1 //! Compiler intrinsics.
2 //!
3 //! The corresponding definitions are in `compiler/rustc_codegen_llvm/src/intrinsic.rs`.
4 //! The corresponding const implementations are in `compiler/rustc_mir/src/interpret/intrinsics.rs`
5 //!
6 //! # Const intrinsics
7 //!
8 //! Note: any changes to the constness of intrinsics should be discussed with the language team.
9 //! This includes changes in the stability of the constness.
10 //!
11 //! In order to make an intrinsic usable at compile-time, one needs to copy the implementation
12 //! from <https://github.com/rust-lang/miri/blob/master/src/shims/intrinsics.rs> to
13 //! `compiler/rustc_mir/src/interpret/intrinsics.rs` and add a
14 //! `#[rustc_const_unstable(feature = "foo", issue = "01234")]` to the intrinsic.
15 //!
16 //! If an intrinsic is supposed to be used from a `const fn` with a `rustc_const_stable` attribute,
17 //! the intrinsic's attribute must be `rustc_const_stable`, too. Such a change should not be done
18 //! without T-lang consultation, because it bakes a feature into the language that cannot be
19 //! replicated in user code without compiler support.
20 //!
21 //! # Volatiles
22 //!
23 //! The volatile intrinsics provide operations intended to act on I/O
24 //! memory, which are guaranteed to not be reordered by the compiler
25 //! across other volatile intrinsics. See the LLVM documentation on
26 //! [[volatile]].
27 //!
28 //! [volatile]: https://llvm.org/docs/LangRef.html#volatile-memory-accesses
29 //!
30 //! # Atomics
31 //!
32 //! The atomic intrinsics provide common atomic operations on machine
33 //! words, with multiple possible memory orderings. They obey the same
34 //! semantics as C++11. See the LLVM documentation on [[atomics]].
35 //!
36 //! [atomics]: https://llvm.org/docs/Atomics.html
37 //!
38 //! A quick refresher on memory ordering:
39 //!
40 //! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes
41 //!   take place after the barrier.
42 //! * Release - a barrier for releasing a lock. Preceding reads and writes
43 //!   take place before the barrier.
44 //! * Sequentially consistent - sequentially consistent operations are
45 //!   guaranteed to happen in order. This is the standard mode for working
46 //!   with atomic types and is equivalent to Java's `volatile`.
47 
48 #![unstable(
49     feature = "core_intrinsics",
50     reason = "intrinsics are unlikely to ever be stabilized, instead \
51                       they should be used through stabilized interfaces \
52                       in the rest of the standard library",
53     issue = "none"
54 )]
55 #![allow(missing_docs)]
56 
57 use crate::marker::DiscriminantKind;
58 use crate::mem;
59 
60 // These imports are used for simplifying intra-doc links
61 #[allow(unused_imports)]
62 #[cfg(all(target_has_atomic = "8", target_has_atomic = "32", target_has_atomic = "ptr"))]
63 use crate::sync::atomic::{self, AtomicBool, AtomicI32, AtomicIsize, AtomicU32, Ordering};
64 
65 #[stable(feature = "drop_in_place", since = "1.8.0")]
66 #[rustc_deprecated(
67     reason = "no longer an intrinsic - use `ptr::drop_in_place` directly",
68     since = "1.52.0"
69 )]
70 #[inline]
drop_in_place<T: ?Sized>(to_drop: *mut T)71 pub unsafe fn drop_in_place<T: ?Sized>(to_drop: *mut T) {
72     // SAFETY: see `ptr::drop_in_place`
73     unsafe { crate::ptr::drop_in_place(to_drop) }
74 }
75 
76 extern "rust-intrinsic" {
77     // N.B., these intrinsics take raw pointers because they mutate aliased
78     // memory, which is not valid for either `&` or `&mut`.
79 
80     /// Stores a value if the current value is the same as the `old` value.
81     ///
82     /// The stabilized version of this intrinsic is available on the
83     /// [`atomic`] types via the `compare_exchange` method by passing
84     /// [`Ordering::SeqCst`] as both the `success` and `failure` parameters.
85     /// For example, [`AtomicBool::compare_exchange`].
atomic_cxchg<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)86     pub fn atomic_cxchg<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
87     /// Stores a value if the current value is the same as the `old` value.
88     ///
89     /// The stabilized version of this intrinsic is available on the
90     /// [`atomic`] types via the `compare_exchange` method by passing
91     /// [`Ordering::Acquire`] as both the `success` and `failure` parameters.
92     /// For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_acq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)93     pub fn atomic_cxchg_acq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
94     /// Stores a value if the current value is the same as the `old` value.
95     ///
96     /// The stabilized version of this intrinsic is available on the
97     /// [`atomic`] types via the `compare_exchange` method by passing
98     /// [`Ordering::Release`] as the `success` and [`Ordering::Relaxed`] as the
99     /// `failure` parameters. For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_rel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)100     pub fn atomic_cxchg_rel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
101     /// Stores a value if the current value is the same as the `old` value.
102     ///
103     /// The stabilized version of this intrinsic is available on the
104     /// [`atomic`] types via the `compare_exchange` method by passing
105     /// [`Ordering::AcqRel`] as the `success` and [`Ordering::Acquire`] as the
106     /// `failure` parameters. For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_acqrel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)107     pub fn atomic_cxchg_acqrel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
108     /// Stores a value if the current value is the same as the `old` value.
109     ///
110     /// The stabilized version of this intrinsic is available on the
111     /// [`atomic`] types via the `compare_exchange` method by passing
112     /// [`Ordering::Relaxed`] as both the `success` and `failure` parameters.
113     /// For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)114     pub fn atomic_cxchg_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
115     /// Stores a value if the current value is the same as the `old` value.
116     ///
117     /// The stabilized version of this intrinsic is available on the
118     /// [`atomic`] types via the `compare_exchange` method by passing
119     /// [`Ordering::SeqCst`] as the `success` and [`Ordering::Relaxed`] as the
120     /// `failure` parameters. For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)121     pub fn atomic_cxchg_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
122     /// Stores a value if the current value is the same as the `old` value.
123     ///
124     /// The stabilized version of this intrinsic is available on the
125     /// [`atomic`] types via the `compare_exchange` method by passing
126     /// [`Ordering::SeqCst`] as the `success` and [`Ordering::Acquire`] as the
127     /// `failure` parameters. For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_failacq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)128     pub fn atomic_cxchg_failacq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
129     /// Stores a value if the current value is the same as the `old` value.
130     ///
131     /// The stabilized version of this intrinsic is available on the
132     /// [`atomic`] types via the `compare_exchange` method by passing
133     /// [`Ordering::Acquire`] as the `success` and [`Ordering::Relaxed`] as the
134     /// `failure` parameters. For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_acq_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)135     pub fn atomic_cxchg_acq_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
136     /// Stores a value if the current value is the same as the `old` value.
137     ///
138     /// The stabilized version of this intrinsic is available on the
139     /// [`atomic`] types via the `compare_exchange` method by passing
140     /// [`Ordering::AcqRel`] as the `success` and [`Ordering::Relaxed`] as the
141     /// `failure` parameters. For example, [`AtomicBool::compare_exchange`].
atomic_cxchg_acqrel_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)142     pub fn atomic_cxchg_acqrel_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
143 
144     /// Stores a value if the current value is the same as the `old` value.
145     ///
146     /// The stabilized version of this intrinsic is available on the
147     /// [`atomic`] types via the `compare_exchange_weak` method by passing
148     /// [`Ordering::SeqCst`] as both the `success` and `failure` parameters.
149     /// For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)150     pub fn atomic_cxchgweak<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
151     /// Stores a value if the current value is the same as the `old` value.
152     ///
153     /// The stabilized version of this intrinsic is available on the
154     /// [`atomic`] types via the `compare_exchange_weak` method by passing
155     /// [`Ordering::Acquire`] as both the `success` and `failure` parameters.
156     /// For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_acq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)157     pub fn atomic_cxchgweak_acq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
158     /// Stores a value if the current value is the same as the `old` value.
159     ///
160     /// The stabilized version of this intrinsic is available on the
161     /// [`atomic`] types via the `compare_exchange_weak` method by passing
162     /// [`Ordering::Release`] as the `success` and [`Ordering::Relaxed`] as the
163     /// `failure` parameters. For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_rel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)164     pub fn atomic_cxchgweak_rel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
165     /// Stores a value if the current value is the same as the `old` value.
166     ///
167     /// The stabilized version of this intrinsic is available on the
168     /// [`atomic`] types via the `compare_exchange_weak` method by passing
169     /// [`Ordering::AcqRel`] as the `success` and [`Ordering::Acquire`] as the
170     /// `failure` parameters. For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_acqrel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)171     pub fn atomic_cxchgweak_acqrel<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
172     /// Stores a value if the current value is the same as the `old` value.
173     ///
174     /// The stabilized version of this intrinsic is available on the
175     /// [`atomic`] types via the `compare_exchange_weak` method by passing
176     /// [`Ordering::Relaxed`] as both the `success` and `failure` parameters.
177     /// For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)178     pub fn atomic_cxchgweak_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
179     /// Stores a value if the current value is the same as the `old` value.
180     ///
181     /// The stabilized version of this intrinsic is available on the
182     /// [`atomic`] types via the `compare_exchange_weak` method by passing
183     /// [`Ordering::SeqCst`] as the `success` and [`Ordering::Relaxed`] as the
184     /// `failure` parameters. For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)185     pub fn atomic_cxchgweak_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
186     /// Stores a value if the current value is the same as the `old` value.
187     ///
188     /// The stabilized version of this intrinsic is available on the
189     /// [`atomic`] types via the `compare_exchange_weak` method by passing
190     /// [`Ordering::SeqCst`] as the `success` and [`Ordering::Acquire`] as the
191     /// `failure` parameters. For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_failacq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)192     pub fn atomic_cxchgweak_failacq<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
193     /// Stores a value if the current value is the same as the `old` value.
194     ///
195     /// The stabilized version of this intrinsic is available on the
196     /// [`atomic`] types via the `compare_exchange_weak` method by passing
197     /// [`Ordering::Acquire`] as the `success` and [`Ordering::Relaxed`] as the
198     /// `failure` parameters. For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_acq_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)199     pub fn atomic_cxchgweak_acq_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
200     /// Stores a value if the current value is the same as the `old` value.
201     ///
202     /// The stabilized version of this intrinsic is available on the
203     /// [`atomic`] types via the `compare_exchange_weak` method by passing
204     /// [`Ordering::AcqRel`] as the `success` and [`Ordering::Relaxed`] as the
205     /// `failure` parameters. For example, [`AtomicBool::compare_exchange_weak`].
atomic_cxchgweak_acqrel_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)206     pub fn atomic_cxchgweak_acqrel_failrelaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
207 
208     /// Loads the current value of the pointer.
209     ///
210     /// The stabilized version of this intrinsic is available on the
211     /// [`atomic`] types via the `load` method by passing
212     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::load`].
atomic_load<T: Copy>(src: *const T) -> T213     pub fn atomic_load<T: Copy>(src: *const T) -> T;
214     /// Loads the current value of the pointer.
215     ///
216     /// The stabilized version of this intrinsic is available on the
217     /// [`atomic`] types via the `load` method by passing
218     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::load`].
atomic_load_acq<T: Copy>(src: *const T) -> T219     pub fn atomic_load_acq<T: Copy>(src: *const T) -> T;
220     /// Loads the current value of the pointer.
221     ///
222     /// The stabilized version of this intrinsic is available on the
223     /// [`atomic`] types via the `load` method by passing
224     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::load`].
atomic_load_relaxed<T: Copy>(src: *const T) -> T225     pub fn atomic_load_relaxed<T: Copy>(src: *const T) -> T;
atomic_load_unordered<T: Copy>(src: *const T) -> T226     pub fn atomic_load_unordered<T: Copy>(src: *const T) -> T;
227 
228     /// Stores the value at the specified memory location.
229     ///
230     /// The stabilized version of this intrinsic is available on the
231     /// [`atomic`] types via the `store` method by passing
232     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::store`].
atomic_store<T: Copy>(dst: *mut T, val: T)233     pub fn atomic_store<T: Copy>(dst: *mut T, val: T);
234     /// Stores the value at the specified memory location.
235     ///
236     /// The stabilized version of this intrinsic is available on the
237     /// [`atomic`] types via the `store` method by passing
238     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::store`].
atomic_store_rel<T: Copy>(dst: *mut T, val: T)239     pub fn atomic_store_rel<T: Copy>(dst: *mut T, val: T);
240     /// Stores the value at the specified memory location.
241     ///
242     /// The stabilized version of this intrinsic is available on the
243     /// [`atomic`] types via the `store` method by passing
244     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::store`].
atomic_store_relaxed<T: Copy>(dst: *mut T, val: T)245     pub fn atomic_store_relaxed<T: Copy>(dst: *mut T, val: T);
atomic_store_unordered<T: Copy>(dst: *mut T, val: T)246     pub fn atomic_store_unordered<T: Copy>(dst: *mut T, val: T);
247 
248     /// Stores the value at the specified memory location, returning the old value.
249     ///
250     /// The stabilized version of this intrinsic is available on the
251     /// [`atomic`] types via the `swap` method by passing
252     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::swap`].
atomic_xchg<T: Copy>(dst: *mut T, src: T) -> T253     pub fn atomic_xchg<T: Copy>(dst: *mut T, src: T) -> T;
254     /// Stores the value at the specified memory location, returning the old value.
255     ///
256     /// The stabilized version of this intrinsic is available on the
257     /// [`atomic`] types via the `swap` method by passing
258     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::swap`].
atomic_xchg_acq<T: Copy>(dst: *mut T, src: T) -> T259     pub fn atomic_xchg_acq<T: Copy>(dst: *mut T, src: T) -> T;
260     /// Stores the value at the specified memory location, returning the old value.
261     ///
262     /// The stabilized version of this intrinsic is available on the
263     /// [`atomic`] types via the `swap` method by passing
264     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::swap`].
atomic_xchg_rel<T: Copy>(dst: *mut T, src: T) -> T265     pub fn atomic_xchg_rel<T: Copy>(dst: *mut T, src: T) -> T;
266     /// Stores the value at the specified memory location, returning the old value.
267     ///
268     /// The stabilized version of this intrinsic is available on the
269     /// [`atomic`] types via the `swap` method by passing
270     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::swap`].
atomic_xchg_acqrel<T: Copy>(dst: *mut T, src: T) -> T271     pub fn atomic_xchg_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
272     /// Stores the value at the specified memory location, returning the old value.
