1 /*
2  * Copyright 2011      Leiden University. All rights reserved.
3  * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  *    1. Redistributions of source code must retain the above copyright
10  *       notice, this list of conditions and the following disclaimer.
11  *
12  *    2. Redistributions in binary form must reproduce the above
13  *       copyright notice, this list of conditions and the following
14  *       disclaimer in the documentation and/or other materials provided
15  *       with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24  * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * The views and conclusions contained in the software and documentation
30  * are those of the authors and should not be interpreted as
31  * representing official policies, either expressed or implied, of
32  * Leiden University.
33  */
34 
35 #include <string.h>
36 
37 #include <isl/ctx.h>
38 #include <isl/hash.h>
39 #include <isl/id.h>
40 #include <isl/val.h>
41 #include <isl/space.h>
42 #include <isl/local_space.h>
43 #include <isl/aff.h>
44 #include <isl/map.h>
45 #include <isl/union_set.h>
46 #include <isl/union_map.h>
47 #include <isl/printer.h>
48 
49 #include "aff.h"
50 #include "array.h"
51 #include "expr.h"
52 #include "expr_arg.h"
53 #include "filter.h"
54 #include "nest.h"
55 #include "options.h"
56 #include "value_bounds.h"
57 #include "patch.h"
58 
59 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
60 
61 static char *type_str[] = {
62 	[pet_expr_access] = "access",
63 	[pet_expr_call] = "call",
64 	[pet_expr_cast] = "cast",
65 	[pet_expr_double] = "double",
66 	[pet_expr_int] = "int",
67 	[pet_expr_op] = "op",
68 };
69 
70 static char *op_str[] = {
71 	[pet_op_add_assign] = "+=",
72 	[pet_op_sub_assign] = "-=",
73 	[pet_op_mul_assign] = "*=",
74 	[pet_op_div_assign] = "/=",
75 	[pet_op_and_assign] = "&=",
76 	[pet_op_xor_assign] = "^=",
77 	[pet_op_or_assign] = "|=",
78 	[pet_op_assign] = "=",
79 	[pet_op_add] = "+",
80 	[pet_op_sub] = "-",
81 	[pet_op_mul] = "*",
82 	[pet_op_div] = "/",
83 	[pet_op_mod] = "%",
84 	[pet_op_shl] = "<<",
85 	[pet_op_shr] = ">>",
86 	[pet_op_eq] = "==",
87 	[pet_op_ne] = "!=",
88 	[pet_op_le] = "<=",
89 	[pet_op_ge] = ">=",
90 	[pet_op_lt] = "<",
91 	[pet_op_gt] = ">",
92 	[pet_op_minus] = "-",
93 	[pet_op_post_inc] = "++",
94 	[pet_op_post_dec] = "--",
95 	[pet_op_pre_inc] = "++",
96 	[pet_op_pre_dec] = "--",
97 	[pet_op_address_of] = "&",
98 	[pet_op_and] = "&",
99 	[pet_op_xor] = "^",
100 	[pet_op_or] = "|",
101 	[pet_op_not] = "~",
102 	[pet_op_land] = "&&",
103 	[pet_op_lor] = "||",
104 	[pet_op_lnot] = "!",
105 	[pet_op_cond] = "?:",
106 	[pet_op_assume] = "assume",
107 	[pet_op_kill] = "kill"
108 };
109 
pet_op_str(enum pet_op_type op)110 const char *pet_op_str(enum pet_op_type op)
111 {
112 	return op_str[op];
113 }
114 
pet_op_is_inc_dec(enum pet_op_type op)115 int pet_op_is_inc_dec(enum pet_op_type op)
116 {
117 	return op == pet_op_post_inc || op == pet_op_post_dec ||
118 	    op == pet_op_pre_inc || op == pet_op_pre_dec;
119 }
120 
pet_type_str(enum pet_expr_type type)121 const char *pet_type_str(enum pet_expr_type type)
122 {
123 	return type_str[type];
124 }
125 
pet_str_op(const char * str)126 enum pet_op_type pet_str_op(const char *str)
127 {
128 	int i;
129 
130 	for (i = 0; i < ARRAY_SIZE(op_str); ++i)
131 		if (!strcmp(op_str[i], str))
132 			return i;
133 
134 	return -1;
135 }
136 
pet_str_type(const char * str)137 enum pet_expr_type pet_str_type(const char *str)
138 {
139 	int i;
140 
141 	for (i = 0; i < ARRAY_SIZE(type_str); ++i)
142 		if (!strcmp(type_str[i], str))
143 			return i;
144 
145 	return -1;
146 }
147 
148 /* Construct a pet_expr of the given type.
149  */
pet_expr_alloc(isl_ctx * ctx,enum pet_expr_type type)150 __isl_give pet_expr *pet_expr_alloc(isl_ctx *ctx, enum pet_expr_type type)
151 {
152 	pet_expr *expr;
153 
154 	expr = isl_calloc_type(ctx, struct pet_expr);
155 	if (!expr)
156 		return NULL;
157 
158 	expr->ctx = ctx;
159 	isl_ctx_ref(ctx);
160 	expr->type = type;
161 	expr->ref = 1;
162 
163 	return expr;
164 }
165 
166 /* Construct an access pet_expr from an index expression.
167  * By default, the access is considered to be a read access.
168  * The initial depth is set from the index expression and
169  * may still be updated by the caller before the access relation
170  * is created.
171  */
pet_expr_from_index(__isl_take isl_multi_pw_aff * index)172 __isl_give pet_expr *pet_expr_from_index(__isl_take isl_multi_pw_aff *index)
173 {
174 	isl_ctx *ctx;
175 	pet_expr *expr;
176 
177 	if (!index)
178 		return NULL;
179 	ctx = isl_multi_pw_aff_get_ctx(index);
180 	expr = pet_expr_alloc(ctx, pet_expr_access);
181 	if (!expr)
182 		goto error;
183 
184 	expr->acc.read = 1;
185 	expr->acc.write = 0;
186 
187 	expr = pet_expr_access_set_index(expr, index);
188 
189 	return expr;
190 error:
191 	isl_multi_pw_aff_free(index);
192 	return NULL;
193 }
194 
195 /* Extend the range of "access" with "n" dimensions, retaining
196  * the tuple identifier on this range.
197  *
198  * If "access" represents a member access, then extend the range
199  * of the member.
200  */
extend_range(__isl_take isl_map * access,int n)201 static __isl_give isl_map *extend_range(__isl_take isl_map *access, int n)
202 {
203 	isl_id *id;
204 
205 	id = isl_map_get_tuple_id(access, isl_dim_out);
206 
207 	if (!isl_map_range_is_wrapping(access)) {
208 		access = isl_map_add_dims(access, isl_dim_out, n);
209 	} else {
210 		isl_map *domain;
211 
212 		domain = isl_map_copy(access);
213 		domain = isl_map_range_factor_domain(domain);
214 		access = isl_map_range_factor_range(access);
215 		access = extend_range(access, n);
216 		access = isl_map_range_product(domain, access);
217 	}
218 
219 	access = isl_map_set_tuple_id(access, isl_dim_out, id);
220 
221 	return access;
222 }
223 
224 /* Does the access expression "expr" have any explicit access relation?
225  */
pet_expr_access_has_any_access_relation(__isl_keep pet_expr * expr)226 isl_bool pet_expr_access_has_any_access_relation(__isl_keep pet_expr *expr)
227 {
228 	enum pet_expr_access_type type;
229 
230 	if (!expr)
231 		return isl_bool_error;
232 
233 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type)
234 		if (expr->acc.access[type])
235 			return isl_bool_true;
236 
237 	return isl_bool_false;
238 }
239 
240 /* Are all relevant access relations explicitly available in "expr"?
241  */
has_relevant_access_relations(__isl_keep pet_expr * expr)242 static int has_relevant_access_relations(__isl_keep pet_expr *expr)
243 {
244 	if (!expr)
245 		return -1;
246 
247 	if (expr->acc.kill && !expr->acc.access[pet_expr_access_fake_killed])
248 		return 0;
249 	if (expr->acc.read && !expr->acc.access[pet_expr_access_may_read])
250 		return 0;
251 	if (expr->acc.write &&
252 	    (!expr->acc.access[pet_expr_access_may_write] ||
253 	     !expr->acc.access[pet_expr_access_must_write]))
254 		return 0;
255 
256 	return 1;
257 }
258 
259 /* Replace the depth of the access expr "expr" by "depth".
260  *
261  * To avoid inconsistencies between the depth and the access relation,
262  * we currently do not allow the depth to change once the access relation
263  * has been set or computed.
264  */
pet_expr_access_set_depth(__isl_take pet_expr * expr,int depth)265 __isl_give pet_expr *pet_expr_access_set_depth(__isl_take pet_expr *expr,
266 	int depth)
267 {
268 	if (!expr)
269 		return NULL;
270 	if (expr->acc.depth == depth)
271 		return expr;
272 	if (pet_expr_access_has_any_access_relation(expr))
273 		isl_die(pet_expr_get_ctx(expr), isl_error_unsupported,
274 			"depth cannot be changed after access relation "
275 			"has been set or computed", return pet_expr_free(expr));
276 
277 	expr = pet_expr_cow(expr);
278 	if (!expr)
279 		return NULL;
280 	expr->acc.depth = depth;
281 
282 	return expr;
283 }
284 
285 /* Construct a pet_expr that kills the elements specified by
286  * the index expression "index" and the access relation "access".
287  */
pet_expr_kill_from_access_and_index(__isl_take isl_map * access,__isl_take isl_multi_pw_aff * index)288 __isl_give pet_expr *pet_expr_kill_from_access_and_index(
289 	__isl_take isl_map *access, __isl_take isl_multi_pw_aff *index)
290 {
291 	int depth;
292 	pet_expr *expr;
293 
294 	if (!access || !index)
295 		goto error;
296 
297 	expr = pet_expr_from_index(index);
298 	expr = pet_expr_access_set_read(expr, 0);
299 	expr = pet_expr_access_set_kill(expr, 1);
300 	depth = isl_map_dim(access, isl_dim_out);
301 	expr = pet_expr_access_set_depth(expr, depth);
302 	expr = pet_expr_access_set_access(expr, pet_expr_access_killed,
303 					isl_union_map_from_map(access));
304 	return pet_expr_new_unary(0, pet_op_kill, expr);
305 error:
306 	isl_map_free(access);
307 	isl_multi_pw_aff_free(index);
308 	return NULL;
309 }
310 
311 /* Construct a unary pet_expr that performs "op" on "arg",
312  * where the result is represented using a type of "type_size" bits
313  * (may be zero if unknown or if the type is not an integer).
314  */
pet_expr_new_unary(int type_size,enum pet_op_type op,__isl_take pet_expr * arg)315 __isl_give pet_expr *pet_expr_new_unary(int type_size, enum pet_op_type op,
316 	__isl_take pet_expr *arg)
317 {
318 	isl_ctx *ctx;
319 	pet_expr *expr;
320 
321 	if (!arg)
322 		return NULL;
323 	ctx = pet_expr_get_ctx(arg);
324 	expr = pet_expr_alloc(ctx, pet_expr_op);
325 	expr = pet_expr_set_n_arg(expr, 1);
326 	if (!expr)
327 		goto error;
328 
329 	expr->op = op;
330 	expr->type_size = type_size;
331 	expr->args[pet_un_arg] = arg;
332 
333 	return expr;
334 error:
335 	pet_expr_free(arg);
336 	return NULL;
337 }
338 
339 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs",
340  * where the result is represented using a type of "type_size" bits
341  * (may be zero if unknown or if the type is not an integer).
342  */
pet_expr_new_binary(int type_size,enum pet_op_type op,__isl_take pet_expr * lhs,__isl_take pet_expr * rhs)343 __isl_give pet_expr *pet_expr_new_binary(int type_size, enum pet_op_type op,
344 	__isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
345 {
346 	isl_ctx *ctx;
347 	pet_expr *expr;
348 
349 	if (!lhs || !rhs)
350 		goto error;
351 	ctx = pet_expr_get_ctx(lhs);
352 	expr = pet_expr_alloc(ctx, pet_expr_op);
353 	expr = pet_expr_set_n_arg(expr, 2);
354 	if (!expr)
355 		goto error;
356 
357 	expr->op = op;
358 	expr->type_size = type_size;
359 	expr->args[pet_bin_lhs] = lhs;
360 	expr->args[pet_bin_rhs] = rhs;
361 
362 	return expr;
363 error:
364 	pet_expr_free(lhs);
365 	pet_expr_free(rhs);
366 	return NULL;
367 }
368 
369 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
370  */
pet_expr_new_ternary(__isl_take pet_expr * cond,__isl_take pet_expr * lhs,__isl_take pet_expr * rhs)371 __isl_give pet_expr *pet_expr_new_ternary(__isl_take pet_expr *cond,
372 	__isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
373 {
374 	isl_ctx *ctx;
375 	pet_expr *expr;
376 
377 	if (!cond || !lhs || !rhs)
378 		goto error;
379 	ctx = pet_expr_get_ctx(cond);
380 	expr = pet_expr_alloc(ctx, pet_expr_op);
381 	expr = pet_expr_set_n_arg(expr, 3);
382 	if (!expr)
383 		goto error;
384 
385 	expr->op = pet_op_cond;
386 	expr->args[pet_ter_cond] = cond;
387 	expr->args[pet_ter_true] = lhs;
388 	expr->args[pet_ter_false] = rhs;
389 
390 	return expr;
391 error:
392 	pet_expr_free(cond);
393 	pet_expr_free(lhs);
394 	pet_expr_free(rhs);
395 	return NULL;
396 }
397 
398 /* Construct a call pet_expr that calls function "name" with "n_arg"
399  * arguments.  The caller is responsible for filling in the arguments.
400  */
pet_expr_new_call(isl_ctx * ctx,const char * name,unsigned n_arg)401 __isl_give pet_expr *pet_expr_new_call(isl_ctx *ctx, const char *name,
402 	unsigned n_arg)
403 {
404 	pet_expr *expr;
405 
406 	expr = pet_expr_alloc(ctx, pet_expr_call);
407 	expr = pet_expr_set_n_arg(expr, n_arg);
408 	if (!expr)
409 		return NULL;
410 
411 	expr->c.name = strdup(name);
412 	if (!expr->c.name)
413 		return pet_expr_free(expr);
414 
415 	return expr;
416 }
417 
418 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
419  */
pet_expr_new_cast(const char * type_name,__isl_take pet_expr * arg)420 __isl_give pet_expr *pet_expr_new_cast(const char *type_name,
421 	__isl_take pet_expr *arg)
422 {
423 	isl_ctx *ctx;
424 	pet_expr *expr;
425 
426 	if (!arg)
427 		return NULL;
428 
429 	ctx = pet_expr_get_ctx(arg);
430 	expr = pet_expr_alloc(ctx, pet_expr_cast);
431 	expr = pet_expr_set_n_arg(expr, 1);
432 	if (!expr)
433 		goto error;
434 
435 	expr->type_name = strdup(type_name);
436 	if (!expr->type_name)
437 		goto error;
438 
439 	expr->args[0] = arg;
440 
441 	return expr;
442 error:
443 	pet_expr_free(arg);
444 	pet_expr_free(expr);
445 	return NULL;
446 }
447 
448 /* Construct a pet_expr that represents the double "d".
449  */
pet_expr_new_double(isl_ctx * ctx,double val,const char * s)450 __isl_give pet_expr *pet_expr_new_double(isl_ctx *ctx,
451 	double val, const char *s)
452 {
453 	pet_expr *expr;
454 
455 	expr = pet_expr_alloc(ctx, pet_expr_double);
456 	if (!expr)
457 		return NULL;
458 
459 	expr->d.val = val;
460 	expr->d.s = strdup(s);
461 	if (!expr->d.s)
462 		return pet_expr_free(expr);
463 
464 	return expr;
465 }
466 
467 /* Construct a pet_expr that represents the integer value "v".
468  */
pet_expr_new_int(__isl_take isl_val * v)469 __isl_give pet_expr *pet_expr_new_int(__isl_take isl_val *v)
470 {
471 	isl_ctx *ctx;
472 	pet_expr *expr;
473 
474 	if (!v)
475 		return NULL;
476 
477 	ctx = isl_val_get_ctx(v);
478 	expr = pet_expr_alloc(ctx, pet_expr_int);
479 	if (!expr)
480 		goto error;
481 
482 	expr->i = v;
483 
484 	return expr;
485 error:
486 	isl_val_free(v);
487 	return NULL;
488 }
489 
490 /* Return an independent duplicate of "expr".
491  *
492  * In case of an access expression, make sure the depth of the duplicate is set
493  * before the access relation (if any) is set and after the index expression
494  * is set.
495  */
pet_expr_dup(__isl_keep pet_expr * expr)496 static __isl_give pet_expr *pet_expr_dup(__isl_keep pet_expr *expr)
497 {
498 	int i;
499 	pet_expr *dup;
500 	enum pet_expr_access_type type;
501 
502 	if (!expr)
503 		return NULL;
504 
505 	dup = pet_expr_alloc(expr->ctx, expr->type);
506 	dup = pet_expr_set_type_size(dup, expr->type_size);
507 	dup = pet_expr_set_n_arg(dup, expr->n_arg);
508 	for (i = 0; i < expr->n_arg; ++i)
509 		dup = pet_expr_set_arg(dup, i, pet_expr_copy(expr->args[i]));
510 
511 	switch (expr->type) {
512 	case pet_expr_access:
513 		if (expr->acc.ref_id)
514 			dup = pet_expr_access_set_ref_id(dup,
515 						isl_id_copy(expr->acc.ref_id));
516 		dup = pet_expr_access_set_index(dup,
517 					isl_multi_pw_aff_copy(expr->acc.index));
518 		dup = pet_expr_access_set_depth(dup, expr->acc.depth);
519 		for (type = pet_expr_access_begin;
520 		     type < pet_expr_access_end; ++type) {
521 			if (!expr->acc.access[type])
522 				continue;
523 			dup = pet_expr_access_set_access(dup, type,
524 				    isl_union_map_copy(expr->acc.access[type]));
525 		}
526 		dup = pet_expr_access_set_read(dup, expr->acc.read);
527 		dup = pet_expr_access_set_write(dup, expr->acc.write);
528 		dup = pet_expr_access_set_kill(dup, expr->acc.kill);
529 		break;
530 	case pet_expr_call:
531 		dup = pet_expr_call_set_name(dup, expr->c.name);
532 		if (expr->c.summary)
533 			dup = pet_expr_call_set_summary(dup,
534 				    pet_function_summary_copy(expr->c.summary));
535 		break;
536 	case pet_expr_cast:
537 		dup = pet_expr_cast_set_type_name(dup, expr->type_name);
538 		break;
539 	case pet_expr_double:
540 		dup = pet_expr_double_set(dup, expr->d.val, expr->d.s);
541 		break;
542 	case pet_expr_int:
543 		dup = pet_expr_int_set_val(dup, isl_val_copy(expr->i));
544 		break;
545 	case pet_expr_op:
546 		dup = pet_expr_op_set_type(dup, expr->op);
547 		break;
548 	case pet_expr_error:
549 		dup = pet_expr_free(dup);
550 		break;
551 	}
552 
553 	return dup;
554 }
555 
556 /* Return a pet_expr that is equal to "expr" and that has only
557  * a single reference.
