1 /* Loop invariant motion.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "tree-affine.h"
43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-loop-niter.h"
48
49 /* TODO: Support for predicated code motion. I.e.
50
51 while (1)
52 {
53 if (cond)
54 {
55 a = inv;
56 something;
57 }
58 }
59
60 Where COND and INV are invariants, but evaluating INV may trap or be
61 invalid from some other reason if !COND. This may be transformed to
62
63 if (cond)
64 a = inv;
65 while (1)
66 {
67 if (cond)
68 something;
69 } */
70
71 /* The auxiliary data kept for each statement. */
72
73 struct lim_aux_data
74 {
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
77
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
80
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
85
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
88
89 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
90
91 vec<gimple *> depends; /* Vector of statements that must be also
92 hoisted out of the loop when this statement
93 is hoisted; i.e. those that define the
94 operands of the statement and are inside of
95 the MAX_LOOP loop. */
96 };
97
98 /* Maps statements to their lim_aux_data. */
99
100 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
101
102 /* Description of a memory reference location. */
103
104 struct mem_ref_loc
105 {
106 tree *ref; /* The reference itself. */
107 gimple *stmt; /* The statement in that it occurs. */
108 };
109
110
111 /* Description of a memory reference. */
112
113 struct im_mem_ref
114 {
115 unsigned id; /* ID assigned to the memory reference
116 (its index in memory_accesses.refs_list) */
117 hashval_t hash; /* Its hash value. */
118
119 /* The memory access itself and associated caching of alias-oracle
120 query meta-data. */
121 ao_ref mem;
122
123 bitmap stored; /* The set of loops in that this memory location
124 is stored to. */
125 vec<mem_ref_loc> accesses_in_loop;
126 /* The locations of the accesses. Vector
127 indexed by the loop number. */
128
129 /* The following sets are computed on demand. We keep both set and
130 its complement, so that we know whether the information was
131 already computed or not. */
132 bitmap_head indep_loop; /* The set of loops in that the memory
133 reference is independent, meaning:
134 If it is stored in the loop, this store
135 is independent on all other loads and
136 stores.
137 If it is only loaded, then it is independent
138 on all stores in the loop. */
139 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
140 };
141
142 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
143 to record (in)dependence against stores in the loop and its subloops, the
144 second to record (in)dependence against all references in the loop
145 and its subloops. */
146 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
147
148 /* Mem_ref hashtable helpers. */
149
150 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
151 {
152 typedef tree_node *compare_type;
153 static inline hashval_t hash (const im_mem_ref *);
154 static inline bool equal (const im_mem_ref *, const tree_node *);
155 };
156
157 /* A hash function for struct im_mem_ref object OBJ. */
158
159 inline hashval_t
hash(const im_mem_ref * mem)160 mem_ref_hasher::hash (const im_mem_ref *mem)
161 {
162 return mem->hash;
163 }
164
165 /* An equality function for struct im_mem_ref object MEM1 with
166 memory reference OBJ2. */
167
168 inline bool
equal(const im_mem_ref * mem1,const tree_node * obj2)169 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
170 {
171 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
172 }
173
174
175 /* Description of memory accesses in loops. */
176
177 static struct
178 {
179 /* The hash table of memory references accessed in loops. */
180 hash_table<mem_ref_hasher> *refs;
181
182 /* The list of memory references. */
183 vec<im_mem_ref *> refs_list;
184
185 /* The set of memory references accessed in each loop. */
186 vec<bitmap_head> refs_in_loop;
187
188 /* The set of memory references stored in each loop. */
189 vec<bitmap_head> refs_stored_in_loop;
190
191 /* The set of memory references stored in each loop, including subloops . */
192 vec<bitmap_head> all_refs_stored_in_loop;
193
194 /* Cache for expanding memory addresses. */
195 hash_map<tree, name_expansion *> *ttae_cache;
196 } memory_accesses;
197
198 /* Obstack for the bitmaps in the above data structures. */
199 static bitmap_obstack lim_bitmap_obstack;
200 static obstack mem_ref_obstack;
201
202 static bool ref_indep_loop_p (struct loop *, im_mem_ref *);
203 static bool ref_always_accessed_p (struct loop *, im_mem_ref *, bool);
204
205 /* Minimum cost of an expensive expression. */
206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
207
208 /* The outermost loop for which execution of the header guarantees that the
209 block will be executed. */
210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
212
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
215
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
218
219 static struct lim_aux_data *
init_lim_data(gimple * stmt)220 init_lim_data (gimple *stmt)
221 {
222 lim_aux_data *p = XCNEW (struct lim_aux_data);
223 lim_aux_data_map->put (stmt, p);
224
225 return p;
226 }
227
228 static struct lim_aux_data *
get_lim_data(gimple * stmt)229 get_lim_data (gimple *stmt)
230 {
231 lim_aux_data **p = lim_aux_data_map->get (stmt);
232 if (!p)
233 return NULL;
234
235 return *p;
236 }
237
238 /* Releases the memory occupied by DATA. */
239
240 static void
free_lim_aux_data(struct lim_aux_data * data)241 free_lim_aux_data (struct lim_aux_data *data)
242 {
243 data->depends.release ();
244 free (data);
245 }
246
247 static void
clear_lim_data(gimple * stmt)248 clear_lim_data (gimple *stmt)
249 {
250 lim_aux_data **p = lim_aux_data_map->get (stmt);
251 if (!p)
252 return;
253
254 free_lim_aux_data (*p);
255 *p = NULL;
256 }
257
258
259 /* The possibilities of statement movement. */
260 enum move_pos
261 {
262 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
263 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
264 become executed -- memory accesses, ... */
265 MOVE_POSSIBLE /* Unlimited movement. */
266 };
267
268
269 /* If it is possible to hoist the statement STMT unconditionally,
270 returns MOVE_POSSIBLE.
271 If it is possible to hoist the statement STMT, but we must avoid making
272 it executed if it would not be executed in the original program (e.g.
273 because it may trap), return MOVE_PRESERVE_EXECUTION.
274 Otherwise return MOVE_IMPOSSIBLE. */
275
276 enum move_pos
movement_possibility(gimple * stmt)277 movement_possibility (gimple *stmt)
278 {
279 tree lhs;
280 enum move_pos ret = MOVE_POSSIBLE;
281
282 if (flag_unswitch_loops
283 && gimple_code (stmt) == GIMPLE_COND)
284 {
285 /* If we perform unswitching, force the operands of the invariant
286 condition to be moved out of the loop. */
287 return MOVE_POSSIBLE;
288 }
289
290 if (gimple_code (stmt) == GIMPLE_PHI
291 && gimple_phi_num_args (stmt) <= 2
292 && !virtual_operand_p (gimple_phi_result (stmt))
293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
294 return MOVE_POSSIBLE;
295
296 if (gimple_get_lhs (stmt) == NULL_TREE)
297 return MOVE_IMPOSSIBLE;
298
299 if (gimple_vdef (stmt))
300 return MOVE_IMPOSSIBLE;
301
302 if (stmt_ends_bb_p (stmt)
303 || gimple_has_volatile_ops (stmt)
304 || gimple_has_side_effects (stmt)
305 || stmt_could_throw_p (stmt))
306 return MOVE_IMPOSSIBLE;
307
308 if (is_gimple_call (stmt))
309 {
310 /* While pure or const call is guaranteed to have no side effects, we
311 cannot move it arbitrarily. Consider code like
312
313 char *s = something ();
314
315 while (1)
316 {
317 if (s)
318 t = strlen (s);
319 else
320 t = 0;
321 }
322
323 Here the strlen call cannot be moved out of the loop, even though
324 s is invariant. In addition to possibly creating a call with
325 invalid arguments, moving out a function call that is not executed
326 may cause performance regressions in case the call is costly and
327 not executed at all. */
328 ret = MOVE_PRESERVE_EXECUTION;
329 lhs = gimple_call_lhs (stmt);
330 }
331 else if (is_gimple_assign (stmt))
332 lhs = gimple_assign_lhs (stmt);
333 else
334 return MOVE_IMPOSSIBLE;
335
336 if (TREE_CODE (lhs) == SSA_NAME
337 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
338 return MOVE_IMPOSSIBLE;
339
340 if (TREE_CODE (lhs) != SSA_NAME
341 || gimple_could_trap_p (stmt))
342 return MOVE_PRESERVE_EXECUTION;
343
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
347 if (flag_tm
348 && gimple_in_transaction (stmt)
349 && gimple_assign_single_p (stmt))
350 {
351 tree rhs = gimple_assign_rhs1 (stmt);
352 if (DECL_P (rhs) && is_global_var (rhs))
353 {
354 if (dump_file)
355 {
356 fprintf (dump_file, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file, rhs, TDF_SLIM);
358 fprintf (dump_file, " because it is in a transaction.\n");
359 }
360 return MOVE_IMPOSSIBLE;
361 }
362 }
363
364 return ret;
365 }
366
367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
368 loop to that we could move the expression using DEF if it did not have
369 other operands, i.e. the outermost loop enclosing LOOP in that the value
370 of DEF is invariant. */
371
372 static struct loop *
outermost_invariant_loop(tree def,struct loop * loop)373 outermost_invariant_loop (tree def, struct loop *loop)
374 {
375 gimple *def_stmt;
376 basic_block def_bb;
377 struct loop *max_loop;
378 struct lim_aux_data *lim_data;
379
380 if (!def)
381 return superloop_at_depth (loop, 1);
382
383 if (TREE_CODE (def) != SSA_NAME)
384 {
385 gcc_assert (is_gimple_min_invariant (def));
386 return superloop_at_depth (loop, 1);
387 }
388
389 def_stmt = SSA_NAME_DEF_STMT (def);
390 def_bb = gimple_bb (def_stmt);
391 if (!def_bb)
392 return superloop_at_depth (loop, 1);
393
394 max_loop = find_common_loop (loop, def_bb->loop_father);
395
396 lim_data = get_lim_data (def_stmt);
397 if (lim_data != NULL && lim_data->max_loop != NULL)
398 max_loop = find_common_loop (max_loop,
399 loop_outer (lim_data->max_loop));
400 if (max_loop == loop)
401 return NULL;
402 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
403
404 return max_loop;
405 }
406
407 /* DATA is a structure containing information associated with a statement
408 inside LOOP. DEF is one of the operands of this statement.
