xref: /openbsd/gnu/gcc/gcc/cfganal.c (revision 404b540a)
1 /* Control flow graph analysis code for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 /* This file contains various simple utilities to analyze the CFG.  */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
36 
37 /* Store the data structures necessary for depth-first search.  */
38 struct depth_first_search_dsS {
39   /* stack for backtracking during the algorithm */
40   basic_block *stack;
41 
42   /* number of edges in the stack.  That is, positions 0, ..., sp-1
43      have edges.  */
44   unsigned int sp;
45 
46   /* record of basic blocks already seen by depth-first search */
47   sbitmap visited_blocks;
48 };
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
50 
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 					     basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 						     basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
58 
59 /* Like active_insn_p, except keep the return value clobber around
60    even after reload.  */
61 
62 static bool
flow_active_insn_p(rtx insn)63 flow_active_insn_p (rtx insn)
64 {
65   if (active_insn_p (insn))
66     return true;
67 
68   /* A clobber of the function return value exists for buggy
69      programs that fail to return a value.  Its effect is to
70      keep the return value from being live across the entire
71      function.  If we allow it to be skipped, we introduce the
72      possibility for register lifetime confusion.  */
73   if (GET_CODE (PATTERN (insn)) == CLOBBER
74       && REG_P (XEXP (PATTERN (insn), 0))
75       && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76     return true;
77 
78   return false;
79 }
80 
81 /* Return true if the block has no effect and only forwards control flow to
82    its single destination.  */
83 
84 bool
forwarder_block_p(basic_block bb)85 forwarder_block_p (basic_block bb)
86 {
87   rtx insn;
88 
89   if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90       || !single_succ_p (bb))
91     return false;
92 
93   for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94     if (INSN_P (insn) && flow_active_insn_p (insn))
95       return false;
96 
97   return (!INSN_P (insn)
98 	  || (JUMP_P (insn) && simplejump_p (insn))
99 	  || !flow_active_insn_p (insn));
100 }
101 
102 /* Return nonzero if we can reach target from src by falling through.  */
103 
104 bool
can_fallthru(basic_block src,basic_block target)105 can_fallthru (basic_block src, basic_block target)
106 {
107   rtx insn = BB_END (src);
108   rtx insn2;
109   edge e;
110   edge_iterator ei;
111 
112   if (target == EXIT_BLOCK_PTR)
113     return true;
114   if (src->next_bb != target)
115     return 0;
116   FOR_EACH_EDGE (e, ei, src->succs)
117     if (e->dest == EXIT_BLOCK_PTR
118 	&& e->flags & EDGE_FALLTHRU)
119       return 0;
120 
121   insn2 = BB_HEAD (target);
122   if (insn2 && !active_insn_p (insn2))
123     insn2 = next_active_insn (insn2);
124 
125   /* ??? Later we may add code to move jump tables offline.  */
126   return next_active_insn (insn) == insn2;
127 }
128 
129 /* Return nonzero if we could reach target from src by falling through,
130    if the target was made adjacent.  If we already have a fall-through
131    edge to the exit block, we can't do that.  */
132 bool
could_fall_through(basic_block src,basic_block target)133 could_fall_through (basic_block src, basic_block target)
134 {
135   edge e;
136   edge_iterator ei;
137 
138   if (target == EXIT_BLOCK_PTR)
139     return true;
140   FOR_EACH_EDGE (e, ei, src->succs)
141     if (e->dest == EXIT_BLOCK_PTR
142 	&& e->flags & EDGE_FALLTHRU)
143       return 0;
144   return true;
145 }
146 
147 /* Mark the back edges in DFS traversal.
