1 /**
2 * @file
3 *
4 * Neighbor discovery and stateless address autoconfiguration for IPv6.
5 * Aims to be compliant with RFC 4861 (Neighbor discovery) and RFC 4862
6 * (Address autoconfiguration).
7 */
8
9 /*
10 * Copyright (c) 2010 Inico Technologies Ltd.
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without modification,
14 * are permitted provided that the following conditions are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright notice,
17 * this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright notice,
19 * this list of conditions and the following disclaimer in the documentation
20 * and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
27 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
29 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
32 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
33 * OF SUCH DAMAGE.
34 *
35 * This file is part of the lwIP TCP/IP stack.
36 *
37 * Author: Ivan Delamer <delamer@inicotech.com>
38 *
39 *
40 * Please coordinate changes and requests with Ivan Delamer
41 * <delamer@inicotech.com>
42 */
43
44 #include "lwip/opt.h"
45
46 #if LWIP_IPV6 /* don't build if not configured for use in lwipopts.h */
47
48 #include "lwip/nd6.h"
49 #include "lwip/priv/nd6_priv.h"
50 #include "lwip/prot/nd6.h"
51 #include "lwip/prot/icmp6.h"
52 #include "lwip/pbuf.h"
53 #include "lwip/mem.h"
54 #include "lwip/memp.h"
55 #include "lwip/ip6.h"
56 #include "lwip/ip6_addr.h"
57 #include "lwip/inet_chksum.h"
58 #include "lwip/netif.h"
59 #include "lwip/icmp6.h"
60 #include "lwip/mld6.h"
61 #include "lwip/dhcp6.h"
62 #include "lwip/ip.h"
63 #include "lwip/stats.h"
64 #include "lwip/dns.h"
65
66 #include <string.h>
67
68 #ifdef LWIP_HOOK_FILENAME
69 #include LWIP_HOOK_FILENAME
70 #endif
71
72 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
73 #error LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
74 #endif
75 #if LWIP_ND6_NUM_NEIGHBORS > 127
76 #error LWIP_ND6_NUM_NEIGHBORS must fit into an s8_t (max value: 127)
77 #endif
78 #if LWIP_ND6_NUM_DESTINATIONS > 32767
79 #error LWIP_ND6_NUM_DESTINATIONS must fit into an s16_t (max value: 32767)
80 #endif
81 #if LWIP_ND6_NUM_PREFIXES > 127
82 #error LWIP_ND6_NUM_PREFIXES must fit into an s8_t (max value: 127)
83 #endif
84 #if LWIP_ND6_NUM_ROUTERS > 127
85 #error LWIP_ND6_NUM_ROUTERS must fit into an s8_t (max value: 127)
86 #endif
87
88 /* Router tables. */
89 struct nd6_neighbor_cache_entry neighbor_cache[LWIP_ND6_NUM_NEIGHBORS];
90 struct nd6_destination_cache_entry destination_cache[LWIP_ND6_NUM_DESTINATIONS];
91 struct nd6_prefix_list_entry prefix_list[LWIP_ND6_NUM_PREFIXES];
92 struct nd6_router_list_entry default_router_list[LWIP_ND6_NUM_ROUTERS];
93
94 /* Default values, can be updated by a RA message. */
95 u32_t reachable_time = LWIP_ND6_REACHABLE_TIME;
96 u32_t retrans_timer = LWIP_ND6_RETRANS_TIMER; /* @todo implement this value in timer */
97
98 #if LWIP_ND6_QUEUEING
99 static u8_t nd6_queue_size = 0;
100 #endif
101
102 /* Index for cache entries. */
103 static netif_addr_idx_t nd6_cached_destination_index;
104
105 /* Multicast address holder. */
106 static ip6_addr_t multicast_address;
107
108 static u8_t nd6_tmr_rs_reduction;
109
110 /* Static buffer to parse RA packet options */
111 union ra_options {
112 struct lladdr_option lladdr;
113 struct mtu_option mtu;
114 struct prefix_option prefix;
115 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
116 struct rdnss_option rdnss;
117 #endif
118 };
119 static union ra_options nd6_ra_buffer;
120
121 /* Forward declarations. */
122 static s8_t nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr);
123 static s8_t nd6_new_neighbor_cache_entry(void);
124 static void nd6_free_neighbor_cache_entry(s8_t i);
125 static s16_t nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr);
126 static s16_t nd6_new_destination_cache_entry(void);
127 static int nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif);
128 static s8_t nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif);
129 static s8_t nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif);
130 static s8_t nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif);
131 static s8_t nd6_get_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif);
132 static s8_t nd6_new_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif);
133 static s8_t nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif);
134 static err_t nd6_queue_packet(s8_t neighbor_index, struct pbuf *q);
135
136 #define ND6_SEND_FLAG_MULTICAST_DEST 0x01
137 #define ND6_SEND_FLAG_ALLNODES_DEST 0x02
138 #define ND6_SEND_FLAG_ANY_SRC 0x04
139 static void nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
140 static void nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
141 static void nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags);
142 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
143 static err_t nd6_send_rs(struct netif *netif);
144 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
145
146 #if LWIP_ND6_QUEUEING
147 static void nd6_free_q(struct nd6_q_entry *q);
148 #else /* LWIP_ND6_QUEUEING */
149 #define nd6_free_q(q) pbuf_free(q)
150 #endif /* LWIP_ND6_QUEUEING */
151 static void nd6_send_q(s8_t i);
152
153
154 /**
155 * A local address has been determined to be a duplicate. Take the appropriate
156 * action(s) on the address and the interface as a whole.
157 *
158 * @param netif the netif that owns the address
159 * @param addr_idx the index of the address detected to be a duplicate
160 */
161 static void
nd6_duplicate_addr_detected(struct netif * netif,s8_t addr_idx)162 nd6_duplicate_addr_detected(struct netif *netif, s8_t addr_idx)
163 {
164
165 /* Mark the address as duplicate, but leave its lifetimes alone. If this was
166 * a manually assigned address, it will remain in existence as duplicate, and
167 * as such be unusable for any practical purposes until manual intervention.
168 * If this was an autogenerated address, the address will follow normal
169 * expiration rules, and thus disappear once its valid lifetime expires. */
170 netif_ip6_addr_set_state(netif, addr_idx, IP6_ADDR_DUPLICATED);
171
172 #if LWIP_IPV6_AUTOCONFIG
173 /* If the affected address was the link-local address that we use to generate
174 * all other addresses, then we should not continue to use those derived
175 * addresses either, so mark them as duplicate as well. For autoconfig-only
176 * setups, this will make the interface effectively unusable, approaching the
177 * intention of RFC 4862 Sec. 5.4.5. @todo implement the full requirements */
178 if (addr_idx == 0) {
179 s8_t i;
180 for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
181 if (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, i)) &&
182 !netif_ip6_addr_isstatic(netif, i)) {
183 netif_ip6_addr_set_state(netif, i, IP6_ADDR_DUPLICATED);
184 }
185 }
186 }
187 #endif /* LWIP_IPV6_AUTOCONFIG */
188 }
189
190 #if LWIP_IPV6_AUTOCONFIG
191 /**
192 * We received a router advertisement that contains a prefix with the
193 * autoconfiguration flag set. Add or update an associated autogenerated
194 * address.
195 *
196 * @param netif the netif on which the router advertisement arrived
197 * @param prefix_opt a pointer to the prefix option data
198 * @param prefix_addr an aligned copy of the prefix address
199 */
200 static void
nd6_process_autoconfig_prefix(struct netif * netif,struct prefix_option * prefix_opt,const ip6_addr_t * prefix_addr)201 nd6_process_autoconfig_prefix(struct netif *netif,
202 struct prefix_option *prefix_opt, const ip6_addr_t *prefix_addr)
203 {
204 ip6_addr_t ip6addr;
205 u32_t valid_life, pref_life;
206 u8_t addr_state;
207 s8_t i, free_idx;
208
209 /* The caller already checks RFC 4862 Sec. 5.5.3 points (a) and (b). We do
210 * the rest, starting with checks for (c) and (d) here. */
211 valid_life = lwip_htonl(prefix_opt->valid_lifetime);
212 pref_life = lwip_htonl(prefix_opt->preferred_lifetime);
213 if (pref_life > valid_life || prefix_opt->prefix_length != 64) {
214 return; /* silently ignore this prefix for autoconfiguration purposes */
215 }
216
217 /* If an autogenerated address already exists for this prefix, update its
218 * lifetimes. An address is considered autogenerated if 1) it is not static
219 * (i.e., manually assigned), and 2) there is an advertised autoconfiguration
220 * prefix for it (the one we are processing here). This does not necessarily
221 * exclude the possibility that the address was actually assigned by, say,
222 * DHCPv6. If that distinction becomes important in the future, more state
223 * must be kept. As explained elsewhere we also update lifetimes of tentative
224 * and duplicate addresses. Skip address slot 0 (the link-local address). */
225 for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
226 addr_state = netif_ip6_addr_state(netif, i);
227 if (!ip6_addr_isinvalid(addr_state) && !netif_ip6_addr_isstatic(netif, i) &&
228 ip6_addr_net_eq(prefix_addr, netif_ip6_addr(netif, i))) {
229 /* Update the valid lifetime, as per RFC 4862 Sec. 5.5.3 point (e).
230 * The valid lifetime will never drop to zero as a result of this. */
231 u32_t remaining_life = netif_ip6_addr_valid_life(netif, i);
232 if (valid_life > ND6_2HRS || valid_life > remaining_life) {
233 netif_ip6_addr_set_valid_life(netif, i, valid_life);
234 } else if (remaining_life > ND6_2HRS) {
235 netif_ip6_addr_set_valid_life(netif, i, ND6_2HRS);
236 }
237 LWIP_ASSERT("bad valid lifetime", !netif_ip6_addr_isstatic(netif, i));
238 /* Update the preferred lifetime. No bounds checks are needed here. In
239 * rare cases the advertisement may un-deprecate the address, though.
240 * Deprecation is left to the timer code where it is handled anyway. */
241 if (pref_life > 0 && addr_state == IP6_ADDR_DEPRECATED) {
242 netif_ip6_addr_set_state(netif, i, IP6_ADDR_PREFERRED);
243 }
244 netif_ip6_addr_set_pref_life(netif, i, pref_life);
245 return; /* there should be at most one matching address */
246 }
247 }
248
249 /* No autogenerated address exists for this prefix yet. See if we can add a
250 * new one. However, if IPv6 autoconfiguration is administratively disabled,
251 * do not generate new addresses, but do keep updating lifetimes for existing
252 * addresses. Also, when adding new addresses, we must protect explicitly
253 * against a valid lifetime of zero, because again, we use that as a special
254 * value. The generated address would otherwise expire immediately anyway.
