xref: /linux/mm/mempolicy.c (revision f77f0c75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * weighted interleave
23  *                Allocate memory interleaved over a set of nodes based on
24  *                a set of weights (per-node), with normal fallback if it
25  *                fails.  Otherwise operates the same as interleave.
26  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27  *                on node 0 for every 1 page allocated on node 1.
28  *
29  * bind           Only allocate memory on a specific set of nodes,
30  *                no fallback.
31  *                FIXME: memory is allocated starting with the first node
32  *                to the last. It would be better if bind would truly restrict
33  *                the allocation to memory nodes instead
34  *
35  * preferred      Try a specific node first before normal fallback.
36  *                As a special case NUMA_NO_NODE here means do the allocation
37  *                on the local CPU. This is normally identical to default,
38  *                but useful to set in a VMA when you have a non default
39  *                process policy.
40  *
41  * preferred many Try a set of nodes first before normal fallback. This is
42  *                similar to preferred without the special case.
43  *
44  * default        Allocate on the local node first, or when on a VMA
45  *                use the process policy. This is what Linux always did
46  *		  in a NUMA aware kernel and still does by, ahem, default.
47  *
48  * The process policy is applied for most non interrupt memory allocations
49  * in that process' context. Interrupts ignore the policies and always
50  * try to allocate on the local CPU. The VMA policy is only applied for memory
51  * allocations for a VMA in the VM.
52  *
53  * Currently there are a few corner cases in swapping where the policy
54  * is not applied, but the majority should be handled. When process policy
55  * is used it is not remembered over swap outs/swap ins.
56  *
57  * Only the highest zone in the zone hierarchy gets policied. Allocations
58  * requesting a lower zone just use default policy. This implies that
59  * on systems with highmem kernel lowmem allocation don't get policied.
60  * Same with GFP_DMA allocations.
61  *
62  * For shmem/tmpfs shared memory the policy is shared between
63  * all users and remembered even when nobody has memory mapped.
64  */
65 
66 /* Notebook:
67    fix mmap readahead to honour policy and enable policy for any page cache
68    object
69    statistics for bigpages
70    global policy for page cache? currently it uses process policy. Requires
71    first item above.
72    handle mremap for shared memory (currently ignored for the policy)
73    grows down?
74    make bind policy root only? It can trigger oom much faster and the
75    kernel is not always grateful with that.
76 */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116 
117 #include "internal.h"
118 
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123 
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126 
127 /* Highest zone. An specific allocation for a zone below that is not
128    policied. */
129 enum zone_type policy_zone = 0;
130 
131 /*
132  * run-time system-wide default policy => local allocation
133  */
134 static struct mempolicy default_policy = {
135 	.refcnt = ATOMIC_INIT(1), /* never free it */
136 	.mode = MPOL_LOCAL,
137 };
138 
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140 
141 /*
142  * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143  * system-default value should be used. A NULL iw_table also denotes that
144  * system-default values should be used. Until the system-default table
145  * is implemented, the system-default is always 1.
146  *
147  * iw_table is RCU protected
148  */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151 
get_il_weight(int node)152 static u8 get_il_weight(int node)
153 {
154 	u8 *table;
155 	u8 weight;
156 
157 	rcu_read_lock();
158 	table = rcu_dereference(iw_table);
159 	/* if no iw_table, use system default */
160 	weight = table ? table[node] : 1;
161 	/* if value in iw_table is 0, use system default */
162 	weight = weight ? weight : 1;
163 	rcu_read_unlock();
164 	return weight;
165 }
166 
167 /**
168  * numa_nearest_node - Find nearest node by state
169  * @node: Node id to start the search
170  * @state: State to filter the search
171  *
172  * Lookup the closest node by distance if @nid is not in state.
173  *
174  * Return: this @node if it is in state, otherwise the closest node by distance
175  */
numa_nearest_node(int node,unsigned int state)176 int numa_nearest_node(int node, unsigned int state)
177 {
178 	int min_dist = INT_MAX, dist, n, min_node;
179 
180 	if (state >= NR_NODE_STATES)
181 		return -EINVAL;
182 
183 	if (node == NUMA_NO_NODE || node_state(node, state))
184 		return node;
185 
186 	min_node = node;
187 	for_each_node_state(n, state) {
188 		dist = node_distance(node, n);
189 		if (dist < min_dist) {
190 			min_dist = dist;
191 			min_node = n;
192 		}
193 	}
194 
195 	return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198 
get_task_policy(struct task_struct * p)199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 	struct mempolicy *pol = p->mempolicy;
202 	int node;
203 
204 	if (pol)
205 		return pol;
206 
207 	node = numa_node_id();
208 	if (node != NUMA_NO_NODE) {
209 		pol = &preferred_node_policy[node];
210 		/* preferred_node_policy is not initialised early in boot */
211 		if (pol->mode)
212 			return pol;
213 	}
214 
215 	return &default_policy;
216 }
217 
218 static const struct mempolicy_operations {
219 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222 
mpol_store_user_nodemask(const struct mempolicy * pol)223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 	return pol->flags & MPOL_MODE_FLAGS;
226 }
227 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 				   const nodemask_t *rel)
230 {
231 	nodemask_t tmp;
232 	nodes_fold(tmp, *orig, nodes_weight(*rel));
233 	nodes_onto(*ret, tmp, *rel);
234 }
235 
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 	if (nodes_empty(*nodes))
239 		return -EINVAL;
240 	pol->nodes = *nodes;
241 	return 0;
242 }
243 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 	if (nodes_empty(*nodes))
247 		return -EINVAL;
248 
249 	nodes_clear(pol->nodes);
250 	node_set(first_node(*nodes), pol->nodes);
251 	return 0;
252 }
253 
254 /*
255  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256  * any, for the new policy.  mpol_new() has already validated the nodes
257  * parameter with respect to the policy mode and flags.
258  *
259  * Must be called holding task's alloc_lock to protect task's mems_allowed
260  * and mempolicy.  May also be called holding the mmap_lock for write.
261  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)262 static int mpol_set_nodemask(struct mempolicy *pol,
263 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 	int ret;
266 
267 	/*
268 	 * Default (pol==NULL) resp. local memory policies are not a
269 	 * subject of any remapping. They also do not need any special
270 	 * constructor.
271 	 */
272 	if (!pol || pol->mode == MPOL_LOCAL)
273 		return 0;
274 
275 	/* Check N_MEMORY */
276 	nodes_and(nsc->mask1,
277 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278 
279 	VM_BUG_ON(!nodes);
280 
281 	if (pol->flags & MPOL_F_RELATIVE_NODES)
282 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 	else
284 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285 
286 	if (mpol_store_user_nodemask(pol))
287 		pol->w.user_nodemask = *nodes;
288 	else
289 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290 
291 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 	return ret;
293 }
294 
295 /*
296  * This function just creates a new policy, does some check and simple
297  * initialization. You must invoke mpol_set_nodemask() to set nodes.
298  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 				  nodemask_t *nodes)
301 {
302 	struct mempolicy *policy;
303 
304 	if (mode == MPOL_DEFAULT) {
305 		if (nodes && !nodes_empty(*nodes))
306 			return ERR_PTR(-EINVAL);
307 		return NULL;
308 	}
309 	VM_BUG_ON(!nodes);
310 
311 	/*
312 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 	 * All other modes require a valid pointer to a non-empty nodemask.
315 	 */
316 	if (mode == MPOL_PREFERRED) {
317 		if (nodes_empty(*nodes)) {
318 			if (((flags & MPOL_F_STATIC_NODES) ||
319 			     (flags & MPOL_F_RELATIVE_NODES)))
320 				return ERR_PTR(-EINVAL);
321 
322 			mode = MPOL_LOCAL;
323 		}
324 	} else if (mode == MPOL_LOCAL) {
325 		if (!nodes_empty(*nodes) ||
326 		    (flags & MPOL_F_STATIC_NODES) ||
327 		    (flags & MPOL_F_RELATIVE_NODES))
328 			return ERR_PTR(-EINVAL);
329 	} else if (nodes_empty(*nodes))
330 		return ERR_PTR(-EINVAL);
331 
332 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 	if (!policy)
334 		return ERR_PTR(-ENOMEM);
335 	atomic_set(&policy->refcnt, 1);
336 	policy->mode = mode;
337 	policy->flags = flags;
338 	policy->home_node = NUMA_NO_NODE;
339 
340 	return policy;
341 }
342 
343 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * pol)344 void __mpol_put(struct mempolicy *pol)
345 {
346 	if (!atomic_dec_and_test(&pol->refcnt))
347 		return;
348 	kmem_cache_free(policy_cache, pol);
349 }
350 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 	nodemask_t tmp;
358 
359 	if (pol->flags & MPOL_F_STATIC_NODES)
360 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 	else {
364 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 								*nodes);
366 		pol->w.cpuset_mems_allowed = *nodes;
367 	}
368 
369 	if (nodes_empty(tmp))
370 		tmp = *nodes;
371 
372 	pol->nodes = tmp;
373 }
374 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 						const nodemask_t *nodes)
377 {
378 	pol->w.cpuset_mems_allowed = *nodes;
379 }
380 
381 /*
382  * mpol_rebind_policy - Migrate a policy to a different set of nodes
383  *
384  * Per-vma policies are protected by mmap_lock. Allocations using per-task
385  * policies are protected by task->mems_allowed_seq to prevent a premature
386  * OOM/allocation failure due to parallel nodemask modification.
387  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 	if (!pol || pol->mode == MPOL_LOCAL)
391 		return;
392 	if (!mpol_store_user_nodemask(pol) &&
393 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 		return;
395 
396 	mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398 
399 /*
400  * Wrapper for mpol_rebind_policy() that just requires task
401  * pointer, and updates task mempolicy.
402  *
403  * Called with task's alloc_lock held.
404  */
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 	mpol_rebind_policy(tsk->mempolicy, new);
408 }
409 
410 /*
411  * Rebind each vma in mm to new nodemask.
412  *
413  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414  */
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 	struct vm_area_struct *vma;
418 	VMA_ITERATOR(vmi, mm, 0);
419 
420 	mmap_write_lock(mm);
421 	for_each_vma(vmi, vma) {
422 		vma_start_write(vma);
423 		mpol_rebind_policy(vma->vm_policy, new);
424 	}
425 	mmap_write_unlock(mm);
426 }
427 
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 	[MPOL_DEFAULT] = {
430 		.rebind = mpol_rebind_default,
431 	},
432 	[MPOL_INTERLEAVE] = {
433 		.create = mpol_new_nodemask,
434 		.rebind = mpol_rebind_nodemask,
435 	},
436 	[MPOL_PREFERRED] = {
437 		.create = mpol_new_preferred,
438 		.rebind = mpol_rebind_preferred,
439 	},
440 	[MPOL_BIND] = {
441 		.create = mpol_new_nodemask,
442 		.rebind = mpol_rebind_nodemask,
443 	},
444 	[MPOL_LOCAL] = {
445 		.rebind = mpol_rebind_default,
446 	},
447 	[MPOL_PREFERRED_MANY] = {
448 		.create = mpol_new_nodemask,
449 		.rebind = mpol_rebind_preferred,
450 	},
451 	[MPOL_WEIGHTED_INTERLEAVE] = {
452 		.create = mpol_new_nodemask,
453 		.rebind = mpol_rebind_nodemask,
454 	},
455 };
456 
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 				unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 				pgoff_t ilx, int *nid);
461 
strictly_unmovable(unsigned long flags)462 static bool strictly_unmovable(unsigned long flags)
463 {
464 	/*
465 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 	 * if any misplaced page is found.
467 	 */
468 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 			 MPOL_MF_STRICT;
470 }
471 
472 struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473 	struct mempolicy *pol;
474 	pgoff_t ilx;
475 };
476 
477 struct queue_pages {
478 	struct list_head *pagelist;
479 	unsigned long flags;
480 	nodemask_t *nmask;
481 	unsigned long start;
482 	unsigned long end;
483 	struct vm_area_struct *first;
484 	struct folio *large;		/* note last large folio encountered */
485 	long nr_failed;			/* could not be isolated at this time */
486 };
487 
488 /*
489  * Check if the folio's nid is in qp->nmask.
490  *
491  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492  * in the invert of qp->nmask.
493  */
queue_folio_required(struct folio * folio,struct queue_pages * qp)494 static inline bool queue_folio_required(struct folio *folio,
495 					struct queue_pages *qp)
496 {
497 	int nid = folio_nid(folio);
498 	unsigned long flags = qp->flags;
499 
500 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502 
queue_folios_pmd(pmd_t * pmd,struct mm_walk * walk)503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 	struct folio *folio;
506 	struct queue_pages *qp = walk->private;
507 
508 	if (unlikely(is_pmd_migration_entry(*pmd))) {
509 		qp->nr_failed++;
510 		return;
511 	}
512 	folio = pmd_folio(*pmd);
513 	if (is_huge_zero_folio(folio)) {
514 		walk->action = ACTION_CONTINUE;
515 		return;
516 	}
517 	if (!queue_folio_required(folio, qp))
518 		return;
519 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 	    !vma_migratable(walk->vma) ||
521 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 		qp->nr_failed++;
523 }
524 
525 /*
526  * Scan through folios, checking if they satisfy the required conditions,
527  * moving them from LRU to local pagelist for migration if they do (or not).
528  *
529  * queue_folios_pte_range() has two possible return values:
530  * 0 - continue walking to scan for more, even if an existing folio on the
531  *     wrong node could not be isolated and queued for migration.
532  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533  *        and an existing folio was on a node that does not follow the policy.
