1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <queue>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "regalloc-emitter"
45 
46 //===----------------------------------------------------------------------===//
47 //                             CodeGenSubRegIndex
48 //===----------------------------------------------------------------------===//
49 
CodeGenSubRegIndex(Record * R,unsigned Enum)50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
51   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
52   Name = std::string(R->getName());
53   if (R->getValue("Namespace"))
54     Namespace = std::string(R->getValueAsString("Namespace"));
55   Size = R->getValueAsInt("Size");
56   Offset = R->getValueAsInt("Offset");
57 }
58 
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
60                                        unsigned Enum)
61     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
62       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
63       Artificial(true) {}
64 
getQualifiedName() const65 std::string CodeGenSubRegIndex::getQualifiedName() const {
66   std::string N = getNamespace();
67   if (!N.empty())
68     N += "::";
69   N += getName();
70   return N;
71 }
72 
updateComponents(CodeGenRegBank & RegBank)73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
74   if (!TheDef)
75     return;
76 
77   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
78   if (!Comps.empty()) {
79     if (Comps.size() != 2)
80       PrintFatalError(TheDef->getLoc(),
81                       "ComposedOf must have exactly two entries");
82     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
83     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
84     CodeGenSubRegIndex *X = A->addComposite(B, this);
85     if (X)
86       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
87   }
88 
89   std::vector<Record*> Parts =
90     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
91   if (!Parts.empty()) {
92     if (Parts.size() < 2)
93       PrintFatalError(TheDef->getLoc(),
94                       "CoveredBySubRegs must have two or more entries");
95     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
96     for (Record *Part : Parts)
97       IdxParts.push_back(RegBank.getSubRegIdx(Part));
98     setConcatenationOf(IdxParts);
99   }
100 }
101 
computeLaneMask() const102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
103   // Already computed?
104   if (LaneMask.any())
105     return LaneMask;
106 
107   // Recursion guard, shouldn't be required.
108   LaneMask = LaneBitmask::getAll();
109 
110   // The lane mask is simply the union of all sub-indices.
111   LaneBitmask M;
112   for (const auto &C : Composed)
113     M |= C.second->computeLaneMask();
114   assert(M.any() && "Missing lane mask, sub-register cycle?");
115   LaneMask = M;
116   return LaneMask;
117 }
118 
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)119 void CodeGenSubRegIndex::setConcatenationOf(
120     ArrayRef<CodeGenSubRegIndex*> Parts) {
121   if (ConcatenationOf.empty())
122     ConcatenationOf.assign(Parts.begin(), Parts.end());
123   else
124     assert(std::equal(Parts.begin(), Parts.end(),
125                       ConcatenationOf.begin()) && "parts consistent");
126 }
127 
computeConcatTransitiveClosure()128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
130        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
131     CodeGenSubRegIndex *SubIdx = *I;
132     SubIdx->computeConcatTransitiveClosure();
133 #ifndef NDEBUG
134     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
135       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
136 #endif
137 
138     if (SubIdx->ConcatenationOf.empty()) {
139       ++I;
140     } else {
141       I = ConcatenationOf.erase(I);
142       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
143                                  SubIdx->ConcatenationOf.end());
144       I += SubIdx->ConcatenationOf.size();
145     }
146   }
147 }
148 
149 //===----------------------------------------------------------------------===//
150 //                              CodeGenRegister
151 //===----------------------------------------------------------------------===//
152 
CodeGenRegister(Record * R,unsigned Enum)153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
154     : TheDef(R), EnumValue(Enum),
155       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
156       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
157       HasDisjunctSubRegs(false), Constant(R->getValueAsBit("isConstant")),
158       SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {
159   Artificial = R->getValueAsBit("isArtificial");
160 }
161 
buildObjectGraph(CodeGenRegBank & RegBank)162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
163   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
164   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
165 
166   if (SRIs.size() != SRs.size())
167     PrintFatalError(TheDef->getLoc(),
168                     "SubRegs and SubRegIndices must have the same size");
169 
170   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
171     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
172     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
173   }
174 
175   // Also compute leading super-registers. Each register has a list of
176   // covered-by-subregs super-registers where it appears as the first explicit
177   // sub-register.
178   //
179   // This is used by computeSecondarySubRegs() to find candidates.
180   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
181     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
182 
183   // Add ad hoc alias links. This is a symmetric relationship between two
184   // registers, so build a symmetric graph by adding links in both ends.
185   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
186   for (Record *Alias : Aliases) {
187     CodeGenRegister *Reg = RegBank.getReg(Alias);
188     ExplicitAliases.push_back(Reg);
189     Reg->ExplicitAliases.push_back(this);
190   }
191 }
192 
getName() const193 StringRef CodeGenRegister::getName() const {
194   assert(TheDef && "no def");
195   return TheDef->getName();
196 }
197 
198 namespace {
199 
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator {
202   CodeGenRegister::Vec::const_iterator RegI, RegE;
203   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
204   static CodeGenRegister::RegUnitList Sentinel;
205 
206 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)207   RegUnitIterator(const CodeGenRegister::Vec &Regs):
208     RegI(Regs.begin()), RegE(Regs.end()) {
209 
210     if (RegI == RegE) {
211       UnitI = Sentinel.end();
212       UnitE = Sentinel.end();
213     } else {
214       UnitI = (*RegI)->getRegUnits().begin();
215       UnitE = (*RegI)->getRegUnits().end();
216       advance();
217     }
218   }
219 
isValid() const220   bool isValid() const { return UnitI != UnitE; }
221 
operator *() const222   unsigned operator* () const { assert(isValid()); return *UnitI; }
223 
getReg() const224   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
225 
226   /// Preincrement.  Move to the next unit.