148    Return nonzero if a loop (natural or otherwise) is present.
149    Inspired by Depth_First_Search_PP described in:
150 
151      Advanced Compiler Design and Implementation
152      Steven Muchnick
153      Morgan Kaufmann, 1997
154 
155    and heavily borrowed from pre_and_rev_post_order_compute.  */
156 
157 bool
mark_dfs_back_edges(void)158 mark_dfs_back_edges (void)
159 {
160   edge_iterator *stack;
161   int *pre;
162   int *post;
163   int sp;
164   int prenum = 1;
165   int postnum = 1;
166   sbitmap visited;
167   bool found = false;
168 
169   /* Allocate the preorder and postorder number arrays.  */
170   pre = XCNEWVEC (int, last_basic_block);
171   post = XCNEWVEC (int, last_basic_block);
172 
173   /* Allocate stack for back-tracking up CFG.  */
174   stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
175   sp = 0;
176 
177   /* Allocate bitmap to track nodes that have been visited.  */
178   visited = sbitmap_alloc (last_basic_block);
179 
180   /* None of the nodes in the CFG have been visited yet.  */
181   sbitmap_zero (visited);
182 
183   /* Push the first edge on to the stack.  */
184   stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185 
186   while (sp)
187     {
188       edge_iterator ei;
189       basic_block src;
190       basic_block dest;
191 
192       /* Look at the edge on the top of the stack.  */
193       ei = stack[sp - 1];
194       src = ei_edge (ei)->src;
195       dest = ei_edge (ei)->dest;
196       ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197 
198       /* Check if the edge destination has been visited yet.  */
199       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200 	{
201 	  /* Mark that we have visited the destination.  */
202 	  SET_BIT (visited, dest->index);
203 
204 	  pre[dest->index] = prenum++;
205 	  if (EDGE_COUNT (dest->succs) > 0)
206 	    {
207 	      /* Since the DEST node has been visited for the first
208 		 time, check its successors.  */
209 	      stack[sp++] = ei_start (dest->succs);
210 	    }
211 	  else
212 	    post[dest->index] = postnum++;
213 	}
214       else
215 	{
216 	  if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 	      && pre[src->index] >= pre[dest->index]
218 	      && post[dest->index] == 0)
219 	    ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220 
221 	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 	    post[src->index] = postnum++;
223 
224 	  if (!ei_one_before_end_p (ei))
225 	    ei_next (&stack[sp - 1]);
226 	  else
227 	    sp--;
228 	}
229     }
230 
231   free (pre);
232   free (post);
233   free (stack);
234   sbitmap_free (visited);
235 
236   return found;
237 }
238 
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */
240 
241 void
set_edge_can_fallthru_flag(void)242 set_edge_can_fallthru_flag (void)
243 {
244   basic_block bb;
245 
246   FOR_EACH_BB (bb)
247     {
248       edge e;
249       edge_iterator ei;
250 
251       FOR_EACH_EDGE (e, ei, bb->succs)
252 	{
253 	  e->flags &= ~EDGE_CAN_FALLTHRU;
254 
255 	  /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
256 	  if (e->flags & EDGE_FALLTHRU)
257 	    e->flags |= EDGE_CAN_FALLTHRU;
258 	}
259 
260       /* If the BB ends with an invertible condjump all (2) edges are
261 	 CAN_FALLTHRU edges.  */
262       if (EDGE_COUNT (bb->succs) != 2)
263 	continue;
264       if (!any_condjump_p (BB_END (bb)))
265 	continue;
266       if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 	continue;
268       invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269       EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270       EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271     }
272 }
273 
274 /* Find unreachable blocks.  An unreachable block will have 0 in
275    the reachable bit in block->flags.  A nonzero value indicates the
276    block is reachable.  */
277 
278 void
find_unreachable_blocks(void)279 find_unreachable_blocks (void)
280 {
281   edge e;
282   edge_iterator ei;
283   basic_block *tos, *worklist, bb;
284 
285   tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
286 
287   /* Clear all the reachability flags.  */
288 
289   FOR_EACH_BB (bb)
290     bb->flags &= ~BB_REACHABLE;
291 
292   /* Add our starting points to the worklist.  Almost always there will
293      be only one.  It isn't inconceivable that we might one day directly
294      support Fortran alternate entry points.  */
295 
296   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297     {
298       *tos++ = e->dest;
299 
300       /* Mark the block reachable.  */
301       e->dest->flags |= BB_REACHABLE;
302     }
303 
304   /* Iterate: find everything reachable from what we've already seen.  */
305 
306   while (tos != worklist)
307     {
308       basic_block b = *--tos;
309 
310       FOR_EACH_EDGE (e, ei, b->succs)
311 	{
312 	  basic_block dest = e->dest;
313 
314 	  if (!(dest->flags & BB_REACHABLE))
315 	    {
316 	      *tos++ = dest;
317 	      dest->flags |= BB_REACHABLE;
318 	    }
319 	}
320     }
321 
322   free (worklist);
323 }
324 
325 /* Functions to access an edge list with a vector representation.
