1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29
30 #include <asm/apic.h>
31 #include <asm/pvclock-abi.h>
32 #include <asm/desc.h>
33 #include <asm/mtrr.h>
34 #include <asm/msr-index.h>
35 #include <asm/asm.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
39 #include <asm/reboot.h>
40
41 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
42
43 /*
44 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
45 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
46 */
47 #ifdef CONFIG_KVM_MAX_NR_VCPUS
48 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
49 #else
50 #define KVM_MAX_VCPUS 1024
51 #endif
52
53 /*
54 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
55 * might be larger than the actual number of VCPUs because the
56 * APIC ID encodes CPU topology information.
57 *
58 * In the worst case, we'll need less than one extra bit for the
59 * Core ID, and less than one extra bit for the Package (Die) ID,
60 * so ratio of 4 should be enough.
61 */
62 #define KVM_VCPU_ID_RATIO 4
63 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
64
65 /* memory slots that are not exposed to userspace */
66 #define KVM_INTERNAL_MEM_SLOTS 3
67
68 #define KVM_HALT_POLL_NS_DEFAULT 200000
69
70 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
71
72 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
73 KVM_DIRTY_LOG_INITIALLY_SET)
74
75 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
76 KVM_BUS_LOCK_DETECTION_EXIT)
77
78 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
79 KVM_X86_NOTIFY_VMEXIT_USER)
80
81 /* x86-specific vcpu->requests bit members */
82 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
83 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
84 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
85 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
86 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
87 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
88 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
89 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
90 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
91 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
92 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
93 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
94 #ifdef CONFIG_KVM_SMM
95 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
96 #endif
97 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
98 #define KVM_REQ_MCLOCK_INPROGRESS \
99 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
100 #define KVM_REQ_SCAN_IOAPIC \
101 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
103 #define KVM_REQ_APIC_PAGE_RELOAD \
104 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
106 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
107 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
108 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
109 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
110 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
111 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
112 #define KVM_REQ_APICV_UPDATE \
113 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
114 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
115 #define KVM_REQ_TLB_FLUSH_GUEST \
116 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
117 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
118 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
119 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
120 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
121 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
122 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
123 #define KVM_REQ_HV_TLB_FLUSH \
124 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
125 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34)
126
127 #define CR0_RESERVED_BITS \
128 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
129 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
130 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
131
132 #define CR4_RESERVED_BITS \
133 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
134 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
135 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
136 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
137 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
138 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
139 | X86_CR4_LAM_SUP))
140
141 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
142
143
144
145 #define INVALID_PAGE (~(hpa_t)0)
146 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
147
148 /* KVM Hugepage definitions for x86 */
149 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
150 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
151 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
152 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
153 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
154 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
155 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
156
157 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
158 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
159 #define KVM_MMU_HASH_SHIFT 12
160 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
161 #define KVM_MIN_FREE_MMU_PAGES 5
162 #define KVM_REFILL_PAGES 25
163 #define KVM_MAX_CPUID_ENTRIES 256
164 #define KVM_NR_VAR_MTRR 8
165
166 #define ASYNC_PF_PER_VCPU 64
167
168 enum kvm_reg {
169 VCPU_REGS_RAX = __VCPU_REGS_RAX,
170 VCPU_REGS_RCX = __VCPU_REGS_RCX,
171 VCPU_REGS_RDX = __VCPU_REGS_RDX,
172 VCPU_REGS_RBX = __VCPU_REGS_RBX,
173 VCPU_REGS_RSP = __VCPU_REGS_RSP,
174 VCPU_REGS_RBP = __VCPU_REGS_RBP,
175 VCPU_REGS_RSI = __VCPU_REGS_RSI,
176 VCPU_REGS_RDI = __VCPU_REGS_RDI,
177 #ifdef CONFIG_X86_64
178 VCPU_REGS_R8 = __VCPU_REGS_R8,
179 VCPU_REGS_R9 = __VCPU_REGS_R9,
180 VCPU_REGS_R10 = __VCPU_REGS_R10,
181 VCPU_REGS_R11 = __VCPU_REGS_R11,
182 VCPU_REGS_R12 = __VCPU_REGS_R12,
183 VCPU_REGS_R13 = __VCPU_REGS_R13,
184 VCPU_REGS_R14 = __VCPU_REGS_R14,
185 VCPU_REGS_R15 = __VCPU_REGS_R15,
186 #endif
187 VCPU_REGS_RIP,
188 NR_VCPU_REGS,
189
190 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
191 VCPU_EXREG_CR0,
192 VCPU_EXREG_CR3,
193 VCPU_EXREG_CR4,
194 VCPU_EXREG_RFLAGS,
195 VCPU_EXREG_SEGMENTS,
196 VCPU_EXREG_EXIT_INFO_1,
197 VCPU_EXREG_EXIT_INFO_2,
198 };
199
200 enum {
201 VCPU_SREG_ES,
202 VCPU_SREG_CS,
203 VCPU_SREG_SS,
204 VCPU_SREG_DS,
205 VCPU_SREG_FS,
206 VCPU_SREG_GS,
207 VCPU_SREG_TR,
208 VCPU_SREG_LDTR,
209 };
210
211 enum exit_fastpath_completion {
212 EXIT_FASTPATH_NONE,
213 EXIT_FASTPATH_REENTER_GUEST,
214 EXIT_FASTPATH_EXIT_HANDLED,
215 EXIT_FASTPATH_EXIT_USERSPACE,
216 };
217 typedef enum exit_fastpath_completion fastpath_t;
218
219 struct x86_emulate_ctxt;
220 struct x86_exception;
221 union kvm_smram;
222 enum x86_intercept;
223 enum x86_intercept_stage;
224
225 #define KVM_NR_DB_REGS 4
226
227 #define DR6_BUS_LOCK (1 << 11)
228 #define DR6_BD (1 << 13)
229 #define DR6_BS (1 << 14)
230 #define DR6_BT (1 << 15)
231 #define DR6_RTM (1 << 16)
232 /*
233 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
234 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
235 * they will never be 0 for now, but when they are defined
236 * in the future it will require no code change.
237 *
238 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
239 */
240 #define DR6_ACTIVE_LOW 0xffff0ff0
241 #define DR6_VOLATILE 0x0001e80f
242 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
243
244 #define DR7_BP_EN_MASK 0x000000ff
245 #define DR7_GE (1 << 9)
246 #define DR7_GD (1 << 13)
247 #define DR7_FIXED_1 0x00000400
248 #define DR7_VOLATILE 0xffff2bff
249
250 #define KVM_GUESTDBG_VALID_MASK \
251 (KVM_GUESTDBG_ENABLE | \
252 KVM_GUESTDBG_SINGLESTEP | \
253 KVM_GUESTDBG_USE_HW_BP | \
254 KVM_GUESTDBG_USE_SW_BP | \
255 KVM_GUESTDBG_INJECT_BP | \
256 KVM_GUESTDBG_INJECT_DB | \
257 KVM_GUESTDBG_BLOCKIRQ)
258
259 #define PFERR_PRESENT_MASK BIT(0)
260 #define PFERR_WRITE_MASK BIT(1)
261 #define PFERR_USER_MASK BIT(2)
262 #define PFERR_RSVD_MASK BIT(3)
263 #define PFERR_FETCH_MASK BIT(4)
264 #define PFERR_PK_MASK BIT(5)
265 #define PFERR_SGX_MASK BIT(15)
266 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
267 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
268 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
269 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
270 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
271 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
272
273 /*
274 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
275 * when emulating instructions that triggers implicit access.
276 */
277 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
278 /*
279 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
280 * when the guest was accessing private memory.
281 */
282 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
283 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
284
285 /* apic attention bits */
286 #define KVM_APIC_CHECK_VAPIC 0
287 /*
288 * The following bit is set with PV-EOI, unset on EOI.
289 * We detect PV-EOI changes by guest by comparing
290 * this bit with PV-EOI in guest memory.
291 * See the implementation in apic_update_pv_eoi.
292 */
293 #define KVM_APIC_PV_EOI_PENDING 1
294
295 struct kvm_kernel_irq_routing_entry;
296
297 /*
298 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
299 * also includes TDP pages) to determine whether or not a page can be used in
300 * the given MMU context. This is a subset of the overall kvm_cpu_role to
301 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
302 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
303 *
304 * Upper-level shadow pages having gptes are tracked for write-protection via
305 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
306 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
307 * otherwise gfn_write_track will overflow and explosions will ensue.
