1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
35 */
36
37 /* References searched while implementing this.
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144 */
145
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
151
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
172 #include "tree-pass.h"
173 #include "hashtab.h"
174
175 /* Propagate flow information through back edges and thus enable PRE's
176 moving loop invariant calculations out of loops.
177
178 Originally this tended to create worse overall code, but several
179 improvements during the development of PRE seem to have made following
180 back edges generally a win.
181
182 Note much of the loop invariant code motion done here would normally
183 be done by loop.c, which has more heuristics for when to move invariants
184 out of loops. At some point we might need to move some of those
185 heuristics into gcse.c. */
186
187 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
188 are a superset of those done by GCSE.
189
190 We perform the following steps:
191
192 1) Compute basic block information.
193
194 2) Compute table of places where registers are set.
195
196 3) Perform copy/constant propagation.
197
198 4) Perform global cse using lazy code motion if not optimizing
199 for size, or code hoisting if we are.
200
201 5) Perform another pass of copy/constant propagation.
202
203 Two passes of copy/constant propagation are done because the first one
204 enables more GCSE and the second one helps to clean up the copies that
205 GCSE creates. This is needed more for PRE than for Classic because Classic
206 GCSE will try to use an existing register containing the common
207 subexpression rather than create a new one. This is harder to do for PRE
208 because of the code motion (which Classic GCSE doesn't do).
209
210 Expressions we are interested in GCSE-ing are of the form
211 (set (pseudo-reg) (expression)).
212 Function want_to_gcse_p says what these are.
213
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
216
217 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218 assignment) based GVN (global value numbering). L. T. Simpson's paper
219 (Rice University) on value numbering is a useful reference for this.
220
221 **********************
222
223 We used to support multiple passes but there are diminishing returns in
224 doing so. The first pass usually makes 90% of the changes that are doable.
225 A second pass can make a few more changes made possible by the first pass.
226 Experiments show any further passes don't make enough changes to justify
227 the expense.
228
229 A study of spec92 using an unlimited number of passes:
230 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
233
234 It was found doing copy propagation between each pass enables further
235 substitutions.
236
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass. The parameter
239 max-gcse-passes can be modified if one wants to experiment.
240
241 **********************
242
243 The steps for PRE are:
244
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246
247 2) Perform the data flow analysis for PRE.
248
249 3) Delete the redundant instructions
250
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
253
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
256
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
259
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
263
264 PRE GCSE depends heavily on the second CSE pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
270 register. */
271
272 /* GCSE global vars. */
273
274 /* Note whether or not we should run jump optimization after gcse. We
275 want to do this for two cases.
276
277 * If we changed any jumps via cprop.
278
279 * If we added any labels via edge splitting. */
280 static int run_jump_opt_after_gcse;
281
282 /* An obstack for our working variables. */
283 static struct obstack gcse_obstack;
284
285 struct reg_use {rtx reg_rtx; };
286
287 /* Hash table of expressions. */
288
289 struct expr
290 {
291 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
292 rtx expr;
293 /* Index in the available expression bitmaps. */
294 int bitmap_index;
295 /* Next entry with the same hash. */
296 struct expr *next_same_hash;
297 /* List of anticipatable occurrences in basic blocks in the function.
298 An "anticipatable occurrence" is one that is the first occurrence in the
299 basic block, the operands are not modified in the basic block prior
300 to the occurrence and the output is not used between the start of
301 the block and the occurrence. */
302 struct occr *antic_occr;
303 /* List of available occurrence in basic blocks in the function.
304 An "available occurrence" is one that is the last occurrence in the
305 basic block and the operands are not modified by following statements in
306 the basic block [including this insn]. */
307 struct occr *avail_occr;
308 /* Non-null if the computation is PRE redundant.
309 The value is the newly created pseudo-reg to record a copy of the
310 expression in all the places that reach the redundant copy. */
311 rtx reaching_reg;
312 };
313
314 /* Occurrence of an expression.
315 There is one per basic block. If a pattern appears more than once the
316 last appearance is used [or first for anticipatable expressions]. */
317
318 struct occr
319 {
320 /* Next occurrence of this expression. */
321 struct occr *next;
322 /* The insn that computes the expression. */
323 rtx insn;
324 /* Nonzero if this [anticipatable] occurrence has been deleted. */
325 char deleted_p;
326 /* Nonzero if this [available] occurrence has been copied to
327 reaching_reg. */
328 /* ??? This is mutually exclusive with deleted_p, so they could share
329 the same byte. */
330 char copied_p;
331 };
332
333 /* Expression and copy propagation hash tables.
334 Each hash table is an array of buckets.
335 ??? It is known that if it were an array of entries, structure elements
336 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
337 not clear whether in the final analysis a sufficient amount of memory would
338 be saved as the size of the available expression bitmaps would be larger
339 [one could build a mapping table without holes afterwards though].
340 Someday I'll perform the computation and figure it out. */
341
342 struct hash_table
343 {
344 /* The table itself.
345 This is an array of `expr_hash_table_size' elements. */
346 struct expr **table;
347
348 /* Size of the hash table, in elements. */
349 unsigned int size;
350
351 /* Number of hash table elements. */
352 unsigned int n_elems;
353
354 /* Whether the table is expression of copy propagation one. */
355 int set_p;
356 };
357
358 /* Expression hash table. */
359 static struct hash_table expr_hash_table;
360
361 /* Copy propagation hash table. */
362 static struct hash_table set_hash_table;
363
364 /* Mapping of uids to cuids.
365 Only real insns get cuids. */
366 static int *uid_cuid;
367
368 /* Highest UID in UID_CUID. */
369 static int max_uid;
370
371 /* Get the cuid of an insn. */
372 #ifdef ENABLE_CHECKING
373 #define INSN_CUID(INSN) \
374 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
375 #else
376 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
377 #endif
378
379 /* Number of cuids. */
380 static int max_cuid;
381
382 /* Mapping of cuids to insns. */
383 static rtx *cuid_insn;
384
385 /* Get insn from cuid. */
386 #define CUID_INSN(CUID) (cuid_insn[CUID])
387
388 /* Maximum register number in function prior to doing gcse + 1.
389 Registers created during this pass have regno >= max_gcse_regno.
390 This is named with "gcse" to not collide with global of same name. */
391 static unsigned int max_gcse_regno;
392
393 /* Table of registers that are modified.
394
395 For each register, each element is a list of places where the pseudo-reg
396 is set.
397
398 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
399 requires knowledge of which blocks kill which regs [and thus could use
400 a bitmap instead of the lists `reg_set_table' uses].
401
402 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
403 num-regs) [however perhaps it may be useful to keep the data as is]. One
404 advantage of recording things this way is that `reg_set_table' is fairly
405 sparse with respect to pseudo regs but for hard regs could be fairly dense
406 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
407 up functions like compute_transp since in the case of pseudo-regs we only
408 need to iterate over the number of times a pseudo-reg is set, not over the
409 number of basic blocks [clearly there is a bit of a slow down in the cases
410 where a pseudo is set more than once in a block, however it is believed
411 that the net effect is to speed things up]. This isn't done for hard-regs
412 because recording call-clobbered hard-regs in `reg_set_table' at each
413 function call can consume a fair bit of memory, and iterating over
414 hard-regs stored this way in compute_transp will be more expensive. */
415
416 typedef struct reg_set
417 {
418 /* The next setting of this register. */
419 struct reg_set *next;
420 /* The index of the block where it was set. */
421 int bb_index;
422 } reg_set;
423
424 static reg_set **reg_set_table;
425
426 /* Size of `reg_set_table'.
427 The table starts out at max_gcse_regno + slop, and is enlarged as
428 necessary. */
429 static int reg_set_table_size;
430
431 /* Amount to grow `reg_set_table' by when it's full. */
432 #define REG_SET_TABLE_SLOP 100
433
434 /* This is a list of expressions which are MEMs and will be used by load
435 or store motion.
436 Load motion tracks MEMs which aren't killed by
437 anything except itself. (i.e., loads and stores to a single location).
438 We can then allow movement of these MEM refs with a little special
439 allowance. (all stores copy the same value to the reaching reg used
440 for the loads). This means all values used to store into memory must have
441 no side effects so we can re-issue the setter value.
442 Store Motion uses this structure as an expression table to track stores
443 which look interesting, and might be moveable towards the exit block. */
444
445 struct ls_expr
446 {
447 struct expr * expr; /* Gcse expression reference for LM. */
448 rtx pattern; /* Pattern of this mem. */
449 rtx pattern_regs; /* List of registers mentioned by the mem. */
450 rtx loads; /* INSN list of loads seen. */
451 rtx stores; /* INSN list of stores seen. */
452 struct ls_expr * next; /* Next in the list. */
453 int invalid; /* Invalid for some reason. */
454 int index; /* If it maps to a bitmap index. */
455 unsigned int hash_index; /* Index when in a hash table. */
456 rtx reaching_reg; /* Register to use when re-writing. */
457 };
458
459 /* Array of implicit set patterns indexed by basic block index. */
460 static rtx *implicit_sets;
461
462 /* Head of the list of load/store memory refs. */
463 static struct ls_expr * pre_ldst_mems = NULL;
464
465 /* Hashtable for the load/store memory refs. */
466 static htab_t pre_ldst_table = NULL;
467
468 /* Bitmap containing one bit for each register in the program.
469 Used when performing GCSE to track which registers have been set since
470 the start of the basic block. */
471 static regset reg_set_bitmap;
472
473 /* For each block, a bitmap of registers set in the block.
474 This is used by compute_transp.
475 It is computed during hash table computation and not by compute_sets
476 as it includes registers added since the last pass (or between cprop and
477 gcse) and it's currently not easy to realloc sbitmap vectors. */
478 static sbitmap *reg_set_in_block;
479
480 /* Array, indexed by basic block number for a list of insns which modify
481 memory within that block. */
482 static rtx * modify_mem_list;
483 static bitmap modify_mem_list_set;
484
485 /* This array parallels modify_mem_list, but is kept canonicalized. */
486 static rtx * canon_modify_mem_list;
487
488 /* Bitmap indexed by block numbers to record which blocks contain
489 function calls. */
490 static bitmap blocks_with_calls;
491
492 /* Various variables for statistics gathering. */
493
494 /* Memory used in a pass.
495 This isn't intended to be absolutely precise. Its intent is only
496 to keep an eye on memory usage. */
497 static int bytes_used;
498
499 /* GCSE substitutions made. */
500 static int gcse_subst_count;
501 /* Number of copy instructions created. */
502 static int gcse_create_count;
503 /* Number of local constants propagated. */
504 static int local_const_prop_count;
505 /* Number of local copies propagated. */
506 static int local_copy_prop_count;
507 /* Number of global constants propagated. */
508 static int global_const_prop_count;
509 /* Number of global copies propagated. */
510 static int global_copy_prop_count;
511
512 /* For available exprs */
513 static sbitmap *ae_kill, *ae_gen;
514
515 static void compute_can_copy (void);
516 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
517 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
518 static void *grealloc (void *, size_t);
519 static void *gcse_alloc (unsigned long);
520 static void alloc_gcse_mem (void);
521 static void free_gcse_mem (void);
522 static void alloc_reg_set_mem (int);
523 static void free_reg_set_mem (void);
524 static void record_one_set (int, rtx);
525 static void record_set_info (rtx, rtx, void *);
526 static void compute_sets (void);
527 static void hash_scan_insn (rtx, struct hash_table *, int);
528 static void hash_scan_set (rtx, rtx, struct hash_table *);
529 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
530 static void hash_scan_call (rtx, rtx, struct hash_table *);
531 static int want_to_gcse_p (rtx);
532 static bool can_assign_to_reg_p (rtx);
533 static bool gcse_constant_p (rtx);
534 static int oprs_unchanged_p (rtx, rtx, int);
535 static int oprs_anticipatable_p (rtx, rtx);
536 static int oprs_available_p (rtx, rtx);
537 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
538 struct hash_table *);
539 static void insert_set_in_table (rtx, rtx, struct hash_table *);
540 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
541 static unsigned int hash_set (int, int);
542 static int expr_equiv_p (rtx, rtx);
543 static void record_last_reg_set_info (rtx, int);
544 static void record_last_mem_set_info (rtx);
545 static void record_last_set_info (rtx, rtx, void *);
546 static void compute_hash_table (struct hash_table *);
547 static void alloc_hash_table (int, struct hash_table *, int);
548 static void free_hash_table (struct hash_table *);
549 static void compute_hash_table_work (struct hash_table *);
550 static void dump_hash_table (FILE *, const char *, struct hash_table *);
551 static struct expr *lookup_set (unsigned int, struct hash_table *);
552 static struct expr *next_set (unsigned int, struct expr *);
553 static void reset_opr_set_tables (void);
554 static int oprs_not_set_p (rtx, rtx);
555 static void mark_call (rtx);
556 static void mark_set (rtx, rtx);
557 static void mark_clobber (rtx, rtx);
558 static void mark_oprs_set (rtx);
559 static void alloc_cprop_mem (int, int);
560 static void free_cprop_mem (void);
561 static void compute_transp (rtx, int, sbitmap *, int);
562 static void compute_transpout (void);
563 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
564 struct hash_table *);
565 static void compute_cprop_data (void);
566 static void find_used_regs (rtx *, void *);
567 static int try_replace_reg (rtx, rtx, rtx);
568 static struct expr *find_avail_set (int, rtx);
569 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
570 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
571 static int load_killed_in_block_p (basic_block, int, rtx, int);
572 static void canon_list_insert (rtx, rtx, void *);
573 static int cprop_insn (rtx, int);
574 static int cprop (int);
575 static void find_implicit_sets (void);
576 static int one_cprop_pass (int, bool, bool);
577 static bool constprop_register (rtx, rtx, rtx, bool);
578 static struct expr *find_bypass_set (int, int);
579 static bool reg_killed_on_edge (rtx, edge);
580 static int bypass_block (basic_block, rtx, rtx);
581 static int bypass_conditional_jumps (void);
582 static void alloc_pre_mem (int, int);
583 static void free_pre_mem (void);
584 static void compute_pre_data (void);
585 static int pre_expr_reaches_here_p (basic_block, struct expr *,
586 basic_block);
587 static void insert_insn_end_bb (struct expr *, basic_block, int);
588 static void pre_insert_copy_insn (struct expr *, rtx);
589 static void pre_insert_copies (void);
590 static int pre_delete (void);
591 static int pre_gcse (void);
592 static int one_pre_gcse_pass (int);
593 static void add_label_notes (rtx, rtx);
594 static void alloc_code_hoist_mem (int, int);
595 static void free_code_hoist_mem (void);
596 static void compute_code_hoist_vbeinout (void);
597 static void compute_code_hoist_data (void);
598 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
599 static void hoist_code (void);
600 static int one_code_hoisting_pass (void);
601 static rtx process_insert_insn (struct expr *);
602 static int pre_edge_insert (struct edge_list *, struct expr **);
603 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
604 basic_block, char *);
605 static struct ls_expr * ldst_entry (rtx);
606 static void free_ldst_entry (struct ls_expr *);
607 static void free_ldst_mems (void);
608 static void print_ldst_list (FILE *);
609 static struct ls_expr * find_rtx_in_ldst (rtx);
610 static int enumerate_ldsts (void);
611 static inline struct ls_expr * first_ls_expr (void);
612 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
613 static int simple_mem (rtx);
614 static void invalidate_any_buried_refs (rtx);
615 static void compute_ld_motion_mems (void);
616 static void trim_ld_motion_mems (void);
617 static void update_ld_motion_stores (struct expr *);
618 static void reg_set_info (rtx, rtx, void *);
619 static void reg_clear_last_set (rtx, rtx, void *);
620 static bool store_ops_ok (rtx, int *);
621 static rtx extract_mentioned_regs (rtx);
622 static rtx extract_mentioned_regs_helper (rtx, rtx);
623 static void find_moveable_store (rtx, int *, int *);
624 static int compute_store_table (void);
625 static bool load_kills_store (rtx, rtx, int);
626 static bool find_loads (rtx, rtx, int);
627 static bool store_killed_in_insn (rtx, rtx, rtx, int);
628 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
629 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
630 static void build_store_vectors (void);
631 static void insert_insn_start_bb (rtx, basic_block);
632 static int insert_store (struct ls_expr *, edge);
633 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
634 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
635 static void delete_store (struct ls_expr *, basic_block);
636 static void free_store_memory (void);
637 static void store_motion (void);
638 static void free_insn_expr_list_list (rtx *);
639 static void clear_modify_mem_tables (void);
640 static void free_modify_mem_tables (void);
641 static rtx gcse_emit_move_after (rtx, rtx, rtx);
642 static void local_cprop_find_used_regs (rtx *, void *);
643 static bool do_local_cprop (rtx, rtx, bool, rtx*);
644 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
645 static void local_cprop_pass (bool);
646 static bool is_too_expensive (const char *);
647
648
649 /* Entry point for global common subexpression elimination.
650 F is the first instruction in the function. Return nonzero if a
651 change is mode. */
652
653 static int
gcse_main(rtx f ATTRIBUTE_UNUSED)654 gcse_main (rtx f ATTRIBUTE_UNUSED)
655 {
656 int changed, pass;
657 /* Bytes used at start of pass. */
658 int initial_bytes_used;
659 /* Maximum number of bytes used by a pass. */
660 int max_pass_bytes;
661 /* Point to release obstack data from for each pass. */
662 char *gcse_obstack_bottom;
663
664 /* We do not construct an accurate cfg in functions which call
665 setjmp, so just punt to be safe. */
666 if (current_function_calls_setjmp)
667 return 0;
668
669 /* Assume that we do not need to run jump optimizations after gcse. */
670 run_jump_opt_after_gcse = 0;
671
672 /* Identify the basic block information for this function, including
673 successors and predecessors. */
674 max_gcse_regno = max_reg_num ();
675
676 if (dump_file)
677 dump_flow_info (dump_file, dump_flags);
678
679 /* Return if there's nothing to do, or it is too expensive. */
680 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
681 || is_too_expensive (_("GCSE disabled")))
682 return 0;
683
684 gcc_obstack_init (&gcse_obstack);
685 bytes_used = 0;
686
687 /* We need alias. */
688 init_alias_analysis ();
689 /* Record where pseudo-registers are set. This data is kept accurate
690 during each pass. ??? We could also record hard-reg information here
691 [since it's unchanging], however it is currently done during hash table
692 computation.
693
694 It may be tempting to compute MEM set information here too, but MEM sets
695 will be subject to code motion one day and thus we need to compute
696 information about memory sets when we build the hash tables. */
697
698 alloc_reg_set_mem (max_gcse_regno);
699 compute_sets ();
700
701 pass = 0;
702 initial_bytes_used = bytes_used;
703 max_pass_bytes = 0;
704 gcse_obstack_bottom = gcse_alloc (1);
705 changed = 1;
706 while (changed && pass < MAX_GCSE_PASSES)
707 {
708 changed = 0;
709 if (dump_file)
710 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
711
712 /* Initialize bytes_used to the space for the pred/succ lists,
713 and the reg_set_table data. */
714 bytes_used = initial_bytes_used;
715
716 /* Each pass may create new registers, so recalculate each time. */
717 max_gcse_regno = max_reg_num ();
718
719 alloc_gcse_mem ();
720
721 /* Don't allow constant propagation to modify jumps
722 during this pass. */
723 timevar_push (TV_CPROP1);
724 changed = one_cprop_pass (pass + 1, false, false);
725 timevar_pop (TV_CPROP1);
726
727 if (optimize_size)
728 /* Do nothing. */ ;
729 else
730 {
731 timevar_push (TV_PRE);
732 changed |= one_pre_gcse_pass (pass + 1);
733 /* We may have just created new basic blocks. Release and
734 recompute various things which are sized on the number of
735 basic blocks. */
736 if (changed)
737 {
738 free_modify_mem_tables ();
739 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
740 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
741 }
742 free_reg_set_mem ();
743 alloc_reg_set_mem (max_reg_num ());
744 compute_sets ();
745 run_jump_opt_after_gcse = 1;
746 timevar_pop (TV_PRE);
747 }
748
749 if (max_pass_bytes < bytes_used)
750 max_pass_bytes = bytes_used;
751
752 /* Free up memory, then reallocate for code hoisting. We can
753 not re-use the existing allocated memory because the tables
754 will not have info for the insns or registers created by
755 partial redundancy elimination. */
756 free_gcse_mem ();
757
758 /* It does not make sense to run code hoisting unless we are optimizing
759 for code size -- it rarely makes programs faster, and can make
760 them bigger if we did partial redundancy elimination (when optimizing
761 for space, we don't run the partial redundancy algorithms). */
762 if (optimize_size)
763 {
764 timevar_push (TV_HOIST);
765 max_gcse_regno = max_reg_num ();
766 alloc_gcse_mem ();
767 changed |= one_code_hoisting_pass ();
768 free_gcse_mem ();
769
770 if (max_pass_bytes < bytes_used)
771 max_pass_bytes = bytes_used;
772 timevar_pop (TV_HOIST);
773 }
774
775 if (dump_file)
776 {
777 fprintf (dump_file, "\n");
778 fflush (dump_file);
779 }
780
781 obstack_free (&gcse_obstack, gcse_obstack_bottom);
782 pass++;
783 }
784
785 /* Do one last pass of copy propagation, including cprop into
786 conditional jumps. */
787
788 max_gcse_regno = max_reg_num ();
789 alloc_gcse_mem ();
790 /* This time, go ahead and allow cprop to alter jumps. */
791 timevar_push (TV_CPROP2);
792 one_cprop_pass (pass + 1, true, false);
793 timevar_pop (TV_CPROP2);
794 free_gcse_mem ();
795
796 if (dump_file)
797 {
798 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
799 current_function_name (), n_basic_blocks);
800 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
801 pass, pass > 1 ? "es" : "", max_pass_bytes);
802 }
803
804 obstack_free (&gcse_obstack, NULL);
805 free_reg_set_mem ();
806
807 /* We are finished with alias. */
808 end_alias_analysis ();
809 allocate_reg_info (max_reg_num (), FALSE, FALSE);
810
811 if (!optimize_size && flag_gcse_sm)
812 {
813 timevar_push (TV_LSM);
814 store_motion ();
815 timevar_pop (TV_LSM);
816 }
817
818 /* Record where pseudo-registers are set. */
819 return run_jump_opt_after_gcse;
820 }
821
822 /* Misc. utilities. */
823
824 /* Nonzero for each mode that supports (set (reg) (reg)).
825 This is trivially true for integer and floating point values.
826 It may or may not be true for condition codes. */
827 static char can_copy[(int) NUM_MACHINE_MODES];
828
829 /* Compute which modes support reg/reg copy operations. */
830
831 static void
compute_can_copy(void)832 compute_can_copy (void)
833 {
834 int i;
835 #ifndef AVOID_CCMODE_COPIES
836 rtx reg, insn;
837 #endif
838 memset (can_copy, 0, NUM_MACHINE_MODES);
839
840 start_sequence ();
841 for (i = 0; i < NUM_MACHINE_MODES; i++)
842 if (GET_MODE_CLASS (i) == MODE_CC)
843 {
844 #ifdef AVOID_CCMODE_COPIES
845 can_copy[i] = 0;
846 #else
847 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
848 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
849 if (recog (PATTERN (insn), insn, NULL) >= 0)
850 can_copy[i] = 1;
851 #endif
852 }
853 else
854 can_copy[i] = 1;
855
856 end_sequence ();
857 }
858
859 /* Returns whether the mode supports reg/reg copy operations. */
860
861 bool
can_copy_p(enum machine_mode mode)862 can_copy_p (enum machine_mode mode)
863 {
864 static bool can_copy_init_p = false;
865
866 if (! can_copy_init_p)
867 {
868 compute_can_copy ();
869 can_copy_init_p = true;
870 }
871
872 return can_copy[mode] != 0;
873 }
874
875 /* Cover function to xmalloc to record bytes allocated. */
876
877 static void *
gmalloc(size_t size)878 gmalloc (size_t size)
879 {
880 bytes_used += size;
881 return xmalloc (size);
882 }
883
884 /* Cover function to xcalloc to record bytes allocated. */
885
886 static void *
gcalloc(size_t nelem,size_t elsize)887 gcalloc (size_t nelem, size_t elsize)
888 {
889 bytes_used += nelem * elsize;
890 return xcalloc (nelem, elsize);
891 }
892
893 /* Cover function to xrealloc.
894 We don't record the additional size since we don't know it.
895 It won't affect memory usage stats much anyway. */
896
897 static void *
grealloc(void * ptr,size_t size)898 grealloc (void *ptr, size_t size)
899 {
900 return xrealloc (ptr, size);
901 }
902
903 /* Cover function to obstack_alloc. */
904
905 static void *
gcse_alloc(unsigned long size)906 gcse_alloc (unsigned long size)
907 {
908 bytes_used += size;
909 return obstack_alloc (&gcse_obstack, size);
910 }
911
912 /* Allocate memory for the cuid mapping array,
913 and reg/memory set tracking tables.