409
410 Find the outermost loop enclosing LOOP in that value of DEF is invariant
411 and record this in DATA->max_loop field. If DEF itself is defined inside
412 this loop as well (i.e. we need to hoist it out of the loop if we want
413 to hoist the statement represented by DATA), record the statement in that
414 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
415 add the cost of the computation of DEF to the DATA->cost.
416
417 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
418
419 static bool
add_dependency(tree def,struct lim_aux_data * data,struct loop * loop,bool add_cost)420 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
421 bool add_cost)
422 {
423 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
424 basic_block def_bb = gimple_bb (def_stmt);
425 struct loop *max_loop;
426 struct lim_aux_data *def_data;
427
428 if (!def_bb)
429 return true;
430
431 max_loop = outermost_invariant_loop (def, loop);
432 if (!max_loop)
433 return false;
434
435 if (flow_loop_nested_p (data->max_loop, max_loop))
436 data->max_loop = max_loop;
437
438 def_data = get_lim_data (def_stmt);
439 if (!def_data)
440 return true;
441
442 if (add_cost
443 /* Only add the cost if the statement defining DEF is inside LOOP,
444 i.e. if it is likely that by moving the invariants dependent
445 on it, we will be able to avoid creating a new register for
446 it (since it will be only used in these dependent invariants). */
447 && def_bb->loop_father == loop)
448 data->cost += def_data->cost;
449
450 data->depends.safe_push (def_stmt);
451
452 return true;
453 }
454
455 /* Returns an estimate for a cost of statement STMT. The values here
456 are just ad-hoc constants, similar to costs for inlining. */
457
458 static unsigned
stmt_cost(gimple * stmt)459 stmt_cost (gimple *stmt)
460 {
461 /* Always try to create possibilities for unswitching. */
462 if (gimple_code (stmt) == GIMPLE_COND
463 || gimple_code (stmt) == GIMPLE_PHI)
464 return LIM_EXPENSIVE;
465
466 /* We should be hoisting calls if possible. */
467 if (is_gimple_call (stmt))
468 {
469 tree fndecl;
470
471 /* Unless the call is a builtin_constant_p; this always folds to a
472 constant, so moving it is useless. */
473 fndecl = gimple_call_fndecl (stmt);
474 if (fndecl
475 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
476 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
477 return 0;
478
479 return LIM_EXPENSIVE;
480 }
481
482 /* Hoisting memory references out should almost surely be a win. */
483 if (gimple_references_memory_p (stmt))
484 return LIM_EXPENSIVE;
485
486 if (gimple_code (stmt) != GIMPLE_ASSIGN)
487 return 1;
488
489 switch (gimple_assign_rhs_code (stmt))
490 {
491 case MULT_EXPR:
492 case WIDEN_MULT_EXPR:
493 case WIDEN_MULT_PLUS_EXPR:
494 case WIDEN_MULT_MINUS_EXPR:
495 case DOT_PROD_EXPR:
496 case FMA_EXPR:
497 case TRUNC_DIV_EXPR:
498 case CEIL_DIV_EXPR:
499 case FLOOR_DIV_EXPR:
500 case ROUND_DIV_EXPR:
501 case EXACT_DIV_EXPR:
502 case CEIL_MOD_EXPR:
503 case FLOOR_MOD_EXPR:
504 case ROUND_MOD_EXPR:
505 case TRUNC_MOD_EXPR:
506 case RDIV_EXPR:
507 /* Division and multiplication are usually expensive. */
508 return LIM_EXPENSIVE;
509
510 case LSHIFT_EXPR:
511 case RSHIFT_EXPR:
512 case WIDEN_LSHIFT_EXPR:
513 case LROTATE_EXPR:
514 case RROTATE_EXPR:
515 /* Shifts and rotates are usually expensive. */
516 return LIM_EXPENSIVE;
517
518 case CONSTRUCTOR:
519 /* Make vector construction cost proportional to the number
520 of elements. */
521 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
522
523 case SSA_NAME:
524 case PAREN_EXPR:
525 /* Whether or not something is wrapped inside a PAREN_EXPR
526 should not change move cost. Nor should an intermediate
527 unpropagated SSA name copy. */
528 return 0;
529
530 default:
531 return 1;
532 }
533 }
534
535 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
536 REF is independent. If REF is not independent in LOOP, NULL is returned
537 instead. */
538
539 static struct loop *
outermost_indep_loop(struct loop * outer,struct loop * loop,im_mem_ref * ref)540 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
541 {
542 struct loop *aloop;
543
544 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
545 return NULL;
546
547 for (aloop = outer;
548 aloop != loop;
549 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
550 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
551 && ref_indep_loop_p (aloop, ref))
552 return aloop;
553
554 if (ref_indep_loop_p (loop, ref))
555 return loop;
556 else
557 return NULL;
558 }
559
560 /* If there is a simple load or store to a memory reference in STMT, returns
561 the location of the memory reference, and sets IS_STORE according to whether
562 it is a store or load. Otherwise, returns NULL. */
563
564 static tree *
simple_mem_ref_in_stmt(gimple * stmt,bool * is_store)565 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
566 {
567 tree *lhs, *rhs;
568
569 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
570 if (!gimple_assign_single_p (stmt))
571 return NULL;
572
573 lhs = gimple_assign_lhs_ptr (stmt);
574 rhs = gimple_assign_rhs1_ptr (stmt);
575
576 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
577 {
578 *is_store = false;
579 return rhs;
580 }
581 else if (gimple_vdef (stmt)
582 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
583 {
584 *is_store = true;
585 return lhs;
586 }
587 else
588 return NULL;
589 }
590
591 /* From a controlling predicate in DOM determine the arguments from
592 the PHI node PHI that are chosen if the predicate evaluates to
593 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
594 they are non-NULL. Returns true if the arguments can be determined,
595 else return false. */
596
597 static bool
extract_true_false_args_from_phi(basic_block dom,gphi * phi,tree * true_arg_p,tree * false_arg_p)598 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
599 tree *true_arg_p, tree *false_arg_p)
600 {
601 edge te, fe;
602 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
603 &te, &fe))
604 return false;
605
606 if (true_arg_p)
607 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
608 if (false_arg_p)
609 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
610
611 return true;
612 }
613
614 /* Determine the outermost loop to that it is possible to hoist a statement
615 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
616 the outermost loop in that the value computed by STMT is invariant.
617 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
618 we preserve the fact whether STMT is executed. It also fills other related
619 information to LIM_DATA (STMT).
620
621 The function returns false if STMT cannot be hoisted outside of the loop it
622 is defined in, and true otherwise. */
623
624 static bool
determine_max_movement(gimple * stmt,bool must_preserve_exec)625 determine_max_movement (gimple *stmt, bool must_preserve_exec)
626 {
627 basic_block bb = gimple_bb (stmt);
628 struct loop *loop = bb->loop_father;
629 struct loop *level;
630 struct lim_aux_data *lim_data = get_lim_data (stmt);
631 tree val;
632 ssa_op_iter iter;
633
634 if (must_preserve_exec)
635 level = ALWAYS_EXECUTED_IN (bb);
636 else
637 level = superloop_at_depth (loop, 1);
638 lim_data->max_loop = level;
639
640 if (gphi *phi = dyn_cast <gphi *> (stmt))
641 {
642 use_operand_p use_p;
643 unsigned min_cost = UINT_MAX;
644 unsigned total_cost = 0;
645 struct lim_aux_data *def_data;
646
647 /* We will end up promoting dependencies to be unconditionally
648 evaluated. For this reason the PHI cost (and thus the
649 cost we remove from the loop by doing the invariant motion)
650 is that of the cheapest PHI argument dependency chain. */
651 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
652 {
653 val = USE_FROM_PTR (use_p);
654
655 if (TREE_CODE (val) != SSA_NAME)
656 {
657 /* Assign const 1 to constants. */
658 min_cost = MIN (min_cost, 1);
659 total_cost += 1;
660 continue;
661 }
662 if (!add_dependency (val, lim_data, loop, false))
663 return false;
664
665 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
666 if (gimple_bb (def_stmt)
667 && gimple_bb (def_stmt)->loop_father == loop)
668 {
669 def_data = get_lim_data (def_stmt);
670 if (def_data)
671 {
672 min_cost = MIN (min_cost, def_data->cost);
673 total_cost += def_data->cost;
674 }
675 }
676 }
677
678 min_cost = MIN (min_cost, total_cost);
679 lim_data->cost += min_cost;
680
681 if (gimple_phi_num_args (phi) > 1)
682 {
683 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
684 gimple *cond;
685 if (gsi_end_p (gsi_last_bb (dom)))
686 return false;
687 cond = gsi_stmt (gsi_last_bb (dom));
688 if (gimple_code (cond) != GIMPLE_COND)
689 return false;
690 /* Verify that this is an extended form of a diamond and
691 the PHI arguments are completely controlled by the
692 predicate in DOM. */
693 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
694 return false;
695
696 /* Fold in dependencies and cost of the condition. */
697 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
698 {
699 if (!add_dependency (val, lim_data, loop, false))
700 return false;
701 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
702 if (def_data)
703 lim_data->cost += def_data->cost;
704 }
705
706 /* We want to avoid unconditionally executing very expensive
707 operations. As costs for our dependencies cannot be
708 negative just claim we are not invariand for this case.