308 *
309 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
310 * cannot be reused. The ability to reuse a SP is tracked by its role, which
311 * incorporates various mode bits and properties of the SP. Roughly speaking,
312 * the number of unique SPs that can theoretically be created is 2^n, where n
313 * is the number of bits that are used to compute the role.
314 *
315 * But, even though there are 19 bits in the mask below, not all combinations
316 * of modes and flags are possible:
317 *
318 * - invalid shadow pages are not accounted, so the bits are effectively 18
319 *
320 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
321 * execonly and ad_disabled are only used for nested EPT which has
322 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
323 *
324 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
325 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
326 * paging has exactly one upper level, making level completely redundant
327 * when has_4_byte_gpte=1.
328 *
329 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
330 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
331 *
332 * Therefore, the maximum number of possible upper-level shadow pages for a
333 * single gfn is a bit less than 2^13.
334 */
335 union kvm_mmu_page_role {
336 u32 word;
337 struct {
338 unsigned level:4;
339 unsigned has_4_byte_gpte:1;
340 unsigned quadrant:2;
341 unsigned direct:1;
342 unsigned access:3;
343 unsigned invalid:1;
344 unsigned efer_nx:1;
345 unsigned cr0_wp:1;
346 unsigned smep_andnot_wp:1;
347 unsigned smap_andnot_wp:1;
348 unsigned ad_disabled:1;
349 unsigned guest_mode:1;
350 unsigned passthrough:1;
351 unsigned :5;
352
353 /*
354 * This is left at the top of the word so that
355 * kvm_memslots_for_spte_role can extract it with a
356 * simple shift. While there is room, give it a whole
357 * byte so it is also faster to load it from memory.
358 */
359 unsigned smm:8;
360 };
361 };
362
363 /*
364 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
365 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
366 * including on nested transitions, if nothing in the full role changes then
367 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
368 * don't treat all-zero structure as valid data.
369 *
370 * The properties that are tracked in the extended role but not the page role
371 * are for things that either (a) do not affect the validity of the shadow page
372 * or (b) are indirectly reflected in the shadow page's role. For example,
373 * CR4.PKE only affects permission checks for software walks of the guest page
374 * tables (because KVM doesn't support Protection Keys with shadow paging), and
375 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
376 *
377 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
378 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
379 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
380 * SMAP aware regardless of CR0.WP.
381 */
382 union kvm_mmu_extended_role {
383 u32 word;
384 struct {
385 unsigned int valid:1;
386 unsigned int execonly:1;
387 unsigned int cr4_pse:1;
388 unsigned int cr4_pke:1;
389 unsigned int cr4_smap:1;
390 unsigned int cr4_smep:1;
391 unsigned int cr4_la57:1;
392 unsigned int efer_lma:1;
393 };
394 };
395
396 union kvm_cpu_role {
397 u64 as_u64;
398 struct {
399 union kvm_mmu_page_role base;
400 union kvm_mmu_extended_role ext;
401 };
402 };
403
404 struct kvm_rmap_head {
405 unsigned long val;
406 };
407
408 struct kvm_pio_request {
409 unsigned long linear_rip;
410 unsigned long count;
411 int in;
412 int port;
413 int size;
414 };
415
416 #define PT64_ROOT_MAX_LEVEL 5
417
418 struct rsvd_bits_validate {
419 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
420 u64 bad_mt_xwr;
421 };
422
423 struct kvm_mmu_root_info {
424 gpa_t pgd;
425 hpa_t hpa;
426 };
427
428 #define KVM_MMU_ROOT_INFO_INVALID \
429 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
430
431 #define KVM_MMU_NUM_PREV_ROOTS 3
432
433 #define KVM_MMU_ROOT_CURRENT BIT(0)
434 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
435 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
436
437 #define KVM_HAVE_MMU_RWLOCK
438
439 struct kvm_mmu_page;
440 struct kvm_page_fault;
441
442 /*
443 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
444 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
445 * current mmu mode.
446 */
447 struct kvm_mmu {
448 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
449 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
450 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
451 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
452 struct x86_exception *fault);
453 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
454 gpa_t gva_or_gpa, u64 access,
455 struct x86_exception *exception);
456 int (*sync_spte)(struct kvm_vcpu *vcpu,
457 struct kvm_mmu_page *sp, int i);
458 struct kvm_mmu_root_info root;
459 union kvm_cpu_role cpu_role;
460 union kvm_mmu_page_role root_role;
461
462 /*
463 * The pkru_mask indicates if protection key checks are needed. It
464 * consists of 16 domains indexed by page fault error code bits [4:1],
465 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
466 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
467 */
468 u32 pkru_mask;
469
470 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
471
472 /*
473 * Bitmap; bit set = permission fault
474 * Byte index: page fault error code [4:1]
475 * Bit index: pte permissions in ACC_* format
476 */
477 u8 permissions[16];
478
479 u64 *pae_root;
480 u64 *pml4_root;
481 u64 *pml5_root;
482
483 /*
484 * check zero bits on shadow page table entries, these
485 * bits include not only hardware reserved bits but also
486 * the bits spte never used.
487 */
488 struct rsvd_bits_validate shadow_zero_check;
489
490 struct rsvd_bits_validate guest_rsvd_check;
491
492 u64 pdptrs[4]; /* pae */
493 };
494
495 enum pmc_type {
496 KVM_PMC_GP = 0,
497 KVM_PMC_FIXED,
498 };
499
500 struct kvm_pmc {
501 enum pmc_type type;
502 u8 idx;
503 bool is_paused;
504 bool intr;
505 /*
506 * Base value of the PMC counter, relative to the *consumed* count in
507 * the associated perf_event. This value includes counter updates from
508 * the perf_event and emulated_count since the last time the counter
509 * was reprogrammed, but it is *not* the current value as seen by the
510 * guest or userspace.
511 *
512 * The count is relative to the associated perf_event so that KVM
513 * doesn't need to reprogram the perf_event every time the guest writes
514 * to the counter.
515 */
516 u64 counter;
517 /*
518 * PMC events triggered by KVM emulation that haven't been fully
519 * processed, i.e. haven't undergone overflow detection.
520 */
521 u64 emulated_counter;
522 u64 eventsel;
523 struct perf_event *perf_event;
524 struct kvm_vcpu *vcpu;
525 /*
526 * only for creating or reusing perf_event,
527 * eventsel value for general purpose counters,
528 * ctrl value for fixed counters.
529 */
530 u64 current_config;
531 };
532
533 /* More counters may conflict with other existing Architectural MSRs */
534 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
535 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
536 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
537 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
538 KVM_MAX_NR_AMD_GP_COUNTERS)
539
540 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
541 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
542 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
543 KVM_MAX_NR_AMD_FIXED_COUTNERS)
544
545 struct kvm_pmu {
546 u8 version;
547 unsigned nr_arch_gp_counters;
548 unsigned nr_arch_fixed_counters;
549 unsigned available_event_types;
550 u64 fixed_ctr_ctrl;
551 u64 fixed_ctr_ctrl_rsvd;
552 u64 global_ctrl;
553 u64 global_status;
554 u64 counter_bitmask[2];
555 u64 global_ctrl_rsvd;
556 u64 global_status_rsvd;
557 u64 reserved_bits;
558 u64 raw_event_mask;
559 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
560 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
561
562 /*
563 * Overlay the bitmap with a 64-bit atomic so that all bits can be
564 * set in a single access, e.g. to reprogram all counters when the PMU
565 * filter changes.
566 */
567 union {
568 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
569 atomic64_t __reprogram_pmi;
570 };
571 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
572 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
573
574 u64 ds_area;
575 u64 pebs_enable;
576 u64 pebs_enable_rsvd;
577 u64 pebs_data_cfg;
578 u64 pebs_data_cfg_rsvd;
579
580 /*
581 * If a guest counter is cross-mapped to host counter with different
582 * index, its PEBS capability will be temporarily disabled.
583 *
584 * The user should make sure that this mask is updated
585 * after disabling interrupts and before perf_guest_get_msrs();
586 */
587 u64 host_cross_mapped_mask;
588
589 /*
590 * The gate to release perf_events not marked in
591 * pmc_in_use only once in a vcpu time slice.
592 */
593 bool need_cleanup;
594
595 /*
596 * The total number of programmed perf_events and it helps to avoid
597 * redundant check before cleanup if guest don't use vPMU at all.