273     ///
274     /// The stabilized version of this intrinsic is available on the
275     /// [`atomic`] types via the `swap` method by passing
276     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::swap`].
atomic_xchg_relaxed<T: Copy>(dst: *mut T, src: T) -> T277     pub fn atomic_xchg_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
278 
279     /// Adds to the current value, returning the previous value.
280     ///
281     /// The stabilized version of this intrinsic is available on the
282     /// [`atomic`] types via the `fetch_add` method by passing
283     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicIsize::fetch_add`].
atomic_xadd<T: Copy>(dst: *mut T, src: T) -> T284     pub fn atomic_xadd<T: Copy>(dst: *mut T, src: T) -> T;
285     /// Adds to the current value, returning the previous value.
286     ///
287     /// The stabilized version of this intrinsic is available on the
288     /// [`atomic`] types via the `fetch_add` method by passing
289     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicIsize::fetch_add`].
atomic_xadd_acq<T: Copy>(dst: *mut T, src: T) -> T290     pub fn atomic_xadd_acq<T: Copy>(dst: *mut T, src: T) -> T;
291     /// Adds to the current value, returning the previous value.
292     ///
293     /// The stabilized version of this intrinsic is available on the
294     /// [`atomic`] types via the `fetch_add` method by passing
295     /// [`Ordering::Release`] as the `order`. For example, [`AtomicIsize::fetch_add`].
atomic_xadd_rel<T: Copy>(dst: *mut T, src: T) -> T296     pub fn atomic_xadd_rel<T: Copy>(dst: *mut T, src: T) -> T;
297     /// Adds to the current value, returning the previous value.
298     ///
299     /// The stabilized version of this intrinsic is available on the
300     /// [`atomic`] types via the `fetch_add` method by passing
301     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicIsize::fetch_add`].
atomic_xadd_acqrel<T: Copy>(dst: *mut T, src: T) -> T302     pub fn atomic_xadd_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
303     /// Adds to the current value, returning the previous value.
304     ///
305     /// The stabilized version of this intrinsic is available on the
306     /// [`atomic`] types via the `fetch_add` method by passing
307     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicIsize::fetch_add`].
atomic_xadd_relaxed<T: Copy>(dst: *mut T, src: T) -> T308     pub fn atomic_xadd_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
309 
310     /// Subtract from the current value, returning the previous value.
311     ///
312     /// The stabilized version of this intrinsic is available on the
313     /// [`atomic`] types via the `fetch_sub` method by passing
314     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
atomic_xsub<T: Copy>(dst: *mut T, src: T) -> T315     pub fn atomic_xsub<T: Copy>(dst: *mut T, src: T) -> T;
316     /// Subtract from the current value, returning the previous value.
317     ///
318     /// The stabilized version of this intrinsic is available on the
319     /// [`atomic`] types via the `fetch_sub` method by passing
320     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
atomic_xsub_acq<T: Copy>(dst: *mut T, src: T) -> T321     pub fn atomic_xsub_acq<T: Copy>(dst: *mut T, src: T) -> T;
322     /// Subtract from the current value, returning the previous value.
323     ///
324     /// The stabilized version of this intrinsic is available on the
325     /// [`atomic`] types via the `fetch_sub` method by passing
326     /// [`Ordering::Release`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
atomic_xsub_rel<T: Copy>(dst: *mut T, src: T) -> T327     pub fn atomic_xsub_rel<T: Copy>(dst: *mut T, src: T) -> T;
328     /// Subtract from the current value, returning the previous value.
329     ///
330     /// The stabilized version of this intrinsic is available on the
331     /// [`atomic`] types via the `fetch_sub` method by passing
332     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
atomic_xsub_acqrel<T: Copy>(dst: *mut T, src: T) -> T333     pub fn atomic_xsub_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
334     /// Subtract from the current value, returning the previous value.
335     ///
336     /// The stabilized version of this intrinsic is available on the
337     /// [`atomic`] types via the `fetch_sub` method by passing
338     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
atomic_xsub_relaxed<T: Copy>(dst: *mut T, src: T) -> T339     pub fn atomic_xsub_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
340 
341     /// Bitwise and with the current value, returning the previous value.
342     ///
343     /// The stabilized version of this intrinsic is available on the
344     /// [`atomic`] types via the `fetch_and` method by passing
345     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_and`].
atomic_and<T: Copy>(dst: *mut T, src: T) -> T346     pub fn atomic_and<T: Copy>(dst: *mut T, src: T) -> T;
347     /// Bitwise and with the current value, returning the previous value.
348     ///
349     /// The stabilized version of this intrinsic is available on the
350     /// [`atomic`] types via the `fetch_and` method by passing
351     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_and`].
atomic_and_acq<T: Copy>(dst: *mut T, src: T) -> T352     pub fn atomic_and_acq<T: Copy>(dst: *mut T, src: T) -> T;
353     /// Bitwise and with the current value, returning the previous value.
354     ///
355     /// The stabilized version of this intrinsic is available on the
356     /// [`atomic`] types via the `fetch_and` method by passing
357     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_and`].
atomic_and_rel<T: Copy>(dst: *mut T, src: T) -> T358     pub fn atomic_and_rel<T: Copy>(dst: *mut T, src: T) -> T;
359     /// Bitwise and with the current value, returning the previous value.
360     ///
361     /// The stabilized version of this intrinsic is available on the
362     /// [`atomic`] types via the `fetch_and` method by passing
363     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_and`].
atomic_and_acqrel<T: Copy>(dst: *mut T, src: T) -> T364     pub fn atomic_and_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
365     /// Bitwise and with the current value, returning the previous value.
366     ///
367     /// The stabilized version of this intrinsic is available on the
368     /// [`atomic`] types via the `fetch_and` method by passing
369     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_and`].
atomic_and_relaxed<T: Copy>(dst: *mut T, src: T) -> T370     pub fn atomic_and_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
371 
372     /// Bitwise nand with the current value, returning the previous value.
373     ///
374     /// The stabilized version of this intrinsic is available on the
375     /// [`AtomicBool`] type via the `fetch_nand` method by passing
376     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_nand`].
atomic_nand<T: Copy>(dst: *mut T, src: T) -> T377     pub fn atomic_nand<T: Copy>(dst: *mut T, src: T) -> T;
378     /// Bitwise nand with the current value, returning the previous value.
379     ///
380     /// The stabilized version of this intrinsic is available on the
381     /// [`AtomicBool`] type via the `fetch_nand` method by passing
382     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_nand`].
atomic_nand_acq<T: Copy>(dst: *mut T, src: T) -> T383     pub fn atomic_nand_acq<T: Copy>(dst: *mut T, src: T) -> T;
384     /// Bitwise nand with the current value, returning the previous value.
385     ///
386     /// The stabilized version of this intrinsic is available on the
387     /// [`AtomicBool`] type via the `fetch_nand` method by passing
388     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_nand`].
atomic_nand_rel<T: Copy>(dst: *mut T, src: T) -> T389     pub fn atomic_nand_rel<T: Copy>(dst: *mut T, src: T) -> T;
390     /// Bitwise nand with the current value, returning the previous value.
391     ///
392     /// The stabilized version of this intrinsic is available on the
393     /// [`AtomicBool`] type via the `fetch_nand` method by passing
394     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_nand`].
atomic_nand_acqrel<T: Copy>(dst: *mut T, src: T) -> T395     pub fn atomic_nand_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
396     /// Bitwise nand with the current value, returning the previous value.
397     ///
398     /// The stabilized version of this intrinsic is available on the
399     /// [`AtomicBool`] type via the `fetch_nand` method by passing
400     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_nand`].
atomic_nand_relaxed<T: Copy>(dst: *mut T, src: T) -> T401     pub fn atomic_nand_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
402 
403     /// Bitwise or with the current value, returning the previous value.
404     ///
405     /// The stabilized version of this intrinsic is available on the
406     /// [`atomic`] types via the `fetch_or` method by passing
407     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_or`].
atomic_or<T: Copy>(dst: *mut T, src: T) -> T408     pub fn atomic_or<T: Copy>(dst: *mut T, src: T) -> T;
409     /// Bitwise or with the current value, returning the previous value.
410     ///
411     /// The stabilized version of this intrinsic is available on the
412     /// [`atomic`] types via the `fetch_or` method by passing
413     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_or`].
atomic_or_acq<T: Copy>(dst: *mut T, src: T) -> T414     pub fn atomic_or_acq<T: Copy>(dst: *mut T, src: T) -> T;
415     /// Bitwise or with the current value, returning the previous value.
416     ///
417     /// The stabilized version of this intrinsic is available on the
418     /// [`atomic`] types via the `fetch_or` method by passing
419     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_or`].
atomic_or_rel<T: Copy>(dst: *mut T, src: T) -> T420     pub fn atomic_or_rel<T: Copy>(dst: *mut T, src: T) -> T;
421     /// Bitwise or with the current value, returning the previous value.
422     ///
423     /// The stabilized version of this intrinsic is available on the
424     /// [`atomic`] types via the `fetch_or` method by passing
425     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_or`].
atomic_or_acqrel<T: Copy>(dst: *mut T, src: T) -> T426     pub fn atomic_or_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
427     /// Bitwise or with the current value, returning the previous value.
428     ///
429     /// The stabilized version of this intrinsic is available on the
430     /// [`atomic`] types via the `fetch_or` method by passing
431     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_or`].
atomic_or_relaxed<T: Copy>(dst: *mut T, src: T) -> T432     pub fn atomic_or_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
433 
434     /// Bitwise xor with the current value, returning the previous value.
435     ///
436     /// The stabilized version of this intrinsic is available on the
437     /// [`atomic`] types via the `fetch_xor` method by passing
438     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_xor`].
atomic_xor<T: Copy>(dst: *mut T, src: T) -> T439     pub fn atomic_xor<T: Copy>(dst: *mut T, src: T) -> T;
440     /// Bitwise xor with the current value, returning the previous value.
441     ///
442     /// The stabilized version of this intrinsic is available on the
443     /// [`atomic`] types via the `fetch_xor` method by passing
444     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_xor`].
atomic_xor_acq<T: Copy>(dst: *mut T, src: T) -> T445     pub fn atomic_xor_acq<T: Copy>(dst: *mut T, src: T) -> T;
446     /// Bitwise xor with the current value, returning the previous value.
447     ///
448     /// The stabilized version of this intrinsic is available on the
449     /// [`atomic`] types via the `fetch_xor` method by passing
450     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_xor`].
atomic_xor_rel<T: Copy>(dst: *mut T, src: T) -> T451     pub fn atomic_xor_rel<T: Copy>(dst: *mut T, src: T) -> T;
452     /// Bitwise xor with the current value, returning the previous value.
453     ///
454     /// The stabilized version of this intrinsic is available on the
455     /// [`atomic`] types via the `fetch_xor` method by passing
456     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_xor`].
atomic_xor_acqrel<T: Copy>(dst: *mut T, src: T) -> T457     pub fn atomic_xor_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
458     /// Bitwise xor with the current value, returning the previous value.
459     ///
460     /// The stabilized version of this intrinsic is available on the
461     /// [`atomic`] types via the `fetch_xor` method by passing
462     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_xor`].
atomic_xor_relaxed<T: Copy>(dst: *mut T, src: T) -> T463     pub fn atomic_xor_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
464 
465     /// Maximum with the current value using a signed comparison.
466     ///
467     /// The stabilized version of this intrinsic is available on the
468     /// [`atomic`] signed integer types via the `fetch_max` method by passing
469     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicI32::fetch_max`].
atomic_max<T: Copy>(dst: *mut T, src: T) -> T470     pub fn atomic_max<T: Copy>(dst: *mut T, src: T) -> T;
471     /// Maximum with the current value using a signed comparison.
472     ///
473     /// The stabilized version of this intrinsic is available on the
474     /// [`atomic`] signed integer types via the `fetch_max` method by passing
475     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicI32::fetch_max`].
atomic_max_acq<T: Copy>(dst: *mut T, src: T) -> T476     pub fn atomic_max_acq<T: Copy>(dst: *mut T, src: T) -> T;
477     /// Maximum with the current value using a signed comparison.
478     ///
479     /// The stabilized version of this intrinsic is available on the
480     /// [`atomic`] signed integer types via the `fetch_max` method by passing
481     /// [`Ordering::Release`] as the `order`. For example, [`AtomicI32::fetch_max`].
atomic_max_rel<T: Copy>(dst: *mut T, src: T) -> T482     pub fn atomic_max_rel<T: Copy>(dst: *mut T, src: T) -> T;
483     /// Maximum with the current value using a signed comparison.
484     ///
485     /// The stabilized version of this intrinsic is available on the
486     /// [`atomic`] signed integer types via the `fetch_max` method by passing
487     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicI32::fetch_max`].
atomic_max_acqrel<T: Copy>(dst: *mut T, src: T) -> T488     pub fn atomic_max_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
489     /// Maximum with the current value.
490     ///
491     /// The stabilized version of this intrinsic is available on the
492     /// [`atomic`] signed integer types via the `fetch_max` method by passing
493     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicI32::fetch_max`].
atomic_max_relaxed<T: Copy>(dst: *mut T, src: T) -> T494     pub fn atomic_max_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
495 
496     /// Minimum with the current value using a signed comparison.
497     ///
498     /// The stabilized version of this intrinsic is available on the
499     /// [`atomic`] signed integer types via the `fetch_min` method by passing
500     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicI32::fetch_min`].
atomic_min<T: Copy>(dst: *mut T, src: T) -> T501     pub fn atomic_min<T: Copy>(dst: *mut T, src: T) -> T;
502     /// Minimum with the current value using a signed comparison.
503     ///
504     /// The stabilized version of this intrinsic is available on the
505     /// [`atomic`] signed integer types via the `fetch_min` method by passing
506     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicI32::fetch_min`].
atomic_min_acq<T: Copy>(dst: *mut T, src: T) -> T507     pub fn atomic_min_acq<T: Copy>(dst: *mut T, src: T) -> T;
508     /// Minimum with the current value using a signed comparison.
509     ///
510     /// The stabilized version of this intrinsic is available on the
511     /// [`atomic`] signed integer types via the `fetch_min` method by passing
512     /// [`Ordering::Release`] as the `order`. For example, [`AtomicI32::fetch_min`].
atomic_min_rel<T: Copy>(dst: *mut T, src: T) -> T513     pub fn atomic_min_rel<T: Copy>(dst: *mut T, src: T) -> T;
514     /// Minimum with the current value using a signed comparison.
515     ///
516     /// The stabilized version of this intrinsic is available on the
517     /// [`atomic`] signed integer types via the `fetch_min` method by passing
518     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicI32::fetch_min`].
atomic_min_acqrel<T: Copy>(dst: *mut T, src: T) -> T519     pub fn atomic_min_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
520     /// Minimum with the current value using a signed comparison.
