1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
36
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS {
39 /* stack for backtracking during the algorithm */
40 basic_block *stack;
41
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
43 have edges. */
44 unsigned int sp;
45
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks;
48 };
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
50
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
58
59 /* Like active_insn_p, except keep the return value clobber around
60 even after reload. */
61
62 static bool
flow_active_insn_p(rtx insn)63 flow_active_insn_p (rtx insn)
64 {
65 if (active_insn_p (insn))
66 return true;
67
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register lifetime confusion. */
73 if (GET_CODE (PATTERN (insn)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76 return true;
77
78 return false;
79 }
80
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
83
84 bool
forwarder_block_p(basic_block bb)85 forwarder_block_p (basic_block bb)
86 {
87 rtx insn;
88
89 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90 || !single_succ_p (bb))
91 return false;
92
93 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94 if (INSN_P (insn) && flow_active_insn_p (insn))
95 return false;
96
97 return (!INSN_P (insn)
98 || (JUMP_P (insn) && simplejump_p (insn))
99 || !flow_active_insn_p (insn));
100 }
101
102 /* Return nonzero if we can reach target from src by falling through. */
103
104 bool
can_fallthru(basic_block src,basic_block target)105 can_fallthru (basic_block src, basic_block target)
106 {
107 rtx insn = BB_END (src);
108 rtx insn2;
109 edge e;
110 edge_iterator ei;
111
112 if (target == EXIT_BLOCK_PTR)
113 return true;
114 if (src->next_bb != target)
115 return 0;
116 FOR_EACH_EDGE (e, ei, src->succs)
117 if (e->dest == EXIT_BLOCK_PTR
118 && e->flags & EDGE_FALLTHRU)
119 return 0;
120
121 insn2 = BB_HEAD (target);
122 if (insn2 && !active_insn_p (insn2))
123 insn2 = next_active_insn (insn2);
124
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn) == insn2;
127 }
128
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
132 bool
could_fall_through(basic_block src,basic_block target)133 could_fall_through (basic_block src, basic_block target)
134 {
135 edge e;
136 edge_iterator ei;
137
138 if (target == EXIT_BLOCK_PTR)
139 return true;
140 FOR_EACH_EDGE (e, ei, src->succs)
141 if (e->dest == EXIT_BLOCK_PTR
142 && e->flags & EDGE_FALLTHRU)
143 return 0;
144 return true;
145 }
146
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
150
151 Advanced Compiler Design and Implementation
152 Steven Muchnick
153 Morgan Kaufmann, 1997
154
155 and heavily borrowed from pre_and_rev_post_order_compute. */
156
157 bool
mark_dfs_back_edges(void)158 mark_dfs_back_edges (void)
159 {
160 edge_iterator *stack;
161 int *pre;
162 int *post;
163 int sp;
164 int prenum = 1;
165 int postnum = 1;
166 sbitmap visited;
167 bool found = false;
168
169 /* Allocate the preorder and postorder number arrays. */
170 pre = XCNEWVEC (int, last_basic_block);
171 post = XCNEWVEC (int, last_basic_block);
172
173 /* Allocate stack for back-tracking up CFG. */
174 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
175 sp = 0;
176
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited = sbitmap_alloc (last_basic_block);
179
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited);
182
183 /* Push the first edge on to the stack. */
184 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185
186 while (sp)
187 {
188 edge_iterator ei;
189 basic_block src;
190 basic_block dest;
191
192 /* Look at the edge on the top of the stack. */
193 ei = stack[sp - 1];
194 src = ei_edge (ei)->src;
195 dest = ei_edge (ei)->dest;
196 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197
198 /* Check if the edge destination has been visited yet. */
199 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200 {
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited, dest->index);
203
204 pre[dest->index] = prenum++;
205 if (EDGE_COUNT (dest->succs) > 0)
206 {
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack[sp++] = ei_start (dest->succs);
210 }
211 else
212 post[dest->index] = postnum++;