534  */
queue_folios_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 			unsigned long end, struct mm_walk *walk)
537 {
538 	struct vm_area_struct *vma = walk->vma;
539 	struct folio *folio;
540 	struct queue_pages *qp = walk->private;
541 	unsigned long flags = qp->flags;
542 	pte_t *pte, *mapped_pte;
543 	pte_t ptent;
544 	spinlock_t *ptl;
545 
546 	ptl = pmd_trans_huge_lock(pmd, vma);
547 	if (ptl) {
548 		queue_folios_pmd(pmd, walk);
549 		spin_unlock(ptl);
550 		goto out;
551 	}
552 
553 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 	if (!pte) {
555 		walk->action = ACTION_AGAIN;
556 		return 0;
557 	}
558 	for (; addr != end; pte++, addr += PAGE_SIZE) {
559 		ptent = ptep_get(pte);
560 		if (pte_none(ptent))
561 			continue;
562 		if (!pte_present(ptent)) {
563 			if (is_migration_entry(pte_to_swp_entry(ptent)))
564 				qp->nr_failed++;
565 			continue;
566 		}
567 		folio = vm_normal_folio(vma, addr, ptent);
568 		if (!folio || folio_is_zone_device(folio))
569 			continue;
570 		/*
571 		 * vm_normal_folio() filters out zero pages, but there might
572 		 * still be reserved folios to skip, perhaps in a VDSO.
573 		 */
574 		if (folio_test_reserved(folio))
575 			continue;
576 		if (!queue_folio_required(folio, qp))
577 			continue;
578 		if (folio_test_large(folio)) {
579 			/*
580 			 * A large folio can only be isolated from LRU once,
581 			 * but may be mapped by many PTEs (and Copy-On-Write may
582 			 * intersperse PTEs of other, order 0, folios).  This is
583 			 * a common case, so don't mistake it for failure (but
584 			 * there can be other cases of multi-mapped pages which
585 			 * this quick check does not help to filter out - and a
586 			 * search of the pagelist might grow to be prohibitive).
587 			 *
588 			 * migrate_pages(&pagelist) returns nr_failed folios, so
589 			 * check "large" now so that queue_pages_range() returns
590 			 * a comparable nr_failed folios.  This does imply that
591 			 * if folio could not be isolated for some racy reason
592 			 * at its first PTE, later PTEs will not give it another
593 			 * chance of isolation; but keeps the accounting simple.
594 			 */
595 			if (folio == qp->large)
596 				continue;
597 			qp->large = folio;
598 		}
599 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 		    !vma_migratable(vma) ||
601 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602 			qp->nr_failed++;
603 			if (strictly_unmovable(flags))
604 				break;
605 		}
606 	}
607 	pte_unmap_unlock(mapped_pte, ptl);
608 	cond_resched();
609 out:
610 	if (qp->nr_failed && strictly_unmovable(flags))
611 		return -EIO;
612 	return 0;
613 }
614 
queue_folios_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 			       unsigned long addr, unsigned long end,
617 			       struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 	struct queue_pages *qp = walk->private;
621 	unsigned long flags = qp->flags;
622 	struct folio *folio;
623 	spinlock_t *ptl;
624 	pte_t entry;
625 
626 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 	entry = huge_ptep_get(walk->mm, addr, pte);
628 	if (!pte_present(entry)) {
629 		if (unlikely(is_hugetlb_entry_migration(entry)))
630 			qp->nr_failed++;
631 		goto unlock;
632 	}
633 	folio = pfn_folio(pte_pfn(entry));
634 	if (!queue_folio_required(folio, qp))
635 		goto unlock;
636 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 	    !vma_migratable(walk->vma)) {
638 		qp->nr_failed++;
639 		goto unlock;
640 	}
641 	/*
642 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 	 * Choosing not to migrate a shared folio is not counted as a failure.
644 	 *
645 	 * See folio_likely_mapped_shared() on possible imprecision when we
646 	 * cannot easily detect if a folio is shared.
647 	 */
648 	if ((flags & MPOL_MF_MOVE_ALL) ||
649 	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 		if (!isolate_hugetlb(folio, qp->pagelist))
651 			qp->nr_failed++;
652 unlock:
653 	spin_unlock(ptl);
654 	if (qp->nr_failed && strictly_unmovable(flags))
655 		return -EIO;
656 #endif
657 	return 0;
658 }
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662  * This is used to mark a range of virtual addresses to be inaccessible.
663  * These are later cleared by a NUMA hinting fault. Depending on these
664  * faults, pages may be migrated for better NUMA placement.
665  *
666  * This is assuming that NUMA faults are handled using PROT_NONE. If
667  * an architecture makes a different choice, it will need further
668  * changes to the core.
669  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 			unsigned long addr, unsigned long end)
672 {
673 	struct mmu_gather tlb;
674 	long nr_updated;
675 
676 	tlb_gather_mmu(&tlb, vma->vm_mm);
677 
678 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 	if (nr_updated > 0) {
680 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
682 	}
683 
684 	tlb_finish_mmu(&tlb);
685 
686 	return nr_updated;
687 }
688 #endif /* CONFIG_NUMA_BALANCING */
689 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)690 static int queue_pages_test_walk(unsigned long start, unsigned long end,
691 				struct mm_walk *walk)
692 {
693 	struct vm_area_struct *next, *vma = walk->vma;
694 	struct queue_pages *qp = walk->private;
695 	unsigned long flags = qp->flags;
696 
697 	/* range check first */
698 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
699 
700 	if (!qp->first) {
701 		qp->first = vma;
702 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
703 			(qp->start < vma->vm_start))
704 			/* hole at head side of range */
705 			return -EFAULT;
706 	}
707 	next = find_vma(vma->vm_mm, vma->vm_end);
708 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
709 		((vma->vm_end < qp->end) &&
710 		(!next || vma->vm_end < next->vm_start)))
711 		/* hole at middle or tail of range */
712 		return -EFAULT;
713 
714 	/*
715 	 * Need check MPOL_MF_STRICT to return -EIO if possible
716 	 * regardless of vma_migratable
717 	 */
718 	if (!vma_migratable(vma) &&
719 	    !(flags & MPOL_MF_STRICT))
720 		return 1;
721 
722 	/*
723 	 * Check page nodes, and queue pages to move, in the current vma.
724 	 * But if no moving, and no strict checking, the scan can be skipped.
725 	 */
726 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
727 		return 0;
728 	return 1;
729 }
730 
731 static const struct mm_walk_ops queue_pages_walk_ops = {
732 	.hugetlb_entry		= queue_folios_hugetlb,
733 	.pmd_entry		= queue_folios_pte_range,
734 	.test_walk		= queue_pages_test_walk,
735 	.walk_lock		= PGWALK_RDLOCK,
736 };
737 
738 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
739 	.hugetlb_entry		= queue_folios_hugetlb,
740 	.pmd_entry		= queue_folios_pte_range,
741 	.test_walk		= queue_pages_test_walk,
742 	.walk_lock		= PGWALK_WRLOCK,
743 };
744 
745 /*
746  * Walk through page tables and collect pages to be migrated.
747  *
748  * If pages found in a given range are not on the required set of @nodes,
749  * and migration is allowed, they are isolated and queued to @pagelist.
750  *
751  * queue_pages_range() may return:
752  * 0 - all pages already on the right node, or successfully queued for moving
753  *     (or neither strict checking nor moving requested: only range checking).
754  * >0 - this number of misplaced folios could not be queued for moving
755  *      (a hugetlbfs page or a transparent huge page being counted as 1).
756  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
757  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
758  */
759 static long
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)760 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
761 		nodemask_t *nodes, unsigned long flags,
762 		struct list_head *pagelist)
763 {
764 	int err;
765 	struct queue_pages qp = {
766 		.pagelist = pagelist,
767 		.flags = flags,
768 		.nmask = nodes,
769 		.start = start,
770 		.end = end,
771 		.first = NULL,
772 	};
773 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
774 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
775 
776 	err = walk_page_range(mm, start, end, ops, &qp);
777 
778 	if (!qp.first)
779 		/* whole range in hole */
780 		err = -EFAULT;
781 
782 	return err ? : qp.nr_failed;
783 }
784 
785 /*
786  * Apply policy to a single VMA
787  * This must be called with the mmap_lock held for writing.
788  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)789 static int vma_replace_policy(struct vm_area_struct *vma,
790 				struct mempolicy *pol)
791 {
792 	int err;
793 	struct mempolicy *old;
794 	struct mempolicy *new;
795 
796 	vma_assert_write_locked(vma);
797 
798 	new = mpol_dup(pol);
799 	if (IS_ERR(new))
800 		return PTR_ERR(new);
801 
802 	if (vma->vm_ops && vma->vm_ops->set_policy) {
803 		err = vma->vm_ops->set_policy(vma, new);
804 		if (err)
805 			goto err_out;
806 	}
807 
808 	old = vma->vm_policy;
809 	vma->vm_policy = new; /* protected by mmap_lock */
810 	mpol_put(old);
811 
812 	return 0;
813  err_out:
814 	mpol_put(new);
815 	return err;
816 }
817 
818 /* Split or merge the VMA (if required) and apply the new policy */
mbind_range(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,struct mempolicy * new_pol)819 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
820 		struct vm_area_struct **prev, unsigned long start,
821 		unsigned long end, struct mempolicy *new_pol)
822 {
823 	unsigned long vmstart, vmend;
824 
825 	vmend = min(end, vma->vm_end);
826 	if (start > vma->vm_start) {
827 		*prev = vma;
828 		vmstart = start;
829 	} else {
830 		vmstart = vma->vm_start;
831 	}
832 
833 	if (mpol_equal(vma->vm_policy, new_pol)) {
834 		*prev = vma;
835 		return 0;
836 	}
837 
838 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
839 	if (IS_ERR(vma))
840 		return PTR_ERR(vma);
841 
842 	*prev = vma;
843 	return vma_replace_policy(vma, new_pol);
844 }
845 
846 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)847 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
848 			     nodemask_t *nodes)
849 {
850 	struct mempolicy *new, *old;
851 	NODEMASK_SCRATCH(scratch);
852 	int ret;
853 
854 	if (!scratch)
855 		return -ENOMEM;
856 
857 	new = mpol_new(mode, flags, nodes);
858 	if (IS_ERR(new)) {
859 		ret = PTR_ERR(new);
860 		goto out;
861 	}
862 
863 	task_lock(current);
864 	ret = mpol_set_nodemask(new, nodes, scratch);
865 	if (ret) {
866 		task_unlock(current);
867 		mpol_put(new);
868 		goto out;
869 	}
870 
871 	old = current->mempolicy;
872 	current->mempolicy = new;
873 	if (new && (new->mode == MPOL_INTERLEAVE ||
874 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
875 		current->il_prev = MAX_NUMNODES-1;
876 		current->il_weight = 0;
877 	}
878 	task_unlock(current);
879 	mpol_put(old);
880 	ret = 0;
881 out:
882 	NODEMASK_SCRATCH_FREE(scratch);
883 	return ret;
884 }
885 
886 /*
887  * Return nodemask for policy for get_mempolicy() query
888  *
889  * Called with task's alloc_lock held
890  */
get_policy_nodemask(struct mempolicy * pol,nodemask_t * nodes)891 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
892 {
893 	nodes_clear(*nodes);
894 	if (pol == &default_policy)
895 		return;
896 
897 	switch (pol->mode) {
898 	case MPOL_BIND:
899 	case MPOL_INTERLEAVE:
900 	case MPOL_PREFERRED:
901 	case MPOL_PREFERRED_MANY:
902 	case MPOL_WEIGHTED_INTERLEAVE:
903 		*nodes = pol->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
lookup_node(struct mm_struct * mm,unsigned long addr)913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int ret;
917 
918 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 	if (ret > 0) {
920 		ret = page_to_nid(p);
921 		put_page(p);
922 	}
923 	return ret;
924 }
925 
926 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 			     unsigned long addr, unsigned long flags)
929 {
930 	int err;
931 	struct mm_struct *mm = current->mm;
932 	struct vm_area_struct *vma = NULL;
933 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 
935 	if (flags &
936 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 		return -EINVAL;
938 
939 	if (flags & MPOL_F_MEMS_ALLOWED) {
940 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 			return -EINVAL;
942 		*policy = 0;	/* just so it's initialized */
943 		task_lock(current);
944 		*nmask  = cpuset_current_mems_allowed;
945 		task_unlock(current);
946 		return 0;
947 	}
948 
949 	if (flags & MPOL_F_ADDR) {
950 		pgoff_t ilx;		/* ignored here */
951 		/*
952 		 * Do NOT fall back to task policy if the
953 		 * vma/shared policy at addr is NULL.  We
954 		 * want to return MPOL_DEFAULT in this case.
955 		 */
956 		mmap_read_lock(mm);
957 		vma = vma_lookup(mm, addr);
958 		if (!vma) {
959 			mmap_read_unlock(mm);
960 			return -EFAULT;
961 		}
962 		pol = __get_vma_policy(vma, addr, &ilx);
963 	} else if (addr)
964 		return -EINVAL;
965 
966 	if (!pol)
967 		pol = &default_policy;	/* indicates default behavior */
968 
969 	if (flags & MPOL_F_NODE) {
970 		if (flags & MPOL_F_ADDR) {
971 			/*
972 			 * Take a refcount on the mpol, because we are about to
973 			 * drop the mmap_lock, after which only "pol" remains
974 			 * valid, "vma" is stale.