558  *
559  * If "expr" itself only has one reference, then clear its hash value
560  * since the returned pet_expr will be modified.
561  */
pet_expr_cow(__isl_take pet_expr * expr)562 __isl_give pet_expr *pet_expr_cow(__isl_take pet_expr *expr)
563 {
564 	if (!expr)
565 		return NULL;
566 
567 	if (expr->ref == 1) {
568 		expr->hash = 0;
569 		return expr;
570 	}
571 	expr->ref--;
572 	return pet_expr_dup(expr);
573 }
574 
pet_expr_free(__isl_take pet_expr * expr)575 __isl_null pet_expr *pet_expr_free(__isl_take pet_expr *expr)
576 {
577 	enum pet_expr_access_type type;
578 	int i;
579 
580 	if (!expr)
581 		return NULL;
582 	if (--expr->ref > 0)
583 		return NULL;
584 
585 	for (i = 0; i < expr->n_arg; ++i)
586 		pet_expr_free(expr->args[i]);
587 	free(expr->args);
588 
589 	switch (expr->type) {
590 	case pet_expr_access:
591 		isl_id_free(expr->acc.ref_id);
592 		for (type = pet_expr_access_begin;
593 		     type < pet_expr_access_end; ++type)
594 			isl_union_map_free(expr->acc.access[type]);
595 		isl_multi_pw_aff_free(expr->acc.index);
596 		break;
597 	case pet_expr_call:
598 		free(expr->c.name);
599 		pet_function_summary_free(expr->c.summary);
600 		break;
601 	case pet_expr_cast:
602 		free(expr->type_name);
603 		break;
604 	case pet_expr_double:
605 		free(expr->d.s);
606 		break;
607 	case pet_expr_int:
608 		isl_val_free(expr->i);
609 		break;
610 	case pet_expr_op:
611 	case pet_expr_error:
612 		break;
613 	}
614 
615 	isl_ctx_deref(expr->ctx);
616 	free(expr);
617 	return NULL;
618 }
619 
620 /* Return an additional reference to "expr".
621  */
pet_expr_copy(__isl_keep pet_expr * expr)622 __isl_give pet_expr *pet_expr_copy(__isl_keep pet_expr *expr)
623 {
624 	if (!expr)
625 		return NULL;
626 
627 	expr->ref++;
628 	return expr;
629 }
630 
631 /* Return the isl_ctx in which "expr" was created.
632  */
pet_expr_get_ctx(__isl_keep pet_expr * expr)633 isl_ctx *pet_expr_get_ctx(__isl_keep pet_expr *expr)
634 {
635 	return expr ? expr->ctx : NULL;
636 }
637 
638 /* Return the type of "expr".
639  */
pet_expr_get_type(__isl_keep pet_expr * expr)640 enum pet_expr_type pet_expr_get_type(__isl_keep pet_expr *expr)
641 {
642 	if (!expr)
643 		return pet_expr_error;
644 	return expr->type;
645 }
646 
647 /* Return the number of arguments of "expr".
648  */
pet_expr_get_n_arg(__isl_keep pet_expr * expr)649 int pet_expr_get_n_arg(__isl_keep pet_expr *expr)
650 {
651 	if (!expr)
652 		return -1;
653 
654 	return expr->n_arg;
655 }
656 
657 /* Set the number of arguments of "expr" to "n".
658  *
659  * If "expr" originally had more arguments, then remove the extra arguments.
660  * If "expr" originally had fewer arguments, then create space for
661  * the extra arguments ans initialize them to NULL.
662  */
pet_expr_set_n_arg(__isl_take pet_expr * expr,int n)663 __isl_give pet_expr *pet_expr_set_n_arg(__isl_take pet_expr *expr, int n)
664 {
665 	int i;
666 	pet_expr **args;
667 
668 	if (!expr)
669 		return NULL;
670 	if (expr->n_arg == n)
671 		return expr;
672 	expr = pet_expr_cow(expr);
673 	if (!expr)
674 		return NULL;
675 
676 	if (n < expr->n_arg) {
677 		for (i = n; i < expr->n_arg; ++i)
678 			pet_expr_free(expr->args[i]);
679 		expr->n_arg = n;
680 		return expr;
681 	}
682 
683 	args = isl_realloc_array(expr->ctx, expr->args, pet_expr *, n);
684 	if (!args)
685 		return pet_expr_free(expr);
686 	expr->args = args;
687 	for (i = expr->n_arg; i < n; ++i)
688 		expr->args[i] = NULL;
689 	expr->n_arg = n;
690 
691 	return expr;
692 }
693 
694 /* Return the argument of "expr" at position "pos".
695  */
pet_expr_get_arg(__isl_keep pet_expr * expr,int pos)696 __isl_give pet_expr *pet_expr_get_arg(__isl_keep pet_expr *expr, int pos)
697 {
698 	if (!expr)
699 		return NULL;
700 	if (pos < 0 || pos >= expr->n_arg)
701 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
702 			"position out of bounds", return NULL);
703 
704 	return pet_expr_copy(expr->args[pos]);
705 }
706 
707 /* Replace "expr" by its argument at position "pos".
708  */
pet_expr_arg(__isl_take pet_expr * expr,int pos)709 __isl_give pet_expr *pet_expr_arg(__isl_take pet_expr *expr, int pos)
710 {
711 	pet_expr *arg;
712 
713 	arg = pet_expr_get_arg(expr, pos);
714 	pet_expr_free(expr);
715 
716 	return arg;
717 }
718 
719 /* Replace the argument of "expr" at position "pos" by "arg".
720  */
pet_expr_set_arg(__isl_take pet_expr * expr,int pos,__isl_take pet_expr * arg)721 __isl_give pet_expr *pet_expr_set_arg(__isl_take pet_expr *expr, int pos,
722 	__isl_take pet_expr *arg)
723 {
724 	if (!expr || !arg)
725 		goto error;
726 	if (pos < 0 || pos >= expr->n_arg)
727 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
728 			"position out of bounds", goto error);
729 	if (expr->args[pos] == arg) {
730 		pet_expr_free(arg);
731 		return expr;
732 	}
733 
734 	expr = pet_expr_cow(expr);
735 	if (!expr)
736 		goto error;
737 
738 	pet_expr_free(expr->args[pos]);
739 	expr->args[pos] = arg;
740 
741 	return expr;
742 error:
743 	pet_expr_free(expr);
744 	pet_expr_free(arg);
745 	return NULL;
746 }
747 
748 /* Does "expr" perform a comparison operation?
749  */
pet_expr_is_comparison(__isl_keep pet_expr * expr)750 int pet_expr_is_comparison(__isl_keep pet_expr *expr)
751 {
752 	if (!expr)
753 		return -1;
754 	if (expr->type != pet_expr_op)
755 		return 0;
756 	switch (expr->op) {
757 	case pet_op_eq:
758 	case pet_op_ne:
759 	case pet_op_le:
760 	case pet_op_ge:
761 	case pet_op_lt:
762 	case pet_op_gt:
763 		return 1;
764 	default:
765 		return 0;
766 	}
767 }
768 
769 /* Does "expr" perform a boolean operation?
770  */
pet_expr_is_boolean(__isl_keep pet_expr * expr)771 int pet_expr_is_boolean(__isl_keep pet_expr *expr)
772 {
773 	if (!expr)
774 		return -1;
775 	if (expr->type != pet_expr_op)
776 		return 0;
777 	switch (expr->op) {
778 	case pet_op_land:
779 	case pet_op_lor:
780 	case pet_op_lnot:
781 		return 1;
782 	default:
783 		return 0;
784 	}
785 }
786 
787 /* Is "expr" an address-of operation?
788  */
pet_expr_is_address_of(__isl_keep pet_expr * expr)789 int pet_expr_is_address_of(__isl_keep pet_expr *expr)
790 {
791 	if (!expr)
792 		return -1;
793 	if (expr->type != pet_expr_op)
794 		return 0;
795 	return expr->op == pet_op_address_of;
796 }
797 
798 /* Is "expr" an assume statement?
799  */
pet_expr_is_assume(__isl_keep pet_expr * expr)800 int pet_expr_is_assume(__isl_keep pet_expr *expr)
801 {
802 	if (!expr)
803 		return -1;
804 	if (expr->type != pet_expr_op)
805 		return 0;
806 	return expr->op == pet_op_assume;
807 }
808 
809 /* Does "expr" perform a min operation?
810  */
pet_expr_is_min(__isl_keep pet_expr * expr)811 int pet_expr_is_min(__isl_keep pet_expr *expr)
812 {
813 	if (!expr)
814 		return -1;
815 	if (expr->type != pet_expr_call)
816 		return 0;
817 	if (expr->n_arg != 2)
818 		return 0;
819 	if (strcmp(expr->c.name, "min") != 0)
820 		return 0;
821 	return 1;
822 }
823 
824 /* Does "expr" perform a max operation?
825  */
pet_expr_is_max(__isl_keep pet_expr * expr)826 int pet_expr_is_max(__isl_keep pet_expr *expr)
827 {
828 	if (!expr)
829 		return -1;
830 	if (expr->type != pet_expr_call)
831 		return 0;
832 	if (expr->n_arg != 2)
833 		return 0;
834 	if (strcmp(expr->c.name, "max") != 0)
835 		return 0;
836 	return 1;
837 }
838 
839 /* Does "expr" represent an access to an unnamed space, i.e.,
840  * does it represent an affine expression?
841  */
pet_expr_is_affine(__isl_keep pet_expr * expr)842 isl_bool pet_expr_is_affine(__isl_keep pet_expr *expr)
843 {
844 	int has_id;
845 
846 	if (!expr)
847 		return isl_bool_error;
848 	if (expr->type != pet_expr_access)
849 		return isl_bool_false;
850 
851 	has_id = isl_multi_pw_aff_has_tuple_id(expr->acc.index, isl_dim_out);
852 	if (has_id < 0)
853 		return isl_bool_error;
854 
855 	return !has_id;
856 }
857 
858 /* Given that "expr" represents an affine expression, i.e., that
859  * it is an access to an unnamed (1D) space, return this affine expression.
860  */
pet_expr_get_affine(__isl_keep pet_expr * expr)861 __isl_give isl_pw_aff *pet_expr_get_affine(__isl_keep pet_expr *expr)
862 {
863 	isl_bool is_affine;
864 	isl_pw_aff *pa;
865 	isl_multi_pw_aff *mpa;
866 
867 	is_affine = pet_expr_is_affine(expr);
868 	if (is_affine < 0)
869 		return NULL;
870 	if (!is_affine)
871 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
872 			"not an affine expression", return NULL);
873 
874 	mpa = pet_expr_access_get_index(expr);
875 	pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
876 	isl_multi_pw_aff_free(mpa);
877 	return pa;
878 }
879 
880 /* Does "expr" represent an access to a scalar, i.e., a zero-dimensional array,
881  * not part of any struct?
882  */
pet_expr_is_scalar_access(__isl_keep pet_expr * expr)883 int pet_expr_is_scalar_access(__isl_keep pet_expr *expr)
884 {
885 	if (!expr)
886 		return -1;
887 	if (expr->type != pet_expr_access)
888 		return 0;
889 	if (isl_multi_pw_aff_range_is_wrapping(expr->acc.index))
890 		return 0;
891 
892 	return expr->acc.depth == 0;
893 }
894 
895 /* Are "mpa1" and "mpa2" obviously equal to each other, up to reordering
896  * of parameters.
897  */
multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff * mpa1,__isl_keep isl_multi_pw_aff * mpa2)898 static int multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff *mpa1,
899 	__isl_keep isl_multi_pw_aff *mpa2)
900 {
901 	int equal;
902 
903 	equal = isl_multi_pw_aff_plain_is_equal(mpa1, mpa2);
904 	if (equal < 0 || equal)
905 		return equal;
906 	mpa2 = isl_multi_pw_aff_copy(mpa2);
907 	mpa2 = isl_multi_pw_aff_align_params(mpa2,
908 					isl_multi_pw_aff_get_space(mpa1));
909 	equal = isl_multi_pw_aff_plain_is_equal(mpa1, mpa2);
910 	isl_multi_pw_aff_free(mpa2);
911 
912 	return equal;
913 }
914 
915 /* Construct an access relation from the index expression and
916  * the array depth of the access expression "expr".
917  *
918  * If the number of indices is smaller than the depth of the array,
919  * then we assume that all elements of the remaining dimensions
920  * are accessed.
921  */
construct_access_relation(__isl_keep pet_expr * expr)922 static __isl_give isl_union_map *construct_access_relation(
923 	__isl_keep pet_expr *expr)
924 {
925 	isl_map *access;
926 	int dim;
927 
928 	if (!expr)
929 		return NULL;
930 
931 	access = isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr));
932 	if (!access)
933 		return NULL;
934 
935 	dim = isl_map_dim(access, isl_dim_out);
936 	if (dim > expr->acc.depth)
937 		isl_die(isl_map_get_ctx(access), isl_error_internal,
938 			"number of indices greater than depth",
939 			access = isl_map_free(access));
940 
941 	if (dim != expr->acc.depth)
942 		access = extend_range(access, expr->acc.depth - dim);
943 
944 	return isl_union_map_from_map(access);
945 }
946 
947 /* Ensure that all relevant access relations are explicitly
948  * available in "expr".
949  *
950  * If "expr" does not already have the relevant access relations, then create
951  * them based on the index expression and the array depth.
952  *
953  * We do not cow since adding an explicit access relation
954  * does not change the meaning of the expression.
955  * However, the explicit access relations may modify the hash value,
956  * so the cached value is reset.
957  */
introduce_access_relations(__isl_take pet_expr * expr)958 static __isl_give pet_expr *introduce_access_relations(
959 	__isl_take pet_expr *expr)
960 {
961 	isl_union_map *access;
962 	int kill, read, write;
963 
964 	if (!expr)
965 		return NULL;
966 	if (has_relevant_access_relations(expr))
967 		return expr;
968 
969 	access = construct_access_relation(expr);
970 	if (!access)
971 		return pet_expr_free(expr);
972 
973 	expr->hash = 0;
974 	kill = expr->acc.kill;
975 	read = expr->acc.read;
976 	write = expr->acc.write;
977 	if (kill && !expr->acc.access[pet_expr_access_fake_killed])
978 		expr->acc.access[pet_expr_access_fake_killed] =
979 						isl_union_map_copy(access);
980 	if (read && !expr->acc.access[pet_expr_access_may_read])
981 		expr->acc.access[pet_expr_access_may_read] =
982 						isl_union_map_copy(access);
983 	if (write && !expr->acc.access[pet_expr_access_may_write])
984 		expr->acc.access[pet_expr_access_may_write] =
985 						isl_union_map_copy(access);
986 	if (write && !expr->acc.access[pet_expr_access_must_write])
987 		expr->acc.access[pet_expr_access_must_write] =
988 						isl_union_map_copy(access);
989 
990 	isl_union_map_free(access);
991 
992 	if (!has_relevant_access_relations(expr))
993 		return pet_expr_free(expr);
994 
995 	return expr;
996 }
997 
998 /* Return a hash value that digests "expr".
999  * If a hash value was computed already, then return that value.
1000  * Otherwise, compute the hash value and store a copy in expr->hash.
1001  */
pet_expr_get_hash(__isl_keep pet_expr * expr)1002 uint32_t pet_expr_get_hash(__isl_keep pet_expr *expr)
1003 {
1004 	int i;
1005 	enum pet_expr_access_type type;
1006 	uint32_t hash, hash_f;
1007 
1008 	if (!expr)
1009 		return 0;
1010 	if (expr->hash)
1011 		return expr->hash;
1012 
1013 	hash = isl_hash_init();
1014 	isl_hash_byte(hash, expr->type & 0xFF);
1015 	isl_hash_byte(hash, expr->n_arg & 0xFF);
1016 	for (i = 0; i < expr->n_arg; ++i) {
1017 		uint32_t hash_i;
1018 		hash_i = pet_expr_get_hash(expr->args[i]);
1019 		isl_hash_hash(hash, hash_i);
1020 	}
1021 	switch (expr->type) {
1022 	case pet_expr_error:
1023 		return 0;
1024 	case pet_expr_double:
1025 		hash = isl_hash_string(hash, expr->d.s);
1026 		break;
1027 	case pet_expr_int:
1028 		hash_f = isl_val_get_hash(expr->i);
1029 		isl_hash_hash(hash, hash_f);
1030 		break;
1031 	case pet_expr_access:
1032 		isl_hash_byte(hash, expr->acc.read & 0xFF);
1033 		isl_hash_byte(hash, expr->acc.write & 0xFF);
1034 		isl_hash_byte(hash, expr->acc.kill & 0xFF);
1035 		hash_f = isl_id_get_hash(expr->acc.ref_id);
1036 		isl_hash_hash(hash, hash_f);
1037 		hash_f = isl_multi_pw_aff_get_hash(expr->acc.index);
1038 		isl_hash_hash(hash, hash_f);
1039 		isl_hash_byte(hash, expr->acc.depth & 0xFF);
1040 		for (type = pet_expr_access_begin;
1041 		     type < pet_expr_access_end; ++type) {
1042 			hash_f = isl_union_map_get_hash(expr->acc.access[type]);
1043 			isl_hash_hash(hash, hash_f);
1044 		}
1045 		break;
1046 	case pet_expr_op:
1047 		isl_hash_byte(hash, expr->op & 0xFF);
1048 		break;
1049 	case pet_expr_call:
1050 		hash = isl_hash_string(hash, expr->c.name);
1051 		break;
1052 	case pet_expr_cast:
1053 		hash = isl_hash_string(hash, expr->type_name);
1054 		break;
1055 	}
1056 	expr->hash = hash;
1057 	return hash;
1058 }
1059 
1060 /* Return 1 if the two pet_exprs are equivalent.