255 * Finally, the original link-local address must be usable at all. We start
256 * creating addresses even if the link-local address is still in tentative
257 * state though, and deal with the fallout of that upon DAD collision. */
258 addr_state = netif_ip6_addr_state(netif, 0);
259 if (!netif->ip6_autoconfig_enabled || valid_life == IP6_ADDR_LIFE_STATIC ||
260 ip6_addr_isinvalid(addr_state) || ip6_addr_isduplicated(addr_state)) {
261 return;
262 }
263
264 /* Construct the new address that we intend to use, and then see if that
265 * address really does not exist. It might have been added manually, after
266 * all. As a side effect, find a free slot. Note that we cannot use
267 * netif_add_ip6_address() here, as it would return ERR_OK if the address
268 * already did exist, resulting in that address being given lifetimes. */
269 IP6_ADDR(&ip6addr, prefix_addr->addr[0], prefix_addr->addr[1],
270 netif_ip6_addr(netif, 0)->addr[2], netif_ip6_addr(netif, 0)->addr[3]);
271 ip6_addr_assign_zone(&ip6addr, IP6_UNICAST, netif);
272
273 free_idx = 0;
274 for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
275 if (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, i))) {
276 if (ip6_addr_eq(&ip6addr, netif_ip6_addr(netif, i))) {
277 return; /* formed address already exists */
278 }
279 } else if (free_idx == 0) {
280 free_idx = i;
281 }
282 }
283 if (free_idx == 0) {
284 return; /* no address slots available, try again on next advertisement */
285 }
286
287 /* Assign the new address to the interface. */
288 ip_addr_copy_from_ip6(netif->ip6_addr[free_idx], ip6addr);
289 netif_ip6_addr_set_valid_life(netif, free_idx, valid_life);
290 netif_ip6_addr_set_pref_life(netif, free_idx, pref_life);
291 netif_ip6_addr_set_state(netif, free_idx, IP6_ADDR_TENTATIVE);
292 }
293 #endif /* LWIP_IPV6_AUTOCONFIG */
294
295 /**
296 * Process an incoming neighbor discovery message
297 *
298 * @param p the nd packet, p->payload pointing to the icmpv6 header
299 * @param inp the netif on which this packet was received
300 */
301 void
nd6_input(struct pbuf * p,struct netif * inp)302 nd6_input(struct pbuf *p, struct netif *inp)
303 {
304 u8_t msg_type;
305 s8_t i;
306 s16_t dest_idx;
307
308 ND6_STATS_INC(nd6.recv);
309
310 msg_type = *((u8_t *)p->payload);
311 switch (msg_type) {
312 case ICMP6_TYPE_NA: /* Neighbor Advertisement. */
313 {
314 struct na_header *na_hdr;
315 struct lladdr_option *lladdr_opt;
316 ip6_addr_t target_address;
317
318 /* Check that na header fits in packet. */
319 if (p->len < (sizeof(struct na_header))) {
320 /* @todo debug message */
321 pbuf_free(p);
322 ND6_STATS_INC(nd6.lenerr);
323 ND6_STATS_INC(nd6.drop);
324 return;
325 }
326
327 na_hdr = (struct na_header *)p->payload;
328
329 /* Create an aligned, zoned copy of the target address. */
330 ip6_addr_copy_from_packed(target_address, na_hdr->target_address);
331 ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
332
333 /* Check a subset of the other RFC 4861 Sec. 7.1.2 requirements. */
334 if (IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || na_hdr->code != 0 ||
335 ip6_addr_ismulticast(&target_address)) {
336 pbuf_free(p);
337 ND6_STATS_INC(nd6.proterr);
338 ND6_STATS_INC(nd6.drop);
339 return;
340 }
341
342 /* @todo RFC MUST: if IP destination is multicast, Solicited flag is zero */
343 /* @todo RFC MUST: all included options have a length greater than zero */
344
345 /* Unsolicited NA?*/
346 if (ip6_addr_ismulticast(ip6_current_dest_addr())) {
347 /* This is an unsolicited NA.
348 * link-layer changed?
349 * part of DAD mechanism? */
350
351 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS
352 /* If the target address matches this netif, it is a DAD response. */
353 for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
354 if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
355 !ip6_addr_isduplicated(netif_ip6_addr_state(inp, i)) &&
356 ip6_addr_eq(&target_address, netif_ip6_addr(inp, i))) {
357 /* We are using a duplicate address. */
358 nd6_duplicate_addr_detected(inp, i);
359
360 pbuf_free(p);
361 return;
362 }
363 }
364 #endif /* LWIP_IPV6_DUP_DETECT_ATTEMPTS */
365
366 /* Check that link-layer address option also fits in packet. */
367 if (p->len < (sizeof(struct na_header) + 2)) {
368 /* @todo debug message */
369 pbuf_free(p);
370 ND6_STATS_INC(nd6.lenerr);
371 ND6_STATS_INC(nd6.drop);
372 return;
373 }
374
375 lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
376
377 if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
378 /* @todo debug message */
379 pbuf_free(p);
380 ND6_STATS_INC(nd6.lenerr);
381 ND6_STATS_INC(nd6.drop);
382 return;
383 }
384
385 /* This is an unsolicited NA, most likely there was a LLADDR change. */
386 i = nd6_find_neighbor_cache_entry(&target_address);
387 if (i >= 0) {
388 if (na_hdr->flags & ND6_FLAG_OVERRIDE) {
389 MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
390 }
391 }
392 } else {
393 /* This is a solicited NA.
394 * neighbor address resolution response?
395 * neighbor unreachability detection response? */
396
397 /* Find the cache entry corresponding to this na. */
398 i = nd6_find_neighbor_cache_entry(&target_address);
399 if (i < 0) {
400 /* We no longer care about this target address. drop it. */
401 pbuf_free(p);
402 return;
403 }
404
405 /* Update cache entry. */
406 if ((na_hdr->flags & ND6_FLAG_OVERRIDE) ||
407 (neighbor_cache[i].state == ND6_INCOMPLETE)) {
408 /* Check that link-layer address option also fits in packet. */
409 if (p->len < (sizeof(struct na_header) + 2)) {
410 /* @todo debug message */
411 pbuf_free(p);
412 ND6_STATS_INC(nd6.lenerr);
413 ND6_STATS_INC(nd6.drop);
414 return;
415 }
416
417 lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
418
419 if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
420 /* @todo debug message */
421 pbuf_free(p);
422 ND6_STATS_INC(nd6.lenerr);
423 ND6_STATS_INC(nd6.drop);
424 return;
425 }
426
427 MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
428 }
429
430 neighbor_cache[i].netif = inp;
431 neighbor_cache[i].state = ND6_REACHABLE;
432 neighbor_cache[i].counter.reachable_time = reachable_time;
433
434 /* Send queued packets, if any. */
435 if (neighbor_cache[i].q != NULL) {
436 nd6_send_q(i);
437 }
438 }
439
440 break; /* ICMP6_TYPE_NA */
441 }
442 case ICMP6_TYPE_NS: /* Neighbor solicitation. */
443 {
444 struct ns_header *ns_hdr;
445 struct lladdr_option *lladdr_opt;
446 ip6_addr_t target_address;
447 u8_t accepted;
448
449 /* Check that ns header fits in packet. */
450 if (p->len < sizeof(struct ns_header)) {
451 /* @todo debug message */
452 pbuf_free(p);
453 ND6_STATS_INC(nd6.lenerr);
454 ND6_STATS_INC(nd6.drop);
455 return;
456 }
457
458 ns_hdr = (struct ns_header *)p->payload;
459
460 /* Create an aligned, zoned copy of the target address. */
461 ip6_addr_copy_from_packed(target_address, ns_hdr->target_address);
462 ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
463
464 /* Check a subset of the other RFC 4861 Sec. 7.1.1 requirements. */
465 if (IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || ns_hdr->code != 0 ||
466 ip6_addr_ismulticast(&target_address)) {
467 pbuf_free(p);
468 ND6_STATS_INC(nd6.proterr);
469 ND6_STATS_INC(nd6.drop);
470 return;
471 }
472
473 /* @todo RFC MUST: all included options have a length greater than zero */
474 /* @todo RFC MUST: if IP source is 'any', destination is solicited-node multicast address */
475 /* @todo RFC MUST: if IP source is 'any', there is no source LL address option */
476
477 /* Check if there is a link-layer address provided. Only point to it if in this buffer. */
478 if (p->len >= (sizeof(struct ns_header) + 2)) {
479 lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
480 if (p->len < (sizeof(struct ns_header) + (lladdr_opt->length << 3))) {
481 lladdr_opt = NULL;
482 }
483 } else {
484 lladdr_opt = NULL;
485 }
486
487 /* Check if the target address is configured on the receiving netif. */
488 accepted = 0;
489 for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
490 if ((ip6_addr_isvalid(netif_ip6_addr_state(inp, i)) ||
491 (ip6_addr_istentative(netif_ip6_addr_state(inp, i)) &&
492 ip6_addr_isany(ip6_current_src_addr()))) &&
493 ip6_addr_eq(&target_address, netif_ip6_addr(inp, i))) {
494 accepted = 1;
495 break;
496 }
497 }
498
499 /* NS not for us? */
500 if (!accepted) {
501 pbuf_free(p);
502 return;
503 }
504
505 /* Check for ANY address in src (DAD algorithm). */
506 if (ip6_addr_isany(ip6_current_src_addr())) {
507 /* Sender is validating this address. */
508 for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
509 if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
510 ip6_addr_eq(&target_address, netif_ip6_addr(inp, i))) {
511 /* Send a NA back so that the sender does not use this address. */
512 nd6_send_na(inp, netif_ip6_addr(inp, i), ND6_FLAG_OVERRIDE | ND6_SEND_FLAG_ALLNODES_DEST);
513 if (ip6_addr_istentative(netif_ip6_addr_state(inp, i))) {
514 /* We shouldn't use this address either. */
515 nd6_duplicate_addr_detected(inp, i);
516 }
517 }
518 }
519 } else {
520 /* Sender is trying to resolve our address. */
521 /* Verify that they included their own link-layer address. */
522 if (lladdr_opt == NULL) {
523 /* Not a valid message. */
524 pbuf_free(p);
525 ND6_STATS_INC(nd6.proterr);
526 ND6_STATS_INC(nd6.drop);
527 return;
528 }
529
530 i = nd6_find_neighbor_cache_entry(ip6_current_src_addr());
531 if (i>= 0) {
532 /* We already have a record for the solicitor. */
533 if (neighbor_cache[i].state == ND6_INCOMPLETE) {
534 neighbor_cache[i].netif = inp;
535 MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
536
537 /* Delay probe in case we get confirmation of reachability from upper layer (TCP). */
538 neighbor_cache[i].state = ND6_DELAY;
539 neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
540 }
541 } else {
542 /* Add their IPv6 address and link-layer address to neighbor cache.
543 * We will need it at least to send a unicast NA message, but most
544 * likely we will also be communicating with this node soon. */
545 i = nd6_new_neighbor_cache_entry();
546 if (i < 0) {
547 /* We couldn't assign a cache entry for this neighbor.
548 * we won't be able to reply. drop it. */
549 pbuf_free(p);
550 ND6_STATS_INC(nd6.memerr);
551 return;
552 }
553 neighbor_cache[i].netif = inp;
554 MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
555 ip6_addr_set(&(neighbor_cache[i].next_hop_address), ip6_current_src_addr());
556
557 /* Receiving a message does not prove reachability: only in one direction.