598 */
599 u8 event_count;
600 };
601
602 struct kvm_pmu_ops;
603
604 enum {
605 KVM_DEBUGREG_BP_ENABLED = 1,
606 KVM_DEBUGREG_WONT_EXIT = 2,
607 };
608
609 struct kvm_mtrr {
610 u64 var[KVM_NR_VAR_MTRR * 2];
611 u64 fixed_64k;
612 u64 fixed_16k[2];
613 u64 fixed_4k[8];
614 u64 deftype;
615 };
616
617 /* Hyper-V SynIC timer */
618 struct kvm_vcpu_hv_stimer {
619 struct hrtimer timer;
620 int index;
621 union hv_stimer_config config;
622 u64 count;
623 u64 exp_time;
624 struct hv_message msg;
625 bool msg_pending;
626 };
627
628 /* Hyper-V synthetic interrupt controller (SynIC)*/
629 struct kvm_vcpu_hv_synic {
630 u64 version;
631 u64 control;
632 u64 msg_page;
633 u64 evt_page;
634 atomic64_t sint[HV_SYNIC_SINT_COUNT];
635 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
636 DECLARE_BITMAP(auto_eoi_bitmap, 256);
637 DECLARE_BITMAP(vec_bitmap, 256);
638 bool active;
639 bool dont_zero_synic_pages;
640 };
641
642 /* The maximum number of entries on the TLB flush fifo. */
643 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
644 /*
645 * Note: the following 'magic' entry is made up by KVM to avoid putting
646 * anything besides GVA on the TLB flush fifo. It is theoretically possible
647 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
648 * which will look identical. KVM's action to 'flush everything' instead of
649 * flushing these particular addresses is, however, fully legitimate as
650 * flushing more than requested is always OK.
651 */
652 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
653
654 enum hv_tlb_flush_fifos {
655 HV_L1_TLB_FLUSH_FIFO,
656 HV_L2_TLB_FLUSH_FIFO,
657 HV_NR_TLB_FLUSH_FIFOS,
658 };
659
660 struct kvm_vcpu_hv_tlb_flush_fifo {
661 spinlock_t write_lock;
662 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
663 };
664
665 /* Hyper-V per vcpu emulation context */
666 struct kvm_vcpu_hv {
667 struct kvm_vcpu *vcpu;
668 u32 vp_index;
669 u64 hv_vapic;
670 s64 runtime_offset;
671 struct kvm_vcpu_hv_synic synic;
672 struct kvm_hyperv_exit exit;
673 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
674 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
675 bool enforce_cpuid;
676 struct {
677 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
678 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
679 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
680 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
681 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
682 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
683 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
684 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
685 } cpuid_cache;
686
687 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
688
689 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */
690 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
691
692 struct hv_vp_assist_page vp_assist_page;
693
694 struct {
695 u64 pa_page_gpa;
696 u64 vm_id;
697 u32 vp_id;
698 } nested;
699 };
700
701 struct kvm_hypervisor_cpuid {
702 u32 base;
703 u32 limit;
704 };
705
706 #ifdef CONFIG_KVM_XEN
707 /* Xen HVM per vcpu emulation context */
708 struct kvm_vcpu_xen {
709 u64 hypercall_rip;
710 u32 current_runstate;
711 u8 upcall_vector;
712 struct gfn_to_pfn_cache vcpu_info_cache;
713 struct gfn_to_pfn_cache vcpu_time_info_cache;
714 struct gfn_to_pfn_cache runstate_cache;
715 struct gfn_to_pfn_cache runstate2_cache;
716 u64 last_steal;
717 u64 runstate_entry_time;
718 u64 runstate_times[4];
719 unsigned long evtchn_pending_sel;
720 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
721 u32 timer_virq;
722 u64 timer_expires; /* In guest epoch */
723 atomic_t timer_pending;
724 struct hrtimer timer;
725 int poll_evtchn;
726 struct timer_list poll_timer;
727 struct kvm_hypervisor_cpuid cpuid;
728 };
729 #endif
730
731 struct kvm_queued_exception {
732 bool pending;
733 bool injected;
734 bool has_error_code;
735 u8 vector;
736 u32 error_code;
737 unsigned long payload;
738 bool has_payload;
739 };
740
741 struct kvm_vcpu_arch {
742 /*
743 * rip and regs accesses must go through
744 * kvm_{register,rip}_{read,write} functions.
745 */
746 unsigned long regs[NR_VCPU_REGS];
747 u32 regs_avail;
748 u32 regs_dirty;
749
750 unsigned long cr0;
751 unsigned long cr0_guest_owned_bits;
752 unsigned long cr2;
753 unsigned long cr3;
754 unsigned long cr4;
755 unsigned long cr4_guest_owned_bits;
756 unsigned long cr4_guest_rsvd_bits;
757 unsigned long cr8;
758 u32 host_pkru;
759 u32 pkru;
760 u32 hflags;
761 u64 efer;
762 u64 apic_base;
763 struct kvm_lapic *apic; /* kernel irqchip context */
764 bool load_eoi_exitmap_pending;
765 DECLARE_BITMAP(ioapic_handled_vectors, 256);
766 unsigned long apic_attention;
767 int32_t apic_arb_prio;
768 int mp_state;
769 u64 ia32_misc_enable_msr;
770 u64 smbase;
771 u64 smi_count;
772 bool at_instruction_boundary;
773 bool tpr_access_reporting;
774 bool xfd_no_write_intercept;
775 u64 ia32_xss;
776 u64 microcode_version;
777 u64 arch_capabilities;
778 u64 perf_capabilities;
779
780 /*
781 * Paging state of the vcpu
782 *
783 * If the vcpu runs in guest mode with two level paging this still saves
784 * the paging mode of the l1 guest. This context is always used to
785 * handle faults.
786 */
787 struct kvm_mmu *mmu;
788
789 /* Non-nested MMU for L1 */
790 struct kvm_mmu root_mmu;
791
792 /* L1 MMU when running nested */
793 struct kvm_mmu guest_mmu;
794
795 /*
796 * Paging state of an L2 guest (used for nested npt)
797 *
798 * This context will save all necessary information to walk page tables
799 * of an L2 guest. This context is only initialized for page table
800 * walking and not for faulting since we never handle l2 page faults on
801 * the host.
802 */
803 struct kvm_mmu nested_mmu;
804
805 /*
806 * Pointer to the mmu context currently used for
807 * gva_to_gpa translations.
808 */
809 struct kvm_mmu *walk_mmu;
810
811 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
812 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
813 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
814 struct kvm_mmu_memory_cache mmu_page_header_cache;
815
816 /*
817 * QEMU userspace and the guest each have their own FPU state.
818 * In vcpu_run, we switch between the user and guest FPU contexts.
819 * While running a VCPU, the VCPU thread will have the guest FPU
820 * context.
821 *
822 * Note that while the PKRU state lives inside the fpu registers,
823 * it is switched out separately at VMENTER and VMEXIT time. The
824 * "guest_fpstate" state here contains the guest FPU context, with the
825 * host PRKU bits.
826 */
827 struct fpu_guest guest_fpu;
828
829 u64 xcr0;
830 u64 guest_supported_xcr0;
831
832 struct kvm_pio_request pio;
833 void *pio_data;
834 void *sev_pio_data;
835 unsigned sev_pio_count;
836
837 u8 event_exit_inst_len;
838
839 bool exception_from_userspace;
840
841 /* Exceptions to be injected to the guest. */
842 struct kvm_queued_exception exception;
843 /* Exception VM-Exits to be synthesized to L1. */
844 struct kvm_queued_exception exception_vmexit;
845
846 struct kvm_queued_interrupt {
847 bool injected;
848 bool soft;
849 u8 nr;
850 } interrupt;
851
852 int halt_request; /* real mode on Intel only */
853
854 int cpuid_nent;
855 struct kvm_cpuid_entry2 *cpuid_entries;
856 struct kvm_hypervisor_cpuid kvm_cpuid;
857 bool is_amd_compatible;
858
859 /*
860 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
861 * when "struct kvm_vcpu_arch" is no longer defined in an
862 * arch/x86/include/asm header. The max is mostly arbitrary, i.e.
863 * can be increased as necessary.
864 */
865 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
866
867 /*
868 * Track whether or not the guest is allowed to use features that are
869 * governed by KVM, where "governed" means KVM needs to manage state
870 * and/or explicitly enable the feature in hardware. Typically, but
871 * not always, governed features can be used by the guest if and only
872 * if both KVM and userspace want to expose the feature to the guest.