914
915 This is called at the start of each pass. */
916
917 static void
alloc_gcse_mem(void)918 alloc_gcse_mem (void)
919 {
920 int i;
921 basic_block bb;
922 rtx insn;
923
924 /* Find the largest UID and create a mapping from UIDs to CUIDs.
925 CUIDs are like UIDs except they increase monotonically, have no gaps,
926 and only apply to real insns.
927 (Actually, there are gaps, for insn that are not inside a basic block.
928 but we should never see those anyway, so this is OK.) */
929
930 max_uid = get_max_uid ();
931 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
932 i = 0;
933 FOR_EACH_BB (bb)
934 FOR_BB_INSNS (bb, insn)
935 {
936 if (INSN_P (insn))
937 uid_cuid[INSN_UID (insn)] = i++;
938 else
939 uid_cuid[INSN_UID (insn)] = i;
940 }
941
942 /* Create a table mapping cuids to insns. */
943
944 max_cuid = i;
945 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
946 i = 0;
947 FOR_EACH_BB (bb)
948 FOR_BB_INSNS (bb, insn)
949 if (INSN_P (insn))
950 CUID_INSN (i++) = insn;
951
952 /* Allocate vars to track sets of regs. */
953 reg_set_bitmap = BITMAP_ALLOC (NULL);
954
955 /* Allocate vars to track sets of regs, memory per block. */
956 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
957 /* Allocate array to keep a list of insns which modify memory in each
958 basic block. */
959 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
960 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
961 modify_mem_list_set = BITMAP_ALLOC (NULL);
962 blocks_with_calls = BITMAP_ALLOC (NULL);
963 }
964
965 /* Free memory allocated by alloc_gcse_mem. */
966
967 static void
free_gcse_mem(void)968 free_gcse_mem (void)
969 {
970 free (uid_cuid);
971 free (cuid_insn);
972
973 BITMAP_FREE (reg_set_bitmap);
974
975 sbitmap_vector_free (reg_set_in_block);
976 free_modify_mem_tables ();
977 BITMAP_FREE (modify_mem_list_set);
978 BITMAP_FREE (blocks_with_calls);
979 }
980
981 /* Compute the local properties of each recorded expression.
982
983 Local properties are those that are defined by the block, irrespective of
984 other blocks.
985
986 An expression is transparent in a block if its operands are not modified
987 in the block.
988
989 An expression is computed (locally available) in a block if it is computed
990 at least once and expression would contain the same value if the
991 computation was moved to the end of the block.
992
993 An expression is locally anticipatable in a block if it is computed at
994 least once and expression would contain the same value if the computation
995 was moved to the beginning of the block.
996
997 We call this routine for cprop, pre and code hoisting. They all compute
998 basically the same information and thus can easily share this code.
999
1000 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1001 properties. If NULL, then it is not necessary to compute or record that
1002 particular property.
1003
1004 TABLE controls which hash table to look at. If it is set hash table,
1005 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1006 ABSALTERED. */
1007
1008 static void
compute_local_properties(sbitmap * transp,sbitmap * comp,sbitmap * antloc,struct hash_table * table)1009 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1010 struct hash_table *table)
1011 {
1012 unsigned int i;
1013
1014 /* Initialize any bitmaps that were passed in. */
1015 if (transp)
1016 {
1017 if (table->set_p)
1018 sbitmap_vector_zero (transp, last_basic_block);
1019 else
1020 sbitmap_vector_ones (transp, last_basic_block);
1021 }
1022
1023 if (comp)
1024 sbitmap_vector_zero (comp, last_basic_block);
1025 if (antloc)
1026 sbitmap_vector_zero (antloc, last_basic_block);
1027
1028 for (i = 0; i < table->size; i++)
1029 {
1030 struct expr *expr;
1031
1032 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1033 {
1034 int indx = expr->bitmap_index;
1035 struct occr *occr;
1036
1037 /* The expression is transparent in this block if it is not killed.
1038 We start by assuming all are transparent [none are killed], and
1039 then reset the bits for those that are. */
1040 if (transp)
1041 compute_transp (expr->expr, indx, transp, table->set_p);
1042
1043 /* The occurrences recorded in antic_occr are exactly those that
1044 we want to set to nonzero in ANTLOC. */
1045 if (antloc)
1046 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1047 {
1048 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1049
1050 /* While we're scanning the table, this is a good place to
1051 initialize this. */
1052 occr->deleted_p = 0;
1053 }
1054
1055 /* The occurrences recorded in avail_occr are exactly those that
1056 we want to set to nonzero in COMP. */
1057 if (comp)
1058 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1059 {
1060 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1061
1062 /* While we're scanning the table, this is a good place to
1063 initialize this. */
1064 occr->copied_p = 0;
1065 }
1066
1067 /* While we're scanning the table, this is a good place to
1068 initialize this. */
1069 expr->reaching_reg = 0;
1070 }
1071 }
1072 }
1073
1074 /* Register set information.
1075
1076 `reg_set_table' records where each register is set or otherwise
1077 modified. */
1078
1079 static struct obstack reg_set_obstack;
1080
1081 static void
alloc_reg_set_mem(int n_regs)1082 alloc_reg_set_mem (int n_regs)
1083 {
1084 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1085 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1086
1087 gcc_obstack_init (®_set_obstack);
1088 }
1089
1090 static void
free_reg_set_mem(void)1091 free_reg_set_mem (void)
1092 {
1093 free (reg_set_table);
1094 obstack_free (®_set_obstack, NULL);
1095 }
1096
1097 /* Record REGNO in the reg_set table. */
1098
1099 static void
record_one_set(int regno,rtx insn)1100 record_one_set (int regno, rtx insn)
1101 {
1102 /* Allocate a new reg_set element and link it onto the list. */
1103 struct reg_set *new_reg_info;
1104
1105 /* If the table isn't big enough, enlarge it. */
1106 if (regno >= reg_set_table_size)
1107 {
1108 int new_size = regno + REG_SET_TABLE_SLOP;
1109
1110 reg_set_table = grealloc (reg_set_table,
1111 new_size * sizeof (struct reg_set *));
1112 memset (reg_set_table + reg_set_table_size, 0,
1113 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1114 reg_set_table_size = new_size;
1115 }
1116
1117 new_reg_info = obstack_alloc (®_set_obstack, sizeof (struct reg_set));
1118 bytes_used += sizeof (struct reg_set);
1119 new_reg_info->bb_index = BLOCK_NUM (insn);
1120 new_reg_info->next = reg_set_table[regno];
1121 reg_set_table[regno] = new_reg_info;
1122 }
1123
1124 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1125 an insn. The DATA is really the instruction in which the SET is
1126 occurring. */
1127
1128 static void
record_set_info(rtx dest,rtx setter ATTRIBUTE_UNUSED,void * data)1129 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1130 {
1131 rtx record_set_insn = (rtx) data;
1132
1133 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1134 record_one_set (REGNO (dest), record_set_insn);
1135 }
1136
1137 /* Scan the function and record each set of each pseudo-register.
1138
1139 This is called once, at the start of the gcse pass. See the comments for
1140 `reg_set_table' for further documentation. */
1141
1142 static void
compute_sets(void)1143 compute_sets (void)
1144 {
1145 basic_block bb;
1146 rtx insn;
1147
1148 FOR_EACH_BB (bb)
1149 FOR_BB_INSNS (bb, insn)
1150 if (INSN_P (insn))
1151 note_stores (PATTERN (insn), record_set_info, insn);
1152 }
1153
1154 /* Hash table support. */
1155
1156 struct reg_avail_info
1157 {
1158 basic_block last_bb;
1159 int first_set;
1160 int last_set;
1161 };
1162
1163 static struct reg_avail_info *reg_avail_info;
1164 static basic_block current_bb;
1165
1166
1167 /* See whether X, the source of a set, is something we want to consider for
1168 GCSE. */
1169
1170 static int
want_to_gcse_p(rtx x)1171 want_to_gcse_p (rtx x)
1172 {
1173 #ifdef STACK_REGS
1174 /* On register stack architectures, don't GCSE constants from the
1175 constant pool, as the benefits are often swamped by the overhead
1176 of shuffling the register stack between basic blocks. */
1177 if (IS_STACK_MODE (GET_MODE (x)))
1178 x = avoid_constant_pool_reference (x);
1179 #endif
1180
1181 switch (GET_CODE (x))
1182 {
1183 case REG:
1184 case SUBREG:
1185 case CONST_INT:
1186 case CONST_DOUBLE:
1187 case CONST_VECTOR:
1188 case CALL:
1189 return 0;
1190
1191 default:
1192 return can_assign_to_reg_p (x);
1193 }
1194 }
1195
1196 /* Used internally by can_assign_to_reg_p. */
1197
1198 static GTY(()) rtx test_insn;
1199
1200 /* Return true if we can assign X to a pseudo register. */
1201
1202 static bool
can_assign_to_reg_p(rtx x)1203 can_assign_to_reg_p (rtx x)
1204 {
1205 int num_clobbers = 0;
1206 int icode;
1207
1208 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1209 if (general_operand (x, GET_MODE (x)))
1210 return 1;
1211 else if (GET_MODE (x) == VOIDmode)
1212 return 0;
1213
1214 /* Otherwise, check if we can make a valid insn from it. First initialize
1215 our test insn if we haven't already. */
1216 if (test_insn == 0)
1217 {
1218 test_insn
1219 = make_insn_raw (gen_rtx_SET (VOIDmode,
1220 gen_rtx_REG (word_mode,
1221 FIRST_PSEUDO_REGISTER * 2),
1222 const0_rtx));
1223 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1224 }
1225
1226 /* Now make an insn like the one we would make when GCSE'ing and see if
1227 valid. */
1228 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1229 SET_SRC (PATTERN (test_insn)) = x;
1230 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1231 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1232 }
1233
1234 /* Return nonzero if the operands of expression X are unchanged from the
1235 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1237
1238 static int
oprs_unchanged_p(rtx x,rtx insn,int avail_p)1239 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1240 {
1241 int i, j;
1242 enum rtx_code code;
1243 const char *fmt;
1244
1245 if (x == 0)
1246 return 1;
1247
1248 code = GET_CODE (x);
1249 switch (code)
1250 {
1251 case REG:
1252 {
1253 struct reg_avail_info *info = ®_avail_info[REGNO (x)];
1254
1255 if (info->last_bb != current_bb)
1256 return 1;
1257 if (avail_p)
1258 return info->last_set < INSN_CUID (insn);
1259 else
1260 return info->first_set >= INSN_CUID (insn);
1261 }
1262
1263 case MEM:
1264 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1265 x, avail_p))
1266 return 0;
1267 else
1268 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1269
1270 case PRE_DEC:
1271 case PRE_INC:
1272 case POST_DEC:
1273 case POST_INC:
1274 case PRE_MODIFY:
1275 case POST_MODIFY:
1276 return 0;
1277
1278 case PC:
1279 case CC0: /*FIXME*/
1280 case CONST:
1281 case CONST_INT:
1282 case CONST_DOUBLE:
1283 case CONST_VECTOR:
1284 case SYMBOL_REF:
1285 case LABEL_REF:
1286 case ADDR_VEC:
1287 case ADDR_DIFF_VEC:
1288 return 1;
1289
1290 default:
1291 break;
1292 }
1293
1294 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1295 {
1296 if (fmt[i] == 'e')
1297 {
1298 /* If we are about to do the last recursive call needed at this
1299 level, change it into iteration. This function is called enough
1300 to be worth it. */
1301 if (i == 0)
1302 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1303
1304 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1305 return 0;
1306 }
1307 else if (fmt[i] == 'E')
1308 for (j = 0; j < XVECLEN (x, i); j++)
1309 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1310 return 0;
1311 }
1312
1313 return 1;
1314 }
1315
1316 /* Used for communication between mems_conflict_for_gcse_p and
1317 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1318 conflict between two memory references. */
1319 static int gcse_mems_conflict_p;
1320
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. A memory reference for a load instruction,
1323 mems_conflict_for_gcse_p will see if a memory store conflicts with
1324 this memory load. */
1325 static rtx gcse_mem_operand;
1326
1327 /* DEST is the output of an instruction. If it is a memory reference, and
1328 possibly conflicts with the load found in gcse_mem_operand, then set
1329 gcse_mems_conflict_p to a nonzero value. */
1330
1331 static void
mems_conflict_for_gcse_p(rtx dest,rtx setter ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)1332 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1333 void *data ATTRIBUTE_UNUSED)
1334 {
1335 while (GET_CODE (dest) == SUBREG
1336 || GET_CODE (dest) == ZERO_EXTRACT
1337 || GET_CODE (dest) == STRICT_LOW_PART)
1338 dest = XEXP (dest, 0);
1339
1340 /* If DEST is not a MEM, then it will not conflict with the load. Note
1341 that function calls are assumed to clobber memory, but are handled
1342 elsewhere. */
1343 if (! MEM_P (dest))
1344 return;
1345
1346 /* If we are setting a MEM in our list of specially recognized MEMs,
1347 don't mark as killed this time. */
1348
1349 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1350 {
1351 if (!find_rtx_in_ldst (dest))
1352 gcse_mems_conflict_p = 1;
1353 return;
1354 }
1355
1356 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1357 rtx_addr_varies_p))
1358 gcse_mems_conflict_p = 1;
1359 }
1360
1361 /* Return nonzero if the expression in X (a memory reference) is killed
1362 in block BB before or after the insn with the CUID in UID_LIMIT.
1363 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1364 before UID_LIMIT.
1365
1366 To check the entire block, set UID_LIMIT to max_uid + 1 and
1367 AVAIL_P to 0. */
1368
1369 static int
load_killed_in_block_p(basic_block bb,int uid_limit,rtx x,int avail_p)1370 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1371 {
1372 rtx list_entry = modify_mem_list[bb->index];
1373
1374 /* If this is a readonly then we aren't going to be changing it. */
1375 if (MEM_READONLY_P (x))
1376 return 0;
1377
1378 while (list_entry)
1379 {
1380 rtx setter;
1381 /* Ignore entries in the list that do not apply. */
1382 if ((avail_p
1383 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1384 || (! avail_p
1385 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1386 {
1387 list_entry = XEXP (list_entry, 1);
1388 continue;
1389 }
1390
1391 setter = XEXP (list_entry, 0);
1392
1393 /* If SETTER is a call everything is clobbered. Note that calls
1394 to pure functions are never put on the list, so we need not
1395 worry about them. */
1396 if (CALL_P (setter))
1397 return 1;
1398
1399 /* SETTER must be an INSN of some kind that sets memory. Call
1400 note_stores to examine each hunk of memory that is modified.
1401
1402 The note_stores interface is pretty limited, so we have to
1403 communicate via global variables. Yuk. */
1404 gcse_mem_operand = x;
1405 gcse_mems_conflict_p = 0;
1406 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1407 if (gcse_mems_conflict_p)
1408 return 1;
1409 list_entry = XEXP (list_entry, 1);
1410 }
1411 return 0;
1412 }
1413
1414 /* Return nonzero if the operands of expression X are unchanged from
1415 the start of INSN's basic block up to but not including INSN. */
1416
1417 static int
oprs_anticipatable_p(rtx x,rtx insn)1418 oprs_anticipatable_p (rtx x, rtx insn)
1419 {
1420 return oprs_unchanged_p (x, insn, 0);
1421 }
1422
1423 /* Return nonzero if the operands of expression X are unchanged from
1424 INSN to the end of INSN's basic block. */
1425
1426 static int
oprs_available_p(rtx x,rtx insn)1427 oprs_available_p (rtx x, rtx insn)
1428 {
1429 return oprs_unchanged_p (x, insn, 1);
1430 }
1431
1432 /* Hash expression X.
1433
1434 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1435 indicating if a volatile operand is found or if the expression contains
1436 something we don't want to insert in the table. HASH_TABLE_SIZE is
1437 the current size of the hash table to be probed. */
1438
1439 static unsigned int
hash_expr(rtx x,enum machine_mode mode,int * do_not_record_p,int hash_table_size)1440 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1441 int hash_table_size)
1442 {
1443 unsigned int hash;
1444
1445 *do_not_record_p = 0;
1446
1447 hash = hash_rtx (x, mode, do_not_record_p,
1448 NULL, /*have_reg_qty=*/false);
1449 return hash % hash_table_size;
1450 }
1451
1452 /* Hash a set of register REGNO.
1453
1454 Sets are hashed on the register that is set. This simplifies the PRE copy
1455 propagation code.
1456
1457 ??? May need to make things more elaborate. Later, as necessary. */
1458
1459 static unsigned int
hash_set(int regno,int hash_table_size)1460 hash_set (int regno, int hash_table_size)
1461 {
1462 unsigned int hash;
1463
1464 hash = regno;
1465 return hash % hash_table_size;
1466 }
1467
1468 /* Return nonzero if exp1 is equivalent to exp2. */
1469
1470 static int
expr_equiv_p(rtx x,rtx y)1471 expr_equiv_p (rtx x, rtx y)
1472 {
1473 return exp_equiv_p (x, y, 0, true);
1474 }
1475
1476 /* Insert expression X in INSN in the hash TABLE.
1477 If it is already present, record it as the last occurrence in INSN's
1478 basic block.
1479
1480 MODE is the mode of the value X is being stored into.
1481 It is only used if X is a CONST_INT.
1482
1483 ANTIC_P is nonzero if X is an anticipatable expression.
1484 AVAIL_P is nonzero if X is an available expression. */
1485
1486 static void
insert_expr_in_table(rtx x,enum machine_mode mode,rtx insn,int antic_p,int avail_p,struct hash_table * table)1487 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1488 int avail_p, struct hash_table *table)
1489 {
1490 int found, do_not_record_p;
1491 unsigned int hash;
1492 struct expr *cur_expr, *last_expr = NULL;
1493 struct occr *antic_occr, *avail_occr;
1494
1495 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1496
1497 /* Do not insert expression in table if it contains volatile operands,
1498 or if hash_expr determines the expression is something we don't want
1499 to or can't handle. */
1500 if (do_not_record_p)
1501 return;
1502
1503 cur_expr = table->table[hash];
1504 found = 0;
1505
1506 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1507 {
1508 /* If the expression isn't found, save a pointer to the end of
1509 the list. */
1510 last_expr = cur_expr;
1511 cur_expr = cur_expr->next_same_hash;
1512 }
1513
1514 if (! found)
1515 {
1516 cur_expr = gcse_alloc (sizeof (struct expr));
1517 bytes_used += sizeof (struct expr);
1518 if (table->table[hash] == NULL)
1519 /* This is the first pattern that hashed to this index. */
1520 table->table[hash] = cur_expr;
1521 else
1522 /* Add EXPR to end of this hash chain. */
1523 last_expr->next_same_hash = cur_expr;
1524
1525 /* Set the fields of the expr element. */
1526 cur_expr->expr = x;
1527 cur_expr->bitmap_index = table->n_elems++;
1528 cur_expr->next_same_hash = NULL;
1529 cur_expr->antic_occr = NULL;
1530 cur_expr->avail_occr = NULL;
1531 }
1532
1533 /* Now record the occurrence(s). */
1534 if (antic_p)
1535 {
1536 antic_occr = cur_expr->antic_occr;
1537
1538 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1539 antic_occr = NULL;
1540
1541 if (antic_occr)
1542 /* Found another instance of the expression in the same basic block.
1543 Prefer the currently recorded one. We want the first one in the
1544 block and the block is scanned from start to end. */
1545 ; /* nothing to do */
1546 else
1547 {
1548 /* First occurrence of this expression in this basic block. */
1549 antic_occr = gcse_alloc (sizeof (struct occr));
1550 bytes_used += sizeof (struct occr);
1551 antic_occr->insn = insn;
1552 antic_occr->next = cur_expr->antic_occr;
1553 antic_occr->deleted_p = 0;
1554 cur_expr->antic_occr = antic_occr;
1555 }
1556 }
1557
1558 if (avail_p)
1559 {
1560 avail_occr = cur_expr->avail_occr;
1561
1562 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1563 {
1564 /* Found another instance of the expression in the same basic block.
1565 Prefer this occurrence to the currently recorded one. We want
1566 the last one in the block and the block is scanned from start
1567 to end. */
1568 avail_occr->insn = insn;
1569 }
1570 else
1571 {
1572 /* First occurrence of this expression in this basic block. */
1573 avail_occr = gcse_alloc (sizeof (struct occr));
1574 bytes_used += sizeof (struct occr);
1575 avail_occr->insn = insn;
1576 avail_occr->next = cur_expr->avail_occr;
1577 avail_occr->deleted_p = 0;
1578 cur_expr->avail_occr = avail_occr;
1579 }
1580 }
1581 }
1582
1583 /* Insert pattern X in INSN in the hash table.
1584 X is a SET of a reg to either another reg or a constant.
1585 If it is already present, record it as the last occurrence in INSN's
1586 basic block. */
1587
1588 static void
insert_set_in_table(rtx x,rtx insn,struct hash_table * table)1589 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1590 {
1591 int found;
1592 unsigned int hash;
1593 struct expr *cur_expr, *last_expr = NULL;
1594 struct occr *cur_occr;
1595
1596 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1597
1598 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1599
1600 cur_expr = table->table[hash];
1601 found = 0;
1602
1603 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1604 {
1605 /* If the expression isn't found, save a pointer to the end of
1606 the list. */
1607 last_expr = cur_expr;
1608 cur_expr = cur_expr->next_same_hash;
1609 }
1610
1611 if (! found)
1612 {
1613 cur_expr = gcse_alloc (sizeof (struct expr));
1614 bytes_used += sizeof (struct expr);
1615 if (table->table[hash] == NULL)
1616 /* This is the first pattern that hashed to this index. */
1617 table->table[hash] = cur_expr;
1618 else
1619 /* Add EXPR to end of this hash chain. */
1620 last_expr->next_same_hash = cur_expr;
1621
1622 /* Set the fields of the expr element.
1623 We must copy X because it can be modified when copy propagation is
1624 performed on its operands. */
1625 cur_expr->expr = copy_rtx (x);
1626 cur_expr->bitmap_index = table->n_elems++;
1627 cur_expr->next_same_hash = NULL;
1628 cur_expr->antic_occr = NULL;
1629 cur_expr->avail_occr = NULL;
1630 }
1631
1632 /* Now record the occurrence. */
1633 cur_occr = cur_expr->avail_occr;
1634
1635 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1636 {
1637 /* Found another instance of the expression in the same basic block.
1638 Prefer this occurrence to the currently recorded one. We want
1639 the last one in the block and the block is scanned from start
1640 to end. */
1641 cur_occr->insn = insn;
1642 }
1643 else
1644 {
1645 /* First occurrence of this expression in this basic block. */
1646 cur_occr = gcse_alloc (sizeof (struct occr));
1647 bytes_used += sizeof (struct occr);
1648
1649 cur_occr->insn = insn;
1650 cur_occr->next = cur_expr->avail_occr;
1651 cur_occr->deleted_p = 0;
1652 cur_expr->avail_occr = cur_occr;
1653 }
1654 }
1655
1656 /* Determine whether the rtx X should be treated as a constant for
1657 the purposes of GCSE's constant propagation. */
1658
1659 static bool
gcse_constant_p(rtx x)1660 gcse_constant_p (rtx x)
1661 {
1662 /* Consider a COMPARE of two integers constant. */
1663 if (GET_CODE (x) == COMPARE
1664 && GET_CODE (XEXP (x, 0)) == CONST_INT
1665 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1666 return true;
1667
1668 /* Consider a COMPARE of the same registers is a constant
1669 if they are not floating point registers. */
1670 if (GET_CODE(x) == COMPARE
1671 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1672 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1673 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1674 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1675 return true;
1676
1677 return CONSTANT_P (x);
1678 }
1679
1680 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1681 expression one). */
1682
1683 static void
hash_scan_set(rtx pat,rtx insn,struct hash_table * table)1684 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1685 {
1686 rtx src = SET_SRC (pat);
1687 rtx dest = SET_DEST (pat);
1688 rtx note;
1689
1690 if (GET_CODE (src) == CALL)
1691 hash_scan_call (src, insn, table);
1692
1693 else if (REG_P (dest))
1694 {
1695 unsigned int regno = REGNO (dest);
1696 rtx tmp;
1697
1698 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1699 This allows us to do a single GCSE pass and still eliminate
1700 redundant constants, addresses or other expressions that are
1701 constructed with multiple instructions. */
1702 note = find_reg_equal_equiv_note (insn);
1703 if (note != 0
1704 && (table->set_p
1705 ? gcse_constant_p (XEXP (note, 0))
1706 : want_to_gcse_p (XEXP (note, 0))))
1707 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1708
1709 /* Only record sets of pseudo-regs in the hash table. */
1710 if (! table->set_p
1711 && regno >= FIRST_PSEUDO_REGISTER
1712 /* Don't GCSE something if we can't do a reg/reg copy. */
1713 && can_copy_p (GET_MODE (dest))
1714 /* GCSE commonly inserts instruction after the insn. We can't
1715 do that easily for EH_REGION notes so disable GCSE on these
1716 for now. */
1717 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1718 /* Is SET_SRC something we want to gcse? */
1719 && want_to_gcse_p (src)
1720 /* Don't CSE a nop. */
1721 && ! set_noop_p (pat)
1722 /* Don't GCSE if it has attached REG_EQUIV note.