1061  */
pet_expr_is_equal(__isl_keep pet_expr * expr1,__isl_keep pet_expr * expr2)1062 int pet_expr_is_equal(__isl_keep pet_expr *expr1, __isl_keep pet_expr *expr2)
1063 {
1064 	int i;
1065 	enum pet_expr_access_type type;
1066 
1067 	if (!expr1 || !expr2)
1068 		return 0;
1069 
1070 	if (expr1->type != expr2->type)
1071 		return 0;
1072 	if (expr1->n_arg != expr2->n_arg)
1073 		return 0;
1074 	for (i = 0; i < expr1->n_arg; ++i)
1075 		if (!pet_expr_is_equal(expr1->args[i], expr2->args[i]))
1076 			return 0;
1077 	switch (expr1->type) {
1078 	case pet_expr_error:
1079 		return -1;
1080 	case pet_expr_double:
1081 		if (strcmp(expr1->d.s, expr2->d.s))
1082 			return 0;
1083 		if (expr1->d.val != expr2->d.val)
1084 			return 0;
1085 		break;
1086 	case pet_expr_int:
1087 		if (!isl_val_eq(expr1->i, expr2->i))
1088 			return 0;
1089 		break;
1090 	case pet_expr_access:
1091 		if (expr1->acc.read != expr2->acc.read)
1092 			return 0;
1093 		if (expr1->acc.write != expr2->acc.write)
1094 			return 0;
1095 		if (expr1->acc.kill != expr2->acc.kill)
1096 			return 0;
1097 		if (expr1->acc.ref_id != expr2->acc.ref_id)
1098 			return 0;
1099 		if (!expr1->acc.index || !expr2->acc.index)
1100 			return 0;
1101 		if (!multi_pw_aff_is_equal(expr1->acc.index, expr2->acc.index))
1102 			return 0;
1103 		if (expr1->acc.depth != expr2->acc.depth)
1104 			return 0;
1105 		if (has_relevant_access_relations(expr1) !=
1106 		    has_relevant_access_relations(expr2)) {
1107 			int equal;
1108 			expr1 = pet_expr_copy(expr1);
1109 			expr2 = pet_expr_copy(expr2);
1110 			expr1 = introduce_access_relations(expr1);
1111 			expr2 = introduce_access_relations(expr2);
1112 			equal = pet_expr_is_equal(expr1, expr2);
1113 			pet_expr_free(expr1);
1114 			pet_expr_free(expr2);
1115 			return equal;
1116 		}
1117 		for (type = pet_expr_access_begin;
1118 		     type < pet_expr_access_end; ++type) {
1119 			if (!expr1->acc.access[type] !=
1120 						    !expr2->acc.access[type])
1121 				return 0;
1122 			if (!expr1->acc.access[type])
1123 				continue;
1124 			if (!isl_union_map_is_equal(expr1->acc.access[type],
1125 						    expr2->acc.access[type]))
1126 				return 0;
1127 		}
1128 		break;
1129 	case pet_expr_op:
1130 		if (expr1->op != expr2->op)
1131 			return 0;
1132 		break;
1133 	case pet_expr_call:
1134 		if (strcmp(expr1->c.name, expr2->c.name))
1135 			return 0;
1136 		break;
1137 	case pet_expr_cast:
1138 		if (strcmp(expr1->type_name, expr2->type_name))
1139 			return 0;
1140 		break;
1141 	}
1142 
1143 	return 1;
1144 }
1145 
1146 /* Do "expr1" and "expr2" represent two accesses to the same array
1147  * that are also of the same type?  That is, can these two accesses
1148  * be replaced by a single access?
1149  */
pet_expr_is_same_access(__isl_keep pet_expr * expr1,__isl_keep pet_expr * expr2)1150 isl_bool pet_expr_is_same_access(__isl_keep pet_expr *expr1,
1151 	__isl_keep pet_expr *expr2)
1152 {
1153 	isl_space *space1, *space2;
1154 	isl_bool same;
1155 
1156 	if (!expr1 || !expr2)
1157 		return isl_bool_error;
1158 	if (pet_expr_get_type(expr1) != pet_expr_access)
1159 		return isl_bool_false;
1160 	if (pet_expr_get_type(expr2) != pet_expr_access)
1161 		return isl_bool_false;
1162 	if (expr1->acc.read != expr2->acc.read)
1163 		return isl_bool_false;
1164 	if (expr1->acc.write != expr2->acc.write)
1165 		return isl_bool_false;
1166 	if (expr1->acc.kill != expr2->acc.kill)
1167 		return isl_bool_false;
1168 	if (expr1->acc.depth != expr2->acc.depth)
1169 		return isl_bool_false;
1170 
1171 	space1 = isl_multi_pw_aff_get_space(expr1->acc.index);
1172 	space2 = isl_multi_pw_aff_get_space(expr2->acc.index);
1173 	same = isl_space_tuple_is_equal(space1, isl_dim_out,
1174 					space2, isl_dim_out);
1175 	if (same >= 0 && same)
1176 		same = isl_space_tuple_is_equal(space1, isl_dim_in,
1177 						space2, isl_dim_in);
1178 	isl_space_free(space1);
1179 	isl_space_free(space2);
1180 
1181 	return same;
1182 }
1183 
1184 /* Does the access expression "expr" read the accessed elements?
1185  */
pet_expr_access_is_read(__isl_keep pet_expr * expr)1186 isl_bool pet_expr_access_is_read(__isl_keep pet_expr *expr)
1187 {
1188 	if (!expr)
1189 		return isl_bool_error;
1190 	if (expr->type != pet_expr_access)
1191 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1192 			"not an access expression", return isl_bool_error);
1193 
1194 	return expr->acc.read;
1195 }
1196 
1197 /* Does the access expression "expr" write to the accessed elements?
1198  */
pet_expr_access_is_write(__isl_keep pet_expr * expr)1199 isl_bool pet_expr_access_is_write(__isl_keep pet_expr *expr)
1200 {
1201 	if (!expr)
1202 		return isl_bool_error;
1203 	if (expr->type != pet_expr_access)
1204 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1205 			"not an access expression", return isl_bool_error);
1206 
1207 	return expr->acc.write;
1208 }
1209 
1210 /* Does the access expression "expr" kill the accessed elements?
1211  */
pet_expr_access_is_kill(__isl_keep pet_expr * expr)1212 isl_bool pet_expr_access_is_kill(__isl_keep pet_expr *expr)
1213 {
1214 	if (!expr)
1215 		return isl_bool_error;
1216 	if (expr->type != pet_expr_access)
1217 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1218 			"not an access expression", return isl_bool_error);
1219 
1220 	return expr->acc.kill;
1221 }
1222 
1223 /* Return the identifier of the array accessed by "expr".
1224  *
1225  * If "expr" represents a member access, then return the identifier
1226  * of the outer structure array.
1227  */
pet_expr_access_get_id(__isl_keep pet_expr * expr)1228 __isl_give isl_id *pet_expr_access_get_id(__isl_keep pet_expr *expr)
1229 {
1230 	if (!expr)
1231 		return NULL;
1232 	if (expr->type != pet_expr_access)
1233 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1234 			"not an access expression", return NULL);
1235 
1236 	if (isl_multi_pw_aff_range_is_wrapping(expr->acc.index)) {
1237 		isl_space *space;
1238 		isl_id *id;
1239 
1240 		space = isl_multi_pw_aff_get_space(expr->acc.index);
1241 		space = isl_space_range(space);
1242 		while (space && isl_space_is_wrapping(space))
1243 			space = isl_space_domain(isl_space_unwrap(space));
1244 		id = isl_space_get_tuple_id(space, isl_dim_set);
1245 		isl_space_free(space);
1246 
1247 		return id;
1248 	}
1249 
1250 	return isl_multi_pw_aff_get_tuple_id(expr->acc.index, isl_dim_out);
1251 }
1252 
1253 /* Return the parameter space of "expr".
1254  */
pet_expr_access_get_parameter_space(__isl_keep pet_expr * expr)1255 __isl_give isl_space *pet_expr_access_get_parameter_space(
1256 	__isl_keep pet_expr *expr)
1257 {
1258 	isl_space *space;
1259 
1260 	if (!expr)
1261 		return NULL;
1262 	if (expr->type != pet_expr_access)
1263 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1264 			"not an access expression", return NULL);
1265 
1266 	space = isl_multi_pw_aff_get_space(expr->acc.index);
1267 	space = isl_space_params(space);
1268 
1269 	return space;
1270 }
1271 
1272 /* Return the domain space of "expr", including the arguments (if any).
1273  */
pet_expr_access_get_augmented_domain_space(__isl_keep pet_expr * expr)1274 __isl_give isl_space *pet_expr_access_get_augmented_domain_space(
1275 	__isl_keep pet_expr *expr)
1276 {
1277 	isl_space *space;
1278 
1279 	if (!expr)
1280 		return NULL;
1281 	if (expr->type != pet_expr_access)
1282 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1283 			"not an access expression", return NULL);
1284 
1285 	space = isl_multi_pw_aff_get_space(expr->acc.index);
1286 	space = isl_space_domain(space);
1287 
1288 	return space;
1289 }
1290 
1291 /* Return the domain space of "expr", without the arguments (if any).
1292  */
pet_expr_access_get_domain_space(__isl_keep pet_expr * expr)1293 __isl_give isl_space *pet_expr_access_get_domain_space(
1294 	__isl_keep pet_expr *expr)
1295 {
1296 	isl_space *space;
1297 
1298 	space = pet_expr_access_get_augmented_domain_space(expr);
1299 	if (isl_space_is_wrapping(space))
1300 		space = isl_space_domain(isl_space_unwrap(space));
1301 
1302 	return space;
1303 }
1304 
1305 /* Internal data structure for pet_expr_access_foreach_data_space.
1306  */
1307 struct pet_foreach_data_space_data {
1308 	isl_stat (*fn)(__isl_take isl_space *space, void *user);
1309 	void *user;
1310 };
1311 
1312 /* Given a piece of an access relation, call data->fn on the data
1313  * (i.e., range) space.
1314  */
foreach_data_space(__isl_take isl_map * map,void * user)1315 static isl_stat foreach_data_space(__isl_take isl_map *map, void *user)
1316 {
1317 	struct pet_foreach_data_space_data *data = user;
1318 	isl_space *space;
1319 
1320 	space = isl_map_get_space(map);
1321 	space = isl_space_range(space);
1322 	isl_map_free(map);
1323 
1324 	return data->fn(space, data->user);
1325 }
1326 
1327 /* Call "fn" on the data spaces accessed by "expr".
1328  * In particular, call "fn" on the range space of the index expression,
1329  * but if "expr" keeps track of any explicit access relations,
1330  * then also call "fn" on the corresponding range spaces.
1331  */
pet_expr_access_foreach_data_space(__isl_keep pet_expr * expr,isl_stat (* fn)(__isl_take isl_space * space,void * user),void * user)1332 isl_stat pet_expr_access_foreach_data_space(__isl_keep pet_expr *expr,
1333 	isl_stat (*fn)(__isl_take isl_space *space, void *user), void *user)
1334 {
1335 	struct pet_foreach_data_space_data data = { fn, user };
1336 	enum pet_expr_access_type type;
1337 	isl_space *space;
1338 
1339 	if (!expr)
1340 		return isl_stat_error;
1341 	if (expr->type != pet_expr_access)
1342 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1343 			"not an access expression", return isl_stat_error);
1344 
1345 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1346 		if (!expr->acc.access[type])
1347 			continue;
1348 		if (isl_union_map_foreach_map(expr->acc.access[type],
1349 					&foreach_data_space, &data) < 0)
1350 			return isl_stat_error;
1351 	}
1352 
1353 	space = isl_multi_pw_aff_get_space(expr->acc.index);
1354 	space = isl_space_range(space);
1355 	return fn(space, user);
1356 }
1357 
1358 /* Modify all subexpressions of "expr" by calling "fn" on them.
1359  * The subexpressions are traversed in depth first preorder.
1360  */
pet_expr_map_top_down(__isl_take pet_expr * expr,__isl_give pet_expr * (* fn)(__isl_take pet_expr * expr,void * user),void * user)1361 __isl_give pet_expr *pet_expr_map_top_down(__isl_take pet_expr *expr,
1362 	__isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1363 	void *user)
1364 {
1365 	int i, n;
1366 
1367 	if (!expr)
1368 		return NULL;
1369 
1370 	expr = fn(expr, user);
1371 
1372 	n = pet_expr_get_n_arg(expr);
1373 	for (i = 0; i < n; ++i) {
1374 		pet_expr *arg = pet_expr_get_arg(expr, i);
1375 		arg = pet_expr_map_top_down(arg, fn, user);
1376 		expr = pet_expr_set_arg(expr, i, arg);
1377 	}
1378 
1379 	return expr;
1380 }
1381 
1382 /* Modify all expressions of type "type" in "expr" by calling "fn" on them.
1383  */
pet_expr_map_expr_of_type(__isl_take pet_expr * expr,enum pet_expr_type type,__isl_give pet_expr * (* fn)(__isl_take pet_expr * expr,void * user),void * user)1384 static __isl_give pet_expr *pet_expr_map_expr_of_type(__isl_take pet_expr *expr,
1385 	enum pet_expr_type type,
1386 	__isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1387 	void *user)
1388 {
1389 	int i, n;
1390 
1391 	n = pet_expr_get_n_arg(expr);
1392 	for (i = 0; i < n; ++i) {
1393 		pet_expr *arg = pet_expr_get_arg(expr, i);
1394 		arg = pet_expr_map_expr_of_type(arg, type, fn, user);
1395 		expr = pet_expr_set_arg(expr, i, arg);
1396 	}
1397 
1398 	if (!expr)
1399 		return NULL;
1400 
1401 	if (expr->type == type)
1402 		expr = fn(expr, user);
1403 
1404 	return expr;
1405 }
1406 
1407 /* Modify all expressions of type pet_expr_access in "expr"
1408  * by calling "fn" on them.
1409  */
pet_expr_map_access(__isl_take pet_expr * expr,__isl_give pet_expr * (* fn)(__isl_take pet_expr * expr,void * user),void * user)1410 __isl_give pet_expr *pet_expr_map_access(__isl_take pet_expr *expr,
1411 	__isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1412 	void *user)
1413 {
1414 	return pet_expr_map_expr_of_type(expr, pet_expr_access, fn, user);
1415 }
1416 
1417 /* Modify all expressions of type pet_expr_call in "expr"
1418  * by calling "fn" on them.
1419  */
pet_expr_map_call(__isl_take pet_expr * expr,__isl_give pet_expr * (* fn)(__isl_take pet_expr * expr,void * user),void * user)1420 __isl_give pet_expr *pet_expr_map_call(__isl_take pet_expr *expr,
1421 	__isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1422 	void *user)
1423 {
1424 	return pet_expr_map_expr_of_type(expr, pet_expr_call, fn, user);
1425 }
1426 
1427 /* Modify all expressions of type pet_expr_op in "expr"
1428  * by calling "fn" on them.
1429  */
pet_expr_map_op(__isl_take pet_expr * expr,__isl_give pet_expr * (* fn)(__isl_take pet_expr * expr,void * user),void * user)1430 __isl_give pet_expr *pet_expr_map_op(__isl_take pet_expr *expr,
1431 	__isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1432 	void *user)
1433 {
1434 	return pet_expr_map_expr_of_type(expr, pet_expr_op, fn, user);
1435 }
1436 
1437 /* Call "fn" on each of the subexpressions of "expr" of type "type".
1438  *
1439  * Return -1 on error (where fn returning a negative value is treated as
1440  * an error).
1441  * Otherwise return 0.
1442  */
pet_expr_foreach_expr_of_type(__isl_keep pet_expr * expr,enum pet_expr_type type,int (* fn)(__isl_keep pet_expr * expr,void * user),void * user)1443 int pet_expr_foreach_expr_of_type(__isl_keep pet_expr *expr,
1444 	enum pet_expr_type type,
1445 	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1446 {
1447 	int i;
1448 
1449 	if (!expr)
1450 		return -1;
1451 
1452 	for (i = 0; i < expr->n_arg; ++i)
1453 		if (pet_expr_foreach_expr_of_type(expr->args[i],
1454 						    type, fn, user) < 0)
1455 			return -1;
1456 
1457 	if (expr->type == type)
1458 		return fn(expr, user);
1459 
1460 	return 0;
1461 }
1462 
1463 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
1464  *
1465  * Return -1 on error (where fn returning a negative value is treated as
1466  * an error).
1467  * Otherwise return 0.
1468  */
pet_expr_foreach_access_expr(__isl_keep pet_expr * expr,int (* fn)(__isl_keep pet_expr * expr,void * user),void * user)1469 int pet_expr_foreach_access_expr(__isl_keep pet_expr *expr,
1470 	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1471 {
1472 	return pet_expr_foreach_expr_of_type(expr, pet_expr_access, fn, user);
1473 }
1474 
1475 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_call.
1476  *
1477  * Return -1 on error (where fn returning a negative value is treated as
1478  * an error).
1479  * Otherwise return 0.
1480  */
pet_expr_foreach_call_expr(__isl_keep pet_expr * expr,int (* fn)(__isl_keep pet_expr * expr,void * user),void * user)1481 int pet_expr_foreach_call_expr(__isl_keep pet_expr *expr,
1482 	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1483 {
1484 	return pet_expr_foreach_expr_of_type(expr, pet_expr_call, fn, user);
1485 }
1486 
1487 /* Internal data structure for pet_expr_writes.
1488  * "id" is the identifier that we are looking for.
1489  * "found" is set if we have found the identifier being written to.
1490  */
1491 struct pet_expr_writes_data {
1492 	isl_id *id;
1493 	int found;
1494 };
1495 
1496 /* Given an access expression, check if it writes to data->id.
1497  * If so, set data->found and abort the search.
1498  */
writes(__isl_keep pet_expr * expr,void * user)1499 static int writes(__isl_keep pet_expr *expr, void *user)
1500 {
1501 	struct pet_expr_writes_data *data = user;
1502 	isl_id *write_id;
1503 
1504 	if (!expr->acc.write)
1505 		return 0;
1506 	if (pet_expr_is_affine(expr))
1507 		return 0;
1508 
1509 	write_id = pet_expr_access_get_id(expr);
1510 	isl_id_free(write_id);
1511 
1512 	if (!write_id)
1513 		return -1;
1514 
1515 	if (write_id != data->id)
1516 		return 0;
1517 
1518 	data->found = 1;
1519 	return -1;
1520 }
1521 
1522 /* Does expression "expr" write to "id"?
1523  */
pet_expr_writes(__isl_keep pet_expr * expr,__isl_keep isl_id * id)1524 int pet_expr_writes(__isl_keep pet_expr *expr, __isl_keep isl_id *id)
1525 {
1526 	struct pet_expr_writes_data data;
1527 
1528 	data.id = id;
1529 	data.found = 0;
1530 	if (pet_expr_foreach_access_expr(expr, &writes, &data) < 0 &&
1531 	    !data.found)
1532 		return -1;
1533 
1534 	return data.found;
1535 }
1536 
1537 /* Move the "n" dimensions of "src_type" starting at "src_pos" of
1538  * index expression and access relations of "expr" (if any)
1539  * to dimensions of "dst_type" at "dst_pos".