709 We also are not sure whether the control-flow inside the
710 loop will vanish. */
711 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
712 && !(min_cost != 0
713 && total_cost / min_cost <= 2))
714 return false;
715
716 /* Assume that the control-flow in the loop will vanish.
717 ??? We should verify this and not artificially increase
718 the cost if that is not the case. */
719 lim_data->cost += stmt_cost (stmt);
720 }
721
722 return true;
723 }
724 else
725 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
726 if (!add_dependency (val, lim_data, loop, true))
727 return false;
728
729 if (gimple_vuse (stmt))
730 {
731 im_mem_ref *ref
732 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
733 if (ref
734 && MEM_ANALYZABLE (ref))
735 {
736 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
737 loop, ref);
738 if (!lim_data->max_loop)
739 return false;
740 }
741 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
742 return false;
743 }
744
745 lim_data->cost += stmt_cost (stmt);
746
747 return true;
748 }
749
750 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
751 and that one of the operands of this statement is computed by STMT.
752 Ensure that STMT (together with all the statements that define its
753 operands) is hoisted at least out of the loop LEVEL. */
754
755 static void
set_level(gimple * stmt,struct loop * orig_loop,struct loop * level)756 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
757 {
758 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
759 struct lim_aux_data *lim_data;
760 gimple *dep_stmt;
761 unsigned i;
762
763 stmt_loop = find_common_loop (orig_loop, stmt_loop);
764 lim_data = get_lim_data (stmt);
765 if (lim_data != NULL && lim_data->tgt_loop != NULL)
766 stmt_loop = find_common_loop (stmt_loop,
767 loop_outer (lim_data->tgt_loop));
768 if (flow_loop_nested_p (stmt_loop, level))
769 return;
770
771 gcc_assert (level == lim_data->max_loop
772 || flow_loop_nested_p (lim_data->max_loop, level));
773
774 lim_data->tgt_loop = level;
775 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
776 set_level (dep_stmt, orig_loop, level);
777 }
778
779 /* Determines an outermost loop from that we want to hoist the statement STMT.
780 For now we chose the outermost possible loop. TODO -- use profiling
781 information to set it more sanely. */
782
783 static void
set_profitable_level(gimple * stmt)784 set_profitable_level (gimple *stmt)
785 {
786 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
787 }
788
789 /* Returns true if STMT is a call that has side effects. */
790
791 static bool
nonpure_call_p(gimple * stmt)792 nonpure_call_p (gimple *stmt)
793 {
794 if (gimple_code (stmt) != GIMPLE_CALL)
795 return false;
796
797 return gimple_has_side_effects (stmt);
798 }
799
800 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
801
802 static gimple *
rewrite_reciprocal(gimple_stmt_iterator * bsi)803 rewrite_reciprocal (gimple_stmt_iterator *bsi)
804 {
805 gassign *stmt, *stmt1, *stmt2;
806 tree name, lhs, type;
807 tree real_one;
808 gimple_stmt_iterator gsi;
809
810 stmt = as_a <gassign *> (gsi_stmt (*bsi));
811 lhs = gimple_assign_lhs (stmt);
812 type = TREE_TYPE (lhs);
813
814 real_one = build_one_cst (type);
815
816 name = make_temp_ssa_name (type, NULL, "reciptmp");
817 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
818 gimple_assign_rhs2 (stmt));
819 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
820 gimple_assign_rhs1 (stmt));
821
822 /* Replace division stmt with reciprocal and multiply stmts.
823 The multiply stmt is not invariant, so update iterator
824 and avoid rescanning. */
825 gsi = *bsi;
826 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
827 gsi_replace (&gsi, stmt2, true);
828
829 /* Continue processing with invariant reciprocal statement. */
830 return stmt1;
831 }
832
833 /* Check if the pattern at *BSI is a bittest of the form
834 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
835
836 static gimple *
rewrite_bittest(gimple_stmt_iterator * bsi)837 rewrite_bittest (gimple_stmt_iterator *bsi)
838 {
839 gassign *stmt;
840 gimple *stmt1;
841 gassign *stmt2;
842 gimple *use_stmt;
843 gcond *cond_stmt;
844 tree lhs, name, t, a, b;
845 use_operand_p use;
846
847 stmt = as_a <gassign *> (gsi_stmt (*bsi));
848 lhs = gimple_assign_lhs (stmt);
849
850 /* Verify that the single use of lhs is a comparison against zero. */
851 if (TREE_CODE (lhs) != SSA_NAME
852 || !single_imm_use (lhs, &use, &use_stmt))
853 return stmt;
854 cond_stmt = dyn_cast <gcond *> (use_stmt);
855 if (!cond_stmt)
856 return stmt;
857 if (gimple_cond_lhs (cond_stmt) != lhs
858 || (gimple_cond_code (cond_stmt) != NE_EXPR
859 && gimple_cond_code (cond_stmt) != EQ_EXPR)
860 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
861 return stmt;
862
863 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
864 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
865 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
866 return stmt;
867
868 /* There is a conversion in between possibly inserted by fold. */
869 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
870 {
871 t = gimple_assign_rhs1 (stmt1);
872 if (TREE_CODE (t) != SSA_NAME
873 || !has_single_use (t))
874 return stmt;
875 stmt1 = SSA_NAME_DEF_STMT (t);
876 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
877 return stmt;
878 }
879
880 /* Verify that B is loop invariant but A is not. Verify that with
881 all the stmt walking we are still in the same loop. */
882 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
883 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
884 return stmt;
885
886 a = gimple_assign_rhs1 (stmt1);
887 b = gimple_assign_rhs2 (stmt1);
888
889 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
890 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
891 {
892 gimple_stmt_iterator rsi;
893
894 /* 1 << B */
895 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
896 build_int_cst (TREE_TYPE (a), 1), b);
897 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
898 stmt1 = gimple_build_assign (name, t);
899
900 /* A & (1 << B) */
901 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
902 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
903 stmt2 = gimple_build_assign (name, t);
904
905 /* Replace the SSA_NAME we compare against zero. Adjust
906 the type of zero accordingly. */
907 SET_USE (use, name);
908 gimple_cond_set_rhs (cond_stmt,
909 build_int_cst_type (TREE_TYPE (name),
910 0));
911
912 /* Don't use gsi_replace here, none of the new assignments sets
913 the variable originally set in stmt. Move bsi to stmt1, and
914 then remove the original stmt, so that we get a chance to
915 retain debug info for it. */
916 rsi = *bsi;
917 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
918 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
919 gimple *to_release = gsi_stmt (rsi);
920 gsi_remove (&rsi, true);
921 release_defs (to_release);
922
923 return stmt1;
924 }
925
926 return stmt;
927 }
928
929 /* For each statement determines the outermost loop in that it is invariant,
930 - statements on whose motion it depends and the cost of the computation.
931 - This information is stored to the LIM_DATA structure associated with
932 - each statement. */
933 class invariantness_dom_walker : public dom_walker
934 {
935 public:
invariantness_dom_walker(cdi_direction direction)936 invariantness_dom_walker (cdi_direction direction)
937 : dom_walker (direction) {}
938
939 virtual edge before_dom_children (basic_block);
940 };
941
942 /* Determine the outermost loops in that statements in basic block BB are
943 invariant, and record them to the LIM_DATA associated with the statements.
944 Callback for dom_walker. */
945
946 edge
before_dom_children(basic_block bb)947 invariantness_dom_walker::before_dom_children (basic_block bb)
948 {
949 enum move_pos pos;
950 gimple_stmt_iterator bsi;
951 gimple *stmt;
952 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
953 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
954 struct lim_aux_data *lim_data;
955
956 if (!loop_outer (bb->loop_father))
957 return NULL;
958
959 if (dump_file && (dump_flags & TDF_DETAILS))
960 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
961 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
962
963 /* Look at PHI nodes, but only if there is at most two.