558 * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
559 neighbor_cache[i].state = ND6_DELAY;
560 neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
561 }
562
563 /* Send back a NA for us. Allocate the reply pbuf. */
564 nd6_send_na(inp, &target_address, ND6_FLAG_SOLICITED | ND6_FLAG_OVERRIDE);
565 }
566
567 break; /* ICMP6_TYPE_NS */
568 }
569 case ICMP6_TYPE_RA: /* Router Advertisement. */
570 {
571 struct ra_header *ra_hdr;
572 u8_t *buffer; /* Used to copy options. */
573 u16_t offset;
574 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
575 /* There can be multiple RDNSS options per RA */
576 u8_t rdnss_server_idx = 0;
577 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
578
579 /* Check that RA header fits in packet. */
580 if (p->len < sizeof(struct ra_header)) {
581 /* @todo debug message */
582 pbuf_free(p);
583 ND6_STATS_INC(nd6.lenerr);
584 ND6_STATS_INC(nd6.drop);
585 return;
586 }
587
588 ra_hdr = (struct ra_header *)p->payload;
589
590 /* Check a subset of the other RFC 4861 Sec. 6.1.2 requirements. */
591 if (!ip6_addr_islinklocal(ip6_current_src_addr()) ||
592 IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || ra_hdr->code != 0) {
593 pbuf_free(p);
594 ND6_STATS_INC(nd6.proterr);
595 ND6_STATS_INC(nd6.drop);
596 return;
597 }
598
599 /* @todo RFC MUST: all included options have a length greater than zero */
600
601 /* If we are sending RS messages, stop. */
602 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
603 /* ensure at least one solicitation is sent (see RFC 4861, ch. 6.3.7) */
604 if ((inp->rs_count < LWIP_ND6_MAX_MULTICAST_SOLICIT) ||
605 (nd6_send_rs(inp) == ERR_OK)) {
606 inp->rs_count = 0;
607 } else {
608 inp->rs_count = 1;
609 }
610 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
611
612 /* Get the matching default router entry. */
613 i = nd6_get_router(ip6_current_src_addr(), inp);
614 if (i < 0) {
615 /* Create a new router entry. */
616 i = nd6_new_router(ip6_current_src_addr(), inp);
617 }
618
619 if (i < 0) {
620 /* Could not create a new router entry. */
621 pbuf_free(p);
622 ND6_STATS_INC(nd6.memerr);
623 return;
624 }
625
626 /* Re-set invalidation timer. */
627 default_router_list[i].invalidation_timer = lwip_htons(ra_hdr->router_lifetime);
628
629 /* Re-set default timer values. */
630 #if LWIP_ND6_ALLOW_RA_UPDATES
631 if (ra_hdr->retrans_timer > 0) {
632 retrans_timer = lwip_htonl(ra_hdr->retrans_timer);
633 }
634 if (ra_hdr->reachable_time > 0) {
635 reachable_time = lwip_htonl(ra_hdr->reachable_time);
636 }
637 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
638
639 /* @todo set default hop limit... */
640 /* ra_hdr->current_hop_limit;*/
641
642 /* Update flags in local entry (incl. preference). */
643 default_router_list[i].flags = ra_hdr->flags;
644
645 #if LWIP_IPV6_DHCP6
646 /* Trigger DHCPv6 if enabled */
647 dhcp6_nd6_ra_trigger(inp, ra_hdr->flags & ND6_RA_FLAG_MANAGED_ADDR_CONFIG,
648 ra_hdr->flags & ND6_RA_FLAG_OTHER_CONFIG);
649 #endif
650
651 /* Offset to options. */
652 offset = sizeof(struct ra_header);
653
654 /* Process each option. */
655 while ((p->tot_len - offset) >= 2) {
656 u8_t option_type;
657 u16_t option_len;
658 int option_len8 = pbuf_try_get_at(p, offset + 1);
659 if (option_len8 <= 0) {
660 /* read beyond end or zero length */
661 goto lenerr_drop_free_return;
662 }
663 option_len = ((u8_t)option_len8) << 3;
664 if (option_len > p->tot_len - offset) {
665 /* short packet (option does not fit in) */
666 goto lenerr_drop_free_return;
667 }
668 if (p->len == p->tot_len) {
669 /* no need to copy from contiguous pbuf */
670 buffer = &((u8_t*)p->payload)[offset];
671 } else {
672 /* check if this option fits into our buffer */
673 if (option_len > sizeof(nd6_ra_buffer)) {
674 option_type = pbuf_get_at(p, offset);
675 /* invalid option length */
676 if (option_type != ND6_OPTION_TYPE_RDNSS) {
677 goto lenerr_drop_free_return;
678 }
679 /* we allow RDNSS option to be longer - we'll just drop some servers */
680 option_len = sizeof(nd6_ra_buffer);
681 }
682 buffer = (u8_t*)&nd6_ra_buffer;
683 option_len = pbuf_copy_partial(p, &nd6_ra_buffer, option_len, offset);
684 }
685 option_type = buffer[0];
686 switch (option_type) {
687 case ND6_OPTION_TYPE_SOURCE_LLADDR:
688 {
689 struct lladdr_option *lladdr_opt;
690 if (option_len < sizeof(struct lladdr_option)) {
691 goto lenerr_drop_free_return;
692 }
693 lladdr_opt = (struct lladdr_option *)buffer;
694 if ((default_router_list[i].neighbor_entry != NULL) &&
695 (default_router_list[i].neighbor_entry->state == ND6_INCOMPLETE)) {
696 SMEMCPY(default_router_list[i].neighbor_entry->lladdr, lladdr_opt->addr, inp->hwaddr_len);
697 default_router_list[i].neighbor_entry->state = ND6_REACHABLE;
698 default_router_list[i].neighbor_entry->counter.reachable_time = reachable_time;
699 }
700 break;
701 }
702 case ND6_OPTION_TYPE_MTU:
703 {
704 struct mtu_option *mtu_opt;
705 u32_t mtu32;
706 if (option_len < sizeof(struct mtu_option)) {
707 goto lenerr_drop_free_return;
708 }
709 mtu_opt = (struct mtu_option *)buffer;
710 mtu32 = lwip_htonl(mtu_opt->mtu);
711 if ((mtu32 >= IP6_MIN_MTU_LENGTH) && (mtu32 <= 0xffff)) {
712 #if LWIP_ND6_ALLOW_RA_UPDATES
713 if (inp->mtu) {
714 /* don't set the mtu for IPv6 higher than the netif driver supports */
715 inp->mtu6 = LWIP_MIN(LWIP_MIN(inp->mtu, inp->mtu6), (u16_t)mtu32);
716 } else {
717 inp->mtu6 = (u16_t)mtu32;
718 }
719 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
720 }
721 break;
722 }
723 case ND6_OPTION_TYPE_PREFIX_INFO:
724 {
725 struct prefix_option *prefix_opt;
726 ip6_addr_t prefix_addr;
727 if (option_len < sizeof(struct prefix_option)) {
728 goto lenerr_drop_free_return;
729 }
730
731 prefix_opt = (struct prefix_option *)buffer;
732
733 /* Get a memory-aligned copy of the prefix. */
734 ip6_addr_copy_from_packed(prefix_addr, prefix_opt->prefix);
735 ip6_addr_assign_zone(&prefix_addr, IP6_UNICAST, inp);
736
737 if (!ip6_addr_islinklocal(&prefix_addr)) {
738 if ((prefix_opt->flags & ND6_PREFIX_FLAG_ON_LINK) &&
739 (prefix_opt->prefix_length == 64)) {
740 /* Add to on-link prefix list. */
741 u32_t valid_life;
742 s8_t prefix;
743
744 valid_life = lwip_htonl(prefix_opt->valid_lifetime);
745
746 /* find cache entry for this prefix. */
747 prefix = nd6_get_onlink_prefix(&prefix_addr, inp);
748 if (prefix < 0 && valid_life > 0) {
749 /* Create a new cache entry. */
750 prefix = nd6_new_onlink_prefix(&prefix_addr, inp);
751 }
752 if (prefix >= 0) {
753 prefix_list[prefix].invalidation_timer = valid_life;
754 }
755 }
756 #if LWIP_IPV6_AUTOCONFIG
757 if (prefix_opt->flags & ND6_PREFIX_FLAG_AUTONOMOUS) {
758 /* Perform processing for autoconfiguration. */
759 nd6_process_autoconfig_prefix(inp, prefix_opt, &prefix_addr);
760 }
761 #endif /* LWIP_IPV6_AUTOCONFIG */
762 }
763
764 break;
765 }
766 case ND6_OPTION_TYPE_ROUTE_INFO:
767 /* @todo implement preferred routes.
768 struct route_option * route_opt;
769 route_opt = (struct route_option *)buffer;*/
770
771 break;
772 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
773 case ND6_OPTION_TYPE_RDNSS:
774 {
775 u8_t num, n;
776 u16_t copy_offset = offset + SIZEOF_RDNSS_OPTION_BASE;
777 struct rdnss_option * rdnss_opt;
778 if (option_len < SIZEOF_RDNSS_OPTION_BASE) {
779 goto lenerr_drop_free_return;
780 }
781
782 rdnss_opt = (struct rdnss_option *)buffer;
783 num = (rdnss_opt->length - 1) / 2;
784 for (n = 0; (rdnss_server_idx < DNS_MAX_SERVERS) && (n < num); n++, copy_offset += sizeof(ip6_addr_p_t)) {
785 ip_addr_t rdnss_address;
786
787 /* Copy directly from pbuf to get an aligned, zoned copy of the prefix. */
788 if (pbuf_copy_partial(p, &rdnss_address, sizeof(ip6_addr_p_t), copy_offset) == sizeof(ip6_addr_p_t)) {
789 IP_SET_TYPE_VAL(rdnss_address, IPADDR_TYPE_V6);
790 ip6_addr_assign_zone(ip_2_ip6(&rdnss_address), IP6_UNKNOWN, inp);
791
792 if (htonl(rdnss_opt->lifetime) > 0) {
793 /* TODO implement Lifetime > 0 */
794 dns_setserver(rdnss_server_idx++, &rdnss_address);
795 } else {
796 /* TODO implement DNS removal in dns.c */
797 u8_t s;
798 for (s = 0; s < DNS_MAX_SERVERS; s++) {
799 const ip_addr_t *addr = dns_getserver(s);
800 if(ip_addr_eq(addr, &rdnss_address)) {
801 dns_setserver(s, NULL);
802 }
803 }
804 }
805 }
806 }
807 break;
808 }
809 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
810 default:
811 /* Unrecognized option, abort. */
812 ND6_STATS_INC(nd6.proterr);
813 break;
814 }
815 /* option length is checked earlier to be non-zero to make sure loop ends */
816 offset += 8 * (u8_t)option_len8;
817 }
818
819 break; /* ICMP6_TYPE_RA */
820 }
821 case ICMP6_TYPE_RD: /* Redirect */
822 {
823 struct redirect_header *redir_hdr;
824 struct lladdr_option *lladdr_opt;
825 ip6_addr_t destination_address, target_address;
826
827 /* Check that Redir header fits in packet. */
828 if (p->len < sizeof(struct redirect_header)) {
829 /* @todo debug message */
830 pbuf_free(p);
831 ND6_STATS_INC(nd6.lenerr);
832 ND6_STATS_INC(nd6.drop);
833 return;
834 }
835
836 redir_hdr = (struct redirect_header *)p->payload;
837
838 /* Create an aligned, zoned copy of the destination address. */
839 ip6_addr_copy_from_packed(destination_address, redir_hdr->destination_address);
840 ip6_addr_assign_zone(&destination_address, IP6_UNICAST, inp);
841
842 /* Check a subset of the other RFC 4861 Sec. 8.1 requirements. */
843 if (!ip6_addr_islinklocal(ip6_current_src_addr()) ||
844 IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM ||
845 redir_hdr->code != 0 || ip6_addr_ismulticast(&destination_address)) {
846 pbuf_free(p);
847 ND6_STATS_INC(nd6.proterr);
848 ND6_STATS_INC(nd6.drop);
849 return;
850 }
851
852 /* @todo RFC MUST: IP source address equals first-hop router for destination_address */
853 /* @todo RFC MUST: ICMP target address is either link-local address or same as destination_address */
854 /* @todo RFC MUST: all included options have a length greater than zero */
855
856 if (p->len >= (sizeof(struct redirect_header) + 2)) {
857 lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct redirect_header));
858 if (p->len < (sizeof(struct redirect_header) + (lladdr_opt->length << 3))) {
859 lladdr_opt = NULL;
860 }
861 } else {
862 lladdr_opt = NULL;
863 }
864
865 /* Find dest address in cache */
866 dest_idx = nd6_find_destination_cache_entry(&destination_address);
867 if (dest_idx < 0) {
868 /* Destination not in cache, drop packet. */
869 pbuf_free(p);
870 return;
871 }
872
873 /* Create an aligned, zoned copy of the target address. */
874 ip6_addr_copy_from_packed(target_address, redir_hdr->target_address);
875 ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
876
877 /* Set the new target address. */
878 ip6_addr_copy(destination_cache[dest_idx].next_hop_addr, target_address);
879
880 /* If Link-layer address of other router is given, try to add to neighbor cache. */
881 if (lladdr_opt != NULL) {
882 if (lladdr_opt->type == ND6_OPTION_TYPE_TARGET_LLADDR) {
883 i = nd6_find_neighbor_cache_entry(&target_address);
884 if (i < 0) {
885 i = nd6_new_neighbor_cache_entry();
886 if (i >= 0) {
887 neighbor_cache[i].netif = inp;
888 MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
889 ip6_addr_copy(neighbor_cache[i].next_hop_address, target_address);
890
891 /* Receiving a message does not prove reachability: only in one direction.
892 * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
893 neighbor_cache[i].state = ND6_DELAY;
894 neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
895 }
896 }
897 if (i >= 0) {
898 if (neighbor_cache[i].state == ND6_INCOMPLETE) {
899 MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
900 /* Receiving a message does not prove reachability: only in one direction.