1540  */
pet_expr_access_move_dims(__isl_take pet_expr * expr,enum isl_dim_type dst_type,unsigned dst_pos,enum isl_dim_type src_type,unsigned src_pos,unsigned n)1541 __isl_give pet_expr *pet_expr_access_move_dims(__isl_take pet_expr *expr,
1542 	enum isl_dim_type dst_type, unsigned dst_pos,
1543 	enum isl_dim_type src_type, unsigned src_pos, unsigned n)
1544 {
1545 	enum pet_expr_access_type type;
1546 
1547 	expr = pet_expr_cow(expr);
1548 	if (!expr)
1549 		return NULL;
1550 	if (expr->type != pet_expr_access)
1551 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1552 			"not an access pet_expr", return pet_expr_free(expr));
1553 
1554 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1555 		if (!expr->acc.access[type])
1556 			continue;
1557 		expr->acc.access[type] =
1558 			pet_union_map_move_dims(expr->acc.access[type],
1559 				dst_type, dst_pos, src_type, src_pos, n);
1560 		if (!expr->acc.access[type])
1561 			break;
1562 	}
1563 	expr->acc.index = isl_multi_pw_aff_move_dims(expr->acc.index,
1564 				dst_type, dst_pos, src_type, src_pos, n);
1565 	if (!expr->acc.index || type < pet_expr_access_end)
1566 		return pet_expr_free(expr);
1567 
1568 	return expr;
1569 }
1570 
1571 /* Replace the index expression and access relations (if any) of "expr"
1572  * by their preimages under the function represented by "ma".
1573  */
pet_expr_access_pullback_multi_aff(__isl_take pet_expr * expr,__isl_take isl_multi_aff * ma)1574 __isl_give pet_expr *pet_expr_access_pullback_multi_aff(
1575 	__isl_take pet_expr *expr, __isl_take isl_multi_aff *ma)
1576 {
1577 	enum pet_expr_access_type type;
1578 
1579 	expr = pet_expr_cow(expr);
1580 	if (!expr || !ma)
1581 		goto error;
1582 	if (expr->type != pet_expr_access)
1583 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1584 			"not an access pet_expr", goto error);
1585 
1586 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1587 		if (!expr->acc.access[type])
1588 			continue;
1589 		expr->acc.access[type] =
1590 		    isl_union_map_preimage_domain_multi_aff(
1591 			expr->acc.access[type], isl_multi_aff_copy(ma));
1592 		if (!expr->acc.access[type])
1593 			break;
1594 	}
1595 	expr->acc.index = isl_multi_pw_aff_pullback_multi_aff(expr->acc.index,
1596 						ma);
1597 	if (!expr->acc.index || type < pet_expr_access_end)
1598 		return pet_expr_free(expr);
1599 
1600 	return expr;
1601 error:
1602 	isl_multi_aff_free(ma);
1603 	pet_expr_free(expr);
1604 	return NULL;
1605 }
1606 
1607 /* Replace the index expression and access relations (if any) of "expr"
1608  * by their preimages under the function represented by "mpa".
1609  */
pet_expr_access_pullback_multi_pw_aff(__isl_take pet_expr * expr,__isl_take isl_multi_pw_aff * mpa)1610 __isl_give pet_expr *pet_expr_access_pullback_multi_pw_aff(
1611 	__isl_take pet_expr *expr, __isl_take isl_multi_pw_aff *mpa)
1612 {
1613 	enum pet_expr_access_type type;
1614 
1615 	expr = pet_expr_cow(expr);
1616 	if (!expr || !mpa)
1617 		goto error;
1618 	if (expr->type != pet_expr_access)
1619 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1620 			"not an access pet_expr", goto error);
1621 
1622 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1623 		if (!expr->acc.access[type])
1624 			continue;
1625 		expr->acc.access[type] =
1626 		    isl_union_map_preimage_domain_multi_pw_aff(
1627 			expr->acc.access[type], isl_multi_pw_aff_copy(mpa));
1628 		if (!expr->acc.access[type])
1629 			break;
1630 	}
1631 	expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1632 				expr->acc.index, mpa);
1633 	if (!expr->acc.index || type < pet_expr_access_end)
1634 		return pet_expr_free(expr);
1635 
1636 	return expr;
1637 error:
1638 	isl_multi_pw_aff_free(mpa);
1639 	pet_expr_free(expr);
1640 	return NULL;
1641 }
1642 
1643 /* Return the index expression of access expression "expr".
1644  */
pet_expr_access_get_index(__isl_keep pet_expr * expr)1645 __isl_give isl_multi_pw_aff *pet_expr_access_get_index(
1646 	__isl_keep pet_expr *expr)
1647 {
1648 	if (!expr)
1649 		return NULL;
1650 	if (expr->type != pet_expr_access)
1651 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1652 			"not an access expression", return NULL);
1653 
1654 	return isl_multi_pw_aff_copy(expr->acc.index);
1655 }
1656 
1657 /* Align the parameters of expr->acc.index and expr->acc.access[*] (if set).
1658  */
pet_expr_access_align_params(__isl_take pet_expr * expr)1659 __isl_give pet_expr *pet_expr_access_align_params(__isl_take pet_expr *expr)
1660 {
1661 	isl_space *space;
1662 	enum pet_expr_access_type type;
1663 
1664 	expr = pet_expr_cow(expr);
1665 	if (!expr)
1666 		return NULL;
1667 	if (expr->type != pet_expr_access)
1668 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1669 			"not an access expression", return pet_expr_free(expr));
1670 
1671 	if (!pet_expr_access_has_any_access_relation(expr))
1672 		return expr;
1673 
1674 	space = isl_multi_pw_aff_get_space(expr->acc.index);
1675 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1676 		if (!expr->acc.access[type])
1677 			continue;
1678 		space = isl_space_align_params(space,
1679 			    isl_union_map_get_space(expr->acc.access[type]));
1680 	}
1681 	expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1682 							isl_space_copy(space));
1683 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1684 		if (!expr->acc.access[type])
1685 			continue;
1686 		expr->acc.access[type] =
1687 		    isl_union_map_align_params(expr->acc.access[type],
1688 							isl_space_copy(space));
1689 		if (!expr->acc.access[type])
1690 			break;
1691 	}
1692 	isl_space_free(space);
1693 	if (!expr->acc.index || type < pet_expr_access_end)
1694 		return pet_expr_free(expr);
1695 
1696 	return expr;
1697 }
1698 
1699 /* Are "expr1" and "expr2" both array accesses such that
1700  * the access relation of "expr1" is a subset of that of "expr2"?
1701  * Only take into account the first "n_arg" arguments.
1702  *
1703  * This function is tailored for use by mark_self_dependences in nest.c.
1704  * In particular, the input expressions may have more than "n_arg"
1705  * elements in their arguments arrays, while only the first "n_arg"
1706  * elements are referenced from the access relations.
1707  */
pet_expr_is_sub_access(__isl_keep pet_expr * expr1,__isl_keep pet_expr * expr2,int n_arg)1708 int pet_expr_is_sub_access(__isl_keep pet_expr *expr1,
1709 	__isl_keep pet_expr *expr2, int n_arg)
1710 {
1711 	isl_id *id1, *id2;
1712 	int i, n1, n2;
1713 	int is_subset;
1714 
1715 	if (!expr1 || !expr2)
1716 		return 0;
1717 	if (pet_expr_get_type(expr1) != pet_expr_access)
1718 		return 0;
1719 	if (pet_expr_get_type(expr2) != pet_expr_access)
1720 		return 0;
1721 	if (pet_expr_is_affine(expr1))
1722 		return 0;
1723 	if (pet_expr_is_affine(expr2))
1724 		return 0;
1725 	n1 = pet_expr_get_n_arg(expr1);
1726 	if (n1 > n_arg)
1727 		n1 = n_arg;
1728 	n2 = pet_expr_get_n_arg(expr2);
1729 	if (n2 > n_arg)
1730 		n2 = n_arg;
1731 	if (n1 != n2)
1732 		return 0;
1733 	for (i = 0; i < n1; ++i) {
1734 		int equal;
1735 		equal = pet_expr_is_equal(expr1->args[i], expr2->args[i]);
1736 		if (equal < 0 || !equal)
1737 			return equal;
1738 	}
1739 	id1 = pet_expr_access_get_id(expr1);
1740 	id2 = pet_expr_access_get_id(expr2);
1741 	isl_id_free(id1);
1742 	isl_id_free(id2);
1743 	if (!id1 || !id2)
1744 		return 0;
1745 	if (id1 != id2)
1746 		return 0;
1747 
1748 	expr1 = pet_expr_copy(expr1);
1749 	expr2 = pet_expr_copy(expr2);
1750 	expr1 = introduce_access_relations(expr1);
1751 	expr2 = introduce_access_relations(expr2);
1752 	if (!expr1 || !expr2)
1753 		goto error;
1754 
1755 	is_subset = isl_union_map_is_subset(
1756 			expr1->acc.access[pet_expr_access_may_read],
1757 			expr2->acc.access[pet_expr_access_may_read]);
1758 
1759 	pet_expr_free(expr1);
1760 	pet_expr_free(expr2);
1761 
1762 	return is_subset;
1763 error:
1764 	pet_expr_free(expr1);
1765 	pet_expr_free(expr2);
1766 	return -1;
1767 }
1768 
1769 /* Given a set in the iteration space "domain", extend it to live in the space
1770  * of the domain of access relations.
1771  *
1772  * That, is the number of arguments "n" is 0, then simply return domain.
1773  * Otherwise, return [domain -> [a_1,...,a_n]].
1774  */
add_arguments(__isl_take isl_set * domain,int n)1775 static __isl_give isl_set *add_arguments(__isl_take isl_set *domain, int n)
1776 {
1777 	isl_map *map;
1778 
1779 	if (n == 0)
1780 		return domain;
1781 
1782 	map = isl_map_from_domain(domain);
1783 	map = isl_map_add_dims(map, isl_dim_out, n);
1784 	return isl_map_wrap(map);
1785 }
1786 
1787 /* Add extra conditions to the domains of all access relations in "expr",
1788  * introducing access relations if they are not already present.
1789  *
1790  * The conditions are not added to the index expression.  Instead, they
1791  * are used to try and simplify the index expression.
1792  */
pet_expr_restrict(__isl_take pet_expr * expr,__isl_take isl_set * cond)1793 __isl_give pet_expr *pet_expr_restrict(__isl_take pet_expr *expr,
1794 	__isl_take isl_set *cond)
1795 {
1796 	int i;
1797 	isl_union_set *uset;
1798 	enum pet_expr_access_type type;
1799 
1800 	expr = pet_expr_cow(expr);
1801 	if (!expr)
1802 		goto error;
1803 
1804 	for (i = 0; i < expr->n_arg; ++i) {
1805 		expr->args[i] = pet_expr_restrict(expr->args[i],
1806 							isl_set_copy(cond));
1807 		if (!expr->args[i])
1808 			goto error;
1809 	}
1810 
1811 	if (expr->type != pet_expr_access) {
1812 		isl_set_free(cond);
1813 		return expr;
1814 	}
1815 
1816 	expr = introduce_access_relations(expr);
1817 	if (!expr)
1818 		goto error;
1819 
1820 	cond = add_arguments(cond, expr->n_arg);
1821 	uset = isl_union_set_from_set(isl_set_copy(cond));
1822 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1823 		if (!expr->acc.access[type])
1824 			continue;
1825 		expr->acc.access[type] =
1826 		    isl_union_map_intersect_domain(expr->acc.access[type],
1827 						    isl_union_set_copy(uset));
1828 		if (!expr->acc.access[type])
1829 			break;
1830 	}
1831 	isl_union_set_free(uset);
1832 	expr->acc.index = isl_multi_pw_aff_gist(expr->acc.index, cond);
1833 	if (type < pet_expr_access_end || !expr->acc.index)
1834 		return pet_expr_free(expr);
1835 
1836 	return expr;
1837 error:
1838 	isl_set_free(cond);
1839 	return pet_expr_free(expr);
1840 }
1841 
1842 /* Modify the access relations (if any) and index expression
1843  * of the given access expression
1844  * based on the given iteration space transformation.
1845  * In particular, precompose the access relation and index expression
1846  * with the update function.
1847  *
1848  * If the access has any arguments then the domain of the access relation
1849  * is a wrapped mapping from the iteration space to the space of
1850  * argument values.  We only need to change the domain of this wrapped
1851  * mapping, so we extend the input transformation with an identity mapping
1852  * on the space of argument values.
1853  */
pet_expr_access_update_domain(__isl_take pet_expr * expr,__isl_keep isl_multi_pw_aff * update)1854 __isl_give pet_expr *pet_expr_access_update_domain(__isl_take pet_expr *expr,
1855 	__isl_keep isl_multi_pw_aff *update)
1856 {
1857 	enum pet_expr_access_type type;
1858 
1859 	expr = pet_expr_cow(expr);
1860 	if (!expr)
1861 		return NULL;
1862 	if (expr->type != pet_expr_access)
1863 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1864 			"not an access expression", return pet_expr_free(expr));
1865 
1866 	update = isl_multi_pw_aff_copy(update);
1867 
1868 	if (expr->n_arg > 0) {
1869 		isl_space *space;
1870 		isl_multi_pw_aff *id;
1871 
1872 		space = isl_multi_pw_aff_get_space(expr->acc.index);
1873 		space = isl_space_domain(space);
1874 		space = isl_space_unwrap(space);
1875 		space = isl_space_range(space);
1876 		space = isl_space_map_from_set(space);
1877 		id = isl_multi_pw_aff_identity(space);
1878 		update = isl_multi_pw_aff_product(update, id);
1879 	}
1880 
1881 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1882 		if (!expr->acc.access[type])
1883 			continue;
1884 		expr->acc.access[type] =
1885 		    isl_union_map_preimage_domain_multi_pw_aff(
1886 					    expr->acc.access[type],
1887 					    isl_multi_pw_aff_copy(update));
1888 		if (!expr->acc.access[type])
1889 			break;
1890 	}
1891 	expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1892 					    expr->acc.index, update);
1893 	if (type < pet_expr_access_end || !expr->acc.index)
1894 		return pet_expr_free(expr);
1895 
1896 	return expr;
1897 }
1898 
update_domain(__isl_take pet_expr * expr,void * user)1899 static __isl_give pet_expr *update_domain(__isl_take pet_expr *expr, void *user)
1900 {
1901 	isl_multi_pw_aff *update = user;
1902 
1903 	return pet_expr_access_update_domain(expr, update);
1904 }
1905 
1906 /* Modify all access relations in "expr" by precomposing them with
1907  * the given iteration space transformation.
1908  */
pet_expr_update_domain(__isl_take pet_expr * expr,__isl_take isl_multi_pw_aff * update)1909 __isl_give pet_expr *pet_expr_update_domain(__isl_take pet_expr *expr,
1910 	__isl_take isl_multi_pw_aff *update)
1911 {
1912 	expr = pet_expr_map_access(expr, &update_domain, update);
1913 	isl_multi_pw_aff_free(update);
1914 	return expr;
1915 }
1916 
1917 /* Given an expression with accesses that have a 0D anonymous domain,
1918  * replace those domains by "space".
1919  */
pet_expr_insert_domain(__isl_take pet_expr * expr,__isl_take isl_space * space)1920 __isl_give pet_expr *pet_expr_insert_domain(__isl_take pet_expr *expr,
1921 	__isl_take isl_space *space)
1922 {
1923 	isl_multi_pw_aff *mpa;
1924 
1925 	space = isl_space_from_domain(space);
1926 	mpa = isl_multi_pw_aff_zero(space);
1927 	return pet_expr_update_domain(expr, mpa);
1928 }
1929 
1930 /* Add all parameters in "space" to the access relations (if any)
1931  * and index expression of "expr".
1932  */
align_params(__isl_take pet_expr * expr,void * user)1933 static __isl_give pet_expr *align_params(__isl_take pet_expr *expr, void *user)
1934 {
1935 	isl_space *space = user;
1936 	enum pet_expr_access_type type;
1937 
1938 	expr = pet_expr_cow(expr);
1939 	if (!expr)
1940 		return NULL;
1941 	if (expr->type != pet_expr_access)
1942 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1943 			"not an access expression", return pet_expr_free(expr));
1944 
1945 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
1946 		if (!expr->acc.access[type])
1947 			continue;
1948 		expr->acc.access[type] =
1949 		    isl_union_map_align_params(expr->acc.access[type],
1950 						isl_space_copy(space));
1951 		if (!expr->acc.access[type])
1952 			break;
1953 	}
1954 	expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1955 						isl_space_copy(space));
1956 	if (type < pet_expr_access_end || !expr->acc.index)
1957 		return pet_expr_free(expr);
1958 
1959 	return expr;
1960 }
1961 
1962 /* Add all parameters in "space" to all access relations and index expressions
1963  * in "expr".
1964  */
pet_expr_align_params(__isl_take pet_expr * expr,__isl_take isl_space * space)1965 __isl_give pet_expr *pet_expr_align_params(__isl_take pet_expr *expr,
1966 	__isl_take isl_space *space)
1967 {
1968 	expr = pet_expr_map_access(expr, &align_params, space);
1969 	isl_space_free(space);
1970 	return expr;
1971 }
1972 
1973 /* Insert an argument expression corresponding to "test" in front
1974  * of the list of arguments described by *n_arg and *args.
1975  */
insert_access_arg(__isl_take pet_expr * expr,__isl_keep isl_multi_pw_aff * test)1976 static __isl_give pet_expr *insert_access_arg(__isl_take pet_expr *expr,
1977 	__isl_keep isl_multi_pw_aff *test)
1978 {
1979 	int i;
1980 	isl_ctx *ctx = isl_multi_pw_aff_get_ctx(test);
1981 
1982 	if (!test)
1983 		return pet_expr_free(expr);
1984 	expr = pet_expr_cow(expr);
1985 	if (!expr)
1986 		return NULL;
1987 
1988 	if (!expr->args) {
1989 		expr->args = isl_calloc_array(ctx, pet_expr *, 1);
1990 		if (!expr->args)
1991 			return pet_expr_free(expr);
1992 	} else {
1993 		pet_expr **ext;
1994 		ext = isl_calloc_array(ctx, pet_expr *, 1 + expr->n_arg);
1995 		if (!ext)
1996 			return pet_expr_free(expr);
1997 		for (i = 0; i < expr->n_arg; ++i)
1998 			ext[1 + i] = expr->args[i];
1999 		free(expr->args);
2000 		expr->args = ext;
2001 	}
2002 	expr->n_arg++;
2003 	expr->args[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test));
2004 	if (!expr->args[0])
2005 		return pet_expr_free(expr);
2006 
2007 	return expr;
2008 }
2009 
2010 /* Make the expression "expr" depend on the value of "test"
2011  * being equal to "satisfied".