964 ??? We could relax this further by post-processing the inserted
965 code and transforming adjacent cond-exprs with the same predicate
966 to control flow again. */
967 bsi = gsi_start_phis (bb);
968 if (!gsi_end_p (bsi)
969 && ((gsi_next (&bsi), gsi_end_p (bsi))
970 || (gsi_next (&bsi), gsi_end_p (bsi))))
971 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
972 {
973 stmt = gsi_stmt (bsi);
974
975 pos = movement_possibility (stmt);
976 if (pos == MOVE_IMPOSSIBLE)
977 continue;
978
979 lim_data = get_lim_data (stmt);
980 if (! lim_data)
981 lim_data = init_lim_data (stmt);
982 lim_data->always_executed_in = outermost;
983
984 if (!determine_max_movement (stmt, false))
985 {
986 lim_data->max_loop = NULL;
987 continue;
988 }
989
990 if (dump_file && (dump_flags & TDF_DETAILS))
991 {
992 print_gimple_stmt (dump_file, stmt, 2);
993 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
994 loop_depth (lim_data->max_loop),
995 lim_data->cost);
996 }
997
998 if (lim_data->cost >= LIM_EXPENSIVE)
999 set_profitable_level (stmt);
1000 }
1001
1002 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1003 {
1004 stmt = gsi_stmt (bsi);
1005
1006 pos = movement_possibility (stmt);
1007 if (pos == MOVE_IMPOSSIBLE)
1008 {
1009 if (nonpure_call_p (stmt))
1010 {
1011 maybe_never = true;
1012 outermost = NULL;
1013 }
1014 /* Make sure to note always_executed_in for stores to make
1015 store-motion work. */
1016 else if (stmt_makes_single_store (stmt))
1017 {
1018 struct lim_aux_data *lim_data = get_lim_data (stmt);
1019 if (! lim_data)
1020 lim_data = init_lim_data (stmt);
1021 lim_data->always_executed_in = outermost;
1022 }
1023 continue;
1024 }
1025
1026 if (is_gimple_assign (stmt)
1027 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1028 == GIMPLE_BINARY_RHS))
1029 {
1030 tree op0 = gimple_assign_rhs1 (stmt);
1031 tree op1 = gimple_assign_rhs2 (stmt);
1032 struct loop *ol1 = outermost_invariant_loop (op1,
1033 loop_containing_stmt (stmt));
1034
1035 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1036 to be hoisted out of loop, saving expensive divide. */
1037 if (pos == MOVE_POSSIBLE
1038 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1039 && flag_unsafe_math_optimizations
1040 && !flag_trapping_math
1041 && ol1 != NULL
1042 && outermost_invariant_loop (op0, ol1) == NULL)
1043 stmt = rewrite_reciprocal (&bsi);
1044
1045 /* If the shift count is invariant, convert (A >> B) & 1 to
1046 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1047 saving an expensive shift. */
1048 if (pos == MOVE_POSSIBLE
1049 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1050 && integer_onep (op1)
1051 && TREE_CODE (op0) == SSA_NAME
1052 && has_single_use (op0))
1053 stmt = rewrite_bittest (&bsi);
1054 }
1055
1056 lim_data = get_lim_data (stmt);
1057 if (! lim_data)
1058 lim_data = init_lim_data (stmt);
1059 lim_data->always_executed_in = outermost;
1060
1061 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1062 continue;
1063
1064 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1065 {
1066 lim_data->max_loop = NULL;
1067 continue;
1068 }
1069
1070 if (dump_file && (dump_flags & TDF_DETAILS))
1071 {
1072 print_gimple_stmt (dump_file, stmt, 2);
1073 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1074 loop_depth (lim_data->max_loop),
1075 lim_data->cost);
1076 }
1077
1078 if (lim_data->cost >= LIM_EXPENSIVE)
1079 set_profitable_level (stmt);
1080 }
1081 return NULL;
1082 }
1083
1084 /* Hoist the statements in basic block BB out of the loops prescribed by
1085 data stored in LIM_DATA structures associated with each statement. Callback
1086 for walk_dominator_tree. */
1087
1088 unsigned int
move_computations_worker(basic_block bb)1089 move_computations_worker (basic_block bb)
1090 {
1091 struct loop *level;
1092 unsigned cost = 0;
1093 struct lim_aux_data *lim_data;
1094 unsigned int todo = 0;
1095
1096 if (!loop_outer (bb->loop_father))
1097 return todo;
1098
1099 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1100 {
1101 gassign *new_stmt;
1102 gphi *stmt = bsi.phi ();
1103
1104 lim_data = get_lim_data (stmt);
1105 if (lim_data == NULL)
1106 {
1107 gsi_next (&bsi);
1108 continue;
1109 }
1110
1111 cost = lim_data->cost;
1112 level = lim_data->tgt_loop;
1113 clear_lim_data (stmt);
1114
1115 if (!level)
1116 {
1117 gsi_next (&bsi);
1118 continue;
1119 }
1120
1121 if (dump_file && (dump_flags & TDF_DETAILS))
1122 {
1123 fprintf (dump_file, "Moving PHI node\n");
1124 print_gimple_stmt (dump_file, stmt, 0);
1125 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1126 cost, level->num);
1127 }
1128
1129 if (gimple_phi_num_args (stmt) == 1)
1130 {
1131 tree arg = PHI_ARG_DEF (stmt, 0);
1132 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1133 TREE_CODE (arg), arg);
1134 }
1135 else
1136 {
1137 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1138 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1139 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1140 /* Get the PHI arguments corresponding to the true and false
1141 edges of COND. */
1142 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1143 gcc_assert (arg0 && arg1);
1144 t = build2 (gimple_cond_code (cond), boolean_type_node,
1145 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1146 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1147 COND_EXPR, t, arg0, arg1);
1148 todo |= TODO_cleanup_cfg;
1149 }
1150 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1151 && (!ALWAYS_EXECUTED_IN (bb)
1152 || (ALWAYS_EXECUTED_IN (bb) != level
1153 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1154 {
1155 tree lhs = gimple_assign_lhs (new_stmt);
1156 SSA_NAME_RANGE_INFO (lhs) = NULL;
1157 }
1158 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1159 remove_phi_node (&bsi, false);
1160 }
1161
1162 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1163 {
1164 edge e;
1165
1166 gimple *stmt = gsi_stmt (bsi);
1167
1168 lim_data = get_lim_data (stmt);
1169 if (lim_data == NULL)
1170 {
1171 gsi_next (&bsi);
1172 continue;
1173 }
1174
1175 cost = lim_data->cost;
1176 level = lim_data->tgt_loop;
1177 clear_lim_data (stmt);
1178
1179 if (!level)
1180 {
1181 gsi_next (&bsi);
1182 continue;
1183 }
1184
1185 /* We do not really want to move conditionals out of the loop; we just
1186 placed it here to force its operands to be moved if necessary. */
1187 if (gimple_code (stmt) == GIMPLE_COND)
1188 continue;
1189
1190 if (dump_file && (dump_flags & TDF_DETAILS))
1191 {
1192 fprintf (dump_file, "Moving statement\n");
1193 print_gimple_stmt (dump_file, stmt, 0);
1194 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1195 cost, level->num);
1196 }
1197
1198 e = loop_preheader_edge (level);
1199 gcc_assert (!gimple_vdef (stmt));
1200 if (gimple_vuse (stmt))
1201 {
1202 /* The new VUSE is the one from the virtual PHI in the loop
1203 header or the one already present. */
1204 gphi_iterator gsi2;
1205 for (gsi2 = gsi_start_phis (e->dest);
1206 !gsi_end_p (gsi2); gsi_next (&gsi2))
1207 {
1208 gphi *phi = gsi2.phi ();
1209 if (virtual_operand_p (gimple_phi_result (phi)))
1210 {
1211 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1212 break;
1213 }
1214 }
1215 }
1216 gsi_remove (&bsi, false);
1217 if (gimple_has_lhs (stmt)
1218 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1219 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1220 && (!ALWAYS_EXECUTED_IN (bb)
1221 || !(ALWAYS_EXECUTED_IN (bb) == level
1222 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1223 {
1224 tree lhs = gimple_get_lhs (stmt);
1225 SSA_NAME_RANGE_INFO (lhs) = NULL;
1226 }
1227 /* In case this is a stmt that is not unconditionally executed
1228 when the target loop header is executed and the stmt may
1229 invoke undefined integer or pointer overflow rewrite it to
1230 unsigned arithmetic. */
1231 if (is_gimple_assign (stmt)
1232 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1233 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1234 && arith_code_with_undefined_signed_overflow
1235 (gimple_assign_rhs_code (stmt))
1236 && (!ALWAYS_EXECUTED_IN (bb)
1237 || !(ALWAYS_EXECUTED_IN (bb) == level
1238 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1239 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1240 else
1241 gsi_insert_on_edge (e, stmt);
1242 }
1243
1244 return todo;
1245 }
1246
1247 /* Hoist the statements out of the loops prescribed by data stored in
1248 LIM_DATA structures associated with each statement.*/
1249
1250 static unsigned int
move_computations(void)1251 move_computations (void)
1252 {
1253 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1254 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1255 unsigned todo = 0;
1256
1257 for (int i = 0; i < n; ++i)
1258 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1259
1260 free (rpo);
1261
1262 gsi_commit_edge_inserts ();
1263 if (need_ssa_update_p (cfun))
1264 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1265
1266 return todo;
1267 }
1268
1269 /* Checks whether the statement defining variable *INDEX can be hoisted
1270 out of the loop passed in DATA. Callback for for_each_index. */
1271
1272 static bool
may_move_till(tree ref,tree * index,void * data)1273 may_move_till (tree ref, tree *index, void *data)
1274 {
1275 struct loop *loop = (struct loop *) data, *max_loop;
1276
1277 /* If REF is an array reference, check also that the step and the lower
1278 bound is invariant in LOOP. */
1279 if (TREE_CODE (ref) == ARRAY_REF)
1280 {
1281 tree step = TREE_OPERAND (ref, 3);
1282 tree lbound = TREE_OPERAND (ref, 2);
1283
1284 max_loop = outermost_invariant_loop (step, loop);
1285 if (!max_loop)
1286 return false;
1287
1288 max_loop = outermost_invariant_loop (lbound, loop);
1289 if (!max_loop)
1290 return false;
1291 }
1292
1293 max_loop = outermost_invariant_loop (*index, loop);
1294 if (!max_loop)
1295 return false;
1296
1297 return true;
1298 }
1299
1300 /* If OP is SSA NAME, force the statement that defines it to be
1301 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1302
1303 static void
force_move_till_op(tree op,struct loop * orig_loop,struct loop * loop)1304 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1305 {