521     ///
522     /// The stabilized version of this intrinsic is available on the
523     /// [`atomic`] signed integer types via the `fetch_min` method by passing
524     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicI32::fetch_min`].
atomic_min_relaxed<T: Copy>(dst: *mut T, src: T) -> T525     pub fn atomic_min_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
526 
527     /// Minimum with the current value using an unsigned comparison.
528     ///
529     /// The stabilized version of this intrinsic is available on the
530     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
531     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicU32::fetch_min`].
atomic_umin<T: Copy>(dst: *mut T, src: T) -> T532     pub fn atomic_umin<T: Copy>(dst: *mut T, src: T) -> T;
533     /// Minimum with the current value using an unsigned comparison.
534     ///
535     /// The stabilized version of this intrinsic is available on the
536     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
537     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicU32::fetch_min`].
atomic_umin_acq<T: Copy>(dst: *mut T, src: T) -> T538     pub fn atomic_umin_acq<T: Copy>(dst: *mut T, src: T) -> T;
539     /// Minimum with the current value using an unsigned comparison.
540     ///
541     /// The stabilized version of this intrinsic is available on the
542     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
543     /// [`Ordering::Release`] as the `order`. For example, [`AtomicU32::fetch_min`].
atomic_umin_rel<T: Copy>(dst: *mut T, src: T) -> T544     pub fn atomic_umin_rel<T: Copy>(dst: *mut T, src: T) -> T;
545     /// Minimum with the current value using an unsigned comparison.
546     ///
547     /// The stabilized version of this intrinsic is available on the
548     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
549     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicU32::fetch_min`].
atomic_umin_acqrel<T: Copy>(dst: *mut T, src: T) -> T550     pub fn atomic_umin_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
551     /// Minimum with the current value using an unsigned comparison.
552     ///
553     /// The stabilized version of this intrinsic is available on the
554     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
555     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicU32::fetch_min`].
atomic_umin_relaxed<T: Copy>(dst: *mut T, src: T) -> T556     pub fn atomic_umin_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
557 
558     /// Maximum with the current value using an unsigned comparison.
559     ///
560     /// The stabilized version of this intrinsic is available on the
561     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
562     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicU32::fetch_max`].
atomic_umax<T: Copy>(dst: *mut T, src: T) -> T563     pub fn atomic_umax<T: Copy>(dst: *mut T, src: T) -> T;
564     /// Maximum with the current value using an unsigned comparison.
565     ///
566     /// The stabilized version of this intrinsic is available on the
567     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
568     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicU32::fetch_max`].
atomic_umax_acq<T: Copy>(dst: *mut T, src: T) -> T569     pub fn atomic_umax_acq<T: Copy>(dst: *mut T, src: T) -> T;
570     /// Maximum with the current value using an unsigned comparison.
571     ///
572     /// The stabilized version of this intrinsic is available on the
573     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
574     /// [`Ordering::Release`] as the `order`. For example, [`AtomicU32::fetch_max`].
atomic_umax_rel<T: Copy>(dst: *mut T, src: T) -> T575     pub fn atomic_umax_rel<T: Copy>(dst: *mut T, src: T) -> T;
576     /// Maximum with the current value using an unsigned comparison.
577     ///
578     /// The stabilized version of this intrinsic is available on the
579     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
580     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicU32::fetch_max`].
atomic_umax_acqrel<T: Copy>(dst: *mut T, src: T) -> T581     pub fn atomic_umax_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
582     /// Maximum with the current value using an unsigned comparison.
583     ///
584     /// The stabilized version of this intrinsic is available on the
585     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
586     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicU32::fetch_max`].
atomic_umax_relaxed<T: Copy>(dst: *mut T, src: T) -> T587     pub fn atomic_umax_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
588 
589     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
590     /// if supported; otherwise, it is a no-op.
591     /// Prefetches have no effect on the behavior of the program but can change its performance
592     /// characteristics.
593     ///
594     /// The `locality` argument must be a constant integer and is a temporal locality specifier
595     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
596     ///
597     /// This intrinsic does not have a stable counterpart.
prefetch_read_data<T>(data: *const T, locality: i32)598     pub fn prefetch_read_data<T>(data: *const T, locality: i32);
599     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
600     /// if supported; otherwise, it is a no-op.
601     /// Prefetches have no effect on the behavior of the program but can change its performance
602     /// characteristics.
603     ///
604     /// The `locality` argument must be a constant integer and is a temporal locality specifier
605     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
606     ///
607     /// This intrinsic does not have a stable counterpart.
prefetch_write_data<T>(data: *const T, locality: i32)608     pub fn prefetch_write_data<T>(data: *const T, locality: i32);
609     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
610     /// if supported; otherwise, it is a no-op.
611     /// Prefetches have no effect on the behavior of the program but can change its performance
612     /// characteristics.
613     ///
614     /// The `locality` argument must be a constant integer and is a temporal locality specifier
615     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
616     ///
617     /// This intrinsic does not have a stable counterpart.
prefetch_read_instruction<T>(data: *const T, locality: i32)618     pub fn prefetch_read_instruction<T>(data: *const T, locality: i32);
619     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
620     /// if supported; otherwise, it is a no-op.
621     /// Prefetches have no effect on the behavior of the program but can change its performance
622     /// characteristics.
623     ///
624     /// The `locality` argument must be a constant integer and is a temporal locality specifier
625     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
626     ///
627     /// This intrinsic does not have a stable counterpart.
prefetch_write_instruction<T>(data: *const T, locality: i32)628     pub fn prefetch_write_instruction<T>(data: *const T, locality: i32);
629 }
630 
631 extern "rust-intrinsic" {
632     /// An atomic fence.
633     ///
634     /// The stabilized version of this intrinsic is available in
635     /// [`atomic::fence`] by passing [`Ordering::SeqCst`]
636     /// as the `order`.
atomic_fence()637     pub fn atomic_fence();
638     /// An atomic fence.
639     ///
640     /// The stabilized version of this intrinsic is available in
641     /// [`atomic::fence`] by passing [`Ordering::Acquire`]
642     /// as the `order`.
atomic_fence_acq()643     pub fn atomic_fence_acq();
644     /// An atomic fence.
645     ///
646     /// The stabilized version of this intrinsic is available in
647     /// [`atomic::fence`] by passing [`Ordering::Release`]
648     /// as the `order`.
atomic_fence_rel()649     pub fn atomic_fence_rel();
650     /// An atomic fence.
651     ///
652     /// The stabilized version of this intrinsic is available in
653     /// [`atomic::fence`] by passing [`Ordering::AcqRel`]
654     /// as the `order`.
atomic_fence_acqrel()655     pub fn atomic_fence_acqrel();
656 
657     /// A compiler-only memory barrier.
658     ///
659     /// Memory accesses will never be reordered across this barrier by the
660     /// compiler, but no instructions will be emitted for it. This is
661     /// appropriate for operations on the same thread that may be preempted,
662     /// such as when interacting with signal handlers.
663     ///
664     /// The stabilized version of this intrinsic is available in
665     /// [`atomic::compiler_fence`] by passing [`Ordering::SeqCst`]
666     /// as the `order`.
atomic_singlethreadfence()667     pub fn atomic_singlethreadfence();
668     /// A compiler-only memory barrier.
669     ///
670     /// Memory accesses will never be reordered across this barrier by the
671     /// compiler, but no instructions will be emitted for it. This is
672     /// appropriate for operations on the same thread that may be preempted,
673     /// such as when interacting with signal handlers.
674     ///
675     /// The stabilized version of this intrinsic is available in
676     /// [`atomic::compiler_fence`] by passing [`Ordering::Acquire`]
677     /// as the `order`.
atomic_singlethreadfence_acq()678     pub fn atomic_singlethreadfence_acq();
679     /// A compiler-only memory barrier.
680     ///
681     /// Memory accesses will never be reordered across this barrier by the
682     /// compiler, but no instructions will be emitted for it. This is
683     /// appropriate for operations on the same thread that may be preempted,
684     /// such as when interacting with signal handlers.
685     ///
686     /// The stabilized version of this intrinsic is available in
687     /// [`atomic::compiler_fence`] by passing [`Ordering::Release`]
688     /// as the `order`.
atomic_singlethreadfence_rel()689     pub fn atomic_singlethreadfence_rel();
690     /// A compiler-only memory barrier.
691     ///
692     /// Memory accesses will never be reordered across this barrier by the
693     /// compiler, but no instructions will be emitted for it. This is
694     /// appropriate for operations on the same thread that may be preempted,
695     /// such as when interacting with signal handlers.
696     ///
697     /// The stabilized version of this intrinsic is available in
698     /// [`atomic::compiler_fence`] by passing [`Ordering::AcqRel`]
699     /// as the `order`.
atomic_singlethreadfence_acqrel()700     pub fn atomic_singlethreadfence_acqrel();
701 
702     /// Magic intrinsic that derives its meaning from attributes
703     /// attached to the function.
704     ///
705     /// For example, dataflow uses this to inject static assertions so
706     /// that `rustc_peek(potentially_uninitialized)` would actually
707     /// double-check that dataflow did indeed compute that it is
708     /// uninitialized at that point in the control flow.
709     ///
710     /// This intrinsic should not be used outside of the compiler.
rustc_peek<T>(_: T) -> T711     pub fn rustc_peek<T>(_: T) -> T;
712 
713     /// Aborts the execution of the process.
714     ///
715     /// Note that, unlike most intrinsics, this is safe to call;
716     /// it does not require an `unsafe` block.
717     /// Therefore, implementations must not require the user to uphold
718     /// any safety invariants.
719     ///
720     /// [`std::process::abort`](../../std/process/fn.abort.html) is to be preferred if possible,
721     /// as its behavior is more user-friendly and more stable.
722     ///
723     /// The current implementation of `intrinsics::abort` is to invoke an invalid instruction,
724     /// on most platforms.
725     /// On Unix, the
726     /// process will probably terminate with a signal like `SIGABRT`, `SIGILL`, `SIGTRAP`, `SIGSEGV` or
727     /// `SIGBUS`.  The precise behaviour is not guaranteed and not stable.
abort() -> !728     pub fn abort() -> !;
729 
730     /// Informs the optimizer that this point in the code is not reachable,
731     /// enabling further optimizations.
732     ///
733     /// N.B., this is very different from the `unreachable!()` macro: Unlike the
734     /// macro, which panics when it is executed, it is *undefined behavior* to
735     /// reach code marked with this function.
736     ///
737     /// The stabilized version of this intrinsic is [`core::hint::unreachable_unchecked`].
738     #[rustc_const_stable(feature = "const_unreachable_unchecked", since = "1.57.0")]
unreachable() -> !739     pub fn unreachable() -> !;
740 
741     /// Informs the optimizer that a condition is always true.
742     /// If the condition is false, the behavior is undefined.
743     ///
744     /// No code is generated for this intrinsic, but the optimizer will try
745     /// to preserve it (and its condition) between passes, which may interfere
746     /// with optimization of surrounding code and reduce performance. It should
747     /// not be used if the invariant can be discovered by the optimizer on its
748     /// own, or if it does not enable any significant optimizations.
749     ///
750     /// This intrinsic does not have a stable counterpart.
751     #[rustc_const_unstable(feature = "const_assume", issue = "76972")]
assume(b: bool)752     pub fn assume(b: bool);
753 
754     /// Hints to the compiler that branch condition is likely to be true.
755     /// Returns the value passed to it.
756     ///
757     /// Any use other than with `if` statements will probably not have an effect.
758     ///
759     /// Note that, unlike most intrinsics, this is safe to call;
760     /// it does not require an `unsafe` block.
761     /// Therefore, implementations must not require the user to uphold
762     /// any safety invariants.
763     ///
764     /// This intrinsic does not have a stable counterpart.
765     #[rustc_const_unstable(feature = "const_likely", issue = "none")]
likely(b: bool) -> bool766     pub fn likely(b: bool) -> bool;
767 
768     /// Hints to the compiler that branch condition is likely to be false.
769     /// Returns the value passed to it.
770     ///
771     /// Any use other than with `if` statements will probably not have an effect.
772     ///
773     /// Note that, unlike most intrinsics, this is safe to call;
774     /// it does not require an `unsafe` block.
775     /// Therefore, implementations must not require the user to uphold
776     /// any safety invariants.
777     ///
778     /// This intrinsic does not have a stable counterpart.
779     #[rustc_const_unstable(feature = "const_likely", issue = "none")]
unlikely(b: bool) -> bool780     pub fn unlikely(b: bool) -> bool;
781 
782     /// Executes a breakpoint trap, for inspection by a debugger.
783     ///
784     /// This intrinsic does not have a stable counterpart.
breakpoint()785     pub fn breakpoint();
786 
787     /// The size of a type in bytes.
788     ///
789     /// Note that, unlike most intrinsics, this is safe to call;
790     /// it does not require an `unsafe` block.
791     /// Therefore, implementations must not require the user to uphold
792     /// any safety invariants.
793     ///
794     /// More specifically, this is the offset in bytes between successive
795     /// items of the same type, including alignment padding.
796     ///
797     /// The stabilized version of this intrinsic is [`core::mem::size_of`].
798     #[rustc_const_stable(feature = "const_size_of", since = "1.40.0")]
size_of<T>() -> usize799     pub fn size_of<T>() -> usize;
800 
801     /// The minimum alignment of a type.
802     ///
803     /// Note that, unlike most intrinsics, this is safe to call;
804     /// it does not require an `unsafe` block.
805     /// Therefore, implementations must not require the user to uphold
806     /// any safety invariants.
807     ///
808     /// The stabilized version of this intrinsic is [`core::mem::align_of`].
809     #[rustc_const_stable(feature = "const_min_align_of", since = "1.40.0")]
min_align_of<T>() -> usize810     pub fn min_align_of<T>() -> usize;
811     /// The preferred alignment of a type.
812     ///
813     /// This intrinsic does not have a stable counterpart.
814     #[rustc_const_unstable(feature = "const_pref_align_of", issue = "none")]
pref_align_of<T>() -> usize815     pub fn pref_align_of<T>() -> usize;
816 
817     /// The size of the referenced value in bytes.
818     ///
819     /// The stabilized version of this intrinsic is [`mem::size_of_val`].
820     #[rustc_const_unstable(feature = "const_size_of_val", issue = "46571")]
size_of_val<T: ?Sized>(_: *const T) -> usize821     pub fn size_of_val<T: ?Sized>(_: *const T) -> usize;
822     /// The required alignment of the referenced value.
823     ///
824     /// The stabilized version of this intrinsic is [`core::mem::align_of_val`].