901 * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
902 neighbor_cache[i].state = ND6_DELAY;
903 neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
904 }
905 }
906 }
907 }
908 break; /* ICMP6_TYPE_RD */
909 }
910 case ICMP6_TYPE_PTB: /* Packet too big */
911 {
912 struct icmp6_hdr *icmp6hdr; /* Packet too big message */
913 struct ip6_hdr *ip6hdr; /* IPv6 header of the packet which caused the error */
914 u32_t pmtu;
915 ip6_addr_t destination_address;
916
917 /* Check that ICMPv6 header + IPv6 header fit in payload */
918 if (p->len < (sizeof(struct icmp6_hdr) + IP6_HLEN)) {
919 /* drop short packets */
920 pbuf_free(p);
921 ND6_STATS_INC(nd6.lenerr);
922 ND6_STATS_INC(nd6.drop);
923 return;
924 }
925
926 icmp6hdr = (struct icmp6_hdr *)p->payload;
927 ip6hdr = (struct ip6_hdr *)((u8_t*)p->payload + sizeof(struct icmp6_hdr));
928
929 /* Create an aligned, zoned copy of the destination address. */
930 ip6_addr_copy_from_packed(destination_address, ip6hdr->dest);
931 ip6_addr_assign_zone(&destination_address, IP6_UNKNOWN, inp);
932
933 /* Look for entry in destination cache. */
934 dest_idx = nd6_find_destination_cache_entry(&destination_address);
935 if (dest_idx < 0) {
936 /* Destination not in cache, drop packet. */
937 pbuf_free(p);
938 return;
939 }
940
941 /* Change the Path MTU. */
942 pmtu = lwip_htonl(icmp6hdr->data);
943 destination_cache[dest_idx].pmtu = (u16_t)LWIP_MIN(pmtu, 0xFFFF);
944
945 break; /* ICMP6_TYPE_PTB */
946 }
947
948 default:
949 ND6_STATS_INC(nd6.proterr);
950 ND6_STATS_INC(nd6.drop);
951 break; /* default */
952 }
953
954 pbuf_free(p);
955 return;
956 lenerr_drop_free_return:
957 ND6_STATS_INC(nd6.lenerr);
958 ND6_STATS_INC(nd6.drop);
959 pbuf_free(p);
960 }
961
962
963 /**
964 * Periodic timer for Neighbor discovery functions:
965 *
966 * - Update neighbor reachability states
967 * - Update destination cache entries age
968 * - Update invalidation timers of default routers and on-link prefixes
969 * - Update lifetimes of our addresses
970 * - Perform duplicate address detection (DAD) for our addresses
971 * - Send router solicitations
972 */
973 void
nd6_tmr(void)974 nd6_tmr(void)
975 {
976 s8_t i;
977 struct netif *netif;
978
979 /* Process neighbor entries. */
980 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
981 switch (neighbor_cache[i].state) {
982 case ND6_INCOMPLETE:
983 if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
984 (!neighbor_cache[i].isrouter)) {
985 /* Retries exceeded. */
986 nd6_free_neighbor_cache_entry(i);
987 } else {
988 /* Send a NS for this entry. */
989 neighbor_cache[i].counter.probes_sent++;
990 nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
991 }
992 break;
993 case ND6_REACHABLE:
994 /* Send queued packets, if any are left. Should have been sent already. */
995 if (neighbor_cache[i].q != NULL) {
996 nd6_send_q(i);
997 }
998 if (neighbor_cache[i].counter.reachable_time <= ND6_TMR_INTERVAL) {
999 /* Change to stale state. */
1000 neighbor_cache[i].state = ND6_STALE;
1001 neighbor_cache[i].counter.stale_time = 0;
1002 } else {
1003 neighbor_cache[i].counter.reachable_time -= ND6_TMR_INTERVAL;
1004 }
1005 break;
1006 case ND6_STALE:
1007 neighbor_cache[i].counter.stale_time++;
1008 break;
1009 case ND6_DELAY:
1010 if (neighbor_cache[i].counter.delay_time <= 1) {
1011 /* Change to PROBE state. */
1012 neighbor_cache[i].state = ND6_PROBE;
1013 neighbor_cache[i].counter.probes_sent = 0;
1014 } else {
1015 neighbor_cache[i].counter.delay_time--;
1016 }
1017 break;
1018 case ND6_PROBE:
1019 if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
1020 (!neighbor_cache[i].isrouter)) {
1021 /* Retries exceeded. */
1022 nd6_free_neighbor_cache_entry(i);
1023 } else {
1024 /* Send a NS for this entry. */
1025 neighbor_cache[i].counter.probes_sent++;
1026 nd6_send_neighbor_cache_probe(&neighbor_cache[i], 0);
1027 }
1028 break;
1029 case ND6_NO_ENTRY:
1030 default:
1031 /* Do nothing. */
1032 break;
1033 }
1034 }
1035
1036 /* Process destination entries. */
1037 for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1038 destination_cache[i].age++;
1039 }
1040
1041 /* Process router entries. */
1042 for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1043 if (default_router_list[i].neighbor_entry != NULL) {
1044 /* Active entry. */
1045 if (default_router_list[i].invalidation_timer <= ND6_TMR_INTERVAL / 1000) {
1046 /* No more than 1 second remaining. Clear this entry. Also clear any of
1047 * its destination cache entries, as per RFC 4861 Sec. 5.3 and 6.3.5. */
1048 s8_t j;
1049 for (j = 0; j < LWIP_ND6_NUM_DESTINATIONS; j++) {
1050 if (ip6_addr_eq(&destination_cache[j].next_hop_addr,
1051 &default_router_list[i].neighbor_entry->next_hop_address)) {
1052 ip6_addr_set_any(&destination_cache[j].destination_addr);
1053 }
1054 }
1055 default_router_list[i].neighbor_entry->isrouter = 0;
1056 default_router_list[i].neighbor_entry = NULL;
1057 default_router_list[i].invalidation_timer = 0;
1058 default_router_list[i].flags = 0;
1059 } else {
1060 default_router_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
1061 }
1062 }
1063 }
1064
1065 /* Process prefix entries. */
1066 for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
1067 if (prefix_list[i].netif != NULL) {
1068 if (prefix_list[i].invalidation_timer <= ND6_TMR_INTERVAL / 1000) {
1069 /* Entry timed out, remove it */
1070 prefix_list[i].invalidation_timer = 0;
1071 prefix_list[i].netif = NULL;
1072 } else {
1073 prefix_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
1074 }
1075 }
1076 }
1077
1078 /* Process our own addresses, updating address lifetimes and/or DAD state. */
1079 NETIF_FOREACH(netif) {
1080 for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
1081 u8_t addr_state;
1082 #if LWIP_IPV6_ADDRESS_LIFETIMES
1083 /* Step 1: update address lifetimes (valid and preferred). */
1084 addr_state = netif_ip6_addr_state(netif, i);
1085 /* RFC 4862 is not entirely clear as to whether address lifetimes affect
1086 * tentative addresses, and is even less clear as to what should happen
1087 * with duplicate addresses. We choose to track and update lifetimes for
1088 * both those types, although for different reasons:
1089 * - for tentative addresses, the line of thought of Sec. 5.7 combined
1090 * with the potentially long period that an address may be in tentative
1091 * state (due to the interface being down) suggests that lifetimes
1092 * should be independent of external factors which would include DAD;
1093 * - for duplicate addresses, retiring them early could result in a new
1094 * but unwanted attempt at marking them as valid, while retiring them
1095 * late/never could clog up address slots on the netif.
1096 * As a result, we may end up expiring addresses of either type here.
1097 */
1098 if (!ip6_addr_isinvalid(addr_state) &&
1099 !netif_ip6_addr_isstatic(netif, i)) {
1100 u32_t life = netif_ip6_addr_valid_life(netif, i);
1101 if (life <= ND6_TMR_INTERVAL / 1000) {
1102 /* The address has expired. */
1103 netif_ip6_addr_set_valid_life(netif, i, 0);
1104 netif_ip6_addr_set_pref_life(netif, i, 0);
1105 netif_ip6_addr_set_state(netif, i, IP6_ADDR_INVALID);
1106 } else {
1107 if (!ip6_addr_life_isinfinite(life)) {
1108 life -= ND6_TMR_INTERVAL / 1000;
1109 LWIP_ASSERT("bad valid lifetime", life != IP6_ADDR_LIFE_STATIC);
1110 netif_ip6_addr_set_valid_life(netif, i, life);
1111 }
1112 /* The address is still here. Update the preferred lifetime too. */
1113 life = netif_ip6_addr_pref_life(netif, i);
1114 if (life <= ND6_TMR_INTERVAL / 1000) {
1115 /* This case must also trigger if 'life' was already zero, so as to
1116 * deal correctly with advertised preferred-lifetime reductions. */
1117 netif_ip6_addr_set_pref_life(netif, i, 0);
1118 if (addr_state == IP6_ADDR_PREFERRED)
1119 netif_ip6_addr_set_state(netif, i, IP6_ADDR_DEPRECATED);
1120 } else if (!ip6_addr_life_isinfinite(life)) {
1121 life -= ND6_TMR_INTERVAL / 1000;
1122 netif_ip6_addr_set_pref_life(netif, i, life);
1123 }
1124 }
1125 }
1126 /* The address state may now have changed, so reobtain it next. */
1127 #endif /* LWIP_IPV6_ADDRESS_LIFETIMES */
1128 /* Step 2: update DAD state. */
1129 addr_state = netif_ip6_addr_state(netif, i);
1130 if (ip6_addr_istentative(addr_state)) {
1131 if ((addr_state & IP6_ADDR_TENTATIVE_COUNT_MASK) >= LWIP_IPV6_DUP_DETECT_ATTEMPTS) {
1132 /* No NA received in response. Mark address as valid. For dynamic
1133 * addresses with an expired preferred lifetime, the state is set to
1134 * deprecated right away. That should almost never happen, though. */
1135 addr_state = IP6_ADDR_PREFERRED;
1136 #if LWIP_IPV6_ADDRESS_LIFETIMES
1137 if (!netif_ip6_addr_isstatic(netif, i) &&
1138 netif_ip6_addr_pref_life(netif, i) == 0) {
1139 addr_state = IP6_ADDR_DEPRECATED;
1140 }
1141 #endif /* LWIP_IPV6_ADDRESS_LIFETIMES */
1142 netif_ip6_addr_set_state(netif, i, addr_state);
1143 } else if (netif_is_up(netif) && netif_is_link_up(netif)) {
1144 /* tentative: set next state by increasing by one */
1145 netif_ip6_addr_set_state(netif, i, addr_state + 1);
1146 /* Send a NS for this address. Use the unspecified address as source
1147 * address in all cases (RFC 4862 Sec. 5.4.2), not in the least
1148 * because as it is, we only consider multicast replies for DAD. */
1149 nd6_send_ns(netif, netif_ip6_addr(netif, i),
1150 ND6_SEND_FLAG_MULTICAST_DEST | ND6_SEND_FLAG_ANY_SRC);
1151 }
1152 }
1153 }
1154 }
1155
1156 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
1157 /* Send router solicitation messages, if necessary. */
1158 if (!nd6_tmr_rs_reduction) {
1159 nd6_tmr_rs_reduction = (ND6_RTR_SOLICITATION_INTERVAL / ND6_TMR_INTERVAL) - 1;
1160 NETIF_FOREACH(netif) {
1161 if ((netif->rs_count > 0) && netif_is_up(netif) &&
1162 netif_is_link_up(netif) &&
1163 !ip6_addr_isinvalid(netif_ip6_addr_state(netif, 0)) &&
1164 !ip6_addr_isduplicated(netif_ip6_addr_state(netif, 0))) {
1165 if (nd6_send_rs(netif) == ERR_OK) {
1166 netif->rs_count--;
1167 }
1168 }
1169 }
1170 } else {
1171 nd6_tmr_rs_reduction--;
1172 }
1173 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
1174
1175 }
1176
1177 /** Send a neighbor solicitation message for a specific neighbor cache entry
1178 *
1179 * @param entry the neightbor cache entry for which to send the message
1180 * @param flags one of ND6_SEND_FLAG_*
1181 */
1182 static void
nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry * entry,u8_t flags)1183 nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags)
1184 {
1185 nd6_send_ns(entry->netif, &entry->next_hop_address, flags);
1186 }
1187
1188 /**
1189 * Send a neighbor solicitation message
1190 *
1191 * @param netif the netif on which to send the message
1192 * @param target_addr the IPv6 target address for the ND message
1193 * @param flags one of ND6_SEND_FLAG_*
1194 */
1195 static void
nd6_send_ns(struct netif * netif,const ip6_addr_t * target_addr,u8_t flags)1196 nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
1197 {
1198 struct ns_header *ns_hdr;
1199 struct pbuf *p;