326    Enough data is kept such that given an index number, the
327    pred and succ that edge represents can be determined, or
328    given a pred and a succ, its index number can be returned.
329    This allows algorithms which consume a lot of memory to
330    represent the normally full matrix of edge (pred,succ) with a
331    single indexed vector,  edge (EDGE_INDEX (pred, succ)), with no
332    wasted space in the client code due to sparse flow graphs.  */
333 
334 /* This functions initializes the edge list. Basically the entire
335    flowgraph is processed, and all edges are assigned a number,
336    and the data structure is filled in.  */
337 
338 struct edge_list *
create_edge_list(void)339 create_edge_list (void)
340 {
341   struct edge_list *elist;
342   edge e;
343   int num_edges;
344   int block_count;
345   basic_block bb;
346   edge_iterator ei;
347 
348   block_count = n_basic_blocks; /* Include the entry and exit blocks.  */
349 
350   num_edges = 0;
351 
352   /* Determine the number of edges in the flow graph by counting successor
353      edges on each basic block.  */
354   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
355     {
356       num_edges += EDGE_COUNT (bb->succs);
357     }
358 
359   elist = XNEW (struct edge_list);
360   elist->num_blocks = block_count;
361   elist->num_edges = num_edges;
362   elist->index_to_edge = XNEWVEC (edge, num_edges);
363 
364   num_edges = 0;
365 
366   /* Follow successors of blocks, and register these edges.  */
367   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368     FOR_EACH_EDGE (e, ei, bb->succs)
369       elist->index_to_edge[num_edges++] = e;
370 
371   return elist;
372 }
373 
374 /* This function free's memory associated with an edge list.  */
375 
376 void
free_edge_list(struct edge_list * elist)377 free_edge_list (struct edge_list *elist)
378 {
379   if (elist)
380     {
381       free (elist->index_to_edge);
382       free (elist);
383     }
384 }
385 
386 /* This function provides debug output showing an edge list.  */
387 
388 void
print_edge_list(FILE * f,struct edge_list * elist)389 print_edge_list (FILE *f, struct edge_list *elist)
390 {
391   int x;
392 
393   fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394 	   elist->num_blocks, elist->num_edges);
395 
396   for (x = 0; x < elist->num_edges; x++)
397     {
398       fprintf (f, " %-4d - edge(", x);
399       if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400 	fprintf (f, "entry,");
401       else
402 	fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
403 
404       if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405 	fprintf (f, "exit)\n");
406       else
407 	fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
408     }
409 }
410 
411 /* This function provides an internal consistency check of an edge list,
412    verifying that all edges are present, and that there are no
413    extra edges.  */
414 
415 void
verify_edge_list(FILE * f,struct edge_list * elist)416 verify_edge_list (FILE *f, struct edge_list *elist)
417 {
418   int pred, succ, index;
419   edge e;
420   basic_block bb, p, s;
421   edge_iterator ei;
422 
423   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
424     {
425       FOR_EACH_EDGE (e, ei, bb->succs)
426 	{
427 	  pred = e->src->index;
428 	  succ = e->dest->index;
429 	  index = EDGE_INDEX (elist, e->src, e->dest);
430 	  if (index == EDGE_INDEX_NO_EDGE)
431 	    {
432 	      fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433 	      continue;
434 	    }
435 
436 	  if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437 	    fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438 		     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439 	  if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440 	    fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441 		     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
442 	}
443     }
444 
445   /* We've verified that all the edges are in the list, now lets make sure
446      there are no spurious edges in the list.  */
447 
448   FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449     FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
450       {
451 	int found_edge = 0;
452 
453 	FOR_EACH_EDGE (e, ei, p->succs)
454 	  if (e->dest == s)
455 	    {
456 	      found_edge = 1;
457 	      break;
458 	    }
459 