825     #[rustc_const_unstable(feature = "const_align_of_val", issue = "46571")]
min_align_of_val<T: ?Sized>(_: *const T) -> usize826     pub fn min_align_of_val<T: ?Sized>(_: *const T) -> usize;
827 
828     /// Gets a static string slice containing the name of a type.
829     ///
830     /// Note that, unlike most intrinsics, this is safe to call;
831     /// it does not require an `unsafe` block.
832     /// Therefore, implementations must not require the user to uphold
833     /// any safety invariants.
834     ///
835     /// The stabilized version of this intrinsic is [`core::any::type_name`].
836     #[rustc_const_unstable(feature = "const_type_name", issue = "63084")]
type_name<T: ?Sized>() -> &'static str837     pub fn type_name<T: ?Sized>() -> &'static str;
838 
839     /// Gets an identifier which is globally unique to the specified type. This
840     /// function will return the same value for a type regardless of whichever
841     /// crate it is invoked in.
842     ///
843     /// Note that, unlike most intrinsics, this is safe to call;
844     /// it does not require an `unsafe` block.
845     /// Therefore, implementations must not require the user to uphold
846     /// any safety invariants.
847     ///
848     /// The stabilized version of this intrinsic is [`core::any::TypeId::of`].
849     #[rustc_const_unstable(feature = "const_type_id", issue = "77125")]
type_id<T: ?Sized + 'static>() -> u64850     pub fn type_id<T: ?Sized + 'static>() -> u64;
851 
852     /// A guard for unsafe functions that cannot ever be executed if `T` is uninhabited:
853     /// This will statically either panic, or do nothing.
854     ///
855     /// This intrinsic does not have a stable counterpart.
856     #[rustc_const_unstable(feature = "const_assert_type", issue = "none")]
assert_inhabited<T>()857     pub fn assert_inhabited<T>();
858 
859     /// A guard for unsafe functions that cannot ever be executed if `T` does not permit
860     /// zero-initialization: This will statically either panic, or do nothing.
861     ///
862     /// This intrinsic does not have a stable counterpart.
assert_zero_valid<T>()863     pub fn assert_zero_valid<T>();
864 
865     /// A guard for unsafe functions that cannot ever be executed if `T` has invalid
866     /// bit patterns: This will statically either panic, or do nothing.
867     ///
868     /// This intrinsic does not have a stable counterpart.
assert_uninit_valid<T>()869     pub fn assert_uninit_valid<T>();
870 
871     /// Gets a reference to a static `Location` indicating where it was called.
872     ///
873     /// Note that, unlike most intrinsics, this is safe to call;
874     /// it does not require an `unsafe` block.
875     /// Therefore, implementations must not require the user to uphold
876     /// any safety invariants.
877     ///
878     /// Consider using [`core::panic::Location::caller`] instead.
879     #[rustc_const_unstable(feature = "const_caller_location", issue = "76156")]
caller_location() -> &'static crate::panic::Location<'static>880     pub fn caller_location() -> &'static crate::panic::Location<'static>;
881 
882     /// Moves a value out of scope without running drop glue.
883     ///
884     /// This exists solely for [`mem::forget_unsized`]; normal `forget` uses
885     /// `ManuallyDrop` instead.
886     ///
887     /// Note that, unlike most intrinsics, this is safe to call;
888     /// it does not require an `unsafe` block.
889     /// Therefore, implementations must not require the user to uphold
890     /// any safety invariants.
891     #[rustc_const_unstable(feature = "const_intrinsic_forget", issue = "none")]
forget<T: ?Sized>(_: T)892     pub fn forget<T: ?Sized>(_: T);
893 
894     /// Reinterprets the bits of a value of one type as another type.
895     ///
896     /// Both types must have the same size. Neither the original, nor the result,
897     /// may be an [invalid value](../../nomicon/what-unsafe-does.html).
898     ///
899     /// `transmute` is semantically equivalent to a bitwise move of one type
900     /// into another. It copies the bits from the source value into the
901     /// destination value, then forgets the original. It's equivalent to C's
902     /// `memcpy` under the hood, just like `transmute_copy`.
903     ///
904     /// Because `transmute` is a by-value operation, alignment of the *transmuted values
905     /// themselves* is not a concern. As with any other function, the compiler already ensures
906     /// both `T` and `U` are properly aligned. However, when transmuting values that *point
907     /// elsewhere* (such as pointers, references, boxes…), the caller has to ensure proper
908     /// alignment of the pointed-to values.
909     ///
910     /// `transmute` is **incredibly** unsafe. There are a vast number of ways to
911     /// cause [undefined behavior][ub] with this function. `transmute` should be
912     /// the absolute last resort.
913     ///
914     /// Transmuting pointers to integers in a `const` context is [undefined behavior][ub].
915     /// Any attempt to use the resulting value for integer operations will abort const-evaluation.
916     ///
917     /// The [nomicon](../../nomicon/transmutes.html) has additional
918     /// documentation.
919     ///
920     /// [ub]: ../../reference/behavior-considered-undefined.html
921     ///
922     /// # Examples
923     ///
924     /// There are a few things that `transmute` is really useful for.
925     ///
926     /// Turning a pointer into a function pointer. This is *not* portable to
927     /// machines where function pointers and data pointers have different sizes.
928     ///
929     /// ```
930     /// fn foo() -> i32 {
931     ///     0
932     /// }
933     /// let pointer = foo as *const ();
934     /// let function = unsafe {
935     ///     std::mem::transmute::<*const (), fn() -> i32>(pointer)
936     /// };
937     /// assert_eq!(function(), 0);
938     /// ```
939     ///
940     /// Extending a lifetime, or shortening an invariant lifetime. This is
941     /// advanced, very unsafe Rust!
942     ///
943     /// ```
944     /// struct R<'a>(&'a i32);
945     /// unsafe fn extend_lifetime<'b>(r: R<'b>) -> R<'static> {
946     ///     std::mem::transmute::<R<'b>, R<'static>>(r)
947     /// }
948     ///
949     /// unsafe fn shorten_invariant_lifetime<'b, 'c>(r: &'b mut R<'static>)
950     ///                                              -> &'b mut R<'c> {
951     ///     std::mem::transmute::<&'b mut R<'static>, &'b mut R<'c>>(r)
952     /// }
953     /// ```
954     ///
955     /// # Alternatives
956     ///
957     /// Don't despair: many uses of `transmute` can be achieved through other means.
958     /// Below are common applications of `transmute` which can be replaced with safer
959     /// constructs.
960     ///
961     /// Turning raw bytes(`&[u8]`) to `u32`, `f64`, etc.:
962     ///
963     /// ```
964     /// let raw_bytes = [0x78, 0x56, 0x34, 0x12];
965     ///
966     /// let num = unsafe {
967     ///     std::mem::transmute::<[u8; 4], u32>(raw_bytes)
968     /// };
969     ///
970     /// // use `u32::from_ne_bytes` instead
971     /// let num = u32::from_ne_bytes(raw_bytes);
972     /// // or use `u32::from_le_bytes` or `u32::from_be_bytes` to specify the endianness
973     /// let num = u32::from_le_bytes(raw_bytes);
974     /// assert_eq!(num, 0x12345678);
975     /// let num = u32::from_be_bytes(raw_bytes);
976     /// assert_eq!(num, 0x78563412);
977     /// ```
978     ///
979     /// Turning a pointer into a `usize`:
980     ///
981     /// ```
982     /// let ptr = &0;
983     /// let ptr_num_transmute = unsafe {
984     ///     std::mem::transmute::<&i32, usize>(ptr)
985     /// };
986     ///
987     /// // Use an `as` cast instead
988     /// let ptr_num_cast = ptr as *const i32 as usize;
989     /// ```
990     ///
991     /// Turning a `*mut T` into an `&mut T`:
992     ///
993     /// ```
994     /// let ptr: *mut i32 = &mut 0;
995     /// let ref_transmuted = unsafe {
996     ///     std::mem::transmute::<*mut i32, &mut i32>(ptr)
997     /// };
998     ///
999     /// // Use a reborrow instead
1000     /// let ref_casted = unsafe { &mut *ptr };
1001     /// ```
1002     ///
1003     /// Turning an `&mut T` into an `&mut U`:
1004     ///
1005     /// ```
1006     /// let ptr = &mut 0;
1007     /// let val_transmuted = unsafe {
1008     ///     std::mem::transmute::<&mut i32, &mut u32>(ptr)
1009     /// };
1010     ///
1011     /// // Now, put together `as` and reborrowing - note the chaining of `as`
1012     /// // `as` is not transitive
1013     /// let val_casts = unsafe { &mut *(ptr as *mut i32 as *mut u32) };
1014     /// ```
1015     ///
1016     /// Turning an `&str` into a `&[u8]`:
1017     ///
1018     /// ```
1019     /// // this is not a good way to do this.
1020     /// let slice = unsafe { std::mem::transmute::<&str, &[u8]>("Rust") };
1021     /// assert_eq!(slice, &[82, 117, 115, 116]);
1022     ///
1023     /// // You could use `str::as_bytes`
1024     /// let slice = "Rust".as_bytes();
1025     /// assert_eq!(slice, &[82, 117, 115, 116]);
1026     ///
1027     /// // Or, just use a byte string, if you have control over the string
1028     /// // literal
1029     /// assert_eq!(b"Rust", &[82, 117, 115, 116]);
1030     /// ```
1031     ///
1032     /// Turning a `Vec<&T>` into a `Vec<Option<&T>>`.
1033     ///
1034     /// To transmute the inner type of the contents of a container, you must make sure to not
1035     /// violate any of the container's invariants. For `Vec`, this means that both the size
1036     /// *and alignment* of the inner types have to match. Other containers might rely on the
1037     /// size of the type, alignment, or even the `TypeId`, in which case transmuting wouldn't
1038     /// be possible at all without violating the container invariants.
1039     ///
1040     /// ```
1041     /// let store = [0, 1, 2, 3];
1042     /// let v_orig = store.iter().collect::<Vec<&i32>>();
1043     ///
1044     /// // clone the vector as we will reuse them later
1045     /// let v_clone = v_orig.clone();
1046     ///
1047     /// // Using transmute: this relies on the unspecified data layout of `Vec`, which is a
1048     /// // bad idea and could cause Undefined Behavior.
1049     /// // However, it is no-copy.
1050     /// let v_transmuted = unsafe {
1051     ///     std::mem::transmute::<Vec<&i32>, Vec<Option<&i32>>>(v_clone)
1052     /// };
1053     ///
1054     /// let v_clone = v_orig.clone();
1055     ///
1056     /// // This is the suggested, safe way.
1057     /// // It does copy the entire vector, though, into a new array.
1058     /// let v_collected = v_clone.into_iter()
1059     ///                          .map(Some)
1060     ///                          .collect::<Vec<Option<&i32>>>();
1061     ///
1062     /// let v_clone = v_orig.clone();
1063     ///
1064     /// // This is the proper no-copy, unsafe way of "transmuting" a `Vec`, without relying on the
1065     /// // data layout. Instead of literally calling `transmute`, we perform a pointer cast, but
1066     /// // in terms of converting the original inner type (`&i32`) to the new one (`Option<&i32>`),
1067     /// // this has all the same caveats. Besides the information provided above, also consult the
1068     /// // [`from_raw_parts`] documentation.
1069     /// let v_from_raw = unsafe {
1070     // FIXME Update this when vec_into_raw_parts is stabilized
1071     ///     // Ensure the original vector is not dropped.
1072     ///     let mut v_clone = std::mem::ManuallyDrop::new(v_clone);
1073     ///     Vec::from_raw_parts(v_clone.as_mut_ptr() as *mut Option<&i32>,
1074     ///                         v_clone.len(),
1075     ///                         v_clone.capacity())
1076     /// };
1077     /// ```
1078     ///
1079     /// [`from_raw_parts`]: ../../std/vec/struct.Vec.html#method.from_raw_parts
1080     ///
1081     /// Implementing `split_at_mut`:
1082     ///
1083     /// ```
1084     /// use std::{slice, mem};
1085     ///
1086     /// // There are multiple ways to do this, and there are multiple problems
1087     /// // with the following (transmute) way.
1088     /// fn split_at_mut_transmute<T>(slice: &mut [T], mid: usize)
1089     ///                              -> (&mut [T], &mut [T]) {
1090     ///     let len = slice.len();
1091     ///     assert!(mid <= len);
1092     ///     unsafe {
1093     ///         let slice2 = mem::transmute::<&mut [T], &mut [T]>(slice);
1094     ///         // first: transmute is not type safe; all it checks is that T and
1095     ///         // U are of the same size. Second, right here, you have two
1096     ///         // mutable references pointing to the same memory.
1097     ///         (&mut slice[0..mid], &mut slice2[mid..len])
1098     ///     }
1099     /// }
1100     ///
1101     /// // This gets rid of the type safety problems; `&mut *` will *only* give
1102     /// // you an `&mut T` from an `&mut T` or `*mut T`.
1103     /// fn split_at_mut_casts<T>(slice: &mut [T], mid: usize)
1104     ///                          -> (&mut [T], &mut [T]) {
1105     ///     let len = slice.len();
1106     ///     assert!(mid <= len);
1107     ///     unsafe {
1108     ///         let slice2 = &mut *(slice as *mut [T]);
1109     ///         // however, you still have two mutable references pointing to
1110     ///         // the same memory.
1111     ///         (&mut slice[0..mid], &mut slice2[mid..len])
1112     ///     }
1113     /// }
1114     ///
1115     /// // This is how the standard library does it. This is the best method, if
1116     /// // you need to do something like this
1117     /// fn split_at_stdlib<T>(slice: &mut [T], mid: usize)
1118     ///                       -> (&mut [T], &mut [T]) {
1119     ///     let len = slice.len();
1120     ///     assert!(mid <= len);
1121     ///     unsafe {
1122     ///         let ptr = slice.as_mut_ptr();
1123     ///         // This now has three mutable references pointing at the same
1124     ///         // memory. `slice`, the rvalue ret.0, and the rvalue ret.1.
1125     ///         // `slice` is never used after `let ptr = ...`, and so one can
1126     ///         // treat it as "dead", and therefore, you only have two real
1127     ///         // mutable slices.
1128     ///         (slice::from_raw_parts_mut(ptr, mid),
1129     ///          slice::from_raw_parts_mut(ptr.add(mid), len - mid))
1130     ///     }
1131     /// }
1132     /// ```
1133     #[stable(feature = "rust1", since = "1.0.0")]
1134     #[rustc_const_stable(feature = "const_transmute", since = "1.46.0")]
1135     #[rustc_diagnostic_item = "transmute"]
transmute<T, U>(e: T) -> U1136     pub fn transmute<T, U>(e: T) -> U;
1137 
1138     /// Returns `true` if the actual type given as `T` requires drop
1139     /// glue; returns `false` if the actual type provided for `T`
1140     /// implements `Copy`.
