1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)mkfs.c 8.11 (Berkeley) 5/3/95
30 * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
31 */
32
33 #include "defs.h"
34
35 #include <inttypes.h>
36 #include <stdlib.h>
37
38 #include <bus/cam/scsi/scsi_daio.h>
39
40 /*
41 * make file system for cylinder-group style file systems
42 */
43
44 /*
45 * We limit the size of the inode map to be no more than a
46 * third of the cylinder group space, since we must leave at
47 * least an equal amount of space for the block map.
48 *
49 * N.B.: MAXIPG must be a multiple of INOPB(fs).
50 */
51 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
52
53 #define UMASK 0755
54 #define MAXINOPB (MAXBSIZE / sizeof(struct ufs1_dinode))
55
56 #ifdef STANDALONE
57 #error "mkfs.c: STANDALONE compilation no longer supported"
58 #endif
59
60 /*
61 * variables set up by front end.
62 */
63 extern int mfs; /* run as the memory based filesystem */
64 extern char *mfs_mtpt; /* mount point for mfs */
65 extern struct stat mfs_mtstat; /* stat prior to mount */
66 extern int Lflag; /* add a volume label */
67 extern int Nflag; /* run mkfs without writing file system */
68 extern int Oflag; /* format as an 4.3BSD file system */
69 extern int Uflag; /* enable soft updates for file system */
70 extern int Eflag; /* erase contents using TRIM */
71 extern uint64_t slice_offset; /* Pysical device slice offset */
72 extern u_long fssize; /* file system size */
73 extern int ntracks; /* # tracks/cylinder */
74 extern int nsectors; /* # sectors/track */
75 extern int nphyssectors; /* # sectors/track including spares */
76 extern int secpercyl; /* sectors per cylinder */
77 extern int sectorsize; /* bytes/sector */
78 extern int realsectorsize; /* bytes/sector in hardware*/
79 extern int rpm; /* revolutions/minute of drive */
80 extern int interleave; /* hardware sector interleave */
81 extern int trackskew; /* sector 0 skew, per track */
82 extern int fsize; /* fragment size */
83 extern int bsize; /* block size */
84 extern int cpg; /* cylinders/cylinder group */
85 extern int cpgflg; /* cylinders/cylinder group flag was given */
86 extern int minfree; /* free space threshold */
87 extern int opt; /* optimization preference (space or time) */
88 extern int density; /* number of bytes per inode */
89 extern int maxcontig; /* max contiguous blocks to allocate */
90 extern int rotdelay; /* rotational delay between blocks */
91 extern int maxbpg; /* maximum blocks per file in a cyl group */
92 extern int nrpos; /* # of distinguished rotational positions */
93 extern int bbsize; /* boot block size */
94 extern int sbsize; /* superblock size */
95 extern int avgfilesize; /* expected average file size */
96 extern int avgfilesperdir; /* expected number of files per directory */
97 extern caddr_t membase; /* start address of memory based filesystem */
98 extern char * filename;
99 extern u_char *volumelabel; /* volume label for filesystem */
100 extern struct disktab geom;
101
102 extern void fatal(const char *fmt, ...);
103
104 union {
105 struct fs fs;
106 char pad[SBSIZE];
107 } fsun;
108 #define sblock fsun.fs
109 struct csum *fscs;
110
111 union {
112 struct cg cg;
113 char pad[MAXBSIZE];
114 } cgun;
115 #define acg cgun.cg
116
117 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
118
119 int fsi, fso;
120 static fsnode_t copyroot;
121 static fsnode_t copyhlinks;
122 #ifdef FSIRAND
123 int randinit;
124 #endif
125 daddr_t alloc(int, int);
126 long calcipg(long, long, off_t *);
127 static int charsperline(void);
128 void clrblock(struct fs *, unsigned char *, int);
129 void fsinit(time_t);
130 void initcg(int, time_t);
131 int isblock(struct fs *, unsigned char *, int);
132 void iput(struct ufs1_dinode *, ino_t);
133 int makedir(struct direct *, int);
134 void parentready(int);
135 void rdfs(daddr_t, int, char *);
136 void setblock(struct fs *, unsigned char *, int);
137 void started(int) __dead2;
138 void erfs(off_t, off_t);
139 void wtfs(daddr_t, int, char *);
140 void wtfsflush(void);
141
142 int mfs_ppid = 0;
143 int parentready_signalled;
144
145 void
mkfs(char * fsys,int fi,int fo,const char * mfscopy)146 mkfs(char *fsys, int fi, int fo, const char *mfscopy)
147 {
148 long i, mincpc, mincpg, inospercg;
149 long cylno, rpos, blk, j, emitwarn = 0;
150 long used, mincpgcnt, bpcg;
151 off_t usedb;
152 long mapcramped, inodecramped;
153 long postblsize, rotblsize, totalsbsize;
154 int status, fd;
155 time_t utime;
156 quad_t sizepb;
157 int width;
158 char tmpbuf[100]; /* XXX this will break in about 2,500 years */
159
160 time(&utime);
161 #ifdef FSIRAND
162 if (!randinit) {
163 randinit = 1;
164 srandomdev();
165 }
166 #endif
167 if (mfs) {
168 int omask;
169 pid_t child;
170
171 mfs_ppid = getpid();
172 signal(SIGUSR1, parentready);
173 if ((child = fork()) != 0) {
174 /*
175 * Parent
176 */
177 if (child == -1)
178 err(10, "mfs");
179 if (mfscopy)
180 copyroot = FSCopy(©hlinks, mfscopy);
181 signal(SIGUSR1, started);
182 kill(child, SIGUSR1);
183 while (waitpid(child, &status, 0) != child)