1306 gimple *stmt;
1307
1308 if (!op
1309 || is_gimple_min_invariant (op))
1310 return;
1311
1312 gcc_assert (TREE_CODE (op) == SSA_NAME);
1313
1314 stmt = SSA_NAME_DEF_STMT (op);
1315 if (gimple_nop_p (stmt))
1316 return;
1317
1318 set_level (stmt, orig_loop, loop);
1319 }
1320
1321 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1322 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1323 for_each_index. */
1324
1325 struct fmt_data
1326 {
1327 struct loop *loop;
1328 struct loop *orig_loop;
1329 };
1330
1331 static bool
force_move_till(tree ref,tree * index,void * data)1332 force_move_till (tree ref, tree *index, void *data)
1333 {
1334 struct fmt_data *fmt_data = (struct fmt_data *) data;
1335
1336 if (TREE_CODE (ref) == ARRAY_REF)
1337 {
1338 tree step = TREE_OPERAND (ref, 3);
1339 tree lbound = TREE_OPERAND (ref, 2);
1340
1341 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1342 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1343 }
1344
1345 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1346
1347 return true;
1348 }
1349
1350 /* A function to free the mem_ref object OBJ. */
1351
1352 static void
memref_free(struct im_mem_ref * mem)1353 memref_free (struct im_mem_ref *mem)
1354 {
1355 mem->accesses_in_loop.release ();
1356 }
1357
1358 /* Allocates and returns a memory reference description for MEM whose hash
1359 value is HASH and id is ID. */
1360
1361 static im_mem_ref *
mem_ref_alloc(tree mem,unsigned hash,unsigned id)1362 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1363 {
1364 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1365 ao_ref_init (&ref->mem, mem);
1366 ref->id = id;
1367 ref->hash = hash;
1368 ref->stored = NULL;
1369 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1370 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1371 ref->accesses_in_loop.create (1);
1372
1373 return ref;
1374 }
1375
1376 /* Records memory reference location *LOC in LOOP to the memory reference
1377 description REF. The reference occurs in statement STMT. */
1378
1379 static void
record_mem_ref_loc(im_mem_ref * ref,gimple * stmt,tree * loc)1380 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1381 {
1382 mem_ref_loc aref;
1383 aref.stmt = stmt;
1384 aref.ref = loc;
1385 ref->accesses_in_loop.safe_push (aref);
1386 }
1387
1388 /* Set the LOOP bit in REF stored bitmap and allocate that if
1389 necessary. Return whether a bit was changed. */
1390
1391 static bool
set_ref_stored_in_loop(im_mem_ref * ref,struct loop * loop)1392 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1393 {
1394 if (!ref->stored)
1395 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1396 return bitmap_set_bit (ref->stored, loop->num);
1397 }
1398
1399 /* Marks reference REF as stored in LOOP. */
1400
1401 static void
mark_ref_stored(im_mem_ref * ref,struct loop * loop)1402 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1403 {
1404 while (loop != current_loops->tree_root
1405 && set_ref_stored_in_loop (ref, loop))
1406 loop = loop_outer (loop);
1407 }
1408
1409 /* Gathers memory references in statement STMT in LOOP, storing the
1410 information about them in the memory_accesses structure. Marks
1411 the vops accessed through unrecognized statements there as
1412 well. */
1413
1414 static void
gather_mem_refs_stmt(struct loop * loop,gimple * stmt)1415 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1416 {
1417 tree *mem = NULL;
1418 hashval_t hash;
1419 im_mem_ref **slot;
1420 im_mem_ref *ref;
1421 bool is_stored;
1422 unsigned id;
1423
1424 if (!gimple_vuse (stmt))
1425 return;
1426
1427 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1428 if (!mem)
1429 {
1430 /* We use the shared mem_ref for all unanalyzable refs. */
1431 id = UNANALYZABLE_MEM_ID;
1432 ref = memory_accesses.refs_list[id];
1433 if (dump_file && (dump_flags & TDF_DETAILS))
1434 {
1435 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1436 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1437 }
1438 is_stored = gimple_vdef (stmt);
1439 }
1440 else
1441 {
1442 hash = iterative_hash_expr (*mem, 0);
1443 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1444 if (*slot)
1445 {
1446 ref = *slot;
1447 id = ref->id;
1448 }
1449 else
1450 {
1451 id = memory_accesses.refs_list.length ();
1452 ref = mem_ref_alloc (*mem, hash, id);
1453 memory_accesses.refs_list.safe_push (ref);
1454 *slot = ref;
1455
1456 if (dump_file && (dump_flags & TDF_DETAILS))
1457 {
1458 fprintf (dump_file, "Memory reference %u: ", id);
1459 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1460 fprintf (dump_file, "\n");
1461 }
1462 }
1463
1464 record_mem_ref_loc (ref, stmt, mem);
1465 }
1466 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1467 if (is_stored)
1468 {
1469 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1470 mark_ref_stored (ref, loop);
1471 }
1472 init_lim_data (stmt)->ref = ref->id;
1473 return;
1474 }
1475
1476 static unsigned *bb_loop_postorder;
1477
1478 /* qsort sort function to sort blocks after their loop fathers postorder. */
1479
1480 static int
sort_bbs_in_loop_postorder_cmp(const void * bb1_,const void * bb2_)1481 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1482 {
1483 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1484 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1485 struct loop *loop1 = bb1->loop_father;
1486 struct loop *loop2 = bb2->loop_father;
1487 if (loop1->num == loop2->num)
1488 return bb1->index - bb2->index;
1489 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1490 }
1491
1492 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1493
1494 static int
sort_locs_in_loop_postorder_cmp(const void * loc1_,const void * loc2_)1495 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1496 {
1497 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1498 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1499 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1500 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1501 if (loop1->num == loop2->num)
1502 return 0;
1503 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1504 }
1505
1506 /* Gathers memory references in loops. */
1507
1508 static void
analyze_memory_references(void)1509 analyze_memory_references (void)
1510 {
1511 gimple_stmt_iterator bsi;
1512 basic_block bb, *bbs;
1513 struct loop *loop, *outer;
1514 unsigned i, n;
1515
1516 /* Collect all basic-blocks in loops and sort them after their
1517 loops postorder. */
1518 i = 0;
1519 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1520 FOR_EACH_BB_FN (bb, cfun)
1521 if (bb->loop_father != current_loops->tree_root)
1522 bbs[i++] = bb;
1523 n = i;
1524 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1525
1526 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1527 That results in better locality for all the bitmaps. */
1528 for (i = 0; i < n; ++i)
1529 {
1530 basic_block bb = bbs[i];
1531 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1532 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1533 }
1534
1535 /* Sort the location list of gathered memory references after their
1536 loop postorder number. */
1537 im_mem_ref *ref;
1538 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1539 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1540
1541 free (bbs);
1542 // free (bb_loop_postorder);
1543
1544 /* Propagate the information about accessed memory references up
1545 the loop hierarchy. */
1546 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1547 {
1548 /* Finalize the overall touched references (including subloops). */
1549 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1550 &memory_accesses.refs_stored_in_loop[loop->num]);
1551
1552 /* Propagate the information about accessed memory references up
1553 the loop hierarchy. */
1554 outer = loop_outer (loop);
1555 if (outer == current_loops->tree_root)
1556 continue;
1557
1558 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1559 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1560 }
1561 }
1562
1563 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1564 tree_to_aff_combination_expand. */
1565
1566 static bool
mem_refs_may_alias_p(im_mem_ref * mem1,im_mem_ref * mem2,hash_map<tree,name_expansion * > ** ttae_cache)1567 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1568 hash_map<tree, name_expansion *> **ttae_cache)
1569 {
1570 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1571 object and their offset differ in such a way that the locations cannot
1572 overlap, then they cannot alias. */
1573 poly_widest_int size1, size2;
1574 aff_tree off1, off2;
1575
1576 /* Perform basic offset and type-based disambiguation. */
1577 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1578 return false;
1579
1580 /* The expansion of addresses may be a bit expensive, thus we only do
1581 the check at -O2 and higher optimization levels. */
1582 if (optimize < 2)
1583 return true;
1584
1585 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1586 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1587 aff_combination_expand (&off1, ttae_cache);
1588 aff_combination_expand (&off2, ttae_cache);
1589 aff_combination_scale (&off1, -1);
1590 aff_combination_add (&off2, &off1);
1591
1592 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1593 return false;
1594
1595 return true;
1596 }
1597
1598 /* Compare function for bsearch searching for reference locations
1599 in a loop. */
1600
1601 static int
find_ref_loc_in_loop_cmp(const void * loop_,const void * loc_)1602 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1603 {
1604 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1605 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1606 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1607 if (loop->num == loc_loop->num
1608 || flow_loop_nested_p (loop, loc_loop))
1609 return 0;
1610 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1611 ? -1 : 1);
1612 }
1613
1614 /* Iterates over all locations of REF in LOOP and its subloops calling
1615 fn.operator() with the location as argument. When that operator
1616 returns true the iteration is stopped and true is returned.
