1 /* $NetBSD: ltable.c,v 1.5 2015/10/08 13:40:16 mbalmer Exp $ */
2
3 /*
4 ** Id: ltable.c,v 2.111 2015/06/09 14:21:13 roberto Exp
5 ** Lua tables (hash)
6 ** See Copyright Notice in lua.h
7 */
8
9 #define ltable_c
10 #define LUA_CORE
11
12 #include "lprefix.h"
13
14
15 /*
16 ** Implementation of tables (aka arrays, objects, or hash tables).
17 ** Tables keep its elements in two parts: an array part and a hash part.
18 ** Non-negative integer keys are all candidates to be kept in the array
19 ** part. The actual size of the array is the largest 'n' such that
20 ** more than half the slots between 1 and n are in use.
21 ** Hash uses a mix of chained scatter table with Brent's variation.
22 ** A main invariant of these tables is that, if an element is not
23 ** in its main position (i.e. the 'original' position that its hash gives
24 ** to it), then the colliding element is in its own main position.
25 ** Hence even when the load factor reaches 100%, performance remains good.
26 */
27
28 #ifndef _KERNEL
29 #include <float.h>
30 #include <math.h>
31 #include <limits.h>
32 #endif
33
34 #include "lua.h"
35
36 #include "ldebug.h"
37 #include "ldo.h"
38 #include "lgc.h"
39 #include "lmem.h"
40 #include "lobject.h"
41 #include "lstate.h"
42 #include "lstring.h"
43 #include "ltable.h"
44 #include "lvm.h"
45
46
47 /*
48 ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
49 ** the largest integer such that MAXASIZE fits in an unsigned int.
50 */
51 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
52 #define MAXASIZE (1u << MAXABITS)
53
54 /*
55 ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
56 ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
57 ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
58 ** fits comfortably in an unsigned int.)
59 */
60 #define MAXHBITS (MAXABITS - 1)
61
62
63 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
64
65 #define hashstr(t,str) hashpow2(t, (str)->hash)
66 #define hashboolean(t,p) hashpow2(t, p)
67 #define hashint(t,i) hashpow2(t, i)
68
69
70 /*
71 ** for some types, it is better to avoid modulus by power of 2, as
72 ** they tend to have many 2 factors.
73 */
74 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
75
76
77 #define hashpointer(t,p) hashmod(t, point2uint(p))
78
79
80 #define dummynode (&dummynode_)
81
82 #define isdummy(n) ((n) == dummynode)
83
84 static const Node dummynode_ = {
85 {NILCONSTANT}, /* value */
86 {{NILCONSTANT, 0}} /* key */
87 };
88
89
90 #ifndef _KERNEL
91 /*
92 ** Hash for floating-point numbers.
93 ** The main computation should be just
94 ** n = frepx(n, &i); return (n * INT_MAX) + i
95 ** but there are some numerical subtleties.
96 ** In a two-complement representation, INT_MAX does not has an exact
97 ** representation as a float, but INT_MIN does; because the absolute
98 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
99 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
100 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
101 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
102 ** INT_MIN.
103 */
104 #if !defined(l_hashfloat)
l_hashfloat(lua_Number n)105 static int l_hashfloat (lua_Number n) {
106 int i;
107 lua_Integer ni;
108 n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
109 if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
110 lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == HUGE_VAL);
111 return 0;
112 }
113 else { /* normal case */
114 unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
115 return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
116 }
117 }
118 #endif
119 #endif /*_KERNEL */
120
121 /*
122 ** returns the 'main' position of an element in a table (that is, the index
123 ** of its hash value)
124 */
mainposition(const Table * t,const TValue * key)125 static Node *mainposition (const Table *t, const TValue *key) {
126 switch (ttype(key)) {
127 case LUA_TNUMINT:
128 return hashint(t, ivalue(key));
129 #ifndef _KERNEL
130 case LUA_TNUMFLT:
131 return hashmod(t, l_hashfloat(fltvalue(key)));
132 #endif
133 case LUA_TSHRSTR:
134 return hashstr(t, tsvalue(key));
135 case LUA_TLNGSTR: {
136 TString *s = tsvalue(key);
137 if (s->extra == 0) { /* no hash? */
138 s->hash = luaS_hash(getstr(s), s->u.lnglen, s->hash);
139 s->extra = 1; /* now it has its hash */
140 }
141 return hashstr(t, tsvalue(key));
142 }
143 case LUA_TBOOLEAN:
144 return hashboolean(t, bvalue(key));
145 case LUA_TLIGHTUSERDATA:
146 return hashpointer(t, pvalue(key));
147 case LUA_TLCF:
148 return hashpointer(t, fvalue(key));
149 default:
150 return hashpointer(t, gcvalue(key));
151 }
152 }
153
154
155 /*
156 ** returns the index for 'key' if 'key' is an appropriate key to live in
157 ** the array part of the table, 0 otherwise.