operator ++()227   void operator++() {
228     assert(isValid() && "Cannot advance beyond the last operand");
229     ++UnitI;
230     advance();
231   }
232 
233 protected:
advance()234   void advance() {
235     while (UnitI == UnitE) {
236       if (++RegI == RegE)
237         break;
238       UnitI = (*RegI)->getRegUnits().begin();
239       UnitE = (*RegI)->getRegUnits().end();
240     }
241   }
242 };
243 
244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (auto Comp : Comps) {
318       SubRegMap::const_iterator SRI = Map.find(Comp.first);
319       if (SRI == Map.end())
320         continue; // Idx + I->first doesn't exist in SR.
321       // Add I->second as a name for the subreg SRI->second, assuming it is
322       // orphaned, and the name isn't already used for something else.
323       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
324         continue;
325       // We found a new name for the orphaned sub-register.
326       SubRegs.insert(std::make_pair(Comp.second, SRI->second));
327       Indices.push_back(Comp.second);
328     }
329   }
330 
331   // Now Orphans contains the inherited subregisters without a direct index.
332   // Create inferred indexes for all missing entries.
333   // Work backwards in the Indices vector in order to compose subregs bottom-up.
334   // Consider this subreg sequence:
335   //
336   //   qsub_1 -> dsub_0 -> ssub_0
337   //
338   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339   // can be reached in two different ways:
340   //
341   //   qsub_1 -> ssub_0
342   //   dsub_2 -> ssub_0
343   //
344   // We pick the latter composition because another register may have [dsub_0,
345   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
346   // dsub_2 -> ssub_0 composition can be shared.
347   while (!Indices.empty() && !Orphans.empty()) {
348     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
349     CodeGenRegister *SR = SubRegs[Idx];
350     const SubRegMap &Map = SR->computeSubRegs(RegBank);
351     for (const auto &SubReg : Map)
352       if (Orphans.erase(SubReg.second))
353         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
354   }
355 
356   // Compute the inverse SubReg -> Idx map.
357   for (const auto &SubReg : SubRegs) {
358     if (SubReg.second == this) {
359       ArrayRef<SMLoc> Loc;
360       if (TheDef)
361         Loc = TheDef->getLoc();
362       PrintFatalError(Loc, "Register " + getName() +
363                       " has itself as a sub-register");
364     }
365 
366     // Compute AllSuperRegsCovered.
367     if (!CoveredBySubRegs)
368       SubReg.first->AllSuperRegsCovered = false;
369 
370     // Ensure that every sub-register has a unique name.
371     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
372       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
373     if (Ins->second == SubReg.first)
374       continue;
375     // Trouble: Two different names for SubReg.second.
376     ArrayRef<SMLoc> Loc;
377     if (TheDef)
378       Loc = TheDef->getLoc();
379     PrintFatalError(Loc, "Sub-register can't have two names: " +
380                   SubReg.second->getName() + " available as " +
381                   SubReg.first->getName() + " and " + Ins->second->getName());
382   }
383 
384   // Derive possible names for sub-register concatenations from any explicit
385   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386   // that getConcatSubRegIndex() won't invent any concatenated indices that the
387   // user already specified.
388   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
389     CodeGenRegister *SR = ExplicitSubRegs[i];
390     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
391         SR->Artificial)
392       continue;
393 
394     // SR is composed of multiple sub-regs. Find their names in this register.
395     SmallVector<CodeGenSubRegIndex*, 8> Parts;
396     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
397       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
398       if (!I.Artificial)
399         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
400     }
401 
402     // Offer this as an existing spelling for the concatenation of Parts.
403     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
404     Idx.setConcatenationOf(Parts);
405   }
406 
407   // Initialize RegUnitList. Because getSubRegs is called recursively, this
408   // processes the register hierarchy in postorder.
409   //
410   // Inherit all sub-register units. It is good enough to look at the explicit
411   // sub-registers, the other registers won't contribute any more units.
412   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
413     CodeGenRegister *SR = ExplicitSubRegs[i];
414     RegUnits |= SR->RegUnits;
415   }
416 
417   // Absent any ad hoc aliasing, we create one register unit per leaf register.
418   // These units correspond to the maximal cliques in the register overlap
419   // graph which is optimal.
420   //
421   // When there is ad hoc aliasing, we simply create one unit per edge in the
422   // undirected ad hoc aliasing graph. Technically, we could do better by
423   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424   // are extremely rare anyway (I've never seen one), so we don't bother with
425   // the added complexity.
426   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
427     CodeGenRegister *AR = ExplicitAliases[i];
428     // Only visit each edge once.
429     if (AR->SubRegsComplete)
430       continue;
431     // Create a RegUnit representing this alias edge, and add it to both
432     // registers.