873 */
874 struct {
875 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
876 } governed_features;
877
878 u64 reserved_gpa_bits;
879 int maxphyaddr;
880
881 /* emulate context */
882
883 struct x86_emulate_ctxt *emulate_ctxt;
884 bool emulate_regs_need_sync_to_vcpu;
885 bool emulate_regs_need_sync_from_vcpu;
886 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
887
888 gpa_t time;
889 struct pvclock_vcpu_time_info hv_clock;
890 unsigned int hw_tsc_khz;
891 struct gfn_to_pfn_cache pv_time;
892 /* set guest stopped flag in pvclock flags field */
893 bool pvclock_set_guest_stopped_request;
894
895 struct {
896 u8 preempted;
897 u64 msr_val;
898 u64 last_steal;
899 struct gfn_to_hva_cache cache;
900 } st;
901
902 u64 l1_tsc_offset;
903 u64 tsc_offset; /* current tsc offset */
904 u64 last_guest_tsc;
905 u64 last_host_tsc;
906 u64 tsc_offset_adjustment;
907 u64 this_tsc_nsec;
908 u64 this_tsc_write;
909 u64 this_tsc_generation;
910 bool tsc_catchup;
911 bool tsc_always_catchup;
912 s8 virtual_tsc_shift;
913 u32 virtual_tsc_mult;
914 u32 virtual_tsc_khz;
915 s64 ia32_tsc_adjust_msr;
916 u64 msr_ia32_power_ctl;
917 u64 l1_tsc_scaling_ratio;
918 u64 tsc_scaling_ratio; /* current scaling ratio */
919
920 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
921 /* Number of NMIs pending injection, not including hardware vNMIs. */
922 unsigned int nmi_pending;
923 bool nmi_injected; /* Trying to inject an NMI this entry */
924 bool smi_pending; /* SMI queued after currently running handler */
925 u8 handling_intr_from_guest;
926
927 struct kvm_mtrr mtrr_state;
928 u64 pat;
929
930 unsigned switch_db_regs;
931 unsigned long db[KVM_NR_DB_REGS];
932 unsigned long dr6;
933 unsigned long dr7;
934 unsigned long eff_db[KVM_NR_DB_REGS];
935 unsigned long guest_debug_dr7;
936 u64 msr_platform_info;
937 u64 msr_misc_features_enables;
938
939 u64 mcg_cap;
940 u64 mcg_status;
941 u64 mcg_ctl;
942 u64 mcg_ext_ctl;
943 u64 *mce_banks;
944 u64 *mci_ctl2_banks;
945
946 /* Cache MMIO info */
947 u64 mmio_gva;
948 unsigned mmio_access;
949 gfn_t mmio_gfn;
950 u64 mmio_gen;
951
952 struct kvm_pmu pmu;
953
954 /* used for guest single stepping over the given code position */
955 unsigned long singlestep_rip;
956
957 #ifdef CONFIG_KVM_HYPERV
958 bool hyperv_enabled;
959 struct kvm_vcpu_hv *hyperv;
960 #endif
961 #ifdef CONFIG_KVM_XEN
962 struct kvm_vcpu_xen xen;
963 #endif
964 cpumask_var_t wbinvd_dirty_mask;
965
966 unsigned long last_retry_eip;
967 unsigned long last_retry_addr;
968
969 struct {
970 bool halted;
971 gfn_t gfns[ASYNC_PF_PER_VCPU];
972 struct gfn_to_hva_cache data;
973 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
974 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
975 u16 vec;
976 u32 id;
977 bool send_user_only;
978 u32 host_apf_flags;
979 bool delivery_as_pf_vmexit;
980 bool pageready_pending;
981 } apf;
982
983 /* OSVW MSRs (AMD only) */
984 struct {
985 u64 length;
986 u64 status;
987 } osvw;
988
989 struct {
990 u64 msr_val;
991 struct gfn_to_hva_cache data;
992 } pv_eoi;
993
994 u64 msr_kvm_poll_control;
995
996 /* pv related host specific info */
997 struct {
998 bool pv_unhalted;
999 } pv;
1000
1001 int pending_ioapic_eoi;
1002 int pending_external_vector;
1003
1004 /* be preempted when it's in kernel-mode(cpl=0) */
1005 bool preempted_in_kernel;
1006
1007 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1008 bool l1tf_flush_l1d;
1009
1010 /* Host CPU on which VM-entry was most recently attempted */
1011 int last_vmentry_cpu;
1012
1013 /* AMD MSRC001_0015 Hardware Configuration */
1014 u64 msr_hwcr;
1015
1016 /* pv related cpuid info */
1017 struct {
1018 /*
1019 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1020 * leaf.
1021 */
1022 u32 features;
1023
1024 /*
1025 * indicates whether pv emulation should be disabled if features
1026 * are not present in the guest's cpuid
1027 */
1028 bool enforce;
1029 } pv_cpuid;
1030
1031 /* Protected Guests */
1032 bool guest_state_protected;
1033
1034 /*
1035 * Set when PDPTS were loaded directly by the userspace without
1036 * reading the guest memory
1037 */
1038 bool pdptrs_from_userspace;
1039
1040 #if IS_ENABLED(CONFIG_HYPERV)
1041 hpa_t hv_root_tdp;
1042 #endif
1043 };
1044
1045 struct kvm_lpage_info {
1046 int disallow_lpage;
1047 };
1048
1049 struct kvm_arch_memory_slot {
1050 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1051 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1052 unsigned short *gfn_write_track;
1053 };
1054
1055 /*
1056 * Track the mode of the optimized logical map, as the rules for decoding the
1057 * destination vary per mode. Enabling the optimized logical map requires all
1058 * software-enabled local APIs to be in the same mode, each addressable APIC to
1059 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1060 */
1061 enum kvm_apic_logical_mode {
1062 /* All local APICs are software disabled. */
1063 KVM_APIC_MODE_SW_DISABLED,
1064 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1065 KVM_APIC_MODE_XAPIC_CLUSTER,
1066 /* All software enabled local APICs in xAPIC flat addressing mode. */
1067 KVM_APIC_MODE_XAPIC_FLAT,
1068 /* All software enabled local APICs in x2APIC mode. */
1069 KVM_APIC_MODE_X2APIC,
1070 /*
1071 * Optimized map disabled, e.g. not all local APICs in the same logical
1072 * mode, same logical ID assigned to multiple APICs, etc.
1073 */
1074 KVM_APIC_MODE_MAP_DISABLED,
1075 };
1076
1077 struct kvm_apic_map {
1078 struct rcu_head rcu;
1079 enum kvm_apic_logical_mode logical_mode;
1080 u32 max_apic_id;
1081 union {
1082 struct kvm_lapic *xapic_flat_map[8];
1083 struct kvm_lapic *xapic_cluster_map[16][4];
1084 };
1085 struct kvm_lapic *phys_map[];
1086 };
1087
1088 /* Hyper-V synthetic debugger (SynDbg)*/
1089 struct kvm_hv_syndbg {
1090 struct {
1091 u64 control;
1092 u64 status;
1093 u64 send_page;
1094 u64 recv_page;
1095 u64 pending_page;
1096 } control;
1097 u64 options;
1098 };
1099
1100 /* Current state of Hyper-V TSC page clocksource */
1101 enum hv_tsc_page_status {
1102 /* TSC page was not set up or disabled */
1103 HV_TSC_PAGE_UNSET = 0,
1104 /* TSC page MSR was written by the guest, update pending */
1105 HV_TSC_PAGE_GUEST_CHANGED,
1106 /* TSC page update was triggered from the host side */
1107 HV_TSC_PAGE_HOST_CHANGED,
1108 /* TSC page was properly set up and is currently active */
1109 HV_TSC_PAGE_SET,
1110 /* TSC page was set up with an inaccessible GPA */
1111 HV_TSC_PAGE_BROKEN,
1112 };
1113
1114 #ifdef CONFIG_KVM_HYPERV
1115 /* Hyper-V emulation context */
1116 struct kvm_hv {
1117 struct mutex hv_lock;
1118 u64 hv_guest_os_id;
1119 u64 hv_hypercall;
1120 u64 hv_tsc_page;
1121 enum hv_tsc_page_status hv_tsc_page_status;
1122
1123 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1124 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1125 u64 hv_crash_ctl;
1126
1127 struct ms_hyperv_tsc_page tsc_ref;
1128
1129 struct idr conn_to_evt;
1130
1131 u64 hv_reenlightenment_control;
1132 u64 hv_tsc_emulation_control;
1133 u64 hv_tsc_emulation_status;
1134 u64 hv_invtsc_control;
1135
1136 /* How many vCPUs have VP index != vCPU index */
1137 atomic_t num_mismatched_vp_indexes;
1138
1139 /*
1140 * How many SynICs use 'AutoEOI' feature
1141 * (protected by arch.apicv_update_lock)
1142 */
1143 unsigned int synic_auto_eoi_used;
1144
1145 struct kvm_hv_syndbg hv_syndbg;
1146
1147 bool xsaves_xsavec_checked;
1148 };
1149 #endif
1150
1151 struct msr_bitmap_range {
1152 u32 flags;
1153 u32 nmsrs;
1154 u32 base;
1155 unsigned long *bitmap;
1156 };
1157
1158 #ifdef CONFIG_KVM_XEN
1159 /* Xen emulation context */
1160 struct kvm_xen {
1161 struct mutex xen_lock;
1162 u32 xen_version;
1163 bool long_mode;
1164 bool runstate_update_flag;
1165 u8 upcall_vector;
1166 struct gfn_to_pfn_cache shinfo_cache;
1167 struct idr evtchn_ports;
1168 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1169 };
1170 #endif
1171
1172 enum kvm_irqchip_mode {
1173 KVM_IRQCHIP_NONE,
1174 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1175 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1176 };
1177
1178 struct kvm_x86_msr_filter {
1179 u8 count;
1180 bool default_allow:1;
1181 struct msr_bitmap_range ranges[16];
1182 };
1183
1184 struct kvm_x86_pmu_event_filter {
1185 __u32 action;
1186 __u32 nevents;
1187 __u32 fixed_counter_bitmap;
1188 __u32 flags;
1189 __u32 nr_includes;
1190 __u32 nr_excludes;
1191 __u64 *includes;
1192 __u64 *excludes;
1193 __u64 events[];
1194 };
1195
1196 enum kvm_apicv_inhibit {
1197
1198 /********************************************************************/
1199 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1200 /********************************************************************/
1201
1202 /*
1203 * APIC acceleration is disabled by a module parameter
1204 * and/or not supported in hardware.