975 			 */
976 			pol_refcount = pol;
977 			vma = NULL;
978 			mpol_get(pol);
979 			mmap_read_unlock(mm);
980 			err = lookup_node(mm, addr);
981 			if (err < 0)
982 				goto out;
983 			*policy = err;
984 		} else if (pol == current->mempolicy &&
985 				pol->mode == MPOL_INTERLEAVE) {
986 			*policy = next_node_in(current->il_prev, pol->nodes);
987 		} else if (pol == current->mempolicy &&
988 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
989 			if (current->il_weight)
990 				*policy = current->il_prev;
991 			else
992 				*policy = next_node_in(current->il_prev,
993 						       pol->nodes);
994 		} else {
995 			err = -EINVAL;
996 			goto out;
997 		}
998 	} else {
999 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1000 						pol->mode;
1001 		/*
1002 		 * Internal mempolicy flags must be masked off before exposing
1003 		 * the policy to userspace.
1004 		 */
1005 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1006 	}
1007 
1008 	err = 0;
1009 	if (nmask) {
1010 		if (mpol_store_user_nodemask(pol)) {
1011 			*nmask = pol->w.user_nodemask;
1012 		} else {
1013 			task_lock(current);
1014 			get_policy_nodemask(pol, nmask);
1015 			task_unlock(current);
1016 		}
1017 	}
1018 
1019  out:
1020 	mpol_cond_put(pol);
1021 	if (vma)
1022 		mmap_read_unlock(mm);
1023 	if (pol_refcount)
1024 		mpol_put(pol_refcount);
1025 	return err;
1026 }
1027 
1028 #ifdef CONFIG_MIGRATION
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1029 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1030 				unsigned long flags)
1031 {
1032 	/*
1033 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034 	 * Choosing not to migrate a shared folio is not counted as a failure.
1035 	 *
1036 	 * See folio_likely_mapped_shared() on possible imprecision when we
1037 	 * cannot easily detect if a folio is shared.
1038 	 */
1039 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040 		if (folio_isolate_lru(folio)) {
1041 			list_add_tail(&folio->lru, foliolist);
1042 			node_stat_mod_folio(folio,
1043 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044 				folio_nr_pages(folio));
1045 		} else {
1046 			/*
1047 			 * Non-movable folio may reach here.  And, there may be
1048 			 * temporary off LRU folios or non-LRU movable folios.
1049 			 * Treat them as unmovable folios since they can't be
1050 			 * isolated, so they can't be moved at the moment.
1051 			 */
1052 			return false;
1053 		}
1054 	}
1055 	return true;
1056 }
1057 
1058 /*
1059  * Migrate pages from one node to a target node.
1060  * Returns error or the number of pages not migrated.
1061  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 			    int flags)
1064 {
1065 	nodemask_t nmask;
1066 	struct vm_area_struct *vma;
1067 	LIST_HEAD(pagelist);
1068 	long nr_failed;
1069 	long err = 0;
1070 	struct migration_target_control mtc = {
1071 		.nid = dest,
1072 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 		.reason = MR_SYSCALL,
1074 	};
1075 
1076 	nodes_clear(nmask);
1077 	node_set(source, nmask);
1078 
1079 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080 
1081 	mmap_read_lock(mm);
1082 	vma = find_vma(mm, 0);
1083 
1084 	/*
1085 	 * This does not migrate the range, but isolates all pages that
1086 	 * need migration.  Between passing in the full user address
1087 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1088 	 * but passes back the count of pages which could not be isolated.
1089 	 */
1090 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1091 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1092 	mmap_read_unlock(mm);
1093 
1094 	if (!list_empty(&pagelist)) {
1095 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1096 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1097 		if (err)
1098 			putback_movable_pages(&pagelist);
1099 	}
1100 
1101 	if (err >= 0)
1102 		err += nr_failed;
1103 	return err;
1104 }
1105 
1106 /*
1107  * Move pages between the two nodesets so as to preserve the physical
1108  * layout as much as possible.
1109  *
1110  * Returns the number of page that could not be moved.
1111  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1112 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1113 		     const nodemask_t *to, int flags)
1114 {
1115 	long nr_failed = 0;
1116 	long err = 0;
1117 	nodemask_t tmp;
1118 
1119 	lru_cache_disable();
1120 
1121 	/*
1122 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1123 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1124 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1125 	 * The pair of nodemasks 'to' and 'from' define the map.
1126 	 *
1127 	 * If no pair of bits is found that way, fallback to picking some
1128 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1129 	 * 'source' and 'dest' bits are the same, this represents a node
1130 	 * that will be migrating to itself, so no pages need move.
1131 	 *
1132 	 * If no bits are left in 'tmp', or if all remaining bits left
1133 	 * in 'tmp' correspond to the same bit in 'to', return false
1134 	 * (nothing left to migrate).
1135 	 *
1136 	 * This lets us pick a pair of nodes to migrate between, such that
1137 	 * if possible the dest node is not already occupied by some other
1138 	 * source node, minimizing the risk of overloading the memory on a
1139 	 * node that would happen if we migrated incoming memory to a node
1140 	 * before migrating outgoing memory source that same node.
1141 	 *
1142 	 * A single scan of tmp is sufficient.  As we go, we remember the
1143 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1144 	 * that not only moved, but what's better, moved to an empty slot
1145 	 * (d is not set in tmp), then we break out then, with that pair.
1146 	 * Otherwise when we finish scanning from_tmp, we at least have the
1147 	 * most recent <s, d> pair that moved.  If we get all the way through
1148 	 * the scan of tmp without finding any node that moved, much less
1149 	 * moved to an empty node, then there is nothing left worth migrating.
1150 	 */
1151 
1152 	tmp = *from;
1153 	while (!nodes_empty(tmp)) {
1154 		int s, d;
1155 		int source = NUMA_NO_NODE;
1156 		int dest = 0;
1157 
1158 		for_each_node_mask(s, tmp) {
1159 
1160 			/*
1161 			 * do_migrate_pages() tries to maintain the relative
1162 			 * node relationship of the pages established between
1163 			 * threads and memory areas.
1164                          *
1165 			 * However if the number of source nodes is not equal to
1166 			 * the number of destination nodes we can not preserve
1167 			 * this node relative relationship.  In that case, skip
1168 			 * copying memory from a node that is in the destination
1169 			 * mask.
1170 			 *
1171 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1172 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1173 			 */
1174 
1175 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1176 						(node_isset(s, *to)))
1177 				continue;
1178 
1179 			d = node_remap(s, *from, *to);
1180 			if (s == d)
1181 				continue;
1182 
1183 			source = s;	/* Node moved. Memorize */
1184 			dest = d;
1185 
1186 			/* dest not in remaining from nodes? */
1187 			if (!node_isset(dest, tmp))
1188 				break;
1189 		}
1190 		if (source == NUMA_NO_NODE)
1191 			break;
1192 
1193 		node_clear(source, tmp);
1194 		err = migrate_to_node(mm, source, dest, flags);
1195 		if (err > 0)
1196 			nr_failed += err;
1197 		if (err < 0)
1198 			break;
1199 	}
1200 
1201 	lru_cache_enable();
1202 	if (err < 0)
1203 		return err;
1204 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1205 }
1206 
1207 /*
1208  * Allocate a new folio for page migration, according to NUMA mempolicy.
1209  */
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1210 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1211 						    unsigned long private)
1212 {
1213 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1214 	struct mempolicy *pol = mmpol->pol;
1215 	pgoff_t ilx = mmpol->ilx;
1216 	unsigned int order;
1217 	int nid = numa_node_id();
1218 	gfp_t gfp;
1219 
1220 	order = folio_order(src);
1221 	ilx += src->index >> order;
1222 
1223 	if (folio_test_hugetlb(src)) {
1224 		nodemask_t *nodemask;
1225 		struct hstate *h;
1226 
1227 		h = folio_hstate(src);
1228 		gfp = htlb_alloc_mask(h);
1229 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1230 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1231 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1232 	}
1233 
1234 	if (folio_test_large(src))
1235 		gfp = GFP_TRANSHUGE;
1236 	else
1237 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1238 
1239 	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1240 }
1241 #else
1242 
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1243 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 				unsigned long flags)
1245 {
1246 	return false;
1247 }
1248 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 		     const nodemask_t *to, int flags)
1251 {
1252 	return -ENOSYS;
1253 }
1254 
alloc_migration_target_by_mpol(struct folio * src,unsigned long private)1255 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1256 						    unsigned long private)
1257 {
1258 	return NULL;
1259 }
1260 #endif
1261 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1262 static long do_mbind(unsigned long start, unsigned long len,
1263 		     unsigned short mode, unsigned short mode_flags,
1264 		     nodemask_t *nmask, unsigned long flags)
1265 {
1266 	struct mm_struct *mm = current->mm;
1267 	struct vm_area_struct *vma, *prev;
1268 	struct vma_iterator vmi;
1269 	struct migration_mpol mmpol;
1270 	struct mempolicy *new;
1271 	unsigned long end;
1272 	long err;
1273 	long nr_failed;
1274 	LIST_HEAD(pagelist);
1275 
1276 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1277 		return -EINVAL;
1278 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1279 		return -EPERM;
1280 
1281 	if (start & ~PAGE_MASK)
1282 		return -EINVAL;
1283 
1284 	if (mode == MPOL_DEFAULT)
1285 		flags &= ~MPOL_MF_STRICT;
1286 
1287 	len = PAGE_ALIGN(len);
1288 	end = start + len;
1289 
1290 	if (end < start)
1291 		return -EINVAL;
1292 	if (end == start)
1293 		return 0;
1294 
1295 	new = mpol_new(mode, mode_flags, nmask);
1296 	if (IS_ERR(new))
1297 		return PTR_ERR(new);
1298 
1299 	/*
1300 	 * If we are using the default policy then operation
1301 	 * on discontinuous address spaces is okay after all
1302 	 */
1303 	if (!new)
1304 		flags |= MPOL_MF_DISCONTIG_OK;
1305 
1306 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1307 		lru_cache_disable();
1308 	{
1309 		NODEMASK_SCRATCH(scratch);
1310 		if (scratch) {
1311 			mmap_write_lock(mm);
1312 			err = mpol_set_nodemask(new, nmask, scratch);
1313 			if (err)
1314 				mmap_write_unlock(mm);
1315 		} else
1316 			err = -ENOMEM;
1317 		NODEMASK_SCRATCH_FREE(scratch);
1318 	}
1319 	if (err)
1320 		goto mpol_out;
1321 
1322 	/*
1323 	 * Lock the VMAs before scanning for pages to migrate,
1324 	 * to ensure we don't miss a concurrently inserted page.
1325 	 */
1326 	nr_failed = queue_pages_range(mm, start, end, nmask,
1327 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1328 
1329 	if (nr_failed < 0) {
1330 		err = nr_failed;
1331 		nr_failed = 0;
1332 	} else {
1333 		vma_iter_init(&vmi, mm, start);
1334 		prev = vma_prev(&vmi);
1335 		for_each_vma_range(vmi, vma, end) {
1336 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1337 			if (err)
1338 				break;
1339 		}
1340 	}
1341 
1342 	if (!err && !list_empty(&pagelist)) {
1343 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1344 		if (!new) {
1345 			new = get_task_policy(current);
1346 			mpol_get(new);
1347 		}
1348 		mmpol.pol = new;
1349 		mmpol.ilx = 0;
1350 
1351 		/*
1352 		 * In the interleaved case, attempt to allocate on exactly the
1353 		 * targeted nodes, for the first VMA to be migrated; for later
1354 		 * VMAs, the nodes will still be interleaved from the targeted
1355 		 * nodemask, but one by one may be selected differently.
1356 		 */
1357 		if (new->mode == MPOL_INTERLEAVE ||
1358 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1359 			struct folio *folio;
1360 			unsigned int order;
1361 			unsigned long addr = -EFAULT;
1362 
1363 			list_for_each_entry(folio, &pagelist, lru) {
1364 				if (!folio_test_ksm(folio))
1365 					break;
1366 			}
1367 			if (!list_entry_is_head(folio, &pagelist, lru)) {
1368 				vma_iter_init(&vmi, mm, start);
1369 				for_each_vma_range(vmi, vma, end) {
1370 					addr = page_address_in_vma(
1371 						folio_page(folio, 0), vma);
1372 					if (addr != -EFAULT)
1373 						break;
1374 				}
1375 			}
1376 			if (addr != -EFAULT) {
1377 				order = folio_order(folio);
1378 				/* We already know the pol, but not the ilx */
1379 				mpol_cond_put(get_vma_policy(vma, addr, order,
1380 							     &mmpol.ilx));
1381 				/* Set base from which to increment by index */
1382 				mmpol.ilx -= folio->index >> order;
1383 			}
1384 		}
1385 	}
1386 
1387 	mmap_write_unlock(mm);
1388 
1389 	if (!err && !list_empty(&pagelist)) {
1390 		nr_failed |= migrate_pages(&pagelist,
1391 				alloc_migration_target_by_mpol, NULL,
1392 				(unsigned long)&mmpol, MIGRATE_SYNC,
1393 				MR_MEMPOLICY_MBIND, NULL);
1394 	}
1395 
1396 	if (nr_failed && (flags & MPOL_MF_STRICT))
1397 		err = -EIO;
1398 	if (!list_empty(&pagelist))
1399 		putback_movable_pages(&pagelist);
1400 mpol_out:
1401 	mpol_put(new);
1402 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1403 		lru_cache_enable();
1404 	return err;
1405 }
1406 
1407 /*
1408  * User space interface with variable sized bitmaps for nodelists.