213 }
214 else
215 {
216 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 && pre[src->index] >= pre[dest->index]
218 && post[dest->index] == 0)
219 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220
221 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 post[src->index] = postnum++;
223
224 if (!ei_one_before_end_p (ei))
225 ei_next (&stack[sp - 1]);
226 else
227 sp--;
228 }
229 }
230
231 free (pre);
232 free (post);
233 free (stack);
234 sbitmap_free (visited);
235
236 return found;
237 }
238
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
240
241 void
set_edge_can_fallthru_flag(void)242 set_edge_can_fallthru_flag (void)
243 {
244 basic_block bb;
245
246 FOR_EACH_BB (bb)
247 {
248 edge e;
249 edge_iterator ei;
250
251 FOR_EACH_EDGE (e, ei, bb->succs)
252 {
253 e->flags &= ~EDGE_CAN_FALLTHRU;
254
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e->flags & EDGE_FALLTHRU)
257 e->flags |= EDGE_CAN_FALLTHRU;
258 }
259
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb->succs) != 2)
263 continue;
264 if (!any_condjump_p (BB_END (bb)))
265 continue;
266 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 continue;
268 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271 }
272 }
273
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
277
278 void
find_unreachable_blocks(void)279 find_unreachable_blocks (void)
280 {
281 edge e;
282 edge_iterator ei;
283 basic_block *tos, *worklist, bb;
284
285 tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
286
287 /* Clear all the reachability flags. */
288
289 FOR_EACH_BB (bb)
290 bb->flags &= ~BB_REACHABLE;
291
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
295
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297 {
298 *tos++ = e->dest;
299
300 /* Mark the block reachable. */
301 e->dest->flags |= BB_REACHABLE;
302 }
303
304 /* Iterate: find everything reachable from what we've already seen. */
305
306 while (tos != worklist)
307 {
308 basic_block b = *--tos;
309
310 FOR_EACH_EDGE (e, ei, b->succs)
311 {
312 basic_block dest = e->dest;
313
314 if (!(dest->flags & BB_REACHABLE))
315 {
316 *tos++ = dest;
317 dest->flags |= BB_REACHABLE;
318 }
319 }
320 }
321
322 free (worklist);
323 }
324
325 /* Functions to access an edge list with a vector representation.
326 Enough data is kept such that given an index number, the
327 pred and succ that edge represents can be determined, or
328 given a pred and a succ, its index number can be returned.
329 This allows algorithms which consume a lot of memory to
330 represent the normally full matrix of edge (pred,succ) with a
331 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
332 wasted space in the client code due to sparse flow graphs. */
333
334 /* This functions initializes the edge list. Basically the entire
335 flowgraph is processed, and all edges are assigned a number,
336 and the data structure is filled in. */
337
338 struct edge_list *
create_edge_list(void)339 create_edge_list (void)
340 {
341 struct edge_list *elist;
342 edge e;
343 int num_edges;
344 int block_count;
345 basic_block bb;
346 edge_iterator ei;
347
348 block_count = n_basic_blocks; /* Include the entry and exit blocks. */
349
350 num_edges = 0;
351
352 /* Determine the number of edges in the flow graph by counting successor
353 edges on each basic block. */
354 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
355 {
356 num_edges += EDGE_COUNT (bb->succs);
357 }
358
359 elist = XNEW (struct edge_list);
360 elist->num_blocks = block_count;
361 elist->num_edges = num_edges;
362 elist->index_to_edge = XNEWVEC (edge, num_edges);
363
364 num_edges = 0;
365
366 /* Follow successors of blocks, and register these edges. */
367 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368 FOR_EACH_EDGE (e, ei, bb->succs)
369 elist->index_to_edge[num_edges++] = e;
370
371 return elist;
372 }
373
374 /* This function free's memory associated with an edge list. */
375
376 void
free_edge_list(struct edge_list * elist)377 free_edge_list (struct edge_list *elist)
378 {
379 if (elist)
380 {
381 free (elist->index_to_edge);
382 free (elist);
383 }
384 }
385
386 /* This function provides debug output showing an edge list. */
387
388 void
