1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29
30 /*
31 * Our network namespace constructor/destructor lists
32 */
33
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50
51 static bool init_net_initialized;
52 /*
53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54 * init_net_initialized and first_device pointer.
55 * This is internal net namespace object. Please, don't use it
56 * outside.
57 */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
60
61 #define MIN_PERNET_OPS_ID \
62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63
64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
65
66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67
68 DEFINE_COOKIE(net_cookie);
69
net_alloc_generic(void)70 static struct net_generic *net_alloc_generic(void)
71 {
72 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
73 unsigned int generic_size;
74 struct net_generic *ng;
75
76 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
77
78 ng = kzalloc(generic_size, GFP_KERNEL);
79 if (ng)
80 ng->s.len = gen_ptrs;
81
82 return ng;
83 }
84
net_assign_generic(struct net * net,unsigned int id,void * data)85 static int net_assign_generic(struct net *net, unsigned int id, void *data)
86 {
87 struct net_generic *ng, *old_ng;
88
89 BUG_ON(id < MIN_PERNET_OPS_ID);
90
91 old_ng = rcu_dereference_protected(net->gen,
92 lockdep_is_held(&pernet_ops_rwsem));
93 if (old_ng->s.len > id) {
94 old_ng->ptr[id] = data;
95 return 0;
96 }
97
98 ng = net_alloc_generic();
99 if (!ng)
100 return -ENOMEM;
101
102 /*
103 * Some synchronisation notes:
104 *
105 * The net_generic explores the net->gen array inside rcu
106 * read section. Besides once set the net->gen->ptr[x]
107 * pointer never changes (see rules in netns/generic.h).
108 *
109 * That said, we simply duplicate this array and schedule
110 * the old copy for kfree after a grace period.
111 */
112
113 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
114 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
115 ng->ptr[id] = data;
116
117 rcu_assign_pointer(net->gen, ng);
118 kfree_rcu(old_ng, s.rcu);
119 return 0;
120 }
121
ops_init(const struct pernet_operations * ops,struct net * net)122 static int ops_init(const struct pernet_operations *ops, struct net *net)
123 {
124 struct net_generic *ng;
125 int err = -ENOMEM;
126 void *data = NULL;
127
128 if (ops->id) {
129 data = kzalloc(ops->size, GFP_KERNEL);
130 if (!data)
131 goto out;
132
133 err = net_assign_generic(net, *ops->id, data);
134 if (err)
135 goto cleanup;
136 }
137 err = 0;
138 if (ops->init)
139 err = ops->init(net);
140 if (!err)
141 return 0;
142
143 if (ops->id) {
144 ng = rcu_dereference_protected(net->gen,
145 lockdep_is_held(&pernet_ops_rwsem));
146 ng->ptr[*ops->id] = NULL;
147 }
148
149 cleanup:
150 kfree(data);
151
152 out:
153 return err;
154 }
155
ops_pre_exit_list(const struct pernet_operations * ops,struct list_head * net_exit_list)156 static void ops_pre_exit_list(const struct pernet_operations *ops,
157 struct list_head *net_exit_list)
158 {
159 struct net *net;
160
161 if (ops->pre_exit) {
162 list_for_each_entry(net, net_exit_list, exit_list)
163 ops->pre_exit(net);
164 }
165 }
166
ops_exit_list(const struct pernet_operations * ops,struct list_head * net_exit_list)167 static void ops_exit_list(const struct pernet_operations *ops,
168 struct list_head *net_exit_list)
169 {
170 struct net *net;
171 if (ops->exit) {
172 list_for_each_entry(net, net_exit_list, exit_list) {
173 ops->exit(net);
174 cond_resched();
175 }
176 }
177 if (ops->exit_batch)
178 ops->exit_batch(net_exit_list);
179 }
180
ops_free_list(const struct pernet_operations * ops,struct list_head * net_exit_list)181 static void ops_free_list(const struct pernet_operations *ops,
182 struct list_head *net_exit_list)
183 {
184 struct net *net;
185
186 if (ops->id) {
187 list_for_each_entry(net, net_exit_list, exit_list)
188 kfree(net_generic(net, *ops->id));
189 }
190 }
191
192 /* should be called with nsid_lock held */
alloc_netid(struct net * net,struct net * peer,int reqid)193 static int alloc_netid(struct net *net, struct net *peer, int reqid)
194 {
195 int min = 0, max = 0;
196
197 if (reqid >= 0) {
198 min = reqid;
199 max = reqid + 1;
200 }
201
202 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
203 }
204
205 /* This function is used by idr_for_each(). If net is equal to peer, the
206 * function returns the id so that idr_for_each() stops. Because we cannot
207 * returns the id 0 (idr_for_each() will not stop), we return the magic value
208 * NET_ID_ZERO (-1) for it.
209 */
210 #define NET_ID_ZERO -1
net_eq_idr(int id,void * net,void * peer)211 static int net_eq_idr(int id, void *net, void *peer)
212 {
213 if (net_eq(net, peer))
214 return id ? : NET_ID_ZERO;
215 return 0;
216 }
217
218 /* Must be called from RCU-critical section or with nsid_lock held */
__peernet2id(const struct net * net,struct net * peer)219 static int __peernet2id(const struct net *net, struct net *peer)
220 {
221 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
222
223 /* Magic value for id 0. */
224 if (id == NET_ID_ZERO)
225 return 0;
226 if (id > 0)
227 return id;
228
229 return NETNSA_NSID_NOT_ASSIGNED;
230 }
231
232 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
233 struct nlmsghdr *nlh, gfp_t gfp);
234 /* This function returns the id of a peer netns. If no id is assigned, one will
235 * be allocated and returned.