460 	FOR_EACH_EDGE (e, ei, s->preds)
461 	  if (e->src == p)
462 	    {
463 	      found_edge = 1;
464 	      break;
465 	    }
466 
467 	if (EDGE_INDEX (elist, p, s)
468 	    == EDGE_INDEX_NO_EDGE && found_edge != 0)
469 	  fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470 		   p->index, s->index);
471 	if (EDGE_INDEX (elist, p, s)
472 	    != EDGE_INDEX_NO_EDGE && found_edge == 0)
473 	  fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474 		   p->index, s->index, EDGE_INDEX (elist, p, s));
475       }
476 }
477 
478 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
479    If no such edge exists, return NULL.  */
480 
481 edge
find_edge(basic_block pred,basic_block succ)482 find_edge (basic_block pred, basic_block succ)
483 {
484   edge e;
485   edge_iterator ei;
486 
487   if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
488     {
489       FOR_EACH_EDGE (e, ei, pred->succs)
490 	if (e->dest == succ)
491 	  return e;
492     }
493   else
494     {
495       FOR_EACH_EDGE (e, ei, succ->preds)
496 	if (e->src == pred)
497 	  return e;
498     }
499 
500   return NULL;
501 }
502 
503 /* This routine will determine what, if any, edge there is between
504    a specified predecessor and successor.  */
505 
506 int
find_edge_index(struct edge_list * edge_list,basic_block pred,basic_block succ)507 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
508 {
509   int x;
510 
511   for (x = 0; x < NUM_EDGES (edge_list); x++)
512     if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513 	&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514       return x;
515 
516   return (EDGE_INDEX_NO_EDGE);
517 }
518 
519 /* Dump the list of basic blocks in the bitmap NODES.  */
520 
521 void
flow_nodes_print(const char * str,const sbitmap nodes,FILE * file)522 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
523 {
524   unsigned int node = 0;
525   sbitmap_iterator sbi;
526 
527   if (! nodes)
528     return;
529 
530   fprintf (file, "%s { ", str);
531   EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532     fprintf (file, "%d ", node);
533   fputs ("}\n", file);
534 }
535 
536 /* Dump the list of edges in the array EDGE_LIST.  */
537 
538 void
flow_edge_list_print(const char * str,const edge * edge_list,int num_edges,FILE * file)539 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
540 {
541   int i;
542 
543   if (! edge_list)
544     return;
545 
546   fprintf (file, "%s { ", str);
547   for (i = 0; i < num_edges; i++)
548     fprintf (file, "%d->%d ", edge_list[i]->src->index,
549 	     edge_list[i]->dest->index);
550 
551   fputs ("}\n", file);
552 }
553 
554 
555 /* This routine will remove any fake predecessor edges for a basic block.
556    When the edge is removed, it is also removed from whatever successor
557    list it is in.  */
558 
559 static void
remove_fake_predecessors(basic_block bb)560 remove_fake_predecessors (basic_block bb)
561 {
562   edge e;
563   edge_iterator ei;
564 
565   for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
566     {
567       if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568 	remove_edge (e);
569       else
570 	ei_next (&ei);
571     }
572 }
573 
574 /* This routine will remove all fake edges from the flow graph.  If
575    we remove all fake successors, it will automatically remove all
576    fake predecessors.  */
577 
578 void
remove_fake_edges(void)579 remove_fake_edges (void)
580 {
581   basic_block bb;
582 
583   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584     remove_fake_predecessors (bb);
585 }
586 
587 /* This routine will remove all fake edges to the EXIT_BLOCK.  */
588 
589 void
remove_fake_exit_edges(void)590 remove_fake_exit_edges (void)
591 {
592   remove_fake_predecessors (EXIT_BLOCK_PTR);
593 }
594 
595 
596 /* This function will add a fake edge between any block which has no
597    successors, and the exit block. Some data flow equations require these
598    edges to exist.  */
599 
600 void
add_noreturn_fake_exit_edges(void)601 add_noreturn_fake_exit_edges (void)
602 {
603   basic_block bb;
604 
605   FOR_EACH_BB (bb)
606     if (EDGE_COUNT (bb->succs) == 0)
607       make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
608 }
609 
610 /* This function adds a fake edge between any infinite loops to the
611    exit block.  Some optimizations require a path from each node to
612    the exit node.