184 ;
185 exit(WEXITSTATUS(status));
186 /* NOTREACHED */
187 }
188
189 /*
190 * Child
191 */
192 omask = sigblock(sigmask(SIGUSR1));
193 while (parentready_signalled == 0)
194 sigpause(omask);
195 sigsetmask(omask);
196 if (filename != NULL) {
197 unsigned char buf[BUFSIZ];
198 unsigned long l, l1;
199 ssize_t w;
200
201 fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
202 if(fd < 0)
203 err(12, "%s", filename);
204 l1 = fssize * sectorsize;
205 if (l1 > BUFSIZ)
206 l1 = BUFSIZ;
207 for (l = 0; l < fssize * (u_long)sectorsize; l += l1) {
208 w = write(fd, buf, l1);
209 if (w < 0 || (u_long)w != l1)
210 err(12, "%s", filename);
211 }
212 membase = mmap(NULL, fssize * sectorsize,
213 PROT_READ|PROT_WRITE,
214 MAP_SHARED, fd, 0);
215 if (membase == MAP_FAILED)
216 err(12, "mmap");
217 close(fd);
218 } else {
219 membase = mmap(NULL, fssize * sectorsize,
220 PROT_READ|PROT_WRITE,
221 MAP_SHARED|MAP_ANON, -1, 0);
222 if (membase == MAP_FAILED)
223 errx(13, "mmap (anonymous memory) failed");
224 }
225 }
226 fsi = fi;
227 fso = fo;
228 if (Oflag) {
229 sblock.fs_inodefmt = FS_42INODEFMT;
230 sblock.fs_maxsymlinklen = 0;
231 } else {
232 sblock.fs_inodefmt = FS_44INODEFMT;
233 sblock.fs_maxsymlinklen = UFS1_MAXSYMLINKLEN;
234 }
235 if (Uflag)
236 sblock.fs_flags |= FS_DOSOFTDEP;
237 if (Lflag)
238 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
239
240 /*
241 * Validate the given file system size.
242 * Verify that its last block can actually be accessed.
243 */
244 if (fssize == 0)
245 printf("preposterous size %lu\n", fssize), exit(13);
246 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
247 (char *)&sblock);
248 /*
249 * collect and verify the sector and track info
250 */
251 sblock.fs_nsect = nsectors;
252 sblock.fs_ntrak = ntracks;
253 if (sblock.fs_ntrak <= 0)
254 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
255 if (sblock.fs_nsect <= 0)
256 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
257 /*
258 * collect and verify the filesystem density info
259 */
260 sblock.fs_avgfilesize = avgfilesize;
261 sblock.fs_avgfpdir = avgfilesperdir;
262 if (sblock.fs_avgfilesize <= 0)
263 printf("illegal expected average file size %d\n",
264 sblock.fs_avgfilesize), exit(14);
265 if (sblock.fs_avgfpdir <= 0)
266 printf("illegal expected number of files per directory %d\n",
267 sblock.fs_avgfpdir), exit(15);
268 /*
269 * collect and verify the block and fragment sizes
270 */
271 sblock.fs_bsize = bsize;
272 sblock.fs_fsize = fsize;
273 if (!powerof2(sblock.fs_bsize)) {
274 printf("block size must be a power of 2, not %d\n",
275 sblock.fs_bsize);
276 exit(16);
277 }
278 if (!powerof2(sblock.fs_fsize)) {
279 printf("fragment size must be a power of 2, not %d\n",
280 sblock.fs_fsize);
281 exit(17);
282 }
283 if (sblock.fs_fsize < sectorsize) {
284 printf("fragment size %d is too small, minimum is %d\n",
285 sblock.fs_fsize, sectorsize);
286 exit(18);
287 }
288 if (sblock.fs_bsize < MINBSIZE) {
289 printf("block size %d is too small, minimum is %d\n",
290 sblock.fs_bsize, MINBSIZE);
291 exit(19);
292 }
293 if (sblock.fs_bsize < sblock.fs_fsize) {
294 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
295 sblock.fs_bsize, sblock.fs_fsize);
296 exit(20);
297 }
298 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
299 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
300 sblock.fs_qbmask = ~sblock.fs_bmask;
301 sblock.fs_qfmask = ~sblock.fs_fmask;
302 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
303 sblock.fs_bshift++;
304 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
305 sblock.fs_fshift++;
306 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
307 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
308 sblock.fs_fragshift++;
309 if (sblock.fs_frag > MAXFRAG) {
310 printf("fragment size %d is too small, minimum with block size %d is %d\n",
311 sblock.fs_fsize, sblock.fs_bsize,
312 sblock.fs_bsize / MAXFRAG);
313 exit(21);
314 }
315 sblock.fs_nrpos = nrpos;
316 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
317 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
318 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
319 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
320 sblock.fs_fsbtodb++;
321 sblock.fs_sblkno =
322 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
323 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
324 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
325 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
326 sblock.fs_cgoffset = roundup(
327 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
328 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
329 sblock.fs_cgmask <<= 1;
330 if (!powerof2(sblock.fs_ntrak))
331 sblock.fs_cgmask <<= 1;
332 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
333 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
334 sizepb *= NINDIR(&sblock);
335 sblock.fs_maxfilesize += sizepb;
336 }
337 /*
338 * Validate specified/determined secpercyl
339 * and calculate minimum cylinders per group.