433     unsigned Unit = RegBank.newRegUnit(this, AR);
434     RegUnits.set(Unit);
435     AR->RegUnits.set(Unit);
436   }
437 
438   // Finally, create units for leaf registers without ad hoc aliases. Note that
439   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440   // necessary. This means the aliasing leaf registers can share a single unit.
441   if (RegUnits.empty())
442     RegUnits.set(RegBank.newRegUnit(this));
443 
444   // We have now computed the native register units. More may be adopted later
445   // for balancing purposes.
446   NativeRegUnits = RegUnits;
447 
448   return SubRegs;
449 }
450 
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
453 //
454 //   QQ0 = {Q0, Q1}
455 //   Q0 = {D0, D1}
456 //   Q1 = {D2, D3}
457 //
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
460 //
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
463 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
465   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
466 
467   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
468   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
469     SubRegQueue.push(P);
470 
471   // Look at the leading super-registers of each sub-register. Those are the
472   // candidates for new sub-registers, assuming they are fully contained in
473   // this register.
474   while (!SubRegQueue.empty()) {
475     CodeGenSubRegIndex *SubRegIdx;
476     const CodeGenRegister *SubReg;
477     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
478     SubRegQueue.pop();
479 
480     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
481     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
482       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
483       // Already got this sub-register?
484       if (Cand == this || getSubRegIndex(Cand))
485         continue;
486       // Check if each component of Cand is already a sub-register.
487       assert(!Cand->ExplicitSubRegs.empty() &&
488              "Super-register has no sub-registers");
489       if (Cand->ExplicitSubRegs.size() == 1)
490         continue;
491       SmallVector<CodeGenSubRegIndex*, 8> Parts;
492       // We know that the first component is (SubRegIdx,SubReg). However we
493       // may still need to split it into smaller subregister parts.
494       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
495       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
496       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
497         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
498           if (SubRegIdx->ConcatenationOf.empty())
499             Parts.push_back(SubRegIdx);
500           else
501             append_range(Parts, SubRegIdx->ConcatenationOf);
502         } else {
503           // Sub-register doesn't exist.
504           Parts.clear();
505           break;
506         }
507       }
508       // There is nothing to do if some Cand sub-register is not part of this
509       // register.
510       if (Parts.empty())
511         continue;
512 
513       // Each part of Cand is a sub-register of this. Make the full Cand also
514       // a sub-register with a concatenated sub-register index.
515       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
516       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
517           std::make_pair(Concat, Cand);
518 
519       if (!SubRegs.insert(NewSubReg).second)
520         continue;
521 
522       // We inserted a new subregister.
523       NewSubRegs.push_back(NewSubReg);
524       SubRegQueue.push(NewSubReg);
525       SubReg2Idx.insert(std::make_pair(Cand, Concat));
526     }
527   }
528 
529   // Create sub-register index composition maps for the synthesized indices.
530   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
531     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
532     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
533     for (auto SubReg : NewSubReg->SubRegs) {
534       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
535       if (!SubIdx)
536         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
537                                               SubReg.second->getName() +
538                                               " in " + getName());
539       NewIdx->addComposite(SubReg.first, SubIdx);
540     }
541   }
542 }
543 
computeSuperRegs(CodeGenRegBank & RegBank)544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
545   // Only visit each register once.
546   if (SuperRegsComplete)
547     return;
548   SuperRegsComplete = true;
549 
550   // Make sure all sub-registers have been visited first, so the super-reg
551   // lists will be topologically ordered.
552   for (auto SubReg : SubRegs)
553     SubReg.second->computeSuperRegs(RegBank);
554 
555   // Now add this as a super-register on all sub-registers.
556   // Also compute the TopoSigId in post-order.
557   TopoSigId Id;
558   for (auto SubReg : SubRegs) {
559     // Topological signature computed from SubIdx, TopoId(SubReg).
560     // Loops and idempotent indices have TopoSig = ~0u.
561     Id.push_back(SubReg.first->EnumValue);
562     Id.push_back(SubReg.second->TopoSig);
563 
564     // Don't add duplicate entries.
565     if (!SubReg.second->SuperRegs.empty() &&
566         SubReg.second->SuperRegs.back() == this)
567       continue;
568     SubReg.second->SuperRegs.push_back(this);
569   }
570   TopoSig = RegBank.getTopoSig(Id);
571 }
572 
573 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
575                                     CodeGenRegBank &RegBank) const {
576   assert(SubRegsComplete && "Must precompute sub-registers");
577   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
578     CodeGenRegister *SR = ExplicitSubRegs[i];
579     if (OSet.insert(SR))
580       SR->addSubRegsPreOrder(OSet, RegBank);
581   }
582   // Add any secondary sub-registers that weren't part of the explicit tree.
583   for (auto SubReg : SubRegs)
584     OSet.insert(SubReg.second);
585 }
586 
587 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589   unsigned Weight = 0;
590   for (unsigned RegUnit : RegUnits) {
591     Weight += RegBank.getRegUnit(RegUnit).Weight;
592   }
593   return Weight;
594 }
595 
596 //===----------------------------------------------------------------------===//
597 //                               RegisterTuples
598 //===----------------------------------------------------------------------===//
599 
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
602 // registers.
603 namespace {
604 
605 struct TupleExpander : SetTheory::Expander {
606   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607   // the synthesized definitions for their lifetime.