1409  */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1410 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1411 		      unsigned long maxnode)
1412 {
1413 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1414 	int ret;
1415 
1416 	if (in_compat_syscall())
1417 		ret = compat_get_bitmap(mask,
1418 					(const compat_ulong_t __user *)nmask,
1419 					maxnode);
1420 	else
1421 		ret = copy_from_user(mask, nmask,
1422 				     nlongs * sizeof(unsigned long));
1423 
1424 	if (ret)
1425 		return -EFAULT;
1426 
1427 	if (maxnode % BITS_PER_LONG)
1428 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1429 
1430 	return 0;
1431 }
1432 
1433 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1434 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1435 		     unsigned long maxnode)
1436 {
1437 	--maxnode;
1438 	nodes_clear(*nodes);
1439 	if (maxnode == 0 || !nmask)
1440 		return 0;
1441 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1442 		return -EINVAL;
1443 
1444 	/*
1445 	 * When the user specified more nodes than supported just check
1446 	 * if the non supported part is all zero, one word at a time,
1447 	 * starting at the end.
1448 	 */
1449 	while (maxnode > MAX_NUMNODES) {
1450 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1451 		unsigned long t;
1452 
1453 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1454 			return -EFAULT;
1455 
1456 		if (maxnode - bits >= MAX_NUMNODES) {
1457 			maxnode -= bits;
1458 		} else {
1459 			maxnode = MAX_NUMNODES;
1460 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1461 		}
1462 		if (t)
1463 			return -EINVAL;
1464 	}
1465 
1466 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1467 }
1468 
1469 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1470 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1471 			      nodemask_t *nodes)
1472 {
1473 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1474 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1475 	bool compat = in_compat_syscall();
1476 
1477 	if (compat)
1478 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1479 
1480 	if (copy > nbytes) {
1481 		if (copy > PAGE_SIZE)
1482 			return -EINVAL;
1483 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1484 			return -EFAULT;
1485 		copy = nbytes;
1486 		maxnode = nr_node_ids;
1487 	}
1488 
1489 	if (compat)
1490 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1491 					 nodes_addr(*nodes), maxnode);
1492 
1493 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1494 }
1495 
1496 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1497 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1498 {
1499 	*flags = *mode & MPOL_MODE_FLAGS;
1500 	*mode &= ~MPOL_MODE_FLAGS;
1501 
1502 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1503 		return -EINVAL;
1504 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1505 		return -EINVAL;
1506 	if (*flags & MPOL_F_NUMA_BALANCING) {
1507 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1508 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1509 		else
1510 			return -EINVAL;
1511 	}
1512 	return 0;
1513 }
1514 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1515 static long kernel_mbind(unsigned long start, unsigned long len,
1516 			 unsigned long mode, const unsigned long __user *nmask,
1517 			 unsigned long maxnode, unsigned int flags)
1518 {
1519 	unsigned short mode_flags;
1520 	nodemask_t nodes;
1521 	int lmode = mode;
1522 	int err;
1523 
1524 	start = untagged_addr(start);
1525 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1526 	if (err)
1527 		return err;
1528 
1529 	err = get_nodes(&nodes, nmask, maxnode);
1530 	if (err)
1531 		return err;
1532 
1533 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1534 }
1535 
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1536 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1537 		unsigned long, home_node, unsigned long, flags)
1538 {
1539 	struct mm_struct *mm = current->mm;
1540 	struct vm_area_struct *vma, *prev;
1541 	struct mempolicy *new, *old;
1542 	unsigned long end;
1543 	int err = -ENOENT;
1544 	VMA_ITERATOR(vmi, mm, start);
1545 
1546 	start = untagged_addr(start);
1547 	if (start & ~PAGE_MASK)
1548 		return -EINVAL;
1549 	/*
1550 	 * flags is used for future extension if any.
1551 	 */
1552 	if (flags != 0)
1553 		return -EINVAL;
1554 
1555 	/*
1556 	 * Check home_node is online to avoid accessing uninitialized
1557 	 * NODE_DATA.
1558 	 */
1559 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1560 		return -EINVAL;
1561 
1562 	len = PAGE_ALIGN(len);
1563 	end = start + len;
1564 
1565 	if (end < start)
1566 		return -EINVAL;
1567 	if (end == start)
1568 		return 0;
1569 	mmap_write_lock(mm);
1570 	prev = vma_prev(&vmi);
1571 	for_each_vma_range(vmi, vma, end) {
1572 		/*
1573 		 * If any vma in the range got policy other than MPOL_BIND
1574 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1575 		 * the home node for vmas we already updated before.
1576 		 */
1577 		old = vma_policy(vma);
1578 		if (!old) {
1579 			prev = vma;
1580 			continue;
1581 		}
1582 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1583 			err = -EOPNOTSUPP;
1584 			break;
1585 		}
1586 		new = mpol_dup(old);
1587 		if (IS_ERR(new)) {
1588 			err = PTR_ERR(new);
1589 			break;
1590 		}
1591 
1592 		vma_start_write(vma);
1593 		new->home_node = home_node;
1594 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1595 		mpol_put(new);
1596 		if (err)
1597 			break;
1598 	}
1599 	mmap_write_unlock(mm);
1600 	return err;
1601 }
1602 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1603 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1604 		unsigned long, mode, const unsigned long __user *, nmask,
1605 		unsigned long, maxnode, unsigned int, flags)
1606 {
1607 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1608 }
1609 
1610 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1611 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1612 				 unsigned long maxnode)
1613 {
1614 	unsigned short mode_flags;
1615 	nodemask_t nodes;
1616 	int lmode = mode;
1617 	int err;
1618 
1619 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1620 	if (err)
1621 		return err;
1622 
1623 	err = get_nodes(&nodes, nmask, maxnode);
1624 	if (err)
1625 		return err;
1626 
1627 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1628 }
1629 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1630 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1631 		unsigned long, maxnode)
1632 {
1633 	return kernel_set_mempolicy(mode, nmask, maxnode);
1634 }
1635 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1636 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1637 				const unsigned long __user *old_nodes,
1638 				const unsigned long __user *new_nodes)
1639 {
1640 	struct mm_struct *mm = NULL;
1641 	struct task_struct *task;
1642 	nodemask_t task_nodes;
1643 	int err;
1644 	nodemask_t *old;
1645 	nodemask_t *new;
1646 	NODEMASK_SCRATCH(scratch);
1647 
1648 	if (!scratch)
1649 		return -ENOMEM;
1650 
1651 	old = &scratch->mask1;
1652 	new = &scratch->mask2;
1653 
1654 	err = get_nodes(old, old_nodes, maxnode);
1655 	if (err)
1656 		goto out;
1657 
1658 	err = get_nodes(new, new_nodes, maxnode);
1659 	if (err)
1660 		goto out;
1661 
1662 	/* Find the mm_struct */
1663 	rcu_read_lock();
1664 	task = pid ? find_task_by_vpid(pid) : current;
1665 	if (!task) {
1666 		rcu_read_unlock();
1667 		err = -ESRCH;
1668 		goto out;
1669 	}
1670 	get_task_struct(task);
1671 
1672 	err = -EINVAL;
1673 
1674 	/*
1675 	 * Check if this process has the right to modify the specified process.
1676 	 * Use the regular "ptrace_may_access()" checks.
1677 	 */
1678 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1679 		rcu_read_unlock();
1680 		err = -EPERM;
1681 		goto out_put;
1682 	}
1683 	rcu_read_unlock();
1684 
1685 	task_nodes = cpuset_mems_allowed(task);
1686 	/* Is the user allowed to access the target nodes? */
1687 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1688 		err = -EPERM;
1689 		goto out_put;
1690 	}
1691 
1692 	task_nodes = cpuset_mems_allowed(current);
1693 	nodes_and(*new, *new, task_nodes);
1694 	if (nodes_empty(*new))
1695 		goto out_put;
1696 
1697 	err = security_task_movememory(task);
1698 	if (err)
1699 		goto out_put;
1700 
1701 	mm = get_task_mm(task);
1702 	put_task_struct(task);
1703 
1704 	if (!mm) {
1705 		err = -EINVAL;
1706 		goto out;
1707 	}
1708 
1709 	err = do_migrate_pages(mm, old, new,
1710 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1711 
1712 	mmput(mm);
1713 out:
1714 	NODEMASK_SCRATCH_FREE(scratch);
1715 
1716 	return err;
1717 
1718 out_put:
1719 	put_task_struct(task);
1720 	goto out;
1721 }
1722 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1723 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1724 		const unsigned long __user *, old_nodes,
1725 		const unsigned long __user *, new_nodes)
1726 {
1727 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1728 }
1729 
1730 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1731 static int kernel_get_mempolicy(int __user *policy,
1732 				unsigned long __user *nmask,
1733 				unsigned long maxnode,
1734 				unsigned long addr,
1735 				unsigned long flags)
1736 {
1737 	int err;
1738 	int pval;
1739 	nodemask_t nodes;
1740 
1741 	if (nmask != NULL && maxnode < nr_node_ids)
1742 		return -EINVAL;
1743 
1744 	addr = untagged_addr(addr);
1745 
1746 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1747 
1748 	if (err)
1749 		return err;
1750 
1751 	if (policy && put_user(pval, policy))
1752 		return -EFAULT;
1753 
1754 	if (nmask)
1755 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1756 
1757 	return err;
1758 }
1759 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1760 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1761 		unsigned long __user *, nmask, unsigned long, maxnode,
1762 		unsigned long, addr, unsigned long, flags)
1763 {
1764 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1765 }
1766 
vma_migratable(struct vm_area_struct * vma)1767 bool vma_migratable(struct vm_area_struct *vma)
1768 {
1769 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1770 		return false;
1771 
1772 	/*
1773 	 * DAX device mappings require predictable access latency, so avoid
1774 	 * incurring periodic faults.
1775 	 */
1776 	if (vma_is_dax(vma))
1777 		return false;
1778 
1779 	if (is_vm_hugetlb_page(vma) &&
1780 		!hugepage_migration_supported(hstate_vma(vma)))
1781 		return false;
1782 
1783 	/*
1784 	 * Migration allocates pages in the highest zone. If we cannot
1785 	 * do so then migration (at least from node to node) is not
1786 	 * possible.
1787 	 */
1788 	if (vma->vm_file &&
1789 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1790 			< policy_zone)
1791 		return false;
1792 	return true;
1793 }
1794 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)1795 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1796 				   unsigned long addr, pgoff_t *ilx)
1797 {
1798 	*ilx = 0;
1799 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1800 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1801 }
1802 
1803 /*
1804  * get_vma_policy(@vma, @addr, @order, @ilx)
1805  * @vma: virtual memory area whose policy is sought
1806  * @addr: address in @vma for shared policy lookup
1807  * @order: 0, or appropriate huge_page_order for interleaving
1808  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1809  *       MPOL_WEIGHTED_INTERLEAVE
1810  *
1811  * Returns effective policy for a VMA at specified address.
1812  * Falls back to current->mempolicy or system default policy, as necessary.
1813  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1814  * count--added by the get_policy() vm_op, as appropriate--to protect against
1815  * freeing by another task.  It is the caller's responsibility to free the
1816  * extra reference for shared policies.
1817  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr,int order,pgoff_t * ilx)1818 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1819 				 unsigned long addr, int order, pgoff_t *ilx)
1820 {
1821 	struct mempolicy *pol;
1822 
1823 	pol = __get_vma_policy(vma, addr, ilx);
1824 	if (!pol)
1825 		pol = get_task_policy(current);
1826 	if (pol->mode == MPOL_INTERLEAVE ||
1827 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1828 		*ilx += vma->vm_pgoff >> order;
1829 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1830 	}
1831 	return pol;
1832 }
1833 
vma_policy_mof(struct vm_area_struct * vma)1834 bool vma_policy_mof(struct vm_area_struct *vma)
1835 {
1836 	struct mempolicy *pol;
1837 
1838 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1839 		bool ret = false;
1840 		pgoff_t ilx;		/* ignored here */
1841 
1842 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1843 		if (pol && (pol->flags & MPOL_F_MOF))
1844 			ret = true;
1845 		mpol_cond_put(pol);
1846 
1847 		return ret;
1848 	}
1849 
1850 	pol = vma->vm_policy;
1851 	if (!pol)
1852 		pol = get_task_policy(current);
1853 
1854 	return pol->flags & MPOL_F_MOF;
1855 }
1856 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1857 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1858 {
1859 	enum zone_type dynamic_policy_zone = policy_zone;
1860 
1861 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1862 
1863 	/*
1864 	 * if policy->nodes has movable memory only,
1865 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1866 	 *
1867 	 * policy->nodes is intersect with node_states[N_MEMORY].
1868 	 * so if the following test fails, it implies
1869 	 * policy->nodes has movable memory only.
1870 	 */
1871 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1872 		dynamic_policy_zone = ZONE_MOVABLE;
1873 
1874 	return zone >= dynamic_policy_zone;
1875 }
1876 
weighted_interleave_nodes(struct mempolicy * policy)1877 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1878 {
1879 	unsigned int node;
1880 	unsigned int cpuset_mems_cookie;
1881 
1882 retry:
1883 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1884 	cpuset_mems_cookie = read_mems_allowed_begin();
1885 	node = current->il_prev;
1886 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1887 		node = next_node_in(node, policy->nodes);
1888 		if (read_mems_allowed_retry(cpuset_mems_cookie))
1889 			goto retry;
1890 		if (node == MAX_NUMNODES)
1891 			return node;
1892 		current->il_prev = node;
1893 		current->il_weight = get_il_weight(node);
1894 	}
1895 	current->il_weight--;
1896 	return node;
1897 }
1898 
1899 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1900 static unsigned int interleave_nodes(struct mempolicy *policy)
1901 {
1902 	unsigned int nid;
1903 	unsigned int cpuset_mems_cookie;
1904 
1905 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1906 	do {
1907 		cpuset_mems_cookie = read_mems_allowed_begin();
1908 		nid = next_node_in(current->il_prev, policy->nodes);
1909 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1910 
1911 	if (nid < MAX_NUMNODES)
1912 		current->il_prev = nid;
1913 	return nid;
1914 }
1915 
1916 /*
1917  * Depending on the memory policy provide a node from which to allocate the
1918  * next slab entry.