1723 At this point this only function parameters should have
1724 REG_EQUIV notes and if the argument slot is used somewhere
1725 explicitly, it means address of parameter has been taken,
1726 so we should not extend the lifetime of the pseudo. */
1727 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1728 {
1729 /* An expression is not anticipatable if its operands are
1730 modified before this insn or if this is not the only SET in
1731 this insn. */
1732 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1733 /* An expression is not available if its operands are
1734 subsequently modified, including this insn. It's also not
1735 available if this is a branch, because we can't insert
1736 a set after the branch. */
1737 int avail_p = (oprs_available_p (src, insn)
1738 && ! JUMP_P (insn));
1739
1740 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1741 }
1742
1743 /* Record sets for constant/copy propagation. */
1744 else if (table->set_p
1745 && regno >= FIRST_PSEUDO_REGISTER
1746 && ((REG_P (src)
1747 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1748 && can_copy_p (GET_MODE (dest))
1749 && REGNO (src) != regno)
1750 || gcse_constant_p (src))
1751 /* A copy is not available if its src or dest is subsequently
1752 modified. Here we want to search from INSN+1 on, but
1753 oprs_available_p searches from INSN on. */
1754 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1755 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1756 && oprs_available_p (pat, tmp))))
1757 insert_set_in_table (pat, insn, table);
1758 }
1759 /* In case of store we want to consider the memory value as available in
1760 the REG stored in that memory. This makes it possible to remove
1761 redundant loads from due to stores to the same location. */
1762 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1763 {
1764 unsigned int regno = REGNO (src);
1765
1766 /* Do not do this for constant/copy propagation. */
1767 if (! table->set_p
1768 /* Only record sets of pseudo-regs in the hash table. */
1769 && regno >= FIRST_PSEUDO_REGISTER
1770 /* Don't GCSE something if we can't do a reg/reg copy. */
1771 && can_copy_p (GET_MODE (src))
1772 /* GCSE commonly inserts instruction after the insn. We can't
1773 do that easily for EH_REGION notes so disable GCSE on these
1774 for now. */
1775 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776 /* Is SET_DEST something we want to gcse? */
1777 && want_to_gcse_p (dest)
1778 /* Don't CSE a nop. */
1779 && ! set_noop_p (pat)
1780 /* Don't GCSE if it has attached REG_EQUIV note.
1781 At this point this only function parameters should have
1782 REG_EQUIV notes and if the argument slot is used somewhere
1783 explicitly, it means address of parameter has been taken,
1784 so we should not extend the lifetime of the pseudo. */
1785 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786 || ! MEM_P (XEXP (note, 0))))
1787 {
1788 /* Stores are never anticipatable. */
1789 int antic_p = 0;
1790 /* An expression is not available if its operands are
1791 subsequently modified, including this insn. It's also not
1792 available if this is a branch, because we can't insert
1793 a set after the branch. */
1794 int avail_p = oprs_available_p (dest, insn)
1795 && ! JUMP_P (insn);
1796
1797 /* Record the memory expression (DEST) in the hash table. */
1798 insert_expr_in_table (dest, GET_MODE (dest), insn,
1799 antic_p, avail_p, table);
1800 }
1801 }
1802 }
1803
1804 static void
hash_scan_clobber(rtx x ATTRIBUTE_UNUSED,rtx insn ATTRIBUTE_UNUSED,struct hash_table * table ATTRIBUTE_UNUSED)1805 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1806 struct hash_table *table ATTRIBUTE_UNUSED)
1807 {
1808 /* Currently nothing to do. */
1809 }
1810
1811 static void
hash_scan_call(rtx x ATTRIBUTE_UNUSED,rtx insn ATTRIBUTE_UNUSED,struct hash_table * table ATTRIBUTE_UNUSED)1812 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1813 struct hash_table *table ATTRIBUTE_UNUSED)
1814 {
1815 /* Currently nothing to do. */
1816 }
1817
1818 /* Process INSN and add hash table entries as appropriate.
1819
1820 Only available expressions that set a single pseudo-reg are recorded.
1821
1822 Single sets in a PARALLEL could be handled, but it's an extra complication
1823 that isn't dealt with right now. The trick is handling the CLOBBERs that
1824 are also in the PARALLEL. Later.
1825
1826 If SET_P is nonzero, this is for the assignment hash table,
1827 otherwise it is for the expression hash table.
1828 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1829 not record any expressions. */
1830
1831 static void
hash_scan_insn(rtx insn,struct hash_table * table,int in_libcall_block)1832 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1833 {
1834 rtx pat = PATTERN (insn);
1835 int i;
1836
1837 if (in_libcall_block)
1838 return;
1839
1840 /* Pick out the sets of INSN and for other forms of instructions record
1841 what's been modified. */
1842
1843 if (GET_CODE (pat) == SET)
1844 hash_scan_set (pat, insn, table);
1845 else if (GET_CODE (pat) == PARALLEL)
1846 for (i = 0; i < XVECLEN (pat, 0); i++)
1847 {
1848 rtx x = XVECEXP (pat, 0, i);
1849
1850 if (GET_CODE (x) == SET)
1851 hash_scan_set (x, insn, table);
1852 else if (GET_CODE (x) == CLOBBER)
1853 hash_scan_clobber (x, insn, table);
1854 else if (GET_CODE (x) == CALL)
1855 hash_scan_call (x, insn, table);
1856 }
1857
1858 else if (GET_CODE (pat) == CLOBBER)
1859 hash_scan_clobber (pat, insn, table);
1860 else if (GET_CODE (pat) == CALL)
1861 hash_scan_call (pat, insn, table);
1862 }
1863
1864 static void
dump_hash_table(FILE * file,const char * name,struct hash_table * table)1865 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1866 {
1867 int i;
1868 /* Flattened out table, so it's printed in proper order. */
1869 struct expr **flat_table;
1870 unsigned int *hash_val;
1871 struct expr *expr;
1872
1873 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1874 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1875
1876 for (i = 0; i < (int) table->size; i++)
1877 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1878 {
1879 flat_table[expr->bitmap_index] = expr;
1880 hash_val[expr->bitmap_index] = i;
1881 }
1882
1883 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1884 name, table->size, table->n_elems);
1885
1886 for (i = 0; i < (int) table->n_elems; i++)
1887 if (flat_table[i] != 0)
1888 {
1889 expr = flat_table[i];
1890 fprintf (file, "Index %d (hash value %d)\n ",
1891 expr->bitmap_index, hash_val[i]);
1892 print_rtl (file, expr->expr);
1893 fprintf (file, "\n");
1894 }
1895
1896 fprintf (file, "\n");
1897
1898 free (flat_table);
1899 free (hash_val);
1900 }
1901
1902 /* Record register first/last/block set information for REGNO in INSN.
1903
1904 first_set records the first place in the block where the register
1905 is set and is used to compute "anticipatability".
1906
1907 last_set records the last place in the block where the register
1908 is set and is used to compute "availability".
1909
1910 last_bb records the block for which first_set and last_set are
1911 valid, as a quick test to invalidate them.
1912
1913 reg_set_in_block records whether the register is set in the block
1914 and is used to compute "transparency". */
1915
1916 static void
record_last_reg_set_info(rtx insn,int regno)1917 record_last_reg_set_info (rtx insn, int regno)
1918 {
1919 struct reg_avail_info *info = ®_avail_info[regno];
1920 int cuid = INSN_CUID (insn);
1921
1922 info->last_set = cuid;
1923 if (info->last_bb != current_bb)
1924 {
1925 info->last_bb = current_bb;
1926 info->first_set = cuid;
1927 SET_BIT (reg_set_in_block[current_bb->index], regno);
1928 }
1929 }
1930
1931
1932 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1933 Note we store a pair of elements in the list, so they have to be
1934 taken off pairwise. */
1935
1936 static void
canon_list_insert(rtx dest ATTRIBUTE_UNUSED,rtx unused1 ATTRIBUTE_UNUSED,void * v_insn)1937 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1938 void * v_insn)
1939 {
1940 rtx dest_addr, insn;
1941 int bb;
1942
1943 while (GET_CODE (dest) == SUBREG
1944 || GET_CODE (dest) == ZERO_EXTRACT
1945 || GET_CODE (dest) == STRICT_LOW_PART)
1946 dest = XEXP (dest, 0);
1947
1948 /* If DEST is not a MEM, then it will not conflict with a load. Note
1949 that function calls are assumed to clobber memory, but are handled
1950 elsewhere. */
1951
1952 if (! MEM_P (dest))
1953 return;
1954
1955 dest_addr = get_addr (XEXP (dest, 0));
1956 dest_addr = canon_rtx (dest_addr);
1957 insn = (rtx) v_insn;
1958 bb = BLOCK_NUM (insn);
1959
1960 canon_modify_mem_list[bb] =
1961 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1962 canon_modify_mem_list[bb] =
1963 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1964 }
1965
1966 /* Record memory modification information for INSN. We do not actually care
1967 about the memory location(s) that are set, or even how they are set (consider
1968 a CALL_INSN). We merely need to record which insns modify memory. */
1969
1970 static void
record_last_mem_set_info(rtx insn)1971 record_last_mem_set_info (rtx insn)
1972 {
1973 int bb = BLOCK_NUM (insn);
1974
1975 /* load_killed_in_block_p will handle the case of calls clobbering
1976 everything. */
1977 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1978 bitmap_set_bit (modify_mem_list_set, bb);
1979
1980 if (CALL_P (insn))
1981 {
1982 /* Note that traversals of this loop (other than for free-ing)
1983 will break after encountering a CALL_INSN. So, there's no
1984 need to insert a pair of items, as canon_list_insert does. */
1985 canon_modify_mem_list[bb] =
1986 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1987 bitmap_set_bit (blocks_with_calls, bb);
1988 }
1989 else
1990 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1991 }
1992
1993 /* Called from compute_hash_table via note_stores to handle one
1994 SET or CLOBBER in an insn. DATA is really the instruction in which
1995 the SET is taking place. */
1996
1997 static void
record_last_set_info(rtx dest,rtx setter ATTRIBUTE_UNUSED,void * data)1998 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1999 {
2000 rtx last_set_insn = (rtx) data;
2001
2002 if (GET_CODE (dest) == SUBREG)
2003 dest = SUBREG_REG (dest);
2004
2005 if (REG_P (dest))
2006 record_last_reg_set_info (last_set_insn, REGNO (dest));
2007 else if (MEM_P (dest)
2008 /* Ignore pushes, they clobber nothing. */
2009 && ! push_operand (dest, GET_MODE (dest)))
2010 record_last_mem_set_info (last_set_insn);
2011 }
2012
2013 /* Top level function to create an expression or assignment hash table.
2014
2015 Expression entries are placed in the hash table if
2016 - they are of the form (set (pseudo-reg) src),
2017 - src is something we want to perform GCSE on,
2018 - none of the operands are subsequently modified in the block
2019
2020 Assignment entries are placed in the hash table if
2021 - they are of the form (set (pseudo-reg) src),
2022 - src is something we want to perform const/copy propagation on,
2023 - none of the operands or target are subsequently modified in the block
2024
2025 Currently src must be a pseudo-reg or a const_int.
2026
2027 TABLE is the table computed. */
2028
2029 static void
compute_hash_table_work(struct hash_table * table)2030 compute_hash_table_work (struct hash_table *table)
2031 {
2032 unsigned int i;
2033
2034 /* While we compute the hash table we also compute a bit array of which
2035 registers are set in which blocks.
2036 ??? This isn't needed during const/copy propagation, but it's cheap to
2037 compute. Later. */
2038 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2039
2040 /* re-Cache any INSN_LIST nodes we have allocated. */
2041 clear_modify_mem_tables ();
2042 /* Some working arrays used to track first and last set in each block. */
2043 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2044
2045 for (i = 0; i < max_gcse_regno; ++i)
2046 reg_avail_info[i].last_bb = NULL;
2047
2048 FOR_EACH_BB (current_bb)
2049 {
2050 rtx insn;
2051 unsigned int regno;
2052 int in_libcall_block;
2053
2054 /* First pass over the instructions records information used to
2055 determine when registers and memory are first and last set.
2056 ??? hard-reg reg_set_in_block computation
2057 could be moved to compute_sets since they currently don't change. */
2058
2059 FOR_BB_INSNS (current_bb, insn)
2060 {
2061 if (! INSN_P (insn))
2062 continue;
2063
2064 if (CALL_P (insn))
2065 {
2066 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2067 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2068 record_last_reg_set_info (insn, regno);
2069
2070 mark_call (insn);
2071 }
2072
2073 note_stores (PATTERN (insn), record_last_set_info, insn);
2074 }
2075
2076 /* Insert implicit sets in the hash table. */
2077 if (table->set_p
2078 && implicit_sets[current_bb->index] != NULL_RTX)
2079 hash_scan_set (implicit_sets[current_bb->index],
2080 BB_HEAD (current_bb), table);
2081
2082 /* The next pass builds the hash table. */
2083 in_libcall_block = 0;
2084 FOR_BB_INSNS (current_bb, insn)
2085 if (INSN_P (insn))
2086 {
2087 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2088 in_libcall_block = 1;
2089 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2090 in_libcall_block = 0;
2091 hash_scan_insn (insn, table, in_libcall_block);
2092 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2093 in_libcall_block = 0;
2094 }
2095 }
2096
2097 free (reg_avail_info);
2098 reg_avail_info = NULL;
2099 }
2100
2101 /* Allocate space for the set/expr hash TABLE.
2102 N_INSNS is the number of instructions in the function.
2103 It is used to determine the number of buckets to use.
2104 SET_P determines whether set or expression table will
2105 be created. */
2106
2107 static void
alloc_hash_table(int n_insns,struct hash_table * table,int set_p)2108 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2109 {
2110 int n;
2111
2112 table->size = n_insns / 4;
2113 if (table->size < 11)
2114 table->size = 11;
2115
2116 /* Attempt to maintain efficient use of hash table.
2117 Making it an odd number is simplest for now.
2118 ??? Later take some measurements. */
2119 table->size |= 1;
2120 n = table->size * sizeof (struct expr *);
2121 table->table = gmalloc (n);
2122 table->set_p = set_p;
2123 }
2124
2125 /* Free things allocated by alloc_hash_table. */
2126
2127 static void
free_hash_table(struct hash_table * table)2128 free_hash_table (struct hash_table *table)
2129 {
2130 free (table->table);
2131 }
2132
2133 /* Compute the hash TABLE for doing copy/const propagation or
2134 expression hash table. */
2135
2136 static void
compute_hash_table(struct hash_table * table)2137 compute_hash_table (struct hash_table *table)
2138 {
2139 /* Initialize count of number of entries in hash table. */
2140 table->n_elems = 0;
2141 memset (table->table, 0, table->size * sizeof (struct expr *));
2142
2143 compute_hash_table_work (table);
2144 }
2145
2146 /* Expression tracking support. */
2147
2148 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2149 table entry, or NULL if not found. */
2150
2151 static struct expr *
lookup_set(unsigned int regno,struct hash_table * table)2152 lookup_set (unsigned int regno, struct hash_table *table)
2153 {
2154 unsigned int hash = hash_set (regno, table->size);
2155 struct expr *expr;
2156
2157 expr = table->table[hash];
2158
2159 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2160 expr = expr->next_same_hash;
2161
2162 return expr;
2163 }
2164
2165 /* Return the next entry for REGNO in list EXPR. */
2166
2167 static struct expr *
next_set(unsigned int regno,struct expr * expr)2168 next_set (unsigned int regno, struct expr *expr)
2169 {
2170 do
2171 expr = expr->next_same_hash;
2172 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2173
2174 return expr;
2175 }
2176
2177 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2178 types may be mixed. */
2179
2180 static void
free_insn_expr_list_list(rtx * listp)2181 free_insn_expr_list_list (rtx *listp)
2182 {
2183 rtx list, next;
2184
2185 for (list = *listp; list ; list = next)
2186 {
2187 next = XEXP (list, 1);
2188 if (GET_CODE (list) == EXPR_LIST)
2189 free_EXPR_LIST_node (list);
2190 else
2191 free_INSN_LIST_node (list);
2192 }
2193
2194 *listp = NULL;
2195 }
2196
2197 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2198 static void
clear_modify_mem_tables(void)2199 clear_modify_mem_tables (void)
2200 {
2201 unsigned i;
2202 bitmap_iterator bi;
2203
2204 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2205 {
2206 free_INSN_LIST_list (modify_mem_list + i);
2207 free_insn_expr_list_list (canon_modify_mem_list + i);
2208 }
2209 bitmap_clear (modify_mem_list_set);
2210 bitmap_clear (blocks_with_calls);
2211 }
2212
2213 /* Release memory used by modify_mem_list_set. */
2214
2215 static void
free_modify_mem_tables(void)2216 free_modify_mem_tables (void)
2217 {
2218 clear_modify_mem_tables ();
2219 free (modify_mem_list);
2220 free (canon_modify_mem_list);
2221 modify_mem_list = 0;
2222 canon_modify_mem_list = 0;
2223 }
2224
2225 /* Reset tables used to keep track of what's still available [since the
2226 start of the block]. */
2227
2228 static void
reset_opr_set_tables(void)2229 reset_opr_set_tables (void)
2230 {
2231 /* Maintain a bitmap of which regs have been set since beginning of
2232 the block. */
2233 CLEAR_REG_SET (reg_set_bitmap);
2234
2235 /* Also keep a record of the last instruction to modify memory.
2236 For now this is very trivial, we only record whether any memory
2237 location has been modified. */
2238 clear_modify_mem_tables ();
2239 }
2240
2241 /* Return nonzero if the operands of X are not set before INSN in
2242 INSN's basic block. */
2243
2244 static int
oprs_not_set_p(rtx x,rtx insn)2245 oprs_not_set_p (rtx x, rtx insn)
2246 {
2247 int i, j;
2248 enum rtx_code code;
2249 const char *fmt;
2250
2251 if (x == 0)
2252 return 1;
2253
2254 code = GET_CODE (x);
2255 switch (code)
2256 {
2257 case PC:
2258 case CC0:
2259 case CONST:
2260 case CONST_INT:
2261 case CONST_DOUBLE:
2262 case CONST_VECTOR:
2263 case SYMBOL_REF:
2264 case LABEL_REF:
2265 case ADDR_VEC:
2266 case ADDR_DIFF_VEC:
2267 return 1;
2268
2269 case MEM:
2270 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2271 INSN_CUID (insn), x, 0))
2272 return 0;
2273 else
2274 return oprs_not_set_p (XEXP (x, 0), insn);
2275
2276 case REG:
2277 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2278
2279 default:
2280 break;
2281 }
2282
2283 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2284 {
2285 if (fmt[i] == 'e')
2286 {
2287 /* If we are about to do the last recursive call
2288 needed at this level, change it into iteration.
2289 This function is called enough to be worth it. */
2290 if (i == 0)
2291 return oprs_not_set_p (XEXP (x, i), insn);
2292
2293 if (! oprs_not_set_p (XEXP (x, i), insn))
2294 return 0;
2295 }
2296 else if (fmt[i] == 'E')
2297 for (j = 0; j < XVECLEN (x, i); j++)
2298 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2299 return 0;
2300 }
2301
2302 return 1;
2303 }
2304
2305 /* Mark things set by a CALL. */
2306
2307 static void
mark_call(rtx insn)2308 mark_call (rtx insn)
2309 {
2310 if (! CONST_OR_PURE_CALL_P (insn))
2311 record_last_mem_set_info (insn);
2312 }
2313
2314 /* Mark things set by a SET. */
2315
2316 static void
mark_set(rtx pat,rtx insn)2317 mark_set (rtx pat, rtx insn)
2318 {
2319 rtx dest = SET_DEST (pat);
2320
2321 while (GET_CODE (dest) == SUBREG
2322 || GET_CODE (dest) == ZERO_EXTRACT
2323 || GET_CODE (dest) == STRICT_LOW_PART)
2324 dest = XEXP (dest, 0);
2325
2326 if (REG_P (dest))
2327 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2328 else if (MEM_P (dest))
2329 record_last_mem_set_info (insn);
2330
2331 if (GET_CODE (SET_SRC (pat)) == CALL)
2332 mark_call (insn);
2333 }
2334
2335 /* Record things set by a CLOBBER. */
2336
2337 static void
mark_clobber(rtx pat,rtx insn)2338 mark_clobber (rtx pat, rtx insn)
2339 {
2340 rtx clob = XEXP (pat, 0);
2341
2342 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2343 clob = XEXP (clob, 0);
2344
2345 if (REG_P (clob))
2346 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2347 else
2348 record_last_mem_set_info (insn);
2349 }
2350
2351 /* Record things set by INSN.
2352 This data is used by oprs_not_set_p. */
2353
2354 static void
mark_oprs_set(rtx insn)2355 mark_oprs_set (rtx insn)
2356 {
2357 rtx pat = PATTERN (insn);
2358 int i;
2359
2360 if (GET_CODE (pat) == SET)
2361 mark_set (pat, insn);
2362 else if (GET_CODE (pat) == PARALLEL)
2363 for (i = 0; i < XVECLEN (pat, 0); i++)
2364 {
2365 rtx x = XVECEXP (pat, 0, i);
2366
2367 if (GET_CODE (x) == SET)
2368 mark_set (x, insn);
2369 else if (GET_CODE (x) == CLOBBER)
2370 mark_clobber (x, insn);
2371 else if (GET_CODE (x) == CALL)
2372 mark_call (insn);
2373 }
2374
2375 else if (GET_CODE (pat) == CLOBBER)
2376 mark_clobber (pat, insn);
2377 else if (GET_CODE (pat) == CALL)
2378 mark_call (insn);
2379 }
2380
2381
2382 /* Compute copy/constant propagation working variables. */
2383
2384 /* Local properties of assignments. */
2385 static sbitmap *cprop_pavloc;
2386 static sbitmap *cprop_absaltered;
2387
2388 /* Global properties of assignments (computed from the local properties). */
2389 static sbitmap *cprop_avin;
2390 static sbitmap *cprop_avout;
2391
2392 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2393 basic blocks. N_SETS is the number of sets. */
2394
2395 static void
alloc_cprop_mem(int n_blocks,int n_sets)2396 alloc_cprop_mem (int n_blocks, int n_sets)
2397 {
2398 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2399 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2400
2401 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2402 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2403 }
2404
2405 /* Free vars used by copy/const propagation. */
2406
2407 static void
free_cprop_mem(void)2408 free_cprop_mem (void)
2409 {
2410 sbitmap_vector_free (cprop_pavloc);
2411 sbitmap_vector_free (cprop_absaltered);
2412 sbitmap_vector_free (cprop_avin);
2413 sbitmap_vector_free (cprop_avout);
2414 }
2415
2416 /* For each block, compute whether X is transparent. X is either an
2417 expression or an assignment [though we don't care which, for this context
2418 an assignment is treated as an expression]. For each block where an
2419 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2420 bit in BMAP. */
2421
2422 static void
compute_transp(rtx x,int indx,sbitmap * bmap,int set_p)2423 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2424 {
2425 int i, j;
2426 basic_block bb;
2427 enum rtx_code code;
2428 reg_set *r;
2429 const char *fmt;
2430
2431 /* repeat is used to turn tail-recursion into iteration since GCC
2432 can't do it when there's no return value. */
2433 repeat:
2434
2435 if (x == 0)
2436 return;
2437
2438 code = GET_CODE (x);
2439 switch (code)
2440 {
2441 case REG:
2442 if (set_p)
2443 {
2444 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2445 {
2446 FOR_EACH_BB (bb)
2447 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2448 SET_BIT (bmap[bb->index], indx);
2449 }
2450 else
2451 {
2452 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2453 SET_BIT (bmap[r->bb_index], indx);
2454 }
2455 }
2456 else
2457 {
2458 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2459 {
2460 FOR_EACH_BB (bb)
2461 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2462 RESET_BIT (bmap[bb->index], indx);
2463 }
2464 else
2465 {
2466 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2467 RESET_BIT (bmap[r->bb_index], indx);
2468 }
2469 }
2470
2471 return;
2472
2473 case MEM:
2474 if (! MEM_READONLY_P (x))
2475 {
2476 bitmap_iterator bi;
2477 unsigned bb_index;
2478
2479 /* First handle all the blocks with calls. We don't need to
2480 do any list walking for them. */
2481 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2482 {
2483 if (set_p)
2484 SET_BIT (bmap[bb_index], indx);
2485 else
2486 RESET_BIT (bmap[bb_index], indx);
2487 }
2488
2489 /* Now iterate over the blocks which have memory modifications
2490 but which do not have any calls. */
2491 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2492 blocks_with_calls,
2493 0, bb_index, bi)
2494 {
2495 rtx list_entry = canon_modify_mem_list[bb_index];
2496
2497 while (list_entry)
2498 {
2499 rtx dest, dest_addr;
2500
2501 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2502 Examine each hunk of memory that is modified. */
2503
2504 dest = XEXP (list_entry, 0);
2505 list_entry = XEXP (list_entry, 1);
2506 dest_addr = XEXP (list_entry, 0);
2507
2508 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2509 x, rtx_addr_varies_p))
2510 {
2511 if (set_p)
2512 SET_BIT (bmap[bb_index], indx);
2513 else
2514 RESET_BIT (bmap[bb_index], indx);
2515 break;
2516 }
2517 list_entry = XEXP (list_entry, 1);
2518 }
2519 }
2520 }
2521
2522 x = XEXP (x, 0);
2523 goto repeat;
2524
2525 case PC:
2526 case CC0: /*FIXME*/
2527 case CONST:
2528 case CONST_INT:
2529 case CONST_DOUBLE:
2530 case CONST_VECTOR:
2531 case SYMBOL_REF:
2532 case LABEL_REF:
2533 case ADDR_VEC:
2534 case ADDR_DIFF_VEC:
2535 return;
2536
2537 default:
2538 break;
2539 }
2540
2541 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2542 {
2543 if (fmt[i] == 'e')
2544 {
2545 /* If we are about to do the last recursive call
2546 needed at this level, change it into iteration.