613 
614    See also Morgan, Figure 3.10, pp. 82-83.
615 
616    The current implementation is ugly, not attempting to minimize the
617    number of inserted fake edges.  To reduce the number of fake edges
618    to insert, add fake edges from _innermost_ loops containing only
619    nodes not reachable from the exit block.  */
620 
621 void
connect_infinite_loops_to_exit(void)622 connect_infinite_loops_to_exit (void)
623 {
624   basic_block unvisited_block = EXIT_BLOCK_PTR;
625   struct depth_first_search_dsS dfs_ds;
626 
627   /* Perform depth-first search in the reverse graph to find nodes
628      reachable from the exit block.  */
629   flow_dfs_compute_reverse_init (&dfs_ds);
630   flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
631 
632   /* Repeatedly add fake edges, updating the unreachable nodes.  */
633   while (1)
634     {
635       unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636 							  unvisited_block);
637       if (!unvisited_block)
638 	break;
639 
640       make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641       flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
642     }
643 
644   flow_dfs_compute_reverse_finish (&dfs_ds);
645   return;
646 }
647 
648 /* Compute reverse top sort order.
649    This is computing a post order numbering of the graph.  */
650 
651 int
post_order_compute(int * post_order,bool include_entry_exit)652 post_order_compute (int *post_order, bool include_entry_exit)
653 {
654   edge_iterator *stack;
655   int sp;
656   int post_order_num = 0;
657   sbitmap visited;
658 
659   if (include_entry_exit)
660     post_order[post_order_num++] = EXIT_BLOCK;
661 
662   /* Allocate stack for back-tracking up CFG.  */
663   stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
664   sp = 0;
665 
666   /* Allocate bitmap to track nodes that have been visited.  */
667   visited = sbitmap_alloc (last_basic_block);
668 
669   /* None of the nodes in the CFG have been visited yet.  */
670   sbitmap_zero (visited);
671 
672   /* Push the first edge on to the stack.  */
673   stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
674 
675   while (sp)
676     {
677       edge_iterator ei;
678       basic_block src;
679       basic_block dest;
680 
681       /* Look at the edge on the top of the stack.  */
682       ei = stack[sp - 1];
683       src = ei_edge (ei)->src;
684       dest = ei_edge (ei)->dest;
685 
686       /* Check if the edge destination has been visited yet.  */
687       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
688 	{
689 	  /* Mark that we have visited the destination.  */
690 	  SET_BIT (visited, dest->index);
691 
692 	  if (EDGE_COUNT (dest->succs) > 0)
693 	    /* Since the DEST node has been visited for the first
694 	       time, check its successors.  */
695 	    stack[sp++] = ei_start (dest->succs);
696 	  else
697 	    post_order[post_order_num++] = dest->index;
698 	}
699       else
700 	{
701 	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
702 	   post_order[post_order_num++] = src->index;
703 
704 	  if (!ei_one_before_end_p (ei))
705 	    ei_next (&stack[sp - 1]);
706 	  else
707 	    sp--;
708 	}
709     }
710 
711   if (include_entry_exit)
712     post_order[post_order_num++] = ENTRY_BLOCK;
713 
714   free (stack);
715   sbitmap_free (visited);
716   return post_order_num;
717 }
718 
719 /* Compute the depth first search order and store in the array
720   PRE_ORDER if nonzero, marking the nodes visited in VISITED.  If
721   REV_POST_ORDER is nonzero, return the reverse completion number for each
722   node.  Returns the number of nodes visited.  A depth first search
723   tries to get as far away from the starting point as quickly as
724   possible.
