSL_SA *sa)
119 {
120 sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
121 OPENSSL_free(sa);
122 }
123
124 /* Wrap this in a structure to avoid compiler warnings */
125 struct trampoline_st {
126 void (*func)(ossl_uintmax_t, void *);
127 };
128
trampoline(ossl_uintmax_t n,void * l,void * arg)129 static void trampoline(ossl_uintmax_t n, void *l, void *arg)
130 {
131 ((const struct trampoline_st *)arg)->func(n, l);
132 }
133
ossl_sa_doall(const OPENSSL_SA * sa,void (* leaf)(ossl_uintmax_t,void *))134 void ossl_sa_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *))
135 {
136 struct trampoline_st tramp;
137
138 tramp.func = leaf;
139 if (sa != NULL)
140 sa_doall(sa, NULL, &trampoline, &tramp);
141 }
142
ossl_sa_doall_arg(const OPENSSL_SA * sa,void (* leaf)(ossl_uintmax_t,void *,void *),void * arg)143 void ossl_sa_doall_arg(const OPENSSL_SA *sa,
144 void (*leaf)(ossl_uintmax_t, void *, void *),
145 void *arg)
146 {
147 if (sa != NULL)
148 sa_doall(sa, NULL, leaf, arg);
149 }
150
ossl_sa_num(const OPENSSL_SA * sa)151 size_t ossl_sa_num(const OPENSSL_SA *sa)
152 {
153 return sa == NULL ? 0 : sa->nelem;
154 }
155
ossl_sa_get(const OPENSSL_SA * sa,ossl_uintmax_t n)156 void *ossl_sa_get(const OPENSSL_SA *sa, ossl_uintmax_t n)
157 {
158 int level;
159 void **p, *r = NULL;
160
161 if (sa == NULL || sa->nelem == 0)
162 return NULL;
163
164 if (n <= sa->top) {
165 p = sa->nodes;
166 for (level = sa->levels - 1; p != NULL && level > 0; level--)
167 p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
168 & SA_BLOCK_MASK];
169 r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
170 }
171 return r;
172 }
173
alloc_node(void)174 static ossl_inline void **alloc_node(void)
175 {
176 return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
177 }
178
ossl_sa_set(OPENSSL_SA * sa,ossl_uintmax_t posn,void * val)179 int ossl_sa_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val)
180 {
181 int i, level = 1;
182 ossl_uintmax_t n = posn;
183 void **p;
184
185 if (sa == NULL)
186 return 0;
187
188 for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)
189 if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
190 break;
191
192 for (;sa->levels < level; sa->levels++) {
193 p = alloc_node();
194 if (p == NULL)
195 return 0;
196 p[0] = sa->nodes;
197 sa->nodes = p;
198 }
199 if (sa->top < posn)
200 sa->top = posn;
201
202 p = sa->nodes;
203 for (level = sa->levels - 1; level > 0; level--) {
204 i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
205 if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
206 return 0;
207 p = p[i];
208 }
209 p += posn & SA_BLOCK_MASK;
210 if (val == NULL && *p != NULL)
211 sa->nelem--;
212 else if (val != NULL && *p == NULL)
213 sa->nelem++;
214 *p = val;
215 return 1;
216 }
217