1919  */
mempolicy_slab_node(void)1920 unsigned int mempolicy_slab_node(void)
1921 {
1922 	struct mempolicy *policy;
1923 	int node = numa_mem_id();
1924 
1925 	if (!in_task())
1926 		return node;
1927 
1928 	policy = current->mempolicy;
1929 	if (!policy)
1930 		return node;
1931 
1932 	switch (policy->mode) {
1933 	case MPOL_PREFERRED:
1934 		return first_node(policy->nodes);
1935 
1936 	case MPOL_INTERLEAVE:
1937 		return interleave_nodes(policy);
1938 
1939 	case MPOL_WEIGHTED_INTERLEAVE:
1940 		return weighted_interleave_nodes(policy);
1941 
1942 	case MPOL_BIND:
1943 	case MPOL_PREFERRED_MANY:
1944 	{
1945 		struct zoneref *z;
1946 
1947 		/*
1948 		 * Follow bind policy behavior and start allocation at the
1949 		 * first node.
1950 		 */
1951 		struct zonelist *zonelist;
1952 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1953 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1954 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1955 							&policy->nodes);
1956 		return zonelist_zone(z) ? zonelist_node_idx(z) : node;
1957 	}
1958 	case MPOL_LOCAL:
1959 		return node;
1960 
1961 	default:
1962 		BUG();
1963 	}
1964 }
1965 
read_once_policy_nodemask(struct mempolicy * pol,nodemask_t * mask)1966 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1967 					      nodemask_t *mask)
1968 {
1969 	/*
1970 	 * barrier stabilizes the nodemask locally so that it can be iterated
1971 	 * over safely without concern for changes. Allocators validate node
1972 	 * selection does not violate mems_allowed, so this is safe.
1973 	 */
1974 	barrier();
1975 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1976 	barrier();
1977 	return nodes_weight(*mask);
1978 }
1979 
weighted_interleave_nid(struct mempolicy * pol,pgoff_t ilx)1980 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1981 {
1982 	nodemask_t nodemask;
1983 	unsigned int target, nr_nodes;
1984 	u8 *table;
1985 	unsigned int weight_total = 0;
1986 	u8 weight;
1987 	int nid;
1988 
1989 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1990 	if (!nr_nodes)
1991 		return numa_node_id();
1992 
1993 	rcu_read_lock();
1994 	table = rcu_dereference(iw_table);
1995 	/* calculate the total weight */
1996 	for_each_node_mask(nid, nodemask) {
1997 		/* detect system default usage */
1998 		weight = table ? table[nid] : 1;
1999 		weight = weight ? weight : 1;
2000 		weight_total += weight;
2001 	}
2002 
2003 	/* Calculate the node offset based on totals */
2004 	target = ilx % weight_total;
2005 	nid = first_node(nodemask);
2006 	while (target) {
2007 		/* detect system default usage */
2008 		weight = table ? table[nid] : 1;
2009 		weight = weight ? weight : 1;
2010 		if (target < weight)
2011 			break;
2012 		target -= weight;
2013 		nid = next_node_in(nid, nodemask);
2014 	}
2015 	rcu_read_unlock();
2016 	return nid;
2017 }
2018 
2019 /*
2020  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2021  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2022  * exceeds the number of present nodes.
2023  */
interleave_nid(struct mempolicy * pol,pgoff_t ilx)2024 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2025 {
2026 	nodemask_t nodemask;
2027 	unsigned int target, nnodes;
2028 	int i;
2029 	int nid;
2030 
2031 	nnodes = read_once_policy_nodemask(pol, &nodemask);
2032 	if (!nnodes)
2033 		return numa_node_id();
2034 	target = ilx % nnodes;
2035 	nid = first_node(nodemask);
2036 	for (i = 0; i < target; i++)
2037 		nid = next_node(nid, nodemask);
2038 	return nid;
2039 }
2040 
2041 /*
2042  * Return a nodemask representing a mempolicy for filtering nodes for
2043  * page allocation, together with preferred node id (or the input node id).
2044  */
policy_nodemask(gfp_t gfp,struct mempolicy * pol,pgoff_t ilx,int * nid)2045 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2046 				   pgoff_t ilx, int *nid)
2047 {
2048 	nodemask_t *nodemask = NULL;
2049 
2050 	switch (pol->mode) {
2051 	case MPOL_PREFERRED:
2052 		/* Override input node id */
2053 		*nid = first_node(pol->nodes);
2054 		break;
2055 	case MPOL_PREFERRED_MANY:
2056 		nodemask = &pol->nodes;
2057 		if (pol->home_node != NUMA_NO_NODE)
2058 			*nid = pol->home_node;
2059 		break;
2060 	case MPOL_BIND:
2061 		/* Restrict to nodemask (but not on lower zones) */
2062 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2063 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2064 			nodemask = &pol->nodes;
2065 		if (pol->home_node != NUMA_NO_NODE)
2066 			*nid = pol->home_node;
2067 		/*
2068 		 * __GFP_THISNODE shouldn't even be used with the bind policy
2069 		 * because we might easily break the expectation to stay on the
2070 		 * requested node and not break the policy.
2071 		 */
2072 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2073 		break;
2074 	case MPOL_INTERLEAVE:
2075 		/* Override input node id */
2076 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2077 			interleave_nodes(pol) : interleave_nid(pol, ilx);
2078 		break;
2079 	case MPOL_WEIGHTED_INTERLEAVE:
2080 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 			weighted_interleave_nodes(pol) :
2082 			weighted_interleave_nid(pol, ilx);
2083 		break;
2084 	}
2085 
2086 	return nodemask;
2087 }
2088 
2089 #ifdef CONFIG_HUGETLBFS
2090 /*
2091  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2092  * @vma: virtual memory area whose policy is sought
2093  * @addr: address in @vma for shared policy lookup and interleave policy
2094  * @gfp_flags: for requested zone
2095  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2096  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2097  *
2098  * Returns a nid suitable for a huge page allocation and a pointer
2099  * to the struct mempolicy for conditional unref after allocation.
2100  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2101  * to the mempolicy's @nodemask for filtering the zonelist.
2102  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2103 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2104 		struct mempolicy **mpol, nodemask_t **nodemask)
2105 {
2106 	pgoff_t ilx;
2107 	int nid;
2108 
2109 	nid = numa_node_id();
2110 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2111 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2112 	return nid;
2113 }
2114 
2115 /*
2116  * init_nodemask_of_mempolicy
2117  *
2118  * If the current task's mempolicy is "default" [NULL], return 'false'
2119  * to indicate default policy.  Otherwise, extract the policy nodemask
2120  * for 'bind' or 'interleave' policy into the argument nodemask, or
2121  * initialize the argument nodemask to contain the single node for
2122  * 'preferred' or 'local' policy and return 'true' to indicate presence
2123  * of non-default mempolicy.
2124  *
2125  * We don't bother with reference counting the mempolicy [mpol_get/put]
2126  * because the current task is examining it's own mempolicy and a task's
2127  * mempolicy is only ever changed by the task itself.
2128  *
2129  * N.B., it is the caller's responsibility to free a returned nodemask.
2130  */
init_nodemask_of_mempolicy(nodemask_t * mask)2131 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2132 {
2133 	struct mempolicy *mempolicy;
2134 
2135 	if (!(mask && current->mempolicy))
2136 		return false;
2137 
2138 	task_lock(current);
2139 	mempolicy = current->mempolicy;
2140 	switch (mempolicy->mode) {
2141 	case MPOL_PREFERRED:
2142 	case MPOL_PREFERRED_MANY:
2143 	case MPOL_BIND:
2144 	case MPOL_INTERLEAVE:
2145 	case MPOL_WEIGHTED_INTERLEAVE:
2146 		*mask = mempolicy->nodes;
2147 		break;
2148 
2149 	case MPOL_LOCAL:
2150 		init_nodemask_of_node(mask, numa_node_id());
2151 		break;
2152 
2153 	default:
2154 		BUG();
2155 	}
2156 	task_unlock(current);
2157 
2158 	return true;
2159 }
2160 #endif
2161 
2162 /*
2163  * mempolicy_in_oom_domain
2164  *
2165  * If tsk's mempolicy is "bind", check for intersection between mask and
2166  * the policy nodemask. Otherwise, return true for all other policies
2167  * including "interleave", as a tsk with "interleave" policy may have
2168  * memory allocated from all nodes in system.
2169  *
2170  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2171  */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2172 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2173 					const nodemask_t *mask)
2174 {
2175 	struct mempolicy *mempolicy;
2176 	bool ret = true;
2177 
2178 	if (!mask)
2179 		return ret;
2180 
2181 	task_lock(tsk);
2182 	mempolicy = tsk->mempolicy;
2183 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2184 		ret = nodes_intersects(mempolicy->nodes, *mask);
2185 	task_unlock(tsk);
2186 
2187 	return ret;
2188 }
2189 
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,nodemask_t * nodemask)2190 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2191 						int nid, nodemask_t *nodemask)
2192 {
2193 	struct page *page;
2194 	gfp_t preferred_gfp;
2195 
2196 	/*
2197 	 * This is a two pass approach. The first pass will only try the
2198 	 * preferred nodes but skip the direct reclaim and allow the
2199 	 * allocation to fail, while the second pass will try all the
2200 	 * nodes in system.
2201 	 */
2202 	preferred_gfp = gfp | __GFP_NOWARN;
2203 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2204 	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2205 	if (!page)
2206 		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2207 
2208 	return page;
2209 }
2210 
2211 /**
2212  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2213  * @gfp: GFP flags.
2214  * @order: Order of the page allocation.
2215  * @pol: Pointer to the NUMA mempolicy.
2216  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2217  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2218  *
2219  * Return: The page on success or NULL if allocation fails.
2220  */
alloc_pages_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2221 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2222 		struct mempolicy *pol, pgoff_t ilx, int nid)
2223 {
2224 	nodemask_t *nodemask;
2225 	struct page *page;
2226 
2227 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2228 
2229 	if (pol->mode == MPOL_PREFERRED_MANY)
2230 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2231 
2232 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2233 	    /* filter "hugepage" allocation, unless from alloc_pages() */
2234 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2235 		/*
2236 		 * For hugepage allocation and non-interleave policy which
2237 		 * allows the current node (or other explicitly preferred
2238 		 * node) we only try to allocate from the current/preferred
2239 		 * node and don't fall back to other nodes, as the cost of
2240 		 * remote accesses would likely offset THP benefits.
2241 		 *
2242 		 * If the policy is interleave or does not allow the current
2243 		 * node in its nodemask, we allocate the standard way.
2244 		 */
2245 		if (pol->mode != MPOL_INTERLEAVE &&
2246 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2247 		    (!nodemask || node_isset(nid, *nodemask))) {
2248 			/*
2249 			 * First, try to allocate THP only on local node, but
2250 			 * don't reclaim unnecessarily, just compact.
2251 			 */
2252 			page = __alloc_pages_node_noprof(nid,
2253 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2254 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2255 				return page;
2256 			/*
2257 			 * If hugepage allocations are configured to always
2258 			 * synchronous compact or the vma has been madvised
2259 			 * to prefer hugepage backing, retry allowing remote
2260 			 * memory with both reclaim and compact as well.
2261 			 */
2262 		}
2263 	}
2264 
2265 	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2266 
2267 	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2268 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2269 		if (static_branch_likely(&vm_numa_stat_key) &&
2270 		    page_to_nid(page) == nid) {
2271 			preempt_disable();
2272 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2273 			preempt_enable();
2274 		}
2275 	}
2276 
2277 	return page;
2278 }
2279 
folio_alloc_mpol_noprof(gfp_t gfp,unsigned int order,struct mempolicy * pol,pgoff_t ilx,int nid)2280 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2281 		struct mempolicy *pol, pgoff_t ilx, int nid)
2282 {
2283 	return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2284 							order, pol, ilx, nid));
2285 }
2286 
2287 /**
2288  * vma_alloc_folio - Allocate a folio for a VMA.
2289  * @gfp: GFP flags.
2290  * @order: Order of the folio.
2291  * @vma: Pointer to VMA.
2292  * @addr: Virtual address of the allocation.  Must be inside @vma.
2293  * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2294  *
2295  * Allocate a folio for a specific address in @vma, using the appropriate
2296  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2297  * VMA to prevent it from going away.  Should be used for all allocations
2298  * for folios that will be mapped into user space, excepting hugetlbfs, and
2299  * excepting where direct use of alloc_pages_mpol() is more appropriate.
2300  *
2301  * Return: The folio on success or NULL if allocation fails.
2302  */
vma_alloc_folio_noprof(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,bool hugepage)2303 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2304 		unsigned long addr, bool hugepage)
2305 {
2306 	struct mempolicy *pol;
2307 	pgoff_t ilx;
2308 	struct folio *folio;
2309 
2310 	if (vma->vm_flags & VM_DROPPABLE)
2311 		gfp |= __GFP_NOWARN;
2312 
2313 	pol = get_vma_policy(vma, addr, order, &ilx);
2314 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2315 	mpol_cond_put(pol);
2316 	return folio;
2317 }
2318 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2319 
2320 /**
2321  * alloc_pages - Allocate pages.
2322  * @gfp: GFP flags.
2323  * @order: Power of two of number of pages to allocate.
2324  *
2325  * Allocate 1 << @order contiguous pages.  The physical address of the
2326  * first page is naturally aligned (eg an order-3 allocation will be aligned
2327  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2328  * process is honoured when in process context.