236 */
peernet2id_alloc(struct net * net,struct net * peer,gfp_t gfp)237 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
238 {
239 int id;
240
241 if (refcount_read(&net->ns.count) == 0)
242 return NETNSA_NSID_NOT_ASSIGNED;
243
244 spin_lock_bh(&net->nsid_lock);
245 id = __peernet2id(net, peer);
246 if (id >= 0) {
247 spin_unlock_bh(&net->nsid_lock);
248 return id;
249 }
250
251 /* When peer is obtained from RCU lists, we may race with
252 * its cleanup. Check whether it's alive, and this guarantees
253 * we never hash a peer back to net->netns_ids, after it has
254 * just been idr_remove()'d from there in cleanup_net().
255 */
256 if (!maybe_get_net(peer)) {
257 spin_unlock_bh(&net->nsid_lock);
258 return NETNSA_NSID_NOT_ASSIGNED;
259 }
260
261 id = alloc_netid(net, peer, -1);
262 spin_unlock_bh(&net->nsid_lock);
263
264 put_net(peer);
265 if (id < 0)
266 return NETNSA_NSID_NOT_ASSIGNED;
267
268 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
269
270 return id;
271 }
272 EXPORT_SYMBOL_GPL(peernet2id_alloc);
273
274 /* This function returns, if assigned, the id of a peer netns. */
peernet2id(const struct net * net,struct net * peer)275 int peernet2id(const struct net *net, struct net *peer)
276 {
277 int id;
278
279 rcu_read_lock();
280 id = __peernet2id(net, peer);
281 rcu_read_unlock();
282
283 return id;
284 }
285 EXPORT_SYMBOL(peernet2id);
286
287 /* This function returns true is the peer netns has an id assigned into the
288 * current netns.
289 */
peernet_has_id(const struct net * net,struct net * peer)290 bool peernet_has_id(const struct net *net, struct net *peer)
291 {
292 return peernet2id(net, peer) >= 0;
293 }
294
get_net_ns_by_id(const struct net * net,int id)295 struct net *get_net_ns_by_id(const struct net *net, int id)
296 {
297 struct net *peer;
298
299 if (id < 0)
300 return NULL;
301
302 rcu_read_lock();
303 peer = idr_find(&net->netns_ids, id);
304 if (peer)
305 peer = maybe_get_net(peer);
306 rcu_read_unlock();
307
308 return peer;
309 }
310 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
311
preinit_net_sysctl(struct net * net)312 static __net_init void preinit_net_sysctl(struct net *net)
313 {
314 net->core.sysctl_somaxconn = SOMAXCONN;
315 /* Limits per socket sk_omem_alloc usage.
316 * TCP zerocopy regular usage needs 128 KB.
317 */
318 net->core.sysctl_optmem_max = 128 * 1024;
319 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
320 }
321
322 /* init code that must occur even if setup_net() is not called. */
preinit_net(struct net * net,struct user_namespace * user_ns)323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns)
324 {
325 refcount_set(&net->passive, 1);
326 refcount_set(&net->ns.count, 1);
327 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
328 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
329
330 get_random_bytes(&net->hash_mix, sizeof(u32));
331 net->dev_base_seq = 1;
332 net->user_ns = user_ns;
333
334 idr_init(&net->netns_ids);
335 spin_lock_init(&net->nsid_lock);
336 mutex_init(&net->ipv4.ra_mutex);
337 preinit_net_sysctl(net);
338 }
339
340 /*
341 * setup_net runs the initializers for the network namespace object.
342 */
setup_net(struct net * net)343 static __net_init int setup_net(struct net *net)
344 {
345 /* Must be called with pernet_ops_rwsem held */
346 const struct pernet_operations *ops, *saved_ops;
347 LIST_HEAD(net_exit_list);
348 LIST_HEAD(dev_kill_list);
349 int error = 0;
350
351 preempt_disable();
352 net->net_cookie = gen_cookie_next(&net_cookie);
353 preempt_enable();
354
355 list_for_each_entry(ops, &pernet_list, list) {
356 error = ops_init(ops, net);
357 if (error < 0)
358 goto out_undo;
359 }
360 down_write(&net_rwsem);
361 list_add_tail_rcu(&net->list, &net_namespace_list);
362 up_write(&net_rwsem);
363 out:
364 return error;
365
366 out_undo:
367 /* Walk through the list backwards calling the exit functions
368 * for the pernet modules whose init functions did not fail.