1200 const ip6_addr_t *src_addr = NULL;
1201 u16_t lladdr_opt_len;
1202
1203 LWIP_ASSERT("target address is required", target_addr != NULL);
1204
1205 if (!(flags & ND6_SEND_FLAG_ANY_SRC)) {
1206 int i;
1207 for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
1208 if (ip6_addr_isvalid(netif_ip6_addr_state(netif, i)) &&
1209 ip6_addr_net_eq(target_addr, netif_ip6_addr(netif, i))) {
1210 src_addr = netif_ip6_addr(netif, i);
1211 break;
1212 }
1213 }
1214
1215 if (i == LWIP_IPV6_NUM_ADDRESSES) {
1216 LWIP_DEBUGF(IP6_DEBUG | LWIP_DBG_LEVEL_WARNING, ("ICMPv6 NS: no available src address\n"));
1217 ND6_STATS_INC(nd6.err);
1218 return;
1219 }
1220
1221 /* calculate option length (in 8-byte-blocks) */
1222 lladdr_opt_len = ((netif->hwaddr_len + 2) + 7) >> 3;
1223 } else {
1224 src_addr = IP6_ADDR_ANY6;
1225 /* Option "MUST NOT be included when the source IP address is the unspecified address." */
1226 lladdr_opt_len = 0;
1227 }
1228
1229 /* Allocate a packet. */
1230 p = pbuf_alloc(PBUF_IP, sizeof(struct ns_header) + (lladdr_opt_len << 3), PBUF_RAM);
1231 if (p == NULL) {
1232 ND6_STATS_INC(nd6.memerr);
1233 return;
1234 }
1235
1236 /* Set fields. */
1237 ns_hdr = (struct ns_header *)p->payload;
1238
1239 ns_hdr->type = ICMP6_TYPE_NS;
1240 ns_hdr->code = 0;
1241 ns_hdr->chksum = 0;
1242 ns_hdr->reserved = 0;
1243 ip6_addr_copy_to_packed(ns_hdr->target_address, *target_addr);
1244
1245 if (lladdr_opt_len != 0) {
1246 struct lladdr_option *lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
1247 lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
1248 lladdr_opt->length = (u8_t)lladdr_opt_len;
1249 SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1250 }
1251
1252 /* Generate the solicited node address for the target address. */
1253 if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
1254 ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
1255 ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1256 target_addr = &multicast_address;
1257 }
1258
1259 #if CHECKSUM_GEN_ICMP6
1260 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1261 ns_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1262 target_addr);
1263 }
1264 #endif /* CHECKSUM_GEN_ICMP6 */
1265
1266 /* Send the packet out. */
1267 ND6_STATS_INC(nd6.xmit);
1268 ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, target_addr,
1269 ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
1270 pbuf_free(p);
1271 }
1272
1273 /**
1274 * Send a neighbor advertisement message
1275 *
1276 * @param netif the netif on which to send the message
1277 * @param target_addr the IPv6 target address for the ND message
1278 * @param flags one of ND6_SEND_FLAG_*
1279 */
1280 static void
nd6_send_na(struct netif * netif,const ip6_addr_t * target_addr,u8_t flags)1281 nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
1282 {
1283 struct na_header *na_hdr;
1284 struct lladdr_option *lladdr_opt;
1285 struct pbuf *p;
1286 const ip6_addr_t *src_addr;
1287 const ip6_addr_t *dest_addr;
1288 u16_t lladdr_opt_len;
1289
1290 LWIP_ASSERT("target address is required", target_addr != NULL);
1291
1292 /* Use link-local address as source address. */
1293 /* src_addr = netif_ip6_addr(netif, 0); */
1294 /* Use target address as source address. */
1295 src_addr = target_addr;
1296
1297 /* Allocate a packet. */
1298 lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
1299 p = pbuf_alloc(PBUF_IP, sizeof(struct na_header) + (lladdr_opt_len << 3), PBUF_RAM);
1300 if (p == NULL) {
1301 ND6_STATS_INC(nd6.memerr);
1302 return;
1303 }
1304
1305 /* Set fields. */
1306 na_hdr = (struct na_header *)p->payload;
1307 lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
1308
1309 na_hdr->type = ICMP6_TYPE_NA;
1310 na_hdr->code = 0;
1311 na_hdr->chksum = 0;
1312 na_hdr->flags = flags & 0xf0;
1313 na_hdr->reserved[0] = 0;
1314 na_hdr->reserved[1] = 0;
1315 na_hdr->reserved[2] = 0;
1316 ip6_addr_copy_to_packed(na_hdr->target_address, *target_addr);
1317
1318 lladdr_opt->type = ND6_OPTION_TYPE_TARGET_LLADDR;
1319 lladdr_opt->length = (u8_t)lladdr_opt_len;
1320 SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1321
1322 /* Generate the solicited node address for the target address. */
1323 if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
1324 ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
1325 ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1326 dest_addr = &multicast_address;
1327 } else if (flags & ND6_SEND_FLAG_ALLNODES_DEST) {
1328 ip6_addr_set_allnodes_linklocal(&multicast_address);
1329 ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1330 dest_addr = &multicast_address;
1331 } else {
1332 dest_addr = ip6_current_src_addr();
1333 }
1334
1335 #if CHECKSUM_GEN_ICMP6
1336 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1337 na_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1338 dest_addr);
1339 }
1340 #endif /* CHECKSUM_GEN_ICMP6 */
1341
1342 /* Send the packet out. */
1343 ND6_STATS_INC(nd6.xmit);
1344 ip6_output_if(p, src_addr, dest_addr,
1345 ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
1346 pbuf_free(p);
1347 }
1348
1349 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
1350 /**
1351 * Send a router solicitation message
1352 *
1353 * @param netif the netif on which to send the message
1354 */
1355 static err_t
nd6_send_rs(struct netif * netif)1356 nd6_send_rs(struct netif *netif)
1357 {
1358 struct rs_header *rs_hdr;
1359 struct lladdr_option *lladdr_opt;
1360 struct pbuf *p;
1361 const ip6_addr_t *src_addr;
1362 err_t err;
1363 u16_t lladdr_opt_len = 0;
1364
1365 /* Link-local source address, or unspecified address? */
1366 if (ip6_addr_isvalid(netif_ip6_addr_state(netif, 0))) {
1367 src_addr = netif_ip6_addr(netif, 0);
1368 } else {
1369 src_addr = IP6_ADDR_ANY6;
1370 }
1371
1372 /* Generate the all routers target address. */
1373 ip6_addr_set_allrouters_linklocal(&multicast_address);
1374 ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1375
1376 /* Allocate a packet. */
1377 if (src_addr != IP6_ADDR_ANY6) {
1378 lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
1379 }
1380 p = pbuf_alloc(PBUF_IP, sizeof(struct rs_header) + (lladdr_opt_len << 3), PBUF_RAM);
1381 if (p == NULL) {
1382 ND6_STATS_INC(nd6.memerr);
1383 return ERR_BUF;
1384 }
1385
1386 /* Set fields. */
1387 rs_hdr = (struct rs_header *)p->payload;
1388
1389 rs_hdr->type = ICMP6_TYPE_RS;
1390 rs_hdr->code = 0;
1391 rs_hdr->chksum = 0;
1392 rs_hdr->reserved = 0;
1393
1394 if (src_addr != IP6_ADDR_ANY6) {
1395 /* Include our hw address. */
1396 lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct rs_header));
1397 lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
1398 lladdr_opt->length = (u8_t)lladdr_opt_len;
1399 SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1400 }
1401
1402 #if CHECKSUM_GEN_ICMP6
1403 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1404 rs_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1405 &multicast_address);
1406 }
1407 #endif /* CHECKSUM_GEN_ICMP6 */
1408
1409 /* Send the packet out. */
1410 ND6_STATS_INC(nd6.xmit);
1411
1412 err = ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, &multicast_address,
1413 ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
1414 pbuf_free(p);
1415
1416 return err;
1417 }
1418 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
1419
1420 /**
1421 * Search for a neighbor cache entry
1422 *
1423 * @param ip6addr the IPv6 address of the neighbor
1424 * @return The neighbor cache entry index that matched, -1 if no
1425 * entry is found
1426 */
1427 static s8_t
nd6_find_neighbor_cache_entry(const ip6_addr_t * ip6addr)1428 nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr)
1429 {
1430 s8_t i;
1431 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1432 if (ip6_addr_eq(ip6addr, &(neighbor_cache[i].next_hop_address))) {
1433 return i;
1434 }
1435 }
1436 return -1;
1437 }
1438
1439 /**
1440 * Create a new neighbor cache entry.
1441 *
1442 * If no unused entry is found, will try to recycle an old entry
1443 * according to ad-hoc "age" heuristic.
1444 *
1445 * @return The neighbor cache entry index that was created, -1 if no
1446 * entry could be created
1447 */
1448 static s8_t
nd6_new_neighbor_cache_entry(void)1449 nd6_new_neighbor_cache_entry(void)
1450 {
1451 s8_t i;
1452 s8_t j;
1453 u32_t time;
1454
1455
1456 /* First, try to find an empty entry. */
1457 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1458 if (neighbor_cache[i].state == ND6_NO_ENTRY) {
1459 return i;
1460 }
1461 }
1462
1463 /* We need to recycle an entry. in general, do not recycle if it is a router. */
1464
1465 /* Next, try to find a Stale entry. */
1466 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1467 if ((neighbor_cache[i].state == ND6_STALE) &&
1468 (!neighbor_cache[i].isrouter)) {
1469 nd6_free_neighbor_cache_entry(i);
1470 return i;
1471 }
1472 }
1473
1474 /* Next, try to find a Probe entry. */
1475 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1476 if ((neighbor_cache[i].state == ND6_PROBE) &&
1477 (!neighbor_cache[i].isrouter)) {
1478 nd6_free_neighbor_cache_entry(i);
1479 return i;
1480 }
1481 }
1482
1483 /* Next, try to find a Delayed entry. */
1484 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1485 if ((neighbor_cache[i].state == ND6_DELAY) &&
1486 (!neighbor_cache[i].isrouter)) {
1487 nd6_free_neighbor_cache_entry(i);
1488 return i;
1489 }
1490 }
1491
1492 /* Next, try to find the oldest reachable entry. */
1493 time = 0xfffffffful;
1494 j = -1;
1495 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1496 if ((neighbor_cache[i].state == ND6_REACHABLE) &&
1497 (!neighbor_cache[i].isrouter)) {
1498 if (neighbor_cache[i].counter.reachable_time < time) {
1499 j = i;
1500 time = neighbor_cache[i].counter.reachable_time;
1501 }
1502 }
1503 }
1504 if (j >= 0) {
1505 nd6_free_neighbor_cache_entry(j);
1506 return j;
1507 }
1508
1509 /* Next, find oldest incomplete entry without queued packets. */
1510 time = 0;
1511 j = -1;
1512 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1513 if (
1514 (neighbor_cache[i].q == NULL) &&
1515 (neighbor_cache[i].state == ND6_INCOMPLETE) &&
1516 (!neighbor_cache[i].isrouter)) {
1517 if (neighbor_cache[i].counter.probes_sent >= time) {
1518 j = i;
1519 time = neighbor_cache[i].counter.probes_sent;
1520 }
1521 }
1522 }
1523 if (j >= 0) {
1524 nd6_free_neighbor_cache_entry(j);
1525 return j;
1526 }
1527
1528 /* Next, find oldest incomplete entry with queued packets. */
1529 time = 0;
1530 j = -1;
1531 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1532 if ((neighbor_cache[i].state == ND6_INCOMPLETE) &&
1533 (!neighbor_cache[i].isrouter)) {
1534 if (neighbor_cache[i].counter.probes_sent >= time) {
1535 j = i;
1536 time = neighbor_cache[i].counter.probes_sent;
1537 }
1538 }
1539 }
1540 if (j >= 0) {
1541 nd6_free_neighbor_cache_entry(j);
1542 return j;
1543 }
1544
1545 /* No more entries to try. */
1546 return -1;
1547 }
1548
1549 /**
1550 * Will free any resources associated with a neighbor cache
1551 * entry, and will mark it as unused.