158 */
arrayindex(const TValue * key)159 static unsigned int arrayindex (const TValue *key) {
160 if (ttisinteger(key)) {
161 lua_Integer k = ivalue(key);
162 if (0 < k && (lua_Unsigned)k <= MAXASIZE)
163 return cast(unsigned int, k); /* 'key' is an appropriate array index */
164 }
165 return 0; /* 'key' did not match some condition */
166 }
167
168
169 /*
170 ** returns the index of a 'key' for table traversals. First goes all
171 ** elements in the array part, then elements in the hash part. The
172 ** beginning of a traversal is signaled by 0.
173 */
findindex(lua_State * L,Table * t,StkId key)174 static unsigned int findindex (lua_State *L, Table *t, StkId key) {
175 unsigned int i;
176 if (ttisnil(key)) return 0; /* first iteration */
177 i = arrayindex(key);
178 if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */
179 return i; /* yes; that's the index */
180 else {
181 int nx;
182 Node *n = mainposition(t, key);
183 for (;;) { /* check whether 'key' is somewhere in the chain */
184 /* key may be dead already, but it is ok to use it in 'next' */
185 if (luaV_rawequalobj(gkey(n), key) ||
186 (ttisdeadkey(gkey(n)) && iscollectable(key) &&
187 deadvalue(gkey(n)) == gcvalue(key))) {
188 i = cast_int(n - gnode(t, 0)); /* key index in hash table */
189 /* hash elements are numbered after array ones */
190 return (i + 1) + t->sizearray;
191 }
192 nx = gnext(n);
193 if (nx == 0)
194 luaG_runerror(L, "invalid key to 'next'"); /* key not found */
195 else n += nx;
196 }
197 }
198 }
199
200
luaH_next(lua_State * L,Table * t,StkId key)201 int luaH_next (lua_State *L, Table *t, StkId key) {
202 unsigned int i = findindex(L, t, key); /* find original element */
203 for (; i < t->sizearray; i++) { /* try first array part */
204 if (!ttisnil(&t->array[i])) { /* a non-nil value? */
205 setivalue(key, i + 1);
206 setobj2s(L, key+1, &t->array[i]);
207 return 1;
208 }
209 }
210 for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */
211 if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */
212 setobj2s(L, key, gkey(gnode(t, i)));
213 setobj2s(L, key+1, gval(gnode(t, i)));
214 return 1;
215 }
216 }
217 return 0; /* no more elements */
218 }
219
220
221 /*
222 ** {=============================================================
223 ** Rehash
224 ** ==============================================================
225 */
226
227 /*
228 ** Compute the optimal size for the array part of table 't'. 'nums' is a
229 ** "count array" where 'nums[i]' is the number of integers in the table
230 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
231 ** integer keys in the table and leaves with the number of keys that
232 ** will go to the array part; return the optimal size.
233 */
computesizes(unsigned int nums[],unsigned int * pna)234 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
235 int i;
236 unsigned int twotoi; /* 2^i (candidate for optimal size) */
237 unsigned int a = 0; /* number of elements smaller than 2^i */
238 unsigned int na = 0; /* number of elements to go to array part */
239 unsigned int optimal = 0; /* optimal size for array part */
240 /* loop while keys can fill more than half of total size */
241 for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
242 if (nums[i] > 0) {
243 a += nums[i];
244 if (a > twotoi/2) { /* more than half elements present? */
245 optimal = twotoi; /* optimal size (till now) */
246 na = a; /* all elements up to 'optimal' will go to array part */
247 }
248 }
249 }
250 lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
251 *pna = na;
252 return optimal;
253 }
254
255
countint(const TValue * key,unsigned int * nums)256 static int countint (const TValue *key, unsigned int *nums) {
257 unsigned int k = arrayindex(key);
258 if (k != 0) { /* is 'key' an appropriate array index? */
259 nums[luaO_ceillog2(k)]++; /* count as such */
260 return 1;
261 }
262 else
263 return 0;
264 }
265
266
267 /*
268 ** Count keys in array part of table 't': Fill 'nums[i]' with
269 ** number of keys that will go into corresponding slice and return
270 ** total number of non-nil keys.