print_edge_list(FILE * f,struct edge_list * elist)389 print_edge_list (FILE *f, struct edge_list *elist)
390 {
391 int x;
392
393 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394 elist->num_blocks, elist->num_edges);
395
396 for (x = 0; x < elist->num_edges; x++)
397 {
398 fprintf (f, " %-4d - edge(", x);
399 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400 fprintf (f, "entry,");
401 else
402 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
403
404 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405 fprintf (f, "exit)\n");
406 else
407 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
408 }
409 }
410
411 /* This function provides an internal consistency check of an edge list,
412 verifying that all edges are present, and that there are no
413 extra edges. */
414
415 void
verify_edge_list(FILE * f,struct edge_list * elist)416 verify_edge_list (FILE *f, struct edge_list *elist)
417 {
418 int pred, succ, index;
419 edge e;
420 basic_block bb, p, s;
421 edge_iterator ei;
422
423 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
424 {
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 {
427 pred = e->src->index;
428 succ = e->dest->index;
429 index = EDGE_INDEX (elist, e->src, e->dest);
430 if (index == EDGE_INDEX_NO_EDGE)
431 {
432 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433 continue;
434 }
435
436 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
442 }
443 }
444
445 /* We've verified that all the edges are in the list, now lets make sure
446 there are no spurious edges in the list. */
447
448 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
450 {
451 int found_edge = 0;
452
453 FOR_EACH_EDGE (e, ei, p->succs)
454 if (e->dest == s)
455 {
456 found_edge = 1;
457 break;
458 }
459
460 FOR_EACH_EDGE (e, ei, s->preds)
461 if (e->src == p)
462 {
463 found_edge = 1;
464 break;
465 }
466
467 if (EDGE_INDEX (elist, p, s)
468 == EDGE_INDEX_NO_EDGE && found_edge != 0)
469 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470 p->index, s->index);
471 if (EDGE_INDEX (elist, p, s)
472 != EDGE_INDEX_NO_EDGE && found_edge == 0)
473 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474 p->index, s->index, EDGE_INDEX (elist, p, s));
475 }
476 }
477
478 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
479 If no such edge exists, return NULL. */
480
481 edge
find_edge(basic_block pred,basic_block succ)482 find_edge (basic_block pred, basic_block succ)
483 {
484 edge e;
485 edge_iterator ei;
486
487 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
488 {
489 FOR_EACH_EDGE (e, ei, pred->succs)
490 if (e->dest == succ)
491 return e;
492 }
493 else
494 {
495 FOR_EACH_EDGE (e, ei, succ->preds)
496 if (e->src == pred)
497 return e;
498 }
499
500 return NULL;
501 }
502
503 /* This routine will determine what, if any, edge there is between
504 a specified predecessor and successor. */
505
506 int
find_edge_index(struct edge_list * edge_list,basic_block pred,basic_block succ)507 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
508 {
509 int x;
510
511 for (x = 0; x < NUM_EDGES (edge_list); x++)
512 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514 return x;
515
516 return (EDGE_INDEX_NO_EDGE);
517 }
518
519 /* Dump the list of basic blocks in the bitmap NODES. */
520
521 void
flow_nodes_print(const char * str,const sbitmap nodes,FILE * file)522 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
523 {
524 unsigned int node = 0;
525 sbitmap_iterator sbi;
526
527 if (! nodes)
528 return;
529
530 fprintf (file, "%s { ", str);
531 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532 fprintf (file, "%d ", node);
533 fputs ("}\n", file);
534 }
535
536 /* Dump the list of edges in the array EDGE_LIST. */
537
538 void
flow_edge_list_print(const char * str,const edge * edge_list,int num_edges,FILE * file)539 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
540 {
541 int i;
542
543 if (! edge_list)
544 return;
545
546 fprintf (file, "%s { ", str);
547 for (i = 0; i < num_edges; i++)
548 fprintf (file, "%d->%d ", edge_list[i]->src->index,
549 edge_list[i]->dest->index);
550
551 fputs ("}\n", file);
552 }
553
554
555 /* This routine will remove any fake predecessor edges for a basic block.