340 */
341 sblock.fs_spc = secpercyl;
342 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
343 sblock.fs_cpc > 1 && (i & 1) == 0;
344 sblock.fs_cpc >>= 1, i >>= 1)
345 /* void */;
346 mincpc = sblock.fs_cpc;
347 bpcg = sblock.fs_spc * sectorsize;
348 inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
349 if (inospercg > MAXIPG(&sblock))
350 inospercg = MAXIPG(&sblock);
351 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
352 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
353 sblock.fs_spc);
354 mincpg = roundup(mincpgcnt, mincpc);
355 /*
356 * Ensure that cylinder group with mincpg has enough space
357 * for block maps.
358 */
359 sblock.fs_cpg = mincpg;
360 sblock.fs_ipg = inospercg;
361 if (maxcontig > 1)
362 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
363 mapcramped = 0;
364 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
365 mapcramped = 1;
366 if (sblock.fs_bsize < MAXBSIZE) {
367 sblock.fs_bsize <<= 1;
368 if ((i & 1) == 0) {
369 i >>= 1;
370 } else {
371 sblock.fs_cpc <<= 1;
372 mincpc <<= 1;
373 mincpg = roundup(mincpgcnt, mincpc);
374 sblock.fs_cpg = mincpg;
375 }
376 sblock.fs_frag <<= 1;
377 sblock.fs_fragshift += 1;
378 if (sblock.fs_frag <= MAXFRAG)
379 continue;
380 }
381 if (sblock.fs_fsize == sblock.fs_bsize) {
382 printf("There is no block size that");
383 printf(" can support this disk\n");
384 exit(22);
385 }
386 sblock.fs_frag >>= 1;
387 sblock.fs_fragshift -= 1;
388 sblock.fs_fsize <<= 1;
389 sblock.fs_nspf <<= 1;
390 }
391 /*
392 * Ensure that cylinder group with mincpg has enough space for inodes.
393 */
394 inodecramped = 0;
395 inospercg = calcipg(mincpg, bpcg, &usedb);
396 sblock.fs_ipg = inospercg;
397 while (inospercg > MAXIPG(&sblock)) {
398 inodecramped = 1;
399 if (mincpc == 1 || sblock.fs_frag == 1 ||
400 sblock.fs_bsize == MINBSIZE)
401 break;
402 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
403 "minimum bytes per inode is",
404 (int)((mincpg * (off_t)bpcg - usedb)
405 / MAXIPG(&sblock) + 1));
406 sblock.fs_bsize >>= 1;
407 sblock.fs_frag >>= 1;
408 sblock.fs_fragshift -= 1;
409 mincpc >>= 1;
410 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
411 if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
412 sblock.fs_bsize <<= 1;
413 break;
414 }
415 mincpg = sblock.fs_cpg;
416 inospercg = calcipg(mincpg, bpcg, &usedb);
417 sblock.fs_ipg = inospercg;
418 }
419 if (inodecramped) {
420 if (inospercg > MAXIPG(&sblock)) {
421 printf("Minimum bytes per inode is %d\n",
422 (int)((mincpg * (off_t)bpcg - usedb)
423 / MAXIPG(&sblock) + 1));
424 } else if (!mapcramped) {
425 printf("With %d bytes per inode, ", density);
426 printf("minimum cylinders per group is %ld\n", mincpg);
427 }
428 }
429 if (mapcramped) {
430 printf("With %d sectors per cylinder, ", sblock.fs_spc);
431 printf("minimum cylinders per group is %ld\n", mincpg);
432 }
433 if (inodecramped || mapcramped) {
434 if (sblock.fs_bsize != bsize)
435 printf("%s to be changed from %d to %d\n",
436 "This requires the block size",
437 bsize, sblock.fs_bsize);
438 if (sblock.fs_fsize != fsize)
439 printf("\t%s to be changed from %d to %d\n",
440 "and the fragment size",
441 fsize, sblock.fs_fsize);
442 exit(23);
443 }
444 /*
445 * Calculate the number of cylinders per group
446 */
447 sblock.fs_cpg = cpg;
448 if (sblock.fs_cpg % mincpc != 0) {
449 printf("%s groups must have a multiple of %ld cylinders\n",
450 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
451 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
452 if (!cpgflg)
453 cpg = sblock.fs_cpg;
454 }
455 /*
456 * Must ensure there is enough space for inodes.
457 */
458 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
459 while (sblock.fs_ipg > MAXIPG(&sblock)) {
460 inodecramped = 1;
461 sblock.fs_cpg -= mincpc;
462 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
463 }
464 /*
465 * Must ensure there is enough space to hold block map.
466 */
467 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
468 mapcramped = 1;
469 sblock.fs_cpg -= mincpc;
470 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
471 }
472 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
473 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
474 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
475 exit(24);
476 }
477 if (sblock.fs_cpg < mincpg) {
478 printf("cylinder groups must have at least %ld cylinders\n",
479 mincpg);
480 exit(25);
481 } else if (sblock.fs_cpg != cpg) {
482 if (!cpgflg && !mfs)
483 printf("Warning: ");
484 else if (!mapcramped && !inodecramped)
485 exit(26);
486 if (!mfs) {
487 if (mapcramped && inodecramped)
488 printf("Block size and bytes per inode restrict");
489 else if (mapcramped)
490 printf("Block size restricts");
491 else
492 printf("Bytes per inode restrict");
493 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
494 }
495 if (cpgflg)
496 exit(27);
497 }
498 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
499 /*
500 * Now have size for file system and nsect and ntrak.
501 * Determine number of cylinders and blocks in the file system.
502 */
503 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
504 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
505 if ((long)fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
506 sblock.fs_ncyl++;
507 emitwarn = 1;
508 }
509 if (sblock.fs_ncyl < 1) {
510 printf("file systems must have at least one cylinder\n");
511 exit(28);
512 }
513 /*
514 * Determine feasability/values of rotational layout tables.