1205 */
1206 APICV_INHIBIT_REASON_DISABLED,
1207
1208 /*
1209 * APIC acceleration is inhibited because AutoEOI feature is
1210 * being used by a HyperV guest.
1211 */
1212 APICV_INHIBIT_REASON_HYPERV,
1213
1214 /*
1215 * APIC acceleration is inhibited because the userspace didn't yet
1216 * enable the kernel/split irqchip.
1217 */
1218 APICV_INHIBIT_REASON_ABSENT,
1219
1220 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1221 * (out of band, debug measure of blocking all interrupts on this vCPU)
1222 * was enabled, to avoid AVIC/APICv bypassing it.
1223 */
1224 APICV_INHIBIT_REASON_BLOCKIRQ,
1225
1226 /*
1227 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1228 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1229 */
1230 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1231
1232 /*
1233 * For simplicity, the APIC acceleration is inhibited
1234 * first time either APIC ID or APIC base are changed by the guest
1235 * from their reset values.
1236 */
1237 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1238 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1239
1240 /******************************************************/
1241 /* INHIBITs that are relevant only to the AMD's AVIC. */
1242 /******************************************************/
1243
1244 /*
1245 * AVIC is inhibited on a vCPU because it runs a nested guest.
1246 *
1247 * This is needed because unlike APICv, the peers of this vCPU
1248 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1249 * a vCPU runs nested.
1250 */
1251 APICV_INHIBIT_REASON_NESTED,
1252
1253 /*
1254 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1255 * which cannot be injected when the AVIC is enabled, thus AVIC
1256 * is inhibited while KVM waits for IRQ window.
1257 */
1258 APICV_INHIBIT_REASON_IRQWIN,
1259
1260 /*
1261 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1262 * which AVIC doesn't support for edge triggered interrupts.
1263 */
1264 APICV_INHIBIT_REASON_PIT_REINJ,
1265
1266 /*
1267 * AVIC is disabled because SEV doesn't support it.
1268 */
1269 APICV_INHIBIT_REASON_SEV,
1270
1271 /*
1272 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1273 * mapping between logical ID and vCPU.
1274 */
1275 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1276
1277 NR_APICV_INHIBIT_REASONS,
1278 };
1279
1280 #define __APICV_INHIBIT_REASON(reason) \
1281 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1282
1283 #define APICV_INHIBIT_REASONS \
1284 __APICV_INHIBIT_REASON(DISABLED), \
1285 __APICV_INHIBIT_REASON(HYPERV), \
1286 __APICV_INHIBIT_REASON(ABSENT), \
1287 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1288 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1289 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1290 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1291 __APICV_INHIBIT_REASON(NESTED), \
1292 __APICV_INHIBIT_REASON(IRQWIN), \
1293 __APICV_INHIBIT_REASON(PIT_REINJ), \
1294 __APICV_INHIBIT_REASON(SEV), \
1295 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1296
1297 struct kvm_arch {
1298 unsigned long n_used_mmu_pages;
1299 unsigned long n_requested_mmu_pages;
1300 unsigned long n_max_mmu_pages;
1301 unsigned int indirect_shadow_pages;
1302 u8 mmu_valid_gen;
1303 u8 vm_type;
1304 bool has_private_mem;
1305 bool has_protected_state;
1306 bool pre_fault_allowed;
1307 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1308 struct list_head active_mmu_pages;
1309 struct list_head zapped_obsolete_pages;
1310 /*
1311 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1312 * replaced by an NX huge page. A shadow page is on this list if its
1313 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1314 * and there are no other conditions that prevent a huge page, e.g.
1315 * the backing host page is huge, dirtly logging is not enabled for its
1316 * memslot, etc... Note, zapping shadow pages on this list doesn't
1317 * guarantee an NX huge page will be created in its stead, e.g. if the
1318 * guest attempts to execute from the region then KVM obviously can't
1319 * create an NX huge page (without hanging the guest).
1320 */
1321 struct list_head possible_nx_huge_pages;
1322 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1323 struct kvm_page_track_notifier_head track_notifier_head;
1324 #endif
1325 /*
1326 * Protects marking pages unsync during page faults, as TDP MMU page
1327 * faults only take mmu_lock for read. For simplicity, the unsync
1328 * pages lock is always taken when marking pages unsync regardless of
1329 * whether mmu_lock is held for read or write.
1330 */
1331 spinlock_t mmu_unsync_pages_lock;
1332
1333 u64 shadow_mmio_value;
1334
1335 struct iommu_domain *iommu_domain;
1336 bool iommu_noncoherent;
1337 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1338 atomic_t noncoherent_dma_count;
1339 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1340 atomic_t assigned_device_count;
1341 struct kvm_pic *vpic;
1342 struct kvm_ioapic *vioapic;
1343 struct kvm_pit *vpit;
1344 atomic_t vapics_in_nmi_mode;
1345 struct mutex apic_map_lock;
1346 struct kvm_apic_map __rcu *apic_map;
1347 atomic_t apic_map_dirty;
1348
1349 bool apic_access_memslot_enabled;
1350 bool apic_access_memslot_inhibited;
1351
1352 /* Protects apicv_inhibit_reasons */
1353 struct rw_semaphore apicv_update_lock;
1354 unsigned long apicv_inhibit_reasons;
1355
1356 gpa_t wall_clock;
1357
1358 bool mwait_in_guest;
1359 bool hlt_in_guest;
1360 bool pause_in_guest;
1361 bool cstate_in_guest;
1362
1363 unsigned long irq_sources_bitmap;
1364 s64 kvmclock_offset;
1365
1366 /*
1367 * This also protects nr_vcpus_matched_tsc which is read from a
1368 * preemption-disabled region, so it must be a raw spinlock.
1369 */
1370 raw_spinlock_t tsc_write_lock;
1371 u64 last_tsc_nsec;
1372 u64 last_tsc_write;
1373 u32 last_tsc_khz;
1374 u64 last_tsc_offset;
1375 u64 cur_tsc_nsec;
1376 u64 cur_tsc_write;
1377 u64 cur_tsc_offset;
1378 u64 cur_tsc_generation;
1379 int nr_vcpus_matched_tsc;
1380
1381 u32 default_tsc_khz;
1382 bool user_set_tsc;
1383 u64 apic_bus_cycle_ns;
1384
1385 seqcount_raw_spinlock_t pvclock_sc;
1386 bool use_master_clock;
1387 u64 master_kernel_ns;
1388 u64 master_cycle_now;
1389 struct delayed_work kvmclock_update_work;
1390 struct delayed_work kvmclock_sync_work;
1391
1392 struct kvm_xen_hvm_config xen_hvm_config;
1393
1394 /* reads protected by irq_srcu, writes by irq_lock */
1395 struct hlist_head mask_notifier_list;
1396
1397 #ifdef CONFIG_KVM_HYPERV
1398 struct kvm_hv hyperv;
1399 #endif
1400
1401 #ifdef CONFIG_KVM_XEN
1402 struct kvm_xen xen;
1403 #endif
1404
1405 bool backwards_tsc_observed;
1406 bool boot_vcpu_runs_old_kvmclock;
1407 u32 bsp_vcpu_id;
1408
1409 u64 disabled_quirks;
1410
1411 enum kvm_irqchip_mode irqchip_mode;
1412 u8 nr_reserved_ioapic_pins;
1413
1414 bool disabled_lapic_found;
1415
1416 bool x2apic_format;
1417 bool x2apic_broadcast_quirk_disabled;
1418
1419 bool guest_can_read_msr_platform_info;
1420 bool exception_payload_enabled;
1421
1422 bool triple_fault_event;
1423
1424 bool bus_lock_detection_enabled;
1425 bool enable_pmu;
1426
1427 u32 notify_window;
1428 u32 notify_vmexit_flags;
1429 /*
1430 * If exit_on_emulation_error is set, and the in-kernel instruction
1431 * emulator fails to emulate an instruction, allow userspace
1432 * the opportunity to look at it.