271 */
numusearray(const Table * t,unsigned int * nums)272 static unsigned int numusearray (const Table *t, unsigned int *nums) {
273 int lg;
274 unsigned int ttlg; /* 2^lg */
275 unsigned int ause = 0; /* summation of 'nums' */
276 unsigned int i = 1; /* count to traverse all array keys */
277 /* traverse each slice */
278 for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
279 unsigned int lc = 0; /* counter */
280 unsigned int lim = ttlg;
281 if (lim > t->sizearray) {
282 lim = t->sizearray; /* adjust upper limit */
283 if (i > lim)
284 break; /* no more elements to count */
285 }
286 /* count elements in range (2^(lg - 1), 2^lg] */
287 for (; i <= lim; i++) {
288 if (!ttisnil(&t->array[i-1]))
289 lc++;
290 }
291 nums[lg] += lc;
292 ause += lc;
293 }
294 return ause;
295 }
296
297
numusehash(const Table * t,unsigned int * nums,unsigned int * pna)298 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
299 int totaluse = 0; /* total number of elements */
300 int ause = 0; /* elements added to 'nums' (can go to array part) */
301 int i = sizenode(t);
302 while (i--) {
303 Node *n = &t->node[i];
304 if (!ttisnil(gval(n))) {
305 ause += countint(gkey(n), nums);
306 totaluse++;
307 }
308 }
309 *pna += ause;
310 return totaluse;
311 }
312
313
setarrayvector(lua_State * L,Table * t,unsigned int size)314 static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
315 unsigned int i;
316 luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
317 for (i=t->sizearray; i<size; i++)
318 setnilvalue(&t->array[i]);
319 t->sizearray = size;
320 }
321
322
setnodevector(lua_State * L,Table * t,unsigned int size)323 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
324 int lsize;
325 if (size == 0) { /* no elements to hash part? */
326 t->node = cast(Node *, dummynode); /* use common 'dummynode' */
327 lsize = 0;
328 }
329 else {
330 int i;
331 lsize = luaO_ceillog2(size);
332 if (lsize > MAXHBITS)
333 luaG_runerror(L, "table overflow");
334 size = twoto(lsize);
335 t->node = luaM_newvector(L, size, Node);
336 for (i = 0; i < (int)size; i++) {
337 Node *n = gnode(t, i);
338 gnext(n) = 0;
339 setnilvalue(wgkey(n));
340 setnilvalue(gval(n));
341 }
342 }
343 t->lsizenode = cast_byte(lsize);
344 t->lastfree = gnode(t, size); /* all positions are free */
345 }
346
347
luaH_resize(lua_State * L,Table * t,unsigned int nasize,unsigned int nhsize)348 void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
349 unsigned int nhsize) {
350 unsigned int i;
351 int j;
352 unsigned int oldasize = t->sizearray;
353 int oldhsize = t->lsizenode;
354 Node *nold = t->node; /* save old hash ... */
355 if (nasize > oldasize) /* array part must grow? */
356 setarrayvector(L, t, nasize);
357 /* create new hash part with appropriate size */
358 setnodevector(L, t, nhsize);
359 if (nasize < oldasize) { /* array part must shrink? */
360 t->sizearray = nasize;
361 /* re-insert elements from vanishing slice */
362 for (i=nasize; i<oldasize; i++) {
363 if (!ttisnil(&t->array[i]))
364 luaH_setint(L, t, i + 1, &t->array[i]);
365 }
366 /* shrink array */
367 luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
368 }
369 /* re-insert elements from hash part */
370 for (j = twoto(oldhsize) - 1; j >= 0; j--) {
371 Node *old = nold + j;
372 if (!ttisnil(gval(old))) {
373 /* doesn't need barrier/invalidate cache, as entry was
374 already present in the table */
375 setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
376 }
377 }
378 if (!isdummy(nold))
379 luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old hash */
380 }
381
382
luaH_resizearray(lua_State * L,Table * t,unsigned int nasize)383 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
384 int nsize = isdummy(t->node) ? 0 : sizenode(t);
385 luaH_resize(L, t, nasize, nsize);
386 }
387
388 /*
389 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
390 */
rehash(lua_State * L,Table * t,const TValue * ek)391 static void rehash (lua_State *L, Table *t, const TValue *ek) {
392 unsigned int asize; /* optimal size for array part */
393 unsigned int na; /* number of keys in the array part */
394 unsigned int nums[MAXABITS + 1];