369 */
370 list_add(&net->exit_list, &net_exit_list);
371 saved_ops = ops;
372 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
373 ops_pre_exit_list(ops, &net_exit_list);
374
375 synchronize_rcu();
376
377 ops = saved_ops;
378 rtnl_lock();
379 list_for_each_entry_continue_reverse(ops, &pernet_list, list) {
380 if (ops->exit_batch_rtnl)
381 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
382 }
383 unregister_netdevice_many(&dev_kill_list);
384 rtnl_unlock();
385
386 ops = saved_ops;
387 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
388 ops_exit_list(ops, &net_exit_list);
389
390 ops = saved_ops;
391 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
392 ops_free_list(ops, &net_exit_list);
393
394 rcu_barrier();
395 goto out;
396 }
397
398 #ifdef CONFIG_NET_NS
inc_net_namespaces(struct user_namespace * ns)399 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
400 {
401 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
402 }
403
dec_net_namespaces(struct ucounts * ucounts)404 static void dec_net_namespaces(struct ucounts *ucounts)
405 {
406 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
407 }
408
409 static struct kmem_cache *net_cachep __ro_after_init;
410 static struct workqueue_struct *netns_wq;
411
net_alloc(void)412 static struct net *net_alloc(void)
413 {
414 struct net *net = NULL;
415 struct net_generic *ng;
416
417 ng = net_alloc_generic();
418 if (!ng)
419 goto out;
420
421 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
422 if (!net)
423 goto out_free;
424
425 #ifdef CONFIG_KEYS
426 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
427 if (!net->key_domain)
428 goto out_free_2;
429 refcount_set(&net->key_domain->usage, 1);
430 #endif
431
432 rcu_assign_pointer(net->gen, ng);
433 out:
434 return net;
435
436 #ifdef CONFIG_KEYS
437 out_free_2:
438 kmem_cache_free(net_cachep, net);
439 net = NULL;
440 #endif
441 out_free:
442 kfree(ng);
443 goto out;
444 }
445
net_free(struct net * net)446 static void net_free(struct net *net)
447 {
448 if (refcount_dec_and_test(&net->passive)) {
449 kfree(rcu_access_pointer(net->gen));
450
451 /* There should not be any trackers left there. */
452 ref_tracker_dir_exit(&net->notrefcnt_tracker);
453
454 kmem_cache_free(net_cachep, net);
455 }
456 }
457
net_drop_ns(void * p)458 void net_drop_ns(void *p)
459 {
460 struct net *net = (struct net *)p;
461
462 if (net)
463 net_free(net);
464 }
465
copy_net_ns(unsigned long flags,struct user_namespace * user_ns,struct net * old_net)466 struct net *copy_net_ns(unsigned long flags,
467 struct user_namespace *user_ns, struct net *old_net)
468 {
469 struct ucounts *ucounts;
470 struct net *net;
471 int rv;
472
473 if (!(flags & CLONE_NEWNET))
474 return get_net(old_net);
475
476 ucounts = inc_net_namespaces(user_ns);
477 if (!ucounts)
478 return ERR_PTR(-ENOSPC);
479
480 net = net_alloc();
481 if (!net) {
482 rv = -ENOMEM;
483 goto dec_ucounts;
484 }
485
486 preinit_net(net, user_ns);
487 net->ucounts = ucounts;
488 get_user_ns(user_ns);
489
490 rv = down_read_killable(&pernet_ops_rwsem);
491 if (rv < 0)
492 goto put_userns;
493
494 rv = setup_net(net);
495
496 up_read(&pernet_ops_rwsem);
497
498 if (rv < 0) {
499 put_userns:
500 #ifdef CONFIG_KEYS
501 key_remove_domain(net->key_domain);
502 #endif
503 put_user_ns(user_ns);
504 net_free(net);
505 dec_ucounts:
506 dec_net_namespaces(ucounts);
507 return ERR_PTR(rv);
508 }
509 return net;
510 }
511
512 /**
513 * net_ns_get_ownership - get sysfs ownership data for @net
514 * @net: network namespace in question (can be NULL)
515 * @uid: kernel user ID for sysfs objects
516 * @gid: kernel group ID for sysfs objects
517 *
518 * Returns the uid/gid pair of root in the user namespace associated with the
519 * given network namespace.
520 */
net_ns_get_ownership(const struct net * net,kuid_t * uid,kgid_t * gid)521 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
522 {
523 if (net) {
524 kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
525 kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
526
527 if (uid_valid(ns_root_uid))
528 *uid = ns_root_uid;
529
530 if (gid_valid(ns_root_gid))
531 *gid = ns_root_gid;
532 } else {
533 *uid = GLOBAL_ROOT_UID;
534 *gid = GLOBAL_ROOT_GID;
535 }
536 }
537 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
538
unhash_nsid(struct net * net,struct net * last)539 static void unhash_nsid(struct net *net, struct net *last)
540 {
541 struct net *tmp;
542 /* This function is only called from cleanup_net() work,
543 * and this work is the only process, that may delete
544 * a net from net_namespace_list. So, when the below
545 * is executing, the list may only grow. Thus, we do not
546 * use for_each_net_rcu() or net_rwsem.
547 */
548 for_each_net(tmp) {
549 int id;
550
551 spin_lock_bh(&tmp->nsid_lock);
552 id = __peernet2id(tmp, net);
553 if (id >= 0)
554 idr_remove(&tmp->netns_ids, id);
555 spin_unlock_bh(&tmp->nsid_lock);
556 if (id >= 0)
557 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
558 GFP_KERNEL);
559 if (tmp == last)
560 break;
561 }
562 spin_lock_bh(&net->nsid_lock);
563 idr_destroy(&net->netns_ids);
564 spin_unlock_bh(&net->nsid_lock);
565 }
566
567 static LLIST_HEAD(cleanup_list);
568
cleanup_net(struct work_struct * work)569 static void cleanup_net(struct work_struct *work)
570 {
571 const struct pernet_operations *ops;
572 struct net *net, *tmp, *last;
573 struct llist_node *net_kill_list;
574 LIST_HEAD(net_exit_list);
575 LIST_HEAD(dev_kill_list);
576
577 /* Atomically snapshot the list of namespaces to cleanup */
578 net_kill_list = llist_del_all(&cleanup_list);
579
580 down_read(&pernet_ops_rwsem);
581
582 /* Don't let anyone else find us. */
583 down_write(&net_rwsem);
584 llist_for_each_entry(net, net_kill_list, cleanup_list)
585 list_del_rcu(&net->list);
586 /* Cache last net. After we unlock rtnl, no one new net
587 * added to net_namespace_list can assign nsid pointer
588 * to a net from net_kill_list (see peernet2id_alloc()).
589 * So, we skip them in unhash_nsid().
590 *
591 * Note, that unhash_nsid() does not delete nsid links
592 * between net_kill_list's nets, as they've already
593 * deleted from net_namespace_list. But, this would be
594 * useless anyway, as netns_ids are destroyed there.