515 *
516 * The size of the rotational layout tables is limited by the
517 * size of the superblock, SBSIZE. The amount of space available
518 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
519 * The size of these tables is inversely proportional to the block
520 * size of the file system. The size increases if sectors per track
521 * are not powers of two, because more cylinders must be described
522 * by the tables before the rotational pattern repeats (fs_cpc).
523 */
524 sblock.fs_interleave = interleave;
525 sblock.fs_trackskew = trackskew;
526 sblock.fs_npsect = nphyssectors;
527 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
528 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
529 if (sblock.fs_sbsize > SBSIZE)
530 sblock.fs_sbsize = SBSIZE;
531 if (sblock.fs_ntrak == 1) {
532 sblock.fs_cpc = 0;
533 goto next;
534 }
535 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
536 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
537 totalsbsize = sizeof(struct fs) + rotblsize;
538 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
539 /* use old static table space */
540 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
541 (char *)(&sblock.fs_firstfield);
542 sblock.fs_rotbloff = &sblock.fs_space[0] -
543 (u_char *)(&sblock.fs_firstfield);
544 } else {
545 /* use dynamic table space */
546 sblock.fs_postbloff = &sblock.fs_space[0] -
547 (u_char *)(&sblock.fs_firstfield);
548 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
549 totalsbsize += postblsize;
550 }
551 if (totalsbsize > SBSIZE ||
552 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
553 printf("%s %s %d %s %d.%s",
554 "Warning: insufficient space in super block for\n",
555 "rotational layout tables with nsect", sblock.fs_nsect,
556 "and ntrak", sblock.fs_ntrak,
557 "\nFile system performance may be impaired.\n");
558 sblock.fs_cpc = 0;
559 goto next;
560 }
561 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
562 if (sblock.fs_sbsize > SBSIZE)
563 sblock.fs_sbsize = SBSIZE;
564 /*
565 * calculate the available blocks for each rotational position
566 */
567 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
568 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
569 fs_postbl(&sblock, cylno)[rpos] = -1;
570 for (i = (rotblsize - 1) * sblock.fs_frag;
571 i >= 0; i -= sblock.fs_frag) {
572 cylno = cbtocylno(&sblock, i);
573 rpos = cbtorpos(&sblock, i);
574 blk = fragstoblks(&sblock, i);
575 if (fs_postbl(&sblock, cylno)[rpos] == -1)
576 fs_rotbl(&sblock)[blk] = 0;
577 else
578 fs_rotbl(&sblock)[blk] =
579 fs_postbl(&sblock, cylno)[rpos] - blk;
580 fs_postbl(&sblock, cylno)[rpos] = blk;
581 }
582 next:
583 /*
584 * Compute/validate number of cylinder groups.
585 */
586 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
587 if (sblock.fs_ncyl % sblock.fs_cpg)
588 sblock.fs_ncg++;
589 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
590 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
591 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
592 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
593 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
594 (long)(sblock.fs_fpg / sblock.fs_frag));
595 printf("number of cylinders per cylinder group (%d) %s.\n",
596 sblock.fs_cpg, "must be increased");
597 exit(29);
598 }
599 j = sblock.fs_ncg - 1;
600 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
601 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
602 if (j == 0) {
603 printf("Filesystem must have at least %d sectors\n",
604 NSPF(&sblock) *
605 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
606 exit(30);
607 }
608 printf(
609 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
610 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
611 i / sblock.fs_frag);
612 printf(
613 " cylinder group. This implies %ld sector(s) cannot be allocated.\n",
614 i * NSPF(&sblock));
615 sblock.fs_ncg--;
616 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
617 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
618 NSPF(&sblock);
619 emitwarn = 0;
620 }
621 if (emitwarn && !mfs) {
622 printf("Warning: %lu sector(s) in last cylinder unallocated\n",
623 sblock.fs_spc -
624 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
625 * sblock.fs_spc));
626 }
627 /*
628 * fill in remaining fields of the super block
629 */
630 sblock.fs_csaddr = cgdmin(&sblock, 0);
631 sblock.fs_cssize =
632 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
633 /*
634 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
635 * longer used. However, we still initialise them so that the
636 * filesystem remains compatible with old kernels.
637 */
638 i = sblock.fs_bsize / sizeof(struct csum);
639 sblock.fs_csmask = ~(i - 1);
640 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
641 sblock.fs_csshift++;
642 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
643 if (fscs == NULL)
644 errx(31, "calloc failed");
645 sblock.fs_magic = FS_MAGIC;
646 sblock.fs_rotdelay = rotdelay;
647 sblock.fs_minfree = minfree;
648 sblock.fs_maxcontig = maxcontig;
649 sblock.fs_maxbpg = maxbpg;
650 sblock.fs_rps = rpm / 60;
651 sblock.fs_optim = opt;
652 sblock.fs_cgrotor = 0;
653 sblock.fs_cstotal.cs_ndir = 0;
654 sblock.fs_cstotal.cs_nbfree = 0;
655 sblock.fs_cstotal.cs_nifree = 0;
656 sblock.fs_cstotal.cs_nffree = 0;
657 sblock.fs_fmod = 0;
658 sblock.fs_ronly = 0;
659 sblock.fs_clean = 1;
660 #ifdef FSIRAND
661 sblock.fs_id[0] = (long)utime;
662 sblock.fs_id[1] = random();
663 #endif
664
665 /*
666 * Dump out summary information about file system.