395 int i;
396 int totaluse;
397 for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
398 na = numusearray(t, nums); /* count keys in array part */
399 totaluse = na; /* all those keys are integer keys */
400 totaluse += numusehash(t, nums, &na); /* count keys in hash part */
401 /* count extra key */
402 na += countint(ek, nums);
403 totaluse++;
404 /* compute new size for array part */
405 asize = computesizes(nums, &na);
406 /* resize the table to new computed sizes */
407 luaH_resize(L, t, asize, totaluse - na);
408 }
409
410
411
412 /*
413 ** }=============================================================
414 */
415
416
luaH_new(lua_State * L)417 Table *luaH_new (lua_State *L) {
418 GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
419 Table *t = gco2t(o);
420 t->metatable = NULL;
421 t->flags = cast_byte(~0);
422 t->array = NULL;
423 t->sizearray = 0;
424 setnodevector(L, t, 0);
425 return t;
426 }
427
428
luaH_free(lua_State * L,Table * t)429 void luaH_free (lua_State *L, Table *t) {
430 if (!isdummy(t->node))
431 luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
432 luaM_freearray(L, t->array, t->sizearray);
433 luaM_free(L, t);
434 }
435
436
getfreepos(Table * t)437 static Node *getfreepos (Table *t) {
438 while (t->lastfree > t->node) {
439 t->lastfree--;
440 if (ttisnil(gkey(t->lastfree)))
441 return t->lastfree;
442 }
443 return NULL; /* could not find a free place */
444 }
445
446
447
448 /*
449 ** inserts a new key into a hash table; first, check whether key's main
450 ** position is free. If not, check whether colliding node is in its main
451 ** position or not: if it is not, move colliding node to an empty place and
452 ** put new key in its main position; otherwise (colliding node is in its main
453 ** position), new key goes to an empty position.
454 */
luaH_newkey(lua_State * L,Table * t,const TValue * key)455 TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
456 Node *mp;
457 #ifndef _KERNEL
458 TValue aux;
459 #endif
460 if (ttisnil(key)) luaG_runerror(L, "table index is nil");
461 #ifndef _KERNEL
462 else if (ttisfloat(key)) {
463 lua_Integer k;
464 if (luaV_tointeger(key, &k, 0)) { /* index is int? */
465 setivalue(&aux, k);
466 key = &aux; /* insert it as an integer */
467 }
468 else if (luai_numisnan(fltvalue(key)))
469 luaG_runerror(L, "table index is NaN");
470 }
471 #endif
472 mp = mainposition(t, key);
473 if (!ttisnil(gval(mp)) || isdummy(mp)) { /* main position is taken? */
474 Node *othern;
475 Node *f = getfreepos(t); /* get a free place */
476 if (f == NULL) { /* cannot find a free place? */
477 rehash(L, t, key); /* grow table */
478 /* whatever called 'newkey' takes care of TM cache and GC barrier */
479 return luaH_set(L, t, key); /* insert key into grown table */
480 }
481 lua_assert(!isdummy(f));
482 othern = mainposition(t, gkey(mp));
483 if (othern != mp) { /* is colliding node out of its main position? */
484 /* yes; move colliding node into free position */
485 while (othern + gnext(othern) != mp) /* find previous */
486 othern += gnext(othern);
487 gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
488 *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
489 if (gnext(mp) != 0) {
490 gnext(f) += cast_int(mp - f); /* correct 'next' */
491 gnext(mp) = 0; /* now 'mp' is free */
492 }
493 setnilvalue(gval(mp));
494 }
495 else { /* colliding node is in its own main position */
496 /* new node will go into free position */
497 if (gnext(mp) != 0)
498 gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
499 else lua_assert(gnext(f) == 0);
500 gnext(mp) = cast_int(f - mp);
501 mp = f;
502 }
503 }
504 setnodekey(L, &mp->i_key, key);
505 luaC_barrierback(L, t, key);
506 lua_assert(ttisnil(gval(mp)));
507 return gval(mp);
508 }
509
510
511 /*
512 ** search function for integers
513 */
luaH_getint(Table * t,lua_Integer key)514 const TValue *luaH_getint (Table *t, lua_Integer key) {
515 /* (1 <= key && key <= t->sizearray) */
516 if (l_castS2U(key - 1) < t->sizearray)
517 return &t->array[key - 1];
518 else {
519 Node *n = hashint(t, key);
520 for (;;) { /* check whether 'key' is somewhere in the chain */