2547 This function is called enough to be worth it. */
2548 if (i == 0)
2549 {
2550 x = XEXP (x, i);
2551 goto repeat;
2552 }
2553
2554 compute_transp (XEXP (x, i), indx, bmap, set_p);
2555 }
2556 else if (fmt[i] == 'E')
2557 for (j = 0; j < XVECLEN (x, i); j++)
2558 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2559 }
2560 }
2561
2562 /* Top level routine to do the dataflow analysis needed by copy/const
2563 propagation. */
2564
2565 static void
compute_cprop_data(void)2566 compute_cprop_data (void)
2567 {
2568 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2569 compute_available (cprop_pavloc, cprop_absaltered,
2570 cprop_avout, cprop_avin);
2571 }
2572
2573 /* Copy/constant propagation. */
2574
2575 /* Maximum number of register uses in an insn that we handle. */
2576 #define MAX_USES 8
2577
2578 /* Table of uses found in an insn.
2579 Allocated statically to avoid alloc/free complexity and overhead. */
2580 static struct reg_use reg_use_table[MAX_USES];
2581
2582 /* Index into `reg_use_table' while building it. */
2583 static int reg_use_count;
2584
2585 /* Set up a list of register numbers used in INSN. The found uses are stored
2586 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2587 and contains the number of uses in the table upon exit.
2588
2589 ??? If a register appears multiple times we will record it multiple times.
2590 This doesn't hurt anything but it will slow things down. */
2591
2592 static void
find_used_regs(rtx * xptr,void * data ATTRIBUTE_UNUSED)2593 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2594 {
2595 int i, j;
2596 enum rtx_code code;
2597 const char *fmt;
2598 rtx x = *xptr;
2599
2600 /* repeat is used to turn tail-recursion into iteration since GCC
2601 can't do it when there's no return value. */
2602 repeat:
2603 if (x == 0)
2604 return;
2605
2606 code = GET_CODE (x);
2607 if (REG_P (x))
2608 {
2609 if (reg_use_count == MAX_USES)
2610 return;
2611
2612 reg_use_table[reg_use_count].reg_rtx = x;
2613 reg_use_count++;
2614 }
2615
2616 /* Recursively scan the operands of this expression. */
2617
2618 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2619 {
2620 if (fmt[i] == 'e')
2621 {
2622 /* If we are about to do the last recursive call
2623 needed at this level, change it into iteration.
2624 This function is called enough to be worth it. */
2625 if (i == 0)
2626 {
2627 x = XEXP (x, 0);
2628 goto repeat;
2629 }
2630
2631 find_used_regs (&XEXP (x, i), data);
2632 }
2633 else if (fmt[i] == 'E')
2634 for (j = 0; j < XVECLEN (x, i); j++)
2635 find_used_regs (&XVECEXP (x, i, j), data);
2636 }
2637 }
2638
2639 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2640 Returns nonzero is successful. */
2641
2642 static int
try_replace_reg(rtx from,rtx to,rtx insn)2643 try_replace_reg (rtx from, rtx to, rtx insn)
2644 {
2645 rtx note = find_reg_equal_equiv_note (insn);
2646 rtx src = 0;
2647 int success = 0;
2648 rtx set = single_set (insn);
2649
2650 validate_replace_src_group (from, to, insn);
2651 if (num_changes_pending () && apply_change_group ())
2652 success = 1;
2653
2654 /* Try to simplify SET_SRC if we have substituted a constant. */
2655 if (success && set && CONSTANT_P (to))
2656 {
2657 src = simplify_rtx (SET_SRC (set));
2658
2659 if (src)
2660 validate_change (insn, &SET_SRC (set), src, 0);
2661 }
2662
2663 /* If there is already a REG_EQUAL note, update the expression in it
2664 with our replacement. */
2665 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2666 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2667
2668 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2669 {
2670 /* If above failed and this is a single set, try to simplify the source of
2671 the set given our substitution. We could perhaps try this for multiple
2672 SETs, but it probably won't buy us anything. */
2673 src = simplify_replace_rtx (SET_SRC (set), from, to);
2674
2675 if (!rtx_equal_p (src, SET_SRC (set))
2676 && validate_change (insn, &SET_SRC (set), src, 0))
2677 success = 1;
2678
2679 /* If we've failed to do replacement, have a single SET, don't already
2680 have a note, and have no special SET, add a REG_EQUAL note to not
2681 lose information. */
2682 if (!success && note == 0 && set != 0
2683 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2684 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2685 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2686 }
2687
2688 /* REG_EQUAL may get simplified into register.
2689 We don't allow that. Remove that note. This code ought
2690 not to happen, because previous code ought to synthesize
2691 reg-reg move, but be on the safe side. */
2692 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2693 remove_note (insn, note);
2694
2695 return success;
2696 }
2697
2698 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2699 NULL no such set is found. */
2700
2701 static struct expr *
find_avail_set(int regno,rtx insn)2702 find_avail_set (int regno, rtx insn)
2703 {
2704 /* SET1 contains the last set found that can be returned to the caller for
2705 use in a substitution. */
2706 struct expr *set1 = 0;
2707
2708 /* Loops are not possible here. To get a loop we would need two sets
2709 available at the start of the block containing INSN. i.e. we would
2710 need two sets like this available at the start of the block:
2711
2712 (set (reg X) (reg Y))
2713 (set (reg Y) (reg X))
2714
2715 This can not happen since the set of (reg Y) would have killed the
2716 set of (reg X) making it unavailable at the start of this block. */
2717 while (1)
2718 {
2719 rtx src;
2720 struct expr *set = lookup_set (regno, &set_hash_table);
2721
2722 /* Find a set that is available at the start of the block
2723 which contains INSN. */
2724 while (set)
2725 {
2726 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2727 break;
2728 set = next_set (regno, set);
2729 }
2730
2731 /* If no available set was found we've reached the end of the
2732 (possibly empty) copy chain. */
2733 if (set == 0)
2734 break;
2735
2736 gcc_assert (GET_CODE (set->expr) == SET);
2737
2738 src = SET_SRC (set->expr);
2739
2740 /* We know the set is available.
2741 Now check that SRC is ANTLOC (i.e. none of the source operands
2742 have changed since the start of the block).
2743
2744 If the source operand changed, we may still use it for the next
2745 iteration of this loop, but we may not use it for substitutions. */
2746
2747 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2748 set1 = set;
2749
2750 /* If the source of the set is anything except a register, then
2751 we have reached the end of the copy chain. */
2752 if (! REG_P (src))
2753 break;
2754
2755 /* Follow the copy chain, i.e. start another iteration of the loop
2756 and see if we have an available copy into SRC. */
2757 regno = REGNO (src);
2758 }
2759
2760 /* SET1 holds the last set that was available and anticipatable at
2761 INSN. */
2762 return set1;
2763 }
2764
2765 /* Subroutine of cprop_insn that tries to propagate constants into
2766 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2767 it is the instruction that immediately precedes JUMP, and must be a
2768 single SET of a register. FROM is what we will try to replace,
2769 SRC is the constant we will try to substitute for it. Returns nonzero
2770 if a change was made. */
2771
2772 static int
cprop_jump(basic_block bb,rtx setcc,rtx jump,rtx from,rtx src)2773 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2774 {
2775 rtx new, set_src, note_src;
2776 rtx set = pc_set (jump);
2777 rtx note = find_reg_equal_equiv_note (jump);
2778
2779 if (note)
2780 {
2781 note_src = XEXP (note, 0);
2782 if (GET_CODE (note_src) == EXPR_LIST)
2783 note_src = NULL_RTX;
2784 }
2785 else note_src = NULL_RTX;
2786
2787 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2788 set_src = note_src ? note_src : SET_SRC (set);
2789
2790 /* First substitute the SETCC condition into the JUMP instruction,
2791 then substitute that given values into this expanded JUMP. */
2792 if (setcc != NULL_RTX
2793 && !modified_between_p (from, setcc, jump)
2794 && !modified_between_p (src, setcc, jump))
2795 {
2796 rtx setcc_src;
2797 rtx setcc_set = single_set (setcc);
2798 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2799 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2800 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2801 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2802 setcc_src);
2803 }
2804 else
2805 setcc = NULL_RTX;
2806
2807 new = simplify_replace_rtx (set_src, from, src);
2808
2809 /* If no simplification can be made, then try the next register. */
2810 if (rtx_equal_p (new, SET_SRC (set)))
2811 return 0;
2812
2813 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2814 if (new == pc_rtx)
2815 delete_insn (jump);
2816 else
2817 {
2818 /* Ensure the value computed inside the jump insn to be equivalent
2819 to one computed by setcc. */
2820 if (setcc && modified_in_p (new, setcc))
2821 return 0;
2822 if (! validate_change (jump, &SET_SRC (set), new, 0))
2823 {
2824 /* When (some) constants are not valid in a comparison, and there
2825 are two registers to be replaced by constants before the entire
2826 comparison can be folded into a constant, we need to keep
2827 intermediate information in REG_EQUAL notes. For targets with
2828 separate compare insns, such notes are added by try_replace_reg.
2829 When we have a combined compare-and-branch instruction, however,
2830 we need to attach a note to the branch itself to make this
2831 optimization work. */
2832
2833 if (!rtx_equal_p (new, note_src))
2834 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2835 return 0;
2836 }
2837
2838 /* Remove REG_EQUAL note after simplification. */
2839 if (note_src)
2840 remove_note (jump, note);
2841
2842 /* If this has turned into an unconditional jump,
2843 then put a barrier after it so that the unreachable
2844 code will be deleted. */
2845 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2846 emit_barrier_after (jump);
2847 }
2848
2849 #ifdef HAVE_cc0
2850 /* Delete the cc0 setter. */
2851 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2852 delete_insn (setcc);
2853 #endif
2854
2855 run_jump_opt_after_gcse = 1;
2856
2857 global_const_prop_count++;
2858 if (dump_file != NULL)
2859 {
2860 fprintf (dump_file,
2861 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2862 REGNO (from), INSN_UID (jump));
2863 print_rtl (dump_file, src);
2864 fprintf (dump_file, "\n");
2865 }
2866 purge_dead_edges (bb);
2867
2868 return 1;
2869 }
2870
2871 static bool
constprop_register(rtx insn,rtx from,rtx to,bool alter_jumps)2872 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2873 {
2874 rtx sset;
2875
2876 /* Check for reg or cc0 setting instructions followed by
2877 conditional branch instructions first. */
2878 if (alter_jumps
2879 && (sset = single_set (insn)) != NULL
2880 && NEXT_INSN (insn)
2881 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2882 {
2883 rtx dest = SET_DEST (sset);
2884 if ((REG_P (dest) || CC0_P (dest))
2885 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2886 return 1;
2887 }
2888
2889 /* Handle normal insns next. */
2890 if (NONJUMP_INSN_P (insn)
2891 && try_replace_reg (from, to, insn))
2892 return 1;
2893
2894 /* Try to propagate a CONST_INT into a conditional jump.
2895 We're pretty specific about what we will handle in this
2896 code, we can extend this as necessary over time.
2897
2898 Right now the insn in question must look like
2899 (set (pc) (if_then_else ...)) */
2900 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2901 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2902 return 0;
2903 }
2904
2905 /* Perform constant and copy propagation on INSN.
2906 The result is nonzero if a change was made. */
2907
2908 static int
cprop_insn(rtx insn,int alter_jumps)2909 cprop_insn (rtx insn, int alter_jumps)
2910 {
2911 struct reg_use *reg_used;
2912 int changed = 0;
2913 rtx note;
2914
2915 if (!INSN_P (insn))
2916 return 0;
2917
2918 reg_use_count = 0;
2919 note_uses (&PATTERN (insn), find_used_regs, NULL);
2920
2921 note = find_reg_equal_equiv_note (insn);
2922
2923 /* We may win even when propagating constants into notes. */
2924 if (note)
2925 find_used_regs (&XEXP (note, 0), NULL);
2926
2927 for (reg_used = ®_use_table[0]; reg_use_count > 0;
2928 reg_used++, reg_use_count--)
2929 {
2930 unsigned int regno = REGNO (reg_used->reg_rtx);
2931 rtx pat, src;
2932 struct expr *set;
2933
2934 /* Ignore registers created by GCSE.
2935 We do this because ... */
2936 if (regno >= max_gcse_regno)
2937 continue;
2938
2939 /* If the register has already been set in this block, there's
2940 nothing we can do. */
2941 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2942 continue;
2943
2944 /* Find an assignment that sets reg_used and is available
2945 at the start of the block. */
2946 set = find_avail_set (regno, insn);
2947 if (! set)
2948 continue;
2949
2950 pat = set->expr;
2951 /* ??? We might be able to handle PARALLELs. Later. */
2952 gcc_assert (GET_CODE (pat) == SET);
2953
2954 src = SET_SRC (pat);
2955
2956 /* Constant propagation. */
2957 if (gcse_constant_p (src))
2958 {
2959 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2960 {
2961 changed = 1;
2962 global_const_prop_count++;
2963 if (dump_file != NULL)
2964 {
2965 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2966 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2967 print_rtl (dump_file, src);
2968 fprintf (dump_file, "\n");
2969 }
2970 if (INSN_DELETED_P (insn))
2971 return 1;
2972 }
2973 }
2974 else if (REG_P (src)
2975 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2976 && REGNO (src) != regno)
2977 {
2978 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2979 {
2980 changed = 1;
2981 global_copy_prop_count++;
2982 if (dump_file != NULL)
2983 {
2984 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2985 regno, INSN_UID (insn));
2986 fprintf (dump_file, " with reg %d\n", REGNO (src));
2987 }
2988
2989 /* The original insn setting reg_used may or may not now be
2990 deletable. We leave the deletion to flow. */
2991 /* FIXME: If it turns out that the insn isn't deletable,
2992 then we may have unnecessarily extended register lifetimes
2993 and made things worse. */
2994 }
2995 }
2996 }
2997
2998 return changed;
2999 }
3000
3001 /* Like find_used_regs, but avoid recording uses that appear in
3002 input-output contexts such as zero_extract or pre_dec. This
3003 restricts the cases we consider to those for which local cprop
3004 can legitimately make replacements. */
3005
3006 static void
local_cprop_find_used_regs(rtx * xptr,void * data)3007 local_cprop_find_used_regs (rtx *xptr, void *data)
3008 {
3009 rtx x = *xptr;
3010
3011 if (x == 0)
3012 return;
3013
3014 switch (GET_CODE (x))
3015 {
3016 case ZERO_EXTRACT:
3017 case SIGN_EXTRACT:
3018 case STRICT_LOW_PART:
3019 return;
3020
3021 case PRE_DEC:
3022 case PRE_INC:
3023 case POST_DEC:
3024 case POST_INC:
3025 case PRE_MODIFY:
3026 case POST_MODIFY:
3027 /* Can only legitimately appear this early in the context of
3028 stack pushes for function arguments, but handle all of the
3029 codes nonetheless. */
3030 return;
3031
3032 case SUBREG:
3033 /* Setting a subreg of a register larger than word_mode leaves
3034 the non-written words unchanged. */
3035 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3036 return;
3037 break;
3038
3039 default:
3040 break;
3041 }
3042
3043 find_used_regs (xptr, data);
3044 }
3045
3046 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3047 their REG_EQUAL notes need updating. */
3048
3049 static bool
do_local_cprop(rtx x,rtx insn,bool alter_jumps,rtx * libcall_sp)3050 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3051 {
3052 rtx newreg = NULL, newcnst = NULL;
3053
3054 /* Rule out USE instructions and ASM statements as we don't want to
3055 change the hard registers mentioned. */
3056 if (REG_P (x)
3057 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3058 || (GET_CODE (PATTERN (insn)) != USE
3059 && asm_noperands (PATTERN (insn)) < 0)))
3060 {
3061 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3062 struct elt_loc_list *l;
3063
3064 if (!val)
3065 return false;
3066 for (l = val->locs; l; l = l->next)
3067 {
3068 rtx this_rtx = l->loc;
3069 rtx note;
3070
3071 /* Don't CSE non-constant values out of libcall blocks. */
3072 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3073 continue;
3074
3075 if (gcse_constant_p (this_rtx))
3076 newcnst = this_rtx;
3077 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3078 /* Don't copy propagate if it has attached REG_EQUIV note.
3079 At this point this only function parameters should have
3080 REG_EQUIV notes and if the argument slot is used somewhere
3081 explicitly, it means address of parameter has been taken,
3082 so we should not extend the lifetime of the pseudo. */
3083 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3084 || ! MEM_P (XEXP (note, 0))))
3085 newreg = this_rtx;
3086 }
3087 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3088 {
3089 /* If we find a case where we can't fix the retval REG_EQUAL notes
3090 match the new register, we either have to abandon this replacement
3091 or fix delete_trivially_dead_insns to preserve the setting insn,
3092 or make it delete the REG_EUAQL note, and fix up all passes that
3093 require the REG_EQUAL note there. */
3094 bool adjusted;
3095
3096 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3097 gcc_assert (adjusted);
3098
3099 if (dump_file != NULL)
3100 {
3101 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3102 REGNO (x));
3103 fprintf (dump_file, "insn %d with constant ",
3104 INSN_UID (insn));
3105 print_rtl (dump_file, newcnst);
3106 fprintf (dump_file, "\n");
3107 }
3108 local_const_prop_count++;
3109 return true;
3110 }
3111 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3112 {
3113 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3114 if (dump_file != NULL)
3115 {
3116 fprintf (dump_file,
3117 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3118 REGNO (x), INSN_UID (insn));
3119 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3120 }
3121 local_copy_prop_count++;
3122 return true;
3123 }
3124 }
3125 return false;
3126 }
3127
3128 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3129 their REG_EQUAL notes need updating to reflect that OLDREG has been
3130 replaced with NEWVAL in INSN. Return true if all substitutions could
3131 be made. */
3132 static bool
adjust_libcall_notes(rtx oldreg,rtx newval,rtx insn,rtx * libcall_sp)3133 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3134 {
3135 rtx end;
3136
3137 while ((end = *libcall_sp++))
3138 {
3139 rtx note = find_reg_equal_equiv_note (end);
3140
3141 if (! note)
3142 continue;
3143
3144 if (REG_P (newval))
3145 {
3146 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3147 {
3148 do
3149 {
3150 note = find_reg_equal_equiv_note (end);
3151 if (! note)
3152 continue;
3153 if (reg_mentioned_p (newval, XEXP (note, 0)))
3154 return false;
3155 }
3156 while ((end = *libcall_sp++));
3157 return true;
3158 }
3159 }
3160 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3161 insn = end;
3162 }
3163 return true;
3164 }
3165
3166 #define MAX_NESTED_LIBCALLS 9
3167
3168 /* Do local const/copy propagation (i.e. within each basic block).
3169 If ALTER_JUMPS is true, allow propagating into jump insns, which
3170 could modify the CFG. */
3171
3172 static void
local_cprop_pass(bool alter_jumps)3173 local_cprop_pass (bool alter_jumps)
3174 {
3175 basic_block bb;
3176 rtx insn;
3177 struct reg_use *reg_used;
3178 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3179 bool changed = false;
3180
3181 cselib_init (false);
3182 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3183 *libcall_sp = 0;
3184 FOR_EACH_BB (bb)
3185 {
3186 FOR_BB_INSNS (bb, insn)
3187 {
3188 if (INSN_P (insn))
3189 {
3190 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3191
3192 if (note)
3193 {
3194 gcc_assert (libcall_sp != libcall_stack);
3195 *--libcall_sp = XEXP (note, 0);
3196 }
3197 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3198 if (note)
3199 libcall_sp++;
3200 note = find_reg_equal_equiv_note (insn);
3201 do
3202 {
3203 reg_use_count = 0;
3204 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3205 NULL);
3206 if (note)
3207 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3208
3209 for (reg_used = ®_use_table[0]; reg_use_count > 0;
3210 reg_used++, reg_use_count--)
3211 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3212 libcall_sp))
3213 {
3214 changed = true;
3215 break;
3216 }
3217 if (INSN_DELETED_P (insn))
3218 break;
3219 }
3220 while (reg_use_count);
3221 }
3222 cselib_process_insn (insn);
3223 }
3224
3225 /* Forget everything at the end of a basic block. Make sure we are
3226 not inside a libcall, they should never cross basic blocks. */
3227 cselib_clear_table ();
3228 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3229 }
3230
3231 cselib_finish ();
3232
3233 /* Global analysis may get into infinite loops for unreachable blocks. */
3234 if (changed && alter_jumps)
3235 {
3236 delete_unreachable_blocks ();
3237 free_reg_set_mem ();
3238 alloc_reg_set_mem (max_reg_num ());
3239 compute_sets ();
3240 }
3241 }
3242
3243 /* Forward propagate copies. This includes copies and constants. Return
3244 nonzero if a change was made. */
3245
3246 static int
cprop(int alter_jumps)3247 cprop (int alter_jumps)
3248 {
3249 int changed;
3250 basic_block bb;
3251 rtx insn;
3252
3253 /* Note we start at block 1. */
3254 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3255 {
3256 if (dump_file != NULL)
3257 fprintf (dump_file, "\n");
3258 return 0;
3259 }
3260
3261 changed = 0;
3262 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3263 {
3264 /* Reset tables used to keep track of what's still valid [since the
3265 start of the block]. */
3266 reset_opr_set_tables ();
3267
3268 FOR_BB_INSNS (bb, insn)
3269 if (INSN_P (insn))
3270 {
3271 changed |= cprop_insn (insn, alter_jumps);
3272
3273 /* Keep track of everything modified by this insn. */
3274 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3275 call mark_oprs_set if we turned the insn into a NOTE. */
3276 if (! NOTE_P (insn))
3277 mark_oprs_set (insn);
3278 }
3279 }
3280
3281 if (dump_file != NULL)
3282 fprintf (dump_file, "\n");
3283
3284 return changed;
3285 }
3286
3287 /* Similar to get_condition, only the resulting condition must be
3288 valid at JUMP, instead of at EARLIEST.
3289
3290 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3291 settle for the condition variable in the jump instruction being integral.
3292 We prefer to be able to record the value of a user variable, rather than
3293 the value of a temporary used in a condition. This could be solved by
3294 recording the value of *every* register scanned by canonicalize_condition,
3295 but this would require some code reorganization. */
3296
3297 rtx
fis_get_condition(rtx jump)3298 fis_get_condition (rtx jump)
3299 {
3300 return get_condition (jump, NULL, false, true);
3301 }
3302
3303 /* Check the comparison COND to see if we can safely form an implicit set from
3304 it. COND is either an EQ or NE comparison. */
3305
3306 static bool
implicit_set_cond_p(rtx cond)3307 implicit_set_cond_p (rtx cond)
3308 {
3309 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3310 rtx cst = XEXP (cond, 1);
3311
3312 /* We can't perform this optimization if either operand might be or might
3313 contain a signed zero. */
3314 if (HONOR_SIGNED_ZEROS (mode))
3315 {
3316 /* It is sufficient to check if CST is or contains a zero. We must
3317 handle float, complex, and vector. If any subpart is a zero, then
3318 the optimization can't be performed. */
3319 /* ??? The complex and vector checks are not implemented yet. We just
3320 always return zero for them. */
3321 if (GET_CODE (cst) == CONST_DOUBLE)
3322 {
3323 REAL_VALUE_TYPE d;
3324 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3325 if (REAL_VALUES_EQUAL (d, dconst0))
3326 return 0;
3327 }
3328 else
3329 return 0;
3330 }
3331
3332 return gcse_constant_p (cst);
3333 }
3334
3335 /* Find the implicit sets of a function. An "implicit set" is a constraint
3336 on the value of a variable, implied by a conditional jump. For example,
3337 following "if (x == 2)", the then branch may be optimized as though the
3338 conditional performed an "explicit set", in this example, "x = 2". This
3339 function records the set patterns that are implicit at the start of each
3340 basic block. */
3341
3342 static void
find_implicit_sets(void)3343 find_implicit_sets (void)
3344 {
3345 basic_block bb, dest;
3346 unsigned int count;
3347 rtx cond, new;
3348
3349 count = 0;
3350 FOR_EACH_BB (bb)
3351 /* Check for more than one successor. */
3352 if (EDGE_COUNT (bb->succs) > 1)
3353 {
3354 cond = fis_get_condition (BB_END (bb));
3355
3356 if (cond
3357 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3358 && REG_P (XEXP (cond, 0))
3359 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3360 && implicit_set_cond_p (cond))
3361 {
3362 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3363 : FALLTHRU_EDGE (bb)->dest;
3364
3365 if (dest && single_pred_p (dest)
3366 && dest != EXIT_BLOCK_PTR)
3367 {
3368 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3369 XEXP (cond, 1));
3370 implicit_sets[dest->index] = new;
3371 if (dump_file)
3372 {
3373 fprintf(dump_file, "Implicit set of reg %d in ",
3374 REGNO (XEXP (cond, 0)));
3375 fprintf(dump_file, "basic block %d\n", dest->index);
3376 }
3377 count++;
3378 }
3379 }
3380 }
3381
3382 if (dump_file)
3383 fprintf (dump_file, "Found %d implicit sets\n", count);
3384 }
3385
3386 /* Perform one copy/constant propagation pass.