608   std::vector<std::unique_ptr<Record>> &SynthDefs;
609 
TupleExpander__anone40325d50211::TupleExpander610   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
611       : SynthDefs(SynthDefs) {}
612 
expand__anone40325d50211::TupleExpander613   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
614     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
615     unsigned Dim = Indices.size();
616     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
617     if (Dim != SubRegs->size())
618       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
619     if (Dim < 2)
620       PrintFatalError(Def->getLoc(),
621                       "Tuples must have at least 2 sub-registers");
622 
623     // Evaluate the sub-register lists to be zipped.
624     unsigned Length = ~0u;
625     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
626     for (unsigned i = 0; i != Dim; ++i) {
627       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
628       Length = std::min(Length, unsigned(Lists[i].size()));
629     }
630 
631     if (Length == 0)
632       return;
633 
634     // Precompute some types.
635     Record *RegisterCl = Def->getRecords().getClass("Register");
636     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
637     std::vector<StringRef> RegNames =
638       Def->getValueAsListOfStrings("RegAsmNames");
639 
640     // Zip them up.
641     RecordKeeper &RK = Def->getRecords();
642     for (unsigned n = 0; n != Length; ++n) {
643       std::string Name;
644       Record *Proto = Lists[0][n];
645       std::vector<Init*> Tuple;
646       for (unsigned i = 0; i != Dim; ++i) {
647         Record *Reg = Lists[i][n];
648         if (i) Name += '_';
649         Name += Reg->getName();
650         Tuple.push_back(DefInit::get(Reg));
651       }
652 
653       // Take the cost list of the first register in the tuple.
654       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
655       SmallVector<Init *, 2> CostPerUse;
656       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
657 
658       StringInit *AsmName = StringInit::get(RK, "");
659       if (!RegNames.empty()) {
660         if (RegNames.size() <= n)
661           PrintFatalError(Def->getLoc(),
662                           "Register tuple definition missing name for '" +
663                             Name + "'.");
664         AsmName = StringInit::get(RK, RegNames[n]);
665       }
666 
667       // Create a new Record representing the synthesized register. This record
668       // is only for consumption by CodeGenRegister, it is not added to the
669       // RecordKeeper.
670       SynthDefs.emplace_back(
671           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
672       Record *NewReg = SynthDefs.back().get();
673       Elts.insert(NewReg);
674 
675       // Copy Proto super-classes.
676       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
677       for (const auto &SuperPair : Supers)
678         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
679 
680       // Copy Proto fields.
681       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
682         RecordVal RV = Proto->getValues()[i];
683 
684         // Skip existing fields, like NAME.
685         if (NewReg->getValue(RV.getNameInit()))
686           continue;
687 
688         StringRef Field = RV.getName();
689 
690         // Replace the sub-register list with Tuple.
691         if (Field == "SubRegs")
692           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
693 
694         if (Field == "AsmName")
695           RV.setValue(AsmName);
696 
697         // CostPerUse is aggregated from all Tuple members.
698         if (Field == "CostPerUse")
699           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
700 
701         // Composite registers are always covered by sub-registers.
702         if (Field == "CoveredBySubRegs")
703           RV.setValue(BitInit::get(RK, true));
704 
705         // Copy fields from the RegisterTuples def.
706         if (Field == "SubRegIndices" ||
707             Field == "CompositeIndices") {
708           NewReg->addValue(*Def->getValue(Field));
709           continue;
710         }
711 
712         // Some fields get their default uninitialized value.
713         if (Field == "DwarfNumbers" ||
714             Field == "DwarfAlias" ||
715             Field == "Aliases") {
716           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
717             NewReg->addValue(*DefRV);
718           continue;
719         }
720 
721         // Everything else is copied from Proto.
722         NewReg->addValue(RV);
723       }
724     }
725   }
726 };
727 
728 } // end anonymous namespace
729 
730 //===----------------------------------------------------------------------===//
731 //                            CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
733 
sortAndUniqueRegisters(CodeGenRegister::Vec & M)734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
735   llvm::sort(M, deref<std::less<>>());
736   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
737 }
738 
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
740     : TheDef(R), Name(std::string(R->getName())),
741       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
743   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
744   if (TypeList.empty())
745     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
746   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747     Record *Type = TypeList[i];
748     if (!Type->isSubClassOf("ValueType"))
749       PrintFatalError(R->getLoc(),
750                       "RegTypes list member '" + Type->getName() +
751                           "' does not derive from the ValueType class!");
752     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
753   }
754 
755   // Allocation order 0 is the full set. AltOrders provides others.
756   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758   Orders.resize(1 + AltOrders->size());
759 
760   // Default allocation order always contains all registers.
761   Artificial = true;
762   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763     Orders[0].push_back((*Elements)[i]);
764     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765     Members.push_back(Reg);
766     Artificial &= Reg->Artificial;
767     TopoSigs.set(Reg->getTopoSig());
768   }
769   sortAndUniqueRegisters(Members);
770 
771   // Alternative allocation orders may be subsets.
772   SetTheory::RecSet Order;
773   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775     Orders[1 + i].append(Order.begin(), Order.end());
776     // Verify that all altorder members are regclass members.