667 */
668 if (!mfs) {
669 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
670 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
671 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
672 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
673 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
674 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
675 sblock.fs_ncg, sblock.fs_cpg,
676 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
677 sblock.fs_ipg,
678 sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
679 #undef B2MBFACTOR
680 }
681
682 if (Eflag && !Nflag) {
683 printf("Erasing sectors [%"PRIu64" --- %"PRIu64"]\n",
684 (SBOFF + slice_offset) / sectorsize,
685 fsbtodb(&sblock,sblock.fs_size) -
686 ((SBOFF + slice_offset) / sectorsize) - 1);
687 erfs(SBOFF + slice_offset, (fsbtodb(&sblock,sblock.fs_size) -
688 ((SBOFF + slice_offset)/ sectorsize) - 1) *
689 (unsigned long long)sectorsize);
690 }
691 /*
692 * Now build the cylinders group blocks and
693 * then print out indices of cylinder groups.
694 */
695 if (!mfs)
696 printf("super-block backups (for fsck -b #) at:\n");
697 i = 0;
698 width = charsperline();
699 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
700 initcg(cylno, utime);
701 if (mfs)
702 continue;
703 j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
704 fsbtodb(&sblock, cgsblock(&sblock, cylno)),
705 cylno < (sblock.fs_ncg-1) ? "," : "" );
706 if (i + j >= width) {
707 printf("\n");
708 i = 0;
709 }
710 i += j;
711 printf("%s", tmpbuf);
712 fflush(stdout);
713 }
714 if (!mfs)
715 printf("\n");
716 if (Nflag && !mfs)
717 exit(0);
718 /*
719 * Now construct the initial file system,
720 * then write out the super-block.
721 */
722 fsinit(utime);
723 sblock.fs_time = utime;
724 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
725 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
726 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
727 sblock.fs_cssize - i < sblock.fs_bsize ?
728 sblock.fs_cssize - i : sblock.fs_bsize,
729 ((char *)fscs) + i);
730 /*
731 * Write out the duplicate super blocks
732 */
733 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
734 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
735 sbsize, (char *)&sblock);
736 wtfsflush();
737
738 /*
739 * NOTE: we no longer update information in the disklabel
740 */
741
742 /*
743 * Notify parent process of success.
744 * Dissociate from session and tty.
745 *
746 * NOTE: We are the child and may receive a SIGINT due
747 * to losing the tty session? XXX
748 */
749 if (mfs) {
750 /* YYY */
751 kill(mfs_ppid, SIGUSR1);
752 setsid();
753 close(0);
754 close(1);
755 close(2);
756 chdir("/");
757 /* returns to mount_mfs (newfs) and issues the mount */
758 }
759 }
760
761 /*
762 * Initialize a cylinder group.
763 */
764 void
initcg(int cylno,time_t utime)765 initcg(int cylno, time_t utime)
766 {
767 daddr_t cbase, d, dlower, dupper, dmax, blkno;
768 long i;
769 unsigned long k;
770 struct csum *cs;
771 #ifdef FSIRAND
772 uint32_t j;
773 #endif
774
775 /*
776 * Determine block bounds for cylinder group.
777 * Allow space for super block summary information in first
778 * cylinder group.
779 */
780 cbase = cgbase(&sblock, cylno);
781 dmax = cbase + sblock.fs_fpg;
782 if (dmax > sblock.fs_size)
783 dmax = sblock.fs_size;
784 dlower = cgsblock(&sblock, cylno) - cbase;
785 dupper = cgdmin(&sblock, cylno) - cbase;
786 if (cylno == 0)
787 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
788 cs = fscs + cylno;
789 memset(&acg, 0, sblock.fs_cgsize);
790 acg.cg_time = utime;
791 acg.cg_magic = CG_MAGIC;
792 acg.cg_cgx = cylno;
793 if (cylno == sblock.fs_ncg - 1)
794 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
795 else
796 acg.cg_ncyl = sblock.fs_cpg;
797 acg.cg_niblk = sblock.fs_ipg;
798 acg.cg_ndblk = dmax - cbase;
799 if (sblock.fs_contigsumsize > 0)
800 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
801 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
802 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
803 acg.cg_iusedoff = acg.cg_boff +
804 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
805 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
806 if (sblock.fs_contigsumsize <= 0) {
807 acg.cg_nextfreeoff = acg.cg_freeoff +
808 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
809 } else {
810 acg.cg_clustersumoff = acg.cg_freeoff + howmany
811 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
812 sizeof(u_int32_t);
813 acg.cg_clustersumoff =
814 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
815 acg.cg_clusteroff = acg.cg_clustersumoff +
816 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
817 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
818 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
819 }
820 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
821 printf("Panic: cylinder group too big\n");
822 exit(37);
823 }
824 acg.cg_cs.cs_nifree += sblock.fs_ipg;
825 if (cylno == 0) {
826 for (k = 0; k < UFS_ROOTINO; k++) {
827 setbit(cg_inosused(&acg), k);
828 acg.cg_cs.cs_nifree--;
829 }
830 }
831 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
832 #ifdef FSIRAND
833 for (j = 0;
834 j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
835 j++) {
836 zino[j].di_gen = random();
837 }
838 #endif
839 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
840 sblock.fs_bsize, (char *)zino);
841 }
842 if (cylno > 0) {
843 /*
844 * In cylno 0, beginning space is reserved
845 * for boot and super blocks.