1617 Otherwise false is returned. */
1618
1619 template <typename FN>
1620 static bool
for_all_locs_in_loop(struct loop * loop,im_mem_ref * ref,FN fn)1621 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1622 {
1623 unsigned i;
1624 mem_ref_loc *loc;
1625
1626 /* Search for the cluster of locs in the accesses_in_loop vector
1627 which is sorted after postorder index of the loop father. */
1628 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1629 if (!loc)
1630 return false;
1631
1632 /* We have found one location inside loop or its sub-loops. Iterate
1633 both forward and backward to cover the whole cluster. */
1634 i = loc - ref->accesses_in_loop.address ();
1635 while (i > 0)
1636 {
1637 --i;
1638 mem_ref_loc *l = &ref->accesses_in_loop[i];
1639 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1640 break;
1641 if (fn (l))
1642 return true;
1643 }
1644 for (i = loc - ref->accesses_in_loop.address ();
1645 i < ref->accesses_in_loop.length (); ++i)
1646 {
1647 mem_ref_loc *l = &ref->accesses_in_loop[i];
1648 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1649 break;
1650 if (fn (l))
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
1657 /* Rewrites location LOC by TMP_VAR. */
1658
1659 struct rewrite_mem_ref_loc
1660 {
rewrite_mem_ref_locrewrite_mem_ref_loc1661 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1662 bool operator () (mem_ref_loc *loc);
1663 tree tmp_var;
1664 };
1665
1666 bool
operator()1667 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1668 {
1669 *loc->ref = tmp_var;
1670 update_stmt (loc->stmt);
1671 return false;
1672 }
1673
1674 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1675
1676 static void
rewrite_mem_refs(struct loop * loop,im_mem_ref * ref,tree tmp_var)1677 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1678 {
1679 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1680 }
1681
1682 /* Stores the first reference location in LOCP. */
1683
1684 struct first_mem_ref_loc_1
1685 {
first_mem_ref_loc_1first_mem_ref_loc_11686 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1687 bool operator () (mem_ref_loc *loc);
1688 mem_ref_loc **locp;
1689 };
1690
1691 bool
operator()1692 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1693 {
1694 *locp = loc;
1695 return true;
1696 }
1697
1698 /* Returns the first reference location to REF in LOOP. */
1699
1700 static mem_ref_loc *
first_mem_ref_loc(struct loop * loop,im_mem_ref * ref)1701 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1702 {
1703 mem_ref_loc *locp = NULL;
1704 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1705 return locp;
1706 }
1707
1708 struct prev_flag_edges {
1709 /* Edge to insert new flag comparison code. */
1710 edge append_cond_position;
1711
1712 /* Edge for fall through from previous flag comparison. */
1713 edge last_cond_fallthru;
1714 };
1715
1716 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1717 MEM along edge EX.
1718
1719 The store is only done if MEM has changed. We do this so no
1720 changes to MEM occur on code paths that did not originally store
1721 into it.
1722
1723 The common case for execute_sm will transform:
1724
1725 for (...) {
1726 if (foo)
1727 stuff;
1728 else
1729 MEM = TMP_VAR;
1730 }
1731
1732 into:
1733
1734 lsm = MEM;
1735 for (...) {
1736 if (foo)
1737 stuff;
1738 else
1739 lsm = TMP_VAR;
1740 }
1741 MEM = lsm;
1742
1743 This function will generate:
1744
1745 lsm = MEM;
1746
1747 lsm_flag = false;
1748 ...
1749 for (...) {
1750 if (foo)
1751 stuff;
1752 else {
1753 lsm = TMP_VAR;
1754 lsm_flag = true;
1755 }
1756 }
1757 if (lsm_flag) <--
1758 MEM = lsm; <--
1759 */
1760
1761 static void
execute_sm_if_changed(edge ex,tree mem,tree tmp_var,tree flag,edge preheader,hash_set<basic_block> * flag_bbs)1762 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1763 edge preheader, hash_set <basic_block> *flag_bbs)
1764 {
1765 basic_block new_bb, then_bb, old_dest;
1766 bool loop_has_only_one_exit;
1767 edge then_old_edge, orig_ex = ex;
1768 gimple_stmt_iterator gsi;
1769 gimple *stmt;
1770 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1771 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1772
1773 profile_count count_sum = profile_count::zero ();
1774 int nbbs = 0, ncount = 0;
1775 profile_probability flag_probability = profile_probability::uninitialized ();
1776
1777 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1778 at loop exit.
1779
1780 This code may look fancy, but it can not update profile very realistically
1781 because we do not know the probability that flag will be true at given
1782 loop exit.
1783
1784 We look for two interesting extremes
1785 - when exit is dominated by block setting the flag, we know it will
1786 always be true. This is a common case.
1787 - when all blocks setting the flag have very low frequency we know
1788 it will likely be false.
1789 In all other cases we default to 2/3 for flag being true. */
1790
1791 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1792 it != flag_bbs->end (); ++it)
1793 {
1794 if ((*it)->count.initialized_p ())
1795 count_sum += (*it)->count, ncount ++;
1796 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1797 flag_probability = profile_probability::always ();
1798 nbbs++;
1799 }
1800
1801 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1802
1803 if (flag_probability.initialized_p ())
1804 ;
1805 else if (ncount == nbbs
1806 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
1807 {
1808 flag_probability = count_sum.probability_in (preheader->count ());
1809 if (flag_probability > cap)
1810 flag_probability = cap;
1811 }
1812
1813 if (!flag_probability.initialized_p ())
1814 flag_probability = cap;
1815
1816 /* ?? Insert store after previous store if applicable. See note
1817 below. */
1818 if (prev_edges)
1819 ex = prev_edges->append_cond_position;
1820
1821 loop_has_only_one_exit = single_pred_p (ex->dest);
1822
1823 if (loop_has_only_one_exit)
1824 ex = split_block_after_labels (ex->dest);
1825 else
1826 {
1827 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1828 !gsi_end_p (gpi); gsi_next (&gpi))
1829 {
1830 gphi *phi = gpi.phi ();
1831 if (virtual_operand_p (gimple_phi_result (phi)))
1832 continue;
1833
1834 /* When the destination has a non-virtual PHI node with multiple
1835 predecessors make sure we preserve the PHI structure by
1836 forcing a forwarder block so that hoisting of that PHI will
1837 still work. */
1838 split_edge (ex);
1839 break;
1840 }
1841 }
1842
1843 old_dest = ex->dest;
1844 new_bb = split_edge (ex);
1845 then_bb = create_empty_bb (new_bb);
1846 then_bb->count = new_bb->count.apply_probability (flag_probability);
1847 if (irr)
1848 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1849 add_bb_to_loop (then_bb, new_bb->loop_father);
1850
1851 gsi = gsi_start_bb (new_bb);
1852 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1853 NULL_TREE, NULL_TREE);
1854 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1855
1856 gsi = gsi_start_bb (then_bb);
1857 /* Insert actual store. */
1858 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1859 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1860
1861 edge e1 = single_succ_edge (new_bb);
1862 edge e2 = make_edge (new_bb, then_bb,
1863 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1864 e2->probability = flag_probability;
1865
1866 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
1867 e1->flags &= ~EDGE_FALLTHRU;
1868
1869 e1->probability = flag_probability.invert ();
1870
1871 then_old_edge = make_single_succ_edge (then_bb, old_dest,
1872 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1873
1874 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1875
1876 if (prev_edges)
1877 {
1878 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1879 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1880 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1881 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1882 recompute_dominator (CDI_DOMINATORS, old_dest));
1883 }
1884
1885 /* ?? Because stores may alias, they must happen in the exact
1886 sequence they originally happened. Save the position right after
1887 the (_lsm) store we just created so we can continue appending after
1888 it and maintain the original order. */
1889 {
1890 struct prev_flag_edges *p;
1891
1892 if (orig_ex->aux)
1893 orig_ex->aux = NULL;
1894 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1895 p = (struct prev_flag_edges *) orig_ex->aux;
1896 p->append_cond_position = then_old_edge;
1897 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1898 orig_ex->aux = (void *) p;
1899 }
1900
1901 if (!loop_has_only_one_exit)
1902 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1903 !gsi_end_p (gpi); gsi_next (&gpi))
1904 {
1905 gphi *phi = gpi.phi ();
1906 unsigned i;
1907
1908 for (i = 0; i < gimple_phi_num_args (phi); i++)
1909 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1910 {
1911 tree arg = gimple_phi_arg_def (phi, i);
1912 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1913 update_stmt (phi);
1914 }
1915 }
1916 }
1917
1918 /* When REF is set on the location, set flag indicating the store. */
1919
1920 struct sm_set_flag_if_changed
1921 {
sm_set_flag_if_changedsm_set_flag_if_changed1922 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
1923 : flag (flag_), bbs (bbs_) {}
1924 bool operator () (mem_ref_loc *loc);
1925 tree flag;
1926 hash_set <basic_block> *bbs;
1927 };
1928
1929 bool
operator()1930 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1931 {
1932 /* Only set the flag for writes. */
1933 if (is_gimple_assign (loc->stmt)
1934 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1935 {
1936 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1937 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1938 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1939 bbs->add (gimple_bb (stmt));
1940 }
1941 return false;
1942 }
1943
1944 /* Helper function for execute_sm. On every location where REF is
1945 set, set an appropriate flag indicating the store. */
1946
1947 static tree
execute_sm_if_changed_flag_set(struct loop * loop,im_mem_ref * ref,hash_set<basic_block> * bbs)1948 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref,
1949 hash_set <basic_block> *bbs)
1950 {
1951 tree flag;
1952 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1953 flag = create_tmp_reg (boolean_type_node, str);
1954 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
1955 return flag;
1956 }
1957
1958 /* Executes store motion of memory reference REF from LOOP.