777     while (!Order.empty()) {
778       CodeGenRegister *Reg = RegBank.getReg(Order.back());
779       Order.pop_back();
780       if (!contains(Reg))
781         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782                       " is not a class member");
783     }
784   }
785 
786   Namespace = R->getValueAsString("Namespace");
787 
788   if (const RecordVal *RV = R->getValue("RegInfos"))
789     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791   unsigned Size = R->getValueAsInt("Size");
792   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793          "Impossible to determine register size");
794   if (!RSI.hasDefault()) {
795     RegSizeInfo RI;
796     RI.RegSize = RI.SpillSize = Size ? Size
797                                      : VTs[0].getSimple().getSizeInBits();
798     RI.SpillAlignment = R->getValueAsInt("Alignment");
799     RSI.insertRegSizeForMode(DefaultMode, RI);
800   }
801 
802   CopyCost = R->getValueAsInt("CopyCost");
803   Allocatable = R->getValueAsBit("isAllocatable");
804   AltOrderSelect = R->getValueAsString("AltOrderSelect");
805   int AllocationPriority = R->getValueAsInt("AllocationPriority");
806   if (!isUInt<5>(AllocationPriority))
807     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]");
808   this->AllocationPriority = AllocationPriority;
809 
810   GlobalPriority = R->getValueAsBit("GlobalPriority");
811 
812   BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
813   for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
814     BitInit *Bit = cast<BitInit>(TSF->getBit(I));
815     TSFlags |= uint8_t(Bit->getValue()) << I;
816   }
817 }
818 
819 // Create an inferred register class that was missing from the .td files.
820 // Most properties will be inherited from the closest super-class after the
821 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)822 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
823                                            StringRef Name, Key Props)
824     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
825       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
826       CopyCost(0), Allocatable(true), AllocationPriority(0),
827       GlobalPriority(false), TSFlags(0) {
828   Artificial = true;
829   GeneratePressureSet = false;
830   for (const auto R : Members) {
831     TopoSigs.set(R->getTopoSig());
832     Artificial &= R->Artificial;
833   }
834 }
835 
836 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)837 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
838   assert(!getDef() && "Only synthesized classes can inherit properties");
839   assert(!SuperClasses.empty() && "Synthesized class without super class");
840 
841   // The last super-class is the smallest one.
842   CodeGenRegisterClass &Super = *SuperClasses.back();
843 
844   // Most properties are copied directly.
845   // Exceptions are members, size, and alignment
846   Namespace = Super.Namespace;
847   VTs = Super.VTs;
848   CopyCost = Super.CopyCost;
849   // Check for allocatable superclasses.
850   Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
851     return S->Allocatable;
852   });
853   AltOrderSelect = Super.AltOrderSelect;
854   AllocationPriority = Super.AllocationPriority;
855   GlobalPriority = Super.GlobalPriority;
856   TSFlags = Super.TSFlags;
857   GeneratePressureSet |= Super.GeneratePressureSet;
858 
859   // Copy all allocation orders, filter out foreign registers from the larger
860   // super-class.
861   Orders.resize(Super.Orders.size());
862   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
863     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
864       if (contains(RegBank.getReg(Super.Orders[i][j])))
865         Orders[i].push_back(Super.Orders[i][j]);
866 }
867 
hasType(const ValueTypeByHwMode & VT) const868 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
869   if (llvm::is_contained(VTs, VT))
870     return true;
871 
872   // If VT is not identical to any of this class's types, but is a simple
873   // type, check if any of the types for this class contain it under some
874   // mode.
875   // The motivating example came from RISCV, where (likely because of being
876   // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
877   // type in GRC was {*:[i32], m1:[i64]}.
878   if (VT.isSimple()) {
879     MVT T = VT.getSimple();
880     for (const ValueTypeByHwMode &OurVT : VTs) {
881       if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
882         return true;
883     }
884   }
885   return false;
886 }
887 
contains(const CodeGenRegister * Reg) const888 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
889   return std::binary_search(Members.begin(), Members.end(), Reg,
890                             deref<std::less<>>());
891 }
892 
getWeight(const CodeGenRegBank & RegBank) const893 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
894   if (TheDef && !TheDef->isValueUnset("Weight"))
895     return TheDef->getValueAsInt("Weight");
896 
897   if (Members.empty() || Artificial)
898     return 0;
899 
900   return (*Members.begin())->getWeight(RegBank);
901 }
902 
903 namespace llvm {
904 
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)905   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
906     OS << "{ " << K.RSI;
907     for (const auto R : *K.Members)
908       OS << ", " << R->getName();
909     return OS << " }";
910   }
911 
912 } // end namespace llvm
913 
914 // This is a simple lexicographical order that can be used to search for sets.
915 // It is not the same as the topological order provided by TopoOrderRC.
916 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const917 operator<(const CodeGenRegisterClass::Key &B) const {
918   assert(Members && B.Members);
919   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
920 }
921 
922 // Returns true if RC is a strict subclass.
923 // RC is a sub-class of this class if it is a valid replacement for any
924 // instruction operand where a register of this classis required. It must
925 // satisfy these conditions:
926 //
927 // 1. All RC registers are also in this.
928 // 2. The RC spill size must not be smaller than our spill size.
929 // 3. RC spill alignment must be compatible with ours.