846 */
847 for (d = 0; d < dlower; d += sblock.fs_frag) {
848 blkno = d / sblock.fs_frag;
849 setblock(&sblock, cg_blksfree(&acg), blkno);
850 if (sblock.fs_contigsumsize > 0)
851 setbit(cg_clustersfree(&acg), blkno);
852 acg.cg_cs.cs_nbfree++;
853 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
854 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
855 [cbtorpos(&sblock, d)]++;
856 }
857 sblock.fs_dsize += dlower;
858 }
859 sblock.fs_dsize += acg.cg_ndblk - dupper;
860 if ((i = dupper % sblock.fs_frag)) {
861 acg.cg_frsum[sblock.fs_frag - i]++;
862 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
863 setbit(cg_blksfree(&acg), dupper);
864 acg.cg_cs.cs_nffree++;
865 }
866 }
867 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
868 blkno = d / sblock.fs_frag;
869 setblock(&sblock, cg_blksfree(&acg), blkno);
870 if (sblock.fs_contigsumsize > 0)
871 setbit(cg_clustersfree(&acg), blkno);
872 acg.cg_cs.cs_nbfree++;
873 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
874 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
875 [cbtorpos(&sblock, d)]++;
876 d += sblock.fs_frag;
877 }
878 if (d < dmax - cbase) {
879 acg.cg_frsum[dmax - cbase - d]++;
880 for (; d < dmax - cbase; d++) {
881 setbit(cg_blksfree(&acg), d);
882 acg.cg_cs.cs_nffree++;
883 }
884 }
885 if (sblock.fs_contigsumsize > 0) {
886 int32_t *sump = cg_clustersum(&acg);
887 u_char *mapp = cg_clustersfree(&acg);
888 int map = *mapp++;
889 int bit = 1;
890 int run = 0;
891
892 for (i = 0; i < acg.cg_nclusterblks; i++) {
893 if ((map & bit) != 0) {
894 run++;
895 } else if (run != 0) {
896 if (run > sblock.fs_contigsumsize)
897 run = sblock.fs_contigsumsize;
898 sump[run]++;
899 run = 0;
900 }
901 if ((i & (NBBY - 1)) != (NBBY - 1)) {
902 bit <<= 1;
903 } else {
904 map = *mapp++;
905 bit = 1;
906 }
907 }
908 if (run != 0) {
909 if (run > sblock.fs_contigsumsize)
910 run = sblock.fs_contigsumsize;
911 sump[run]++;
912 }
913 }
914 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
915 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
916 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
917 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
918 *cs = acg.cg_cs;
919 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
920 sblock.fs_bsize, (char *)&acg);
921 }
922
923 /*
924 * initialize the file system
925 */
926 struct ufs1_dinode node;
927
928 #ifdef LOSTDIR
929 #define PREDEFDIR 3
930 #else
931 #define PREDEFDIR 2
932 #endif
933
934 struct direct root_dir[] = {
935 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
936 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
937 #ifdef LOSTDIR
938 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
939 #endif
940 };
941 struct odirect {
942 u_long d_ino;
943 u_short d_reclen;
944 u_short d_namlen;
945 u_char d_name[MAXNAMLEN + 1];
946 } oroot_dir[] = {
947 { UFS_ROOTINO, sizeof(struct direct), 1, "." },
948 { UFS_ROOTINO, sizeof(struct direct), 2, ".." },
949 #ifdef LOSTDIR
950 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
951 #endif
952 };
953 #ifdef LOSTDIR
954 struct direct lost_found_dir[] = {
955 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
956 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
957 { 0, DIRBLKSIZ, 0, 0, 0 },
958 };
959 struct odirect olost_found_dir[] = {
960 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
961 { UFS_ROOTINO, sizeof(struct direct), 2, ".." },
962 { 0, DIRBLKSIZ, 0, 0 },
963 };
964 #endif
965 char buf[MAXBSIZE];
966
967 void
fsinit(time_t utime)968 fsinit(time_t utime)
969 {
970 #ifdef LOSTDIR
971 int i;
972 #endif
973
974 /*
975 * initialize the node
976 */
977 node.di_atime = utime;
978 node.di_mtime = utime;
979 node.di_ctime = utime;
980 #ifdef LOSTDIR
981 /*
982 * create the lost+found directory
983 */
984 if (Oflag) {
985 makedir((struct direct *)olost_found_dir, 2);
986 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
987 memmove(&buf[i], &olost_found_dir[2],
988 DIRSIZ(0, &olost_found_dir[2]));
989 } else {
990 makedir(lost_found_dir, 2);
991 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
992 memmove(&buf[i], &lost_found_dir[2],
993 DIRSIZ(0, &lost_found_dir[2]));
994 }
995 node.di_mode = IFDIR | UMASK;
996 node.di_nlink = 2;
997 node.di_size = sblock.fs_bsize;
998 node.di_db[0] = alloc(node.di_size, node.di_mode);
999 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1000 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1001 iput(&node, LOSTFOUNDINO);
1002 #endif
1003 /*
1004 * create the root directory
1005 */
1006 if (mfs)
1007 node.di_mode = IFDIR | 01777;
1008 else
1009 node.di_mode = IFDIR | UMASK;
1010 node.di_nlink = PREDEFDIR;
1011 if (Oflag)
1012 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1013 else
1014 node.di_size = makedir(root_dir, PREDEFDIR);
1015 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1016 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1017 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1018 iput(&node, UFS_ROOTINO);
1019 }
1020
1021 /*
1022 * construct a set of directory entries in "buf".
1023 * return size of directory.