521 if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
522 return gval(n); /* that's it */
523 else {
524 int nx = gnext(n);
525 if (nx == 0) break;
526 n += nx;
527 }
528 };
529 return luaO_nilobject;
530 }
531 }
532
533
534 /*
535 ** search function for short strings
536 */
luaH_getstr(Table * t,TString * key)537 const TValue *luaH_getstr (Table *t, TString *key) {
538 Node *n = hashstr(t, key);
539 lua_assert(key->tt == LUA_TSHRSTR);
540 for (;;) { /* check whether 'key' is somewhere in the chain */
541 const TValue *k = gkey(n);
542 if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
543 return gval(n); /* that's it */
544 else {
545 int nx = gnext(n);
546 if (nx == 0) break;
547 n += nx;
548 }
549 };
550 return luaO_nilobject;
551 }
552
553
554 /*
555 ** main search function
556 */
luaH_get(Table * t,const TValue * key)557 const TValue *luaH_get (Table *t, const TValue *key) {
558 switch (ttype(key)) {
559 case LUA_TSHRSTR: return luaH_getstr(t, tsvalue(key));
560 case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
561 case LUA_TNIL: return luaO_nilobject;
562 #ifndef _KERNEL
563 case LUA_TNUMFLT: {
564 lua_Integer k;
565 if (luaV_tointeger(key, &k, 0)) /* index is int? */
566 return luaH_getint(t, k); /* use specialized version */
567 /* else... */
568 } /* FALLTHROUGH */
569 #endif
570 default: {
571 Node *n = mainposition(t, key);
572 for (;;) { /* check whether 'key' is somewhere in the chain */
573 if (luaV_rawequalobj(gkey(n), key))
574 return gval(n); /* that's it */
575 else {
576 int nx = gnext(n);
577 if (nx == 0) break;
578 n += nx;
579 }
580 };
581 return luaO_nilobject;
582 }
583 }
584 }
585
586
587 /*
588 ** beware: when using this function you probably need to check a GC
589 ** barrier and invalidate the TM cache.
590 */
luaH_set(lua_State * L,Table * t,const TValue * key)591 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
592 const TValue *p = luaH_get(t, key);
593 if (p != luaO_nilobject)
594 return cast(TValue *, p);
595 else return luaH_newkey(L, t, key);
596 }
597
598
luaH_setint(lua_State * L,Table * t,lua_Integer key,TValue * value)599 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
600 const TValue *p = luaH_getint(t, key);
601 TValue *cell;
602 if (p != luaO_nilobject)
603 cell = cast(TValue *, p);
604 else {
605 TValue k;
606 setivalue(&k, key);
607 cell = luaH_newkey(L, t, &k);
608 }
609 setobj2t(L, cell, value);
610 }
611
612
unbound_search(Table * t,unsigned int j)613 static int unbound_search (Table *t, unsigned int j) {
614 unsigned int i = j; /* i is zero or a present index */
615 j++;
616 /* find 'i' and 'j' such that i is present and j is not */
617 while (!ttisnil(luaH_getint(t, j))) {
618 i = j;
619 if (j > cast(unsigned int, MAX_INT)/2) { /* overflow? */
620 /* table was built with bad purposes: resort to linear search */
621 i = 1;
622 while (!ttisnil(luaH_getint(t, i))) i++;
623 return i - 1;
624 }
625 j *= 2;
626 }
627 /* now do a binary search between them */
628 while (j - i > 1) {
629 unsigned int m = (i+j)/2;
630 if (ttisnil(luaH_getint(t, m))) j = m;
631 else i = m;
632 }
633 return i;
634 }
635
636
637 /*
638 ** Try to find a boundary in table 't'. A 'boundary' is an integer index
639 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
640 */
luaH_getn(Table * t)641 int luaH_getn (Table *t) {
642 unsigned int j = t->sizearray;
643 if (j > 0 && ttisnil(&t->array[j - 1])) {
644 /* there is a boundary in the array part: (binary) search for it */
645 unsigned int i = 0;
646 while (j - i > 1) {
647 unsigned int m = (i+j)/2;
648 if (ttisnil(&t->array[m - 1])) j = m;
649 else i = m;
650 }
651 return i;
652 }
653 /* else must find a boundary in hash part */
654 else if (isdummy(t->node)) /* hash part is empty? */
655 return j; /* that is easy... */
656 else return unbound_search(t, j);
657 }
658
659
660
661 #if defined(LUA_DEBUG)
662
luaH_mainposition(const Table * t,const TValue * key)663 Node *luaH_mainposition (const Table *t, const TValue *key) {
664 return mainposition(t, key);
665 }
666
luaH_isdummy(Node * n)667 int luaH_isdummy (Node *n) { return isdummy(n); }
668
669 #endif
670