3387 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3388 propagation into conditional jumps. If BYPASS_JUMPS is true,
3389 perform conditional jump bypassing optimizations. */
3390
3391 static int
one_cprop_pass(int pass,bool cprop_jumps,bool bypass_jumps)3392 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3393 {
3394 int changed = 0;
3395
3396 global_const_prop_count = local_const_prop_count = 0;
3397 global_copy_prop_count = local_copy_prop_count = 0;
3398
3399 local_cprop_pass (cprop_jumps);
3400
3401 /* Determine implicit sets. */
3402 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3403 find_implicit_sets ();
3404
3405 alloc_hash_table (max_cuid, &set_hash_table, 1);
3406 compute_hash_table (&set_hash_table);
3407
3408 /* Free implicit_sets before peak usage. */
3409 free (implicit_sets);
3410 implicit_sets = NULL;
3411
3412 if (dump_file)
3413 dump_hash_table (dump_file, "SET", &set_hash_table);
3414 if (set_hash_table.n_elems > 0)
3415 {
3416 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3417 compute_cprop_data ();
3418 changed = cprop (cprop_jumps);
3419 if (bypass_jumps)
3420 changed |= bypass_conditional_jumps ();
3421 free_cprop_mem ();
3422 }
3423
3424 free_hash_table (&set_hash_table);
3425
3426 if (dump_file)
3427 {
3428 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3429 current_function_name (), pass, bytes_used);
3430 fprintf (dump_file, "%d local const props, %d local copy props, ",
3431 local_const_prop_count, local_copy_prop_count);
3432 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3433 global_const_prop_count, global_copy_prop_count);
3434 }
3435 /* Global analysis may get into infinite loops for unreachable blocks. */
3436 if (changed && cprop_jumps)
3437 delete_unreachable_blocks ();
3438
3439 return changed;
3440 }
3441
3442 /* Bypass conditional jumps. */
3443
3444 /* The value of last_basic_block at the beginning of the jump_bypass
3445 pass. The use of redirect_edge_and_branch_force may introduce new
3446 basic blocks, but the data flow analysis is only valid for basic
3447 block indices less than bypass_last_basic_block. */
3448
3449 static int bypass_last_basic_block;
3450
3451 /* Find a set of REGNO to a constant that is available at the end of basic
3452 block BB. Returns NULL if no such set is found. Based heavily upon
3453 find_avail_set. */
3454
3455 static struct expr *
find_bypass_set(int regno,int bb)3456 find_bypass_set (int regno, int bb)
3457 {
3458 struct expr *result = 0;
3459
3460 for (;;)
3461 {
3462 rtx src;
3463 struct expr *set = lookup_set (regno, &set_hash_table);
3464
3465 while (set)
3466 {
3467 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3468 break;
3469 set = next_set (regno, set);
3470 }
3471
3472 if (set == 0)
3473 break;
3474
3475 gcc_assert (GET_CODE (set->expr) == SET);
3476
3477 src = SET_SRC (set->expr);
3478 if (gcse_constant_p (src))
3479 result = set;
3480
3481 if (! REG_P (src))
3482 break;
3483
3484 regno = REGNO (src);
3485 }
3486 return result;
3487 }
3488
3489
3490 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3491 any of the instructions inserted on an edge. Jump bypassing places
3492 condition code setters on CFG edges using insert_insn_on_edge. This
3493 function is required to check that our data flow analysis is still
3494 valid prior to commit_edge_insertions. */
3495
3496 static bool
reg_killed_on_edge(rtx reg,edge e)3497 reg_killed_on_edge (rtx reg, edge e)
3498 {
3499 rtx insn;
3500
3501 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3502 if (INSN_P (insn) && reg_set_p (reg, insn))
3503 return true;
3504
3505 return false;
3506 }
3507
3508 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3509 basic block BB which has more than one predecessor. If not NULL, SETCC
3510 is the first instruction of BB, which is immediately followed by JUMP_INSN
3511 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3512 Returns nonzero if a change was made.
3513
3514 During the jump bypassing pass, we may place copies of SETCC instructions
3515 on CFG edges. The following routine must be careful to pay attention to
3516 these inserted insns when performing its transformations. */
3517
3518 static int
bypass_block(basic_block bb,rtx setcc,rtx jump)3519 bypass_block (basic_block bb, rtx setcc, rtx jump)
3520 {
3521 rtx insn, note;
3522 edge e, edest;
3523 int i, change;
3524 int may_be_loop_header;
3525 unsigned removed_p;
3526 edge_iterator ei;
3527
3528 insn = (setcc != NULL) ? setcc : jump;
3529
3530 /* Determine set of register uses in INSN. */
3531 reg_use_count = 0;
3532 note_uses (&PATTERN (insn), find_used_regs, NULL);
3533 note = find_reg_equal_equiv_note (insn);
3534 if (note)
3535 find_used_regs (&XEXP (note, 0), NULL);
3536
3537 may_be_loop_header = false;
3538 FOR_EACH_EDGE (e, ei, bb->preds)
3539 if (e->flags & EDGE_DFS_BACK)
3540 {
3541 may_be_loop_header = true;
3542 break;
3543 }
3544
3545 change = 0;
3546 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3547 {
3548 removed_p = 0;
3549
3550 if (e->flags & EDGE_COMPLEX)
3551 {
3552 ei_next (&ei);
3553 continue;
3554 }
3555
3556 /* We can't redirect edges from new basic blocks. */
3557 if (e->src->index >= bypass_last_basic_block)
3558 {
3559 ei_next (&ei);
3560 continue;
3561 }
3562
3563 /* The irreducible loops created by redirecting of edges entering the
3564 loop from outside would decrease effectiveness of some of the following
3565 optimizations, so prevent this. */
3566 if (may_be_loop_header
3567 && !(e->flags & EDGE_DFS_BACK))
3568 {
3569 ei_next (&ei);
3570 continue;
3571 }
3572
3573 for (i = 0; i < reg_use_count; i++)
3574 {
3575 struct reg_use *reg_used = ®_use_table[i];
3576 unsigned int regno = REGNO (reg_used->reg_rtx);
3577 basic_block dest, old_dest;
3578 struct expr *set;
3579 rtx src, new;
3580
3581 if (regno >= max_gcse_regno)
3582 continue;
3583
3584 set = find_bypass_set (regno, e->src->index);
3585
3586 if (! set)
3587 continue;
3588
3589 /* Check the data flow is valid after edge insertions. */
3590 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3591 continue;
3592
3593 src = SET_SRC (pc_set (jump));
3594
3595 if (setcc != NULL)
3596 src = simplify_replace_rtx (src,
3597 SET_DEST (PATTERN (setcc)),
3598 SET_SRC (PATTERN (setcc)));
3599
3600 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3601 SET_SRC (set->expr));
3602
3603 /* Jump bypassing may have already placed instructions on
3604 edges of the CFG. We can't bypass an outgoing edge that
3605 has instructions associated with it, as these insns won't
3606 get executed if the incoming edge is redirected. */
3607
3608 if (new == pc_rtx)
3609 {
3610 edest = FALLTHRU_EDGE (bb);
3611 dest = edest->insns.r ? NULL : edest->dest;
3612 }
3613 else if (GET_CODE (new) == LABEL_REF)
3614 {
3615 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3616 /* Don't bypass edges containing instructions. */
3617 edest = find_edge (bb, dest);
3618 if (edest && edest->insns.r)
3619 dest = NULL;
3620 }
3621 else
3622 dest = NULL;
3623
3624 /* Avoid unification of the edge with other edges from original
3625 branch. We would end up emitting the instruction on "both"
3626 edges. */
3627
3628 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3629 && find_edge (e->src, dest))
3630 dest = NULL;
3631
3632 old_dest = e->dest;
3633 if (dest != NULL
3634 && dest != old_dest
3635 && dest != EXIT_BLOCK_PTR)
3636 {
3637 redirect_edge_and_branch_force (e, dest);
3638
3639 /* Copy the register setter to the redirected edge.
3640 Don't copy CC0 setters, as CC0 is dead after jump. */
3641 if (setcc)
3642 {
3643 rtx pat = PATTERN (setcc);
3644 if (!CC0_P (SET_DEST (pat)))
3645 insert_insn_on_edge (copy_insn (pat), e);
3646 }
3647
3648 if (dump_file != NULL)
3649 {
3650 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3651 "in jump_insn %d equals constant ",
3652 regno, INSN_UID (jump));
3653 print_rtl (dump_file, SET_SRC (set->expr));
3654 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3655 e->src->index, old_dest->index, dest->index);
3656 }
3657 change = 1;
3658 removed_p = 1;
3659 break;
3660 }
3661 }
3662 if (!removed_p)
3663 ei_next (&ei);
3664 }
3665 return change;
3666 }
3667
3668 /* Find basic blocks with more than one predecessor that only contain a
3669 single conditional jump. If the result of the comparison is known at
3670 compile-time from any incoming edge, redirect that edge to the
3671 appropriate target. Returns nonzero if a change was made.
3672
3673 This function is now mis-named, because we also handle indirect jumps. */
3674
3675 static int
bypass_conditional_jumps(void)3676 bypass_conditional_jumps (void)
3677 {
3678 basic_block bb;
3679 int changed;
3680 rtx setcc;
3681 rtx insn;
3682 rtx dest;
3683
3684 /* Note we start at block 1. */
3685 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3686 return 0;
3687
3688 bypass_last_basic_block = last_basic_block;
3689 mark_dfs_back_edges ();
3690
3691 changed = 0;
3692 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3693 EXIT_BLOCK_PTR, next_bb)
3694 {
3695 /* Check for more than one predecessor. */
3696 if (!single_pred_p (bb))
3697 {
3698 setcc = NULL_RTX;
3699 FOR_BB_INSNS (bb, insn)
3700 if (NONJUMP_INSN_P (insn))
3701 {
3702 if (setcc)
3703 break;
3704 if (GET_CODE (PATTERN (insn)) != SET)
3705 break;
3706
3707 dest = SET_DEST (PATTERN (insn));
3708 if (REG_P (dest) || CC0_P (dest))
3709 setcc = insn;
3710 else
3711 break;
3712 }
3713 else if (JUMP_P (insn))
3714 {
3715 if ((any_condjump_p (insn) || computed_jump_p (insn))
3716 && onlyjump_p (insn))
3717 changed |= bypass_block (bb, setcc, insn);
3718 break;
3719 }
3720 else if (INSN_P (insn))
3721 break;
3722 }
3723 }
3724
3725 /* If we bypassed any register setting insns, we inserted a
3726 copy on the redirected edge. These need to be committed. */
3727 if (changed)
3728 commit_edge_insertions();
3729
3730 return changed;
3731 }
3732
3733 /* Compute PRE+LCM working variables. */
3734
3735 /* Local properties of expressions. */
3736 /* Nonzero for expressions that are transparent in the block. */
3737 static sbitmap *transp;
3738
3739 /* Nonzero for expressions that are transparent at the end of the block.
3740 This is only zero for expressions killed by abnormal critical edge
3741 created by a calls. */
3742 static sbitmap *transpout;
3743
3744 /* Nonzero for expressions that are computed (available) in the block. */
3745 static sbitmap *comp;
3746
3747 /* Nonzero for expressions that are locally anticipatable in the block. */
3748 static sbitmap *antloc;
3749
3750 /* Nonzero for expressions where this block is an optimal computation
3751 point. */
3752 static sbitmap *pre_optimal;
3753
3754 /* Nonzero for expressions which are redundant in a particular block. */
3755 static sbitmap *pre_redundant;
3756
3757 /* Nonzero for expressions which should be inserted on a specific edge. */
3758 static sbitmap *pre_insert_map;
3759
3760 /* Nonzero for expressions which should be deleted in a specific block. */
3761 static sbitmap *pre_delete_map;
3762
3763 /* Contains the edge_list returned by pre_edge_lcm. */
3764 static struct edge_list *edge_list;
3765
3766 /* Redundant insns. */
3767 static sbitmap pre_redundant_insns;
3768
3769 /* Allocate vars used for PRE analysis. */
3770
3771 static void
alloc_pre_mem(int n_blocks,int n_exprs)3772 alloc_pre_mem (int n_blocks, int n_exprs)
3773 {
3774 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3775 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3776 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3777
3778 pre_optimal = NULL;
3779 pre_redundant = NULL;
3780 pre_insert_map = NULL;
3781 pre_delete_map = NULL;
3782 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3783
3784 /* pre_insert and pre_delete are allocated later. */
3785 }
3786
3787 /* Free vars used for PRE analysis. */
3788
3789 static void
free_pre_mem(void)3790 free_pre_mem (void)
3791 {
3792 sbitmap_vector_free (transp);
3793 sbitmap_vector_free (comp);
3794
3795 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3796
3797 if (pre_optimal)
3798 sbitmap_vector_free (pre_optimal);
3799 if (pre_redundant)
3800 sbitmap_vector_free (pre_redundant);
3801 if (pre_insert_map)
3802 sbitmap_vector_free (pre_insert_map);
3803 if (pre_delete_map)
3804 sbitmap_vector_free (pre_delete_map);
3805
3806 transp = comp = NULL;
3807 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3808 }
3809
3810 /* Top level routine to do the dataflow analysis needed by PRE. */
3811
3812 static void
compute_pre_data(void)3813 compute_pre_data (void)
3814 {
3815 sbitmap trapping_expr;
3816 basic_block bb;
3817 unsigned int ui;
3818
3819 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3820 sbitmap_vector_zero (ae_kill, last_basic_block);
3821
3822 /* Collect expressions which might trap. */
3823 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3824 sbitmap_zero (trapping_expr);
3825 for (ui = 0; ui < expr_hash_table.size; ui++)
3826 {
3827 struct expr *e;
3828 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3829 if (may_trap_p (e->expr))
3830 SET_BIT (trapping_expr, e->bitmap_index);
3831 }
3832
3833 /* Compute ae_kill for each basic block using:
3834
3835 ~(TRANSP | COMP)
3836 */
3837
3838 FOR_EACH_BB (bb)
3839 {
3840 edge e;
3841 edge_iterator ei;
3842
3843 /* If the current block is the destination of an abnormal edge, we
3844 kill all trapping expressions because we won't be able to properly
3845 place the instruction on the edge. So make them neither
3846 anticipatable nor transparent. This is fairly conservative. */
3847 FOR_EACH_EDGE (e, ei, bb->preds)
3848 if (e->flags & EDGE_ABNORMAL)
3849 {
3850 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3851 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3852 break;
3853 }
3854
3855 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3856 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3857 }
3858
3859 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3860 ae_kill, &pre_insert_map, &pre_delete_map);
3861 sbitmap_vector_free (antloc);
3862 antloc = NULL;
3863 sbitmap_vector_free (ae_kill);
3864 ae_kill = NULL;
3865 sbitmap_free (trapping_expr);
3866 }
3867
3868 /* PRE utilities */
3869
3870 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3871 block BB.
3872
3873 VISITED is a pointer to a working buffer for tracking which BB's have
3874 been visited. It is NULL for the top-level call.
3875
3876 We treat reaching expressions that go through blocks containing the same
3877 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3878 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3879 2 as not reaching. The intent is to improve the probability of finding
3880 only one reaching expression and to reduce register lifetimes by picking
3881 the closest such expression. */
3882
3883 static int
pre_expr_reaches_here_p_work(basic_block occr_bb,struct expr * expr,basic_block bb,char * visited)3884 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3885 {
3886 edge pred;
3887 edge_iterator ei;
3888
3889 FOR_EACH_EDGE (pred, ei, bb->preds)
3890 {
3891 basic_block pred_bb = pred->src;
3892
3893 if (pred->src == ENTRY_BLOCK_PTR
3894 /* Has predecessor has already been visited? */
3895 || visited[pred_bb->index])
3896 ;/* Nothing to do. */
3897
3898 /* Does this predecessor generate this expression? */
3899 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3900 {
3901 /* Is this the occurrence we're looking for?
3902 Note that there's only one generating occurrence per block
3903 so we just need to check the block number. */
3904 if (occr_bb == pred_bb)
3905 return 1;
3906
3907 visited[pred_bb->index] = 1;
3908 }
3909 /* Ignore this predecessor if it kills the expression. */
3910 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3911 visited[pred_bb->index] = 1;
3912
3913 /* Neither gen nor kill. */
3914 else
3915 {
3916 visited[pred_bb->index] = 1;
3917 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3918 return 1;
3919 }
3920 }
3921
3922 /* All paths have been checked. */
3923 return 0;
3924 }
3925
3926 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3927 memory allocated for that function is returned. */
3928
3929 static int
pre_expr_reaches_here_p(basic_block occr_bb,struct expr * expr,basic_block bb)3930 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3931 {
3932 int rval;
3933 char *visited = XCNEWVEC (char, last_basic_block);
3934
3935 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3936
3937 free (visited);
3938 return rval;
3939 }
3940
3941
3942 /* Given an expr, generate RTL which we can insert at the end of a BB,
3943 or on an edge. Set the block number of any insns generated to
3944 the value of BB. */
3945
3946 static rtx
process_insert_insn(struct expr * expr)3947 process_insert_insn (struct expr *expr)
3948 {
3949 rtx reg = expr->reaching_reg;
3950 rtx exp = copy_rtx (expr->expr);
3951 rtx pat;
3952
3953 start_sequence ();
3954
3955 /* If the expression is something that's an operand, like a constant,
3956 just copy it to a register. */
3957 if (general_operand (exp, GET_MODE (reg)))
3958 emit_move_insn (reg, exp);
3959
3960 /* Otherwise, make a new insn to compute this expression and make sure the
3961 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3962 expression to make sure we don't have any sharing issues. */
3963 else
3964 {
3965 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3966
3967 if (insn_invalid_p (insn))
3968 gcc_unreachable ();
3969 }
3970
3971
3972 pat = get_insns ();
3973 end_sequence ();
3974
3975 return pat;
3976 }
3977
3978 /* Add EXPR to the end of basic block BB.
3979
3980 This is used by both the PRE and code hoisting.
3981
3982 For PRE, we want to verify that the expr is either transparent
3983 or locally anticipatable in the target block. This check makes
3984 no sense for code hoisting. */
3985
3986 static void
insert_insn_end_bb(struct expr * expr,basic_block bb,int pre)3987 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3988 {
3989 rtx insn = BB_END (bb);
3990 rtx new_insn;
3991 rtx reg = expr->reaching_reg;
3992 int regno = REGNO (reg);
3993 rtx pat, pat_end;
3994
3995 pat = process_insert_insn (expr);
3996 gcc_assert (pat && INSN_P (pat));
3997
3998 pat_end = pat;
3999 while (NEXT_INSN (pat_end) != NULL_RTX)
4000 pat_end = NEXT_INSN (pat_end);
4001
4002 /* If the last insn is a jump, insert EXPR in front [taking care to
4003 handle cc0, etc. properly]. Similarly we need to care trapping
4004 instructions in presence of non-call exceptions. */
4005
4006 if (JUMP_P (insn)
4007 || (NONJUMP_INSN_P (insn)
4008 && (!single_succ_p (bb)
4009 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4010 {
4011 #ifdef HAVE_cc0
4012 rtx note;
4013 #endif
4014 /* It should always be the case that we can put these instructions
4015 anywhere in the basic block with performing PRE optimizations.
4016 Check this. */
4017 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4018 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4019 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4020
4021 /* If this is a jump table, then we can't insert stuff here. Since
4022 we know the previous real insn must be the tablejump, we insert
4023 the new instruction just before the tablejump. */
4024 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4025 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4026 insn = prev_real_insn (insn);
4027
4028 #ifdef HAVE_cc0
4029 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4030 if cc0 isn't set. */
4031 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4032 if (note)
4033 insn = XEXP (note, 0);
4034 else
4035 {
4036 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4037 if (maybe_cc0_setter
4038 && INSN_P (maybe_cc0_setter)
4039 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4040 insn = maybe_cc0_setter;
4041 }
4042 #endif
4043 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4044 new_insn = emit_insn_before_noloc (pat, insn);
4045 }
4046
4047 /* Likewise if the last insn is a call, as will happen in the presence
4048 of exception handling. */
4049 else if (CALL_P (insn)
4050 && (!single_succ_p (bb)
4051 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4052 {
4053 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4054 we search backward and place the instructions before the first
4055 parameter is loaded. Do this for everyone for consistency and a
4056 presumption that we'll get better code elsewhere as well.
4057
4058 It should always be the case that we can put these instructions
4059 anywhere in the basic block with performing PRE optimizations.
4060 Check this. */
4061
4062 gcc_assert (!pre
4063 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4064 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4065
4066 /* Since different machines initialize their parameter registers
4067 in different orders, assume nothing. Collect the set of all
4068 parameter registers. */
4069 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4070
4071 /* If we found all the parameter loads, then we want to insert
4072 before the first parameter load.
4073
4074 If we did not find all the parameter loads, then we might have
4075 stopped on the head of the block, which could be a CODE_LABEL.
4076 If we inserted before the CODE_LABEL, then we would be putting
4077 the insn in the wrong basic block. In that case, put the insn
4078 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4079 while (LABEL_P (insn)
4080 || NOTE_INSN_BASIC_BLOCK_P (insn))
4081 insn = NEXT_INSN (insn);
4082
4083 new_insn = emit_insn_before_noloc (pat, insn);
4084 }
4085 else
4086 new_insn = emit_insn_after_noloc (pat, insn);
4087
4088 while (1)
4089 {
4090 if (INSN_P (pat))
4091 {
4092 add_label_notes (PATTERN (pat), new_insn);
4093 note_stores (PATTERN (pat), record_set_info, pat);
4094 }
4095 if (pat == pat_end)
4096 break;
4097 pat = NEXT_INSN (pat);
4098 }
4099
4100 gcse_create_count++;
4101
4102 if (dump_file)
4103 {
4104 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4105 bb->index, INSN_UID (new_insn));
4106 fprintf (dump_file, "copying expression %d to reg %d\n",
4107 expr->bitmap_index, regno);
4108 }
4109 }
4110
4111 /* Insert partially redundant expressions on edges in the CFG to make
4112 the expressions fully redundant. */
4113
4114 static int
pre_edge_insert(struct edge_list * edge_list,struct expr ** index_map)4115 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4116 {
4117 int e, i, j, num_edges, set_size, did_insert = 0;
4118 sbitmap *inserted;
4119
4120 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4121 if it reaches any of the deleted expressions. */
4122
4123 set_size = pre_insert_map[0]->size;
4124 num_edges = NUM_EDGES (edge_list);
4125 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4126 sbitmap_vector_zero (inserted, num_edges);
4127
4128 for (e = 0; e < num_edges; e++)
4129 {
4130 int indx;
4131 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4132
4133 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4134 {
4135 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4136
4137 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4138 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4139 {
4140 struct expr *expr = index_map[j];
4141 struct occr *occr;
4142
4143 /* Now look at each deleted occurrence of this expression. */
4144 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4145 {
4146 if (! occr->deleted_p)
4147 continue;
4148
4149 /* Insert this expression on this edge if it would
4150 reach the deleted occurrence in BB. */
4151 if (!TEST_BIT (inserted[e], j))
4152 {
4153 rtx insn;
4154 edge eg = INDEX_EDGE (edge_list, e);
4155
4156 /* We can't insert anything on an abnormal and
4157 critical edge, so we insert the insn at the end of
4158 the previous block. There are several alternatives
4159 detailed in Morgans book P277 (sec 10.5) for
4160 handling this situation. This one is easiest for
4161 now. */
4162
4163 if (eg->flags & EDGE_ABNORMAL)
4164 insert_insn_end_bb (index_map[j], bb, 0);
4165 else
4166 {
4167 insn = process_insert_insn (index_map[j]);
4168 insert_insn_on_edge (insn, eg);
4169 }
4170
4171 if (dump_file)
4172 {
4173 fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4174 bb->index,
4175 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4176 fprintf (dump_file, "copy expression %d\n",
4177 expr->bitmap_index);
4178 }
4179
4180 update_ld_motion_stores (expr);
4181 SET_BIT (inserted[e], j);
4182 did_insert = 1;
4183 gcse_create_count++;
4184 }
4185 }
4186 }
4187 }
4188 }
4189
4190 sbitmap_vector_free (inserted);
4191 return did_insert;
4192 }
4193
4194 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4195 Given "old_reg <- expr" (INSN), instead of adding after it
4196 reaching_reg <- old_reg
4197 it's better to do the following:
4198 reaching_reg <- expr
4199 old_reg <- reaching_reg
4200 because this way copy propagation can discover additional PRE
4201 opportunities. But if this fails, we try the old way.