595 */
596 last = list_last_entry(&net_namespace_list, struct net, list);
597 up_write(&net_rwsem);
598
599 llist_for_each_entry(net, net_kill_list, cleanup_list) {
600 unhash_nsid(net, last);
601 list_add_tail(&net->exit_list, &net_exit_list);
602 }
603
604 /* Run all of the network namespace pre_exit methods */
605 list_for_each_entry_reverse(ops, &pernet_list, list)
606 ops_pre_exit_list(ops, &net_exit_list);
607
608 /*
609 * Another CPU might be rcu-iterating the list, wait for it.
610 * This needs to be before calling the exit() notifiers, so
611 * the rcu_barrier() below isn't sufficient alone.
612 * Also the pre_exit() and exit() methods need this barrier.
613 */
614 synchronize_rcu_expedited();
615
616 rtnl_lock();
617 list_for_each_entry_reverse(ops, &pernet_list, list) {
618 if (ops->exit_batch_rtnl)
619 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
620 }
621 unregister_netdevice_many(&dev_kill_list);
622 rtnl_unlock();
623
624 /* Run all of the network namespace exit methods */
625 list_for_each_entry_reverse(ops, &pernet_list, list)
626 ops_exit_list(ops, &net_exit_list);
627
628 /* Free the net generic variables */
629 list_for_each_entry_reverse(ops, &pernet_list, list)
630 ops_free_list(ops, &net_exit_list);
631
632 up_read(&pernet_ops_rwsem);
633
634 /* Ensure there are no outstanding rcu callbacks using this
635 * network namespace.
636 */
637 rcu_barrier();
638
639 /* Finally it is safe to free my network namespace structure */
640 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
641 list_del_init(&net->exit_list);
642 dec_net_namespaces(net->ucounts);
643 #ifdef CONFIG_KEYS
644 key_remove_domain(net->key_domain);
645 #endif
646 put_user_ns(net->user_ns);
647 net_free(net);
648 }
649 }
650
651 /**
652 * net_ns_barrier - wait until concurrent net_cleanup_work is done
653 *
654 * cleanup_net runs from work queue and will first remove namespaces
655 * from the global list, then run net exit functions.
656 *
657 * Call this in module exit path to make sure that all netns
658 * ->exit ops have been invoked before the function is removed.
659 */
net_ns_barrier(void)660 void net_ns_barrier(void)
661 {
662 down_write(&pernet_ops_rwsem);
663 up_write(&pernet_ops_rwsem);
664 }
665 EXPORT_SYMBOL(net_ns_barrier);
666
667 static DECLARE_WORK(net_cleanup_work, cleanup_net);
668
__put_net(struct net * net)669 void __put_net(struct net *net)
670 {
671 ref_tracker_dir_exit(&net->refcnt_tracker);
672 /* Cleanup the network namespace in process context */
673 if (llist_add(&net->cleanup_list, &cleanup_list))
674 queue_work(netns_wq, &net_cleanup_work);
675 }
676 EXPORT_SYMBOL_GPL(__put_net);
677
678 /**
679 * get_net_ns - increment the refcount of the network namespace
680 * @ns: common namespace (net)
681 *
682 * Returns the net's common namespace or ERR_PTR() if ref is zero.
683 */
get_net_ns(struct ns_common * ns)684 struct ns_common *get_net_ns(struct ns_common *ns)
685 {
686 struct net *net;
687
688 net = maybe_get_net(container_of(ns, struct net, ns));
689 if (net)
690 return &net->ns;
691 return ERR_PTR(-EINVAL);
692 }
693 EXPORT_SYMBOL_GPL(get_net_ns);
694
get_net_ns_by_fd(int fd)695 struct net *get_net_ns_by_fd(int fd)
696 {
697 struct fd f = fdget(fd);
698 struct net *net = ERR_PTR(-EINVAL);
699
700 if (!fd_file(f))
701 return ERR_PTR(-EBADF);
702
703 if (proc_ns_file(fd_file(f))) {
704 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
705 if (ns->ops == &netns_operations)
706 net = get_net(container_of(ns, struct net, ns));
707 }
708 fdput(f);
709
710 return net;
711 }
712 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
713 #endif
714
get_net_ns_by_pid(pid_t pid)715 struct net *get_net_ns_by_pid(pid_t pid)
716 {
717 struct task_struct *tsk;
718 struct net *net;
719
720 /* Lookup the network namespace */
721 net = ERR_PTR(-ESRCH);
722 rcu_read_lock();
723 tsk = find_task_by_vpid(pid);
724 if (tsk) {
725 struct nsproxy *nsproxy;
726 task_lock(tsk);
727 nsproxy = tsk->nsproxy;
728 if (nsproxy)
729 net = get_net(nsproxy->net_ns);
730 task_unlock(tsk);
731 }
732 rcu_read_unlock();
733 return net;
734 }
735 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
736
net_ns_net_init(struct net * net)737 static __net_init int net_ns_net_init(struct net *net)
738 {
739 #ifdef CONFIG_NET_NS
740 net->ns.ops = &netns_operations;
741 #endif
742 return ns_alloc_inum(&net->ns);
743 }
744
net_ns_net_exit(struct net * net)745 static __net_exit void net_ns_net_exit(struct net *net)
746 {
747 ns_free_inum(&net->ns);
748 }
749
750 static struct pernet_operations __net_initdata net_ns_ops = {
751 .init = net_ns_net_init,
752 .exit = net_ns_net_exit,
753 };
754
755 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
756 [NETNSA_NONE] = { .type = NLA_UNSPEC },
757 [NETNSA_NSID] = { .type = NLA_S32 },
758 [NETNSA_PID] = { .type = NLA_U32 },
759 [NETNSA_FD] = { .type = NLA_U32 },
760 [NETNSA_TARGET_NSID] = { .type = NLA_S32 },
761 };
762
rtnl_net_newid(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)763 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
764 struct netlink_ext_ack *extack)
765 {