930 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)931 static bool testSubClass(const CodeGenRegisterClass *A,
932                          const CodeGenRegisterClass *B) {
933   return A->RSI.isSubClassOf(B->RSI) &&
934          std::includes(A->getMembers().begin(), A->getMembers().end(),
935                        B->getMembers().begin(), B->getMembers().end(),
936                        deref<std::less<>>());
937 }
938 
939 /// Sorting predicate for register classes.  This provides a topological
940 /// ordering that arranges all register classes before their sub-classes.
941 ///
942 /// Register classes with the same registers, spill size, and alignment form a
943 /// clique.  They will be ordered alphabetically.
944 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)945 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
946                         const CodeGenRegisterClass &PB) {
947   auto *A = &PA;
948   auto *B = &PB;
949   if (A == B)
950     return false;
951 
952   if (A->RSI < B->RSI)
953     return true;
954   if (A->RSI != B->RSI)
955     return false;
956 
957   // Order by descending set size.  Note that the classes' allocation order may
958   // not have been computed yet.  The Members set is always vaild.
959   if (A->getMembers().size() > B->getMembers().size())
960     return true;
961   if (A->getMembers().size() < B->getMembers().size())
962     return false;
963 
964   // Finally order by name as a tie breaker.
965   return StringRef(A->getName()) < B->getName();
966 }
967 
getQualifiedName() const968 std::string CodeGenRegisterClass::getQualifiedName() const {
969   if (Namespace.empty())
970     return getName();
971   else
972     return (Namespace + "::" + getName()).str();
973 }
974 
975 // Compute sub-classes of all register classes.
976 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)977 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
978   auto &RegClasses = RegBank.getRegClasses();
979 
980   // Visit backwards so sub-classes are seen first.
981   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
982     CodeGenRegisterClass &RC = *I;
983     RC.SubClasses.resize(RegClasses.size());
984     RC.SubClasses.set(RC.EnumValue);
985     if (RC.Artificial)
986       continue;
987 
988     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
989     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
990       CodeGenRegisterClass &SubRC = *I2;
991       if (RC.SubClasses.test(SubRC.EnumValue))
992         continue;
993       if (!testSubClass(&RC, &SubRC))
994         continue;
995       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
996       // check them again.
997       RC.SubClasses |= SubRC.SubClasses;
998     }
999 
1000     // Sweep up missed clique members.  They will be immediately preceding RC.
1001     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
1002       RC.SubClasses.set(I2->EnumValue);
1003   }
1004 
1005   // Compute the SuperClasses lists from the SubClasses vectors.
1006   for (auto &RC : RegClasses) {
1007     const BitVector &SC = RC.getSubClasses();
1008     auto I = RegClasses.begin();
1009     for (int s = 0, next_s = SC.find_first(); next_s != -1;
1010          next_s = SC.find_next(s)) {
1011       std::advance(I, next_s - s);
1012       s = next_s;
1013       if (&*I == &RC)
1014         continue;
1015       I->SuperClasses.push_back(&RC);
1016     }
1017   }
1018 
1019   // With the class hierarchy in place, let synthesized register classes inherit
1020   // properties from their closest super-class. The iteration order here can
1021   // propagate properties down multiple levels.
1022   for (auto &RC : RegClasses)
1023     if (!RC.getDef())
1024       RC.inheritProperties(RegBank);
1025 }
1026 
1027 std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const1028 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1029     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1030   auto SizeOrder = [this](const CodeGenRegisterClass *A,
1031                       const CodeGenRegisterClass *B) {
1032     // If there are multiple, identical register classes, prefer the original
1033     // register class.
1034     if (A == B)
1035       return false;
1036     if (A->getMembers().size() == B->getMembers().size())
1037       return A == this;
1038     return A->getMembers().size() > B->getMembers().size();
1039   };
1040 
1041   auto &RegClasses = RegBank.getRegClasses();
1042 
1043   // Find all the subclasses of this one that fully support the sub-register
1044   // index and order them by size. BiggestSuperRC should always be first.
1045   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1046   if (!BiggestSuperRegRC)
1047     return std::nullopt;
1048   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1049   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1050   for (auto &RC : RegClasses)
1051     if (SuperRegRCsBV[RC.EnumValue])
1052       SuperRegRCs.emplace_back(&RC);
1053   llvm::stable_sort(SuperRegRCs, SizeOrder);
1054 
1055   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1056          "Biggest class wasn't first");
1057 
1058   // Find all the subreg classes and order them by size too.
1059   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1060   for (auto &RC: RegClasses) {
1061     BitVector SuperRegClassesBV(RegClasses.size());
1062     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1063     if (SuperRegClassesBV.any())
1064       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1065   }
1066   llvm::sort(SuperRegClasses,
1067              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1068                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1069                return SizeOrder(A.first, B.first);
1070              });
1071 
1072   // Find the biggest subclass and subreg class such that R:subidx is in the
1073   // subreg class for all R in subclass.
1074   //
1075   // For example:
1076   // All registers in X86's GR64 have a sub_32bit subregister but no class
1077   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1078   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1079   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1080   // having excluded RIP, we are able to find a SubRegRC (GR32).