4202 When "expr" is a store, i.e.
4203 given "MEM <- old_reg", instead of adding after it
4204 reaching_reg <- old_reg
4205 it's better to add it before as follows:
4206 reaching_reg <- old_reg
4207 MEM <- reaching_reg. */
4208
4209 static void
pre_insert_copy_insn(struct expr * expr,rtx insn)4210 pre_insert_copy_insn (struct expr *expr, rtx insn)
4211 {
4212 rtx reg = expr->reaching_reg;
4213 int regno = REGNO (reg);
4214 int indx = expr->bitmap_index;
4215 rtx pat = PATTERN (insn);
4216 rtx set, first_set, new_insn;
4217 rtx old_reg;
4218 int i;
4219
4220 /* This block matches the logic in hash_scan_insn. */
4221 switch (GET_CODE (pat))
4222 {
4223 case SET:
4224 set = pat;
4225 break;
4226
4227 case PARALLEL:
4228 /* Search through the parallel looking for the set whose
4229 source was the expression that we're interested in. */
4230 first_set = NULL_RTX;
4231 set = NULL_RTX;
4232 for (i = 0; i < XVECLEN (pat, 0); i++)
4233 {
4234 rtx x = XVECEXP (pat, 0, i);
4235 if (GET_CODE (x) == SET)
4236 {
4237 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4238 may not find an equivalent expression, but in this
4239 case the PARALLEL will have a single set. */
4240 if (first_set == NULL_RTX)
4241 first_set = x;
4242 if (expr_equiv_p (SET_SRC (x), expr->expr))
4243 {
4244 set = x;
4245 break;
4246 }
4247 }
4248 }
4249
4250 gcc_assert (first_set);
4251 if (set == NULL_RTX)
4252 set = first_set;
4253 break;
4254
4255 default:
4256 gcc_unreachable ();
4257 }
4258
4259 if (REG_P (SET_DEST (set)))
4260 {
4261 old_reg = SET_DEST (set);
4262 /* Check if we can modify the set destination in the original insn. */
4263 if (validate_change (insn, &SET_DEST (set), reg, 0))
4264 {
4265 new_insn = gen_move_insn (old_reg, reg);
4266 new_insn = emit_insn_after (new_insn, insn);
4267
4268 /* Keep register set table up to date. */
4269 record_one_set (regno, insn);
4270 }
4271 else
4272 {
4273 new_insn = gen_move_insn (reg, old_reg);
4274 new_insn = emit_insn_after (new_insn, insn);
4275
4276 /* Keep register set table up to date. */
4277 record_one_set (regno, new_insn);
4278 }
4279 }
4280 else /* This is possible only in case of a store to memory. */
4281 {
4282 old_reg = SET_SRC (set);
4283 new_insn = gen_move_insn (reg, old_reg);
4284
4285 /* Check if we can modify the set source in the original insn. */
4286 if (validate_change (insn, &SET_SRC (set), reg, 0))
4287 new_insn = emit_insn_before (new_insn, insn);
4288 else
4289 new_insn = emit_insn_after (new_insn, insn);
4290
4291 /* Keep register set table up to date. */
4292 record_one_set (regno, new_insn);
4293 }
4294
4295 gcse_create_count++;
4296
4297 if (dump_file)
4298 fprintf (dump_file,
4299 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4300 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4301 INSN_UID (insn), regno);
4302 }
4303
4304 /* Copy available expressions that reach the redundant expression
4305 to `reaching_reg'. */
4306
4307 static void
pre_insert_copies(void)4308 pre_insert_copies (void)
4309 {
4310 unsigned int i, added_copy;
4311 struct expr *expr;
4312 struct occr *occr;
4313 struct occr *avail;
4314
4315 /* For each available expression in the table, copy the result to
4316 `reaching_reg' if the expression reaches a deleted one.
4317
4318 ??? The current algorithm is rather brute force.
4319 Need to do some profiling. */
4320
4321 for (i = 0; i < expr_hash_table.size; i++)
4322 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4323 {
4324 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4325 we don't want to insert a copy here because the expression may not
4326 really be redundant. So only insert an insn if the expression was
4327 deleted. This test also avoids further processing if the
4328 expression wasn't deleted anywhere. */
4329 if (expr->reaching_reg == NULL)
4330 continue;
4331
4332 /* Set when we add a copy for that expression. */
4333 added_copy = 0;
4334
4335 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4336 {
4337 if (! occr->deleted_p)
4338 continue;
4339
4340 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4341 {
4342 rtx insn = avail->insn;
4343
4344 /* No need to handle this one if handled already. */
4345 if (avail->copied_p)
4346 continue;
4347
4348 /* Don't handle this one if it's a redundant one. */
4349 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4350 continue;
4351
4352 /* Or if the expression doesn't reach the deleted one. */
4353 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4354 expr,
4355 BLOCK_FOR_INSN (occr->insn)))
4356 continue;
4357
4358 added_copy = 1;
4359
4360 /* Copy the result of avail to reaching_reg. */
4361 pre_insert_copy_insn (expr, insn);
4362 avail->copied_p = 1;
4363 }
4364 }
4365
4366 if (added_copy)
4367 update_ld_motion_stores (expr);
4368 }
4369 }
4370
4371 /* Emit move from SRC to DEST noting the equivalence with expression computed
4372 in INSN. */
4373 static rtx
gcse_emit_move_after(rtx src,rtx dest,rtx insn)4374 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4375 {
4376 rtx new;
4377 rtx set = single_set (insn), set2;
4378 rtx note;
4379 rtx eqv;
4380
4381 /* This should never fail since we're creating a reg->reg copy
4382 we've verified to be valid. */
4383
4384 new = emit_insn_after (gen_move_insn (dest, src), insn);
4385
4386 /* Note the equivalence for local CSE pass. */
4387 set2 = single_set (new);
4388 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4389 return new;
4390 if ((note = find_reg_equal_equiv_note (insn)))
4391 eqv = XEXP (note, 0);
4392 else
4393 eqv = SET_SRC (set);
4394
4395 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4396
4397 return new;
4398 }
4399
4400 /* Delete redundant computations.
4401 Deletion is done by changing the insn to copy the `reaching_reg' of
4402 the expression into the result of the SET. It is left to later passes
4403 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4404
4405 Returns nonzero if a change is made. */
4406
4407 static int
pre_delete(void)4408 pre_delete (void)
4409 {
4410 unsigned int i;
4411 int changed;
4412 struct expr *expr;
4413 struct occr *occr;
4414
4415 changed = 0;
4416 for (i = 0; i < expr_hash_table.size; i++)
4417 for (expr = expr_hash_table.table[i];
4418 expr != NULL;
4419 expr = expr->next_same_hash)
4420 {
4421 int indx = expr->bitmap_index;
4422
4423 /* We only need to search antic_occr since we require
4424 ANTLOC != 0. */
4425
4426 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4427 {
4428 rtx insn = occr->insn;
4429 rtx set;
4430 basic_block bb = BLOCK_FOR_INSN (insn);
4431
4432 /* We only delete insns that have a single_set. */
4433 if (TEST_BIT (pre_delete_map[bb->index], indx)
4434 && (set = single_set (insn)) != 0)
4435 {
4436 /* Create a pseudo-reg to store the result of reaching
4437 expressions into. Get the mode for the new pseudo from
4438 the mode of the original destination pseudo. */
4439 if (expr->reaching_reg == NULL)
4440 expr->reaching_reg
4441 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4442
4443 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4444 delete_insn (insn);
4445 occr->deleted_p = 1;
4446 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4447 changed = 1;
4448 gcse_subst_count++;
4449
4450 if (dump_file)
4451 {
4452 fprintf (dump_file,
4453 "PRE: redundant insn %d (expression %d) in ",
4454 INSN_UID (insn), indx);
4455 fprintf (dump_file, "bb %d, reaching reg is %d\n",
4456 bb->index, REGNO (expr->reaching_reg));
4457 }
4458 }
4459 }
4460 }
4461
4462 return changed;
4463 }
4464
4465 /* Perform GCSE optimizations using PRE.
4466 This is called by one_pre_gcse_pass after all the dataflow analysis
4467 has been done.
4468
4469 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4470 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4471 Compiler Design and Implementation.
4472
4473 ??? A new pseudo reg is created to hold the reaching expression. The nice
4474 thing about the classical approach is that it would try to use an existing
4475 reg. If the register can't be adequately optimized [i.e. we introduce
4476 reload problems], one could add a pass here to propagate the new register
4477 through the block.
4478
4479 ??? We don't handle single sets in PARALLELs because we're [currently] not
4480 able to copy the rest of the parallel when we insert copies to create full
4481 redundancies from partial redundancies. However, there's no reason why we
4482 can't handle PARALLELs in the cases where there are no partial
4483 redundancies. */
4484
4485 static int
pre_gcse(void)4486 pre_gcse (void)
4487 {
4488 unsigned int i;
4489 int did_insert, changed;
4490 struct expr **index_map;
4491 struct expr *expr;
4492
4493 /* Compute a mapping from expression number (`bitmap_index') to
4494 hash table entry. */
4495
4496 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4497 for (i = 0; i < expr_hash_table.size; i++)
4498 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4499 index_map[expr->bitmap_index] = expr;
4500
4501 /* Reset bitmap used to track which insns are redundant. */
4502 pre_redundant_insns = sbitmap_alloc (max_cuid);
4503 sbitmap_zero (pre_redundant_insns);
4504
4505 /* Delete the redundant insns first so that
4506 - we know what register to use for the new insns and for the other
4507 ones with reaching expressions
4508 - we know which insns are redundant when we go to create copies */
4509
4510 changed = pre_delete ();
4511
4512 did_insert = pre_edge_insert (edge_list, index_map);
4513
4514 /* In other places with reaching expressions, copy the expression to the
4515 specially allocated pseudo-reg that reaches the redundant expr. */
4516 pre_insert_copies ();
4517 if (did_insert)
4518 {
4519 commit_edge_insertions ();
4520 changed = 1;
4521 }
4522
4523 free (index_map);
4524 sbitmap_free (pre_redundant_insns);
4525 return changed;
4526 }
4527
4528 /* Top level routine to perform one PRE GCSE pass.
4529
4530 Return nonzero if a change was made. */
4531
4532 static int
one_pre_gcse_pass(int pass)4533 one_pre_gcse_pass (int pass)
4534 {
4535 int changed = 0;
4536
4537 gcse_subst_count = 0;
4538 gcse_create_count = 0;
4539
4540 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4541 add_noreturn_fake_exit_edges ();
4542 if (flag_gcse_lm)
4543 compute_ld_motion_mems ();
4544
4545 compute_hash_table (&expr_hash_table);
4546 trim_ld_motion_mems ();
4547 if (dump_file)
4548 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4549
4550 if (expr_hash_table.n_elems > 0)
4551 {
4552 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4553 compute_pre_data ();
4554 changed |= pre_gcse ();
4555 free_edge_list (edge_list);
4556 free_pre_mem ();
4557 }
4558
4559 free_ldst_mems ();
4560 remove_fake_exit_edges ();
4561 free_hash_table (&expr_hash_table);
4562
4563 if (dump_file)
4564 {
4565 fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4566 current_function_name (), pass, bytes_used);
4567 fprintf (dump_file, "%d substs, %d insns created\n",
4568 gcse_subst_count, gcse_create_count);
4569 }
4570
4571 return changed;
4572 }
4573
4574 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4575 If notes are added to an insn which references a CODE_LABEL, the
4576 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4577 because the following loop optimization pass requires them. */
4578
4579 /* ??? If there was a jump optimization pass after gcse and before loop,
4580 then we would not need to do this here, because jump would add the
4581 necessary REG_LABEL notes. */
4582
4583 static void
add_label_notes(rtx x,rtx insn)4584 add_label_notes (rtx x, rtx insn)
4585 {
4586 enum rtx_code code = GET_CODE (x);
4587 int i, j;
4588 const char *fmt;
4589
4590 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4591 {
4592 /* This code used to ignore labels that referred to dispatch tables to
4593 avoid flow generating (slightly) worse code.
4594
4595 We no longer ignore such label references (see LABEL_REF handling in
4596 mark_jump_label for additional information). */
4597
4598 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4599 REG_NOTES (insn));
4600 if (LABEL_P (XEXP (x, 0)))
4601 LABEL_NUSES (XEXP (x, 0))++;
4602 return;
4603 }
4604
4605 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4606 {
4607 if (fmt[i] == 'e')
4608 add_label_notes (XEXP (x, i), insn);
4609 else if (fmt[i] == 'E')
4610 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4611 add_label_notes (XVECEXP (x, i, j), insn);
4612 }
4613 }
4614
4615 /* Compute transparent outgoing information for each block.
4616
4617 An expression is transparent to an edge unless it is killed by
4618 the edge itself. This can only happen with abnormal control flow,
4619 when the edge is traversed through a call. This happens with
4620 non-local labels and exceptions.
4621
4622 This would not be necessary if we split the edge. While this is
4623 normally impossible for abnormal critical edges, with some effort
4624 it should be possible with exception handling, since we still have
4625 control over which handler should be invoked. But due to increased
4626 EH table sizes, this may not be worthwhile. */
4627
4628 static void
compute_transpout(void)4629 compute_transpout (void)
4630 {
4631 basic_block bb;
4632 unsigned int i;
4633 struct expr *expr;
4634
4635 sbitmap_vector_ones (transpout, last_basic_block);
4636
4637 FOR_EACH_BB (bb)
4638 {
4639 /* Note that flow inserted a nop a the end of basic blocks that
4640 end in call instructions for reasons other than abnormal
4641 control flow. */
4642 if (! CALL_P (BB_END (bb)))
4643 continue;
4644
4645 for (i = 0; i < expr_hash_table.size; i++)
4646 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4647 if (MEM_P (expr->expr))
4648 {
4649 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4650 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4651 continue;
4652
4653 /* ??? Optimally, we would use interprocedural alias
4654 analysis to determine if this mem is actually killed
4655 by this call. */
4656 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4657 }
4658 }
4659 }
4660
4661 /* Code Hoisting variables and subroutines. */
4662
4663 /* Very busy expressions. */
4664 static sbitmap *hoist_vbein;
4665 static sbitmap *hoist_vbeout;
4666
4667 /* Hoistable expressions. */
4668 static sbitmap *hoist_exprs;
4669
4670 /* ??? We could compute post dominators and run this algorithm in
4671 reverse to perform tail merging, doing so would probably be
4672 more effective than the tail merging code in jump.c.
4673
4674 It's unclear if tail merging could be run in parallel with
4675 code hoisting. It would be nice. */
4676
4677 /* Allocate vars used for code hoisting analysis. */
4678
4679 static void
alloc_code_hoist_mem(int n_blocks,int n_exprs)4680 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4681 {
4682 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4683 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4684 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4685
4686 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4687 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4688 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4689 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4690 }
4691
4692 /* Free vars used for code hoisting analysis. */
4693
4694 static void
free_code_hoist_mem(void)4695 free_code_hoist_mem (void)
4696 {
4697 sbitmap_vector_free (antloc);
4698 sbitmap_vector_free (transp);
4699 sbitmap_vector_free (comp);
4700
4701 sbitmap_vector_free (hoist_vbein);
4702 sbitmap_vector_free (hoist_vbeout);
4703 sbitmap_vector_free (hoist_exprs);
4704 sbitmap_vector_free (transpout);
4705
4706 free_dominance_info (CDI_DOMINATORS);
4707 }
4708
4709 /* Compute the very busy expressions at entry/exit from each block.
4710
4711 An expression is very busy if all paths from a given point
4712 compute the expression. */
4713
4714 static void
compute_code_hoist_vbeinout(void)4715 compute_code_hoist_vbeinout (void)
4716 {
4717 int changed, passes;
4718 basic_block bb;
4719
4720 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4721 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4722
4723 passes = 0;
4724 changed = 1;
4725
4726 while (changed)
4727 {
4728 changed = 0;
4729
4730 /* We scan the blocks in the reverse order to speed up
4731 the convergence. */
4732 FOR_EACH_BB_REVERSE (bb)
4733 {
4734 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4735 hoist_vbeout[bb->index], transp[bb->index]);
4736 if (bb->next_bb != EXIT_BLOCK_PTR)
4737 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4738 }
4739
4740 passes++;
4741 }
4742
4743 if (dump_file)
4744 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4745 }
4746
4747 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4748
4749 static void
compute_code_hoist_data(void)4750 compute_code_hoist_data (void)
4751 {
4752 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4753 compute_transpout ();
4754 compute_code_hoist_vbeinout ();
4755 calculate_dominance_info (CDI_DOMINATORS);
4756 if (dump_file)
4757 fprintf (dump_file, "\n");
4758 }
4759
4760 /* Determine if the expression identified by EXPR_INDEX would
4761 reach BB unimpared if it was placed at the end of EXPR_BB.
4762
4763 It's unclear exactly what Muchnick meant by "unimpared". It seems
4764 to me that the expression must either be computed or transparent in
4765 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4766 would allow the expression to be hoisted out of loops, even if
4767 the expression wasn't a loop invariant.
4768
4769 Contrast this to reachability for PRE where an expression is
4770 considered reachable if *any* path reaches instead of *all*
4771 paths. */
4772
4773 static int
hoist_expr_reaches_here_p(basic_block expr_bb,int expr_index,basic_block bb,char * visited)4774 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4775 {
4776 edge pred;
4777 edge_iterator ei;
4778 int visited_allocated_locally = 0;
4779
4780
4781 if (visited == NULL)
4782 {
4783 visited_allocated_locally = 1;
4784 visited = XCNEWVEC (char, last_basic_block);
4785 }
4786
4787 FOR_EACH_EDGE (pred, ei, bb->preds)
4788 {
4789 basic_block pred_bb = pred->src;
4790
4791 if (pred->src == ENTRY_BLOCK_PTR)
4792 break;
4793 else if (pred_bb == expr_bb)
4794 continue;
4795 else if (visited[pred_bb->index])
4796 continue;
4797
4798 /* Does this predecessor generate this expression? */
4799 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4800 break;
4801 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4802 break;
4803
4804 /* Not killed. */
4805 else
4806 {
4807 visited[pred_bb->index] = 1;
4808 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4809 pred_bb, visited))
4810 break;
4811 }
4812 }
4813 if (visited_allocated_locally)
4814 free (visited);
4815
4816 return (pred == NULL);
4817 }
4818
4819 /* Actually perform code hoisting. */
4820
4821 static void
hoist_code(void)4822 hoist_code (void)
4823 {
4824 basic_block bb, dominated;
4825 basic_block *domby;
4826 unsigned int domby_len;
4827 unsigned int i,j;
4828 struct expr **index_map;
4829 struct expr *expr;
4830
4831 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4832
4833 /* Compute a mapping from expression number (`bitmap_index') to
4834 hash table entry. */
4835
4836 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4837 for (i = 0; i < expr_hash_table.size; i++)
4838 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4839 index_map[expr->bitmap_index] = expr;
4840
4841 /* Walk over each basic block looking for potentially hoistable
4842 expressions, nothing gets hoisted from the entry block. */
4843 FOR_EACH_BB (bb)
4844 {
4845 int found = 0;
4846 int insn_inserted_p;
4847
4848 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4849 /* Examine each expression that is very busy at the exit of this
4850 block. These are the potentially hoistable expressions. */
4851 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4852 {
4853 int hoistable = 0;
4854
4855 if (TEST_BIT (hoist_vbeout[bb->index], i)
4856 && TEST_BIT (transpout[bb->index], i))
4857 {
4858 /* We've found a potentially hoistable expression, now
4859 we look at every block BB dominates to see if it
4860 computes the expression. */
4861 for (j = 0; j < domby_len; j++)
4862 {
4863 dominated = domby[j];
4864 /* Ignore self dominance. */
4865 if (bb == dominated)
4866 continue;
4867 /* We've found a dominated block, now see if it computes
4868 the busy expression and whether or not moving that
4869 expression to the "beginning" of that block is safe. */
4870 if (!TEST_BIT (antloc[dominated->index], i))
4871 continue;
4872
4873 /* Note if the expression would reach the dominated block
4874 unimpared if it was placed at the end of BB.
4875
4876 Keep track of how many times this expression is hoistable
4877 from a dominated block into BB. */
4878 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4879 hoistable++;
4880 }
4881
4882 /* If we found more than one hoistable occurrence of this
4883 expression, then note it in the bitmap of expressions to
4884 hoist. It makes no sense to hoist things which are computed
4885 in only one BB, and doing so tends to pessimize register
4886 allocation. One could increase this value to try harder
4887 to avoid any possible code expansion due to register
4888 allocation issues; however experiments have shown that
4889 the vast majority of hoistable expressions are only movable
4890 from two successors, so raising this threshold is likely
4891 to nullify any benefit we get from code hoisting. */
4892 if (hoistable > 1)
4893 {
4894 SET_BIT (hoist_exprs[bb->index], i);
4895 found = 1;
4896 }
4897 }
4898 }
4899 /* If we found nothing to hoist, then quit now. */
4900 if (! found)
4901 {
4902 free (domby);
4903 continue;
4904 }
4905
4906 /* Loop over all the hoistable expressions. */
4907 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4908 {
4909 /* We want to insert the expression into BB only once, so
4910 note when we've inserted it. */
4911 insn_inserted_p = 0;
4912
4913 /* These tests should be the same as the tests above. */
4914 if (TEST_BIT (hoist_exprs[bb->index], i))
4915 {
4916 /* We've found a potentially hoistable expression, now
4917 we look at every block BB dominates to see if it
4918 computes the expression. */
4919 for (j = 0; j < domby_len; j++)
4920 {
4921 dominated = domby[j];
4922 /* Ignore self dominance. */
4923 if (bb == dominated)
4924 continue;
4925
4926 /* We've found a dominated block, now see if it computes
4927 the busy expression and whether or not moving that
4928 expression to the "beginning" of that block is safe. */
4929 if (!TEST_BIT (antloc[dominated->index], i))
4930 continue;
4931
4932 /* The expression is computed in the dominated block and
4933 it would be safe to compute it at the start of the
4934 dominated block. Now we have to determine if the
4935 expression would reach the dominated block if it was
4936 placed at the end of BB. */
4937 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4938 {
4939 struct expr *expr = index_map[i];
4940 struct occr *occr = expr->antic_occr;
4941 rtx insn;
4942 rtx set;
4943
4944 /* Find the right occurrence of this expression. */
4945 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4946 occr = occr->next;
4947
4948 gcc_assert (occr);
4949 insn = occr->insn;
4950 set = single_set (insn);
4951 gcc_assert (set);
4952
4953 /* Create a pseudo-reg to store the result of reaching
4954 expressions into. Get the mode for the new pseudo
4955 from the mode of the original destination pseudo. */
4956 if (expr->reaching_reg == NULL)
4957 expr->reaching_reg
4958 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4959
4960 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4961 delete_insn (insn);
4962 occr->deleted_p = 1;
4963 if (!insn_inserted_p)
4964 {
4965 insert_insn_end_bb (index_map[i], bb, 0);
4966 insn_inserted_p = 1;
4967 }
4968 }
4969 }
4970 }
4971 }
4972 free (domby);
4973 }
4974
4975 free (index_map);
4976 }
4977
4978 /* Top level routine to perform one code hoisting (aka unification) pass
4979
4980 Return nonzero if a change was made. */
4981
4982 static int
one_code_hoisting_pass(void)4983 one_code_hoisting_pass (void)
4984 {
4985 int changed = 0;
4986
4987 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4988 compute_hash_table (&expr_hash_table);
4989 if (dump_file)
4990 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4991
4992 if (expr_hash_table.n_elems > 0)
4993 {
4994 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4995 compute_code_hoist_data ();
4996 hoist_code ();
4997 free_code_hoist_mem ();
4998 }
4999
5000 free_hash_table (&expr_hash_table);
5001
5002 return changed;
5003 }
5004
5005 /* Here we provide the things required to do store motion towards
5006 the exit. In order for this to be effective, gcse also needed to
5007 be taught how to move a load when it is kill only by a store to itself.
5008
5009 int i;
5010 float a[10];
5011
5012 void foo(float scale)
5013 {
5014 for (i=0; i<10; i++)
5015 a[i] *= scale;
5016 }
5017
5018 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5019 the load out since its live around the loop, and stored at the bottom
5020 of the loop.
5021
5022 The 'Load Motion' referred to and implemented in this file is
5023 an enhancement to gcse which when using edge based lcm, recognizes
5024 this situation and allows gcse to move the load out of the loop.