766 struct net *net = sock_net(skb->sk);
767 struct nlattr *tb[NETNSA_MAX + 1];
768 struct nlattr *nla;
769 struct net *peer;
770 int nsid, err;
771
772 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
773 NETNSA_MAX, rtnl_net_policy, extack);
774 if (err < 0)
775 return err;
776 if (!tb[NETNSA_NSID]) {
777 NL_SET_ERR_MSG(extack, "nsid is missing");
778 return -EINVAL;
779 }
780 nsid = nla_get_s32(tb[NETNSA_NSID]);
781
782 if (tb[NETNSA_PID]) {
783 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
784 nla = tb[NETNSA_PID];
785 } else if (tb[NETNSA_FD]) {
786 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
787 nla = tb[NETNSA_FD];
788 } else {
789 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
790 return -EINVAL;
791 }
792 if (IS_ERR(peer)) {
793 NL_SET_BAD_ATTR(extack, nla);
794 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
795 return PTR_ERR(peer);
796 }
797
798 spin_lock_bh(&net->nsid_lock);
799 if (__peernet2id(net, peer) >= 0) {
800 spin_unlock_bh(&net->nsid_lock);
801 err = -EEXIST;
802 NL_SET_BAD_ATTR(extack, nla);
803 NL_SET_ERR_MSG(extack,
804 "Peer netns already has a nsid assigned");
805 goto out;
806 }
807
808 err = alloc_netid(net, peer, nsid);
809 spin_unlock_bh(&net->nsid_lock);
810 if (err >= 0) {
811 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
812 nlh, GFP_KERNEL);
813 err = 0;
814 } else if (err == -ENOSPC && nsid >= 0) {
815 err = -EEXIST;
816 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
817 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
818 }
819 out:
820 put_net(peer);
821 return err;
822 }
823
rtnl_net_get_size(void)824 static int rtnl_net_get_size(void)
825 {
826 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
827 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
828 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
829 ;
830 }
831
832 struct net_fill_args {
833 u32 portid;
834 u32 seq;
835 int flags;
836 int cmd;
837 int nsid;
838 bool add_ref;
839 int ref_nsid;
840 };
841
rtnl_net_fill(struct sk_buff * skb,struct net_fill_args * args)842 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
843 {
844 struct nlmsghdr *nlh;
845 struct rtgenmsg *rth;
846
847 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
848 args->flags);
849 if (!nlh)
850 return -EMSGSIZE;
851
852 rth = nlmsg_data(nlh);
853 rth->rtgen_family = AF_UNSPEC;
854
855 if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
856 goto nla_put_failure;
857
858 if (args->add_ref &&
859 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
860 goto nla_put_failure;
861
862 nlmsg_end(skb, nlh);
863 return 0;
864
865 nla_put_failure:
866 nlmsg_cancel(skb, nlh);
867 return -EMSGSIZE;
868 }
869
rtnl_net_valid_getid_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)870 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
871 const struct nlmsghdr *nlh,
872 struct nlattr **tb,
873 struct netlink_ext_ack *extack)
874 {
875 int i, err;
876
877 if (!netlink_strict_get_check(skb))
878 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
879 tb, NETNSA_MAX, rtnl_net_policy,
880 extack);
881
882 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
883 NETNSA_MAX, rtnl_net_policy,
884 extack);
885 if (err)
886 return err;
887
888 for (i = 0; i <= NETNSA_MAX; i++) {
889 if (!tb[i])
890 continue;
891
892 switch (i) {
893 case NETNSA_PID:
894 case NETNSA_FD:
895 case NETNSA_NSID:
896 case NETNSA_TARGET_NSID:
897 break;
898 default:
899 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
900 return -EINVAL;
901 }
902 }
903
904 return 0;
905 }
906
rtnl_net_getid(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)907 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
908 struct netlink_ext_ack *extack)
909 {
910 struct net *net = sock_net(skb->sk);
911 struct nlattr *tb[NETNSA_MAX + 1];
912 struct net_fill_args fillargs = {
913 .portid = NETLINK_CB(skb).portid,
914 .seq = nlh->nlmsg_seq,
915 .cmd = RTM_NEWNSID,
916 };
917 struct net *peer, *target = net;
918 struct nlattr *nla;
919 struct sk_buff *msg;
920 int err;
921
922 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
923 if (err < 0)
924 return err;
925 if (tb[NETNSA_PID]) {
926 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
927 nla = tb[NETNSA_PID];
928 } else if (tb[NETNSA_FD]) {
929 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
930 nla = tb[NETNSA_FD];
931 } else if (tb[NETNSA_NSID]) {
932 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
933 if (!peer)
934 peer = ERR_PTR(-ENOENT);
935 nla = tb[NETNSA_NSID];
936 } else {
937 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
938 return -EINVAL;
939 }
940
941 if (IS_ERR(peer)) {
942 NL_SET_BAD_ATTR(extack, nla);
943 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
944 return PTR_ERR(peer);
945 }
946
947 if (tb[NETNSA_TARGET_NSID]) {
948 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
949
950 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
951 if (IS_ERR(target)) {
952 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
953 NL_SET_ERR_MSG(extack,
954 "Target netns reference is invalid");
955 err = PTR_ERR(target);
956 goto out;
957 }
958 fillargs.add_ref = true;