1081   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1082   CodeGenRegisterClass *SubRegRC = nullptr;
1083   for (auto *SuperRegRC : SuperRegRCs) {
1084     for (const auto &SuperRegClassPair : SuperRegClasses) {
1085       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1086       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1087         SubRegRC = SuperRegClassPair.first;
1088         ChosenSuperRegClass = SuperRegRC;
1089 
1090         // If SubRegRC is bigger than SuperRegRC then there are members of
1091         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1092         // find a better fit and fall back on this one if there isn't one.
1093         //
1094         // This is intended to prevent X86 from making odd choices such as
1095         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1096         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1097         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1098         // mapping.
1099         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1100           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1101       }
1102     }
1103 
1104     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1105     // registers, then we're done.
1106     if (ChosenSuperRegClass)
1107       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1108   }
1109 
1110   return std::nullopt;
1111 }
1112 
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1113 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1114                                               BitVector &Out) const {
1115   auto FindI = SuperRegClasses.find(SubIdx);
1116   if (FindI == SuperRegClasses.end())
1117     return;
1118   for (CodeGenRegisterClass *RC : FindI->second)
1119     Out.set(RC->EnumValue);
1120 }
1121 
1122 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1123 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1124   std::vector<unsigned> &RegUnits) const {
1125   std::vector<unsigned> TmpUnits;
1126   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1127     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1128     if (!RU.Artificial)
1129       TmpUnits.push_back(*UnitI);
1130   }
1131   llvm::sort(TmpUnits);
1132   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1133                    std::back_inserter(RegUnits));
1134 }
1135 
1136 //===----------------------------------------------------------------------===//
1137 //                           CodeGenRegisterCategory
1138 //===----------------------------------------------------------------------===//
1139 
CodeGenRegisterCategory(CodeGenRegBank & RegBank,Record * R)1140 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1141                                                  Record *R)
1142     : TheDef(R), Name(std::string(R->getName())) {
1143   for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1144     Classes.push_back(RegBank.getRegClass(RegClass));
1145 }
1146 
1147 //===----------------------------------------------------------------------===//
1148 //                               CodeGenRegBank
1149 //===----------------------------------------------------------------------===//
1150 
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1151 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1152                                const CodeGenHwModes &Modes) : CGH(Modes) {
1153   // Configure register Sets to understand register classes and tuples.
1154   Sets.addFieldExpander("RegisterClass", "MemberList");
1155   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1156   Sets.addExpander("RegisterTuples",
1157                    std::make_unique<TupleExpander>(SynthDefs));
1158 
1159   // Read in the user-defined (named) sub-register indices.
1160   // More indices will be synthesized later.
1161   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1162   llvm::sort(SRIs, LessRecord());
1163   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1164     getSubRegIdx(SRIs[i]);
1165   // Build composite maps from ComposedOf fields.
1166   for (auto &Idx : SubRegIndices)
1167     Idx.updateComponents(*this);
1168 
1169   // Read in the register definitions.
1170   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1171   llvm::sort(Regs, LessRecordRegister());
1172   // Assign the enumeration values.
1173   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1174     getReg(Regs[i]);
1175 
1176   // Expand tuples and number the new registers.
1177   std::vector<Record*> Tups =
1178     Records.getAllDerivedDefinitions("RegisterTuples");
1179 
1180   for (Record *R : Tups) {
1181     std::vector<Record *> TupRegs = *Sets.expand(R);
1182     llvm::sort(TupRegs, LessRecordRegister());
1183     for (Record *RC : TupRegs)
1184       getReg(RC);
1185   }
1186 
1187   // Now all the registers are known. Build the object graph of explicit
1188   // register-register references.
1189   for (auto &Reg : Registers)
1190     Reg.buildObjectGraph(*this);
1191 
1192   // Compute register name map.
1193   for (auto &Reg : Registers)
1194     // FIXME: This could just be RegistersByName[name] = register, except that
1195     // causes some failures in MIPS - perhaps they have duplicate register name
1196     // entries? (or maybe there's a reason for it - I don't know much about this
1197     // code, just drive-by refactoring)
1198     RegistersByName.insert(
1199         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1200 
1201   // Precompute all sub-register maps.
1202   // This will create Composite entries for all inferred sub-register indices.
1203   for (auto &Reg : Registers)
1204     Reg.computeSubRegs(*this);
1205 
1206   // Compute transitive closure of subregister index ConcatenationOf vectors
1207   // and initialize ConcatIdx map.
1208   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1209     SRI.computeConcatTransitiveClosure();
1210     if (!SRI.ConcatenationOf.empty())
1211       ConcatIdx.insert(std::make_pair(
1212           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1213                                              SRI.ConcatenationOf.end()), &SRI));
1214   }
1215 
1216   // Infer even more sub-registers by combining leading super-registers.
1217   for (auto &Reg : Registers)
1218     if (Reg.CoveredBySubRegs)
1219       Reg.computeSecondarySubRegs(*this);
1220 
1221   // After the sub-register graph is complete, compute the topologically
1222   // ordered SuperRegs list.
1223   for (auto &Reg : Registers)
1224     Reg.computeSuperRegs(*this);
1225 
1226   // For each pair of Reg:SR, if both are non-artificial, mark the
1227   // corresponding sub-register index as non-artificial.