5025
5026 Once gcse has hoisted the load, store motion can then push this
5027 load towards the exit, and we end up with no loads or stores of 'i'
5028 in the loop. */
5029
5030 static hashval_t
pre_ldst_expr_hash(const void * p)5031 pre_ldst_expr_hash (const void *p)
5032 {
5033 int do_not_record_p = 0;
5034 const struct ls_expr *x = p;
5035 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5036 }
5037
5038 static int
pre_ldst_expr_eq(const void * p1,const void * p2)5039 pre_ldst_expr_eq (const void *p1, const void *p2)
5040 {
5041 const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5042 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5043 }
5044
5045 /* This will search the ldst list for a matching expression. If it
5046 doesn't find one, we create one and initialize it. */
5047
5048 static struct ls_expr *
ldst_entry(rtx x)5049 ldst_entry (rtx x)
5050 {
5051 int do_not_record_p = 0;
5052 struct ls_expr * ptr;
5053 unsigned int hash;
5054 void **slot;
5055 struct ls_expr e;
5056
5057 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5058 NULL, /*have_reg_qty=*/false);
5059
5060 e.pattern = x;
5061 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5062 if (*slot)
5063 return (struct ls_expr *)*slot;
5064
5065 ptr = XNEW (struct ls_expr);
5066
5067 ptr->next = pre_ldst_mems;
5068 ptr->expr = NULL;
5069 ptr->pattern = x;
5070 ptr->pattern_regs = NULL_RTX;
5071 ptr->loads = NULL_RTX;
5072 ptr->stores = NULL_RTX;
5073 ptr->reaching_reg = NULL_RTX;
5074 ptr->invalid = 0;
5075 ptr->index = 0;
5076 ptr->hash_index = hash;
5077 pre_ldst_mems = ptr;
5078 *slot = ptr;
5079
5080 return ptr;
5081 }
5082
5083 /* Free up an individual ldst entry. */
5084
5085 static void
free_ldst_entry(struct ls_expr * ptr)5086 free_ldst_entry (struct ls_expr * ptr)
5087 {
5088 free_INSN_LIST_list (& ptr->loads);
5089 free_INSN_LIST_list (& ptr->stores);
5090
5091 free (ptr);
5092 }
5093
5094 /* Free up all memory associated with the ldst list. */
5095
5096 static void
free_ldst_mems(void)5097 free_ldst_mems (void)
5098 {
5099 if (pre_ldst_table)
5100 htab_delete (pre_ldst_table);
5101 pre_ldst_table = NULL;
5102
5103 while (pre_ldst_mems)
5104 {
5105 struct ls_expr * tmp = pre_ldst_mems;
5106
5107 pre_ldst_mems = pre_ldst_mems->next;
5108
5109 free_ldst_entry (tmp);
5110 }
5111
5112 pre_ldst_mems = NULL;
5113 }
5114
5115 /* Dump debugging info about the ldst list. */
5116
5117 static void
print_ldst_list(FILE * file)5118 print_ldst_list (FILE * file)
5119 {
5120 struct ls_expr * ptr;
5121
5122 fprintf (file, "LDST list: \n");
5123
5124 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5125 {
5126 fprintf (file, " Pattern (%3d): ", ptr->index);
5127
5128 print_rtl (file, ptr->pattern);
5129
5130 fprintf (file, "\n Loads : ");
5131
5132 if (ptr->loads)
5133 print_rtl (file, ptr->loads);
5134 else
5135 fprintf (file, "(nil)");
5136
5137 fprintf (file, "\n Stores : ");
5138
5139 if (ptr->stores)
5140 print_rtl (file, ptr->stores);
5141 else
5142 fprintf (file, "(nil)");
5143
5144 fprintf (file, "\n\n");
5145 }
5146
5147 fprintf (file, "\n");
5148 }
5149
5150 /* Returns 1 if X is in the list of ldst only expressions. */
5151
5152 static struct ls_expr *
find_rtx_in_ldst(rtx x)5153 find_rtx_in_ldst (rtx x)
5154 {
5155 struct ls_expr e;
5156 void **slot;
5157 if (!pre_ldst_table)
5158 return NULL;
5159 e.pattern = x;
5160 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5161 if (!slot || ((struct ls_expr *)*slot)->invalid)
5162 return NULL;
5163 return *slot;
5164 }
5165
5166 /* Assign each element of the list of mems a monotonically increasing value. */
5167
5168 static int
enumerate_ldsts(void)5169 enumerate_ldsts (void)
5170 {
5171 struct ls_expr * ptr;
5172 int n = 0;
5173
5174 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5175 ptr->index = n++;
5176
5177 return n;
5178 }
5179
5180 /* Return first item in the list. */
5181
5182 static inline struct ls_expr *
first_ls_expr(void)5183 first_ls_expr (void)
5184 {
5185 return pre_ldst_mems;
5186 }
5187
5188 /* Return the next item in the list after the specified one. */
5189
5190 static inline struct ls_expr *
next_ls_expr(struct ls_expr * ptr)5191 next_ls_expr (struct ls_expr * ptr)
5192 {
5193 return ptr->next;
5194 }
5195
5196 /* Load Motion for loads which only kill themselves. */
5197
5198 /* Return true if x is a simple MEM operation, with no registers or
5199 side effects. These are the types of loads we consider for the
5200 ld_motion list, otherwise we let the usual aliasing take care of it. */
5201
5202 static int
simple_mem(rtx x)5203 simple_mem (rtx x)
5204 {
5205 if (! MEM_P (x))
5206 return 0;
5207
5208 if (MEM_VOLATILE_P (x))
5209 return 0;
5210
5211 if (GET_MODE (x) == BLKmode)
5212 return 0;
5213
5214 /* If we are handling exceptions, we must be careful with memory references
5215 that may trap. If we are not, the behavior is undefined, so we may just
5216 continue. */
5217 if (flag_non_call_exceptions && may_trap_p (x))
5218 return 0;
5219
5220 if (side_effects_p (x))
5221 return 0;
5222
5223 /* Do not consider function arguments passed on stack. */
5224 if (reg_mentioned_p (stack_pointer_rtx, x))
5225 return 0;
5226
5227 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5228 return 0;
5229
5230 return 1;
5231 }
5232
5233 /* Make sure there isn't a buried reference in this pattern anywhere.
5234 If there is, invalidate the entry for it since we're not capable
5235 of fixing it up just yet.. We have to be sure we know about ALL
5236 loads since the aliasing code will allow all entries in the
5237 ld_motion list to not-alias itself. If we miss a load, we will get
5238 the wrong value since gcse might common it and we won't know to
5239 fix it up. */
5240
5241 static void
invalidate_any_buried_refs(rtx x)5242 invalidate_any_buried_refs (rtx x)
5243 {
5244 const char * fmt;
5245 int i, j;
5246 struct ls_expr * ptr;
5247
5248 /* Invalidate it in the list. */
5249 if (MEM_P (x) && simple_mem (x))
5250 {
5251 ptr = ldst_entry (x);
5252 ptr->invalid = 1;
5253 }
5254
5255 /* Recursively process the insn. */
5256 fmt = GET_RTX_FORMAT (GET_CODE (x));
5257
5258 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5259 {
5260 if (fmt[i] == 'e')
5261 invalidate_any_buried_refs (XEXP (x, i));
5262 else if (fmt[i] == 'E')
5263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5264 invalidate_any_buried_refs (XVECEXP (x, i, j));
5265 }
5266 }
5267
5268 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5269 being defined as MEM loads and stores to symbols, with no side effects
5270 and no registers in the expression. For a MEM destination, we also
5271 check that the insn is still valid if we replace the destination with a
5272 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5273 which don't match this criteria, they are invalidated and trimmed out
5274 later. */
5275
5276 static void
compute_ld_motion_mems(void)5277 compute_ld_motion_mems (void)
5278 {
5279 struct ls_expr * ptr;
5280 basic_block bb;
5281 rtx insn;
5282
5283 pre_ldst_mems = NULL;
5284 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5285 pre_ldst_expr_eq, NULL);
5286
5287 FOR_EACH_BB (bb)
5288 {
5289 FOR_BB_INSNS (bb, insn)
5290 {
5291 if (INSN_P (insn))
5292 {
5293 if (GET_CODE (PATTERN (insn)) == SET)
5294 {
5295 rtx src = SET_SRC (PATTERN (insn));
5296 rtx dest = SET_DEST (PATTERN (insn));
5297
5298 /* Check for a simple LOAD... */
5299 if (MEM_P (src) && simple_mem (src))
5300 {
5301 ptr = ldst_entry (src);
5302 if (REG_P (dest))
5303 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5304 else
5305 ptr->invalid = 1;
5306 }
5307 else
5308 {
5309 /* Make sure there isn't a buried load somewhere. */
5310 invalidate_any_buried_refs (src);
5311 }
5312
5313 /* Check for stores. Don't worry about aliased ones, they
5314 will block any movement we might do later. We only care
5315 about this exact pattern since those are the only
5316 circumstance that we will ignore the aliasing info. */
5317 if (MEM_P (dest) && simple_mem (dest))
5318 {
5319 ptr = ldst_entry (dest);
5320
5321 if (! MEM_P (src)
5322 && GET_CODE (src) != ASM_OPERANDS
5323 /* Check for REG manually since want_to_gcse_p
5324 returns 0 for all REGs. */
5325 && can_assign_to_reg_p (src))
5326 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5327 else
5328 ptr->invalid = 1;
5329 }
5330 }
5331 else
5332 invalidate_any_buried_refs (PATTERN (insn));
5333 }
5334 }
5335 }
5336 }
5337
5338 /* Remove any references that have been either invalidated or are not in the
5339 expression list for pre gcse. */
5340
5341 static void
trim_ld_motion_mems(void)5342 trim_ld_motion_mems (void)
5343 {
5344 struct ls_expr * * last = & pre_ldst_mems;
5345 struct ls_expr * ptr = pre_ldst_mems;
5346
5347 while (ptr != NULL)
5348 {
5349 struct expr * expr;
5350
5351 /* Delete if entry has been made invalid. */
5352 if (! ptr->invalid)
5353 {
5354 /* Delete if we cannot find this mem in the expression list. */
5355 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5356
5357 for (expr = expr_hash_table.table[hash];
5358 expr != NULL;
5359 expr = expr->next_same_hash)
5360 if (expr_equiv_p (expr->expr, ptr->pattern))
5361 break;
5362 }
5363 else
5364 expr = (struct expr *) 0;
5365
5366 if (expr)
5367 {
5368 /* Set the expression field if we are keeping it. */
5369 ptr->expr = expr;
5370 last = & ptr->next;
5371 ptr = ptr->next;
5372 }
5373 else
5374 {
5375 *last = ptr->next;
5376 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5377 free_ldst_entry (ptr);
5378 ptr = * last;
5379 }
5380 }
5381
5382 /* Show the world what we've found. */
5383 if (dump_file && pre_ldst_mems != NULL)
5384 print_ldst_list (dump_file);
5385 }
5386
5387 /* This routine will take an expression which we are replacing with
5388 a reaching register, and update any stores that are needed if
5389 that expression is in the ld_motion list. Stores are updated by
5390 copying their SRC to the reaching register, and then storing
5391 the reaching register into the store location. These keeps the
5392 correct value in the reaching register for the loads. */
5393
5394 static void
update_ld_motion_stores(struct expr * expr)5395 update_ld_motion_stores (struct expr * expr)
5396 {
5397 struct ls_expr * mem_ptr;
5398
5399 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5400 {
5401 /* We can try to find just the REACHED stores, but is shouldn't
5402 matter to set the reaching reg everywhere... some might be
5403 dead and should be eliminated later. */
5404
5405 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5406 where reg is the reaching reg used in the load. We checked in
5407 compute_ld_motion_mems that we can replace (set mem expr) with
5408 (set reg expr) in that insn. */
5409 rtx list = mem_ptr->stores;
5410
5411 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5412 {
5413 rtx insn = XEXP (list, 0);
5414 rtx pat = PATTERN (insn);
5415 rtx src = SET_SRC (pat);
5416 rtx reg = expr->reaching_reg;
5417 rtx copy, new;
5418
5419 /* If we've already copied it, continue. */
5420 if (expr->reaching_reg == src)
5421 continue;
5422
5423 if (dump_file)
5424 {
5425 fprintf (dump_file, "PRE: store updated with reaching reg ");
5426 print_rtl (dump_file, expr->reaching_reg);
5427 fprintf (dump_file, ":\n ");
5428 print_inline_rtx (dump_file, insn, 8);
5429 fprintf (dump_file, "\n");
5430 }
5431
5432 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5433 new = emit_insn_before (copy, insn);
5434 record_one_set (REGNO (reg), new);
5435 SET_SRC (pat) = reg;
5436
5437 /* un-recognize this pattern since it's probably different now. */
5438 INSN_CODE (insn) = -1;
5439 gcse_create_count++;
5440 }
5441 }
5442 }
5443
5444 /* Store motion code. */
5445
5446 #define ANTIC_STORE_LIST(x) ((x)->loads)
5447 #define AVAIL_STORE_LIST(x) ((x)->stores)
5448 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5449
5450 /* This is used to communicate the target bitvector we want to use in the
5451 reg_set_info routine when called via the note_stores mechanism. */
5452 static int * regvec;
5453
5454 /* And current insn, for the same routine. */
5455 static rtx compute_store_table_current_insn;
5456
5457 /* Used in computing the reverse edge graph bit vectors. */
5458 static sbitmap * st_antloc;
5459
5460 /* Global holding the number of store expressions we are dealing with. */
5461 static int num_stores;
5462
5463 /* Checks to set if we need to mark a register set. Called from
5464 note_stores. */
5465
5466 static void
reg_set_info(rtx dest,rtx setter ATTRIBUTE_UNUSED,void * data)5467 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5468 void *data)
5469 {
5470 sbitmap bb_reg = data;
5471
5472 if (GET_CODE (dest) == SUBREG)
5473 dest = SUBREG_REG (dest);
5474
5475 if (REG_P (dest))
5476 {
5477 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5478 if (bb_reg)
5479 SET_BIT (bb_reg, REGNO (dest));
5480 }
5481 }
5482
5483 /* Clear any mark that says that this insn sets dest. Called from
5484 note_stores. */
5485
5486 static void
reg_clear_last_set(rtx dest,rtx setter ATTRIBUTE_UNUSED,void * data)5487 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5488 void *data)
5489 {
5490 int *dead_vec = data;
5491
5492 if (GET_CODE (dest) == SUBREG)
5493 dest = SUBREG_REG (dest);
5494
5495 if (REG_P (dest) &&
5496 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5497 dead_vec[REGNO (dest)] = 0;
5498 }
5499
5500 /* Return zero if some of the registers in list X are killed
5501 due to set of registers in bitmap REGS_SET. */
5502
5503 static bool
store_ops_ok(rtx x,int * regs_set)5504 store_ops_ok (rtx x, int *regs_set)
5505 {
5506 rtx reg;
5507
5508 for (; x; x = XEXP (x, 1))
5509 {
5510 reg = XEXP (x, 0);
5511 if (regs_set[REGNO(reg)])
5512 return false;
5513 }
5514
5515 return true;
5516 }
5517
5518 /* Returns a list of registers mentioned in X. */
5519 static rtx
extract_mentioned_regs(rtx x)5520 extract_mentioned_regs (rtx x)
5521 {
5522 return extract_mentioned_regs_helper (x, NULL_RTX);
5523 }
5524
5525 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5526 registers. */
5527 static rtx
extract_mentioned_regs_helper(rtx x,rtx accum)5528 extract_mentioned_regs_helper (rtx x, rtx accum)
5529 {
5530 int i;
5531 enum rtx_code code;
5532 const char * fmt;
5533
5534 /* Repeat is used to turn tail-recursion into iteration. */
5535 repeat:
5536
5537 if (x == 0)
5538 return accum;
5539
5540 code = GET_CODE (x);
5541 switch (code)
5542 {
5543 case REG:
5544 return alloc_EXPR_LIST (0, x, accum);
5545
5546 case MEM:
5547 x = XEXP (x, 0);
5548 goto repeat;
5549
5550 case PRE_DEC:
5551 case PRE_INC:
5552 case POST_DEC:
5553 case POST_INC:
5554 /* We do not run this function with arguments having side effects. */
5555 gcc_unreachable ();
5556
5557 case PC:
5558 case CC0: /*FIXME*/
5559 case CONST:
5560 case CONST_INT:
5561 case CONST_DOUBLE:
5562 case CONST_VECTOR:
5563 case SYMBOL_REF:
5564 case LABEL_REF:
5565 case ADDR_VEC:
5566 case ADDR_DIFF_VEC:
5567 return accum;
5568
5569 default:
5570 break;
5571 }
5572
5573 i = GET_RTX_LENGTH (code) - 1;
5574 fmt = GET_RTX_FORMAT (code);
5575
5576 for (; i >= 0; i--)
5577 {
5578 if (fmt[i] == 'e')
5579 {
5580 rtx tem = XEXP (x, i);
5581
5582 /* If we are about to do the last recursive call
5583 needed at this level, change it into iteration. */
5584 if (i == 0)
5585 {
5586 x = tem;
5587 goto repeat;
5588 }
5589
5590 accum = extract_mentioned_regs_helper (tem, accum);
5591 }
5592 else if (fmt[i] == 'E')
5593 {
5594 int j;
5595
5596 for (j = 0; j < XVECLEN (x, i); j++)
5597 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5598 }
5599 }
5600
5601 return accum;
5602 }
5603
5604 /* Determine whether INSN is MEM store pattern that we will consider moving.
5605 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5606 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5607 including) the insn in this basic block. We must be passing through BB from
5608 head to end, as we are using this fact to speed things up.
5609
5610 The results are stored this way:
5611
5612 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5613 -- if the processed expression is not anticipatable, NULL_RTX is added
5614 there instead, so that we can use it as indicator that no further
5615 expression of this type may be anticipatable
5616 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5617 consequently, all of them but this head are dead and may be deleted.
5618 -- if the expression is not available, the insn due to that it fails to be
5619 available is stored in reaching_reg.
5620
5621 The things are complicated a bit by fact that there already may be stores
5622 to the same MEM from other blocks; also caller must take care of the
5623 necessary cleanup of the temporary markers after end of the basic block.
5624 */
5625
5626 static void
find_moveable_store(rtx insn,int * regs_set_before,int * regs_set_after)5627 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5628 {
5629 struct ls_expr * ptr;
5630 rtx dest, set, tmp;
5631 int check_anticipatable, check_available;
5632 basic_block bb = BLOCK_FOR_INSN (insn);
5633
5634 set = single_set (insn);
5635 if (!set)
5636 return;
5637
5638 dest = SET_DEST (set);
5639
5640 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5641 || GET_MODE (dest) == BLKmode)
5642 return;
5643
5644 if (side_effects_p (dest))
5645 return;
5646
5647 /* If we are handling exceptions, we must be careful with memory references
5648 that may trap. If we are not, the behavior is undefined, so we may just
5649 continue. */
5650 if (flag_non_call_exceptions && may_trap_p (dest))
5651 return;
5652
5653 /* Even if the destination cannot trap, the source may. In this case we'd
5654 need to handle updating the REG_EH_REGION note. */
5655 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5656 return;
5657
5658 /* Make sure that the SET_SRC of this store insns can be assigned to
5659 a register, or we will fail later on in replace_store_insn, which
5660 assumes that we can do this. But sometimes the target machine has
5661 oddities like MEM read-modify-write instruction. See for example
5662 PR24257. */
5663 if (!can_assign_to_reg_p (SET_SRC (set)))
5664 return;
5665
5666 ptr = ldst_entry (dest);
5667 if (!ptr->pattern_regs)
5668 ptr->pattern_regs = extract_mentioned_regs (dest);
5669
5670 /* Do not check for anticipatability if we either found one anticipatable
5671 store already, or tested for one and found out that it was killed. */
5672 check_anticipatable = 0;
5673 if (!ANTIC_STORE_LIST (ptr))
5674 check_anticipatable = 1;
5675 else
5676 {
5677 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5678 if (tmp != NULL_RTX
5679 && BLOCK_FOR_INSN (tmp) != bb)
5680 check_anticipatable = 1;
5681 }
5682 if (check_anticipatable)
5683 {
5684 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5685 tmp = NULL_RTX;
5686 else
5687 tmp = insn;
5688 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5689 ANTIC_STORE_LIST (ptr));
5690 }
5691
5692 /* It is not necessary to check whether store is available if we did
5693 it successfully before; if we failed before, do not bother to check
5694 until we reach the insn that caused us to fail. */
5695 check_available = 0;
5696 if (!AVAIL_STORE_LIST (ptr))
5697 check_available = 1;
5698 else
5699 {
5700 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5701 if (BLOCK_FOR_INSN (tmp) != bb)
5702 check_available = 1;
5703 }
5704 if (check_available)
5705 {
5706 /* Check that we have already reached the insn at that the check
5707 failed last time. */
5708 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5709 {
5710 for (tmp = BB_END (bb);
5711 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5712 tmp = PREV_INSN (tmp))
5713 continue;
5714 if (tmp == insn)
5715 check_available = 0;
5716 }
5717 else
5718 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5719 bb, regs_set_after,
5720 &LAST_AVAIL_CHECK_FAILURE (ptr));
5721 }
5722 if (!check_available)
5723 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5724 }
5725
5726 /* Find available and anticipatable stores. */
5727
5728 static int
compute_store_table(void)5729 compute_store_table (void)
5730 {
5731 int ret;
5732 basic_block bb;
5733 unsigned regno;
5734 rtx insn, pat, tmp;
5735 int *last_set_in, *already_set;
5736 struct ls_expr * ptr, **prev_next_ptr_ptr;
5737
5738 max_gcse_regno = max_reg_num ();
5739
5740 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5741 max_gcse_regno);
5742 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5743 pre_ldst_mems = 0;
5744 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5745 pre_ldst_expr_eq, NULL);
5746 last_set_in = XCNEWVEC (int, max_gcse_regno);
5747 already_set = XNEWVEC (int, max_gcse_regno);
5748
5749 /* Find all the stores we care about. */
5750 FOR_EACH_BB (bb)
5751 {
5752 /* First compute the registers set in this block. */
5753 regvec = last_set_in;
5754
5755 FOR_BB_INSNS (bb, insn)
5756 {
5757 if (! INSN_P (insn))
5758 continue;
5759
5760 if (CALL_P (insn))
5761 {
5762 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5763 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5764 {
5765 last_set_in[regno] = INSN_UID (insn);
5766 SET_BIT (reg_set_in_block[bb->index], regno);
5767 }
5768 }
5769
5770 pat = PATTERN (insn);
5771 compute_store_table_current_insn = insn;
5772 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5773 }
5774
5775 /* Now find the stores. */
5776 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5777 regvec = already_set;
5778 FOR_BB_INSNS (bb, insn)
5779 {
5780 if (! INSN_P (insn))
5781 continue;
5782
5783 if (CALL_P (insn))
5784 {
5785 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5786 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5787 already_set[regno] = 1;
5788 }
5789
5790 pat = PATTERN (insn);
5791 note_stores (pat, reg_set_info, NULL);
5792
5793 /* Now that we've marked regs, look for stores. */
5794 find_moveable_store (insn, already_set, last_set_in);
5795
5796 /* Unmark regs that are no longer set. */
5797 compute_store_table_current_insn = insn;
5798 note_stores (pat, reg_clear_last_set, last_set_in);
5799 if (CALL_P (insn))
5800 {
5801 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5802 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5803 && last_set_in[regno] == INSN_UID (insn))
5804 last_set_in[regno] = 0;
5805 }
5806 }
5807
5808 #ifdef ENABLE_CHECKING
5809 /* last_set_in should now be all-zero. */
5810 for (regno = 0; regno < max_gcse_regno; regno++)
5811 gcc_assert (!last_set_in[regno]);
5812 #endif
5813
5814 /* Clear temporary marks. */
5815 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5816 {
5817 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5818 if (ANTIC_STORE_LIST (ptr)
5819 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5820 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5821 }
5822 }
5823
5824 /* Remove the stores that are not available anywhere, as there will
5825 be no opportunity to optimize them. */
5826 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5827 ptr != NULL;
5828 ptr = *prev_next_ptr_ptr)
5829 {
5830 if (!AVAIL_STORE_LIST (ptr))
5831 {
5832 *prev_next_ptr_ptr = ptr->next;
5833 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5834 free_ldst_entry (ptr);
5835 }
5836 else
5837 prev_next_ptr_ptr = &ptr->next;
5838 }
5839
5840 ret = enumerate_ldsts ();
5841
5842 if (dump_file)
5843 {
5844 fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5845 print_ldst_list (dump_file);
5846 }
5847
5848 free (last_set_in);
5849 free (already_set);
5850 return ret;
5851 }
5852
5853 /* Check to see if the load X is aliased with STORE_PATTERN.