556 When the edge is removed, it is also removed from whatever successor
557 list it is in. */
558
559 static void
remove_fake_predecessors(basic_block bb)560 remove_fake_predecessors (basic_block bb)
561 {
562 edge e;
563 edge_iterator ei;
564
565 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
566 {
567 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568 remove_edge (e);
569 else
570 ei_next (&ei);
571 }
572 }
573
574 /* This routine will remove all fake edges from the flow graph. If
575 we remove all fake successors, it will automatically remove all
576 fake predecessors. */
577
578 void
remove_fake_edges(void)579 remove_fake_edges (void)
580 {
581 basic_block bb;
582
583 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584 remove_fake_predecessors (bb);
585 }
586
587 /* This routine will remove all fake edges to the EXIT_BLOCK. */
588
589 void
remove_fake_exit_edges(void)590 remove_fake_exit_edges (void)
591 {
592 remove_fake_predecessors (EXIT_BLOCK_PTR);
593 }
594
595
596 /* This function will add a fake edge between any block which has no
597 successors, and the exit block. Some data flow equations require these
598 edges to exist. */
599
600 void
add_noreturn_fake_exit_edges(void)601 add_noreturn_fake_exit_edges (void)
602 {
603 basic_block bb;
604
605 FOR_EACH_BB (bb)
606 if (EDGE_COUNT (bb->succs) == 0)
607 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
608 }
609
610 /* This function adds a fake edge between any infinite loops to the
611 exit block. Some optimizations require a path from each node to
612 the exit node.
613
614 See also Morgan, Figure 3.10, pp. 82-83.
615
616 The current implementation is ugly, not attempting to minimize the
617 number of inserted fake edges. To reduce the number of fake edges
618 to insert, add fake edges from _innermost_ loops containing only
619 nodes not reachable from the exit block. */
620
621 void
connect_infinite_loops_to_exit(void)622 connect_infinite_loops_to_exit (void)
623 {
624 basic_block unvisited_block = EXIT_BLOCK_PTR;
625 struct depth_first_search_dsS dfs_ds;
626
627 /* Perform depth-first search in the reverse graph to find nodes
628 reachable from the exit block. */
629 flow_dfs_compute_reverse_init (&dfs_ds);
630 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
631
632 /* Repeatedly add fake edges, updating the unreachable nodes. */
633 while (1)
634 {
635 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636 unvisited_block);
637 if (!unvisited_block)
638 break;
639
640 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
642 }
643
644 flow_dfs_compute_reverse_finish (&dfs_ds);
645 return;
646 }
647
648 /* Compute reverse top sort order.
649 This is computing a post order numbering of the graph. */
650
651 int
post_order_compute(int * post_order,bool include_entry_exit)652 post_order_compute (int *post_order, bool include_entry_exit)
653 {
654 edge_iterator *stack;
655 int sp;
656 int post_order_num = 0;
657 sbitmap visited;
658
659 if (include_entry_exit)
660 post_order[post_order_num++] = EXIT_BLOCK;
661
662 /* Allocate stack for back-tracking up CFG. */
663 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
664 sp = 0;
665
666 /* Allocate bitmap to track nodes that have been visited. */
667 visited = sbitmap_alloc (last_basic_block);
668
669 /* None of the nodes in the CFG have been visited yet. */
670 sbitmap_zero (visited);
671
672 /* Push the first edge on to the stack. */
673 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
674
675 while (sp)
676 {
677 edge_iterator ei;
678 basic_block src;
679 basic_block dest;
680
681 /* Look at the edge on the top of the stack. */
682 ei = stack[sp - 1];
683 src = ei_edge (ei)->src;
684 dest = ei_edge (ei)->dest;
685
686 /* Check if the edge destination has been visited yet. */
687 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
688 {
689 /* Mark that we have visited the destination. */
690 SET_BIT (visited, dest->index);
691
692 if (EDGE_COUNT (dest->succs) > 0)
693 /* Since the DEST node has been visited for the first
694 time, check its successors. */
695 stack[sp++] = ei_start (dest->succs);
696 else
697 post_order[post_order_num++] = dest->index;
698 }
699 else
700 {
701 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
702 post_order[post_order_num++] = src->index;
703
704 if (!ei_one_before_end_p (ei))
705 ei_next (&stack[sp - 1]);
706 else
707 sp--;
708 }
709 }
710
711 if (include_entry_exit)
712 post_order[post_order_num++] = ENTRY_BLOCK;
713
714 free (stack);
715 sbitmap_free (visited);
716 return post_order_num;
717 }
718
719 /* Compute the depth first search order and store in the array
720 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
721 REV_POST_ORDER is nonzero, return the reverse completion number for each
722 node. Returns the number of nodes visited. A depth first search
723 tries to get as far away from the starting point as quickly as
724 possible.