1433 */
1434 bool exit_on_emulation_error;
1435
1436 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1437 u32 user_space_msr_mask;
1438 struct kvm_x86_msr_filter __rcu *msr_filter;
1439
1440 u32 hypercall_exit_enabled;
1441
1442 /* Guest can access the SGX PROVISIONKEY. */
1443 bool sgx_provisioning_allowed;
1444
1445 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1446 struct task_struct *nx_huge_page_recovery_thread;
1447
1448 #ifdef CONFIG_X86_64
1449 /* The number of TDP MMU pages across all roots. */
1450 atomic64_t tdp_mmu_pages;
1451
1452 /*
1453 * List of struct kvm_mmu_pages being used as roots.
1454 * All struct kvm_mmu_pages in the list should have
1455 * tdp_mmu_page set.
1456 *
1457 * For reads, this list is protected by:
1458 * the MMU lock in read mode + RCU or
1459 * the MMU lock in write mode
1460 *
1461 * For writes, this list is protected by tdp_mmu_pages_lock; see
1462 * below for the details.
1463 *
1464 * Roots will remain in the list until their tdp_mmu_root_count
1465 * drops to zero, at which point the thread that decremented the
1466 * count to zero should removed the root from the list and clean
1467 * it up, freeing the root after an RCU grace period.
1468 */
1469 struct list_head tdp_mmu_roots;
1470
1471 /*
1472 * Protects accesses to the following fields when the MMU lock
1473 * is held in read mode:
1474 * - tdp_mmu_roots (above)
1475 * - the link field of kvm_mmu_page structs used by the TDP MMU
1476 * - possible_nx_huge_pages;
1477 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1478 * by the TDP MMU
1479 * Because the lock is only taken within the MMU lock, strictly
1480 * speaking it is redundant to acquire this lock when the thread
1481 * holds the MMU lock in write mode. However it often simplifies
1482 * the code to do so.
1483 */
1484 spinlock_t tdp_mmu_pages_lock;
1485 #endif /* CONFIG_X86_64 */
1486
1487 /*
1488 * If set, at least one shadow root has been allocated. This flag
1489 * is used as one input when determining whether certain memslot
1490 * related allocations are necessary.
1491 */
1492 bool shadow_root_allocated;
1493
1494 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1495 /*
1496 * If set, the VM has (or had) an external write tracking user, and
1497 * thus all write tracking metadata has been allocated, even if KVM
1498 * itself isn't using write tracking.
1499 */
1500 bool external_write_tracking_enabled;
1501 #endif
1502
1503 #if IS_ENABLED(CONFIG_HYPERV)
1504 hpa_t hv_root_tdp;
1505 spinlock_t hv_root_tdp_lock;
1506 struct hv_partition_assist_pg *hv_pa_pg;
1507 #endif
1508 /*
1509 * VM-scope maximum vCPU ID. Used to determine the size of structures
1510 * that increase along with the maximum vCPU ID, in which case, using
1511 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1512 */
1513 u32 max_vcpu_ids;
1514
1515 bool disable_nx_huge_pages;
1516
1517 /*
1518 * Memory caches used to allocate shadow pages when performing eager
1519 * page splitting. No need for a shadowed_info_cache since eager page
1520 * splitting only allocates direct shadow pages.
1521 *
1522 * Protected by kvm->slots_lock.
1523 */
1524 struct kvm_mmu_memory_cache split_shadow_page_cache;
1525 struct kvm_mmu_memory_cache split_page_header_cache;
1526
1527 /*
1528 * Memory cache used to allocate pte_list_desc structs while splitting
1529 * huge pages. In the worst case, to split one huge page, 512
1530 * pte_list_desc structs are needed to add each lower level leaf sptep
1531 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1532 * page table.
1533 *
1534 * Protected by kvm->slots_lock.
1535 */
1536 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1537 struct kvm_mmu_memory_cache split_desc_cache;
1538 };
1539
1540 struct kvm_vm_stat {
1541 struct kvm_vm_stat_generic generic;
1542 u64 mmu_shadow_zapped;
1543 u64 mmu_pte_write;
1544 u64 mmu_pde_zapped;
1545 u64 mmu_flooded;
1546 u64 mmu_recycled;
1547 u64 mmu_cache_miss;
1548 u64 mmu_unsync;
1549 union {
1550 struct {
1551 atomic64_t pages_4k;
1552 atomic64_t pages_2m;
1553 atomic64_t pages_1g;
1554 };
1555 atomic64_t pages[KVM_NR_PAGE_SIZES];
1556 };
1557 u64 nx_lpage_splits;
1558 u64 max_mmu_page_hash_collisions;
1559 u64 max_mmu_rmap_size;
1560 };
1561
1562 struct kvm_vcpu_stat {
1563 struct kvm_vcpu_stat_generic generic;
1564 u64 pf_taken;
1565 u64 pf_fixed;
1566 u64 pf_emulate;
1567 u64 pf_spurious;
1568 u64 pf_fast;
1569 u64 pf_mmio_spte_created;
1570 u64 pf_guest;
1571 u64 tlb_flush;
1572 u64 invlpg;
1573
1574 u64 exits;
1575 u64 io_exits;
1576 u64 mmio_exits;
1577 u64 signal_exits;
1578 u64 irq_window_exits;
1579 u64 nmi_window_exits;
1580 u64 l1d_flush;
1581 u64 halt_exits;
1582 u64 request_irq_exits;
1583 u64 irq_exits;
1584 u64 host_state_reload;
1585 u64 fpu_reload;
1586 u64 insn_emulation;
1587 u64 insn_emulation_fail;
1588 u64 hypercalls;
1589 u64 irq_injections;
1590 u64 nmi_injections;
1591 u64 req_event;
1592 u64 nested_run;
1593 u64 directed_yield_attempted;
1594 u64 directed_yield_successful;
1595 u64 preemption_reported;
1596 u64 preemption_other;
1597 u64 guest_mode;
1598 u64 notify_window_exits;
1599 };
1600
1601 struct x86_instruction_info;
1602
1603 struct msr_data {
1604 bool host_initiated;
1605 u32 index;
1606 u64 data;
1607 };
1608
1609 struct kvm_lapic_irq {
1610 u32 vector;
1611 u16 delivery_mode;
1612 u16 dest_mode;
1613 bool level;
1614 u16 trig_mode;
1615 u32 shorthand;
1616 u32 dest_id;
1617 bool msi_redir_hint;
1618 };
1619
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1620 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1621 {
1622 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1623 }
1624
1625 struct kvm_x86_ops {
1626 const char *name;
1627
1628 int (*check_processor_compatibility)(void);
1629
1630 int (*enable_virtualization_cpu)(void);
1631 void (*disable_virtualization_cpu)(void);
1632 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1633
1634 void (*hardware_unsetup)(void);
1635 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1636 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1637
1638 unsigned int vm_size;
1639 int (*vm_init)(struct kvm *kvm);
1640 void (*vm_destroy)(struct kvm *kvm);
1641
1642 /* Create, but do not attach this VCPU */
1643 int (*vcpu_precreate)(struct kvm *kvm);
1644 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1645 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1646 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1647
1648 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1649 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1650 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1651
1652 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1653 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1654 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1655 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1656 void (*get_segment)(struct kvm_vcpu *vcpu,
1657 struct kvm_segment *var, int seg);
1658 int (*get_cpl)(struct kvm_vcpu *vcpu);
1659 void (*set_segment)(struct kvm_vcpu *vcpu,
1660 struct kvm_segment *var, int seg);
1661 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1662 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1663 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1664 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1665 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1666 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1667 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1668 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1669 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1670 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1671 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1672 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1673 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1674 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1675 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1676 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1677 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1678
1679 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1680 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1681 #if IS_ENABLED(CONFIG_HYPERV)
1682 int (*flush_remote_tlbs)(struct kvm *kvm);
1683 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1684 gfn_t nr_pages);
1685 #endif
1686
1687 /*
1688 * Flush any TLB entries associated with the given GVA.