1959 Exits from the LOOP are stored in EXITS. The initialization of the
1960 temporary variable is put to the preheader of the loop, and assignments
1961 to the reference from the temporary variable are emitted to exits. */
1962
1963 static void
execute_sm(struct loop * loop,vec<edge> exits,im_mem_ref * ref)1964 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1965 {
1966 tree tmp_var, store_flag = NULL_TREE;
1967 unsigned i;
1968 gassign *load;
1969 struct fmt_data fmt_data;
1970 edge ex;
1971 struct lim_aux_data *lim_data;
1972 bool multi_threaded_model_p = false;
1973 gimple_stmt_iterator gsi;
1974 hash_set<basic_block> flag_bbs;
1975
1976 if (dump_file && (dump_flags & TDF_DETAILS))
1977 {
1978 fprintf (dump_file, "Executing store motion of ");
1979 print_generic_expr (dump_file, ref->mem.ref);
1980 fprintf (dump_file, " from loop %d\n", loop->num);
1981 }
1982
1983 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1984 get_lsm_tmp_name (ref->mem.ref, ~0));
1985
1986 fmt_data.loop = loop;
1987 fmt_data.orig_loop = loop;
1988 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1989
1990 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1991 || (! PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES)
1992 && ! ref_always_accessed_p (loop, ref, true)))
1993 multi_threaded_model_p = true;
1994
1995 if (multi_threaded_model_p)
1996 store_flag = execute_sm_if_changed_flag_set (loop, ref, &flag_bbs);
1997
1998 rewrite_mem_refs (loop, ref, tmp_var);
1999
2000 /* Emit the load code on a random exit edge or into the latch if
2001 the loop does not exit, so that we are sure it will be processed
2002 by move_computations after all dependencies. */
2003 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2004
2005 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2006 load altogether, since the store is predicated by a flag. We
2007 could, do the load only if it was originally in the loop. */
2008 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2009 lim_data = init_lim_data (load);
2010 lim_data->max_loop = loop;
2011 lim_data->tgt_loop = loop;
2012 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2013
2014 if (multi_threaded_model_p)
2015 {
2016 load = gimple_build_assign (store_flag, boolean_false_node);
2017 lim_data = init_lim_data (load);
2018 lim_data->max_loop = loop;
2019 lim_data->tgt_loop = loop;
2020 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2021 }
2022
2023 /* Sink the store to every exit from the loop. */
2024 FOR_EACH_VEC_ELT (exits, i, ex)
2025 if (!multi_threaded_model_p)
2026 {
2027 gassign *store;
2028 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2029 gsi_insert_on_edge (ex, store);
2030 }
2031 else
2032 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag,
2033 loop_preheader_edge (loop), &flag_bbs);
2034 }
2035
2036 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2037 edges of the LOOP. */
2038
2039 static void
hoist_memory_references(struct loop * loop,bitmap mem_refs,vec<edge> exits)2040 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2041 vec<edge> exits)
2042 {
2043 im_mem_ref *ref;
2044 unsigned i;
2045 bitmap_iterator bi;
2046
2047 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2048 {
2049 ref = memory_accesses.refs_list[i];
2050 execute_sm (loop, exits, ref);
2051 }
2052 }
2053
2054 struct ref_always_accessed
2055 {
ref_always_accessedref_always_accessed2056 ref_always_accessed (struct loop *loop_, bool stored_p_)
2057 : loop (loop_), stored_p (stored_p_) {}
2058 bool operator () (mem_ref_loc *loc);
2059 struct loop *loop;
2060 bool stored_p;
2061 };
2062
2063 bool
operator()2064 ref_always_accessed::operator () (mem_ref_loc *loc)
2065 {
2066 struct loop *must_exec;
2067
2068 if (!get_lim_data (loc->stmt))
2069 return false;
2070
2071 /* If we require an always executed store make sure the statement
2072 stores to the reference. */
2073 if (stored_p)
2074 {
2075 tree lhs = gimple_get_lhs (loc->stmt);
2076 if (!lhs
2077 || lhs != *loc->ref)
2078 return false;
2079 }
2080
2081 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2082 if (!must_exec)
2083 return false;
2084
2085 if (must_exec == loop
2086 || flow_loop_nested_p (must_exec, loop))
2087 return true;
2088
2089 return false;
2090 }
2091
2092 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2093 make sure REF is always stored to in LOOP. */
2094
2095 static bool
ref_always_accessed_p(struct loop * loop,im_mem_ref * ref,bool stored_p)2096 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2097 {
2098 return for_all_locs_in_loop (loop, ref,
2099 ref_always_accessed (loop, stored_p));
2100 }
2101
2102 /* Returns true if REF1 and REF2 are independent. */
2103
2104 static bool
refs_independent_p(im_mem_ref * ref1,im_mem_ref * ref2)2105 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2106 {
2107 if (ref1 == ref2)
2108 return true;
2109
2110 if (dump_file && (dump_flags & TDF_DETAILS))
2111 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2112 ref1->id, ref2->id);
2113
2114 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2115 {
2116 if (dump_file && (dump_flags & TDF_DETAILS))
2117 fprintf (dump_file, "dependent.\n");
2118 return false;
2119 }
2120 else
2121 {
2122 if (dump_file && (dump_flags & TDF_DETAILS))
2123 fprintf (dump_file, "independent.\n");
2124 return true;
2125 }
2126 }
2127
2128 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2129 and its super-loops. */
2130
2131 static void
record_dep_loop(struct loop * loop,im_mem_ref * ref,bool stored_p)2132 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2133 {
2134 /* We can propagate dependent-in-loop bits up the loop
2135 hierarchy to all outer loops. */
2136 while (loop != current_loops->tree_root
2137 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2138 loop = loop_outer (loop);
2139 }
2140
2141 /* Returns true if REF is independent on all other memory
2142 references in LOOP. */
2143
2144 static bool
ref_indep_loop_p_1(struct loop * loop,im_mem_ref * ref,bool stored_p)2145 ref_indep_loop_p_1 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2146 {
2147 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2148
2149 bool indep_p = true;
2150 bitmap refs_to_check;
2151
2152 if (stored_p)
2153 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2154 else
2155 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2156
2157 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2158 indep_p = false;
2159 else
2160 {
2161 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2162 return true;
2163 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2164 return false;
2165
2166 struct loop *inner = loop->inner;
2167 while (inner)
2168 {
2169 if (!ref_indep_loop_p_1 (inner, ref, stored_p))
2170 {
2171 indep_p = false;
2172 break;
2173 }
2174 inner = inner->next;
2175 }
2176
2177 if (indep_p)
2178 {
2179 unsigned i;
2180 bitmap_iterator bi;
2181 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2182 {
2183 im_mem_ref *aref = memory_accesses.refs_list[i];
2184 if (!refs_independent_p (ref, aref))
2185 {
2186 indep_p = false;
2187 break;
2188 }
2189 }
2190 }
2191 }
2192
2193 if (dump_file && (dump_flags & TDF_DETAILS))
2194 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2195 ref->id, loop->num, indep_p ? "independent" : "dependent");
2196
2197 /* Record the computed result in the cache. */
2198 if (indep_p)
2199 {
2200 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2201 && stored_p)
2202 {
2203 /* If it's independend against all refs then it's independent
2204 against stores, too. */
2205 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2206 }
2207 }
2208 else
2209 {
2210 record_dep_loop (loop, ref, stored_p);
2211 if (!stored_p)
2212 {
2213 /* If it's dependent against stores it's dependent against
2214 all refs, too. */
2215 record_dep_loop (loop, ref, true);
2216 }
2217 }
2218
2219 return indep_p;
2220 }
2221
2222 /* Returns true if REF is independent on all other memory references in
2223 LOOP. */
2224
2225 static bool
ref_indep_loop_p(struct loop * loop,im_mem_ref * ref)2226 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref)
2227 {
2228 gcc_checking_assert (MEM_ANALYZABLE (ref));
2229
2230 return ref_indep_loop_p_1 (loop, ref, false);
2231 }
2232
2233 /* Returns true if we can perform store motion of REF from LOOP. */
2234
2235 static bool
can_sm_ref_p(struct loop * loop,im_mem_ref * ref)2236 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2237 {
2238 tree base;
2239
2240 /* Can't hoist unanalyzable refs. */
2241 if (!MEM_ANALYZABLE (ref))
2242 return false;
2243
2244 /* It should be movable. */
2245 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2246 || TREE_THIS_VOLATILE (ref->mem.ref)
2247 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2248 return false;
2249
2250 /* If it can throw fail, we do not properly update EH info. */
2251 if (tree_could_throw_p (ref->mem.ref))
2252 return false;
2253
2254 /* If it can trap, it must be always executed in LOOP.