959 fillargs.ref_nsid = peernet2id(net, peer);
960 }
961
962 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
963 if (!msg) {
964 err = -ENOMEM;
965 goto out;
966 }
967
968 fillargs.nsid = peernet2id(target, peer);
969 err = rtnl_net_fill(msg, &fillargs);
970 if (err < 0)
971 goto err_out;
972
973 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
974 goto out;
975
976 err_out:
977 nlmsg_free(msg);
978 out:
979 if (fillargs.add_ref)
980 put_net(target);
981 put_net(peer);
982 return err;
983 }
984
985 struct rtnl_net_dump_cb {
986 struct net *tgt_net;
987 struct net *ref_net;
988 struct sk_buff *skb;
989 struct net_fill_args fillargs;
990 int idx;
991 int s_idx;
992 };
993
994 /* Runs in RCU-critical section. */
rtnl_net_dumpid_one(int id,void * peer,void * data)995 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
996 {
997 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
998 int ret;
999
1000 if (net_cb->idx < net_cb->s_idx)
1001 goto cont;
1002
1003 net_cb->fillargs.nsid = id;
1004 if (net_cb->fillargs.add_ref)
1005 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1006 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1007 if (ret < 0)
1008 return ret;
1009
1010 cont:
1011 net_cb->idx++;
1012 return 0;
1013 }
1014
rtnl_valid_dump_net_req(const struct nlmsghdr * nlh,struct sock * sk,struct rtnl_net_dump_cb * net_cb,struct netlink_callback * cb)1015 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1016 struct rtnl_net_dump_cb *net_cb,
1017 struct netlink_callback *cb)
1018 {
1019 struct netlink_ext_ack *extack = cb->extack;
1020 struct nlattr *tb[NETNSA_MAX + 1];
1021 int err, i;
1022
1023 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1024 NETNSA_MAX, rtnl_net_policy,
1025 extack);
1026 if (err < 0)
1027 return err;
1028
1029 for (i = 0; i <= NETNSA_MAX; i++) {
1030 if (!tb[i])
1031 continue;
1032
1033 if (i == NETNSA_TARGET_NSID) {
1034 struct net *net;
1035
1036 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1037 if (IS_ERR(net)) {
1038 NL_SET_BAD_ATTR(extack, tb[i]);
1039 NL_SET_ERR_MSG(extack,
1040 "Invalid target network namespace id");
1041 return PTR_ERR(net);
1042 }
1043 net_cb->fillargs.add_ref = true;
1044 net_cb->ref_net = net_cb->tgt_net;
1045 net_cb->tgt_net = net;
1046 } else {
1047 NL_SET_BAD_ATTR(extack, tb[i]);
1048 NL_SET_ERR_MSG(extack,
1049 "Unsupported attribute in dump request");
1050 return -EINVAL;
1051 }
1052 }
1053
1054 return 0;
1055 }
1056
rtnl_net_dumpid(struct sk_buff * skb,struct netlink_callback * cb)1057 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1058 {
1059 struct rtnl_net_dump_cb net_cb = {
1060 .tgt_net = sock_net(skb->sk),
1061 .skb = skb,
1062 .fillargs = {
1063 .portid = NETLINK_CB(cb->skb).portid,
1064 .seq = cb->nlh->nlmsg_seq,
1065 .flags = NLM_F_MULTI,
1066 .cmd = RTM_NEWNSID,
1067 },
1068 .idx = 0,
1069 .s_idx = cb->args[0],
1070 };
1071 int err = 0;
1072
1073 if (cb->strict_check) {
1074 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1075 if (err < 0)
1076 goto end;
1077 }
1078
1079 rcu_read_lock();
1080 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1081 rcu_read_unlock();
1082
1083 cb->args[0] = net_cb.idx;
1084 end:
1085 if (net_cb.fillargs.add_ref)
1086 put_net(net_cb.tgt_net);
1087 return err;
1088 }
1089
rtnl_net_notifyid(struct net * net,int cmd,int id,u32 portid,struct nlmsghdr * nlh,gfp_t gfp)1090 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1091 struct nlmsghdr *nlh, gfp_t gfp)
1092 {
1093 struct net_fill_args fillargs = {
1094 .portid = portid,
1095 .seq = nlh ? nlh->nlmsg_seq : 0,
1096 .cmd = cmd,
1097 .nsid = id,
1098 };
1099 struct sk_buff *msg;
1100 int err = -ENOMEM;
1101
1102 msg = nlmsg_new(rtnl_net_get_size(), gfp);
1103 if (!msg)
1104 goto out;
1105
1106 err = rtnl_net_fill(msg, &fillargs);
1107 if (err < 0)
1108 goto err_out;
1109
1110 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1111 return;
1112
1113 err_out:
1114 nlmsg_free(msg);
1115 out:
1116 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1117 }
1118
1119 #ifdef CONFIG_NET_NS
netns_ipv4_struct_check(void)1120 static void __init netns_ipv4_struct_check(void)
1121 {
1122 /* TX readonly hotpath cache lines */
1123 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1124 sysctl_tcp_early_retrans);
1125 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1126 sysctl_tcp_tso_win_divisor);
1127 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1128 sysctl_tcp_tso_rtt_log);
1129 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1130 sysctl_tcp_autocorking);
1131 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1132 sysctl_tcp_min_snd_mss);
1133 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1134 sysctl_tcp_notsent_lowat);
1135 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1136 sysctl_tcp_limit_output_bytes);
1137 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1138 sysctl_tcp_min_rtt_wlen);
1139 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1140 sysctl_tcp_wmem);
1141 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1142 sysctl_ip_fwd_use_pmtu);
1143 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1144