1024 */
1025 int
makedir(struct direct * protodir,int entries)1026 makedir(struct direct *protodir, int entries)
1027 {
1028 char *cp;
1029 int i, spcleft;
1030
1031 spcleft = DIRBLKSIZ;
1032 for (cp = buf, i = 0; i < entries - 1; i++) {
1033 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1034 memmove(cp, &protodir[i], protodir[i].d_reclen);
1035 cp += protodir[i].d_reclen;
1036 spcleft -= protodir[i].d_reclen;
1037 }
1038 protodir[i].d_reclen = spcleft;
1039 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1040 return (DIRBLKSIZ);
1041 }
1042
1043 /*
1044 * allocate a block or frag
1045 */
1046 daddr_t
alloc(int size,int mode)1047 alloc(int size, int mode)
1048 {
1049 int i, frag;
1050 daddr_t d, blkno;
1051
1052 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1053 (char *)&acg);
1054 if (acg.cg_magic != CG_MAGIC) {
1055 printf("cg 0: bad magic number\n");
1056 return (0);
1057 }
1058 if (acg.cg_cs.cs_nbfree == 0) {
1059 printf("first cylinder group ran out of space\n");
1060 return (0);
1061 }
1062 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1063 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1064 goto goth;
1065 printf("internal error: can't find block in cyl 0\n");
1066 return (0);
1067 goth:
1068 blkno = fragstoblks(&sblock, d);
1069 clrblock(&sblock, cg_blksfree(&acg), blkno);
1070 if (sblock.fs_contigsumsize > 0)
1071 clrbit(cg_clustersfree(&acg), blkno);
1072 acg.cg_cs.cs_nbfree--;
1073 sblock.fs_cstotal.cs_nbfree--;
1074 fscs[0].cs_nbfree--;
1075 if (mode & IFDIR) {
1076 acg.cg_cs.cs_ndir++;
1077 sblock.fs_cstotal.cs_ndir++;
1078 fscs[0].cs_ndir++;
1079 }
1080 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1081 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1082 if (size != sblock.fs_bsize) {
1083 frag = howmany(size, sblock.fs_fsize);
1084 fscs[0].cs_nffree += sblock.fs_frag - frag;
1085 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1086 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1087 acg.cg_frsum[sblock.fs_frag - frag]++;
1088 for (i = frag; i < sblock.fs_frag; i++)
1089 setbit(cg_blksfree(&acg), d + i);
1090 }
1091 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1092 (char *)&acg);
1093 return (d);
1094 }
1095
1096 /*
1097 * Calculate number of inodes per group.
1098 */
1099 long
calcipg(long cylspg,long bpcg,off_t * usedbp)1100 calcipg(long cylspg, long bpcg, off_t *usedbp)
1101 {
1102 int i;
1103 long ipg, new_ipg, ncg, ncyl;
1104 off_t usedb;
1105
1106 /*
1107 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1108 * Note that fssize is still in sectors, not filesystem blocks.
1109 */
1110 ncyl = howmany(fssize, (u_int)secpercyl);
1111 ncg = howmany(ncyl, cylspg);
1112 /*
1113 * Iterate a few times to allow for ipg depending on itself.
1114 */
1115 ipg = 0;
1116 for (i = 0; i < 10; i++) {
1117 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1118 * NSPF(&sblock) * (off_t)sectorsize;
1119 new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1120 / ncg / secpercyl / cylspg;
1121 new_ipg = roundup(new_ipg, INOPB(&sblock));
1122 if (new_ipg == ipg)
1123 break;
1124 ipg = new_ipg;
1125 }
1126 *usedbp = usedb;
1127 return (ipg);
1128 }
1129
1130 /*
1131 * Allocate an inode on the disk
1132 */
1133 void
iput(struct ufs1_dinode * ip,ino_t ino)1134 iput(struct ufs1_dinode *ip, ino_t ino)
1135 {
1136 struct ufs1_dinode inobuf[MAXINOPB];
1137 daddr_t d;
1138
1139 #ifdef FSIRAND
1140 ip->di_gen = random();
1141 #endif
1142 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1143 (char *)&acg);
1144 if (acg.cg_magic != CG_MAGIC) {
1145 printf("cg 0: bad magic number\n");
1146 exit(31);
1147 }
1148 acg.cg_cs.cs_nifree--;
1149 setbit(cg_inosused(&acg), ino);
1150 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1151 (char *)&acg);
1152 sblock.fs_cstotal.cs_nifree--;
1153 fscs[0].cs_nifree--;
1154 if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1155 printf("fsinit: inode value out of range (%ju).\n",
1156 (uintmax_t)ino);
1157 exit(32);
1158 }
1159 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1160 rdfs(d, sblock.fs_bsize, (char *)inobuf);
1161 inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1162 wtfs(d, sblock.fs_bsize, (char *)inobuf);
1163 }
1164
1165 /*
1166 * Parent notifies child that it can proceed with the newfs and mount
1167 * operation (occurs after parent has copied the underlying filesystem
1168 * if the -C option was specified (for MFS), or immediately after the
1169 * parent forked the child otherwise).
1170 */
1171 void
parentready(__unused int signo)1172 parentready(__unused int signo)
1173 {
1174 parentready_signalled = 1;
1175 }
1176
1177 /*
1178 * Notify parent process that the filesystem has created itself successfully.
1179 *
1180 * We have to wait until the mount has actually completed!
1181 */
1182 void
started(__unused int signo)1183 started(__unused int signo)
1184 {
1185 int retry = 100; /* 10 seconds, 100ms */
1186
1187 while (mfs_ppid && retry) {
1188 struct stat st;
1189
1190 if (
1191 stat(mfs_mtpt, &st) < 0 ||
1192 st.st_dev != mfs_mtstat.st_dev
1193 ) {
1194 break;
1195 }
1196 usleep(100*1000);
1197 --retry;
1198 }
1199 if (retry == 0) {
1200 fatal("mfs mount failed waiting for mount to go active");
1201 } else if (copyroot) {
1202 FSPaste(mfs_mtpt, copyroot, copyhlinks);
1203 }
1204 exit(0);
1205 }
1206
1207 /*
1208 * read a block from the file system
1209 */
1210 void
rdfs(daddr_t bno,int size,char * bf)1211 rdfs(daddr_t bno, int size, char *bf)
1212 {
1213 int n;
1214
1215 wtfsflush();
1216 if (mfs) {
1217 memmove(bf, membase + bno * sectorsize, size);
1218 return;
1219 }
1220 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1221 printf("seek error: %ld\n", (long)bno);
1222 err(33, "rdfs");
1223 }
1224 n = read(fsi, bf, size);
1225 if (n != size) {
1226 printf("read error: %ld\n", (long)bno);
1227 err(34, "rdfs");
1228 }
1229 }
1230
1231 #define WCSIZE (128 * 1024)
1232 daddr_t wc_sect; /* units of sectorsize */
1233 int wc_end; /* bytes */
1234 static char wc[WCSIZE]; /* bytes */
1235
1236 /*
1237 * Flush dirty write behind buffer.