2329  *
2330  * Context: Can be called from any context, providing the appropriate GFP
2331  * flags are used.
2332  * Return: The page on success or NULL if allocation fails.
2333  */
alloc_pages_noprof(gfp_t gfp,unsigned int order)2334 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2335 {
2336 	struct mempolicy *pol = &default_policy;
2337 
2338 	/*
2339 	 * No reference counting needed for current->mempolicy
2340 	 * nor system default_policy
2341 	 */
2342 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2343 		pol = get_task_policy(current);
2344 
2345 	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2346 				       numa_node_id());
2347 }
2348 EXPORT_SYMBOL(alloc_pages_noprof);
2349 
folio_alloc_noprof(gfp_t gfp,unsigned int order)2350 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2351 {
2352 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2353 }
2354 EXPORT_SYMBOL(folio_alloc_noprof);
2355 
alloc_pages_bulk_array_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2356 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2357 		struct mempolicy *pol, unsigned long nr_pages,
2358 		struct page **page_array)
2359 {
2360 	int nodes;
2361 	unsigned long nr_pages_per_node;
2362 	int delta;
2363 	int i;
2364 	unsigned long nr_allocated;
2365 	unsigned long total_allocated = 0;
2366 
2367 	nodes = nodes_weight(pol->nodes);
2368 	nr_pages_per_node = nr_pages / nodes;
2369 	delta = nr_pages - nodes * nr_pages_per_node;
2370 
2371 	for (i = 0; i < nodes; i++) {
2372 		if (delta) {
2373 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2374 					interleave_nodes(pol), NULL,
2375 					nr_pages_per_node + 1, NULL,
2376 					page_array);
2377 			delta--;
2378 		} else {
2379 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2380 					interleave_nodes(pol), NULL,
2381 					nr_pages_per_node, NULL, page_array);
2382 		}
2383 
2384 		page_array += nr_allocated;
2385 		total_allocated += nr_allocated;
2386 	}
2387 
2388 	return total_allocated;
2389 }
2390 
alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2391 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2392 		struct mempolicy *pol, unsigned long nr_pages,
2393 		struct page **page_array)
2394 {
2395 	struct task_struct *me = current;
2396 	unsigned int cpuset_mems_cookie;
2397 	unsigned long total_allocated = 0;
2398 	unsigned long nr_allocated = 0;
2399 	unsigned long rounds;
2400 	unsigned long node_pages, delta;
2401 	u8 *table, *weights, weight;
2402 	unsigned int weight_total = 0;
2403 	unsigned long rem_pages = nr_pages;
2404 	nodemask_t nodes;
2405 	int nnodes, node;
2406 	int resume_node = MAX_NUMNODES - 1;
2407 	u8 resume_weight = 0;
2408 	int prev_node;
2409 	int i;
2410 
2411 	if (!nr_pages)
2412 		return 0;
2413 
2414 	/* read the nodes onto the stack, retry if done during rebind */
2415 	do {
2416 		cpuset_mems_cookie = read_mems_allowed_begin();
2417 		nnodes = read_once_policy_nodemask(pol, &nodes);
2418 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2419 
2420 	/* if the nodemask has become invalid, we cannot do anything */
2421 	if (!nnodes)
2422 		return 0;
2423 
2424 	/* Continue allocating from most recent node and adjust the nr_pages */
2425 	node = me->il_prev;
2426 	weight = me->il_weight;
2427 	if (weight && node_isset(node, nodes)) {
2428 		node_pages = min(rem_pages, weight);
2429 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2430 						  NULL, page_array);
2431 		page_array += nr_allocated;
2432 		total_allocated += nr_allocated;
2433 		/* if that's all the pages, no need to interleave */
2434 		if (rem_pages <= weight) {
2435 			me->il_weight -= rem_pages;
2436 			return total_allocated;
2437 		}
2438 		/* Otherwise we adjust remaining pages, continue from there */
2439 		rem_pages -= weight;
2440 	}
2441 	/* clear active weight in case of an allocation failure */
2442 	me->il_weight = 0;
2443 	prev_node = node;
2444 
2445 	/* create a local copy of node weights to operate on outside rcu */
2446 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2447 	if (!weights)
2448 		return total_allocated;
2449 
2450 	rcu_read_lock();
2451 	table = rcu_dereference(iw_table);
2452 	if (table)
2453 		memcpy(weights, table, nr_node_ids);
2454 	rcu_read_unlock();
2455 
2456 	/* calculate total, detect system default usage */
2457 	for_each_node_mask(node, nodes) {
2458 		if (!weights[node])
2459 			weights[node] = 1;
2460 		weight_total += weights[node];
2461 	}
2462 
2463 	/*
2464 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2465 	 * Track which node weighted interleave should resume from.
2466 	 *
2467 	 * if (rounds > 0) and (delta == 0), resume_node will always be
2468 	 * the node following prev_node and its weight.
2469 	 */
2470 	rounds = rem_pages / weight_total;
2471 	delta = rem_pages % weight_total;
2472 	resume_node = next_node_in(prev_node, nodes);
2473 	resume_weight = weights[resume_node];
2474 	for (i = 0; i < nnodes; i++) {
2475 		node = next_node_in(prev_node, nodes);
2476 		weight = weights[node];
2477 		node_pages = weight * rounds;
2478 		/* If a delta exists, add this node's portion of the delta */
2479 		if (delta > weight) {
2480 			node_pages += weight;
2481 			delta -= weight;
2482 		} else if (delta) {
2483 			/* when delta is depleted, resume from that node */
2484 			node_pages += delta;
2485 			resume_node = node;
2486 			resume_weight = weight - delta;
2487 			delta = 0;
2488 		}
2489 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2490 		if (!node_pages)
2491 			break;
2492 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2493 						  NULL, page_array);
2494 		page_array += nr_allocated;
2495 		total_allocated += nr_allocated;
2496 		if (total_allocated == nr_pages)
2497 			break;
2498 		prev_node = node;
2499 	}
2500 	me->il_prev = resume_node;
2501 	me->il_weight = resume_weight;
2502 	kfree(weights);
2503 	return total_allocated;
2504 }
2505 
alloc_pages_bulk_array_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2506 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2507 		struct mempolicy *pol, unsigned long nr_pages,
2508 		struct page **page_array)
2509 {
2510 	gfp_t preferred_gfp;
2511 	unsigned long nr_allocated = 0;
2512 
2513 	preferred_gfp = gfp | __GFP_NOWARN;
2514 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2515 
2516 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2517 					   nr_pages, NULL, page_array);
2518 
2519 	if (nr_allocated < nr_pages)
2520 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2521 				nr_pages - nr_allocated, NULL,
2522 				page_array + nr_allocated);
2523 	return nr_allocated;
2524 }
2525 
2526 /* alloc pages bulk and mempolicy should be considered at the
2527  * same time in some situation such as vmalloc.
2528  *
2529  * It can accelerate memory allocation especially interleaving
2530  * allocate memory.
2531  */
alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2532 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2533 		unsigned long nr_pages, struct page **page_array)
2534 {
2535 	struct mempolicy *pol = &default_policy;
2536 	nodemask_t *nodemask;
2537 	int nid;
2538 
2539 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2540 		pol = get_task_policy(current);
2541 
2542 	if (pol->mode == MPOL_INTERLEAVE)
2543 		return alloc_pages_bulk_array_interleave(gfp, pol,
2544 							 nr_pages, page_array);
2545 
2546 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2547 		return alloc_pages_bulk_array_weighted_interleave(
2548 				  gfp, pol, nr_pages, page_array);
2549 
2550 	if (pol->mode == MPOL_PREFERRED_MANY)
2551 		return alloc_pages_bulk_array_preferred_many(gfp,
2552 				numa_node_id(), pol, nr_pages, page_array);
2553 
2554 	nid = numa_node_id();
2555 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2556 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2557 				       nr_pages, NULL, page_array);
2558 }
2559 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2560 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2561 {
2562 	struct mempolicy *pol = mpol_dup(src->vm_policy);
2563 
2564 	if (IS_ERR(pol))
2565 		return PTR_ERR(pol);
2566 	dst->vm_policy = pol;
2567 	return 0;
2568 }
2569 
2570 /*
2571  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2572  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2573  * with the mems_allowed returned by cpuset_mems_allowed().  This
2574  * keeps mempolicies cpuset relative after its cpuset moves.  See
2575  * further kernel/cpuset.c update_nodemask().
2576  *
2577  * current's mempolicy may be rebinded by the other task(the task that changes
2578  * cpuset's mems), so we needn't do rebind work for current task.
2579  */
2580 
2581 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2582 struct mempolicy *__mpol_dup(struct mempolicy *old)
2583 {
2584 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2585 
2586 	if (!new)
2587 		return ERR_PTR(-ENOMEM);
2588 
2589 	/* task's mempolicy is protected by alloc_lock */
2590 	if (old == current->mempolicy) {
2591 		task_lock(current);
2592 		*new = *old;
2593 		task_unlock(current);
2594 	} else
2595 		*new = *old;
2596 
2597 	if (current_cpuset_is_being_rebound()) {
2598 		nodemask_t mems = cpuset_mems_allowed(current);
2599 		mpol_rebind_policy(new, &mems);
2600 	}
2601 	atomic_set(&new->refcnt, 1);
2602 	return new;
2603 }
2604 
2605 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2606 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2607 {
2608 	if (!a || !b)
2609 		return false;
2610 	if (a->mode != b->mode)
2611 		return false;
2612 	if (a->flags != b->flags)
2613 		return false;
2614 	if (a->home_node != b->home_node)
2615 		return false;
2616 	if (mpol_store_user_nodemask(a))
2617 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2618 			return false;
2619 
2620 	switch (a->mode) {
2621 	case MPOL_BIND:
2622 	case MPOL_INTERLEAVE:
2623 	case MPOL_PREFERRED:
2624 	case MPOL_PREFERRED_MANY:
2625 	case MPOL_WEIGHTED_INTERLEAVE:
2626 		return !!nodes_equal(a->nodes, b->nodes);
2627 	case MPOL_LOCAL:
2628 		return true;
2629 	default:
2630 		BUG();
2631 		return false;
2632 	}
2633 }
2634 
2635 /*
2636  * Shared memory backing store policy support.
2637  *
2638  * Remember policies even when nobody has shared memory mapped.
2639  * The policies are kept in Red-Black tree linked from the inode.
2640  * They are protected by the sp->lock rwlock, which should be held
2641  * for any accesses to the tree.
2642  */
2643 
2644 /*
2645  * lookup first element intersecting start-end.  Caller holds sp->lock for
2646  * reading or for writing
2647  */
sp_lookup(struct shared_policy * sp,pgoff_t start,pgoff_t end)2648 static struct sp_node *sp_lookup(struct shared_policy *sp,
2649 					pgoff_t start, pgoff_t end)
2650 {
2651 	struct rb_node *n = sp->root.rb_node;
2652 
2653 	while (n) {
2654 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2655 
2656 		if (start >= p->end)
2657 			n = n->rb_right;
2658 		else if (end <= p->start)
2659 			n = n->rb_left;
2660 		else
2661 			break;
2662 	}
2663 	if (!n)
2664 		return NULL;
2665 	for (;;) {
2666 		struct sp_node *w = NULL;
2667 		struct rb_node *prev = rb_prev(n);
2668 		if (!prev)
2669 			break;
2670 		w = rb_entry(prev, struct sp_node, nd);
2671 		if (w->end <= start)
2672 			break;
2673 		n = prev;
2674 	}
2675 	return rb_entry(n, struct sp_node, nd);
2676 }
2677 
2678 /*
2679  * Insert a new shared policy into the list.  Caller holds sp->lock for
2680  * writing.
2681  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2682 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2683 {
2684 	struct rb_node **p = &sp->root.rb_node;
2685 	struct rb_node *parent = NULL;
2686 	struct sp_node *nd;
2687 
2688 	while (*p) {
2689 		parent = *p;
2690 		nd = rb_entry(parent, struct sp_node, nd);
2691 		if (new->start < nd->start)
2692 			p = &(*p)->rb_left;
2693 		else if (new->end > nd->end)
2694 			p = &(*p)->rb_right;
2695 		else
2696 			BUG();
2697 	}
2698 	rb_link_node(&new->nd, parent, p);
2699 	rb_insert_color(&new->nd, &sp->root);
2700 }
2701 
2702 /* Find shared policy intersecting idx */
mpol_shared_policy_lookup(struct shared_policy * sp,pgoff_t idx)2703 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2704 						pgoff_t idx)
2705 {
2706 	struct mempolicy *pol = NULL;
2707 	struct sp_node *sn;
2708 
2709 	if (!sp->root.rb_node)
2710 		return NULL;
2711 	read_lock(&sp->lock);
2712 	sn = sp_lookup(sp, idx, idx+1);
2713 	if (sn) {
2714 		mpol_get(sn->policy);
2715 		pol = sn->policy;
2716 	}
2717 	read_unlock(&sp->lock);
2718 	return pol;
2719 }
2720 
sp_free(struct sp_node * n)2721 static void sp_free(struct sp_node *n)
2722 {
2723 	mpol_put(n->policy);
2724 	kmem_cache_free(sn_cache, n);
2725 }
2726 
2727 /**
2728  * mpol_misplaced - check whether current folio node is valid in policy
2729  *
2730  * @folio: folio to be checked
2731  * @vmf: structure describing the fault
2732  * @addr: virtual address in @vma for shared policy lookup and interleave policy
2733  *
2734  * Lookup current policy node id for vma,addr and "compare to" folio's
2735  * node id.  Policy determination "mimics" alloc_page_vma().
2736  * Called from fault path where we know the vma and faulting address.