1145 /* TXRX readonly hotpath cache lines */
1146 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1147 sysctl_tcp_moderate_rcvbuf);
1148 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1149
1150 /* RX readonly hotpath cache line */
1151 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1152 sysctl_ip_early_demux);
1153 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1154 sysctl_tcp_early_demux);
1155 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1156 sysctl_tcp_reordering);
1157 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1158 sysctl_tcp_rmem);
1159 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18);
1160 }
1161 #endif
1162
net_ns_init(void)1163 void __init net_ns_init(void)
1164 {
1165 struct net_generic *ng;
1166
1167 #ifdef CONFIG_NET_NS
1168 netns_ipv4_struct_check();
1169 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1170 SMP_CACHE_BYTES,
1171 SLAB_PANIC|SLAB_ACCOUNT, NULL);
1172
1173 /* Create workqueue for cleanup */
1174 netns_wq = create_singlethread_workqueue("netns");
1175 if (!netns_wq)
1176 panic("Could not create netns workq");
1177 #endif
1178
1179 ng = net_alloc_generic();
1180 if (!ng)
1181 panic("Could not allocate generic netns");
1182
1183 rcu_assign_pointer(init_net.gen, ng);
1184
1185 #ifdef CONFIG_KEYS
1186 init_net.key_domain = &init_net_key_domain;
1187 #endif
1188 preinit_net(&init_net, &init_user_ns);
1189
1190 down_write(&pernet_ops_rwsem);
1191 if (setup_net(&init_net))
1192 panic("Could not setup the initial network namespace");
1193
1194 init_net_initialized = true;
1195 up_write(&pernet_ops_rwsem);
1196
1197 if (register_pernet_subsys(&net_ns_ops))
1198 panic("Could not register network namespace subsystems");
1199
1200 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1201 RTNL_FLAG_DOIT_UNLOCKED);
1202 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1203 RTNL_FLAG_DOIT_UNLOCKED |
1204 RTNL_FLAG_DUMP_UNLOCKED);
1205 }
1206
free_exit_list(struct pernet_operations * ops,struct list_head * net_exit_list)1207 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1208 {
1209 ops_pre_exit_list(ops, net_exit_list);
1210 synchronize_rcu();
1211
1212 if (ops->exit_batch_rtnl) {
1213 LIST_HEAD(dev_kill_list);
1214
1215 rtnl_lock();
1216 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list);
1217 unregister_netdevice_many(&dev_kill_list);
1218 rtnl_unlock();
1219 }
1220 ops_exit_list(ops, net_exit_list);
1221
1222 ops_free_list(ops, net_exit_list);
1223 }
1224
1225 #ifdef CONFIG_NET_NS
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1226 static int __register_pernet_operations(struct list_head *list,
1227 struct pernet_operations *ops)
1228 {
1229 struct net *net;
1230 int error;
1231 LIST_HEAD(net_exit_list);
1232
1233 list_add_tail(&ops->list, list);
1234 if (ops->init || ops->id) {
1235 /* We held write locked pernet_ops_rwsem, and parallel
1236 * setup_net() and cleanup_net() are not possible.
1237 */
1238 for_each_net(net) {
1239 error = ops_init(ops, net);
1240 if (error)
1241 goto out_undo;
1242 list_add_tail(&net->exit_list, &net_exit_list);
1243 }
1244 }
1245 return 0;
1246
1247 out_undo:
1248 /* If I have an error cleanup all namespaces I initialized */
1249 list_del(&ops->list);
1250 free_exit_list(ops, &net_exit_list);
1251 return error;
1252 }
1253
__unregister_pernet_operations(struct pernet_operations * ops)1254 static void __unregister_pernet_operations(struct pernet_operations *ops)
1255 {
1256 struct net *net;
1257 LIST_HEAD(net_exit_list);
1258
1259 list_del(&ops->list);
1260 /* See comment in __register_pernet_operations() */
1261 for_each_net(net)
1262 list_add_tail(&net->exit_list, &net_exit_list);
1263
1264 free_exit_list(ops, &net_exit_list);
1265 }
1266
1267 #else
1268
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1269 static int __register_pernet_operations(struct list_head *list,
1270 struct pernet_operations *ops)
1271 {
1272 if (!init_net_initialized) {
1273 list_add_tail(&ops->list, list);
1274 return 0;
1275 }
1276
1277 return ops_init(ops, &init_net);
1278 }
1279
__unregister_pernet_operations(struct pernet_operations * ops)1280 static void __unregister_pernet_operations(struct pernet_operations *ops)
1281 {
1282 if (!init_net_initialized) {
1283 list_del(&ops->list);
1284 } else {
1285 LIST_HEAD(net_exit_list);
1286 list_add(&init_net.exit_list, &net_exit_list);
1287 free_exit_list(ops, &net_exit_list);
1288 }
1289 }
1290
1291 #endif /* CONFIG_NET_NS */
1292
1293 static DEFINE_IDA(net_generic_ids);
1294
register_pernet_operations(struct list_head * list,struct pernet_operations * ops)1295 static int register_pernet_operations(struct list_head *list,
1296 struct pernet_operations *ops)
1297 {
1298 int error;
1299
1300 if (WARN_ON(!!ops->id ^ !!ops->size))
1301 return -EINVAL;
1302
1303 if (ops->id) {
1304 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1305 GFP_KERNEL);
1306 if (error < 0)
1307 return error;
1308 *ops->id = error;
1309 /* This does not require READ_ONCE as writers already hold
1310 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1311 * net_alloc_generic.