2012  *
2013  * If "test" is an affine expression, we simply add the conditions
2014  * on the expression having the value "satisfied" to all access relations
2015  * (introducing access relations if they are missing) and index expressions.
2016  *
2017  * Otherwise, we add a filter to "expr" (which is then assumed to be
2018  * an access expression) corresponding to "test" being equal to "satisfied".
2019  */
pet_expr_filter(__isl_take pet_expr * expr,__isl_take isl_multi_pw_aff * test,int satisfied)2020 __isl_give pet_expr *pet_expr_filter(__isl_take pet_expr *expr,
2021 	__isl_take isl_multi_pw_aff *test, int satisfied)
2022 {
2023 	isl_id *id;
2024 	isl_ctx *ctx;
2025 	isl_space *space;
2026 	isl_pw_multi_aff *pma;
2027 	enum pet_expr_access_type type;
2028 
2029 	expr = pet_expr_cow(expr);
2030 	if (!expr || !test)
2031 		goto error;
2032 
2033 	if (!isl_multi_pw_aff_has_tuple_id(test, isl_dim_out)) {
2034 		isl_pw_aff *pa;
2035 		isl_set *cond;
2036 
2037 		pa = isl_multi_pw_aff_get_pw_aff(test, 0);
2038 		isl_multi_pw_aff_free(test);
2039 		if (satisfied)
2040 			cond = isl_pw_aff_non_zero_set(pa);
2041 		else
2042 			cond = isl_pw_aff_zero_set(pa);
2043 		return pet_expr_restrict(expr, cond);
2044 	}
2045 
2046 	ctx = isl_multi_pw_aff_get_ctx(test);
2047 	if (expr->type != pet_expr_access)
2048 		isl_die(ctx, isl_error_invalid,
2049 			"can only filter access expressions", goto error);
2050 
2051 	expr = introduce_access_relations(expr);
2052 	if (!expr)
2053 		goto error;
2054 
2055 	space = isl_space_domain(isl_multi_pw_aff_get_space(expr->acc.index));
2056 	id = isl_multi_pw_aff_get_tuple_id(test, isl_dim_out);
2057 	pma = pet_filter_insert_pma(space, id, satisfied);
2058 
2059 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
2060 		if (!expr->acc.access[type])
2061 			continue;
2062 		expr->acc.access[type] =
2063 		    isl_union_map_preimage_domain_pw_multi_aff(
2064 						expr->acc.access[type],
2065 						isl_pw_multi_aff_copy(pma));
2066 		if (!expr->acc.access[type])
2067 			break;
2068 	}
2069 	pma = isl_pw_multi_aff_gist(pma,
2070 			isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma)));
2071 	expr->acc.index = isl_multi_pw_aff_pullback_pw_multi_aff(
2072 							expr->acc.index, pma);
2073 	if (type < pet_expr_access_end || !expr->acc.index)
2074 		goto error;
2075 
2076 	expr = insert_access_arg(expr, test);
2077 
2078 	isl_multi_pw_aff_free(test);
2079 	return expr;
2080 error:
2081 	isl_multi_pw_aff_free(test);
2082 	return pet_expr_free(expr);
2083 }
2084 
2085 /* Add a reference identifier to access expression "expr".
2086  * "user" points to an integer that contains the sequence number
2087  * of the next reference.
2088  */
access_add_ref_id(__isl_take pet_expr * expr,void * user)2089 static __isl_give pet_expr *access_add_ref_id(__isl_take pet_expr *expr,
2090 	void *user)
2091 {
2092 	isl_ctx *ctx;
2093 	char name[50];
2094 	int *n_ref = user;
2095 
2096 	expr = pet_expr_cow(expr);
2097 	if (!expr)
2098 		return expr;
2099 	if (expr->type != pet_expr_access)
2100 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2101 			"not an access expression", return pet_expr_free(expr));
2102 
2103 	ctx = pet_expr_get_ctx(expr);
2104 	snprintf(name, sizeof(name), "__pet_ref_%d", (*n_ref)++);
2105 	expr->acc.ref_id = isl_id_alloc(ctx, name, NULL);
2106 	if (!expr->acc.ref_id)
2107 		return pet_expr_free(expr);
2108 
2109 	return expr;
2110 }
2111 
pet_expr_add_ref_ids(__isl_take pet_expr * expr,int * n_ref)2112 __isl_give pet_expr *pet_expr_add_ref_ids(__isl_take pet_expr *expr, int *n_ref)
2113 {
2114 	return pet_expr_map_access(expr, &access_add_ref_id, n_ref);
2115 }
2116 
2117 /* Reset the user pointer on all parameter and tuple ids in
2118  * the access relations (if any) and the index expression
2119  * of the access expression "expr".
2120  */
access_anonymize(__isl_take pet_expr * expr,void * user)2121 static __isl_give pet_expr *access_anonymize(__isl_take pet_expr *expr,
2122 	void *user)
2123 {
2124 	enum pet_expr_access_type type;
2125 
2126 	expr = pet_expr_cow(expr);
2127 	if (!expr)
2128 		return expr;
2129 	if (expr->type != pet_expr_access)
2130 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2131 			"not an access expression", return pet_expr_free(expr));
2132 
2133 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
2134 		if (!expr->acc.access[type])
2135 			continue;
2136 		expr->acc.access[type] =
2137 			isl_union_map_reset_user(expr->acc.access[type]);
2138 		if (!expr->acc.access[type])
2139 			break;
2140 	}
2141 	expr->acc.index = isl_multi_pw_aff_reset_user(expr->acc.index);
2142 	if (type < pet_expr_access_end || !expr->acc.index)
2143 		return pet_expr_free(expr);
2144 
2145 	return expr;
2146 }
2147 
pet_expr_anonymize(__isl_take pet_expr * expr)2148 __isl_give pet_expr *pet_expr_anonymize(__isl_take pet_expr *expr)
2149 {
2150 	return pet_expr_map_access(expr, &access_anonymize, NULL);
2151 }
2152 
2153 /* Data used in access_gist() callback.
2154  */
2155 struct pet_access_gist_data {
2156 	isl_set *domain;
2157 	isl_union_map *value_bounds;
2158 };
2159 
2160 /* Given an expression "expr" of type pet_expr_access, compute
2161  * the gist of the associated access relations (if any) and index expression
2162  * with respect to data->domain and the bounds on the values of the arguments
2163  * of the expression.
2164  *
2165  * The arguments of "expr" have been gisted right before "expr" itself
2166  * is gisted.  The gisted arguments may have become equal where before
2167  * they may not have been (obviously) equal.  We therefore take
2168  * the opportunity to remove duplicate arguments here.
2169  */
access_gist(__isl_take pet_expr * expr,void * user)2170 static __isl_give pet_expr *access_gist(__isl_take pet_expr *expr, void *user)
2171 {
2172 	struct pet_access_gist_data *data = user;
2173 	isl_set *domain;
2174 	isl_union_set *uset;
2175 	enum pet_expr_access_type type;
2176 
2177 	expr = pet_expr_remove_duplicate_args(expr);
2178 	expr = pet_expr_cow(expr);
2179 	if (!expr)
2180 		return expr;
2181 	if (expr->type != pet_expr_access)
2182 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2183 			"not an access expression", return pet_expr_free(expr));
2184 
2185 	domain = isl_set_copy(data->domain);
2186 	if (expr->n_arg > 0)
2187 		domain = pet_value_bounds_apply(domain, expr->n_arg, expr->args,
2188 						data->value_bounds);
2189 
2190 	uset = isl_union_set_from_set(isl_set_copy(domain));
2191 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
2192 		if (!expr->acc.access[type])
2193 			continue;
2194 		expr->acc.access[type] =
2195 		    isl_union_map_gist_domain(expr->acc.access[type],
2196 						isl_union_set_copy(uset));
2197 		if (!expr->acc.access[type])
2198 			break;
2199 	}
2200 	isl_union_set_free(uset);
2201 	expr->acc.index = isl_multi_pw_aff_gist(expr->acc.index, domain);
2202 	if (type < pet_expr_access_end || !expr->acc.index)
2203 		return pet_expr_free(expr);
2204 
2205 	return expr;
2206 }
2207 
pet_expr_gist(__isl_take pet_expr * expr,__isl_keep isl_set * context,__isl_keep isl_union_map * value_bounds)2208 __isl_give pet_expr *pet_expr_gist(__isl_take pet_expr *expr,
2209 	__isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
2210 {
2211 	struct pet_access_gist_data data = { context, value_bounds };
2212 
2213 	return pet_expr_map_access(expr, &access_gist, &data);
2214 }
2215 
2216 /* Mark "expr" as a read dependening on "read".
2217  */
pet_expr_access_set_read(__isl_take pet_expr * expr,int read)2218 __isl_give pet_expr *pet_expr_access_set_read(__isl_take pet_expr *expr,
2219 	int read)
2220 {
2221 	if (!expr)
2222 		return pet_expr_free(expr);
2223 	if (expr->type != pet_expr_access)
2224 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2225 			"not an access expression", return pet_expr_free(expr));
2226 	if (expr->acc.read == read)
2227 		return expr;
2228 	expr = pet_expr_cow(expr);
2229 	if (!expr)
2230 		return NULL;
2231 	expr->acc.read = read;
2232 
2233 	return expr;
2234 }
2235 
2236 /* Mark "expr" as a write dependening on "write".
2237  */
pet_expr_access_set_write(__isl_take pet_expr * expr,int write)2238 __isl_give pet_expr *pet_expr_access_set_write(__isl_take pet_expr *expr,
2239 	int write)
2240 {
2241 	if (!expr)
2242 		return pet_expr_free(expr);
2243 	if (expr->type != pet_expr_access)
2244 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2245 			"not an access expression", return pet_expr_free(expr));
2246 	if (expr->acc.write == write)
2247 		return expr;
2248 	expr = pet_expr_cow(expr);
2249 	if (!expr)
2250 		return NULL;
2251 	expr->acc.write = write;
2252 
2253 	return expr;
2254 }
2255 
2256 /* Mark "expr" as a kill dependening on "kill".
2257  */
pet_expr_access_set_kill(__isl_take pet_expr * expr,int kill)2258 __isl_give pet_expr *pet_expr_access_set_kill(__isl_take pet_expr *expr,
2259 	int kill)
2260 {
2261 	if (!expr)
2262 		return pet_expr_free(expr);
2263 	if (expr->type != pet_expr_access)
2264 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2265 			"not an access expression", return pet_expr_free(expr));
2266 	if (expr->acc.kill == kill)
2267 		return expr;
2268 	expr = pet_expr_cow(expr);
2269 	if (!expr)
2270 		return NULL;
2271 	expr->acc.kill = kill;
2272 
2273 	return expr;
2274 }
2275 
2276 /* Map the access type "type" to the corresponding location
2277  * in the access array.
2278  * In particular, the access relation of type pet_expr_access_killed is
2279  * stored in the element at position pet_expr_access_fake_killed.
2280  */
internalize_type(enum pet_expr_access_type type)2281 static enum pet_expr_access_type internalize_type(
2282 	enum pet_expr_access_type type)
2283 {
2284 	if (type == pet_expr_access_killed)
2285 		return pet_expr_access_fake_killed;
2286 	return type;
2287 }
2288 
2289 /* Replace the access relation of the given "type" of "expr" by "access".
2290  * If the access relation is non-empty and the type is a read or a write,
2291  * then also mark the access expression itself as a read or a write.
2292  */
pet_expr_access_set_access(__isl_take pet_expr * expr,enum pet_expr_access_type type,__isl_take isl_union_map * access)2293 __isl_give pet_expr *pet_expr_access_set_access(__isl_take pet_expr *expr,
2294 	enum pet_expr_access_type type, __isl_take isl_union_map *access)
2295 {
2296 	int empty;
2297 
2298 	expr = pet_expr_cow(expr);
2299 	if (!expr || !access)
2300 		goto error;
2301 	if (expr->type != pet_expr_access)
2302 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2303 			"not an access expression", goto error);
2304 	type = internalize_type(type);
2305 	isl_union_map_free(expr->acc.access[type]);
2306 	expr->acc.access[type] = access;
2307 
2308 	if (expr->acc.kill)
2309 		return expr;
2310 
2311 	empty = isl_union_map_is_empty(access);
2312 	if (empty < 0)
2313 		return pet_expr_free(expr);
2314 	if (empty)
2315 		return expr;
2316 
2317 	if (type == pet_expr_access_may_read)
2318 		expr = pet_expr_access_set_read(expr, 1);
2319 	else
2320 		expr = pet_expr_access_set_write(expr, 1);
2321 
2322 	return expr;
2323 error:
2324 	isl_union_map_free(access);
2325 	pet_expr_free(expr);
2326 	return NULL;
2327 }
2328 
2329 /* Replace the index expression of "expr" by "index" and
2330  * set the array depth accordingly.
2331  */
pet_expr_access_set_index(__isl_take pet_expr * expr,__isl_take isl_multi_pw_aff * index)2332 __isl_give pet_expr *pet_expr_access_set_index(__isl_take pet_expr *expr,
2333 	__isl_take isl_multi_pw_aff *index)
2334 {
2335 	expr = pet_expr_cow(expr);
2336 	if (!expr || !index)
2337 		goto error;
2338 	if (expr->type != pet_expr_access)
2339 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2340 			"not an access expression", goto error);
2341 	isl_multi_pw_aff_free(expr->acc.index);
2342 	expr->acc.index = index;
2343 	expr->acc.depth = isl_multi_pw_aff_dim(index, isl_dim_out);
2344 
2345 	return expr;
2346 error:
2347 	isl_multi_pw_aff_free(index);
2348 	pet_expr_free(expr);
2349 	return NULL;
2350 }
2351 
2352 /* Return the reference identifier of access expression "expr".
2353  */
pet_expr_access_get_ref_id(__isl_keep pet_expr * expr)2354 __isl_give isl_id *pet_expr_access_get_ref_id(__isl_keep pet_expr *expr)
2355 {
2356 	if (!expr)
2357 		return NULL;
2358 	if (expr->type != pet_expr_access)
2359 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2360 			"not an access expression", return NULL);
2361 
2362 	return isl_id_copy(expr->acc.ref_id);
2363 }
2364 
2365 /* Replace the reference identifier of access expression "expr" by "ref_id".
2366  */
pet_expr_access_set_ref_id(__isl_take pet_expr * expr,__isl_take isl_id * ref_id)2367 __isl_give pet_expr *pet_expr_access_set_ref_id(__isl_take pet_expr *expr,
2368 	__isl_take isl_id *ref_id)
2369 {
2370 	expr = pet_expr_cow(expr);
2371 	if (!expr || !ref_id)
2372 		goto error;
2373 	if (expr->type != pet_expr_access)
2374 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2375 			"not an access expression", goto error);
2376 	isl_id_free(expr->acc.ref_id);
2377 	expr->acc.ref_id = ref_id;
2378 
2379 	return expr;
2380 error:
2381 	isl_id_free(ref_id);
2382 	pet_expr_free(expr);
2383 	return NULL;
2384 }
2385 
2386 /* Tag the access relation "access" with "id".
2387  * That is, insert the id as the range of a wrapped relation
2388  * in the domain of "access".
2389  *
2390  * If "access" is of the form
2391  *
2392  *	D[i] -> A[a]
2393  *
2394  * then the result is of the form
2395  *
2396  *	[D[i] -> id[]] -> A[a]
2397  */
pet_expr_tag_access(__isl_keep pet_expr * expr,__isl_take isl_union_map * access)2398 __isl_give isl_union_map *pet_expr_tag_access(__isl_keep pet_expr *expr,
2399 	__isl_take isl_union_map *access)
2400 {
2401 	isl_space *space;
2402 	isl_multi_aff *add_tag;
2403 	isl_id *id;
2404 
2405 	if (expr->type != pet_expr_access)
2406 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2407 			"not an access expression",
2408 			return isl_union_map_free(access));
2409 
2410 	id = isl_id_copy(expr->acc.ref_id);
2411 	space = pet_expr_access_get_domain_space(expr);
2412 	space = isl_space_from_domain(space);
2413 	space = isl_space_set_tuple_id(space, isl_dim_out, id);
2414 	add_tag = isl_multi_aff_domain_map(space);
2415 	access = isl_union_map_preimage_domain_multi_aff(access, add_tag);
2416 
2417 	return access;
2418 }
2419 
2420 /* Return the access relation of the given "type" associated to "expr"
2421  * that maps pairs of domain iterations and argument values
2422  * to the corresponding accessed data elements.
2423  *
2424  * If the requested access relation is explicitly available,
2425  * then return a copy.  Otherwise, check if it is irrelevant for
2426  * the access expression and return an empty relation if this is the case.
2427  * Otherwise, introduce the requested access relation in "expr" and
2428  * return a copy.
2429  */
pet_expr_access_get_dependent_access(__isl_keep pet_expr * expr,enum pet_expr_access_type type)2430 __isl_give isl_union_map *pet_expr_access_get_dependent_access(
2431 	__isl_keep pet_expr *expr, enum pet_expr_access_type type)
2432 {
2433 	isl_union_map *access;
2434 	int empty;
2435 
2436 	if (!expr)
2437 		return NULL;
2438 	if (expr->type != pet_expr_access)
2439 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2440 			"not an access expression", return NULL);
2441 
2442 	type = internalize_type(type);
2443 	if (expr->acc.access[type])
2444 		return isl_union_map_copy(expr->acc.access[type]);
2445 
2446 	if (type == pet_expr_access_may_read)
2447 		empty = !expr->acc.read;
2448 	else
2449 		empty = !expr->acc.write;
2450 
2451 	if (!empty) {
2452 		expr = pet_expr_copy(expr);
2453 		expr = introduce_access_relations(expr);
2454 		if (!expr)
2455 			return NULL;
2456 		access = isl_union_map_copy(expr->acc.access[type]);
2457 		pet_expr_free(expr);
2458 
2459 		return access;
2460 	}
2461 
2462 	return isl_union_map_empty(pet_expr_access_get_parameter_space(expr));
2463 }
2464 
2465 /* Return the may read access relation associated to "expr"
2466  * that maps pairs of domain iterations and argument values
2467  * to the corresponding accessed data elements.