2737  *
2738  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2739  * policy, or a suitable node ID to allocate a replacement folio from.
2740  */
mpol_misplaced(struct folio * folio,struct vm_fault * vmf,unsigned long addr)2741 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2742 		   unsigned long addr)
2743 {
2744 	struct mempolicy *pol;
2745 	pgoff_t ilx;
2746 	struct zoneref *z;
2747 	int curnid = folio_nid(folio);
2748 	struct vm_area_struct *vma = vmf->vma;
2749 	int thiscpu = raw_smp_processor_id();
2750 	int thisnid = numa_node_id();
2751 	int polnid = NUMA_NO_NODE;
2752 	int ret = NUMA_NO_NODE;
2753 
2754 	/*
2755 	 * Make sure ptl is held so that we don't preempt and we
2756 	 * have a stable smp processor id
2757 	 */
2758 	lockdep_assert_held(vmf->ptl);
2759 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2760 	if (!(pol->flags & MPOL_F_MOF))
2761 		goto out;
2762 
2763 	switch (pol->mode) {
2764 	case MPOL_INTERLEAVE:
2765 		polnid = interleave_nid(pol, ilx);
2766 		break;
2767 
2768 	case MPOL_WEIGHTED_INTERLEAVE:
2769 		polnid = weighted_interleave_nid(pol, ilx);
2770 		break;
2771 
2772 	case MPOL_PREFERRED:
2773 		if (node_isset(curnid, pol->nodes))
2774 			goto out;
2775 		polnid = first_node(pol->nodes);
2776 		break;
2777 
2778 	case MPOL_LOCAL:
2779 		polnid = numa_node_id();
2780 		break;
2781 
2782 	case MPOL_BIND:
2783 	case MPOL_PREFERRED_MANY:
2784 		/*
2785 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2786 		 * policy nodemask we don't allow numa migration to nodes
2787 		 * outside policy nodemask for now. This is done so that if we
2788 		 * want demotion to slow memory to happen, before allocating
2789 		 * from some DRAM node say 'x', we will end up using a
2790 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2791 		 * we should not promote to node 'x' from slow memory node.
2792 		 */
2793 		if (pol->flags & MPOL_F_MORON) {
2794 			/*
2795 			 * Optimize placement among multiple nodes
2796 			 * via NUMA balancing
2797 			 */
2798 			if (node_isset(thisnid, pol->nodes))
2799 				break;
2800 			goto out;
2801 		}
2802 
2803 		/*
2804 		 * use current page if in policy nodemask,
2805 		 * else select nearest allowed node, if any.
2806 		 * If no allowed nodes, use current [!misplaced].
2807 		 */
2808 		if (node_isset(curnid, pol->nodes))
2809 			goto out;
2810 		z = first_zones_zonelist(
2811 				node_zonelist(thisnid, GFP_HIGHUSER),
2812 				gfp_zone(GFP_HIGHUSER),
2813 				&pol->nodes);
2814 		polnid = zonelist_node_idx(z);
2815 		break;
2816 
2817 	default:
2818 		BUG();
2819 	}
2820 
2821 	/* Migrate the folio towards the node whose CPU is referencing it */
2822 	if (pol->flags & MPOL_F_MORON) {
2823 		polnid = thisnid;
2824 
2825 		if (!should_numa_migrate_memory(current, folio, curnid,
2826 						thiscpu))
2827 			goto out;
2828 	}
2829 
2830 	if (curnid != polnid)
2831 		ret = polnid;
2832 out:
2833 	mpol_cond_put(pol);
2834 
2835 	return ret;
2836 }
2837 
2838 /*
2839  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2840  * dropped after task->mempolicy is set to NULL so that any allocation done as
2841  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2842  * policy.
2843  */
mpol_put_task_policy(struct task_struct * task)2844 void mpol_put_task_policy(struct task_struct *task)
2845 {
2846 	struct mempolicy *pol;
2847 
2848 	task_lock(task);
2849 	pol = task->mempolicy;
2850 	task->mempolicy = NULL;
2851 	task_unlock(task);
2852 	mpol_put(pol);
2853 }
2854 
sp_delete(struct shared_policy * sp,struct sp_node * n)2855 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2856 {
2857 	rb_erase(&n->nd, &sp->root);
2858 	sp_free(n);
2859 }
2860 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2861 static void sp_node_init(struct sp_node *node, unsigned long start,
2862 			unsigned long end, struct mempolicy *pol)
2863 {
2864 	node->start = start;
2865 	node->end = end;
2866 	node->policy = pol;
2867 }
2868 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2869 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2870 				struct mempolicy *pol)
2871 {
2872 	struct sp_node *n;
2873 	struct mempolicy *newpol;
2874 
2875 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2876 	if (!n)
2877 		return NULL;
2878 
2879 	newpol = mpol_dup(pol);
2880 	if (IS_ERR(newpol)) {
2881 		kmem_cache_free(sn_cache, n);
2882 		return NULL;
2883 	}
2884 	newpol->flags |= MPOL_F_SHARED;
2885 	sp_node_init(n, start, end, newpol);
2886 
2887 	return n;
2888 }
2889 
2890 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,pgoff_t start,pgoff_t end,struct sp_node * new)2891 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2892 				 pgoff_t end, struct sp_node *new)
2893 {
2894 	struct sp_node *n;
2895 	struct sp_node *n_new = NULL;
2896 	struct mempolicy *mpol_new = NULL;
2897 	int ret = 0;
2898 
2899 restart:
2900 	write_lock(&sp->lock);
2901 	n = sp_lookup(sp, start, end);
2902 	/* Take care of old policies in the same range. */
2903 	while (n && n->start < end) {
2904 		struct rb_node *next = rb_next(&n->nd);
2905 		if (n->start >= start) {
2906 			if (n->end <= end)
2907 				sp_delete(sp, n);
2908 			else
2909 				n->start = end;
2910 		} else {
2911 			/* Old policy spanning whole new range. */
2912 			if (n->end > end) {
2913 				if (!n_new)
2914 					goto alloc_new;
2915 
2916 				*mpol_new = *n->policy;
2917 				atomic_set(&mpol_new->refcnt, 1);
2918 				sp_node_init(n_new, end, n->end, mpol_new);
2919 				n->end = start;
2920 				sp_insert(sp, n_new);
2921 				n_new = NULL;
2922 				mpol_new = NULL;
2923 				break;
2924 			} else
2925 				n->end = start;
2926 		}
2927 		if (!next)
2928 			break;
2929 		n = rb_entry(next, struct sp_node, nd);
2930 	}
2931 	if (new)
2932 		sp_insert(sp, new);
2933 	write_unlock(&sp->lock);
2934 	ret = 0;
2935 
2936 err_out:
2937 	if (mpol_new)
2938 		mpol_put(mpol_new);
2939 	if (n_new)
2940 		kmem_cache_free(sn_cache, n_new);
2941 
2942 	return ret;
2943 
2944 alloc_new:
2945 	write_unlock(&sp->lock);
2946 	ret = -ENOMEM;
2947 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2948 	if (!n_new)
2949 		goto err_out;
2950 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2951 	if (!mpol_new)
2952 		goto err_out;
2953 	atomic_set(&mpol_new->refcnt, 1);
2954 	goto restart;
2955 }
2956 
2957 /**
2958  * mpol_shared_policy_init - initialize shared policy for inode
2959  * @sp: pointer to inode shared policy
2960  * @mpol:  struct mempolicy to install
2961  *
2962  * Install non-NULL @mpol in inode's shared policy rb-tree.
2963  * On entry, the current task has a reference on a non-NULL @mpol.
2964  * This must be released on exit.
2965  * This is called at get_inode() calls and we can use GFP_KERNEL.
2966  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2967 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2968 {
2969 	int ret;
2970 
2971 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2972 	rwlock_init(&sp->lock);
2973 
2974 	if (mpol) {
2975 		struct sp_node *sn;
2976 		struct mempolicy *npol;
2977 		NODEMASK_SCRATCH(scratch);
2978 
2979 		if (!scratch)
2980 			goto put_mpol;
2981 
2982 		/* contextualize the tmpfs mount point mempolicy to this file */
2983 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2984 		if (IS_ERR(npol))
2985 			goto free_scratch; /* no valid nodemask intersection */
2986 
2987 		task_lock(current);
2988 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2989 		task_unlock(current);
2990 		if (ret)
2991 			goto put_npol;
2992 
2993 		/* alloc node covering entire file; adds ref to file's npol */
2994 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2995 		if (sn)
2996 			sp_insert(sp, sn);
2997 put_npol:
2998 		mpol_put(npol);	/* drop initial ref on file's npol */
2999 free_scratch:
3000 		NODEMASK_SCRATCH_FREE(scratch);
3001 put_mpol:
3002 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
3003 	}
3004 }
3005 
mpol_set_shared_policy(struct shared_policy * sp,struct vm_area_struct * vma,struct mempolicy * pol)3006 int mpol_set_shared_policy(struct shared_policy *sp,
3007 			struct vm_area_struct *vma, struct mempolicy *pol)
3008 {
3009 	int err;
3010 	struct sp_node *new = NULL;
3011 	unsigned long sz = vma_pages(vma);
3012 
3013 	if (pol) {
3014 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3015 		if (!new)
3016 			return -ENOMEM;
3017 	}
3018 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3019 	if (err && new)
3020 		sp_free(new);
3021 	return err;
3022 }
3023 
3024 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * sp)3025 void mpol_free_shared_policy(struct shared_policy *sp)
3026 {
3027 	struct sp_node *n;
3028 	struct rb_node *next;
3029 
3030 	if (!sp->root.rb_node)
3031 		return;
3032 	write_lock(&sp->lock);
3033 	next = rb_first(&sp->root);
3034 	while (next) {
3035 		n = rb_entry(next, struct sp_node, nd);
3036 		next = rb_next(&n->nd);
3037 		sp_delete(sp, n);
3038 	}
3039 	write_unlock(&sp->lock);
3040 }
3041 
3042 #ifdef CONFIG_NUMA_BALANCING
3043 static int __initdata numabalancing_override;
3044 
check_numabalancing_enable(void)3045 static void __init check_numabalancing_enable(void)
3046 {
3047 	bool numabalancing_default = false;
3048 
3049 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3050 		numabalancing_default = true;
3051 
3052 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3053 	if (numabalancing_override)
3054 		set_numabalancing_state(numabalancing_override == 1);
3055 
3056 	if (num_online_nodes() > 1 && !numabalancing_override) {
3057 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3058 			numabalancing_default ? "Enabling" : "Disabling");
3059 		set_numabalancing_state(numabalancing_default);
3060 	}
3061 }
3062 
setup_numabalancing(char * str)3063 static int __init setup_numabalancing(char *str)
3064 {
3065 	int ret = 0;
3066 	if (!str)
3067 		goto out;
3068 
3069 	if (!strcmp(str, "enable")) {
3070 		numabalancing_override = 1;
3071 		ret = 1;
3072 	} else if (!strcmp(str, "disable")) {
3073 		numabalancing_override = -1;
3074 		ret = 1;
3075 	}
3076 out:
3077 	if (!ret)
3078 		pr_warn("Unable to parse numa_balancing=\n");
3079 
3080 	return ret;
3081 }
3082 __setup("numa_balancing=", setup_numabalancing);
3083 #else
check_numabalancing_enable(void)3084 static inline void __init check_numabalancing_enable(void)
3085 {
3086 }
3087 #endif /* CONFIG_NUMA_BALANCING */
3088 
numa_policy_init(void)3089 void __init numa_policy_init(void)
3090 {
3091 	nodemask_t interleave_nodes;
3092 	unsigned long largest = 0;
3093 	int nid, prefer = 0;
3094 
3095 	policy_cache = kmem_cache_create("numa_policy",
3096 					 sizeof(struct mempolicy),
3097 					 0, SLAB_PANIC, NULL);
3098 
3099 	sn_cache = kmem_cache_create("shared_policy_node",
3100 				     sizeof(struct sp_node),
3101 				     0, SLAB_PANIC, NULL);
3102 
3103 	for_each_node(nid) {
3104 		preferred_node_policy[nid] = (struct mempolicy) {
3105 			.refcnt = ATOMIC_INIT(1),
3106 			.mode = MPOL_PREFERRED,
3107 			.flags = MPOL_F_MOF | MPOL_F_MORON,
3108 			.nodes = nodemask_of_node(nid),
3109 		};
3110 	}
3111 
3112 	/*
3113 	 * Set interleaving policy for system init. Interleaving is only
3114 	 * enabled across suitably sized nodes (default is >= 16MB), or
3115 	 * fall back to the largest node if they're all smaller.
3116 	 */
3117 	nodes_clear(interleave_nodes);
3118 	for_each_node_state(nid, N_MEMORY) {
3119 		unsigned long total_pages = node_present_pages(nid);
3120 
3121 		/* Preserve the largest node */
3122 		if (largest < total_pages) {
3123 			largest = total_pages;
3124 			prefer = nid;
3125 		}
3126 
3127 		/* Interleave this node? */
3128 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3129 			node_set(nid, interleave_nodes);
3130 	}
3131 
3132 	/* All too small, use the largest */
3133 	if (unlikely(nodes_empty(interleave_nodes)))
3134 		node_set(prefer, interleave_nodes);
3135 
3136 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3137 		pr_err("%s: interleaving failed\n", __func__);
3138 
3139 	check_numabalancing_enable();
3140 }
3141 
3142 /* Reset policy of current process to default */
numa_default_policy(void)3143 void numa_default_policy(void)
3144 {
3145 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3146 }
3147 
3148 /*
3149  * Parse and format mempolicy from/to strings
3150  */
3151 static const char * const policy_modes[] =
3152 {
3153 	[MPOL_DEFAULT]    = "default",
3154 	[MPOL_PREFERRED]  = "prefer",
3155 	[MPOL_BIND]       = "bind",
3156 	[MPOL_INTERLEAVE] = "interleave",
3157 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3158 	[MPOL_LOCAL]      = "local",
3159 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3160 };
3161 
3162 #ifdef CONFIG_TMPFS
3163 /**
3164  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3165  * @str:  string containing mempolicy to parse
3166  * @mpol:  pointer to struct mempolicy pointer, returned on success.