1552 *
1553 * @param i the neighbor cache entry index to free
1554 */
1555 static void
nd6_free_neighbor_cache_entry(s8_t i)1556 nd6_free_neighbor_cache_entry(s8_t i)
1557 {
1558 if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
1559 return;
1560 }
1561 if (neighbor_cache[i].isrouter) {
1562 /* isrouter needs to be cleared before deleting a neighbor cache entry */
1563 return;
1564 }
1565
1566 /* Free any queued packets. */
1567 if (neighbor_cache[i].q != NULL) {
1568 nd6_free_q(neighbor_cache[i].q);
1569 neighbor_cache[i].q = NULL;
1570 }
1571
1572 neighbor_cache[i].state = ND6_NO_ENTRY;
1573 neighbor_cache[i].isrouter = 0;
1574 neighbor_cache[i].netif = NULL;
1575 neighbor_cache[i].counter.reachable_time = 0;
1576 ip6_addr_set_zero(&(neighbor_cache[i].next_hop_address));
1577 }
1578
1579 /**
1580 * Search for a destination cache entry
1581 *
1582 * @param ip6addr the IPv6 address of the destination
1583 * @return The destination cache entry index that matched, -1 if no
1584 * entry is found
1585 */
1586 static s16_t
nd6_find_destination_cache_entry(const ip6_addr_t * ip6addr)1587 nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr)
1588 {
1589 s16_t i;
1590
1591 IP6_ADDR_ZONECHECK(ip6addr);
1592
1593 for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1594 if (ip6_addr_eq(ip6addr, &(destination_cache[i].destination_addr))) {
1595 return i;
1596 }
1597 }
1598 return -1;
1599 }
1600
1601 /**
1602 * Create a new destination cache entry. If no unused entry is found,
1603 * will recycle oldest entry.
1604 *
1605 * @return The destination cache entry index that was created, -1 if no
1606 * entry was created
1607 */
1608 static s16_t
nd6_new_destination_cache_entry(void)1609 nd6_new_destination_cache_entry(void)
1610 {
1611 s16_t i, j;
1612 u32_t age;
1613
1614 /* Find an empty entry. */
1615 for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1616 if (ip6_addr_isany(&(destination_cache[i].destination_addr))) {
1617 return i;
1618 }
1619 }
1620
1621 /* Find oldest entry. */
1622 age = 0;
1623 j = LWIP_ND6_NUM_DESTINATIONS - 1;
1624 for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1625 if (destination_cache[i].age > age) {
1626 j = i;
1627 }
1628 }
1629
1630 return j;
1631 }
1632
1633 /**
1634 * Clear the destination cache.
1635 *
1636 * This operation may be necessary for consistency in the light of changing
1637 * local addresses and/or use of the gateway hook.
1638 */
1639 void
nd6_clear_destination_cache(void)1640 nd6_clear_destination_cache(void)
1641 {
1642 int i;
1643
1644 for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1645 ip6_addr_set_any(&destination_cache[i].destination_addr);
1646 }
1647 }
1648
1649 /**
1650 * Determine whether an address matches an on-link prefix or the subnet of a
1651 * statically assigned address.
1652 *
1653 * @param ip6addr the IPv6 address to match
1654 * @return 1 if the address is on-link, 0 otherwise
1655 */
1656 static int
nd6_is_prefix_in_netif(const ip6_addr_t * ip6addr,struct netif * netif)1657 nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif)
1658 {
1659 s8_t i;
1660
1661 /* Check to see if the address matches an on-link prefix. */
1662 for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
1663 if ((prefix_list[i].netif == netif) &&
1664 (prefix_list[i].invalidation_timer > 0) &&
1665 ip6_addr_net_eq(ip6addr, &(prefix_list[i].prefix))) {
1666 return 1;
1667 }
1668 }
1669 /* Check to see if address prefix matches a manually configured (= static)
1670 * address. Static addresses have an implied /64 subnet assignment. Dynamic
1671 * addresses (from autoconfiguration) have no implied subnet assignment, and
1672 * are thus effectively /128 assignments. See RFC 5942 for more on this. */
1673 for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
1674 if (ip6_addr_isvalid(netif_ip6_addr_state(netif, i)) &&
1675 netif_ip6_addr_isstatic(netif, i) &&
1676 ip6_addr_net_eq(ip6addr, netif_ip6_addr(netif, i))) {
1677 return 1;
1678 }
1679 }
1680 return 0;
1681 }
1682
1683 /**
1684 * Select a default router for a destination.
1685 *
1686 * This function is used both for routing and for finding a next-hop target for
1687 * a packet. In the former case, the given netif is NULL, and the returned
1688 * router entry must be for a netif suitable for sending packets (up, link up).
1689 * In the latter case, the given netif is not NULL and restricts router choice.
1690 *
1691 * @param ip6addr the destination address
1692 * @param netif the netif for the outgoing packet, if known
1693 * @return the default router entry index, or -1 if no suitable
1694 * router is found
1695 */
1696 static s8_t
nd6_select_router(const ip6_addr_t * ip6addr,struct netif * netif)1697 nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif)
1698 {
1699 struct netif *router_netif;
1700 s8_t i, j, valid_router;
1701 static s8_t last_router;
1702
1703 LWIP_UNUSED_ARG(ip6addr); /* @todo match preferred routes!! (must implement ND6_OPTION_TYPE_ROUTE_INFO) */
1704
1705 /* @todo: implement default router preference */
1706
1707 /* Look for valid routers. A reachable router is preferred. */
1708 valid_router = -1;
1709 for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1710 /* Is the router netif both set and apppropriate? */
1711 if (default_router_list[i].neighbor_entry != NULL) {
1712 router_netif = default_router_list[i].neighbor_entry->netif;
1713 if ((router_netif != NULL) && (netif != NULL ? netif == router_netif :
1714 (netif_is_up(router_netif) && netif_is_link_up(router_netif)))) {
1715 /* Is the router valid, i.e., reachable or probably reachable as per
1716 * RFC 4861 Sec. 6.3.6? Note that we will never return a router that
1717 * has no neighbor cache entry, due to the netif association tests. */
1718 if (default_router_list[i].neighbor_entry->state != ND6_INCOMPLETE) {
1719 /* Is the router known to be reachable? */
1720 if (default_router_list[i].neighbor_entry->state == ND6_REACHABLE) {
1721 return i; /* valid and reachable - done! */
1722 } else if (valid_router < 0) {
1723 valid_router = i; /* valid but not known to be reachable */
1724 }
1725 }
1726 }
1727 }
1728 }
1729 if (valid_router >= 0) {
1730 return valid_router;
1731 }
1732
1733 /* Look for any router for which we have any information at all. */
1734 /* last_router is used for round-robin selection of incomplete routers, as
1735 * recommended in RFC 4861 Sec. 6.3.6 point (2). Advance only when picking a
1736 * route, to select the same router as next-hop target in the common case. */
1737 if ((netif == NULL) && (++last_router >= LWIP_ND6_NUM_ROUTERS)) {
1738 last_router = 0;
1739 }
1740 i = last_router;
1741 for (j = 0; j < LWIP_ND6_NUM_ROUTERS; j++) {
1742 if (default_router_list[i].neighbor_entry != NULL) {
1743 router_netif = default_router_list[i].neighbor_entry->netif;
1744 if ((router_netif != NULL) && (netif != NULL ? netif == router_netif :
1745 (netif_is_up(router_netif) && netif_is_link_up(router_netif)))) {
1746 return i;
1747 }
1748 }
1749 if (++i >= LWIP_ND6_NUM_ROUTERS) {
1750 i = 0;
1751 }
1752 }
1753
1754 /* no suitable router found. */
1755 return -1;
1756 }
1757
1758 /**
1759 * Find a router-announced route to the given destination. This route may be
1760 * based on an on-link prefix or a default router.
1761 *
1762 * If a suitable route is found, the returned netif is guaranteed to be in a
1763 * suitable state (up, link up) to be used for packet transmission.
1764 *
1765 * @param ip6addr the destination IPv6 address
1766 * @return the netif to use for the destination, or NULL if none found
1767 */
1768 struct netif *
nd6_find_route(const ip6_addr_t * ip6addr)1769 nd6_find_route(const ip6_addr_t *ip6addr)
1770 {
1771 struct netif *netif;
1772 s8_t i;
1773
1774 /* @todo decide if it makes sense to check the destination cache first */
1775
1776 /* Check if there is a matching on-link prefix. There may be multiple
1777 * matches. Pick the first one that is associated with a suitable netif. */
1778 for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1779 netif = prefix_list[i].netif;
1780 if ((netif != NULL) && ip6_addr_net_eq(&prefix_list[i].prefix, ip6addr) &&
1781 netif_is_up(netif) && netif_is_link_up(netif)) {
1782 return netif;
1783 }
1784 }
1785
1786 /* No on-link prefix match. Find a router that can forward the packet. */
1787 i = nd6_select_router(ip6addr, NULL);
1788 if (i >= 0) {
1789 LWIP_ASSERT("selected router must have a neighbor entry",
1790 default_router_list[i].neighbor_entry != NULL);
1791 return default_router_list[i].neighbor_entry->netif;
1792 }
1793
1794 return NULL;
1795 }
1796
1797 /**
1798 * Find an entry for a default router.
1799 *
1800 * @param router_addr the IPv6 address of the router
1801 * @param netif the netif on which the router is found, if known
1802 * @return the index of the router entry, or -1 if not found
1803 */
1804 static s8_t
nd6_get_router(const ip6_addr_t * router_addr,struct netif * netif)1805 nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif)
1806 {
1807 s8_t i;
1808
1809 IP6_ADDR_ZONECHECK_NETIF(router_addr, netif);
1810
1811 /* Look for router. */
1812 for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1813 if ((default_router_list[i].neighbor_entry != NULL) &&
1814 ((netif != NULL) ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
1815 ip6_addr_eq(router_addr, &(default_router_list[i].neighbor_entry->next_hop_address))) {
1816 return i;
1817 }
1818 }
1819
1820 /* router not found. */
1821 return -1;
1822 }
1823
1824 /**
1825 * Create a new entry for a default router.
1826 *
1827 * @param router_addr the IPv6 address of the router
1828 * @param netif the netif on which the router is connected, if known
1829 * @return the index on the router table, or -1 if could not be created
1830 */
1831 static s8_t
nd6_new_router(const ip6_addr_t * router_addr,struct netif * netif)1832 nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif)
1833 {
1834 s8_t router_index;
1835 s8_t free_router_index;
1836 s8_t neighbor_index;
1837
1838 IP6_ADDR_ZONECHECK_NETIF(router_addr, netif);
1839
1840 /* Do we have a neighbor entry for this router? */
1841 neighbor_index = nd6_find_neighbor_cache_entry(router_addr);
1842 if (neighbor_index < 0) {
1843 /* Create a neighbor entry for this router. */
1844 neighbor_index = nd6_new_neighbor_cache_entry();
1845 if (neighbor_index < 0) {
1846 /* Could not create neighbor entry for this router. */
1847 return -1;
1848 }
1849 ip6_addr_set(&(neighbor_cache[neighbor_index].next_hop_address), router_addr);
1850 neighbor_cache[neighbor_index].netif = netif;
1851 neighbor_cache[neighbor_index].q = NULL;
1852 neighbor_cache[neighbor_index].state = ND6_INCOMPLETE;
1853 neighbor_cache[neighbor_index].counter.probes_sent = 1;
1854 nd6_send_neighbor_cache_probe(&neighbor_cache[neighbor_index], ND6_SEND_FLAG_MULTICAST_DEST);
1855 }
1856
1857 /* Mark neighbor as router. */
1858 neighbor_cache[neighbor_index].isrouter = 1;
1859
1860 /* Look for empty entry. */
1861 free_router_index = LWIP_ND6_NUM_ROUTERS;
1862 for (router_index = LWIP_ND6_NUM_ROUTERS - 1; router_index >= 0; router_index--) {
1863 /* check if router already exists (this is a special case for 2 netifs on the same subnet
1864 - e.g. wifi and cable) */
1865 if(default_router_list[router_index].neighbor_entry == &(neighbor_cache[neighbor_index])){
1866 return router_index;
1867 }
1868 if (default_router_list[router_index].neighbor_entry == NULL) {
1869 /* remember lowest free index to create a new entry */
1870 free_router_index = router_index;
1871 }
1872 }
1873 if (free_router_index < LWIP_ND6_NUM_ROUTERS) {
1874 default_router_list[free_router_index].neighbor_entry = &(neighbor_cache[neighbor_index]);
1875 return free_router_index;
1876 }
1877
1878 /* Could not create a router entry. */
1879
1880 /* Mark neighbor entry as not-router. Entry might be useful as neighbor still. */
1881 neighbor_cache[neighbor_index].isrouter = 0;
1882
1883 /* router not found. */
1884 return -1;
1885 }
1886
1887 /**
1888 * Find the cached entry for an on-link prefix.