1141     ///
1142     /// If the actual type neither requires drop glue nor implements
1143     /// `Copy`, then the return value of this function is unspecified.
1144     ///
1145     /// Note that, unlike most intrinsics, this is safe to call;
1146     /// it does not require an `unsafe` block.
1147     /// Therefore, implementations must not require the user to uphold
1148     /// any safety invariants.
1149     ///
1150     /// The stabilized version of this intrinsic is [`mem::needs_drop`](crate::mem::needs_drop).
1151     #[rustc_const_stable(feature = "const_needs_drop", since = "1.40.0")]
needs_drop<T>() -> bool1152     pub fn needs_drop<T>() -> bool;
1153 
1154     /// Calculates the offset from a pointer.
1155     ///
1156     /// This is implemented as an intrinsic to avoid converting to and from an
1157     /// integer, since the conversion would throw away aliasing information.
1158     ///
1159     /// # Safety
1160     ///
1161     /// Both the starting and resulting pointer must be either in bounds or one
1162     /// byte past the end of an allocated object. If either pointer is out of
1163     /// bounds or arithmetic overflow occurs then any further use of the
1164     /// returned value will result in undefined behavior.
1165     ///
1166     /// The stabilized version of this intrinsic is [`pointer::offset`].
1167     #[must_use = "returns a new pointer rather than modifying its argument"]
1168     #[rustc_const_unstable(feature = "const_ptr_offset", issue = "71499")]
offset<T>(dst: *const T, offset: isize) -> *const T1169     pub fn offset<T>(dst: *const T, offset: isize) -> *const T;
1170 
1171     /// Calculates the offset from a pointer, potentially wrapping.
1172     ///
1173     /// This is implemented as an intrinsic to avoid converting to and from an
1174     /// integer, since the conversion inhibits certain optimizations.
1175     ///
1176     /// # Safety
1177     ///
1178     /// Unlike the `offset` intrinsic, this intrinsic does not restrict the
1179     /// resulting pointer to point into or one byte past the end of an allocated
1180     /// object, and it wraps with two's complement arithmetic. The resulting
1181     /// value is not necessarily valid to be used to actually access memory.
1182     ///
1183     /// The stabilized version of this intrinsic is [`pointer::wrapping_offset`].
1184     #[must_use = "returns a new pointer rather than modifying its argument"]
1185     #[rustc_const_unstable(feature = "const_ptr_offset", issue = "71499")]
arith_offset<T>(dst: *const T, offset: isize) -> *const T1186     pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T;
1187 
1188     /// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with
1189     /// a size of `count` * `size_of::<T>()` and an alignment of
1190     /// `min_align_of::<T>()`
1191     ///
1192     /// The volatile parameter is set to `true`, so it will not be optimized out
1193     /// unless size is equal to zero.
1194     ///
1195     /// This intrinsic does not have a stable counterpart.
volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize)1196     pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize);
1197     /// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with
1198     /// a size of `count * size_of::<T>()` and an alignment of
1199     /// `min_align_of::<T>()`
1200     ///
1201     /// The volatile parameter is set to `true`, so it will not be optimized out
1202     /// unless size is equal to zero.
1203     ///
1204     /// This intrinsic does not have a stable counterpart.
volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize)1205     pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize);
1206     /// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a
1207     /// size of `count * size_of::<T>()` and an alignment of
1208     /// `min_align_of::<T>()`.
1209     ///
1210     /// The volatile parameter is set to `true`, so it will not be optimized out
1211     /// unless size is equal to zero.
1212     ///
1213     /// This intrinsic does not have a stable counterpart.
volatile_set_memory<T>(dst: *mut T, val: u8, count: usize)1214     pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize);
1215 
1216     /// Performs a volatile load from the `src` pointer.
1217     ///
1218     /// The stabilized version of this intrinsic is [`core::ptr::read_volatile`].
volatile_load<T>(src: *const T) -> T1219     pub fn volatile_load<T>(src: *const T) -> T;
1220     /// Performs a volatile store to the `dst` pointer.
1221     ///
1222     /// The stabilized version of this intrinsic is [`core::ptr::write_volatile`].
volatile_store<T>(dst: *mut T, val: T)1223     pub fn volatile_store<T>(dst: *mut T, val: T);
1224 
1225     /// Performs a volatile load from the `src` pointer
1226     /// The pointer is not required to be aligned.
1227     ///
1228     /// This intrinsic does not have a stable counterpart.
unaligned_volatile_load<T>(src: *const T) -> T1229     pub fn unaligned_volatile_load<T>(src: *const T) -> T;
1230     /// Performs a volatile store to the `dst` pointer.
1231     /// The pointer is not required to be aligned.
1232     ///
1233     /// This intrinsic does not have a stable counterpart.
unaligned_volatile_store<T>(dst: *mut T, val: T)1234     pub fn unaligned_volatile_store<T>(dst: *mut T, val: T);
1235 
1236     /// Returns the square root of an `f32`
1237     ///
1238     /// The stabilized version of this intrinsic is
1239     /// [`f32::sqrt`](../../std/primitive.f32.html#method.sqrt)
sqrtf32(x: f32) -> f321240     pub fn sqrtf32(x: f32) -> f32;
1241     /// Returns the square root of an `f64`
1242     ///
1243     /// The stabilized version of this intrinsic is
1244     /// [`f64::sqrt`](../../std/primitive.f64.html#method.sqrt)
sqrtf64(x: f64) -> f641245     pub fn sqrtf64(x: f64) -> f64;
1246 
1247     /// Raises an `f32` to an integer power.
1248     ///
1249     /// The stabilized version of this intrinsic is
1250     /// [`f32::powi`](../../std/primitive.f32.html#method.powi)
powif32(a: f32, x: i32) -> f321251     pub fn powif32(a: f32, x: i32) -> f32;
1252     /// Raises an `f64` to an integer power.
1253     ///
1254     /// The stabilized version of this intrinsic is
1255     /// [`f64::powi`](../../std/primitive.f64.html#method.powi)
powif64(a: f64, x: i32) -> f641256     pub fn powif64(a: f64, x: i32) -> f64;
1257 
1258     /// Returns the sine of an `f32`.
1259     ///
1260     /// The stabilized version of this intrinsic is
1261     /// [`f32::sin`](../../std/primitive.f32.html#method.sin)
sinf32(x: f32) -> f321262     pub fn sinf32(x: f32) -> f32;
1263     /// Returns the sine of an `f64`.
1264     ///
1265     /// The stabilized version of this intrinsic is
1266     /// [`f64::sin`](../../std/primitive.f64.html#method.sin)
sinf64(x: f64) -> f641267     pub fn sinf64(x: f64) -> f64;
1268 
1269     /// Returns the cosine of an `f32`.
1270     ///
1271     /// The stabilized version of this intrinsic is
1272     /// [`f32::cos`](../../std/primitive.f32.html#method.cos)
cosf32(x: f32) -> f321273     pub fn cosf32(x: f32) -> f32;
1274     /// Returns the cosine of an `f64`.
1275     ///
1276     /// The stabilized version of this intrinsic is
1277     /// [`f64::cos`](../../std/primitive.f64.html#method.cos)
cosf64(x: f64) -> f641278     pub fn cosf64(x: f64) -> f64;
1279 
1280     /// Raises an `f32` to an `f32` power.
1281     ///
1282     /// The stabilized version of this intrinsic is
1283     /// [`f32::powf`](../../std/primitive.f32.html#method.powf)
powf32(a: f32, x: f32) -> f321284     pub fn powf32(a: f32, x: f32) -> f32;
1285     /// Raises an `f64` to an `f64` power.
1286     ///
1287     /// The stabilized version of this intrinsic is
1288     /// [`f64::powf`](../../std/primitive.f64.html#method.powf)
powf64(a: f64, x: f64) -> f641289     pub fn powf64(a: f64, x: f64) -> f64;
1290 
1291     /// Returns the exponential of an `f32`.
1292     ///
1293     /// The stabilized version of this intrinsic is
1294     /// [`f32::exp`](../../std/primitive.f32.html#method.exp)
expf32(x: f32) -> f321295     pub fn expf32(x: f32) -> f32;
1296     /// Returns the exponential of an `f64`.
1297     ///
1298     /// The stabilized version of this intrinsic is
1299     /// [`f64::exp`](../../std/primitive.f64.html#method.exp)
expf64(x: f64) -> f641300     pub fn expf64(x: f64) -> f64;
1301 
1302     /// Returns 2 raised to the power of an `f32`.
1303     ///
1304     /// The stabilized version of this intrinsic is
1305     /// [`f32::exp2`](../../std/primitive.f32.html#method.exp2)
exp2f32(x: f32) -> f321306     pub fn exp2f32(x: f32) -> f32;
1307     /// Returns 2 raised to the power of an `f64`.
1308     ///
1309     /// The stabilized version of this intrinsic is
1310     /// [`f64::exp2`](../../std/primitive.f64.html#method.exp2)
exp2f64(x: f64) -> f641311     pub fn exp2f64(x: f64) -> f64;
1312 
1313     /// Returns the natural logarithm of an `f32`.
1314     ///
1315     /// The stabilized version of this intrinsic is
1316     /// [`f32::ln`](../../std/primitive.f32.html#method.ln)
logf32(x: f32) -> f321317     pub fn logf32(x: f32) -> f32;
1318     /// Returns the natural logarithm of an `f64`.
1319     ///
1320     /// The stabilized version of this intrinsic is
1321     /// [`f64::ln`](../../std/primitive.f64.html#method.ln)
logf64(x: f64) -> f641322     pub fn logf64(x: f64) -> f64;
1323 
1324     /// Returns the base 10 logarithm of an `f32`.
1325     ///
1326     /// The stabilized version of this intrinsic is
1327     /// [`f32::log10`](../../std/primitive.f32.html#method.log10)
log10f32(x: f32) -> f321328     pub fn log10f32(x: f32) -> f32;
1329     /// Returns the base 10 logarithm of an `f64`.
1330     ///
1331     /// The stabilized version of this intrinsic is
1332     /// [`f64::log10`](../../std/primitive.f64.html#method.log10)
log10f64(x: f64) -> f641333     pub fn log10f64(x: f64) -> f64;
1334 
1335     /// Returns the base 2 logarithm of an `f32`.
1336     ///
1337     /// The stabilized version of this intrinsic is
1338     /// [`f32::log2`](../../std/primitive.f32.html#method.log2)
log2f32(x: f32) -> f321339     pub fn log2f32(x: f32) -> f32;
1340     /// Returns the base 2 logarithm of an `f64`.
1341     ///
1342     /// The stabilized version of this intrinsic is
1343     /// [`f64::log2`](../../std/primitive.f64.html#method.log2)
log2f64(x: f64) -> f641344     pub fn log2f64(x: f64) -> f64;
1345 
1346     /// Returns `a * b + c` for `f32` values.
1347     ///
1348     /// The stabilized version of this intrinsic is
1349     /// [`f32::mul_add`](../../std/primitive.f32.html#method.mul_add)
fmaf32(a: f32, b: f32, c: f32) -> f321350     pub fn fmaf32(a: f32, b: f32, c: f32) -> f32;
1351     /// Returns `a * b + c` for `f64` values.
1352     ///
1353     /// The stabilized version of this intrinsic is
1354     /// [`f64::mul_add`](../../std/primitive.f64.html#method.mul_add)
fmaf64(a: f64, b: f64, c: f64) -> f641355     pub fn fmaf64(a: f64, b: f64, c: f64) -> f64;
1356 
1357     /// Returns the absolute value of an `f32`.
1358     ///
1359     /// The stabilized version of this intrinsic is
1360     /// [`f32::abs`](../../std/primitive.f32.html#method.abs)
fabsf32(x: f32) -> f321361     pub fn fabsf32(x: f32) -> f32;
1362     /// Returns the absolute value of an `f64`.
1363     ///
1364     /// The stabilized version of this intrinsic is
1365     /// [`f64::abs`](../../std/primitive.f64.html#method.abs)
fabsf64(x: f64) -> f641366     pub fn fabsf64(x: f64) -> f64;
1367 
1368     /// Returns the minimum of two `f32` values.
1369     ///
1370     /// Note that, unlike most intrinsics, this is safe to call;
1371     /// it does not require an `unsafe` block.
1372     /// Therefore, implementations must not require the user to uphold
1373     /// any safety invariants.
1374     ///
1375     /// The stabilized version of this intrinsic is
1376     /// [`f32::min`]
minnumf32(x: f32, y: f32) -> f321377     pub fn minnumf32(x: f32, y: f32) -> f32;
1378     /// Returns the minimum of two `f64` values.
1379     ///
1380     /// Note that, unlike most intrinsics, this is safe to call;
1381     /// it does not require an `unsafe` block.
1382     /// Therefore, implementations must not require the user to uphold
1383     /// any safety invariants.
1384     ///
1385     /// The stabilized version of this intrinsic is
1386     /// [`f64::min`]
minnumf64(x: f64, y: f64) -> f641387     pub fn minnumf64(x: f64, y: f64) -> f64;
1388     /// Returns the maximum of two `f32` values.
1389     ///
1390     /// Note that, unlike most intrinsics, this is safe to call;
1391     /// it does not require an `unsafe` block.
1392     /// Therefore, implementations must not require the user to uphold
1393     /// any safety invariants.
1394     ///
1395     /// The stabilized version of this intrinsic is
1396     /// [`f32::max`]
maxnumf32(x: f32, y: f32) -> f321397     pub fn maxnumf32(x: f32, y: f32) -> f32;
1398     /// Returns the maximum of two `f64` values.
1399     ///
1400     /// Note that, unlike most intrinsics, this is safe to call;
1401     /// it does not require an `unsafe` block.
1402     /// Therefore, implementations must not require the user to uphold
1403     /// any safety invariants.
1404     ///
1405     /// The stabilized version of this intrinsic is
1406     /// [`f64::max`]
maxnumf64(x: f64, y: f64) -> f641407     pub fn maxnumf64(x: f64, y: f64) -> f64;
1408 
1409     /// Copies the sign from `y` to `x` for `f32` values.
1410     ///
1411     /// The stabilized version of this intrinsic is
1412     /// [`f32::copysign`](../../std/primitive.f32.html#method.copysign)
copysignf32(x: f32, y: f32) -> f321413     pub fn copysignf32(x: f32, y: f32) -> f32;
1414     /// Copies the sign from `y` to `x` for `f64` values.
1415     ///
1416     /// The stabilized version of this intrinsic is
1417     /// [`f64::copysign`](../../std/primitive.f64.html#method.copysign)
copysignf64(x: f64, y: f64) -> f641418     pub fn copysignf64(x: f64, y: f64) -> f64;
1419 
1420     /// Returns the largest integer less than or equal to an `f32`.