725 
726   pre_order is a really a preorder numbering of the graph.
727   rev_post_order is really a reverse postorder numbering of the graph.
728  */
729 
730 int
pre_and_rev_post_order_compute(int * pre_order,int * rev_post_order,bool include_entry_exit)731 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
732 				bool include_entry_exit)
733 {
734   edge_iterator *stack;
735   int sp;
736   int pre_order_num = 0;
737   int rev_post_order_num = n_basic_blocks - 1;
738   sbitmap visited;
739 
740   /* Allocate stack for back-tracking up CFG.  */
741   stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
742   sp = 0;
743 
744   if (include_entry_exit)
745     {
746       if (pre_order)
747 	pre_order[pre_order_num] = ENTRY_BLOCK;
748       pre_order_num++;
749       if (rev_post_order)
750 	rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
751     }
752   else
753     rev_post_order_num -= NUM_FIXED_BLOCKS;
754 
755   /* Allocate bitmap to track nodes that have been visited.  */
756   visited = sbitmap_alloc (last_basic_block);
757 
758   /* None of the nodes in the CFG have been visited yet.  */
759   sbitmap_zero (visited);
760 
761   /* Push the first edge on to the stack.  */
762   stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
763 
764   while (sp)
765     {
766       edge_iterator ei;
767       basic_block src;
768       basic_block dest;
769 
770       /* Look at the edge on the top of the stack.  */
771       ei = stack[sp - 1];
772       src = ei_edge (ei)->src;
773       dest = ei_edge (ei)->dest;
774 
775       /* Check if the edge destination has been visited yet.  */
776       if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
777 	{
778 	  /* Mark that we have visited the destination.  */
779 	  SET_BIT (visited, dest->index);
780 
781 	  if (pre_order)
782 	    pre_order[pre_order_num] = dest->index;
783 
784 	  pre_order_num++;
785 
786 	  if (EDGE_COUNT (dest->succs) > 0)
787 	    /* Since the DEST node has been visited for the first
788 	       time, check its successors.  */
789 	    stack[sp++] = ei_start (dest->succs);
790 	  else if (rev_post_order)
791 	    /* There are no successors for the DEST node so assign
792 	       its reverse completion number.  */
793 	    rev_post_order[rev_post_order_num--] = dest->index;
794 	}
795       else
796 	{
797 	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
798 	      && rev_post_order)
799 	    /* There are no more successors for the SRC node
800 	       so assign its reverse completion number.  */
801 	    rev_post_order[rev_post_order_num--] = src->index;
802 
803 	  if (!ei_one_before_end_p (ei))
804 	    ei_next (&stack[sp - 1]);
805 	  else
806 	    sp--;
807 	}
808     }
809 
810   free (stack);
811   sbitmap_free (visited);
812 
813   if (include_entry_exit)
814     {
815       if (pre_order)
816 	pre_order[pre_order_num] = EXIT_BLOCK;
817       pre_order_num++;
818       if (rev_post_order)
819 	rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
820       /* The number of nodes visited should be the number of blocks.  */
821       gcc_assert (pre_order_num == n_basic_blocks);
822     }
823   else
824     /* The number of nodes visited should be the number of blocks minus
825        the entry and exit blocks which are not visited here.  */
826     gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
827 
828   return pre_order_num;
829 }
830 
831 /* Compute the depth first search order on the _reverse_ graph and
832    store in the array DFS_ORDER, marking the nodes visited in VISITED.
833    Returns the number of nodes visited.
834 
835    The computation is split into three pieces:
836 
837    flow_dfs_compute_reverse_init () creates the necessary data
838    structures.
839 
840    flow_dfs_compute_reverse_add_bb () adds a basic block to the data
841    structures.  The block will start the search.
842 
843    flow_dfs_compute_reverse_execute () continues (or starts) the
844    search using the block on the top of the stack, stopping when the
845    stack is empty.
846 
847    flow_dfs_compute_reverse_finish () destroys the necessary data
848    structures.