3167  *
3168  * Format of input:
3169  *	<mode>[=<flags>][:<nodelist>]
3170  *
3171  * Return: %0 on success, else %1
3172  */
mpol_parse_str(char * str,struct mempolicy ** mpol)3173 int mpol_parse_str(char *str, struct mempolicy **mpol)
3174 {
3175 	struct mempolicy *new = NULL;
3176 	unsigned short mode_flags;
3177 	nodemask_t nodes;
3178 	char *nodelist = strchr(str, ':');
3179 	char *flags = strchr(str, '=');
3180 	int err = 1, mode;
3181 
3182 	if (flags)
3183 		*flags++ = '\0';	/* terminate mode string */
3184 
3185 	if (nodelist) {
3186 		/* NUL-terminate mode or flags string */
3187 		*nodelist++ = '\0';
3188 		if (nodelist_parse(nodelist, nodes))
3189 			goto out;
3190 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3191 			goto out;
3192 	} else
3193 		nodes_clear(nodes);
3194 
3195 	mode = match_string(policy_modes, MPOL_MAX, str);
3196 	if (mode < 0)
3197 		goto out;
3198 
3199 	switch (mode) {
3200 	case MPOL_PREFERRED:
3201 		/*
3202 		 * Insist on a nodelist of one node only, although later
3203 		 * we use first_node(nodes) to grab a single node, so here
3204 		 * nodelist (or nodes) cannot be empty.
3205 		 */
3206 		if (nodelist) {
3207 			char *rest = nodelist;
3208 			while (isdigit(*rest))
3209 				rest++;
3210 			if (*rest)
3211 				goto out;
3212 			if (nodes_empty(nodes))
3213 				goto out;
3214 		}
3215 		break;
3216 	case MPOL_INTERLEAVE:
3217 	case MPOL_WEIGHTED_INTERLEAVE:
3218 		/*
3219 		 * Default to online nodes with memory if no nodelist
3220 		 */
3221 		if (!nodelist)
3222 			nodes = node_states[N_MEMORY];
3223 		break;
3224 	case MPOL_LOCAL:
3225 		/*
3226 		 * Don't allow a nodelist;  mpol_new() checks flags
3227 		 */
3228 		if (nodelist)
3229 			goto out;
3230 		break;
3231 	case MPOL_DEFAULT:
3232 		/*
3233 		 * Insist on a empty nodelist
3234 		 */
3235 		if (!nodelist)
3236 			err = 0;
3237 		goto out;
3238 	case MPOL_PREFERRED_MANY:
3239 	case MPOL_BIND:
3240 		/*
3241 		 * Insist on a nodelist
3242 		 */
3243 		if (!nodelist)
3244 			goto out;
3245 	}
3246 
3247 	mode_flags = 0;
3248 	if (flags) {
3249 		/*
3250 		 * Currently, we only support two mutually exclusive
3251 		 * mode flags.
3252 		 */
3253 		if (!strcmp(flags, "static"))
3254 			mode_flags |= MPOL_F_STATIC_NODES;
3255 		else if (!strcmp(flags, "relative"))
3256 			mode_flags |= MPOL_F_RELATIVE_NODES;
3257 		else
3258 			goto out;
3259 	}
3260 
3261 	new = mpol_new(mode, mode_flags, &nodes);
3262 	if (IS_ERR(new))
3263 		goto out;
3264 
3265 	/*
3266 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3267 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3268 	 */
3269 	if (mode != MPOL_PREFERRED) {
3270 		new->nodes = nodes;
3271 	} else if (nodelist) {
3272 		nodes_clear(new->nodes);
3273 		node_set(first_node(nodes), new->nodes);
3274 	} else {
3275 		new->mode = MPOL_LOCAL;
3276 	}
3277 
3278 	/*
3279 	 * Save nodes for contextualization: this will be used to "clone"
3280 	 * the mempolicy in a specific context [cpuset] at a later time.
3281 	 */
3282 	new->w.user_nodemask = nodes;
3283 
3284 	err = 0;
3285 
3286 out:
3287 	/* Restore string for error message */
3288 	if (nodelist)
3289 		*--nodelist = ':';
3290 	if (flags)
3291 		*--flags = '=';
3292 	if (!err)
3293 		*mpol = new;
3294 	return err;
3295 }
3296 #endif /* CONFIG_TMPFS */
3297 
3298 /**
3299  * mpol_to_str - format a mempolicy structure for printing
3300  * @buffer:  to contain formatted mempolicy string
3301  * @maxlen:  length of @buffer
3302  * @pol:  pointer to mempolicy to be formatted
3303  *
3304  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3305  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3306  * interleave", plus the longest flag flags, "relative|balancing", and to
3307  * display at least a few node ids.
3308  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3309 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3310 {
3311 	char *p = buffer;
3312 	nodemask_t nodes = NODE_MASK_NONE;
3313 	unsigned short mode = MPOL_DEFAULT;
3314 	unsigned short flags = 0;
3315 
3316 	if (pol &&
3317 	    pol != &default_policy &&
3318 	    !(pol >= &preferred_node_policy[0] &&
3319 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3320 		mode = pol->mode;
3321 		flags = pol->flags;
3322 	}
3323 
3324 	switch (mode) {
3325 	case MPOL_DEFAULT:
3326 	case MPOL_LOCAL:
3327 		break;
3328 	case MPOL_PREFERRED:
3329 	case MPOL_PREFERRED_MANY:
3330 	case MPOL_BIND:
3331 	case MPOL_INTERLEAVE:
3332 	case MPOL_WEIGHTED_INTERLEAVE:
3333 		nodes = pol->nodes;
3334 		break;
3335 	default:
3336 		WARN_ON_ONCE(1);
3337 		snprintf(p, maxlen, "unknown");
3338 		return;
3339 	}
3340 
3341 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3342 
3343 	if (flags & MPOL_MODE_FLAGS) {
3344 		p += snprintf(p, buffer + maxlen - p, "=");
3345 
3346 		/*
3347 		 * Static and relative are mutually exclusive.
3348 		 */
3349 		if (flags & MPOL_F_STATIC_NODES)
3350 			p += snprintf(p, buffer + maxlen - p, "static");
3351 		else if (flags & MPOL_F_RELATIVE_NODES)
3352 			p += snprintf(p, buffer + maxlen - p, "relative");
3353 
3354 		if (flags & MPOL_F_NUMA_BALANCING) {
3355 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3356 				p += snprintf(p, buffer + maxlen - p, "|");
3357 			p += snprintf(p, buffer + maxlen - p, "balancing");
3358 		}
3359 	}
3360 
3361 	if (!nodes_empty(nodes))
3362 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3363 			       nodemask_pr_args(&nodes));
3364 }
3365 
3366 #ifdef CONFIG_SYSFS
3367 struct iw_node_attr {
3368 	struct kobj_attribute kobj_attr;
3369 	int nid;
3370 };
3371 
node_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3372 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3373 			 char *buf)
3374 {
3375 	struct iw_node_attr *node_attr;
3376 	u8 weight;
3377 
3378 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3379 	weight = get_il_weight(node_attr->nid);
3380 	return sysfs_emit(buf, "%d\n", weight);
3381 }
3382 
node_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3383 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3384 			  const char *buf, size_t count)
3385 {
3386 	struct iw_node_attr *node_attr;
3387 	u8 *new;
3388 	u8 *old;
3389 	u8 weight = 0;
3390 
3391 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3392 	if (count == 0 || sysfs_streq(buf, ""))
3393 		weight = 0;
3394 	else if (kstrtou8(buf, 0, &weight))
3395 		return -EINVAL;
3396 
3397 	new = kzalloc(nr_node_ids, GFP_KERNEL);
3398 	if (!new)
3399 		return -ENOMEM;
3400 
3401 	mutex_lock(&iw_table_lock);
3402 	old = rcu_dereference_protected(iw_table,
3403 					lockdep_is_held(&iw_table_lock));
3404 	if (old)
3405 		memcpy(new, old, nr_node_ids);
3406 	new[node_attr->nid] = weight;
3407 	rcu_assign_pointer(iw_table, new);
3408 	mutex_unlock(&iw_table_lock);
3409 	synchronize_rcu();
3410 	kfree(old);
3411 	return count;
3412 }
3413 
3414 static struct iw_node_attr **node_attrs;
3415 
sysfs_wi_node_release(struct iw_node_attr * node_attr,struct kobject * parent)3416 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3417 				  struct kobject *parent)
3418 {
3419 	if (!node_attr)
3420 		return;
3421 	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3422 	kfree(node_attr->kobj_attr.attr.name);
3423 	kfree(node_attr);
3424 }
3425 
sysfs_wi_release(struct kobject * wi_kobj)3426 static void sysfs_wi_release(struct kobject *wi_kobj)
3427 {
3428 	int i;
3429 
3430 	for (i = 0; i < nr_node_ids; i++)
3431 		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3432 	kobject_put(wi_kobj);
3433 }
3434 
3435 static const struct kobj_type wi_ktype = {
3436 	.sysfs_ops = &kobj_sysfs_ops,
3437 	.release = sysfs_wi_release,
3438 };
3439 
add_weight_node(int nid,struct kobject * wi_kobj)3440 static int add_weight_node(int nid, struct kobject *wi_kobj)
3441 {
3442 	struct iw_node_attr *node_attr;
3443 	char *name;
3444 
3445 	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3446 	if (!node_attr)
3447 		return -ENOMEM;
3448 
3449 	name = kasprintf(GFP_KERNEL, "node%d", nid);
3450 	if (!name) {
3451 		kfree(node_attr);
3452 		return -ENOMEM;
3453 	}
3454 
3455 	sysfs_attr_init(&node_attr->kobj_attr.attr);
3456 	node_attr->kobj_attr.attr.name = name;
3457 	node_attr->kobj_attr.attr.mode = 0644;
3458 	node_attr->kobj_attr.show = node_show;
3459 	node_attr->kobj_attr.store = node_store;
3460 	node_attr->nid = nid;
3461 
3462 	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3463 		kfree(node_attr->kobj_attr.attr.name);
3464 		kfree(node_attr);
3465 		pr_err("failed to add attribute to weighted_interleave\n");
3466 		return -ENOMEM;
3467 	}
3468 
3469 	node_attrs[nid] = node_attr;
3470 	return 0;
3471 }
3472 
add_weighted_interleave_group(struct kobject * root_kobj)3473 static int add_weighted_interleave_group(struct kobject *root_kobj)
3474 {
3475 	struct kobject *wi_kobj;
3476 	int nid, err;
3477 
3478 	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3479 	if (!wi_kobj)
3480 		return -ENOMEM;
3481 
3482 	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3483 				   "weighted_interleave");
3484 	if (err) {
3485 		kfree(wi_kobj);
3486 		return err;
3487 	}
3488 
3489 	for_each_node_state(nid, N_POSSIBLE) {
3490 		err = add_weight_node(nid, wi_kobj);
3491 		if (err) {
3492 			pr_err("failed to add sysfs [node%d]\n", nid);
3493 			break;
3494 		}
3495 	}
3496 	if (err)
3497 		kobject_put(wi_kobj);
3498 	return 0;
3499 }
3500 
mempolicy_kobj_release(struct kobject * kobj)3501 static void mempolicy_kobj_release(struct kobject *kobj)
3502 {
3503 	u8 *old;
3504 
3505 	mutex_lock(&iw_table_lock);
3506 	old = rcu_dereference_protected(iw_table,
3507 					lockdep_is_held(&iw_table_lock));
3508 	rcu_assign_pointer(iw_table, NULL);
3509 	mutex_unlock(&iw_table_lock);
3510 	synchronize_rcu();
3511 	kfree(old);
3512 	kfree(node_attrs);
3513 	kfree(kobj);
3514 }
3515 
3516 static const struct kobj_type mempolicy_ktype = {
3517 	.release = mempolicy_kobj_release
3518 };
3519 
mempolicy_sysfs_init(void)3520 static int __init mempolicy_sysfs_init(void)
3521 {
3522 	int err;
3523 	static struct kobject *mempolicy_kobj;
3524 
3525 	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3526 	if (!mempolicy_kobj) {
3527 		err = -ENOMEM;
3528 		goto err_out;
3529 	}
3530 
3531 	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3532 			     GFP_KERNEL);
3533 	if (!node_attrs) {
3534 		err = -ENOMEM;
3535 		goto mempol_out;
3536 	}
3537 
3538 	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3539 				   "mempolicy");
3540 	if (err)
3541 		goto node_out;
3542 
3543 	err = add_weighted_interleave_group(mempolicy_kobj);
3544 	if (err) {
3545 		pr_err("mempolicy sysfs structure failed to initialize\n");
3546 		kobject_put(mempolicy_kobj);
3547 		return err;
3548 	}
3549 
3550 	return err;
3551 node_out:
3552 	kfree(node_attrs);
3553 mempol_out:
3554 	kfree(mempolicy_kobj);
3555 err_out:
3556 	pr_err("failed to add mempolicy kobject to the system\n");
3557 	return err;
3558 }
3559 
3560 late_initcall(mempolicy_sysfs_init);
3561 #endif /* CONFIG_SYSFS */
3562