1421     ///
1422     /// The stabilized version of this intrinsic is
1423     /// [`f32::floor`](../../std/primitive.f32.html#method.floor)
floorf32(x: f32) -> f321424     pub fn floorf32(x: f32) -> f32;
1425     /// Returns the largest integer less than or equal to an `f64`.
1426     ///
1427     /// The stabilized version of this intrinsic is
1428     /// [`f64::floor`](../../std/primitive.f64.html#method.floor)
floorf64(x: f64) -> f641429     pub fn floorf64(x: f64) -> f64;
1430 
1431     /// Returns the smallest integer greater than or equal to an `f32`.
1432     ///
1433     /// The stabilized version of this intrinsic is
1434     /// [`f32::ceil`](../../std/primitive.f32.html#method.ceil)
ceilf32(x: f32) -> f321435     pub fn ceilf32(x: f32) -> f32;
1436     /// Returns the smallest integer greater than or equal to an `f64`.
1437     ///
1438     /// The stabilized version of this intrinsic is
1439     /// [`f64::ceil`](../../std/primitive.f64.html#method.ceil)
ceilf64(x: f64) -> f641440     pub fn ceilf64(x: f64) -> f64;
1441 
1442     /// Returns the integer part of an `f32`.
1443     ///
1444     /// The stabilized version of this intrinsic is
1445     /// [`f32::trunc`](../../std/primitive.f32.html#method.trunc)
truncf32(x: f32) -> f321446     pub fn truncf32(x: f32) -> f32;
1447     /// Returns the integer part of an `f64`.
1448     ///
1449     /// The stabilized version of this intrinsic is
1450     /// [`f64::trunc`](../../std/primitive.f64.html#method.trunc)
truncf64(x: f64) -> f641451     pub fn truncf64(x: f64) -> f64;
1452 
1453     /// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception
1454     /// if the argument is not an integer.
rintf32(x: f32) -> f321455     pub fn rintf32(x: f32) -> f32;
1456     /// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception
1457     /// if the argument is not an integer.
rintf64(x: f64) -> f641458     pub fn rintf64(x: f64) -> f64;
1459 
1460     /// Returns the nearest integer to an `f32`.
1461     ///
1462     /// This intrinsic does not have a stable counterpart.
nearbyintf32(x: f32) -> f321463     pub fn nearbyintf32(x: f32) -> f32;
1464     /// Returns the nearest integer to an `f64`.
1465     ///
1466     /// This intrinsic does not have a stable counterpart.
nearbyintf64(x: f64) -> f641467     pub fn nearbyintf64(x: f64) -> f64;
1468 
1469     /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero.
1470     ///
1471     /// The stabilized version of this intrinsic is
1472     /// [`f32::round`](../../std/primitive.f32.html#method.round)
roundf32(x: f32) -> f321473     pub fn roundf32(x: f32) -> f32;
1474     /// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero.
1475     ///
1476     /// The stabilized version of this intrinsic is
1477     /// [`f64::round`](../../std/primitive.f64.html#method.round)
roundf64(x: f64) -> f641478     pub fn roundf64(x: f64) -> f64;
1479 
1480     /// Float addition that allows optimizations based on algebraic rules.
1481     /// May assume inputs are finite.
1482     ///
1483     /// This intrinsic does not have a stable counterpart.
fadd_fast<T: Copy>(a: T, b: T) -> T1484     pub fn fadd_fast<T: Copy>(a: T, b: T) -> T;
1485 
1486     /// Float subtraction that allows optimizations based on algebraic rules.
1487     /// May assume inputs are finite.
1488     ///
1489     /// This intrinsic does not have a stable counterpart.
fsub_fast<T: Copy>(a: T, b: T) -> T1490     pub fn fsub_fast<T: Copy>(a: T, b: T) -> T;
1491 
1492     /// Float multiplication that allows optimizations based on algebraic rules.
1493     /// May assume inputs are finite.
1494     ///
1495     /// This intrinsic does not have a stable counterpart.
fmul_fast<T: Copy>(a: T, b: T) -> T1496     pub fn fmul_fast<T: Copy>(a: T, b: T) -> T;
1497 
1498     /// Float division that allows optimizations based on algebraic rules.
1499     /// May assume inputs are finite.
1500     ///
1501     /// This intrinsic does not have a stable counterpart.
fdiv_fast<T: Copy>(a: T, b: T) -> T1502     pub fn fdiv_fast<T: Copy>(a: T, b: T) -> T;
1503 
1504     /// Float remainder that allows optimizations based on algebraic rules.
1505     /// May assume inputs are finite.
1506     ///
1507     /// This intrinsic does not have a stable counterpart.
frem_fast<T: Copy>(a: T, b: T) -> T1508     pub fn frem_fast<T: Copy>(a: T, b: T) -> T;
1509 
1510     /// Convert with LLVM’s fptoui/fptosi, which may return undef for values out of range
1511     /// (<https://github.com/rust-lang/rust/issues/10184>)
1512     ///
1513     /// Stabilized as [`f32::to_int_unchecked`] and [`f64::to_int_unchecked`].
float_to_int_unchecked<Float: Copy, Int: Copy>(value: Float) -> Int1514     pub fn float_to_int_unchecked<Float: Copy, Int: Copy>(value: Float) -> Int;
1515 
1516     /// Returns the number of bits set in an integer type `T`
1517     ///
1518     /// Note that, unlike most intrinsics, this is safe to call;
1519     /// it does not require an `unsafe` block.
1520     /// Therefore, implementations must not require the user to uphold
1521     /// any safety invariants.
1522     ///
1523     /// The stabilized versions of this intrinsic are available on the integer
1524     /// primitives via the `count_ones` method. For example,
1525     /// [`u32::count_ones`]
1526     #[rustc_const_stable(feature = "const_ctpop", since = "1.40.0")]
ctpop<T: Copy>(x: T) -> T1527     pub fn ctpop<T: Copy>(x: T) -> T;
1528 
1529     /// Returns the number of leading unset bits (zeroes) in an integer type `T`.
1530     ///
1531     /// Note that, unlike most intrinsics, this is safe to call;
1532     /// it does not require an `unsafe` block.
1533     /// Therefore, implementations must not require the user to uphold
1534     /// any safety invariants.
1535     ///
1536     /// The stabilized versions of this intrinsic are available on the integer
1537     /// primitives via the `leading_zeros` method. For example,
1538     /// [`u32::leading_zeros`]
1539     ///
1540     /// # Examples
1541     ///
1542     /// ```
1543     /// #![feature(core_intrinsics)]
1544     ///
1545     /// use std::intrinsics::ctlz;
1546     ///
1547     /// let x = 0b0001_1100_u8;
1548     /// let num_leading = ctlz(x);
1549     /// assert_eq!(num_leading, 3);
1550     /// ```
1551     ///
1552     /// An `x` with value `0` will return the bit width of `T`.
1553     ///
1554     /// ```
1555     /// #![feature(core_intrinsics)]
1556     ///
1557     /// use std::intrinsics::ctlz;
1558     ///
1559     /// let x = 0u16;
1560     /// let num_leading = ctlz(x);
1561     /// assert_eq!(num_leading, 16);
1562     /// ```
1563     #[rustc_const_stable(feature = "const_ctlz", since = "1.40.0")]
ctlz<T: Copy>(x: T) -> T1564     pub fn ctlz<T: Copy>(x: T) -> T;
1565 
1566     /// Like `ctlz`, but extra-unsafe as it returns `undef` when
1567     /// given an `x` with value `0`.
1568     ///
1569     /// This intrinsic does not have a stable counterpart.
1570     ///
1571     /// # Examples
1572     ///
1573     /// ```
1574     /// #![feature(core_intrinsics)]
1575     ///
1576     /// use std::intrinsics::ctlz_nonzero;
1577     ///
1578     /// let x = 0b0001_1100_u8;
1579     /// let num_leading = unsafe { ctlz_nonzero(x) };
1580     /// assert_eq!(num_leading, 3);
1581     /// ```
1582     #[rustc_const_stable(feature = "constctlz", since = "1.50.0")]
ctlz_nonzero<T: Copy>(x: T) -> T1583     pub fn ctlz_nonzero<T: Copy>(x: T) -> T;
1584 
1585     /// Returns the number of trailing unset bits (zeroes) in an integer type `T`.
1586     ///
1587     /// Note that, unlike most intrinsics, this is safe to call;
1588     /// it does not require an `unsafe` block.
1589     /// Therefore, implementations must not require the user to uphold
1590     /// any safety invariants.
1591     ///
1592     /// The stabilized versions of this intrinsic are available on the integer
1593     /// primitives via the `trailing_zeros` method. For example,
1594     /// [`u32::trailing_zeros`]
1595     ///
1596     /// # Examples
1597     ///
1598     /// ```
1599     /// #![feature(core_intrinsics)]
1600     ///
1601     /// use std::intrinsics::cttz;
1602     ///
1603     /// let x = 0b0011_1000_u8;
1604     /// let num_trailing = cttz(x);
1605     /// assert_eq!(num_trailing, 3);
1606     /// ```
1607     ///
1608     /// An `x` with value `0` will return the bit width of `T`:
1609     ///
1610     /// ```
1611     /// #![feature(core_intrinsics)]
1612     ///
1613     /// use std::intrinsics::cttz;
1614     ///
1615     /// let x = 0u16;
1616     /// let num_trailing = cttz(x);
1617     /// assert_eq!(num_trailing, 16);
1618     /// ```
1619     #[rustc_const_stable(feature = "const_cttz", since = "1.40.0")]
cttz<T: Copy>(x: T) -> T1620     pub fn cttz<T: Copy>(x: T) -> T;
1621 
1622     /// Like `cttz`, but extra-unsafe as it returns `undef` when
1623     /// given an `x` with value `0`.
1624     ///
1625     /// This intrinsic does not have a stable counterpart.
1626     ///
1627     /// # Examples
1628     ///
1629     /// ```
1630     /// #![feature(core_intrinsics)]
1631     ///
1632     /// use std::intrinsics::cttz_nonzero;
1633     ///
1634     /// let x = 0b0011_1000_u8;
1635     /// let num_trailing = unsafe { cttz_nonzero(x) };
1636     /// assert_eq!(num_trailing, 3);
1637     /// ```
1638     #[rustc_const_stable(feature = "const_cttz", since = "1.53.0")]
cttz_nonzero<T: Copy>(x: T) -> T1639     pub fn cttz_nonzero<T: Copy>(x: T) -> T;
1640 
1641     /// Reverses the bytes in an integer type `T`.
1642     ///
1643     /// Note that, unlike most intrinsics, this is safe to call;
1644     /// it does not require an `unsafe` block.
1645     /// Therefore, implementations must not require the user to uphold
1646     /// any safety invariants.
1647     ///
1648     /// The stabilized versions of this intrinsic are available on the integer
1649     /// primitives via the `swap_bytes` method. For example,
1650     /// [`u32::swap_bytes`]
1651     #[rustc_const_stable(feature = "const_bswap", since = "1.40.0")]
bswap<T: Copy>(x: T) -> T1652     pub fn bswap<T: Copy>(x: T) -> T;
1653 
1654     /// Reverses the bits in an integer type `T`.
1655     ///
1656     /// Note that, unlike most intrinsics, this is safe to call;
1657     /// it does not require an `unsafe` block.
1658     /// Therefore, implementations must not require the user to uphold
1659     /// any safety invariants.
1660     ///
1661     /// The stabilized versions of this intrinsic are available on the integer
1662     /// primitives via the `reverse_bits` method. For example,
1663     /// [`u32::reverse_bits`]
1664     #[rustc_const_stable(feature = "const_bitreverse", since = "1.40.0")]
bitreverse<T: Copy>(x: T) -> T1665     pub fn bitreverse<T: Copy>(x: T) -> T;
1666 
1667     /// Performs checked integer addition.
1668     ///
1669     /// Note that, unlike most intrinsics, this is safe to call;
1670     /// it does not require an `unsafe` block.
1671     /// Therefore, implementations must not require the user to uphold
1672     /// any safety invariants.
1673     ///
1674     /// The stabilized versions of this intrinsic are available on the integer
1675     /// primitives via the `overflowing_add` method. For example,
1676     /// [`u32::overflowing_add`]
1677     #[rustc_const_stable(feature = "const_int_overflow", since = "1.40.0")]
add_with_overflow<T: Copy>(x: T, y: T) -> (T, bool)1678     pub fn add_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
1679 
1680     /// Performs checked integer subtraction
1681     ///
1682     /// Note that, unlike most intrinsics, this is safe to call;
1683     /// it does not require an `unsafe` block.
1684     /// Therefore, implementations must not require the user to uphold
1685     /// any safety invariants.
1686     ///
1687     /// The stabilized versions of this intrinsic are available on the integer
1688     /// primitives via the `overflowing_sub` method. For example,
1689     /// [`u32::overflowing_sub`]
1690     #[rustc_const_stable(feature = "const_int_overflow", since = "1.40.0")]
sub_with_overflow<T: Copy>(x: T, y: T) -> (T, bool)1691     pub fn sub_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
1692 
1693     /// Performs checked integer multiplication
1694     ///
1695     /// Note that, unlike most intrinsics, this is safe to call;
1696     /// it does not require an `unsafe` block.
1697     /// Therefore, implementations must not require the user to uphold
1698     /// any safety invariants.
1699     ///
1700     /// The stabilized versions of this intrinsic are available on the integer
1701     /// primitives via the `overflowing_mul` method. For example,
1702     /// [`u32::overflowing_mul`]
1703     #[rustc_const_stable(feature = "const_int_overflow", since = "1.40.0")]
mul_with_overflow<T: Copy>(x: T, y: T) -> (T, bool)1704     pub fn mul_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
1705 
1706     /// Performs an exact division, resulting in undefined behavior where
1707     /// `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`
1708     ///
1709     /// This intrinsic does not have a stable counterpart.
exact_div<T: Copy>(x: T, y: T) -> T1710     pub fn exact_div<T: Copy>(x: T, y: T) -> T;
1711 
1712     /// Performs an unchecked division, resulting in undefined behavior
1713     /// where `y == 0` or `x == T::MIN && y == -1`
1714     ///
1715     /// Safe wrappers for this intrinsic are available on the integer
1716     /// primitives via the `checked_div` method. For example,
1717     /// [`u32::checked_div`]
1718     #[rustc_const_stable(feature = "const_int_unchecked_arith", since = "1.52.0")]
unchecked_div<T: Copy>(x: T, y: T) -> T1719     pub fn unchecked_div<T: Copy>(x: T, y: T) -> T;
1720     /// Returns the remainder of an unchecked division, resulting in
1721     /// undefined behavior when `y == 0` or `x == T::MIN && y == -1`
1722     ///
1723     /// Safe wrappers for this intrinsic are available on the integer
1724     /// primitives via the `checked_rem` method. For example,
1725     /// [`u32::checked_rem`]
1726     #[rustc_const_stable(feature = "const_int_unchecked_arith", since = "1.52.0")]
unchecked_rem<T: Copy>(x: T, y: T) -> T1727     pub fn unchecked_rem<T: Copy>(x: T, y: T) -> T;
1728 
1729     /// Performs an unchecked left shift, resulting in undefined behavior when
1730     /// `y < 0` or `y >= N`, where N is the width of T in bits.