849 
850    Thus, the user will probably call ..._init(), call ..._add_bb() to
851    add a beginning basic block to the stack, call ..._execute(),
852    possibly add another bb to the stack and again call ..._execute(),
853    ..., and finally call _finish().  */
854 
855 /* Initialize the data structures used for depth-first search on the
856    reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
857    added to the basic block stack.  DATA is the current depth-first
858    search context.  If INITIALIZE_STACK is nonzero, there is an
859    element on the stack.  */
860 
861 static void
flow_dfs_compute_reverse_init(depth_first_search_ds data)862 flow_dfs_compute_reverse_init (depth_first_search_ds data)
863 {
864   /* Allocate stack for back-tracking up CFG.  */
865   data->stack = XNEWVEC (basic_block, n_basic_blocks);
866   data->sp = 0;
867 
868   /* Allocate bitmap to track nodes that have been visited.  */
869   data->visited_blocks = sbitmap_alloc (last_basic_block);
870 
871   /* None of the nodes in the CFG have been visited yet.  */
872   sbitmap_zero (data->visited_blocks);
873 
874   return;
875 }
876 
877 /* Add the specified basic block to the top of the dfs data
878    structures.  When the search continues, it will start at the
879    block.  */
880 
881 static void
flow_dfs_compute_reverse_add_bb(depth_first_search_ds data,basic_block bb)882 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
883 {
884   data->stack[data->sp++] = bb;
885   SET_BIT (data->visited_blocks, bb->index);
886 }
887 
888 /* Continue the depth-first search through the reverse graph starting with the
889    block at the stack's top and ending when the stack is empty.  Visited nodes
890    are marked.  Returns an unvisited basic block, or NULL if there is none
891    available.  */
892 
893 static basic_block
flow_dfs_compute_reverse_execute(depth_first_search_ds data,basic_block last_unvisited)894 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
895 				  basic_block last_unvisited)
896 {
897   basic_block bb;
898   edge e;
899   edge_iterator ei;
900 
901   while (data->sp > 0)
902     {
903       bb = data->stack[--data->sp];
904 
905       /* Perform depth-first search on adjacent vertices.  */
906       FOR_EACH_EDGE (e, ei, bb->preds)
907 	if (!TEST_BIT (data->visited_blocks, e->src->index))
908 	  flow_dfs_compute_reverse_add_bb (data, e->src);
909     }
910 
911   /* Determine if there are unvisited basic blocks.  */
912   FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
913     if (!TEST_BIT (data->visited_blocks, bb->index))
914       return bb;
915 
916   return NULL;
917 }
918 
919 /* Destroy the data structures needed for depth-first search on the
920    reverse graph.  */
921 
922 static void
flow_dfs_compute_reverse_finish(depth_first_search_ds data)923 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
924 {
925   free (data->stack);
926   sbitmap_free (data->visited_blocks);
927 }
928 
929 /* Performs dfs search from BB over vertices satisfying PREDICATE;
930    if REVERSE, go against direction of edges.  Returns number of blocks
931    found and their list in RSLT.  RSLT can contain at most RSLT_MAX items.  */
932 int
dfs_enumerate_from(basic_block bb,int reverse,bool (* predicate)(basic_block,void *),basic_block * rslt,int rslt_max,void * data)933 dfs_enumerate_from (basic_block bb, int reverse,
934 		    bool (*predicate) (basic_block, void *),
935 		    basic_block *rslt, int rslt_max, void *data)
936 {
937   basic_block *st, lbb;
938   int sp = 0, tv = 0;
939   unsigned size;
940 
941   /* A bitmap to keep track of visited blocks.  Allocating it each time
942      this function is called is not possible, since dfs_enumerate_from
943      is often used on small (almost) disjoint parts of cfg (bodies of
944      loops), and allocating a large sbitmap would lead to quadratic
945      behavior.  */