1889 *
1890 * @param prefix the IPv6 prefix that is on-link
1891 * @param netif the netif on which the prefix is on-link
1892 * @return the index on the prefix table, or -1 if not found
1893 */
1894 static s8_t
nd6_get_onlink_prefix(const ip6_addr_t * prefix,struct netif * netif)1895 nd6_get_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif)
1896 {
1897 s8_t i;
1898
1899 /* Look for prefix in list. */
1900 for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1901 if ((ip6_addr_net_eq(&(prefix_list[i].prefix), prefix)) &&
1902 (prefix_list[i].netif == netif)) {
1903 return i;
1904 }
1905 }
1906
1907 /* Entry not available. */
1908 return -1;
1909 }
1910
1911 /**
1912 * Creates a new entry for an on-link prefix.
1913 *
1914 * @param prefix the IPv6 prefix that is on-link
1915 * @param netif the netif on which the prefix is on-link
1916 * @return the index on the prefix table, or -1 if not created
1917 */
1918 static s8_t
nd6_new_onlink_prefix(const ip6_addr_t * prefix,struct netif * netif)1919 nd6_new_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif)
1920 {
1921 s8_t i;
1922
1923 /* Create new entry. */
1924 for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1925 if ((prefix_list[i].netif == NULL) ||
1926 (prefix_list[i].invalidation_timer == 0)) {
1927 /* Found empty prefix entry. */
1928 prefix_list[i].netif = netif;
1929 ip6_addr_set(&(prefix_list[i].prefix), prefix);
1930 return i;
1931 }
1932 }
1933
1934 /* Entry not available. */
1935 return -1;
1936 }
1937
1938 /**
1939 * Determine the next hop for a destination. Will determine if the
1940 * destination is on-link, else a suitable on-link router is selected.
1941 *
1942 * The last entry index is cached for fast entry search.
1943 *
1944 * @param ip6addr the destination address
1945 * @param netif the netif on which the packet will be sent
1946 * @return the neighbor cache entry for the next hop, ERR_RTE if no
1947 * suitable next hop was found, ERR_MEM if no cache entry
1948 * could be created
1949 */
1950 static s8_t
nd6_get_next_hop_entry(const ip6_addr_t * ip6addr,struct netif * netif)1951 nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif)
1952 {
1953 #ifdef LWIP_HOOK_ND6_GET_GW
1954 const ip6_addr_t *next_hop_addr;
1955 #endif /* LWIP_HOOK_ND6_GET_GW */
1956 s8_t i;
1957 s16_t dst_idx;
1958 struct nd6_destination_cache_entry *dest;
1959
1960 IP6_ADDR_ZONECHECK_NETIF(ip6addr, netif);
1961
1962 #if LWIP_NETIF_HWADDRHINT
1963 if (netif->hints != NULL) {
1964 /* per-pcb cached entry was given */
1965 netif_addr_idx_t addr_hint = netif->hints->addr_hint;
1966 if (addr_hint < LWIP_ND6_NUM_DESTINATIONS) {
1967 nd6_cached_destination_index = addr_hint;
1968 }
1969 }
1970 #endif /* LWIP_NETIF_HWADDRHINT */
1971
1972 LWIP_ASSERT("sane cache index", nd6_cached_destination_index < LWIP_ND6_NUM_DESTINATIONS);
1973
1974 /* Look for ip6addr in destination cache. */
1975 dest = &destination_cache[nd6_cached_destination_index];
1976 if (ip6_addr_eq(ip6addr, &dest->destination_addr)) {
1977 /* the cached entry index is the right one! */
1978 /* do nothing. */
1979 ND6_STATS_INC(nd6.cachehit);
1980 } else {
1981 /* Search destination cache. */
1982 dst_idx = nd6_find_destination_cache_entry(ip6addr);
1983 if (dst_idx >= 0) {
1984 /* found destination entry. make it our new cached index. */
1985 LWIP_ASSERT("type overflow", (size_t)dst_idx < NETIF_ADDR_IDX_MAX);
1986 nd6_cached_destination_index = (netif_addr_idx_t)dst_idx;
1987 dest = &destination_cache[dst_idx];
1988 } else {
1989 /* Not found. Create a new destination entry. */
1990 dst_idx = nd6_new_destination_cache_entry();
1991 if (dst_idx >= 0) {
1992 /* got new destination entry. make it our new cached index. */
1993 LWIP_ASSERT("type overflow", (size_t)dst_idx < NETIF_ADDR_IDX_MAX);
1994 nd6_cached_destination_index = (netif_addr_idx_t)dst_idx;
1995 dest = &destination_cache[dst_idx];
1996 } else {
1997 /* Could not create a destination cache entry. */
1998 return ERR_MEM;
1999 }
2000
2001 /* Copy dest address to destination cache. */
2002 ip6_addr_set(&dest->destination_addr, ip6addr);
2003
2004 /* Now find the next hop. is it a neighbor? */
2005 if (ip6_addr_islinklocal(ip6addr) ||
2006 nd6_is_prefix_in_netif(ip6addr, netif)) {
2007 /* Destination in local link. */
2008 dest->pmtu = netif_mtu6(netif);
2009 ip6_addr_copy(dest->next_hop_addr, dest->destination_addr);
2010 #ifdef LWIP_HOOK_ND6_GET_GW
2011 } else if ((next_hop_addr = LWIP_HOOK_ND6_GET_GW(netif, ip6addr)) != NULL) {
2012 /* Next hop for destination provided by hook function. */
2013 dest->pmtu = netif->mtu;
2014 ip6_addr_set(&dest->next_hop_addr, next_hop_addr);
2015 #endif /* LWIP_HOOK_ND6_GET_GW */
2016 } else {
2017 /* We need to select a router. */
2018 i = nd6_select_router(ip6addr, netif);
2019 if (i < 0) {
2020 /* No router found. */
2021 ip6_addr_set_any(&dest->destination_addr);
2022 return ERR_RTE;
2023 }
2024 dest->pmtu = netif_mtu6(netif); /* Start with netif mtu, correct through ICMPv6 if necessary */
2025 ip6_addr_copy(dest->next_hop_addr, default_router_list[i].neighbor_entry->next_hop_address);
2026 }
2027 }
2028 #if LWIP_NETIF_HWADDRHINT
2029 if (netif->hints != NULL) {
2030 /* per-pcb cached entry was given */
2031 netif->hints->addr_hint = nd6_cached_destination_index;
2032 }
2033 #endif /* LWIP_NETIF_HWADDRHINT */
2034 }
2035
2036 /* Look in neighbor cache for the next-hop address. */
2037 if (ip6_addr_eq(&dest->next_hop_addr,
2038 &(neighbor_cache[dest->cached_neighbor_idx].next_hop_address))) {
2039 /* Cache hit. */
2040 /* Do nothing. */
2041 ND6_STATS_INC(nd6.cachehit);
2042 } else {
2043 i = nd6_find_neighbor_cache_entry(&dest->next_hop_addr);
2044 if (i >= 0) {
2045 /* Found a matching record, make it new cached entry. */
2046 dest->cached_neighbor_idx = i;
2047 } else {
2048 /* Neighbor not in cache. Make a new entry. */
2049 i = nd6_new_neighbor_cache_entry();
2050 if (i >= 0) {
2051 /* got new neighbor entry. make it our new cached index. */
2052 dest->cached_neighbor_idx = i;
2053 } else {
2054 /* Could not create a neighbor cache entry. */
2055 return ERR_MEM;
2056 }
2057
2058 /* Initialize fields. */
2059 ip6_addr_copy(neighbor_cache[i].next_hop_address, dest->next_hop_addr);
2060 neighbor_cache[i].isrouter = 0;
2061 neighbor_cache[i].netif = netif;
2062 neighbor_cache[i].state = ND6_INCOMPLETE;
2063 neighbor_cache[i].counter.probes_sent = 1;
2064 nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
2065 }
2066 }
2067
2068 /* Reset this destination's age. */
2069 dest->age = 0;
2070
2071 return dest->cached_neighbor_idx;
2072 }
2073
2074 /**
2075 * Queue a packet for a neighbor.
2076 *
2077 * @param neighbor_index the index in the neighbor cache table
2078 * @param q packet to be queued
2079 * @return ERR_OK if succeeded, ERR_MEM if out of memory
2080 */
2081 static err_t
nd6_queue_packet(s8_t neighbor_index,struct pbuf * q)2082 nd6_queue_packet(s8_t neighbor_index, struct pbuf *q)
2083 {
2084 err_t result = ERR_MEM;
2085 struct pbuf *p;
2086 int copy_needed = 0;
2087 #if LWIP_ND6_QUEUEING
2088 struct nd6_q_entry *new_entry, *r;
2089 #endif /* LWIP_ND6_QUEUEING */
2090
2091 if ((neighbor_index < 0) || (neighbor_index >= LWIP_ND6_NUM_NEIGHBORS)) {
2092 return ERR_ARG;
2093 }
2094
2095 /* IF q includes a pbuf that must be copied, we have to copy the whole chain
2096 * into a new PBUF_RAM. See the definition of PBUF_NEEDS_COPY for details. */
2097 p = q;
2098 while (p) {
2099 if (PBUF_NEEDS_COPY(p)) {
2100 copy_needed = 1;
2101 break;
2102 }
2103 p = p->next;
2104 }
2105 if (copy_needed) {
2106 /* copy the whole packet into new pbufs */
2107 p = pbuf_clone(PBUF_LINK, PBUF_RAM, q);
2108 while ((p == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
2109 /* Free oldest packet (as per RFC recommendation) */
2110 #if LWIP_ND6_QUEUEING
2111 r = neighbor_cache[neighbor_index].q;
2112 neighbor_cache[neighbor_index].q = r->next;
2113 r->next = NULL;
2114 nd6_free_q(r);
2115 #else /* LWIP_ND6_QUEUEING */
2116 pbuf_free(neighbor_cache[neighbor_index].q);
2117 neighbor_cache[neighbor_index].q = NULL;
2118 #endif /* LWIP_ND6_QUEUEING */
2119 p = pbuf_clone(PBUF_LINK, PBUF_RAM, q);
2120 }
2121 } else {
2122 /* referencing the old pbuf is enough */
2123 p = q;
2124 pbuf_ref(p);
2125 }
2126 /* packet was copied/ref'd? */
2127 if (p != NULL) {
2128 /* queue packet ... */
2129 #if LWIP_ND6_QUEUEING
2130 /* allocate a new nd6 queue entry */
2131 new_entry = NULL;
2132 if (nd6_queue_size < MEMP_NUM_ND6_QUEUE) {
2133 new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
2134 nd6_queue_size++;
2135 }
2136 if ((new_entry == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
2137 /* Free oldest packet (as per RFC recommendation) */
2138 r = neighbor_cache[neighbor_index].q;
2139 neighbor_cache[neighbor_index].q = r->next;
2140 r->next = NULL;
2141 nd6_free_q(r);
2142 new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
2143 nd6_queue_size++;
2144 }
2145 if (new_entry != NULL) {
2146 new_entry->next = NULL;
2147 new_entry->p = p;
2148 if (neighbor_cache[neighbor_index].q != NULL) {
2149 /* queue was already existent, append the new entry to the end */
2150 r = neighbor_cache[neighbor_index].q;
2151 while (r->next != NULL) {
2152 r = r->next;
2153 }
2154 r->next = new_entry;
2155 } else {
2156 /* queue did not exist, first item in queue */
2157 neighbor_cache[neighbor_index].q = new_entry;
2158 }
2159 LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
2160 result = ERR_OK;
2161 } else {
2162 /* the pool MEMP_ND6_QUEUE is empty */
2163 pbuf_free(p);
2164 LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)p));
2165 /* { result == ERR_MEM } through initialization */
2166 }
2167 #else /* LWIP_ND6_QUEUEING */
2168 /* Queue a single packet. If an older packet is already queued, free it as per RFC. */
2169 if (neighbor_cache[neighbor_index].q != NULL) {
2170 pbuf_free(neighbor_cache[neighbor_index].q);
2171 }
2172 neighbor_cache[neighbor_index].q = p;
2173 LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
2174 result = ERR_OK;
2175 #endif /* LWIP_ND6_QUEUEING */
2176 } else {
2177 LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)q));
2178 /* { result == ERR_MEM } through initialization */
2179 }
2180
2181 return result;
2182 }
2183
2184 #if LWIP_ND6_QUEUEING
2185 /**
2186 * Free a complete queue of nd6 q entries
2187 *
2188 * @param q a queue of nd6_q_entry to free
2189 */
2190 static void
nd6_free_q(struct nd6_q_entry * q)2191 nd6_free_q(struct nd6_q_entry *q)
2192 {
2193 struct nd6_q_entry *r;
2194 LWIP_ASSERT("q != NULL", q != NULL);
2195 LWIP_ASSERT("q->p != NULL", q->p != NULL);
2196 while (q) {
2197 r = q;
2198 q = q->next;
2199 LWIP_ASSERT("r->p != NULL", (r->p != NULL));
2200 pbuf_free(r->p);
2201 memp_free(MEMP_ND6_QUEUE, r);
2202 nd6_queue_size--;
2203 }
2204 }
2205 #endif /* LWIP_ND6_QUEUEING */
2206
2207 /**
2208 * Send queued packets for a neighbor
2209 *
2210 * @param i the neighbor to send packets to
2211 */
2212 static void
nd6_send_q(s8_t i)2213 nd6_send_q(s8_t i)
2214 {
2215 struct ip6_hdr *ip6hdr;
2216 ip6_addr_t dest;
2217 #if LWIP_ND6_QUEUEING
2218 struct nd6_q_entry *q;
2219 #endif /* LWIP_ND6_QUEUEING */
2220
2221 if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
2222 return;
2223 }
2224
2225 #if LWIP_ND6_QUEUEING
2226 while (neighbor_cache[i].q != NULL) {
2227 /* remember first in queue */
2228 q = neighbor_cache[i].q;
2229 /* pop first item off the queue */
2230 neighbor_cache[i].q = q->next;
2231 /* Get ipv6 header. */
2232 ip6hdr = (struct ip6_hdr *)(q->p->payload);
2233 /* Create an aligned copy. */
2234 ip6_addr_copy_from_packed(dest, ip6hdr->dest);
2235 /* Restore the zone, if applicable. */
2236 ip6_addr_assign_zone(&dest, IP6_UNKNOWN, neighbor_cache[i].netif);
2237 /* send the queued IPv6 packet */
2238 (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, q->p, &dest);
2239 /* free the queued IP packet */
2240 pbuf_free(q->p);
2241 /* now queue entry can be freed */
2242 memp_free(MEMP_ND6_QUEUE, q);
2243 nd6_queue_size--;
2244 }
2245 #else /* LWIP_ND6_QUEUEING */
2246 if (neighbor_cache[i].q != NULL) {
2247 /* Get ipv6 header. */
2248 ip6hdr = (struct ip6_hdr *)(neighbor_cache[i].q->payload);
2249 /* Create an aligned copy. */
2250 ip6_addr_copy_from_packed(dest, ip6hdr->dest);
2251 /* Restore the zone, if applicable. */
2252 ip6_addr_assign_zone(&dest, IP6_UNKNOWN, neighbor_cache[i].netif);
2253 /* send the queued IPv6 packet */
2254 (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, neighbor_cache[i].q, &dest);
2255 /* free the queued IP packet */
2256 pbuf_free(neighbor_cache[i].q);
2257 neighbor_cache[i].q = NULL;
2258 }
2259 #endif /* LWIP_ND6_QUEUEING */
2260 }
2261
2262 /**
2263 * A packet is to be transmitted to a specific IPv6 destination on a specific
2264 * interface. Check if we can find the hardware address of the next hop to use
2265 * for the packet. If so, give the hardware address to the caller, which should
2266 * use it to send the packet right away. Otherwise, enqueue the packet for
2267 * later transmission while looking up the hardware address, if possible.