2468  */
pet_expr_access_get_dependent_may_read(__isl_keep pet_expr * expr)2469 __isl_give isl_union_map *pet_expr_access_get_dependent_may_read(
2470 	__isl_keep pet_expr *expr)
2471 {
2472 	return pet_expr_access_get_dependent_access(expr,
2473 						    pet_expr_access_may_read);
2474 }
2475 
2476 /* Return the may write access relation associated to "expr"
2477  * that maps pairs of domain iterations and argument values
2478  * to the corresponding accessed data elements.
2479  */
pet_expr_access_get_dependent_may_write(__isl_keep pet_expr * expr)2480 __isl_give isl_union_map *pet_expr_access_get_dependent_may_write(
2481 	__isl_keep pet_expr *expr)
2482 {
2483 	return pet_expr_access_get_dependent_access(expr,
2484 						    pet_expr_access_may_write);
2485 }
2486 
2487 /* Return the must write access relation associated to "expr"
2488  * that maps pairs of domain iterations and argument values
2489  * to the corresponding accessed data elements.
2490  */
pet_expr_access_get_dependent_must_write(__isl_keep pet_expr * expr)2491 __isl_give isl_union_map *pet_expr_access_get_dependent_must_write(
2492 	__isl_keep pet_expr *expr)
2493 {
2494 	return pet_expr_access_get_dependent_access(expr,
2495 						    pet_expr_access_must_write);
2496 }
2497 
2498 /* Return the relation of the given "type" mapping domain iterations
2499  * to the accessed data elements.
2500  * In particular, take the access relation and, in case of may_read
2501  * or may_write, project out the values of the arguments, if any.
2502  * In case of must_write, return the empty relation if there are
2503  * any arguments.
2504  */
pet_expr_access_get_access(__isl_keep pet_expr * expr,enum pet_expr_access_type type)2505 __isl_give isl_union_map *pet_expr_access_get_access(__isl_keep pet_expr *expr,
2506 	enum pet_expr_access_type type)
2507 {
2508 	isl_union_map *access;
2509 	isl_space *space;
2510 	isl_map *map;
2511 
2512 	if (!expr)
2513 		return NULL;
2514 	if (expr->type != pet_expr_access)
2515 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2516 			"not an access expression", return NULL);
2517 
2518 	if (expr->n_arg != 0 && type == pet_expr_access_must_write) {
2519 		space = pet_expr_access_get_parameter_space(expr);
2520 		return isl_union_map_empty(space);
2521 	}
2522 
2523 	access = pet_expr_access_get_dependent_access(expr, type);
2524 	if (expr->n_arg == 0)
2525 		return access;
2526 
2527 	space = isl_multi_pw_aff_get_space(expr->acc.index);
2528 	space = isl_space_domain(space);
2529 	map = isl_map_universe(isl_space_unwrap(space));
2530 	map = isl_map_domain_map(map);
2531 	access = isl_union_map_apply_domain(access,
2532 						isl_union_map_from_map(map));
2533 
2534 	return access;
2535 }
2536 
2537 /* Return the relation mapping domain iterations to all possibly
2538  * read data elements.
2539  */
pet_expr_access_get_may_read(__isl_keep pet_expr * expr)2540 __isl_give isl_union_map *pet_expr_access_get_may_read(
2541 	__isl_keep pet_expr *expr)
2542 {
2543 	return pet_expr_access_get_access(expr, pet_expr_access_may_read);
2544 }
2545 
2546 /* Return the relation mapping domain iterations to all possibly
2547  * written data elements.
2548  */
pet_expr_access_get_may_write(__isl_keep pet_expr * expr)2549 __isl_give isl_union_map *pet_expr_access_get_may_write(
2550 	__isl_keep pet_expr *expr)
2551 {
2552 	return pet_expr_access_get_access(expr, pet_expr_access_may_write);
2553 }
2554 
2555 /* Return a relation mapping domain iterations to definitely
2556  * written data elements, assuming the statement containing
2557  * the expression is executed.
2558  */
pet_expr_access_get_must_write(__isl_keep pet_expr * expr)2559 __isl_give isl_union_map *pet_expr_access_get_must_write(
2560 	__isl_keep pet_expr *expr)
2561 {
2562 	return pet_expr_access_get_access(expr, pet_expr_access_must_write);
2563 }
2564 
2565 /* Return the relation of the given "type" mapping domain iterations to
2566  * accessed data elements, with its domain tagged with the reference
2567  * identifier.
2568  */
pet_expr_access_get_tagged_access(__isl_keep pet_expr * expr,enum pet_expr_access_type type)2569 static __isl_give isl_union_map *pet_expr_access_get_tagged_access(
2570 	__isl_keep pet_expr *expr, enum pet_expr_access_type type)
2571 {
2572 	isl_union_map *access;
2573 
2574 	if (!expr)
2575 		return NULL;
2576 
2577 	access = pet_expr_access_get_access(expr, type);
2578 	access = pet_expr_tag_access(expr, access);
2579 
2580 	return access;
2581 }
2582 
2583 /* Return the relation mapping domain iterations to all possibly
2584  * read data elements, with its domain tagged with the reference
2585  * identifier.
2586  */
pet_expr_access_get_tagged_may_read(__isl_keep pet_expr * expr)2587 __isl_give isl_union_map *pet_expr_access_get_tagged_may_read(
2588 	__isl_keep pet_expr *expr)
2589 {
2590 	return pet_expr_access_get_tagged_access(expr,
2591 						pet_expr_access_may_read);
2592 }
2593 
2594 /* Return the relation mapping domain iterations to all possibly
2595  * written data elements, with its domain tagged with the reference
2596  * identifier.
2597  */
pet_expr_access_get_tagged_may_write(__isl_keep pet_expr * expr)2598 __isl_give isl_union_map *pet_expr_access_get_tagged_may_write(
2599 	__isl_keep pet_expr *expr)
2600 {
2601 	return pet_expr_access_get_tagged_access(expr,
2602 						pet_expr_access_may_write);
2603 }
2604 
2605 /* Return the operation type of operation expression "expr".
2606  */
pet_expr_op_get_type(__isl_keep pet_expr * expr)2607 enum pet_op_type pet_expr_op_get_type(__isl_keep pet_expr *expr)
2608 {
2609 	if (!expr)
2610 		return pet_op_last;
2611 	if (expr->type != pet_expr_op)
2612 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2613 			"not an operation expression", return pet_op_last);
2614 
2615 	return expr->op;
2616 }
2617 
2618 /* Replace the operation type of operation expression "expr" by "type".
2619  */
pet_expr_op_set_type(__isl_take pet_expr * expr,enum pet_op_type type)2620 __isl_give pet_expr *pet_expr_op_set_type(__isl_take pet_expr *expr,
2621 	enum pet_op_type type)
2622 {
2623 	if (!expr)
2624 		return pet_expr_free(expr);
2625 	if (expr->type != pet_expr_op)
2626 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2627 			"not an operation expression",
2628 			return pet_expr_free(expr));
2629 	if (expr->op == type)
2630 		return expr;
2631 	expr = pet_expr_cow(expr);
2632 	if (!expr)
2633 		return NULL;
2634 	expr->op = type;
2635 
2636 	return expr;
2637 }
2638 
2639 /* Return the name of the function called by "expr".
2640  */
pet_expr_call_get_name(__isl_keep pet_expr * expr)2641 __isl_keep const char *pet_expr_call_get_name(__isl_keep pet_expr *expr)
2642 {
2643 	if (!expr)
2644 		return NULL;
2645 	if (expr->type != pet_expr_call)
2646 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2647 			"not a call expression", return NULL);
2648 	return expr->c.name;
2649 }
2650 
2651 /* Replace the name of the function called by "expr" by "name".
2652  */
pet_expr_call_set_name(__isl_take pet_expr * expr,__isl_keep const char * name)2653 __isl_give pet_expr *pet_expr_call_set_name(__isl_take pet_expr *expr,
2654 	__isl_keep const char *name)
2655 {
2656 	expr = pet_expr_cow(expr);
2657 	if (!expr || !name)
2658 		return pet_expr_free(expr);
2659 	if (expr->type != pet_expr_call)
2660 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2661 			"not a call expression", return pet_expr_free(expr));
2662 	free(expr->c.name);
2663 	expr->c.name = strdup(name);
2664 	if (!expr->c.name)
2665 		return pet_expr_free(expr);
2666 	return expr;
2667 }
2668 
2669 /* Does the call expression "expr" have an associated function summary?
2670  */
pet_expr_call_has_summary(__isl_keep pet_expr * expr)2671 int pet_expr_call_has_summary(__isl_keep pet_expr *expr)
2672 {
2673 	if (!expr)
2674 		return -1;
2675 	if (expr->type != pet_expr_call)
2676 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2677 			"not a call expression", return -1);
2678 
2679 	return expr->c.summary != NULL;
2680 }
2681 
2682 /* Return a copy of the function summary associated to
2683  * the call expression "expr".
2684  */
pet_expr_call_get_summary(__isl_keep pet_expr * expr)2685 __isl_give pet_function_summary *pet_expr_call_get_summary(
2686 	__isl_keep pet_expr *expr)
2687 {
2688 	if (!expr)
2689 		return NULL;
2690 	if (expr->type != pet_expr_call)
2691 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2692 			"not a call expression", return NULL);
2693 
2694 	return pet_function_summary_copy(expr->c.summary);
2695 }
2696 
2697 /* Replace the function summary associated to the call expression "expr"
2698  * by "summary".
2699  */
pet_expr_call_set_summary(__isl_take pet_expr * expr,__isl_take pet_function_summary * summary)2700 __isl_give pet_expr *pet_expr_call_set_summary(__isl_take pet_expr *expr,
2701 	__isl_take pet_function_summary *summary)
2702 {
2703 	expr = pet_expr_cow(expr);
2704 	if (!expr || !summary)
2705 		goto error;
2706 	if (expr->type != pet_expr_call)
2707 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2708 			"not a call expression", goto error);
2709 	pet_function_summary_free(expr->c.summary);
2710 	expr->c.summary = summary;
2711 	return expr;
2712 error:
2713 	pet_function_summary_free(summary);
2714 	return pet_expr_free(expr);
2715 }
2716 
2717 /* Replace the type of the cast performed by "expr" by "name".
2718  */
pet_expr_cast_set_type_name(__isl_take pet_expr * expr,__isl_keep const char * name)2719 __isl_give pet_expr *pet_expr_cast_set_type_name(__isl_take pet_expr *expr,
2720 	__isl_keep const char *name)
2721 {
2722 	expr = pet_expr_cow(expr);
2723 	if (!expr || !name)
2724 		return pet_expr_free(expr);
2725 	if (expr->type != pet_expr_cast)
2726 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2727 			"not a cast expression", return pet_expr_free(expr));
2728 	free(expr->type_name);
2729 	expr->type_name = strdup(name);
2730 	if (!expr->type_name)
2731 		return pet_expr_free(expr);
2732 	return expr;
2733 }
2734 
2735 /* Return the value of the integer represented by "expr".
2736  */
pet_expr_int_get_val(__isl_keep pet_expr * expr)2737 __isl_give isl_val *pet_expr_int_get_val(__isl_keep pet_expr *expr)
2738 {
2739 	if (!expr)
2740 		return NULL;
2741 	if (expr->type != pet_expr_int)
2742 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2743 			"not an int expression", return NULL);
2744 
2745 	return isl_val_copy(expr->i);
2746 }
2747 
2748 /* Replace the value of the integer represented by "expr" by "v".
2749  */
pet_expr_int_set_val(__isl_take pet_expr * expr,__isl_take isl_val * v)2750 __isl_give pet_expr *pet_expr_int_set_val(__isl_take pet_expr *expr,
2751 	__isl_take isl_val *v)
2752 {
2753 	expr = pet_expr_cow(expr);
2754 	if (!expr || !v)
2755 		goto error;
2756 	if (expr->type != pet_expr_int)
2757 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2758 			"not an int expression", goto error);
2759 	isl_val_free(expr->i);
2760 	expr->i = v;
2761 
2762 	return expr;
2763 error:
2764 	isl_val_free(v);
2765 	pet_expr_free(expr);
2766 	return NULL;
2767 }
2768 
2769 /* Replace the value and string representation of the double
2770  * represented by "expr" by "d" and "s".
2771  */
pet_expr_double_set(__isl_take pet_expr * expr,double d,__isl_keep const char * s)2772 __isl_give pet_expr *pet_expr_double_set(__isl_take pet_expr *expr,
2773 	double d, __isl_keep const char *s)
2774 {
2775 	expr = pet_expr_cow(expr);
2776 	if (!expr || !s)
2777 		return pet_expr_free(expr);
2778 	if (expr->type != pet_expr_double)
2779 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2780 			"not a double expression", return pet_expr_free(expr));
2781 	expr->d.val = d;
2782 	free(expr->d.s);
2783 	expr->d.s = strdup(s);
2784 	if (!expr->d.s)
2785 		return pet_expr_free(expr);
2786 	return expr;
2787 }
2788 
2789 /* Return a string representation of the double expression "expr".
2790  */
pet_expr_double_get_str(__isl_keep pet_expr * expr)2791 __isl_give char *pet_expr_double_get_str(__isl_keep pet_expr *expr)
2792 {
2793 	if (!expr)
2794 		return NULL;
2795 	if (expr->type != pet_expr_double)
2796 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2797 			"not a double expression", return NULL);
2798 	return strdup(expr->d.s);
2799 }
2800 
2801 /* Return a piecewise affine expression defined on the specified domain
2802  * that represents NaN.
2803  */
non_affine(__isl_take isl_space * space)2804 static __isl_give isl_pw_aff *non_affine(__isl_take isl_space *space)
2805 {
2806 	return isl_pw_aff_nan_on_domain(isl_local_space_from_space(space));
2807 }
2808 
2809 /* This function is called when we come across an access that is
2810  * nested in what is supposed to be an affine expression.
2811  * "pc" is the context in which the affine expression is created.
2812  * If nesting is allowed in "pc", we return an affine expression that is
2813  * equal to a new parameter corresponding to this nested access.
2814  * Otherwise, we return NaN.
2815  *
2816  * Note that we currently don't allow nested accesses themselves
2817  * to contain any nested accesses, so we check if "expr" itself
2818  * involves any nested accesses (either explicitly as arguments
2819  * or implicitly through parameters) and return NaN if it does.
2820  *
2821  * The new parameter is resolved in resolve_nested.
2822  */
nested_access(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)2823 static __isl_give isl_pw_aff *nested_access(__isl_keep pet_expr *expr,
2824 	__isl_keep pet_context *pc)
2825 {
2826 	isl_ctx *ctx;
2827 	isl_id *id;
2828 	isl_space *space;
2829 	isl_local_space *ls;
2830 	isl_aff *aff;
2831 	int nested;
2832 
2833 	if (!expr || !pc)
2834 		return NULL;
2835 	if (!pet_context_allow_nesting(pc))
2836 		return non_affine(pet_context_get_space(pc));
2837 
2838 	if (pet_expr_get_type(expr) != pet_expr_access)
2839 		isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2840 			"not an access expression", return NULL);
2841 
2842 	if (expr->n_arg > 0)
2843 		return non_affine(pet_context_get_space(pc));
2844 
2845 	space = pet_expr_access_get_parameter_space(expr);
2846 	nested = pet_nested_any_in_space(space);
2847 	isl_space_free(space);
2848 	if (nested)
2849 		return non_affine(pet_context_get_space(pc));
2850 
2851 	ctx = pet_expr_get_ctx(expr);
2852 	id = pet_nested_pet_expr(pet_expr_copy(expr));
2853 	space = pet_context_get_space(pc);
2854 	space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2855 
2856 	space = isl_space_set_dim_id(space, isl_dim_param, 0, id);
2857 	ls = isl_local_space_from_space(space);
2858 	aff = isl_aff_var_on_domain(ls, isl_dim_param, 0);
2859 
2860 	return isl_pw_aff_from_aff(aff);
2861 }
2862 
2863 /* Extract an affine expression from the access pet_expr "expr".
2864  * "pc" is the context in which the affine expression is created.
2865  *
2866  * If "expr" is actually an affine expression rather than
2867  * a real access, then we return that expression.
2868  * Otherwise, we require that "expr" is of an integral type.
2869  * If not, we return NaN.
2870  *
2871  * If the variable has been assigned a known affine expression,
2872  * then we return that expression.
2873  *
2874  * Otherwise, we return an expression that is equal to a parameter
2875  * representing "expr" (if "allow_nested" is set).
2876  */
extract_affine_from_access(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)2877 static __isl_give isl_pw_aff *extract_affine_from_access(
2878 	__isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2879 {
2880 	isl_id *id;
2881 
2882 	if (pet_expr_is_affine(expr))
2883 		return pet_expr_get_affine(expr);
2884 
2885 	if (pet_expr_get_type_size(expr) == 0)
2886 		return non_affine(pet_context_get_space(pc));
2887 
2888 	if (!pet_expr_is_scalar_access(expr))
2889 		return nested_access(expr, pc);
2890 
2891 	id = pet_expr_access_get_id(expr);
2892 	if (pet_context_is_assigned(pc, id))
2893 		return pet_context_get_value(pc, id);
2894 
2895 	isl_id_free(id);
2896 	return nested_access(expr, pc);
2897 }
2898 
2899 /* Construct an affine expression from the integer constant "expr".
2900  * "pc" is the context in which the affine expression is created.
2901  */
extract_affine_from_int(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)2902 static __isl_give isl_pw_aff *extract_affine_from_int(__isl_keep pet_expr *expr,
2903 	__isl_keep pet_context *pc)
2904 {
2905 	isl_local_space *ls;
2906 	isl_aff *aff;
2907 
2908 	if (!expr)
2909 		return NULL;
2910 
2911 	ls = isl_local_space_from_space(pet_context_get_space(pc));
2912 	aff = isl_aff_val_on_domain(ls, pet_expr_int_get_val(expr));
2913 
2914 	return isl_pw_aff_from_aff(aff);
2915 }
2916 
2917 /* Extract an affine expression from an addition or subtraction operation.
2918  * Return NaN if we are unable to extract an affine expression.
2919  *
2920  * "pc" is the context in which the affine expression is created.