1238 */
1239 void
wtfsflush(void)1240 wtfsflush(void)
1241 {
1242 int n;
1243 if (wc_end) {
1244 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1245 printf("seek error: %ld\n", (long)wc_sect);
1246 err(35, "wtfs - writecombine");
1247 }
1248 n = write(fso, wc, wc_end);
1249 if (n != wc_end) {
1250 printf("write error: %ld\n", (long)wc_sect);
1251 err(36, "wtfs - writecombine");
1252 }
1253 wc_end = 0;
1254 }
1255 }
1256
1257 /*
1258 * Issue ioctl to erase range of sectors using TRIM
1259 */
1260 void
erfs(off_t byte_start,off_t size)1261 erfs(off_t byte_start, off_t size)
1262 {
1263 off_t ioarg[2];
1264 ioarg[0] = byte_start;
1265 ioarg[1] = size;
1266 if (ioctl(fsi, DAIOCTRIM, ioarg) < 0) {
1267 err(37, "Device trim failed\n");
1268 }
1269 }
1270
1271 /*
1272 * write a block to the file system
1273 */
1274 void
wtfs(daddr_t bno,int size,char * bf)1275 wtfs(daddr_t bno, int size, char *bf)
1276 {
1277 int n;
1278 int done;
1279
1280 if (mfs) {
1281 memmove(membase + bno * sectorsize, bf, size);
1282 return;
1283 }
1284 if (Nflag)
1285 return;
1286 done = 0;
1287 if (wc_end == 0 && size <= WCSIZE) {
1288 wc_sect = bno;
1289 bcopy(bf, wc, size);
1290 wc_end = size;
1291 if (wc_end < WCSIZE)
1292 return;
1293 done = 1;
1294 }
1295 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1296 wc_end + size <= WCSIZE) {
1297 bcopy(bf, wc + wc_end, size);
1298 wc_end += size;
1299 if (wc_end < WCSIZE)
1300 return;
1301 done = 1;
1302 }
1303 wtfsflush();
1304 if (done)
1305 return;
1306 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1307 printf("seek error: %ld\n", (long)bno);
1308 err(35, "wtfs");
1309 }
1310 n = write(fso, bf, size);
1311 if (n != size) {
1312 printf("write error: fso %d blk %ld %d/%d\n",
1313 fso, (long)bno, n, size);
1314 err(36, "wtfs");
1315 }
1316 }
1317
1318 /*
1319 * check if a block is available
1320 */
1321 int
isblock(struct fs * fs,unsigned char * cp,int h)1322 isblock(struct fs *fs, unsigned char *cp, int h)
1323 {
1324 unsigned char mask;
1325
1326 switch (fs->fs_frag) {
1327 case 8:
1328 return (cp[h] == 0xff);
1329 case 4:
1330 mask = 0x0f << ((h & 0x1) << 2);
1331 return ((cp[h >> 1] & mask) == mask);
1332 case 2:
1333 mask = 0x03 << ((h & 0x3) << 1);
1334 return ((cp[h >> 2] & mask) == mask);
1335 case 1:
1336 mask = 0x01 << (h & 0x7);
1337 return ((cp[h >> 3] & mask) == mask);
1338 default:
1339 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1340 return (0);
1341 }
1342 }
1343
1344 /*
1345 * take a block out of the map
1346 */
1347 void
clrblock(struct fs * fs,unsigned char * cp,int h)1348 clrblock(struct fs *fs, unsigned char *cp, int h)
1349 {
1350 switch ((fs)->fs_frag) {
1351 case 8:
1352 cp[h] = 0;
1353 return;
1354 case 4:
1355 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1356 return;
1357 case 2:
1358 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1359 return;
1360 case 1:
1361 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1362 return;
1363 default:
1364 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1365 return;
1366 }
1367 }
1368
1369 /*
1370 * put a block into the map
1371 */
1372 void
setblock(struct fs * fs,unsigned char * cp,int h)1373 setblock(struct fs *fs, unsigned char *cp, int h)
1374 {
1375 switch (fs->fs_frag) {
1376 case 8:
1377 cp[h] = 0xff;
1378 return;
1379 case 4:
1380 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1381 return;
1382 case 2:
1383 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1384 return;
1385 case 1:
1386 cp[h >> 3] |= (0x01 << (h & 0x7));
1387 return;
1388 default:
1389 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1390 return;
1391 }
1392 }
1393
1394 /*
1395 * Determine the number of characters in a
1396 * single line.
1397 */
1398
1399 static int
charsperline(void)1400 charsperline(void)
1401 {
1402 int columns;
1403 char *cp;
1404 struct winsize ws;
1405
1406 columns = 0;
1407 if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1408 columns = ws.ws_col;
1409 if (columns == 0 && (cp = getenv("COLUMNS")))
1410 columns = atoi(cp);
1411 if (columns == 0)
1412 columns = 80; /* last resort */
1413 return columns;
1414 }
1415