5854 AFTER is true if we are checking the case when STORE_PATTERN occurs
5855 after the X. */
5856
5857 static bool
load_kills_store(rtx x,rtx store_pattern,int after)5858 load_kills_store (rtx x, rtx store_pattern, int after)
5859 {
5860 if (after)
5861 return anti_dependence (x, store_pattern);
5862 else
5863 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5864 rtx_addr_varies_p);
5865 }
5866
5867 /* Go through the entire insn X, looking for any loads which might alias
5868 STORE_PATTERN. Return true if found.
5869 AFTER is true if we are checking the case when STORE_PATTERN occurs
5870 after the insn X. */
5871
5872 static bool
find_loads(rtx x,rtx store_pattern,int after)5873 find_loads (rtx x, rtx store_pattern, int after)
5874 {
5875 const char * fmt;
5876 int i, j;
5877 int ret = false;
5878
5879 if (!x)
5880 return false;
5881
5882 if (GET_CODE (x) == SET)
5883 x = SET_SRC (x);
5884
5885 if (MEM_P (x))
5886 {
5887 if (load_kills_store (x, store_pattern, after))
5888 return true;
5889 }
5890
5891 /* Recursively process the insn. */
5892 fmt = GET_RTX_FORMAT (GET_CODE (x));
5893
5894 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5895 {
5896 if (fmt[i] == 'e')
5897 ret |= find_loads (XEXP (x, i), store_pattern, after);
5898 else if (fmt[i] == 'E')
5899 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5900 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5901 }
5902 return ret;
5903 }
5904
5905 /* Check if INSN kills the store pattern X (is aliased with it).
5906 AFTER is true if we are checking the case when store X occurs
5907 after the insn. Return true if it does. */
5908
5909 static bool
store_killed_in_insn(rtx x,rtx x_regs,rtx insn,int after)5910 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5911 {
5912 rtx reg, base, note;
5913
5914 if (!INSN_P (insn))
5915 return false;
5916
5917 if (CALL_P (insn))
5918 {
5919 /* A normal or pure call might read from pattern,
5920 but a const call will not. */
5921 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5922 return true;
5923
5924 /* But even a const call reads its parameters. Check whether the
5925 base of some of registers used in mem is stack pointer. */
5926 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5927 {
5928 base = find_base_term (XEXP (reg, 0));
5929 if (!base
5930 || (GET_CODE (base) == ADDRESS
5931 && GET_MODE (base) == Pmode
5932 && XEXP (base, 0) == stack_pointer_rtx))
5933 return true;
5934 }
5935
5936 return false;
5937 }
5938
5939 if (GET_CODE (PATTERN (insn)) == SET)
5940 {
5941 rtx pat = PATTERN (insn);
5942 rtx dest = SET_DEST (pat);
5943
5944 if (GET_CODE (dest) == ZERO_EXTRACT)
5945 dest = XEXP (dest, 0);
5946
5947 /* Check for memory stores to aliased objects. */
5948 if (MEM_P (dest)
5949 && !expr_equiv_p (dest, x))
5950 {
5951 if (after)
5952 {
5953 if (output_dependence (dest, x))
5954 return true;
5955 }
5956 else
5957 {
5958 if (output_dependence (x, dest))
5959 return true;
5960 }
5961 }
5962 if (find_loads (SET_SRC (pat), x, after))
5963 return true;
5964 }
5965 else if (find_loads (PATTERN (insn), x, after))
5966 return true;
5967
5968 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5969 location aliased with X, then this insn kills X. */
5970 note = find_reg_equal_equiv_note (insn);
5971 if (! note)
5972 return false;
5973 note = XEXP (note, 0);
5974
5975 /* However, if the note represents a must alias rather than a may
5976 alias relationship, then it does not kill X. */
5977 if (expr_equiv_p (note, x))
5978 return false;
5979
5980 /* See if there are any aliased loads in the note. */
5981 return find_loads (note, x, after);
5982 }
5983
5984 /* Returns true if the expression X is loaded or clobbered on or after INSN
5985 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5986 or after the insn. X_REGS is list of registers mentioned in X. If the store
5987 is killed, return the last insn in that it occurs in FAIL_INSN. */
5988
5989 static bool
store_killed_after(rtx x,rtx x_regs,rtx insn,basic_block bb,int * regs_set_after,rtx * fail_insn)5990 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5991 int *regs_set_after, rtx *fail_insn)
5992 {
5993 rtx last = BB_END (bb), act;
5994
5995 if (!store_ops_ok (x_regs, regs_set_after))
5996 {
5997 /* We do not know where it will happen. */
5998 if (fail_insn)
5999 *fail_insn = NULL_RTX;
6000 return true;
6001 }
6002
6003 /* Scan from the end, so that fail_insn is determined correctly. */
6004 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6005 if (store_killed_in_insn (x, x_regs, act, false))
6006 {
6007 if (fail_insn)
6008 *fail_insn = act;
6009 return true;
6010 }
6011
6012 return false;
6013 }
6014
6015 /* Returns true if the expression X is loaded or clobbered on or before INSN
6016 within basic block BB. X_REGS is list of registers mentioned in X.
6017 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6018 static bool
store_killed_before(rtx x,rtx x_regs,rtx insn,basic_block bb,int * regs_set_before)6019 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6020 int *regs_set_before)
6021 {
6022 rtx first = BB_HEAD (bb);
6023
6024 if (!store_ops_ok (x_regs, regs_set_before))
6025 return true;
6026
6027 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6028 if (store_killed_in_insn (x, x_regs, insn, true))
6029 return true;
6030
6031 return false;
6032 }
6033
6034 /* Fill in available, anticipatable, transparent and kill vectors in
6035 STORE_DATA, based on lists of available and anticipatable stores. */
6036 static void
build_store_vectors(void)6037 build_store_vectors (void)
6038 {
6039 basic_block bb;
6040 int *regs_set_in_block;
6041 rtx insn, st;
6042 struct ls_expr * ptr;
6043 unsigned regno;
6044
6045 /* Build the gen_vector. This is any store in the table which is not killed
6046 by aliasing later in its block. */
6047 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6048 sbitmap_vector_zero (ae_gen, last_basic_block);
6049
6050 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6051 sbitmap_vector_zero (st_antloc, last_basic_block);
6052
6053 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6054 {
6055 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6056 {
6057 insn = XEXP (st, 0);
6058 bb = BLOCK_FOR_INSN (insn);
6059
6060 /* If we've already seen an available expression in this block,
6061 we can delete this one (It occurs earlier in the block). We'll
6062 copy the SRC expression to an unused register in case there
6063 are any side effects. */
6064 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6065 {
6066 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6067 if (dump_file)
6068 fprintf (dump_file, "Removing redundant store:\n");
6069 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6070 continue;
6071 }
6072 SET_BIT (ae_gen[bb->index], ptr->index);
6073 }
6074
6075 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6076 {
6077 insn = XEXP (st, 0);
6078 bb = BLOCK_FOR_INSN (insn);
6079 SET_BIT (st_antloc[bb->index], ptr->index);
6080 }
6081 }
6082
6083 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6084 sbitmap_vector_zero (ae_kill, last_basic_block);
6085
6086 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6087 sbitmap_vector_zero (transp, last_basic_block);
6088 regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6089
6090 FOR_EACH_BB (bb)
6091 {
6092 for (regno = 0; regno < max_gcse_regno; regno++)
6093 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6094
6095 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6096 {
6097 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6098 bb, regs_set_in_block, NULL))
6099 {
6100 /* It should not be necessary to consider the expression
6101 killed if it is both anticipatable and available. */
6102 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6103 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6104 SET_BIT (ae_kill[bb->index], ptr->index);
6105 }
6106 else
6107 SET_BIT (transp[bb->index], ptr->index);
6108 }
6109 }
6110
6111 free (regs_set_in_block);
6112
6113 if (dump_file)
6114 {
6115 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6116 dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6117 dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6118 dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6119 }
6120 }
6121
6122 /* Insert an instruction at the beginning of a basic block, and update
6123 the BB_HEAD if needed. */
6124
6125 static void
insert_insn_start_bb(rtx insn,basic_block bb)6126 insert_insn_start_bb (rtx insn, basic_block bb)
6127 {
6128 /* Insert at start of successor block. */
6129 rtx prev = PREV_INSN (BB_HEAD (bb));
6130 rtx before = BB_HEAD (bb);
6131 while (before != 0)
6132 {
6133 if (! LABEL_P (before)
6134 && (! NOTE_P (before)
6135 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6136 break;
6137 prev = before;
6138 if (prev == BB_END (bb))
6139 break;
6140 before = NEXT_INSN (before);
6141 }
6142
6143 insn = emit_insn_after_noloc (insn, prev);
6144
6145 if (dump_file)
6146 {
6147 fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
6148 bb->index);
6149 print_inline_rtx (dump_file, insn, 6);
6150 fprintf (dump_file, "\n");
6151 }
6152 }
6153
6154 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6155 the memory reference, and E is the edge to insert it on. Returns nonzero
6156 if an edge insertion was performed. */
6157
6158 static int
insert_store(struct ls_expr * expr,edge e)6159 insert_store (struct ls_expr * expr, edge e)
6160 {
6161 rtx reg, insn;
6162 basic_block bb;
6163 edge tmp;
6164 edge_iterator ei;
6165
6166 /* We did all the deleted before this insert, so if we didn't delete a
6167 store, then we haven't set the reaching reg yet either. */
6168 if (expr->reaching_reg == NULL_RTX)
6169 return 0;
6170
6171 if (e->flags & EDGE_FAKE)
6172 return 0;
6173
6174 reg = expr->reaching_reg;
6175 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6176
6177 /* If we are inserting this expression on ALL predecessor edges of a BB,
6178 insert it at the start of the BB, and reset the insert bits on the other
6179 edges so we don't try to insert it on the other edges. */
6180 bb = e->dest;
6181 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6182 if (!(tmp->flags & EDGE_FAKE))
6183 {
6184 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6185
6186 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6187 if (! TEST_BIT (pre_insert_map[index], expr->index))
6188 break;
6189 }
6190
6191 /* If tmp is NULL, we found an insertion on every edge, blank the
6192 insertion vector for these edges, and insert at the start of the BB. */
6193 if (!tmp && bb != EXIT_BLOCK_PTR)
6194 {
6195 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6196 {
6197 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6198 RESET_BIT (pre_insert_map[index], expr->index);
6199 }
6200 insert_insn_start_bb (insn, bb);
6201 return 0;
6202 }
6203
6204 /* We can't put stores in the front of blocks pointed to by abnormal
6205 edges since that may put a store where one didn't used to be. */
6206 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6207
6208 insert_insn_on_edge (insn, e);
6209
6210 if (dump_file)
6211 {
6212 fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6213 e->src->index, e->dest->index);
6214 print_inline_rtx (dump_file, insn, 6);
6215 fprintf (dump_file, "\n");
6216 }
6217
6218 return 1;
6219 }
6220
6221 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6222 memory location in SMEXPR set in basic block BB.
6223
6224 This could be rather expensive. */
6225
6226 static void
remove_reachable_equiv_notes(basic_block bb,struct ls_expr * smexpr)6227 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6228 {
6229 edge_iterator *stack, ei;
6230 int sp;
6231 edge act;
6232 sbitmap visited = sbitmap_alloc (last_basic_block);
6233 rtx last, insn, note;
6234 rtx mem = smexpr->pattern;
6235
6236 stack = XNEWVEC (edge_iterator, n_basic_blocks);
6237 sp = 0;
6238 ei = ei_start (bb->succs);
6239
6240 sbitmap_zero (visited);
6241
6242 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6243 while (1)
6244 {
6245 if (!act)
6246 {
6247 if (!sp)
6248 {
6249 free (stack);
6250 sbitmap_free (visited);
6251 return;
6252 }
6253 act = ei_edge (stack[--sp]);
6254 }
6255 bb = act->dest;
6256
6257 if (bb == EXIT_BLOCK_PTR
6258 || TEST_BIT (visited, bb->index))
6259 {
6260 if (!ei_end_p (ei))
6261 ei_next (&ei);
6262 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6263 continue;
6264 }
6265 SET_BIT (visited, bb->index);
6266
6267 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6268 {
6269 for (last = ANTIC_STORE_LIST (smexpr);
6270 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6271 last = XEXP (last, 1))
6272 continue;
6273 last = XEXP (last, 0);
6274 }
6275 else
6276 last = NEXT_INSN (BB_END (bb));
6277
6278 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6279 if (INSN_P (insn))
6280 {
6281 note = find_reg_equal_equiv_note (insn);
6282 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6283 continue;
6284
6285 if (dump_file)
6286 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6287 INSN_UID (insn));
6288 remove_note (insn, note);
6289 }
6290
6291 if (!ei_end_p (ei))
6292 ei_next (&ei);
6293 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6294
6295 if (EDGE_COUNT (bb->succs) > 0)
6296 {
6297 if (act)
6298 stack[sp++] = ei;
6299 ei = ei_start (bb->succs);
6300 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6301 }
6302 }
6303 }
6304
6305 /* This routine will replace a store with a SET to a specified register. */
6306
6307 static void
replace_store_insn(rtx reg,rtx del,basic_block bb,struct ls_expr * smexpr)6308 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6309 {
6310 rtx insn, mem, note, set, ptr, pair;
6311
6312 mem = smexpr->pattern;
6313 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6314 insn = emit_insn_after (insn, del);
6315
6316 if (dump_file)
6317 {
6318 fprintf (dump_file,
6319 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6320 print_inline_rtx (dump_file, del, 6);
6321 fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n ");
6322 print_inline_rtx (dump_file, insn, 6);
6323 fprintf (dump_file, "\n");
6324 }
6325
6326 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6327 if (XEXP (ptr, 0) == del)
6328 {
6329 XEXP (ptr, 0) = insn;
6330 break;
6331 }
6332
6333 /* Move the notes from the deleted insn to its replacement, and patch
6334 up the LIBCALL notes. */
6335 REG_NOTES (insn) = REG_NOTES (del);
6336
6337 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6338 if (note)
6339 {
6340 pair = XEXP (note, 0);
6341 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6342 XEXP (note, 0) = insn;
6343 }
6344 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6345 if (note)
6346 {
6347 pair = XEXP (note, 0);
6348 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6349 XEXP (note, 0) = insn;
6350 }
6351
6352 delete_insn (del);
6353
6354 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6355 they are no longer accurate provided that they are reached by this
6356 definition, so drop them. */
6357 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6358 if (INSN_P (insn))
6359 {
6360 set = single_set (insn);
6361 if (!set)
6362 continue;
6363 if (expr_equiv_p (SET_DEST (set), mem))
6364 return;
6365 note = find_reg_equal_equiv_note (insn);
6366 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6367 continue;
6368
6369 if (dump_file)
6370 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6371 INSN_UID (insn));
6372 remove_note (insn, note);
6373 }
6374 remove_reachable_equiv_notes (bb, smexpr);
6375 }
6376
6377
6378 /* Delete a store, but copy the value that would have been stored into
6379 the reaching_reg for later storing. */
6380
6381 static void
delete_store(struct ls_expr * expr,basic_block bb)6382 delete_store (struct ls_expr * expr, basic_block bb)
6383 {
6384 rtx reg, i, del;
6385
6386 if (expr->reaching_reg == NULL_RTX)
6387 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6388
6389 reg = expr->reaching_reg;
6390
6391 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6392 {
6393 del = XEXP (i, 0);
6394 if (BLOCK_FOR_INSN (del) == bb)
6395 {
6396 /* We know there is only one since we deleted redundant
6397 ones during the available computation. */
6398 replace_store_insn (reg, del, bb, expr);
6399 break;
6400 }
6401 }
6402 }
6403
6404 /* Free memory used by store motion. */
6405
6406 static void
free_store_memory(void)6407 free_store_memory (void)
6408 {
6409 free_ldst_mems ();
6410
6411 if (ae_gen)
6412 sbitmap_vector_free (ae_gen);
6413 if (ae_kill)
6414 sbitmap_vector_free (ae_kill);
6415 if (transp)
6416 sbitmap_vector_free (transp);
6417 if (st_antloc)
6418 sbitmap_vector_free (st_antloc);
6419 if (pre_insert_map)
6420 sbitmap_vector_free (pre_insert_map);
6421 if (pre_delete_map)
6422 sbitmap_vector_free (pre_delete_map);
6423 if (reg_set_in_block)
6424 sbitmap_vector_free (reg_set_in_block);
6425
6426 ae_gen = ae_kill = transp = st_antloc = NULL;
6427 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6428 }
6429
6430 /* Perform store motion. Much like gcse, except we move expressions the
6431 other way by looking at the flowgraph in reverse. */
6432
6433 static void
store_motion(void)6434 store_motion (void)
6435 {
6436 basic_block bb;
6437 int x;
6438 struct ls_expr * ptr;
6439 int update_flow = 0;
6440
6441 if (dump_file)
6442 {
6443 fprintf (dump_file, "before store motion\n");
6444 print_rtl (dump_file, get_insns ());
6445 }
6446
6447 init_alias_analysis ();
6448
6449 /* Find all the available and anticipatable stores. */
6450 num_stores = compute_store_table ();
6451 if (num_stores == 0)
6452 {
6453 htab_delete (pre_ldst_table);
6454 pre_ldst_table = NULL;
6455 sbitmap_vector_free (reg_set_in_block);
6456 end_alias_analysis ();
6457 return;
6458 }
6459
6460 /* Now compute kill & transp vectors. */
6461 build_store_vectors ();
6462 add_noreturn_fake_exit_edges ();
6463 connect_infinite_loops_to_exit ();
6464
6465 edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6466 st_antloc, ae_kill, &pre_insert_map,
6467 &pre_delete_map);
6468
6469 /* Now we want to insert the new stores which are going to be needed. */
6470 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6471 {
6472 /* If any of the edges we have above are abnormal, we can't move this
6473 store. */
6474 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6475 if (TEST_BIT (pre_insert_map[x], ptr->index)
6476 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6477 break;
6478
6479 if (x >= 0)
6480 {
6481 if (dump_file != NULL)
6482 fprintf (dump_file,
6483 "Can't replace store %d: abnormal edge from %d to %d\n",
6484 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6485 INDEX_EDGE (edge_list, x)->dest->index);
6486 continue;
6487 }
6488
6489 /* Now we want to insert the new stores which are going to be needed. */
6490
6491 FOR_EACH_BB (bb)
6492 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6493 delete_store (ptr, bb);
6494
6495 for (x = 0; x < NUM_EDGES (edge_list); x++)
6496 if (TEST_BIT (pre_insert_map[x], ptr->index))
6497 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6498 }
6499
6500 if (update_flow)
6501 commit_edge_insertions ();
6502
6503 free_store_memory ();
6504 free_edge_list (edge_list);
6505 remove_fake_exit_edges ();
6506 end_alias_analysis ();
6507 }
6508
6509
6510 /* Entry point for jump bypassing optimization pass. */
6511
6512 static int
bypass_jumps(void)6513 bypass_jumps (void)
6514 {
6515 int changed;
6516
6517 /* We do not construct an accurate cfg in functions which call
6518 setjmp, so just punt to be safe. */
6519 if (current_function_calls_setjmp)
6520 return 0;
6521
6522 /* Identify the basic block information for this function, including
6523 successors and predecessors. */
6524 max_gcse_regno = max_reg_num ();
6525
6526 if (dump_file)
6527 dump_flow_info (dump_file, dump_flags);
6528
6529 /* Return if there's nothing to do, or it is too expensive. */
6530 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6531 || is_too_expensive (_ ("jump bypassing disabled")))
6532 return 0;
6533
6534 gcc_obstack_init (&gcse_obstack);
6535 bytes_used = 0;
6536
6537 /* We need alias. */
6538 init_alias_analysis ();
6539
6540 /* Record where pseudo-registers are set. This data is kept accurate
6541 during each pass. ??? We could also record hard-reg information here
6542 [since it's unchanging], however it is currently done during hash table
6543 computation.
6544
6545 It may be tempting to compute MEM set information here too, but MEM sets
6546 will be subject to code motion one day and thus we need to compute
6547 information about memory sets when we build the hash tables. */
6548
6549 alloc_reg_set_mem (max_gcse_regno);
6550 compute_sets ();
6551
6552 max_gcse_regno = max_reg_num ();
6553 alloc_gcse_mem ();
6554 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6555 free_gcse_mem ();
6556
6557 if (dump_file)
6558 {
6559 fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6560 current_function_name (), n_basic_blocks);
6561 fprintf (dump_file, "%d bytes\n\n", bytes_used);
6562 }
6563
6564 obstack_free (&gcse_obstack, NULL);
6565 free_reg_set_mem ();
6566
6567 /* We are finished with alias. */
6568 end_alias_analysis ();
6569 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6570
6571 return changed;
6572 }
6573
6574 /* Return true if the graph is too expensive to optimize. PASS is the
6575 optimization about to be performed. */
6576
6577 static bool
is_too_expensive(const char * pass)6578 is_too_expensive (const char *pass)
6579 {
6580 /* Trying to perform global optimizations on flow graphs which have
6581 a high connectivity will take a long time and is unlikely to be
6582 particularly useful.
6583
6584 In normal circumstances a cfg should have about twice as many
6585 edges as blocks. But we do not want to punish small functions
6586 which have a couple switch statements. Rather than simply
6587 threshold the number of blocks, uses something with a more
6588 graceful degradation. */
6589 if (n_edges > 20000 + n_basic_blocks * 4)
6590 {
6591 warning (OPT_Wdisabled_optimization,
6592 "%s: %d basic blocks and %d edges/basic block",
6593 pass, n_basic_blocks, n_edges / n_basic_blocks);
6594
6595 return true;
6596 }
6597
6598 /* If allocating memory for the cprop bitmap would take up too much
6599 storage it's better just to disable the optimization. */
6600 if ((n_basic_blocks
6601 * SBITMAP_SET_SIZE (max_reg_num ())
6602 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6603 {
6604 warning (OPT_Wdisabled_optimization,
6605 "%s: %d basic blocks and %d registers",
6606 pass, n_basic_blocks, max_reg_num ());
6607
6608 return true;
6609 }
6610
6611 return false;
6612 }
6613
6614 static bool
gate_handle_jump_bypass(void)6615 gate_handle_jump_bypass (void)
6616 {
6617 return optimize > 0 && flag_gcse;
6618 }
6619
6620 /* Perform jump bypassing and control flow optimizations. */
6621 static unsigned int
rest_of_handle_jump_bypass(void)6622 rest_of_handle_jump_bypass (void)
6623 {
6624 cleanup_cfg (CLEANUP_EXPENSIVE);
6625 reg_scan (get_insns (), max_reg_num ());
6626
6627 if (bypass_jumps ())
6628 {
6629 rebuild_jump_labels (get_insns ());
6630 cleanup_cfg (CLEANUP_EXPENSIVE);
6631 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6632 }
6633 return 0;
6634 }
6635
6636 struct tree_opt_pass pass_jump_bypass =
6637 {
6638 "bypass", /* name */
6639 gate_handle_jump_bypass, /* gate */
6640 rest_of_handle_jump_bypass, /* execute */
6641 NULL, /* sub */
6642 NULL, /* next */
6643 0, /* static_pass_number */
6644 TV_BYPASS, /* tv_id */
6645 0, /* properties_required */
6646 0, /* properties_provided */
6647 0, /* properties_destroyed */
6648 0, /* todo_flags_start */
6649 TODO_dump_func |
6650 TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */
6651 'G' /* letter */
6652 };
6653
6654
6655 static bool
gate_handle_gcse(void)6656 gate_handle_gcse (void)
6657 {
6658 return optimize > 0 && flag_gcse;
6659 }
6660
6661
6662 static unsigned int
rest_of_handle_gcse(void)6663 rest_of_handle_gcse (void)
6664 {
6665 int save_csb, save_cfj;
6666 int tem2 = 0, tem;
6667
6668 tem = gcse_main (get_insns ());
6669 rebuild_jump_labels (get_insns ());
6670 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6671
6672 save_csb = flag_cse_skip_blocks;
6673 save_cfj = flag_cse_follow_jumps;
6674 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6675
6676 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6677 by gcse. */
6678 if (flag_expensive_optimizations)
6679 {
6680 timevar_push (TV_CSE);
6681 reg_scan (get_insns (), max_reg_num ());
6682 tem2 = cse_main (get_insns (), max_reg_num ());
6683 purge_all_dead_edges ();
6684 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6685 timevar_pop (TV_CSE);
6686 cse_not_expected = !flag_rerun_cse_after_loop;
6687 }
6688
6689 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6690 things up. */
6691 if (tem || tem2)
6692 {
6693 timevar_push (TV_JUMP);
6694 rebuild_jump_labels (get_insns ());
6695 delete_dead_jumptables ();
6696 cleanup_cfg (CLEANUP_EXPENSIVE);
6697 timevar_pop (TV_JUMP);
6698 }
6699
6700 flag_cse_skip_blocks = save_csb;
6701 flag_cse_follow_jumps = save_cfj;
6702 return 0;
6703 }
6704
6705 struct tree_opt_pass pass_gcse =
6706 {
6707 "gcse1", /* name */
6708 gate_handle_gcse, /* gate */
6709 rest_of_handle_gcse, /* execute */
6710 NULL, /* sub */
6711 NULL, /* next */
6712 0, /* static_pass_number */
6713 TV_GCSE, /* tv_id */
6714 0, /* properties_required */
6715 0, /* properties_provided */
6716 0, /* properties_destroyed */
6717 0, /* todo_flags_start */
6718 TODO_dump_func |
6719 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
6720 'G' /* letter */
6721 };
6722
6723
6724 #include "gt-gcse.h"
6725