1689 * Does not need to flush GPA->HPA mappings.
1690 * Can potentially get non-canonical addresses through INVLPGs, which
1691 * the implementation may choose to ignore if appropriate.
1692 */
1693 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1694
1695 /*
1696 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1697 * does not need to flush GPA->HPA mappings.
1698 */
1699 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1700
1701 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1702 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1703 bool force_immediate_exit);
1704 int (*handle_exit)(struct kvm_vcpu *vcpu,
1705 enum exit_fastpath_completion exit_fastpath);
1706 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1707 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1708 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1709 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1710 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1711 unsigned char *hypercall_addr);
1712 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1713 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1714 void (*inject_exception)(struct kvm_vcpu *vcpu);
1715 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1716 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1717 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1718 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1719 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1720 /* Whether or not a virtual NMI is pending in hardware. */
1721 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1722 /*
1723 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1724 * to allow using static_call_ret0 as the fallback.
1725 */
1726 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1727 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1728 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1729 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1730
1731 const bool x2apic_icr_is_split;
1732 const unsigned long required_apicv_inhibits;
1733 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1734 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1735 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1736 void (*hwapic_isr_update)(int isr);
1737 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1738 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1739 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1740 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1741 int trig_mode, int vector);
1742 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1743 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1744 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1745 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1746
1747 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1748 int root_level);
1749
1750 bool (*has_wbinvd_exit)(void);
1751
1752 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1753 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1754 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1755 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1756
1757 /*
1758 * Retrieve somewhat arbitrary exit information. Intended to
1759 * be used only from within tracepoints or error paths.
1760 */
1761 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1762 u64 *info1, u64 *info2,
1763 u32 *exit_int_info, u32 *exit_int_info_err_code);
1764
1765 int (*check_intercept)(struct kvm_vcpu *vcpu,
1766 struct x86_instruction_info *info,
1767 enum x86_intercept_stage stage,
1768 struct x86_exception *exception);
1769 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1770
1771 /*
1772 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1773 * value indicates CPU dirty logging is unsupported or disabled.
1774 */
1775 int cpu_dirty_log_size;
1776 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1777
1778 const struct kvm_x86_nested_ops *nested_ops;
1779
1780 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1781 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1782
1783 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1784 uint32_t guest_irq, bool set);
1785 void (*pi_start_assignment)(struct kvm *kvm);
1786 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1787 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1788 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1789
1790 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1791 bool *expired);
1792 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1793
1794 void (*setup_mce)(struct kvm_vcpu *vcpu);
1795
1796 #ifdef CONFIG_KVM_SMM
1797 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1798 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1799 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1800 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1801 #endif
1802
1803 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1804 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1805 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1806 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1807 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1808 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1809 void (*guest_memory_reclaimed)(struct kvm *kvm);
1810
1811 int (*get_feature_msr)(u32 msr, u64 *data);
1812
1813 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1814 void *insn, int insn_len);
1815
1816 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1817 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1818
1819 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1820 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1821 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1822
1823 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1824
1825 /*
1826 * Returns vCPU specific APICv inhibit reasons
1827 */
1828 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1829
1830 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1831 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1832 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1833 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1834 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1835 };
1836
1837 struct kvm_x86_nested_ops {
1838 void (*leave_nested)(struct kvm_vcpu *vcpu);
1839 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1840 u32 error_code);
1841 int (*check_events)(struct kvm_vcpu *vcpu);
1842 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1843 void (*triple_fault)(struct kvm_vcpu *vcpu);
1844 int (*get_state)(struct kvm_vcpu *vcpu,
1845 struct kvm_nested_state __user *user_kvm_nested_state,
1846 unsigned user_data_size);
1847 int (*set_state)(struct kvm_vcpu *vcpu,
1848 struct kvm_nested_state __user *user_kvm_nested_state,
1849 struct kvm_nested_state *kvm_state);
1850 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1851 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1852
1853 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1854 uint16_t *vmcs_version);
1855 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1856 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1857 };
1858
1859 struct kvm_x86_init_ops {
1860 int (*hardware_setup)(void);
1861 unsigned int (*handle_intel_pt_intr)(void);
1862
1863 struct kvm_x86_ops *runtime_ops;
1864 struct kvm_pmu_ops *pmu_ops;
1865 };
1866
1867 struct kvm_arch_async_pf {
1868 u32 token;
1869 gfn_t gfn;
1870 unsigned long cr3;
1871 bool direct_map;
1872 u64 error_code;
1873 };
1874
1875 extern u32 __read_mostly kvm_nr_uret_msrs;
1876 extern bool __read_mostly allow_smaller_maxphyaddr;
1877 extern bool __read_mostly enable_apicv;
1878 extern struct kvm_x86_ops kvm_x86_ops;
1879
1880 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1881 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1882
1883 #define KVM_X86_OP(func) \
1884 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1885 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1886 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1887 #include <asm/kvm-x86-ops.h>
1888
1889 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1890 void kvm_x86_vendor_exit(void);
1891
1892 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1893 static inline struct kvm *kvm_arch_alloc_vm(void)
1894 {
1895 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1896 }
1897
1898 #define __KVM_HAVE_ARCH_VM_FREE
1899 void kvm_arch_free_vm(struct kvm *kvm);
1900
1901 #if IS_ENABLED(CONFIG_HYPERV)
1902 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1903 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1904 {
1905 if (kvm_x86_ops.flush_remote_tlbs &&
1906 !kvm_x86_call(flush_remote_tlbs)(kvm))
1907 return 0;
1908 else
1909 return -ENOTSUPP;
1910 }
1911
1912 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1913 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1914 u64 nr_pages)
1915 {
1916 if (!kvm_x86_ops.flush_remote_tlbs_range)
1917 return -EOPNOTSUPP;
1918
1919 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1920 }
1921 #endif /* CONFIG_HYPERV */
1922
1923 enum kvm_intr_type {
1924 /* Values are arbitrary, but must be non-zero. */
1925 KVM_HANDLING_IRQ = 1,
1926 KVM_HANDLING_NMI,
1927 };
1928
1929 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1930 #define kvm_arch_pmi_in_guest(vcpu) \
1931 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1932 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1933
1934 void __init kvm_mmu_x86_module_init(void);
1935 int kvm_mmu_vendor_module_init(void);
1936 void kvm_mmu_vendor_module_exit(void);
1937
1938 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1939 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1940 void kvm_mmu_init_vm(struct kvm *kvm);
1941 void kvm_mmu_uninit_vm(struct kvm *kvm);
1942
1943 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1944 struct kvm_memory_slot *slot);
1945
1946 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1947 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1948 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1949 const struct kvm_memory_slot *memslot,
1950 int start_level);
1951 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1952 const struct kvm_memory_slot *memslot,
1953 int target_level);
1954 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1955 const struct kvm_memory_slot *memslot,
1956 u64 start, u64 end,
1957 int target_level);
1958 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1959 const struct kvm_memory_slot *memslot);
1960 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1961 const struct kvm_memory_slot *memslot);
1962 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1963 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1964 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
1965
1966 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1967
1968 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1969 const void *val, int bytes);
1970
1971 struct kvm_irq_mask_notifier {
1972 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1973 int irq;
1974 struct hlist_node link;
1975 };
1976
1977 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1978 struct kvm_irq_mask_notifier *kimn);
1979 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1980 struct kvm_irq_mask_notifier *kimn);
1981 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1982 bool mask);
1983
1984 extern bool tdp_enabled;
1985
1986 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1987
1988 /*
1989 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1990 * userspace I/O) to indicate that the emulation context
1991 * should be reused as is, i.e. skip initialization of
1992 * emulation context, instruction fetch and decode.
1993 *
1994 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1995 * Indicates that only select instructions (tagged with
1996 * EmulateOnUD) should be emulated (to minimize the emulator
1997 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1998 *
1999 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2000 * decode the instruction length. For use *only* by
2001 * kvm_x86_ops.skip_emulated_instruction() implementations if
2002 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2003 *
2004 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2005 * retry native execution under certain conditions,
2006 * Can only be set in conjunction with EMULTYPE_PF.
2007 *
2008 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2009 * triggered by KVM's magic "force emulation" prefix,
2010 * which is opt in via module param (off by default).