2921  */
extract_affine_add_sub(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)2922 static __isl_give isl_pw_aff *extract_affine_add_sub(__isl_keep pet_expr *expr,
2923 	__isl_keep pet_context *pc)
2924 {
2925 	isl_pw_aff *lhs;
2926 	isl_pw_aff *rhs;
2927 
2928 	if (!expr)
2929 		return NULL;
2930 	if (expr->n_arg != 2)
2931 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2932 			"expecting two arguments", return NULL);
2933 
2934 	lhs = pet_expr_extract_affine(expr->args[0], pc);
2935 	rhs = pet_expr_extract_affine(expr->args[1], pc);
2936 
2937 	switch (pet_expr_op_get_type(expr)) {
2938 	case pet_op_add:
2939 		return isl_pw_aff_add(lhs, rhs);
2940 	case pet_op_sub:
2941 		return isl_pw_aff_sub(lhs, rhs);
2942 	default:
2943 		isl_pw_aff_free(lhs);
2944 		isl_pw_aff_free(rhs);
2945 		isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2946 			"not an addition or subtraction operation",
2947 			return NULL);
2948 	}
2949 
2950 }
2951 
2952 /* Extract an affine expression from an integer division or a modulo operation.
2953  * Return NaN if we are unable to extract an affine expression.
2954  *
2955  * "pc" is the context in which the affine expression is created.
2956  *
2957  * In particular, if "expr" is lhs/rhs, then return
2958  *
2959  *	lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
2960  *
2961  * If "expr" is lhs%rhs, then return
2962  *
2963  *	lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
2964  *
2965  * If the second argument (rhs) is not a (positive) integer constant,
2966  * then we fail to extract an affine expression.
2967  *
2968  * We simplify the result in the context of the domain of "pc" in case
2969  * this domain implies that lhs >= 0 (or < 0).
2970  */
extract_affine_div_mod(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)2971 static __isl_give isl_pw_aff *extract_affine_div_mod(__isl_keep pet_expr *expr,
2972 	__isl_keep pet_context *pc)
2973 {
2974 	int is_cst;
2975 	isl_pw_aff *lhs;
2976 	isl_pw_aff *rhs;
2977 	isl_pw_aff *res;
2978 
2979 	if (!expr)
2980 		return NULL;
2981 	if (expr->n_arg != 2)
2982 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2983 			"expecting two arguments", return NULL);
2984 
2985 	rhs = pet_expr_extract_affine(expr->args[1], pc);
2986 
2987 	is_cst = isl_pw_aff_is_cst(rhs);
2988 	if (is_cst < 0 || !is_cst) {
2989 		isl_pw_aff_free(rhs);
2990 		return non_affine(pet_context_get_space(pc));
2991 	}
2992 
2993 	lhs = pet_expr_extract_affine(expr->args[0], pc);
2994 
2995 	switch (pet_expr_op_get_type(expr)) {
2996 	case pet_op_div:
2997 		res = isl_pw_aff_tdiv_q(lhs, rhs);
2998 		break;
2999 	case pet_op_mod:
3000 		res = isl_pw_aff_tdiv_r(lhs, rhs);
3001 		break;
3002 	default:
3003 		isl_pw_aff_free(lhs);
3004 		isl_pw_aff_free(rhs);
3005 		isl_die(pet_expr_get_ctx(expr), isl_error_internal,
3006 			"not a div or mod operator", return NULL);
3007 	}
3008 
3009 	return isl_pw_aff_gist(res, pet_context_get_gist_domain(pc));
3010 }
3011 
3012 /* Extract an affine expression from a multiplication operation.
3013  * Return NaN if we are unable to extract an affine expression.
3014  * In particular, if neither of the arguments is a (piecewise) constant
3015  * then we return NaN.
3016  *
3017  * "pc" is the context in which the affine expression is created.
3018  */
extract_affine_mul(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3019 static __isl_give isl_pw_aff *extract_affine_mul(__isl_keep pet_expr *expr,
3020 	__isl_keep pet_context *pc)
3021 {
3022 	int lhs_cst, rhs_cst;
3023 	isl_pw_aff *lhs;
3024 	isl_pw_aff *rhs;
3025 
3026 	if (!expr)
3027 		return NULL;
3028 	if (expr->n_arg != 2)
3029 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3030 			"expecting two arguments", return NULL);
3031 
3032 	lhs = pet_expr_extract_affine(expr->args[0], pc);
3033 	rhs = pet_expr_extract_affine(expr->args[1], pc);
3034 
3035 	lhs_cst = isl_pw_aff_is_cst(lhs);
3036 	rhs_cst = isl_pw_aff_is_cst(rhs);
3037 	if (lhs_cst >= 0 && rhs_cst >= 0 && (lhs_cst || rhs_cst))
3038 		return isl_pw_aff_mul(lhs, rhs);
3039 
3040 	isl_pw_aff_free(lhs);
3041 	isl_pw_aff_free(rhs);
3042 
3043 	if (lhs_cst < 0 || rhs_cst < 0)
3044 		return NULL;
3045 
3046 	return non_affine(pet_context_get_space(pc));
3047 }
3048 
3049 /* Extract an affine expression from a negation operation.
3050  * Return NaN if we are unable to extract an affine expression.
3051  *
3052  * "pc" is the context in which the affine expression is created.
3053  */
extract_affine_neg(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3054 static __isl_give isl_pw_aff *extract_affine_neg(__isl_keep pet_expr *expr,
3055 	__isl_keep pet_context *pc)
3056 {
3057 	isl_pw_aff *res;
3058 
3059 	if (!expr)
3060 		return NULL;
3061 	if (expr->n_arg != 1)
3062 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3063 			"expecting one argument", return NULL);
3064 
3065 	res = pet_expr_extract_affine(expr->args[0], pc);
3066 	return isl_pw_aff_neg(res);
3067 }
3068 
3069 /* Extract an affine expression from a conditional operation.
3070  * Return NaN if we are unable to extract an affine expression.
3071  *
3072  * "pc" is the context in which the affine expression is created.
3073  */
extract_affine_cond(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3074 static __isl_give isl_pw_aff *extract_affine_cond(__isl_keep pet_expr *expr,
3075 	__isl_keep pet_context *pc)
3076 {
3077 	isl_pw_aff *cond, *lhs, *rhs;
3078 
3079 	if (!expr)
3080 		return NULL;
3081 	if (expr->n_arg != 3)
3082 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3083 			"expecting three arguments", return NULL);
3084 
3085 	cond = pet_expr_extract_affine_condition(expr->args[0], pc);
3086 	lhs = pet_expr_extract_affine(expr->args[1], pc);
3087 	rhs = pet_expr_extract_affine(expr->args[2], pc);
3088 
3089 	return isl_pw_aff_cond(cond, lhs, rhs);
3090 }
3091 
3092 /* Limit the domain of "pwaff" to those elements where the function
3093  * value satisfies
3094  *
3095  *	2^{width-1} <= pwaff < 2^{width-1}
3096  */
avoid_overflow(__isl_take isl_pw_aff * pwaff,unsigned width)3097 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
3098 	unsigned width)
3099 {
3100 	isl_ctx *ctx;
3101 	isl_val *v;
3102 	isl_space *space = isl_pw_aff_get_domain_space(pwaff);
3103 	isl_local_space *ls = isl_local_space_from_space(space);
3104 	isl_aff *bound;
3105 	isl_set *dom;
3106 	isl_pw_aff *b;
3107 
3108 	ctx = isl_pw_aff_get_ctx(pwaff);
3109 	v = isl_val_int_from_ui(ctx, width - 1);
3110 	v = isl_val_2exp(v);
3111 
3112 	bound = isl_aff_zero_on_domain(ls);
3113 	bound = isl_aff_add_constant_val(bound, v);
3114 	b = isl_pw_aff_from_aff(bound);
3115 
3116 	dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
3117 	pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
3118 
3119 	b = isl_pw_aff_neg(b);
3120 	dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
3121 	pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
3122 
3123 	return pwaff;
3124 }
3125 
3126 /* Handle potential overflows on signed computations.
3127  *
3128  * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
3129  * then we adjust the domain of "pa" to avoid overflows.
3130  */
signed_overflow(__isl_take isl_pw_aff * pa,unsigned width)3131 static __isl_give isl_pw_aff *signed_overflow(__isl_take isl_pw_aff *pa,
3132 	unsigned width)
3133 {
3134 	isl_ctx *ctx;
3135 	struct pet_options *options;
3136 
3137 	if (!pa)
3138 		return NULL;
3139 
3140 	ctx = isl_pw_aff_get_ctx(pa);
3141 	options = isl_ctx_peek_pet_options(ctx);
3142 	if (!options || options->signed_overflow == PET_OVERFLOW_AVOID)
3143 		pa = avoid_overflow(pa, width);
3144 
3145 	return pa;
3146 }
3147 
3148 /* Extract an affine expression from some an operation.
3149  * Return NaN if we are unable to extract an affine expression.
3150  * If the result of a binary (non boolean) operation is unsigned,
3151  * then we wrap it based on the size of the type.  If the result is signed,
3152  * then we ensure that no overflow occurs.
3153  *
3154  * "pc" is the context in which the affine expression is created.
3155  */
extract_affine_from_op(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3156 static __isl_give isl_pw_aff *extract_affine_from_op(__isl_keep pet_expr *expr,
3157 	__isl_keep pet_context *pc)
3158 {
3159 	isl_pw_aff *res;
3160 	int type_size;
3161 
3162 	switch (pet_expr_op_get_type(expr)) {
3163 	case pet_op_add:
3164 	case pet_op_sub:
3165 		res = extract_affine_add_sub(expr, pc);
3166 		break;
3167 	case pet_op_div:
3168 	case pet_op_mod:
3169 		res = extract_affine_div_mod(expr, pc);
3170 		break;
3171 	case pet_op_mul:
3172 		res = extract_affine_mul(expr, pc);
3173 		break;
3174 	case pet_op_minus:
3175 		return extract_affine_neg(expr, pc);
3176 	case pet_op_cond:
3177 		return extract_affine_cond(expr, pc);
3178 	case pet_op_eq:
3179 	case pet_op_ne:
3180 	case pet_op_le:
3181 	case pet_op_ge:
3182 	case pet_op_lt:
3183 	case pet_op_gt:
3184 	case pet_op_land:
3185 	case pet_op_lor:
3186 	case pet_op_lnot:
3187 		return pet_expr_extract_affine_condition(expr, pc);
3188 	default:
3189 		return non_affine(pet_context_get_space(pc));
3190 	}
3191 
3192 	if (!res)
3193 		return NULL;
3194 	if (isl_pw_aff_involves_nan(res)) {
3195 		isl_space *space = isl_pw_aff_get_domain_space(res);
3196 		isl_pw_aff_free(res);
3197 		return non_affine(space);
3198 	}
3199 
3200 	type_size = pet_expr_get_type_size(expr);
3201 	if (type_size > 0)
3202 		res = pet_wrap_pw_aff(res, type_size);
3203 	else
3204 		res = signed_overflow(res, -type_size);
3205 
3206 	return res;
3207 }
3208 
3209 /* Internal data structure for affine builtin function declarations.
3210  *
3211  * "pencil" is set if the builtin is pencil specific.
3212  * "n_args" is the number of arguments the function takes.
3213  * "name" is the function name.
3214  */
3215 struct affine_builtin_decl {
3216 	int pencil;
3217 	int n_args;
3218 	const char *name;
3219 };
3220 
3221 static struct affine_builtin_decl affine_builtins[] = {
3222 	{ 0, 2, "min" },
3223 	{ 1, 2, "imin" },
3224 	{ 1, 2, "umin" },
3225 	{ 0, 2, "max" },
3226 	{ 1, 2, "imax" },
3227 	{ 1, 2, "umax" },
3228 	{ 0, 2, "intMod" },
3229 	{ 0, 2, "intFloor" },
3230 	{ 0, 2, "intCeil" },
3231 	{ 0, 2, "floord" },
3232 	{ 0, 2, "ceild" }
3233 };
3234 
3235 /* List of min and max builtin functions.
3236  */
3237 static const char *min_max_builtins[] = {
3238 	"min", "imin", "umin",
3239 	"max", "imax", "umax"
3240 };
3241 
3242 /* Is a function call to "name" with "n_args" arguments a call to a
3243  * builtin function for which we can construct an affine expression?
3244  * pencil specific builtins are only recognized if "pencil" is set.
3245  */
is_affine_builtin(int pencil,int n_args,const char * name)3246 static int is_affine_builtin(int pencil, int n_args, const char *name)
3247 {
3248 	int i;
3249 
3250 	for (i = 0; i < ARRAY_SIZE(affine_builtins); ++i) {
3251 		struct affine_builtin_decl *decl = &affine_builtins[i];
3252 
3253 		if (decl->pencil && !pencil)
3254 			continue;
3255 		if (decl->n_args == n_args && !strcmp(decl->name, name))
3256 			return 1;
3257 	}
3258 
3259 	return 0;
3260 }
3261 
3262 /* Is function "name" a known min or max builtin function?
3263  */
is_min_or_max_builtin(const char * name)3264 static int is_min_or_max_builtin(const char *name)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < ARRAY_SIZE(min_max_builtins); ++i)
3269 		if (!strcmp(min_max_builtins[i], name))
3270 			return 1;
3271 
3272 	return 0;
3273 }
3274 
3275 /* Extract an affine expression from some special function calls.
3276  * Return NaN if we are unable to extract an affine expression.
3277  * In particular, we handle "min", "max", "ceild", "floord",
3278  * "intMod", "intFloor" and "intCeil".
3279  * In case of the latter five, the second argument needs to be
3280  * a (positive) integer constant.
3281  * If the pencil option is set, then we also handle "{i,u}min" and
3282  * "{i,u}max".
3283  *
3284  * "pc" is the context in which the affine expression is created.
3285  */
extract_affine_from_call(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3286 static __isl_give isl_pw_aff *extract_affine_from_call(
3287 	__isl_keep pet_expr *expr, __isl_keep pet_context *pc)
3288 {
3289 	isl_ctx *ctx;
3290 	isl_pw_aff *aff1, *aff2;
3291 	int n;
3292 	const char *name;
3293 	struct pet_options *options;
3294 
3295 	if (!expr)
3296 		return NULL;
3297 	ctx = pet_expr_get_ctx(expr);
3298 	options = isl_ctx_peek_pet_options(ctx);
3299 
3300 	n = pet_expr_get_n_arg(expr);
3301 	name = pet_expr_call_get_name(expr);
3302 	if (!is_affine_builtin(options->pencil, n, name))
3303 		return non_affine(pet_context_get_space(pc));
3304 
3305 	if (is_min_or_max_builtin(name)) {
3306 		aff1 = pet_expr_extract_affine(expr->args[0], pc);
3307 		aff2 = pet_expr_extract_affine(expr->args[1], pc);
3308 
3309 		if (strstr(name, "min"))
3310 			aff1 = isl_pw_aff_min(aff1, aff2);
3311 		else
3312 			aff1 = isl_pw_aff_max(aff1, aff2);
3313 	} else if (!strcmp(name, "intMod")) {
3314 		isl_val *v;
3315 
3316 		if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
3317 			return non_affine(pet_context_get_space(pc));
3318 		v = pet_expr_int_get_val(expr->args[1]);
3319 		aff1 = pet_expr_extract_affine(expr->args[0], pc);
3320 		aff1 = isl_pw_aff_mod_val(aff1, v);
3321 	} else {
3322 		isl_val *v;
3323 
3324 		if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
3325 			return non_affine(pet_context_get_space(pc));
3326 		v = pet_expr_int_get_val(expr->args[1]);
3327 		aff1 = pet_expr_extract_affine(expr->args[0], pc);
3328 		aff1 = isl_pw_aff_scale_down_val(aff1, v);
3329 		if (!strcmp(name, "floord") || !strcmp(name, "intFloor"))
3330 			aff1 = isl_pw_aff_floor(aff1);
3331 		else
3332 			aff1 = isl_pw_aff_ceil(aff1);
3333 	}
3334 
3335 	return aff1;
3336 }
3337 
3338 /* Extract an affine expression from "expr", if possible.
3339  * Otherwise return NaN.
3340  *
3341  * "pc" is the context in which the affine expression is created.
3342  *
3343  * Store the result in "pc" such that it can be reused in case
3344  * pet_expr_extract_affine is called again on the same pair of
3345  * "expr" and "pc".
3346  */
pet_expr_extract_affine(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3347 __isl_give isl_pw_aff *pet_expr_extract_affine(__isl_keep pet_expr *expr,
3348 	__isl_keep pet_context *pc)
3349 {
3350 	isl_maybe_isl_pw_aff m;
3351 	isl_pw_aff *pa;
3352 
3353 	if (!expr)
3354 		return NULL;
3355 
3356 	m = pet_context_get_extracted_affine(pc, expr);
3357 	if (m.valid < 0 || m.valid)
3358 		return m.value;
3359 
3360 	switch (pet_expr_get_type(expr)) {
3361 	case pet_expr_access:
3362 		pa = extract_affine_from_access(expr, pc);
3363 		break;
3364 	case pet_expr_int:
3365 		pa = extract_affine_from_int(expr, pc);
3366 		break;
3367 	case pet_expr_op:
3368 		pa = extract_affine_from_op(expr, pc);
3369 		break;
3370 	case pet_expr_call:
3371 		pa = extract_affine_from_call(expr, pc);
3372 		break;
3373 	case pet_expr_cast:
3374 	case pet_expr_double:
3375 	case pet_expr_error:
3376 		pa = non_affine(pet_context_get_space(pc));
3377 		break;
3378 	}
3379 
3380 	if (pet_context_set_extracted_affine(pc, expr, pa) < 0)
3381 		return isl_pw_aff_free(pa);
3382 
3383 	return pa;
3384 }
3385 
3386 /* Extract an affine expressions representing the comparison "LHS op RHS"
3387  * Return NaN if we are unable to extract such an affine expression.
3388  *
3389  * "pc" is the context in which the affine expression is created.
3390  *
3391  * If the comparison is of the form
3392  *
3393  *	a <= min(b,c)
3394  *
3395  * then the expression is constructed as the conjunction of
3396  * the comparisons
3397  *
3398  *	a <= b		and		a <= c
3399  *
3400  * A similar optimization is performed for max(a,b) <= c.
3401  * We do this because that will lead to simpler representations
3402  * of the expression.
3403  * If isl is ever enhanced to explicitly deal with min and max expressions,
3404  * this optimization can be removed.