725
726 pre_order is a really a preorder numbering of the graph.
727 rev_post_order is really a reverse postorder numbering of the graph.
728 */
729
730 int
pre_and_rev_post_order_compute(int * pre_order,int * rev_post_order,bool include_entry_exit)731 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
732 bool include_entry_exit)
733 {
734 edge_iterator *stack;
735 int sp;
736 int pre_order_num = 0;
737 int rev_post_order_num = n_basic_blocks - 1;
738 sbitmap visited;
739
740 /* Allocate stack for back-tracking up CFG. */
741 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
742 sp = 0;
743
744 if (include_entry_exit)
745 {
746 if (pre_order)
747 pre_order[pre_order_num] = ENTRY_BLOCK;
748 pre_order_num++;
749 if (rev_post_order)
750 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
751 }
752 else
753 rev_post_order_num -= NUM_FIXED_BLOCKS;
754
755 /* Allocate bitmap to track nodes that have been visited. */
756 visited = sbitmap_alloc (last_basic_block);
757
758 /* None of the nodes in the CFG have been visited yet. */
759 sbitmap_zero (visited);
760
761 /* Push the first edge on to the stack. */
762 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
763
764 while (sp)
765 {
766 edge_iterator ei;
767 basic_block src;
768 basic_block dest;
769
770 /* Look at the edge on the top of the stack. */
771 ei = stack[sp - 1];
772 src = ei_edge (ei)->src;
773 dest = ei_edge (ei)->dest;
774
775 /* Check if the edge destination has been visited yet. */
776 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
777 {
778 /* Mark that we have visited the destination. */
779 SET_BIT (visited, dest->index);
780
781 if (pre_order)
782 pre_order[pre_order_num] = dest->index;
783
784 pre_order_num++;
785
786 if (EDGE_COUNT (dest->succs) > 0)
787 /* Since the DEST node has been visited for the first
788 time, check its successors. */
789 stack[sp++] = ei_start (dest->succs);
790 else if (rev_post_order)
791 /* There are no successors for the DEST node so assign
792 its reverse completion number. */
793 rev_post_order[rev_post_order_num--] = dest->index;
794 }
795 else
796 {
797 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
798 && rev_post_order)
799 /* There are no more successors for the SRC node
800 so assign its reverse completion number. */
801 rev_post_order[rev_post_order_num--] = src->index;
802
803 if (!ei_one_before_end_p (ei))
804 ei_next (&stack[sp - 1]);
805 else
806 sp--;
807 }
808 }
809
810 free (stack);
811 sbitmap_free (visited);
812
813 if (include_entry_exit)
814 {
815 if (pre_order)
816 pre_order[pre_order_num] = EXIT_BLOCK;
817 pre_order_num++;
818 if (rev_post_order)
819 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
820 /* The number of nodes visited should be the number of blocks. */
821 gcc_assert (pre_order_num == n_basic_blocks);
822 }
823 else
824 /* The number of nodes visited should be the number of blocks minus
825 the entry and exit blocks which are not visited here. */
826 gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
827
828 return pre_order_num;
829 }
830
831 /* Compute the depth first search order on the _reverse_ graph and
832 store in the array DFS_ORDER, marking the nodes visited in VISITED.
833 Returns the number of nodes visited.
834
835 The computation is split into three pieces:
836
837 flow_dfs_compute_reverse_init () creates the necessary data
838 structures.