2011 * Bypasses EmulateOnUD restriction despite emulating
2012 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2013 * Used to test the full emulator from userspace.
2014 *
2015 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2016 * backdoor emulation, which is opt in via module param.
2017 * VMware backdoor emulation handles select instructions
2018 * and reinjects the #GP for all other cases.
2019 *
2020 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
2021 * case the CR2/GPA value pass on the stack is valid.
2022 *
2023 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2024 * state and inject single-step #DBs after skipping
2025 * an instruction (after completing userspace I/O).
2026 *
2027 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2028 * is attempting to write a gfn that contains one or
2029 * more of the PTEs used to translate the write itself,
2030 * and the owning page table is being shadowed by KVM.
2031 * If emulation of the faulting instruction fails and
2032 * this flag is set, KVM will exit to userspace instead
2033 * of retrying emulation as KVM cannot make forward
2034 * progress.
2035 *
2036 * If emulation fails for a write to guest page tables,
2037 * KVM unprotects (zaps) the shadow page for the target
2038 * gfn and resumes the guest to retry the non-emulatable
2039 * instruction (on hardware). Unprotecting the gfn
2040 * doesn't allow forward progress for a self-changing
2041 * access because doing so also zaps the translation for
2042 * the gfn, i.e. retrying the instruction will hit a
2043 * !PRESENT fault, which results in a new shadow page
2044 * and sends KVM back to square one.
2045 */
2046 #define EMULTYPE_NO_DECODE (1 << 0)
2047 #define EMULTYPE_TRAP_UD (1 << 1)
2048 #define EMULTYPE_SKIP (1 << 2)
2049 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2050 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2051 #define EMULTYPE_VMWARE_GP (1 << 5)
2052 #define EMULTYPE_PF (1 << 6)
2053 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2054 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2055
2056 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2057 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2058 void *insn, int insn_len);
2059 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2060 u64 *data, u8 ndata);
2061 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2062
2063 void kvm_enable_efer_bits(u64);
2064 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2065 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2066 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2067 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2068 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2069 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2070 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2071 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2072 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2073 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2074 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2075 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2076 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2077
2078 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2079 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2080 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2081 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2082 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2083 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2084
2085 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2086 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2087 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2088 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2089
2090 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2091 int reason, bool has_error_code, u32 error_code);
2092
2093 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2094 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2095 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2096 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2097 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2098 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2099 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2100 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2101 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2102 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2103 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2104
2105 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2106 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2107
2108 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2109 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2110 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2111
2112 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2113 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2114 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2115 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2116 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2117 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2118 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2119 struct x86_exception *fault);
2120 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2121 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2122
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2123 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2124 int irq_source_id, int level)
2125 {
2126 /* Logical OR for level trig interrupt */
2127 if (level)
2128 __set_bit(irq_source_id, irq_state);
2129 else
2130 __clear_bit(irq_source_id, irq_state);
2131
2132 return !!(*irq_state);
2133 }
2134
2135 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2136 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2137
2138 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2139 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2140
2141 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2142
2143 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2144 bool always_retry);
2145
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2146 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2147 gpa_t cr2_or_gpa)
2148 {
2149 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2150 }
2151
2152 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2153 ulong roots_to_free);
2154 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2155 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2156 struct x86_exception *exception);
2157 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2158 struct x86_exception *exception);
2159 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2160 struct x86_exception *exception);
2161
2162 bool kvm_apicv_activated(struct kvm *kvm);
2163 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2164 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2165 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2166 enum kvm_apicv_inhibit reason, bool set);
2167 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2168 enum kvm_apicv_inhibit reason, bool set);
2169
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2170 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2171 enum kvm_apicv_inhibit reason)
2172 {
2173 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2174 }
2175
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2176 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2177 enum kvm_apicv_inhibit reason)
2178 {
2179 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2180 }
2181
2182 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2183 unsigned long a0, unsigned long a1,
2184 unsigned long a2, unsigned long a3,
2185 int op_64_bit, int cpl);
2186 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2187
2188 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2189 void *insn, int insn_len);
2190 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2191 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2192 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2193 u64 addr, unsigned long roots);
2194 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2195 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2196
2197 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2198 int tdp_max_root_level, int tdp_huge_page_level);
2199
2200
2201 #ifdef CONFIG_KVM_PRIVATE_MEM
2202 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2203 #else
2204 #define kvm_arch_has_private_mem(kvm) false
2205 #endif
2206
2207 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2208
kvm_read_ldt(void)2209 static inline u16 kvm_read_ldt(void)
2210 {
2211 u16 ldt;
2212 asm("sldt %0" : "=g"(ldt));
2213 return ldt;
2214 }
2215
kvm_load_ldt(u16 sel)2216 static inline void kvm_load_ldt(u16 sel)
2217 {
2218 asm("lldt %0" : : "rm"(sel));
2219 }
2220
2221 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2222 static inline unsigned long read_msr(unsigned long msr)
2223 {
2224 u64 value;
2225
2226 rdmsrl(msr, value);
2227 return value;
2228 }
2229 #endif
2230
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2231 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2232 {
2233 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2234 }
2235
2236 #define TSS_IOPB_BASE_OFFSET 0x66
2237 #define TSS_BASE_SIZE 0x68
2238 #define TSS_IOPB_SIZE (65536 / 8)
2239 #define TSS_REDIRECTION_SIZE (256 / 8)
2240 #define RMODE_TSS_SIZE \
2241 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2242
2243 enum {
2244 TASK_SWITCH_CALL = 0,
2245 TASK_SWITCH_IRET = 1,
2246 TASK_SWITCH_JMP = 2,
2247 TASK_SWITCH_GATE = 3,
2248 };
2249
2250 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2251
2252 #ifdef CONFIG_KVM_SMM
2253 #define HF_SMM_MASK (1 << 1)
2254 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2255
2256 # define KVM_MAX_NR_ADDRESS_SPACES 2
2257 /* SMM is currently unsupported for guests with private memory. */
2258 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2259 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2260 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2261 #else
2262 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2263 #endif
2264
2265 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2266 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2267 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2268 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2269 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2270 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2271 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2272
2273 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2274 unsigned long ipi_bitmap_high, u32 min,
2275 unsigned long icr, int op_64_bit);
2276
2277 int kvm_add_user_return_msr(u32 msr);
2278 int kvm_find_user_return_msr(u32 msr);
2279 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2280
kvm_is_supported_user_return_msr(u32 msr)2281 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2282 {
2283 return kvm_find_user_return_msr(msr) >= 0;
2284 }
2285
2286 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2287 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2288 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2289 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2290
2291 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2292 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2293
2294 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2295 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2296 unsigned long *vcpu_bitmap);
2297
2298 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2299 struct kvm_async_pf *work);
2300 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2301 struct kvm_async_pf *work);
2302 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2303 struct kvm_async_pf *work);
2304 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2305 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2306 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2307
2308 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2309 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2310
2311 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2312 u32 size);
2313 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2314 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2315
2316 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2317 struct kvm_vcpu **dest_vcpu);
2318
2319 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2320 struct kvm_lapic_irq *irq);
2321
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2322 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2323 {
2324 /* We can only post Fixed and LowPrio IRQs */
2325 return (irq->delivery_mode == APIC_DM_FIXED ||
2326 irq->delivery_mode == APIC_DM_LOWEST);
2327 }
2328
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2329 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2330 {
2331 kvm_x86_call(vcpu_blocking)(vcpu);
2332 }
2333
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2334 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2335 {
2336 kvm_x86_call(vcpu_unblocking)(vcpu);
2337 }
2338
kvm_cpu_get_apicid(int mps_cpu)2339 static inline int kvm_cpu_get_apicid(int mps_cpu)
2340 {
2341 #ifdef CONFIG_X86_LOCAL_APIC
2342 return default_cpu_present_to_apicid(mps_cpu);
2343 #else
2344 WARN_ON_ONCE(1);
2345 return BAD_APICID;
2346 #endif
2347 }
2348
2349 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2350
2351 #define KVM_CLOCK_VALID_FLAGS \
2352 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2353
2354 #define KVM_X86_VALID_QUIRKS \
2355 (KVM_X86_QUIRK_LINT0_REENABLED | \
2356 KVM_X86_QUIRK_CD_NW_CLEARED | \
2357 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2358 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2359 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2360 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2361 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2362 KVM_X86_QUIRK_SLOT_ZAP_ALL)
2363
2364 /*
2365 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2366 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2367 * remaining 31 lower bits must be 0 to preserve ABI.
2368 */
2369 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2370
2371 #endif /* _ASM_X86_KVM_HOST_H */
2372