2255 Readonly memory locations may trap when storing to them, but
2256 tree_could_trap_p is a predicate for rvalues, so check that
2257 explicitly. */
2258 base = get_base_address (ref->mem.ref);
2259 if ((tree_could_trap_p (ref->mem.ref)
2260 || (DECL_P (base) && TREE_READONLY (base)))
2261 && !ref_always_accessed_p (loop, ref, true))
2262 return false;
2263
2264 /* And it must be independent on all other memory references
2265 in LOOP. */
2266 if (!ref_indep_loop_p (loop, ref))
2267 return false;
2268
2269 return true;
2270 }
2271
2272 /* Marks the references in LOOP for that store motion should be performed
2273 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2274 motion was performed in one of the outer loops. */
2275
2276 static void
find_refs_for_sm(struct loop * loop,bitmap sm_executed,bitmap refs_to_sm)2277 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2278 {
2279 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2280 unsigned i;
2281 bitmap_iterator bi;
2282 im_mem_ref *ref;
2283
2284 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2285 {
2286 ref = memory_accesses.refs_list[i];
2287 if (can_sm_ref_p (loop, ref))
2288 bitmap_set_bit (refs_to_sm, i);
2289 }
2290 }
2291
2292 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2293 for a store motion optimization (i.e. whether we can insert statement
2294 on its exits). */
2295
2296 static bool
loop_suitable_for_sm(struct loop * loop ATTRIBUTE_UNUSED,vec<edge> exits)2297 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2298 vec<edge> exits)
2299 {
2300 unsigned i;
2301 edge ex;
2302
2303 FOR_EACH_VEC_ELT (exits, i, ex)
2304 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2305 return false;
2306
2307 return true;
2308 }
2309
2310 /* Try to perform store motion for all memory references modified inside
2311 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2312 store motion was executed in one of the outer loops. */
2313
2314 static void
store_motion_loop(struct loop * loop,bitmap sm_executed)2315 store_motion_loop (struct loop *loop, bitmap sm_executed)
2316 {
2317 vec<edge> exits = get_loop_exit_edges (loop);
2318 struct loop *subloop;
2319 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2320
2321 if (loop_suitable_for_sm (loop, exits))
2322 {
2323 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2324 hoist_memory_references (loop, sm_in_loop, exits);
2325 }
2326 exits.release ();
2327
2328 bitmap_ior_into (sm_executed, sm_in_loop);
2329 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2330 store_motion_loop (subloop, sm_executed);
2331 bitmap_and_compl_into (sm_executed, sm_in_loop);
2332 BITMAP_FREE (sm_in_loop);
2333 }
2334
2335 /* Try to perform store motion for all memory references modified inside
2336 loops. */
2337
2338 static void
store_motion(void)2339 store_motion (void)
2340 {
2341 struct loop *loop;
2342 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2343
2344 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2345 store_motion_loop (loop, sm_executed);
2346
2347 BITMAP_FREE (sm_executed);
2348 gsi_commit_edge_inserts ();
2349 }
2350
2351 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2352 for each such basic block bb records the outermost loop for that execution
2353 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2354 blocks that contain a nonpure call. */
2355
2356 static void
fill_always_executed_in_1(struct loop * loop,sbitmap contains_call)2357 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2358 {
2359 basic_block bb = NULL, *bbs, last = NULL;
2360 unsigned i;
2361 edge e;
2362 struct loop *inn_loop = loop;
2363
2364 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2365 {
2366 bbs = get_loop_body_in_dom_order (loop);
2367
2368 for (i = 0; i < loop->num_nodes; i++)
2369 {
2370 edge_iterator ei;
2371 bb = bbs[i];
2372
2373 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2374 last = bb;
2375
2376 if (bitmap_bit_p (contains_call, bb->index))
2377 break;
2378
2379 FOR_EACH_EDGE (e, ei, bb->succs)
2380 {
2381 /* If there is an exit from this BB. */
2382 if (!flow_bb_inside_loop_p (loop, e->dest))
2383 break;
2384 /* Or we enter a possibly non-finite loop. */
2385 if (flow_loop_nested_p (bb->loop_father,
2386 e->dest->loop_father)
2387 && ! finite_loop_p (e->dest->loop_father))
2388 break;
2389 }
2390 if (e)
2391 break;
2392
2393 /* A loop might be infinite (TODO use simple loop analysis
2394 to disprove this if possible). */
2395 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2396 break;
2397
2398 if (!flow_bb_inside_loop_p (inn_loop, bb))
2399 break;
2400
2401 if (bb->loop_father->header == bb)
2402 {
2403 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2404 break;
2405
2406 /* In a loop that is always entered we may proceed anyway.
2407 But record that we entered it and stop once we leave it. */
2408 inn_loop = bb->loop_father;
2409 }
2410 }
2411
2412 while (1)
2413 {
2414 SET_ALWAYS_EXECUTED_IN (last, loop);
2415 if (last == loop->header)
2416 break;
2417 last = get_immediate_dominator (CDI_DOMINATORS, last);
2418 }
2419
2420 free (bbs);
2421 }
2422
2423 for (loop = loop->inner; loop; loop = loop->next)
2424 fill_always_executed_in_1 (loop, contains_call);
2425 }
2426
2427 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2428 for each such basic block bb records the outermost loop for that execution
2429 of its header implies execution of bb. */
2430
2431 static void
fill_always_executed_in(void)2432 fill_always_executed_in (void)
2433 {
2434 basic_block bb;
2435 struct loop *loop;
2436
2437 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2438 bitmap_clear (contains_call);
2439 FOR_EACH_BB_FN (bb, cfun)
2440 {
2441 gimple_stmt_iterator gsi;
2442 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2443 {
2444 if (nonpure_call_p (gsi_stmt (gsi)))
2445 break;
2446 }
2447
2448 if (!gsi_end_p (gsi))
2449 bitmap_set_bit (contains_call, bb->index);
2450 }
2451
2452 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2453 fill_always_executed_in_1 (loop, contains_call);
2454 }
2455
2456
2457 /* Compute the global information needed by the loop invariant motion pass. */
2458
2459 static void
tree_ssa_lim_initialize(void)2460 tree_ssa_lim_initialize (void)
2461 {
2462 struct loop *loop;
2463 unsigned i;
2464
2465 bitmap_obstack_initialize (&lim_bitmap_obstack);
2466 gcc_obstack_init (&mem_ref_obstack);
2467 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2468
2469 if (flag_tm)
2470 compute_transaction_bits ();
2471
2472 alloc_aux_for_edges (0);
2473
2474 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2475 memory_accesses.refs_list.create (100);
2476 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2477 memory_accesses.refs_list.quick_push
2478 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2479
2480 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2481 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2482 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2483 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2484 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2485 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2486
2487 for (i = 0; i < number_of_loops (cfun); i++)
2488 {
2489 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2490 &lim_bitmap_obstack);
2491 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2492 &lim_bitmap_obstack);
2493 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2494 &lim_bitmap_obstack);
2495 }
2496
2497 memory_accesses.ttae_cache = NULL;
2498
2499 /* Initialize bb_loop_postorder with a mapping from loop->num to
2500 its postorder index. */
2501 i = 0;
2502 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2503 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2504 bb_loop_postorder[loop->num] = i++;
2505 }
2506
2507 /* Cleans up after the invariant motion pass. */
2508
2509 static void
tree_ssa_lim_finalize(void)2510 tree_ssa_lim_finalize (void)
2511 {
2512 basic_block bb;
2513 unsigned i;
2514 im_mem_ref *ref;
2515
2516 free_aux_for_edges ();
2517
2518 FOR_EACH_BB_FN (bb, cfun)
2519 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2520
2521 bitmap_obstack_release (&lim_bitmap_obstack);
2522 delete lim_aux_data_map;
2523
2524 delete memory_accesses.refs;
2525 memory_accesses.refs = NULL;
2526
2527 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2528 memref_free (ref);
2529 memory_accesses.refs_list.release ();
2530 obstack_free (&mem_ref_obstack, NULL);
2531
2532 memory_accesses.refs_in_loop.release ();
2533 memory_accesses.refs_stored_in_loop.release ();
2534 memory_accesses.all_refs_stored_in_loop.release ();
2535
2536 if (memory_accesses.ttae_cache)
2537 free_affine_expand_cache (&memory_accesses.ttae_cache);
2538
2539 free (bb_loop_postorder);
2540 }
2541
2542 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2543 i.e. those that are likely to be win regardless of the register pressure. */
2544
2545 static unsigned int
tree_ssa_lim(void)2546 tree_ssa_lim (void)
2547 {
2548 unsigned int todo;
2549
2550 tree_ssa_lim_initialize ();
2551
2552 /* Gathers information about memory accesses in the loops. */
2553 analyze_memory_references ();
2554
2555 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2556 fill_always_executed_in ();
2557
2558 /* For each statement determine the outermost loop in that it is
2559 invariant and cost for computing the invariant. */
2560 invariantness_dom_walker (CDI_DOMINATORS)
2561 .walk (cfun->cfg->x_entry_block_ptr);
2562
2563 /* Execute store motion. Force the necessary invariants to be moved
2564 out of the loops as well. */
2565 store_motion ();
2566
2567 /* Move the expressions that are expensive enough. */
2568 todo = move_computations ();
2569
2570 tree_ssa_lim_finalize ();
2571
2572 return todo;
2573 }
2574
2575 /* Loop invariant motion pass. */
2576
2577 namespace {
2578
2579 const pass_data pass_data_lim =
2580 {
2581 GIMPLE_PASS, /* type */
2582 "lim", /* name */
2583 OPTGROUP_LOOP, /* optinfo_flags */
2584 TV_LIM, /* tv_id */
2585 PROP_cfg, /* properties_required */
2586 0, /* properties_provided */
2587 0, /* properties_destroyed */
2588 0, /* todo_flags_start */
2589 0, /* todo_flags_finish */
2590 };
2591
2592 class pass_lim : public gimple_opt_pass
2593 {
2594 public:
pass_lim(gcc::context * ctxt)2595 pass_lim (gcc::context *ctxt)
2596 : gimple_opt_pass (pass_data_lim, ctxt)
2597 {}
2598
2599 /* opt_pass methods: */
clone()2600 opt_pass * clone () { return new pass_lim (m_ctxt); }
gate(function *)2601 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2602 virtual unsigned int execute (function *);
2603
2604 }; // class pass_lim
2605
2606 unsigned int
execute(function * fun)2607 pass_lim::execute (function *fun)
2608 {
2609 bool in_loop_pipeline = scev_initialized_p ();
2610 if (!in_loop_pipeline)
2611 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2612
2613 if (number_of_loops (fun) <= 1)
2614 return 0;
2615 unsigned int todo = tree_ssa_lim ();
2616
2617 if (!in_loop_pipeline)
2618 loop_optimizer_finalize ();
2619 else
2620 scev_reset ();
2621 return todo;
2622 }
2623
2624 } // anon namespace
2625
2626 gimple_opt_pass *
make_pass_lim(gcc::context * ctxt)2627 make_pass_lim (gcc::context *ctxt)
2628 {
2629 return new pass_lim (ctxt);
2630 }
2631
2632
2633