1312 */
1313 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1314 }
1315 error = __register_pernet_operations(list, ops);
1316 if (error) {
1317 rcu_barrier();
1318 if (ops->id)
1319 ida_free(&net_generic_ids, *ops->id);
1320 }
1321
1322 return error;
1323 }
1324
unregister_pernet_operations(struct pernet_operations * ops)1325 static void unregister_pernet_operations(struct pernet_operations *ops)
1326 {
1327 __unregister_pernet_operations(ops);
1328 rcu_barrier();
1329 if (ops->id)
1330 ida_free(&net_generic_ids, *ops->id);
1331 }
1332
1333 /**
1334 * register_pernet_subsys - register a network namespace subsystem
1335 * @ops: pernet operations structure for the subsystem
1336 *
1337 * Register a subsystem which has init and exit functions
1338 * that are called when network namespaces are created and
1339 * destroyed respectively.
1340 *
1341 * When registered all network namespace init functions are
1342 * called for every existing network namespace. Allowing kernel
1343 * modules to have a race free view of the set of network namespaces.
1344 *
1345 * When a new network namespace is created all of the init
1346 * methods are called in the order in which they were registered.
1347 *
1348 * When a network namespace is destroyed all of the exit methods
1349 * are called in the reverse of the order with which they were
1350 * registered.
1351 */
register_pernet_subsys(struct pernet_operations * ops)1352 int register_pernet_subsys(struct pernet_operations *ops)
1353 {
1354 int error;
1355 down_write(&pernet_ops_rwsem);
1356 error = register_pernet_operations(first_device, ops);
1357 up_write(&pernet_ops_rwsem);
1358 return error;
1359 }
1360 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1361
1362 /**
1363 * unregister_pernet_subsys - unregister a network namespace subsystem
1364 * @ops: pernet operations structure to manipulate
1365 *
1366 * Remove the pernet operations structure from the list to be
1367 * used when network namespaces are created or destroyed. In
1368 * addition run the exit method for all existing network
1369 * namespaces.
1370 */
unregister_pernet_subsys(struct pernet_operations * ops)1371 void unregister_pernet_subsys(struct pernet_operations *ops)
1372 {
1373 down_write(&pernet_ops_rwsem);
1374 unregister_pernet_operations(ops);
1375 up_write(&pernet_ops_rwsem);
1376 }
1377 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1378
1379 /**
1380 * register_pernet_device - register a network namespace device
1381 * @ops: pernet operations structure for the subsystem
1382 *
1383 * Register a device which has init and exit functions
1384 * that are called when network namespaces are created and
1385 * destroyed respectively.
1386 *
1387 * When registered all network namespace init functions are
1388 * called for every existing network namespace. Allowing kernel
1389 * modules to have a race free view of the set of network namespaces.
1390 *
1391 * When a new network namespace is created all of the init
1392 * methods are called in the order in which they were registered.
1393 *
1394 * When a network namespace is destroyed all of the exit methods
1395 * are called in the reverse of the order with which they were
1396 * registered.
1397 */
register_pernet_device(struct pernet_operations * ops)1398 int register_pernet_device(struct pernet_operations *ops)
1399 {
1400 int error;
1401 down_write(&pernet_ops_rwsem);
1402 error = register_pernet_operations(&pernet_list, ops);
1403 if (!error && (first_device == &pernet_list))
1404 first_device = &ops->list;
1405 up_write(&pernet_ops_rwsem);
1406 return error;
1407 }
1408 EXPORT_SYMBOL_GPL(register_pernet_device);
1409
1410 /**
1411 * unregister_pernet_device - unregister a network namespace netdevice
1412 * @ops: pernet operations structure to manipulate
1413 *
1414 * Remove the pernet operations structure from the list to be
1415 * used when network namespaces are created or destroyed. In
1416 * addition run the exit method for all existing network
1417 * namespaces.
1418 */
unregister_pernet_device(struct pernet_operations * ops)1419 void unregister_pernet_device(struct pernet_operations *ops)
1420 {
1421 down_write(&pernet_ops_rwsem);
1422 if (&ops->list == first_device)
1423 first_device = first_device->next;
1424 unregister_pernet_operations(ops);
1425 up_write(&pernet_ops_rwsem);
1426 }
1427 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1428
1429 #ifdef CONFIG_NET_NS
netns_get(struct task_struct * task)1430 static struct ns_common *netns_get(struct task_struct *task)
1431 {
1432 struct net *net = NULL;
1433 struct nsproxy *nsproxy;
1434
1435 task_lock(task);
1436 nsproxy = task->nsproxy;
1437 if (nsproxy)
1438 net = get_net(nsproxy->net_ns);
1439 task_unlock(task);
1440
1441 return net ? &net->ns : NULL;
1442 }
1443
to_net_ns(struct ns_common * ns)1444 static inline struct net *to_net_ns(struct ns_common *ns)
1445 {
1446 return container_of(ns, struct net, ns);
1447 }
1448
netns_put(struct ns_common * ns)1449 static void netns_put(struct ns_common *ns)
1450 {
1451 put_net(to_net_ns(ns));
1452 }
1453
netns_install(struct nsset * nsset,struct ns_common * ns)1454 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1455 {
1456 struct nsproxy *nsproxy = nsset->nsproxy;
1457 struct net *net = to_net_ns(ns);
1458
1459 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1460 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1461 return -EPERM;
1462
1463 put_net(nsproxy->net_ns);
1464 nsproxy->net_ns = get_net(net);
1465 return 0;
1466 }
1467
netns_owner(struct ns_common * ns)1468 static struct user_namespace *netns_owner(struct ns_common *ns)
1469 {
1470 return to_net_ns(ns)->user_ns;
1471 }
1472
1473 const struct proc_ns_operations netns_operations = {
1474 .name = "net",
1475 .type = CLONE_NEWNET,
1476 .get = netns_get,
1477 .put = netns_put,
1478 .install = netns_install,
1479 .owner = netns_owner,
1480 };
1481 #endif
1482