1731     ///
1732     /// Safe wrappers for this intrinsic are available on the integer
1733     /// primitives via the `checked_shl` method. For example,
1734     /// [`u32::checked_shl`]
1735     #[rustc_const_stable(feature = "const_int_unchecked", since = "1.40.0")]
unchecked_shl<T: Copy>(x: T, y: T) -> T1736     pub fn unchecked_shl<T: Copy>(x: T, y: T) -> T;
1737     /// Performs an unchecked right shift, resulting in undefined behavior when
1738     /// `y < 0` or `y >= N`, where N is the width of T in bits.
1739     ///
1740     /// Safe wrappers for this intrinsic are available on the integer
1741     /// primitives via the `checked_shr` method. For example,
1742     /// [`u32::checked_shr`]
1743     #[rustc_const_stable(feature = "const_int_unchecked", since = "1.40.0")]
unchecked_shr<T: Copy>(x: T, y: T) -> T1744     pub fn unchecked_shr<T: Copy>(x: T, y: T) -> T;
1745 
1746     /// Returns the result of an unchecked addition, resulting in
1747     /// undefined behavior when `x + y > T::MAX` or `x + y < T::MIN`.
1748     ///
1749     /// This intrinsic does not have a stable counterpart.
1750     #[rustc_const_unstable(feature = "const_int_unchecked_arith", issue = "none")]
unchecked_add<T: Copy>(x: T, y: T) -> T1751     pub fn unchecked_add<T: Copy>(x: T, y: T) -> T;
1752 
1753     /// Returns the result of an unchecked subtraction, resulting in
1754     /// undefined behavior when `x - y > T::MAX` or `x - y < T::MIN`.
1755     ///
1756     /// This intrinsic does not have a stable counterpart.
1757     #[rustc_const_unstable(feature = "const_int_unchecked_arith", issue = "none")]
unchecked_sub<T: Copy>(x: T, y: T) -> T1758     pub fn unchecked_sub<T: Copy>(x: T, y: T) -> T;
1759 
1760     /// Returns the result of an unchecked multiplication, resulting in
1761     /// undefined behavior when `x * y > T::MAX` or `x * y < T::MIN`.
1762     ///
1763     /// This intrinsic does not have a stable counterpart.
1764     #[rustc_const_unstable(feature = "const_int_unchecked_arith", issue = "none")]
unchecked_mul<T: Copy>(x: T, y: T) -> T1765     pub fn unchecked_mul<T: Copy>(x: T, y: T) -> T;
1766 
1767     /// Performs rotate left.
1768     ///
1769     /// Note that, unlike most intrinsics, this is safe to call;
1770     /// it does not require an `unsafe` block.
1771     /// Therefore, implementations must not require the user to uphold
1772     /// any safety invariants.
1773     ///
1774     /// The stabilized versions of this intrinsic are available on the integer
1775     /// primitives via the `rotate_left` method. For example,
1776     /// [`u32::rotate_left`]
1777     #[rustc_const_stable(feature = "const_int_rotate", since = "1.40.0")]
rotate_left<T: Copy>(x: T, y: T) -> T1778     pub fn rotate_left<T: Copy>(x: T, y: T) -> T;
1779 
1780     /// Performs rotate right.
1781     ///
1782     /// Note that, unlike most intrinsics, this is safe to call;
1783     /// it does not require an `unsafe` block.
1784     /// Therefore, implementations must not require the user to uphold
1785     /// any safety invariants.
1786     ///
1787     /// The stabilized versions of this intrinsic are available on the integer
1788     /// primitives via the `rotate_right` method. For example,
1789     /// [`u32::rotate_right`]
1790     #[rustc_const_stable(feature = "const_int_rotate", since = "1.40.0")]
rotate_right<T: Copy>(x: T, y: T) -> T1791     pub fn rotate_right<T: Copy>(x: T, y: T) -> T;
1792 
1793     /// Returns (a + b) mod 2<sup>N</sup>, where N is the width of T in bits.
1794     ///
1795     /// Note that, unlike most intrinsics, this is safe to call;
1796     /// it does not require an `unsafe` block.
1797     /// Therefore, implementations must not require the user to uphold
1798     /// any safety invariants.
1799     ///
1800     /// The stabilized versions of this intrinsic are available on the integer
1801     /// primitives via the `wrapping_add` method. For example,
1802     /// [`u32::wrapping_add`]
1803     #[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
wrapping_add<T: Copy>(a: T, b: T) -> T1804     pub fn wrapping_add<T: Copy>(a: T, b: T) -> T;
1805     /// Returns (a - b) mod 2<sup>N</sup>, where N is the width of T in bits.
1806     ///
1807     /// Note that, unlike most intrinsics, this is safe to call;
1808     /// it does not require an `unsafe` block.
1809     /// Therefore, implementations must not require the user to uphold
1810     /// any safety invariants.
1811     ///
1812     /// The stabilized versions of this intrinsic are available on the integer
1813     /// primitives via the `wrapping_sub` method. For example,
1814     /// [`u32::wrapping_sub`]
1815     #[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
wrapping_sub<T: Copy>(a: T, b: T) -> T1816     pub fn wrapping_sub<T: Copy>(a: T, b: T) -> T;
1817     /// Returns (a * b) mod 2<sup>N</sup>, where N is the width of T in bits.
1818     ///
1819     /// Note that, unlike most intrinsics, this is safe to call;
1820     /// it does not require an `unsafe` block.
1821     /// Therefore, implementations must not require the user to uphold
1822     /// any safety invariants.
1823     ///
1824     /// The stabilized versions of this intrinsic are available on the integer
1825     /// primitives via the `wrapping_mul` method. For example,
1826     /// [`u32::wrapping_mul`]
1827     #[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
wrapping_mul<T: Copy>(a: T, b: T) -> T1828     pub fn wrapping_mul<T: Copy>(a: T, b: T) -> T;
1829 
1830     /// Computes `a + b`, saturating at numeric bounds.
1831     ///
1832     /// Note that, unlike most intrinsics, this is safe to call;
1833     /// it does not require an `unsafe` block.
1834     /// Therefore, implementations must not require the user to uphold
1835     /// any safety invariants.
1836     ///
1837     /// The stabilized versions of this intrinsic are available on the integer
1838     /// primitives via the `saturating_add` method. For example,
1839     /// [`u32::saturating_add`]
1840     #[rustc_const_stable(feature = "const_int_saturating", since = "1.40.0")]
saturating_add<T: Copy>(a: T, b: T) -> T1841     pub fn saturating_add<T: Copy>(a: T, b: T) -> T;
1842     /// Computes `a - b`, saturating at numeric bounds.
1843     ///
1844     /// Note that, unlike most intrinsics, this is safe to call;
1845     /// it does not require an `unsafe` block.
1846     /// Therefore, implementations must not require the user to uphold
1847     /// any safety invariants.
1848     ///
1849     /// The stabilized versions of this intrinsic are available on the integer
1850     /// primitives via the `saturating_sub` method. For example,
1851     /// [`u32::saturating_sub`]
1852     #[rustc_const_stable(feature = "const_int_saturating", since = "1.40.0")]
saturating_sub<T: Copy>(a: T, b: T) -> T1853     pub fn saturating_sub<T: Copy>(a: T, b: T) -> T;
1854 
1855     /// Returns the value of the discriminant for the variant in 'v';
1856     /// if `T` has no discriminant, returns `0`.
1857     ///
1858     /// Note that, unlike most intrinsics, this is safe to call;
1859     /// it does not require an `unsafe` block.
1860     /// Therefore, implementations must not require the user to uphold
1861     /// any safety invariants.
1862     ///
1863     /// The stabilized version of this intrinsic is [`core::mem::discriminant`].
1864     #[rustc_const_unstable(feature = "const_discriminant", issue = "69821")]
discriminant_value<T>(v: &T) -> <T as DiscriminantKind>::Discriminant1865     pub fn discriminant_value<T>(v: &T) -> <T as DiscriminantKind>::Discriminant;
1866 
1867     /// Returns the number of variants of the type `T` cast to a `usize`;
1868     /// if `T` has no variants, returns `0`. Uninhabited variants will be counted.
1869     ///
1870     /// Note that, unlike most intrinsics, this is safe to call;
1871     /// it does not require an `unsafe` block.
1872     /// Therefore, implementations must not require the user to uphold
1873     /// any safety invariants.
1874     ///
1875     /// The to-be-stabilized version of this intrinsic is [`mem::variant_count`].
1876     #[rustc_const_unstable(feature = "variant_count", issue = "73662")]
variant_count<T>() -> usize1877     pub fn variant_count<T>() -> usize;
1878 
1879     /// Rust's "try catch" construct which invokes the function pointer `try_fn`
1880     /// with the data pointer `data`.
1881     ///
1882     /// The third argument is a function called if a panic occurs. This function
1883     /// takes the data pointer and a pointer to the target-specific exception
1884     /// object that was caught. For more information see the compiler's
1885     /// source as well as std's catch implementation.
1886     pub fn r#try(try_fn: fn(*mut u8), data: *mut u8, catch_fn: fn(*mut u8, *mut u8)) -> i32;
1887 
1888     /// Emits a `!nontemporal` store according to LLVM (see their docs).
1889     /// Probably will never become stable.
nontemporal_store<T>(ptr: *mut T, val: T)1890     pub fn nontemporal_store<T>(ptr: *mut T, val: T);
1891 
1892     /// See documentation of `<*const T>::offset_from` for details.
1893     #[rustc_const_unstable(feature = "const_ptr_offset_from", issue = "41079")]
ptr_offset_from<T>(ptr: *const T, base: *const T) -> isize1894     pub fn ptr_offset_from<T>(ptr: *const T, base: *const T) -> isize;
1895 
1896     /// See documentation of `<*const T>::guaranteed_eq` for details.
1897     ///
1898     /// Note that, unlike most intrinsics, this is safe to call;
1899     /// it does not require an `unsafe` block.
1900     /// Therefore, implementations must not require the user to uphold
1901     /// any safety invariants.
1902     #[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
ptr_guaranteed_eq<T>(ptr: *const T, other: *const T) -> bool1903     pub fn ptr_guaranteed_eq<T>(ptr: *const T, other: *const T) -> bool;
1904 
1905     /// See documentation of `<*const T>::guaranteed_ne` for details.
1906     ///
1907     /// Note that, unlike most intrinsics, this is safe to call;
1908     /// it does not require an `unsafe` block.
1909     /// Therefore, implementations must not require the user to uphold
1910     /// any safety invariants.
1911     #[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
ptr_guaranteed_ne<T>(ptr: *const T, other: *const T) -> bool1912     pub fn ptr_guaranteed_ne<T>(ptr: *const T, other: *const T) -> bool;
1913 
1914     /// Allocate at compile time. Should not be called at runtime.
1915     #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
const_allocate(size: usize, align: usize) -> *mut u81916     pub fn const_allocate(size: usize, align: usize) -> *mut u8;
1917 
1918     /// Determines whether the raw bytes of the two values are equal.
1919     ///
1920     /// The is particularly handy for arrays, since it allows things like just
1921     /// comparing `i96`s instead of forcing `alloca`s for `[6 x i16]`.
1922     ///
1923     /// Above some backend-decided threshold this will emit calls to `memcmp`,
1924     /// like slice equality does, instead of causing massive code size.
1925     ///
1926     /// # Safety
1927     ///
1928     /// It's UB to call this if any of the *bytes* in `*a` or `*b` are uninitialized.
1929     /// Note that this is a stricter criterion than just the *values* being
1930     /// fully-initialized: if `T` has padding, it's UB to call this intrinsic.
1931     ///
1932     /// (The implementation is allowed to branch on the results of comparisons,
1933     /// which is UB if any of their inputs are `undef`.)
1934     #[rustc_const_unstable(feature = "const_intrinsic_raw_eq", issue = "none")]
raw_eq<T>(a: &T, b: &T) -> bool1935     pub fn raw_eq<T>(a: &T, b: &T) -> bool;
1936 
1937     /// See documentation of [`std::hint::black_box`] for details.
1938     ///
1939     /// [`std::hint::black_box`]: crate::hint::black_box
black_box<T>(dummy: T) -> T1940     pub fn black_box<T>(dummy: T) -> T;
1941 }
1942 
1943 // Some functions are defined here because they accidentally got made
1944 // available in this module on stable. See <https://github.com/rust-lang/rust/issues/15702>.
1945 // (`transmute` also falls into this category, but it cannot be wrapped due to the
1946 // check that `T` and `U` have the same size.)
1947 
1948 /// Checks whether `ptr` is properly aligned with respect to
1949 /// `align_of::<T>()`.
is_aligned_and_not_null<T>(ptr: *const T) -> bool1950 pub(crate) fn is_aligned_and_not_null<T>(ptr: *const T) -> bool {
1951     !ptr.is_null() && ptr as usize % mem::align_of::<T>() == 0
1952 }
1953 
1954 /// Checks whether the regions of memory starting at `src` and `dst` of size
1955 /// `count * size_of::<T>()` do *not* overlap.
1956 #[cfg(debug_assertions)]
is_nonoverlapping<T>(src: *const T, dst: *const T, count: usize) -> bool1957 pub(crate) fn is_nonoverlapping<T>(src: *const T, dst: *const T, count: usize) -> bool {
1958     let src_usize = src as usize;
1959     let dst_usize = dst as usize;
1960     let size = mem::size_of::<T>().checked_mul(count).unwrap();
1961     let diff = if src_usize > dst_usize { src_usize - dst_usize } else { dst_usize - src_usize };
1962     // If the absolute distance between the ptrs is at least as big as the size of the buffer,
1963     // they do not overlap.
1964     diff >= size
1965 }
1966 
1967 /// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
1968 /// and destination must *not* overlap.
1969 ///
1970 /// For regions of memory which might overlap, use [`copy`] instead.
1971 ///
1972 /// `copy_nonoverlapping` is semantically equivalent to C's [`memcpy`], but
1973 /// with the argument order swapped.