2268 *
2269 * As such, this function returns one of three different possible results:
2270 *
2271 * - ERR_OK with a non-NULL 'hwaddrp': the caller should send the packet now.
2272 * - ERR_OK with a NULL 'hwaddrp': the packet has been enqueued for later.
2273 * - not ERR_OK: something went wrong; forward the error upward in the stack.
2274 *
2275 * @param netif The lwIP network interface on which the IP packet will be sent.
2276 * @param q The pbuf(s) containing the IP packet to be sent.
2277 * @param ip6addr The destination IPv6 address of the packet.
2278 * @param hwaddrp On success, filled with a pointer to a HW address or NULL (meaning
2279 * the packet has been queued).
2280 * @return
2281 * - ERR_OK on success, ERR_RTE if no route was found for the packet,
2282 * or ERR_MEM if low memory conditions prohibit sending the packet at all.
2283 */
2284 err_t
nd6_get_next_hop_addr_or_queue(struct netif * netif,struct pbuf * q,const ip6_addr_t * ip6addr,const u8_t ** hwaddrp)2285 nd6_get_next_hop_addr_or_queue(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr, const u8_t **hwaddrp)
2286 {
2287 s8_t i;
2288
2289 /* Get next hop record. */
2290 i = nd6_get_next_hop_entry(ip6addr, netif);
2291 if (i < 0) {
2292 /* failed to get a next hop neighbor record. */
2293 return i;
2294 }
2295
2296 /* Now that we have a destination record, send or queue the packet. */
2297 if (neighbor_cache[i].state == ND6_STALE) {
2298 /* Switch to delay state. */
2299 neighbor_cache[i].state = ND6_DELAY;
2300 neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
2301 }
2302 /* @todo should we send or queue if PROBE? send for now, to let unicast NS pass. */
2303 if ((neighbor_cache[i].state == ND6_REACHABLE) ||
2304 (neighbor_cache[i].state == ND6_DELAY) ||
2305 (neighbor_cache[i].state == ND6_PROBE)) {
2306
2307 /* Tell the caller to send out the packet now. */
2308 *hwaddrp = neighbor_cache[i].lladdr;
2309 return ERR_OK;
2310 }
2311
2312 /* We should queue packet on this interface. */
2313 *hwaddrp = NULL;
2314 return nd6_queue_packet(i, q);
2315 }
2316
2317
2318 /**
2319 * Get the Path MTU for a destination.
2320 *
2321 * @param ip6addr the destination address
2322 * @param netif the netif on which the packet will be sent
2323 * @return the Path MTU, if known, or the netif default MTU
2324 */
2325 u16_t
nd6_get_destination_mtu(const ip6_addr_t * ip6addr,struct netif * netif)2326 nd6_get_destination_mtu(const ip6_addr_t *ip6addr, struct netif *netif)
2327 {
2328 s16_t i;
2329
2330 i = nd6_find_destination_cache_entry(ip6addr);
2331 if (i >= 0) {
2332 if (destination_cache[i].pmtu > 0) {
2333 return destination_cache[i].pmtu;
2334 }
2335 }
2336
2337 if (netif != NULL) {
2338 return netif_mtu6(netif);
2339 }
2340
2341 return IP6_MIN_MTU_LENGTH; /* Minimum MTU */
2342 }
2343
2344
2345 #if LWIP_ND6_TCP_REACHABILITY_HINTS
2346 /**
2347 * Provide the Neighbor discovery process with a hint that a
2348 * destination is reachable. Called by tcp_receive when ACKs are
2349 * received or sent (as per RFC). This is useful to avoid sending
2350 * NS messages every 30 seconds.
2351 *
2352 * @param ip6addr the destination address which is know to be reachable
2353 * by an upper layer protocol (TCP)
2354 */
2355 void
nd6_reachability_hint(const ip6_addr_t * ip6addr)2356 nd6_reachability_hint(const ip6_addr_t *ip6addr)
2357 {
2358 s8_t i;
2359 s16_t dst_idx;
2360 struct nd6_destination_cache_entry *dest;
2361
2362 /* Find destination in cache. */
2363 if (ip6_addr_eq(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
2364 dst_idx = nd6_cached_destination_index;
2365 ND6_STATS_INC(nd6.cachehit);
2366 } else {
2367 dst_idx = nd6_find_destination_cache_entry(ip6addr);
2368 }
2369 if (dst_idx < 0) {
2370 return;
2371 }
2372
2373 /* Find next hop neighbor in cache. */
2374 dest = &destination_cache[dst_idx];
2375 if (ip6_addr_eq(&dest->next_hop_addr, &(neighbor_cache[dest->cached_neighbor_idx].next_hop_address))) {
2376 i = dest->cached_neighbor_idx;
2377 ND6_STATS_INC(nd6.cachehit);
2378 } else {
2379 i = nd6_find_neighbor_cache_entry(&dest->next_hop_addr);
2380 }
2381 if (i < 0) {
2382 return;
2383 }
2384
2385 /* For safety: don't set as reachable if we don't have a LL address yet. Misuse protection. */
2386 if (neighbor_cache[i].state == ND6_INCOMPLETE || neighbor_cache[i].state == ND6_NO_ENTRY) {
2387 return;
2388 }
2389
2390 /* Set reachability state. */
2391 neighbor_cache[i].state = ND6_REACHABLE;
2392 neighbor_cache[i].counter.reachable_time = reachable_time;
2393 }
2394 #endif /* LWIP_ND6_TCP_REACHABILITY_HINTS */
2395
2396 /**
2397 * Remove all prefix, neighbor_cache and router entries of the specified netif.
2398 *
2399 * @param netif points to a network interface
2400 */
2401 void
nd6_cleanup_netif(struct netif * netif)2402 nd6_cleanup_netif(struct netif *netif)
2403 {
2404 u8_t i;
2405 s8_t router_index;
2406 for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
2407 if (prefix_list[i].netif == netif) {
2408 prefix_list[i].netif = NULL;
2409 }
2410 }
2411 for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
2412 if (neighbor_cache[i].netif == netif) {
2413 for (router_index = 0; router_index < LWIP_ND6_NUM_ROUTERS; router_index++) {
2414 if (default_router_list[router_index].neighbor_entry == &neighbor_cache[i]) {
2415 default_router_list[router_index].neighbor_entry = NULL;
2416 default_router_list[router_index].flags = 0;
2417 }
2418 }
2419 neighbor_cache[i].isrouter = 0;
2420 nd6_free_neighbor_cache_entry(i);
2421 }
2422 }
2423 /* Clear the destination cache, since many entries may now have become
2424 * invalid for one of several reasons. As destination cache entries have no
2425 * netif association, use a sledgehammer approach (this can be improved). */
2426 nd6_clear_destination_cache();
2427 }
2428
2429 #if LWIP_IPV6_MLD
2430 /**
2431 * The state of a local IPv6 address entry is about to change. If needed, join
2432 * or leave the solicited-node multicast group for the address.
2433 *
2434 * @param netif The netif that owns the address.
2435 * @param addr_idx The index of the address.
2436 * @param new_state The new (IP6_ADDR_) state for the address.
2437 */
2438 void
nd6_adjust_mld_membership(struct netif * netif,s8_t addr_idx,u8_t new_state)2439 nd6_adjust_mld_membership(struct netif *netif, s8_t addr_idx, u8_t new_state)
2440 {
2441 u8_t old_state, old_member, new_member;
2442
2443 old_state = netif_ip6_addr_state(netif, addr_idx);
2444
2445 /* Determine whether we were, and should be, a member of the solicited-node
2446 * multicast group for this address. For tentative addresses, the group is
2447 * not joined until the address enters the TENTATIVE_1 (or VALID) state. */
2448 old_member = (old_state != IP6_ADDR_INVALID && old_state != IP6_ADDR_DUPLICATED && old_state != IP6_ADDR_TENTATIVE);
2449 new_member = (new_state != IP6_ADDR_INVALID && new_state != IP6_ADDR_DUPLICATED && new_state != IP6_ADDR_TENTATIVE);
2450
2451 if (old_member != new_member) {
2452 ip6_addr_set_solicitednode(&multicast_address, netif_ip6_addr(netif, addr_idx)->addr[3]);
2453 ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
2454
2455 if (new_member) {
2456 mld6_joingroup_netif(netif, &multicast_address);
2457 } else {
2458 mld6_leavegroup_netif(netif, &multicast_address);
2459 }
2460 }
2461 }
2462 #endif /* LWIP_IPV6_MLD */
2463
2464 /** Netif was added, set up, or reconnected (link up) */
2465 void
nd6_restart_netif(struct netif * netif)2466 nd6_restart_netif(struct netif *netif)
2467 {
2468 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
2469 /* Send Router Solicitation messages (see RFC 4861, ch. 6.3.7). */
2470 netif->rs_count = LWIP_ND6_MAX_MULTICAST_SOLICIT;
2471 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
2472 }
2473
2474 #endif /* LWIP_IPV6 */
2475