839
840 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
841 structures. The block will start the search.
842
843 flow_dfs_compute_reverse_execute () continues (or starts) the
844 search using the block on the top of the stack, stopping when the
845 stack is empty.
846
847 flow_dfs_compute_reverse_finish () destroys the necessary data
848 structures.
849
850 Thus, the user will probably call ..._init(), call ..._add_bb() to
851 add a beginning basic block to the stack, call ..._execute(),
852 possibly add another bb to the stack and again call ..._execute(),
853 ..., and finally call _finish(). */
854
855 /* Initialize the data structures used for depth-first search on the
856 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
857 added to the basic block stack. DATA is the current depth-first
858 search context. If INITIALIZE_STACK is nonzero, there is an
859 element on the stack. */
860
861 static void
flow_dfs_compute_reverse_init(depth_first_search_ds data)862 flow_dfs_compute_reverse_init (depth_first_search_ds data)
863 {
864 /* Allocate stack for back-tracking up CFG. */
865 data->stack = XNEWVEC (basic_block, n_basic_blocks);
866 data->sp = 0;
867
868 /* Allocate bitmap to track nodes that have been visited. */
869 data->visited_blocks = sbitmap_alloc (last_basic_block);
870
871 /* None of the nodes in the CFG have been visited yet. */
872 sbitmap_zero (data->visited_blocks);
873
874 return;
875 }
876
877 /* Add the specified basic block to the top of the dfs data
878 structures. When the search continues, it will start at the
879 block. */
880
881 static void
flow_dfs_compute_reverse_add_bb(depth_first_search_ds data,basic_block bb)882 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
883 {
884 data->stack[data->sp++] = bb;
885 SET_BIT (data->visited_blocks, bb->index);
886 }
887
888 /* Continue the depth-first search through the reverse graph starting with the
889 block at the stack's top and ending when the stack is empty. Visited nodes
890 are marked. Returns an unvisited basic block, or NULL if there is none
891 available. */
892
893 static basic_block
flow_dfs_compute_reverse_execute(depth_first_search_ds data,basic_block last_unvisited)894 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
895 basic_block last_unvisited)
896 {
897 basic_block bb;
898 edge e;
899 edge_iterator ei;
900
901 while (data->sp > 0)
902 {
903 bb = data->stack[--data->sp];
904
905 /* Perform depth-first search on adjacent vertices. */
906 FOR_EACH_EDGE (e, ei, bb->preds)
907 if (!TEST_BIT (data->visited_blocks, e->src->index))
908 flow_dfs_compute_reverse_add_bb (data, e->src);
909 }
910
911 /* Determine if there are unvisited basic blocks. */
912 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
913 if (!TEST_BIT (data->visited_blocks, bb->index))
914 return bb;
915
916 return NULL;
917 }
918
919 /* Destroy the data structures needed for depth-first search on the
920 reverse graph. */
921
922 static void
flow_dfs_compute_reverse_finish(depth_first_search_ds data)923 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
924 {
925 free (data->stack);
926 sbitmap_free (data->visited_blocks);
927 }
928
929 /* Performs dfs search from BB over vertices satisfying PREDICATE;
930 if REVERSE, go against direction of edges. Returns number of blocks
931 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
932 int
dfs_enumerate_from(basic_block bb,int reverse,bool (* predicate)(basic_block,void *),basic_block * rslt,int rslt_max,void * data)933 dfs_enumerate_from (basic_block bb, int reverse,
934 bool (*predicate) (basic_block, void *),
935 basic_block *rslt, int rslt_max, void *data)
936 {
937 basic_block *st, lbb;
938 int sp = 0, tv = 0;
939 unsigned size;
940