946   static sbitmap visited;
947   static unsigned v_size;
948 
949 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
950 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
951 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
952 
953   /* Resize the VISITED sbitmap if necessary.  */
954   size = last_basic_block;
955   if (size < 10)
956     size = 10;
957 
958   if (!visited)
959     {
960 
961       visited = sbitmap_alloc (size);
962       sbitmap_zero (visited);
963       v_size = size;
964     }
965   else if (v_size < size)
966     {
967       /* Ensure that we increase the size of the sbitmap exponentially.  */
968       if (2 * v_size > size)
969 	size = 2 * v_size;
970 
971       visited = sbitmap_resize (visited, size, 0);
972       v_size = size;
973     }
974 
975   st = XCNEWVEC (basic_block, rslt_max);
976   rslt[tv++] = st[sp++] = bb;
977   MARK_VISITED (bb);
978   while (sp)
979     {
980       edge e;
981       edge_iterator ei;
982       lbb = st[--sp];
983       if (reverse)
984 	{
985 	  FOR_EACH_EDGE (e, ei, lbb->preds)
986 	    if (!VISITED_P (e->src) && predicate (e->src, data))
987 	      {
988 		gcc_assert (tv != rslt_max);
989 		rslt[tv++] = st[sp++] = e->src;
990 		MARK_VISITED (e->src);
991 	      }
992 	}
993       else
994 	{
995 	  FOR_EACH_EDGE (e, ei, lbb->succs)
996 	    if (!VISITED_P (e->dest) && predicate (e->dest, data))
997 	      {
998 		gcc_assert (tv != rslt_max);
999 		rslt[tv++] = st[sp++] = e->dest;
1000 		MARK_VISITED (e->dest);
1001 	      }
1002 	}
1003     }
1004   free (st);
1005   for (sp = 0; sp < tv; sp++)
1006     UNMARK_VISITED (rslt[sp]);
1007   return tv;
1008 #undef MARK_VISITED
1009 #undef UNMARK_VISITED
1010 #undef VISITED_P
1011 }
1012 
1013 
1014 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1015 
1016    This algorithm can be found in Timothy Harvey's PhD thesis, at
1017    http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1018    dominance algorithms.
1019 
1020    First, we identify each join point, j (any node with more than one
1021    incoming edge is a join point).
1022 
1023    We then examine each predecessor, p, of j and walk up the dominator tree
1024    starting at p.
1025 
1026    We stop the walk when we reach j's immediate dominator - j is in the
1027    dominance frontier of each of  the nodes in the walk, except for j's
1028    immediate dominator. Intuitively, all of the rest of j's dominators are
1029    shared by j's predecessors as well.
1030    Since they dominate j, they will not have j in their dominance frontiers.
1031 
1032    The number of nodes touched by this algorithm is equal to the size
1033    of the dominance frontiers, no more, no less.
1034 */
1035 
1036 
1037 static void
compute_dominance_frontiers_1(bitmap * frontiers)1038 compute_dominance_frontiers_1 (bitmap *frontiers)
1039 {
1040   edge p;
1041   edge_iterator ei;
1042   basic_block b;
1043   FOR_EACH_BB (b)
1044     {
1045       if (EDGE_COUNT (b->preds) >= 2)
1046 	{
1047 	  FOR_EACH_EDGE (p, ei, b->preds)
1048 	    {
1049 	      basic_block runner = p->src;
1050 	      basic_block domsb;
1051 	      if (runner == ENTRY_BLOCK_PTR)
1052 		continue;
1053 
1054 	      domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1055 	      while (runner != domsb)
1056 		{
1057 		  if (bitmap_bit_p (frontiers[runner->index], b->index))
1058 		    break;
1059 		  bitmap_set_bit (frontiers[runner->index],
1060 				  b->index);
1061 		  runner = get_immediate_dominator (CDI_DOMINATORS,
1062 						    runner);
1063 		}
1064 	    }
1065 	}
1066     }
1067 }
1068 
1069 
1070 void
compute_dominance_frontiers(bitmap * frontiers)1071 compute_dominance_frontiers (bitmap *frontiers)
1072 {
1073   timevar_push (TV_DOM_FRONTIERS);
1074 
1075   compute_dominance_frontiers_1 (frontiers);
1076 
1077   timevar_pop (TV_DOM_FRONTIERS);
1078 }
1079 
1080