1974 ///
1975 /// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy
1976 ///
1977 /// # Safety
1978 ///
1979 /// Behavior is undefined if any of the following conditions are violated:
1980 ///
1981 /// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
1982 ///
1983 /// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
1984 ///
1985 /// * Both `src` and `dst` must be properly aligned.
1986 ///
1987 /// * The region of memory beginning at `src` with a size of `count *
1988 ///   size_of::<T>()` bytes must *not* overlap with the region of memory
1989 ///   beginning at `dst` with the same size.
1990 ///
1991 /// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
1992 /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
1993 /// in the region beginning at `*src` and the region beginning at `*dst` can
1994 /// [violate memory safety][read-ownership].
1995 ///
1996 /// Note that even if the effectively copied size (`count * size_of::<T>()`) is
1997 /// `0`, the pointers must be non-null and properly aligned.
1998 ///
1999 /// [`read`]: crate::ptr::read
2000 /// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
2001 /// [valid]: crate::ptr#safety
2002 ///
2003 /// # Examples
2004 ///
2005 /// Manually implement [`Vec::append`]:
2006 ///
2007 /// ```
2008 /// use std::ptr;
2009 ///
2010 /// /// Moves all the elements of `src` into `dst`, leaving `src` empty.
2011 /// fn append<T>(dst: &mut Vec<T>, src: &mut Vec<T>) {
2012 ///     let src_len = src.len();
2013 ///     let dst_len = dst.len();
2014 ///
2015 ///     // Ensure that `dst` has enough capacity to hold all of `src`.
2016 ///     dst.reserve(src_len);
2017 ///
2018 ///     unsafe {
2019 ///         // The call to offset is always safe because `Vec` will never
2020 ///         // allocate more than `isize::MAX` bytes.
2021 ///         let dst_ptr = dst.as_mut_ptr().offset(dst_len as isize);
2022 ///         let src_ptr = src.as_ptr();
2023 ///
2024 ///         // Truncate `src` without dropping its contents. We do this first,
2025 ///         // to avoid problems in case something further down panics.
2026 ///         src.set_len(0);
2027 ///
2028 ///         // The two regions cannot overlap because mutable references do
2029 ///         // not alias, and two different vectors cannot own the same
2030 ///         // memory.
2031 ///         ptr::copy_nonoverlapping(src_ptr, dst_ptr, src_len);
2032 ///
2033 ///         // Notify `dst` that it now holds the contents of `src`.
2034 ///         dst.set_len(dst_len + src_len);
2035 ///     }
2036 /// }
2037 ///
2038 /// let mut a = vec!['r'];
2039 /// let mut b = vec!['u', 's', 't'];
2040 ///
2041 /// append(&mut a, &mut b);
2042 ///
2043 /// assert_eq!(a, &['r', 'u', 's', 't']);
2044 /// assert!(b.is_empty());
2045 /// ```
2046 ///
2047 /// [`Vec::append`]: ../../std/vec/struct.Vec.html#method.append
2048 #[doc(alias = "memcpy")]
2049 #[stable(feature = "rust1", since = "1.0.0")]
2050 #[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
2051 #[inline]
copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize)2052 pub const unsafe fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize) {
2053     extern "rust-intrinsic" {
2054         #[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
2055         pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
2056     }
2057 
2058     #[cfg(debug_assertions)]
2059     fn runtime_check<T>(src: *const T, dst: *mut T, count: usize) {
2060         if !is_aligned_and_not_null(src)
2061             || !is_aligned_and_not_null(dst)
2062             || !is_nonoverlapping(src, dst, count)
2063         {
2064             // Not panicking to keep codegen impact smaller.
2065             abort();
2066         }
2067     }
2068     #[cfg(debug_assertions)]
2069     const fn compiletime_check<T>(_src: *const T, _dst: *mut T, _count: usize) {}
2070     #[cfg(debug_assertions)]
2071     // SAFETY: runtime debug-assertions are a best-effort basis; it's fine to
2072     // not do them during compile time
2073     unsafe {
2074         const_eval_select((src, dst, count), compiletime_check, runtime_check);
2075     }
2076 
2077     // SAFETY: the safety contract for `copy_nonoverlapping` must be
2078     // upheld by the caller.
2079     unsafe { copy_nonoverlapping(src, dst, count) }
2080 }
2081 
2082 /// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
2083 /// and destination may overlap.
2084 ///
2085 /// If the source and destination will *never* overlap,
2086 /// [`copy_nonoverlapping`] can be used instead.
2087 ///
2088 /// `copy` is semantically equivalent to C's [`memmove`], but with the argument
2089 /// order swapped. Copying takes place as if the bytes were copied from `src`
2090 /// to a temporary array and then copied from the array to `dst`.
2091 ///
2092 /// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove
2093 ///
2094 /// # Safety
2095 ///
2096 /// Behavior is undefined if any of the following conditions are violated:
2097 ///
2098 /// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
2099 ///
2100 /// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
2101 ///
2102 /// * Both `src` and `dst` must be properly aligned.
2103 ///
2104 /// Like [`read`], `copy` creates a bitwise copy of `T`, regardless of
2105 /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the values
2106 /// in the region beginning at `*src` and the region beginning at `*dst` can
2107 /// [violate memory safety][read-ownership].
2108 ///
2109 /// Note that even if the effectively copied size (`count * size_of::<T>()`) is
2110 /// `0`, the pointers must be non-null and properly aligned.
2111 ///
2112 /// [`read`]: crate::ptr::read
2113 /// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
2114 /// [valid]: crate::ptr#safety
2115 ///
2116 /// # Examples
2117 ///
2118 /// Efficiently create a Rust vector from an unsafe buffer:
2119 ///
2120 /// ```
2121 /// use std::ptr;
2122 ///
2123 /// /// # Safety
2124 /// ///
2125 /// /// * `ptr` must be correctly aligned for its type and non-zero.
2126 /// /// * `ptr` must be valid for reads of `elts` contiguous elements of type `T`.
2127 /// /// * Those elements must not be used after calling this function unless `T: Copy`.
2128 /// # #[allow(dead_code)]
2129 /// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
2130 ///     let mut dst = Vec::with_capacity(elts);
2131 ///
2132 ///     // SAFETY: Our precondition ensures the source is aligned and valid,
2133 ///     // and `Vec::with_capacity` ensures that we have usable space to write them.
2134 ///     ptr::copy(ptr, dst.as_mut_ptr(), elts);
2135 ///
2136 ///     // SAFETY: We created it with this much capacity earlier,
2137 ///     // and the previous `copy` has initialized these elements.
2138 ///     dst.set_len(elts);
2139 ///     dst
2140 /// }
2141 /// ```
2142 #[doc(alias = "memmove")]
2143 #[stable(feature = "rust1", since = "1.0.0")]
2144 #[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
2145 #[inline]
copy<T>(src: *const T, dst: *mut T, count: usize)2146 pub const unsafe fn copy<T>(src: *const T, dst: *mut T, count: usize) {
2147     extern "rust-intrinsic" {
2148         #[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
2149         fn copy<T>(src: *const T, dst: *mut T, count: usize);
2150     }
2151 
2152     #[cfg(debug_assertions)]
2153     fn runtime_check<T>(src: *const T, dst: *mut T) {
2154         if !is_aligned_and_not_null(src) || !is_aligned_and_not_null(dst) {
2155             // Not panicking to keep codegen impact smaller.
2156             abort();
2157         }
2158     }
2159     #[cfg(debug_assertions)]
2160     const fn compiletime_check<T>(_src: *const T, _dst: *mut T) {}
2161     #[cfg(debug_assertions)]
2162     // SAFETY: runtime debug-assertions are a best-effort basis; it's fine to
2163     // not do them during compile time
2164     unsafe {
2165         const_eval_select((src, dst), compiletime_check, runtime_check);
2166     }
2167 
2168     // SAFETY: the safety contract for `copy` must be upheld by the caller.
2169     unsafe { copy(src, dst, count) }
2170 }
2171 
2172 /// Sets `count * size_of::<T>()` bytes of memory starting at `dst` to
2173 /// `val`.
2174 ///
2175 /// `write_bytes` is similar to C's [`memset`], but sets `count *
2176 /// size_of::<T>()` bytes to `val`.
2177 ///
2178 /// [`memset`]: https://en.cppreference.com/w/c/string/byte/memset
2179 ///
2180 /// # Safety
2181 ///
2182 /// Behavior is undefined if any of the following conditions are violated:
2183 ///
2184 /// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
2185 ///
2186 /// * `dst` must be properly aligned.
2187 ///
2188 /// Additionally, the caller must ensure that writing `count *
2189 /// size_of::<T>()` bytes to the given region of memory results in a valid
2190 /// value of `T`. Using a region of memory typed as a `T` that contains an
2191 /// invalid value of `T` is undefined behavior.
2192 ///
2193 /// Note that even if the effectively copied size (`count * size_of::<T>()`) is
2194 /// `0`, the pointer must be non-null and properly aligned.
2195 ///
2196 /// [valid]: crate::ptr#safety
2197 ///
2198 /// # Examples
2199 ///
2200 /// Basic usage:
2201 ///
2202 /// ```
2203 /// use std::ptr;
2204 ///
2205 /// let mut vec = vec![0u32; 4];
2206 /// unsafe {
2207 ///     let vec_ptr = vec.as_mut_ptr();
2208 ///     ptr::write_bytes(vec_ptr, 0xfe, 2);
2209 /// }
2210 /// assert_eq!(vec, [0xfefefefe, 0xfefefefe, 0, 0]);
2211 /// ```
2212 ///
2213 /// Creating an invalid value:
2214 ///
2215 /// ```
2216 /// use std::ptr;
2217 ///
2218 /// let mut v = Box::new(0i32);
2219 ///
2220 /// unsafe {
2221 ///     // Leaks the previously held value by overwriting the `Box<T>` with
2222 ///     // a null pointer.
2223 ///     ptr::write_bytes(&mut v as *mut Box<i32>, 0, 1);
2224 /// }
2225 ///
2226 /// // At this point, using or dropping `v` results in undefined behavior.
2227 /// // drop(v); // ERROR
2228 ///
2229 /// // Even leaking `v` "uses" it, and hence is undefined behavior.
2230 /// // mem::forget(v); // ERROR
2231 ///
2232 /// // In fact, `v` is invalid according to basic type layout invariants, so *any*
2233 /// // operation touching it is undefined behavior.
2234 /// // let v2 = v; // ERROR
2235 ///
2236 /// unsafe {
2237 ///     // Let us instead put in a valid value
2238 ///     ptr::write(&mut v as *mut Box<i32>, Box::new(42i32));
2239 /// }
2240 ///
2241 /// // Now the box is fine
2242 /// assert_eq!(*v, 42);
2243 /// ```
2244 #[stable(feature = "rust1", since = "1.0.0")]
2245 #[inline]
write_bytes<T>(dst: *mut T, val: u8, count: usize)2246 pub unsafe fn write_bytes<T>(dst: *mut T, val: u8, count: usize) {
2247     extern "rust-intrinsic" {
2248         fn write_bytes<T>(dst: *mut T, val: u8, count: usize);
2249     }
2250 
2251     debug_assert!(is_aligned_and_not_null(dst), "attempt to write to unaligned or null pointer");
2252 
2253     // SAFETY: the safety contract for `write_bytes` must be upheld by the caller.
2254     unsafe { write_bytes(dst, val, count) }
2255 }
2256 
2257 /// Selects which function to call depending on the context.
2258 ///
2259 /// If this function is evaluated at compile-time, then a call to this
2260 /// intrinsic will be replaced with a call to `called_in_const`. It gets
2261 /// replaced with a call to `called_at_rt` otherwise.
2262 ///
2263 /// # Type Requirements
2264 ///
2265 /// The two functions must be both function items. They cannot be function
2266 /// pointers or closures.
2267 ///
2268 /// `arg` will be the arguments that will be passed to either one of the
2269 /// two functions, therefore, both functions must accept the same type of
2270 /// arguments. Both functions must return RET.
2271 ///
2272 /// # Safety
2273 ///
2274 /// This intrinsic allows breaking [referential transparency] in `const fn`
2275 /// and is therefore `unsafe`.
2276 ///
2277 /// Code that uses this intrinsic must be extremely careful to ensure that
2278 /// `const fn`s remain referentially-transparent independently of when they
2279 /// are evaluated.
2280 ///
2281 /// The Rust compiler assumes that it is sound to replace a call to a `const
2282 /// fn` with the result produced by evaluating it at compile-time. If
2283 /// evaluating the function at run-time were to produce a different result,
2284 /// or have any other observable side-effects, the behavior is undefined.
2285 ///
2286 /// [referential transparency]: https://en.wikipedia.org/wiki/Referential_transparency
2287 #[unstable(
2288     feature = "const_eval_select",
2289     issue = "none",
2290     reason = "const_eval_select will never be stable"
2291 )]
2292 #[rustc_const_unstable(feature = "const_eval_select", issue = "none")]
2293 #[lang = "const_eval_select"]
2294 #[rustc_do_not_const_check]
const_eval_select<ARG, F, G, RET>( arg: ARG, _called_in_const: F, called_at_rt: G, ) -> RET where F: ~const FnOnce<ARG, Output = RET>, G: FnOnce<ARG, Output = RET> + ~const Drop,2295 pub const unsafe fn const_eval_select<ARG, F, G, RET>(
2296     arg: ARG,
2297     _called_in_const: F,
2298     called_at_rt: G,
2299 ) -> RET
2300 where
2301     F: ~const FnOnce<ARG, Output = RET>,
2302     G: FnOnce<ARG, Output = RET> + ~const Drop,
2303 {
2304     called_at_rt.call_once(arg)
2305 }
2306 
2307 #[unstable(
2308     feature = "const_eval_select",
2309     issue = "none",
2310     reason = "const_eval_select will never be stable"
2311 )]
2312 #[rustc_const_unstable(feature = "const_eval_select", issue = "none")]
2313 #[lang = "const_eval_select_ct"]
const_eval_select_ct<ARG, F, G, RET>( arg: ARG, called_in_const: F, _called_at_rt: G, ) -> RET where F: ~const FnOnce<ARG, Output = RET>, G: FnOnce<ARG, Output = RET> + ~const Drop,2314 pub const unsafe fn const_eval_select_ct<ARG, F, G, RET>(
2315     arg: ARG,
2316     called_in_const: F,
2317     _called_at_rt: G,
2318 ) -> RET
2319 where
2320     F: ~const FnOnce<ARG, Output = RET>,
2321     G: FnOnce<ARG, Output = RET> + ~const Drop,
2322 {
2323     called_in_const.call_once(arg)
2324 }
2325