3405  */
pet_expr_extract_comparison(enum pet_op_type op,__isl_keep pet_expr * lhs,__isl_keep pet_expr * rhs,__isl_keep pet_context * pc)3406 __isl_give isl_pw_aff *pet_expr_extract_comparison(enum pet_op_type op,
3407 	__isl_keep pet_expr *lhs, __isl_keep pet_expr *rhs,
3408 	__isl_keep pet_context *pc)
3409 {
3410 	isl_pw_aff *lhs_pa, *rhs_pa;
3411 
3412 	if (op == pet_op_gt)
3413 		return pet_expr_extract_comparison(pet_op_lt, rhs, lhs, pc);
3414 	if (op == pet_op_ge)
3415 		return pet_expr_extract_comparison(pet_op_le, rhs, lhs, pc);
3416 
3417 	if (op == pet_op_lt || op == pet_op_le) {
3418 		if (pet_expr_is_min(rhs)) {
3419 			lhs_pa = pet_expr_extract_comparison(op, lhs,
3420 						rhs->args[0], pc);
3421 			rhs_pa = pet_expr_extract_comparison(op, lhs,
3422 						rhs->args[1], pc);
3423 			return pet_and(lhs_pa, rhs_pa);
3424 		}
3425 		if (pet_expr_is_max(lhs)) {
3426 			lhs_pa = pet_expr_extract_comparison(op, lhs->args[0],
3427 						rhs, pc);
3428 			rhs_pa = pet_expr_extract_comparison(op, lhs->args[1],
3429 						rhs, pc);
3430 			return pet_and(lhs_pa, rhs_pa);
3431 		}
3432 	}
3433 
3434 	lhs_pa = pet_expr_extract_affine(lhs, pc);
3435 	rhs_pa = pet_expr_extract_affine(rhs, pc);
3436 
3437 	return pet_comparison(op, lhs_pa, rhs_pa);
3438 }
3439 
3440 /* Extract an affine expressions from the comparison "expr".
3441  * Return NaN if we are unable to extract such an affine expression.
3442  *
3443  * "pc" is the context in which the affine expression is created.
3444  */
extract_comparison(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3445 static __isl_give isl_pw_aff *extract_comparison(__isl_keep pet_expr *expr,
3446 	__isl_keep pet_context *pc)
3447 {
3448 	enum pet_op_type type;
3449 
3450 	if (!expr)
3451 		return NULL;
3452 	if (expr->n_arg != 2)
3453 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3454 			"expecting two arguments", return NULL);
3455 
3456 	type = pet_expr_op_get_type(expr);
3457 	return pet_expr_extract_comparison(type, expr->args[0], expr->args[1],
3458 						pc);
3459 }
3460 
3461 /* Extract an affine expression representing the boolean operation
3462  * expressed by "expr".
3463  * Return NaN if we are unable to extract an affine expression.
3464  *
3465  * "pc" is the context in which the affine expression is created.
3466  */
extract_boolean(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3467 static __isl_give isl_pw_aff *extract_boolean(__isl_keep pet_expr *expr,
3468 	__isl_keep pet_context *pc)
3469 {
3470 	isl_pw_aff *lhs, *rhs;
3471 	int n;
3472 
3473 	if (!expr)
3474 		return NULL;
3475 
3476 	n = pet_expr_get_n_arg(expr);
3477 	lhs = pet_expr_extract_affine_condition(expr->args[0], pc);
3478 	if (n == 1)
3479 		return pet_not(lhs);
3480 
3481 	rhs = pet_expr_extract_affine_condition(expr->args[1], pc);
3482 	return pet_boolean(pet_expr_op_get_type(expr), lhs, rhs);
3483 }
3484 
3485 /* Extract the affine expression "expr != 0 ? 1 : 0".
3486  * Return NaN if we are unable to extract an affine expression.
3487  *
3488  * "pc" is the context in which the affine expression is created.
3489  */
extract_implicit_condition(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3490 static __isl_give isl_pw_aff *extract_implicit_condition(
3491 	__isl_keep pet_expr *expr, __isl_keep pet_context *pc)
3492 {
3493 	isl_pw_aff *res;
3494 
3495 	res = pet_expr_extract_affine(expr, pc);
3496 	return pet_to_bool(res);
3497 }
3498 
3499 /* Extract a boolean affine expression from "expr".
3500  * Return NaN if we are unable to extract an affine expression.
3501  *
3502  * "pc" is the context in which the affine expression is created.
3503  *
3504  * If "expr" is neither a comparison nor a boolean operation,
3505  * then we assume it is an affine expression and return the
3506  * boolean expression "expr != 0 ? 1 : 0".
3507  */
pet_expr_extract_affine_condition(__isl_keep pet_expr * expr,__isl_keep pet_context * pc)3508 __isl_give isl_pw_aff *pet_expr_extract_affine_condition(
3509 	__isl_keep pet_expr *expr, __isl_keep pet_context *pc)
3510 {
3511 	if (!expr)
3512 		return NULL;
3513 
3514 	if (pet_expr_is_comparison(expr))
3515 		return extract_comparison(expr, pc);
3516 	if (pet_expr_is_boolean(expr))
3517 		return extract_boolean(expr, pc);
3518 
3519 	return extract_implicit_condition(expr, pc);
3520 }
3521 
3522 /* Check if "expr" is an assume expression and if its single argument
3523  * can be converted to an affine expression in the context of "pc".
3524  * If so, replace the argument by the affine expression.
3525  */
pet_expr_resolve_assume(__isl_take pet_expr * expr,__isl_keep pet_context * pc)3526 __isl_give pet_expr *pet_expr_resolve_assume(__isl_take pet_expr *expr,
3527 	__isl_keep pet_context *pc)
3528 {
3529 	isl_pw_aff *cond;
3530 	isl_multi_pw_aff *index;
3531 
3532 	if (!expr)
3533 		return NULL;
3534 	if (!pet_expr_is_assume(expr))
3535 		return expr;
3536 	if (expr->n_arg != 1)
3537 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3538 			"expecting one argument", return pet_expr_free(expr));
3539 
3540 	cond = pet_expr_extract_affine_condition(expr->args[0], pc);
3541 	if (!cond)
3542 		return pet_expr_free(expr);
3543 	if (isl_pw_aff_involves_nan(cond)) {
3544 		isl_pw_aff_free(cond);
3545 		return expr;
3546 	}
3547 
3548 	index = isl_multi_pw_aff_from_pw_aff(cond);
3549 	expr = pet_expr_set_arg(expr, 0, pet_expr_from_index(index));
3550 
3551 	return expr;
3552 }
3553 
3554 /* Return the number of bits needed to represent the type of "expr".
3555  * See the description of the type_size field of pet_expr.
3556  */
pet_expr_get_type_size(__isl_keep pet_expr * expr)3557 int pet_expr_get_type_size(__isl_keep pet_expr *expr)
3558 {
3559 	return expr ? expr->type_size : 0;
3560 }
3561 
3562 /* Replace the number of bits needed to represent the type of "expr"
3563  * by "type_size".
3564  * See the description of the type_size field of pet_expr.
3565  */
pet_expr_set_type_size(__isl_take pet_expr * expr,int type_size)3566 __isl_give pet_expr *pet_expr_set_type_size(__isl_take pet_expr *expr,
3567 	int type_size)
3568 {
3569 	expr = pet_expr_cow(expr);
3570 	if (!expr)
3571 		return NULL;
3572 
3573 	expr->type_size = type_size;
3574 
3575 	return expr;
3576 }
3577 
3578 /* Extend an access expression "expr" with an additional index "index".
3579  * In particular, add "index" as an extra argument to "expr" and
3580  * adjust the index expression of "expr" to refer to this extra argument.
3581  * The caller is responsible for calling pet_expr_access_set_depth
3582  * to update the corresponding access relation.
3583  *
3584  * Note that we only collect the individual index expressions as
3585  * arguments of "expr" here.
3586  * An attempt to integrate them into the index expression of "expr"
3587  * is performed in pet_expr_access_plug_in_args.
3588  */
pet_expr_access_subscript(__isl_take pet_expr * expr,__isl_take pet_expr * index)3589 __isl_give pet_expr *pet_expr_access_subscript(__isl_take pet_expr *expr,
3590 	__isl_take pet_expr *index)
3591 {
3592 	int n;
3593 	isl_space *space;
3594 	isl_local_space *ls;
3595 	isl_pw_aff *pa;
3596 
3597 	expr = pet_expr_cow(expr);
3598 	if (!expr || !index)
3599 		goto error;
3600 	if (expr->type != pet_expr_access)
3601 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3602 			"not an access pet_expr", goto error);
3603 
3604 	n = pet_expr_get_n_arg(expr);
3605 	expr = pet_expr_insert_arg(expr, n, index);
3606 	if (!expr)
3607 		return NULL;
3608 
3609 	space = isl_multi_pw_aff_get_domain_space(expr->acc.index);
3610 	ls = isl_local_space_from_space(space);
3611 	pa = isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, isl_dim_set, n));
3612 	expr->acc.index = pet_array_subscript(expr->acc.index, pa);
3613 	if (!expr->acc.index)
3614 		return pet_expr_free(expr);
3615 
3616 	return expr;
3617 error:
3618 	pet_expr_free(expr);
3619 	pet_expr_free(index);
3620 	return NULL;
3621 }
3622 
3623 /* Extend an access expression "expr" with an additional member acces to "id".
3624  * In particular, extend the index expression of "expr" to include
3625  * the additional member access.
3626  * The caller is responsible for calling pet_expr_access_set_depth
3627  * to update the corresponding access relation.
3628  */
pet_expr_access_member(__isl_take pet_expr * expr,__isl_take isl_id * id)3629 __isl_give pet_expr *pet_expr_access_member(__isl_take pet_expr *expr,
3630 	__isl_take isl_id *id)
3631 {
3632 	isl_space *space;
3633 	isl_multi_pw_aff *field_access;
3634 
3635 	expr = pet_expr_cow(expr);
3636 	if (!expr || !id)
3637 		goto error;
3638 	if (expr->type != pet_expr_access)
3639 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3640 			"not an access pet_expr", goto error);
3641 
3642 	space = isl_multi_pw_aff_get_domain_space(expr->acc.index);
3643 	space = isl_space_from_domain(space);
3644 	space = isl_space_set_tuple_id(space, isl_dim_out, id);
3645 	field_access = isl_multi_pw_aff_zero(space);
3646 	expr->acc.index = pet_array_member(expr->acc.index, field_access);
3647 	if (!expr->acc.index)
3648 		return pet_expr_free(expr);
3649 
3650 	return expr;
3651 error:
3652 	pet_expr_free(expr);
3653 	isl_id_free(id);
3654 	return NULL;
3655 }
3656 
3657 /* Prefix the access expression "expr" with "prefix".
3658  * If "add" is set, then it is not the index expression "prefix" itself
3659  * that was passed to the function, but its address.
3660  */
pet_expr_access_patch(__isl_take pet_expr * expr,__isl_take isl_multi_pw_aff * prefix,int add)3661 __isl_give pet_expr *pet_expr_access_patch(__isl_take pet_expr *expr,
3662 	__isl_take isl_multi_pw_aff *prefix, int add)
3663 {
3664 	enum pet_expr_access_type type;
3665 
3666 	expr = pet_expr_cow(expr);
3667 	if (!expr || !prefix)
3668 		goto error;
3669 	if (expr->type != pet_expr_access)
3670 		isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
3671 			"not an access pet_expr", goto error);
3672 
3673 	expr->acc.depth += isl_multi_pw_aff_dim(prefix, isl_dim_out) - add;
3674 	for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
3675 		if (!expr->acc.access[type])
3676 			continue;
3677 		expr->acc.access[type] = pet_patch_union_map(
3678 			isl_multi_pw_aff_copy(prefix), expr->acc.access[type],
3679 			add, 0);
3680 		if (!expr->acc.access[type])
3681 			break;
3682 	}
3683 	expr->acc.index = pet_patch_multi_pw_aff(prefix, expr->acc.index, add);
3684 	if (!expr->acc.index || type < pet_expr_access_end)
3685 		return pet_expr_free(expr);
3686 
3687 	return expr;
3688 error:
3689 	pet_expr_free(expr);
3690 	isl_multi_pw_aff_free(prefix);
3691 	return NULL;
3692 }
3693 
3694 /* Dump the arguments of "expr" to "p" as a YAML sequence keyed
3695  * by "args", if there are any such arguments.
3696  */
dump_arguments(__isl_keep pet_expr * expr,__isl_take isl_printer * p)3697 static __isl_give isl_printer *dump_arguments(__isl_keep pet_expr *expr,
3698 	__isl_take isl_printer *p)
3699 {
3700 	int i;
3701 
3702 	if (expr->n_arg == 0)
3703 		return p;
3704 
3705 	p = isl_printer_print_str(p, "args");
3706 	p = isl_printer_yaml_next(p);
3707 	p = isl_printer_yaml_start_sequence(p);
3708 	for (i = 0; i < expr->n_arg; ++i) {
3709 		p = pet_expr_print(expr->args[i], p);
3710 		p = isl_printer_yaml_next(p);
3711 	}
3712 	p = isl_printer_yaml_end_sequence(p);
3713 
3714 	return p;
3715 }
3716 
3717 /* Print "expr" to "p" in YAML format.
3718  */
pet_expr_print(__isl_keep pet_expr * expr,__isl_take isl_printer * p)3719 __isl_give isl_printer *pet_expr_print(__isl_keep pet_expr *expr,
3720 	__isl_take isl_printer *p)
3721 {
3722 	if (!expr || !p)
3723 		return isl_printer_free(p);
3724 
3725 	switch (expr->type) {
3726 	case pet_expr_double:
3727 		p = isl_printer_print_str(p, expr->d.s);
3728 		break;
3729 	case pet_expr_int:
3730 		p = isl_printer_print_val(p, expr->i);
3731 		break;
3732 	case pet_expr_access:
3733 		p = isl_printer_yaml_start_mapping(p);
3734 		if (expr->acc.ref_id) {
3735 			p = isl_printer_print_str(p, "ref_id");
3736 			p = isl_printer_yaml_next(p);
3737 			p = isl_printer_print_id(p, expr->acc.ref_id);
3738 			p = isl_printer_yaml_next(p);
3739 		}
3740 		p = isl_printer_print_str(p, "index");
3741 		p = isl_printer_yaml_next(p);
3742 		p = isl_printer_print_multi_pw_aff(p, expr->acc.index);
3743 		p = isl_printer_yaml_next(p);
3744 		p = isl_printer_print_str(p, "depth");
3745 		p = isl_printer_yaml_next(p);
3746 		p = isl_printer_print_int(p, expr->acc.depth);
3747 		p = isl_printer_yaml_next(p);
3748 		if (expr->acc.kill) {
3749 			p = isl_printer_print_str(p, "kill");
3750 			p = isl_printer_yaml_next(p);
3751 			p = isl_printer_print_int(p, 1);
3752 			p = isl_printer_yaml_next(p);
3753 		} else {
3754 			p = isl_printer_print_str(p, "read");
3755 			p = isl_printer_yaml_next(p);
3756 			p = isl_printer_print_int(p, expr->acc.read);
3757 			p = isl_printer_yaml_next(p);
3758 			p = isl_printer_print_str(p, "write");
3759 			p = isl_printer_yaml_next(p);
3760 			p = isl_printer_print_int(p, expr->acc.write);
3761 			p = isl_printer_yaml_next(p);
3762 		}
3763 		if (expr->acc.access[pet_expr_access_may_read]) {
3764 			p = isl_printer_print_str(p, "may_read");
3765 			p = isl_printer_yaml_next(p);
3766 			p = isl_printer_print_union_map(p,
3767 				expr->acc.access[pet_expr_access_may_read]);
3768 			p = isl_printer_yaml_next(p);
3769 		}
3770 		if (expr->acc.access[pet_expr_access_may_write]) {
3771 			p = isl_printer_print_str(p, "may_write");
3772 			p = isl_printer_yaml_next(p);
3773 			p = isl_printer_print_union_map(p,
3774 				expr->acc.access[pet_expr_access_may_write]);
3775 			p = isl_printer_yaml_next(p);
3776 		}
3777 		if (expr->acc.access[pet_expr_access_must_write]) {
3778 			p = isl_printer_print_str(p, "must_write");
3779 			p = isl_printer_yaml_next(p);
3780 			p = isl_printer_print_union_map(p,
3781 				expr->acc.access[pet_expr_access_must_write]);
3782 			p = isl_printer_yaml_next(p);
3783 		}
3784 		p = dump_arguments(expr, p);
3785 		p = isl_printer_yaml_end_mapping(p);
3786 		break;
3787 	case pet_expr_op:
3788 		p = isl_printer_yaml_start_mapping(p);
3789 		p = isl_printer_print_str(p, "op");
3790 		p = isl_printer_yaml_next(p);
3791 		p = isl_printer_print_str(p, op_str[expr->op]);
3792 		p = isl_printer_yaml_next(p);
3793 		p = dump_arguments(expr, p);
3794 		p = isl_printer_yaml_end_mapping(p);
3795 		break;
3796 	case pet_expr_call:
3797 		p = isl_printer_yaml_start_mapping(p);
3798 		p = isl_printer_print_str(p, "call");
3799 		p = isl_printer_yaml_next(p);
3800 		p = isl_printer_print_str(p, expr->c.name);
3801 		p = isl_printer_print_str(p, "/");
3802 		p = isl_printer_print_int(p, expr->n_arg);
3803 		p = isl_printer_yaml_next(p);
3804 		p = dump_arguments(expr, p);
3805 		if (expr->c.summary) {
3806 			p = isl_printer_print_str(p, "summary");
3807 			p = isl_printer_yaml_next(p);
3808 			p = pet_function_summary_print(expr->c.summary, p);
3809 		}
3810 		p = isl_printer_yaml_end_mapping(p);
3811 		break;
3812 	case pet_expr_cast:
3813 		p = isl_printer_yaml_start_mapping(p);
3814 		p = isl_printer_print_str(p, "cast");
3815 		p = isl_printer_yaml_next(p);
3816 		p = isl_printer_print_str(p, expr->type_name);
3817 		p = isl_printer_yaml_next(p);
3818 		p = dump_arguments(expr, p);
3819 		p = isl_printer_yaml_end_mapping(p);
3820 		break;
3821 	case pet_expr_error:
3822 		p = isl_printer_print_str(p, "ERROR");
3823 		break;
3824 	}
3825 
3826 	return p;
3827 }
3828 
3829 /* Dump "expr" to stderr with indentation "indent".
3830  */
pet_expr_dump_with_indent(__isl_keep pet_expr * expr,int indent)3831 void pet_expr_dump_with_indent(__isl_keep pet_expr *expr, int indent)
3832 {
3833 	isl_printer *p;
3834 
3835 	if (!expr)
3836 		return;
3837 
3838 	p = isl_printer_to_file(pet_expr_get_ctx(expr), stderr);
3839 	p = isl_printer_set_indent(p, indent);
3840 	p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
3841 	p = isl_printer_start_line(p);
3842 	p = pet_expr_print(expr, p);
3843 
3844 	isl_printer_free(p);
3845 }
3846 
pet_expr_dump(__isl_keep pet_expr * expr)3847 void pet_expr_dump(__isl_keep pet_expr *expr)
3848 {
3849 	pet_expr_dump_with_indent(expr, 0);
3850 }
3851