941 /* A bitmap to keep track of visited blocks. Allocating it each time
942 this function is called is not possible, since dfs_enumerate_from
943 is often used on small (almost) disjoint parts of cfg (bodies of
944 loops), and allocating a large sbitmap would lead to quadratic
945 behavior. */
946 static sbitmap visited;
947 static unsigned v_size;
948
949 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
950 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
951 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
952
953 /* Resize the VISITED sbitmap if necessary. */
954 size = last_basic_block;
955 if (size < 10)
956 size = 10;
957
958 if (!visited)
959 {
960
961 visited = sbitmap_alloc (size);
962 sbitmap_zero (visited);
963 v_size = size;
964 }
965 else if (v_size < size)
966 {
967 /* Ensure that we increase the size of the sbitmap exponentially. */
968 if (2 * v_size > size)
969 size = 2 * v_size;
970
971 visited = sbitmap_resize (visited, size, 0);
972 v_size = size;
973 }
974
975 st = XCNEWVEC (basic_block, rslt_max);
976 rslt[tv++] = st[sp++] = bb;
977 MARK_VISITED (bb);
978 while (sp)
979 {
980 edge e;
981 edge_iterator ei;
982 lbb = st[--sp];
983 if (reverse)
984 {
985 FOR_EACH_EDGE (e, ei, lbb->preds)
986 if (!VISITED_P (e->src) && predicate (e->src, data))
987 {
988 gcc_assert (tv != rslt_max);
989 rslt[tv++] = st[sp++] = e->src;
990 MARK_VISITED (e->src);
991 }
992 }
993 else
994 {
995 FOR_EACH_EDGE (e, ei, lbb->succs)
996 if (!VISITED_P (e->dest) && predicate (e->dest, data))
997 {
998 gcc_assert (tv != rslt_max);
999 rslt[tv++] = st[sp++] = e->dest;
1000 MARK_VISITED (e->dest);
1001 }
1002 }
1003 }
1004 free (st);
1005 for (sp = 0; sp < tv; sp++)
1006 UNMARK_VISITED (rslt[sp]);
1007 return tv;
1008 #undef MARK_VISITED
1009 #undef UNMARK_VISITED
1010 #undef VISITED_P
1011 }
1012
1013
1014 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1015
1016 This algorithm can be found in Timothy Harvey's PhD thesis, at
1017 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1018 dominance algorithms.
1019
1020 First, we identify each join point, j (any node with more than one
1021 incoming edge is a join point).
1022
1023 We then examine each predecessor, p, of j and walk up the dominator tree
1024 starting at p.
1025
1026 We stop the walk when we reach j's immediate dominator - j is in the
1027 dominance frontier of each of the nodes in the walk, except for j's
1028 immediate dominator. Intuitively, all of the rest of j's dominators are
1029 shared by j's predecessors as well.
1030 Since they dominate j, they will not have j in their dominance frontiers.
1031
1032 The number of nodes touched by this algorithm is equal to the size
1033 of the dominance frontiers, no more, no less.
1034 */
1035
1036
1037 static void
compute_dominance_frontiers_1(bitmap * frontiers)1038 compute_dominance_frontiers_1 (bitmap *frontiers)
1039 {
1040 edge p;
1041 edge_iterator ei;
1042 basic_block b;
1043 FOR_EACH_BB (b)
1044 {
1045 if (EDGE_COUNT (b->preds) >= 2)
1046 {
1047 FOR_EACH_EDGE (p, ei, b->preds)
1048 {
1049 basic_block runner = p->src;
1050 basic_block domsb;
1051 if (runner == ENTRY_BLOCK_PTR)
1052 continue;
1053
1054 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1055 while (runner != domsb)
1056 {
1057 if (bitmap_bit_p (frontiers[runner->index], b->index))
1058 break;
1059 bitmap_set_bit (frontiers[runner->index],
1060 b->index);
1061 runner = get_immediate_dominator (CDI_DOMINATORS,
1062 runner);
1063 }
1064 }
1065 }
1066 }
1067 }
1068
1069
1070 void
compute_dominance_frontiers(bitmap * frontiers)1071 compute_dominance_frontiers (bitmap *frontiers)
1072 {
1073 timevar_push (TV_DOM_FRONTIERS);
1074
1075 compute_dominance_frontiers_1 (frontiers);
1076
1077 timevar_pop (TV_DOM_FRONTIERS);
1078 }
1079
1080