1228   for (auto &Reg : Registers) {
1229     if (Reg.Artificial)
1230       continue;
1231     for (auto P : Reg.getSubRegs()) {
1232       const CodeGenRegister *SR = P.second;
1233       if (!SR->Artificial)
1234         P.first->Artificial = false;
1235     }
1236   }
1237 
1238   // Native register units are associated with a leaf register. They've all been
1239   // discovered now.
1240   NumNativeRegUnits = RegUnits.size();
1241 
1242   // Read in register class definitions.
1243   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1244   if (RCs.empty())
1245     PrintFatalError("No 'RegisterClass' subclasses defined!");
1246 
1247   // Allocate user-defined register classes.
1248   for (auto *R : RCs) {
1249     RegClasses.emplace_back(*this, R);
1250     CodeGenRegisterClass &RC = RegClasses.back();
1251     if (!RC.Artificial)
1252       addToMaps(&RC);
1253   }
1254 
1255   // Infer missing classes to create a full algebra.
1256   computeInferredRegisterClasses();
1257 
1258   // Order register classes topologically and assign enum values.
1259   RegClasses.sort(TopoOrderRC);
1260   unsigned i = 0;
1261   for (auto &RC : RegClasses)
1262     RC.EnumValue = i++;
1263   CodeGenRegisterClass::computeSubClasses(*this);
1264 
1265   // Read in the register category definitions.
1266   std::vector<Record *> RCats =
1267       Records.getAllDerivedDefinitions("RegisterCategory");
1268   for (auto *R : RCats)
1269     RegCategories.emplace_back(*this, R);
1270 }
1271 
1272 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1273 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1274 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1275   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1276   return &SubRegIndices.back();
1277 }
1278 
getSubRegIdx(Record * Def)1279 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1280   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1281   if (Idx)
1282     return Idx;
1283   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1284   Idx = &SubRegIndices.back();
1285   return Idx;
1286 }
1287 
1288 const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1289 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1290   return Def2SubRegIdx.lookup(Def);
1291 }
1292 
getReg(Record * Def)1293 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1294   CodeGenRegister *&Reg = Def2Reg[Def];
1295   if (Reg)
1296     return Reg;
1297   Registers.emplace_back(Def, Registers.size() + 1);
1298   Reg = &Registers.back();
1299   return Reg;
1300 }
1301 
addToMaps(CodeGenRegisterClass * RC)1302 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1303   if (Record *Def = RC->getDef())
1304     Def2RC.insert(std::make_pair(Def, RC));
1305 
1306   // Duplicate classes are rejected by insert().
1307   // That's OK, we only care about the properties handled by CGRC::Key.
1308   CodeGenRegisterClass::Key K(*RC);
1309   Key2RC.insert(std::make_pair(K, RC));
1310 }
1311 
1312 // Create a synthetic sub-class if it is missing.
1313 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1314 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1315                                     const CodeGenRegister::Vec *Members,
1316                                     StringRef Name) {
1317   // Synthetic sub-class has the same size and alignment as RC.
1318   CodeGenRegisterClass::Key K(Members, RC->RSI);
1319   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1320   if (FoundI != Key2RC.end())
1321     return FoundI->second;
1322 
1323   // Sub-class doesn't exist, create a new one.
1324   RegClasses.emplace_back(*this, Name, K);
1325   addToMaps(&RegClasses.back());
1326   return &RegClasses.back();
1327 }
1328 
getRegClass(const Record * Def) const1329 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1330   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1331     return RC;
1332 
1333   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1334 }
1335 
1336 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1337 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1338                                         CodeGenSubRegIndex *B) {
1339   // Look for an existing entry.
1340   CodeGenSubRegIndex *Comp = A->compose(B);
1341   if (Comp)
1342     return Comp;
1343 
1344   // None exists, synthesize one.
1345   std::string Name = A->getName() + "_then_" + B->getName();
1346   Comp = createSubRegIndex(Name, A->getNamespace());
1347   A->addComposite(B, Comp);
1348   return Comp;
1349 }
1350 
1351 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1352 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1353   assert(Parts.size() > 1 && "Need two parts to concatenate");
1354 #ifndef NDEBUG
1355   for (CodeGenSubRegIndex *Idx : Parts) {
1356     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1357   }
1358 #endif
1359 
1360   // Look for an existing entry.
1361   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1362   if (Idx)
1363     return Idx;
1364 
1365   // None exists, synthesize one.
1366   std::string Name = Parts.front()->getName();
1367   // Determine whether all parts are contiguous.
1368   bool isContinuous = true;
1369   unsigned Size = Parts.front()->Size;
1370   unsigned LastOffset = Parts.front()->Offset;
1371   unsigned LastSize = Parts.front()->Size;
1372   unsigned UnknownSize = (uint16_t)-1;
1373   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1374     Name += '_';
1375     Name += Parts[i]->getName();
1376     if (Size == UnknownSize || Parts[i]->Size == UnknownSize)
1377       Size = UnknownSize;
1378     else
1379       Size += Parts[i]->Size;
1380     if (LastSize == UnknownSize || Parts[i]->Offset != (LastOffset + LastSize))
1381       isContinuous = false;
1382     LastOffset = Parts[i]->Offset;
1383     LastSize = Parts[i]->Size;
1384   }
1385   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1386   Idx->Size = Size;
1387   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1388   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1389   return Idx;
1390 }
1391 
computeComposites()1392 void CodeGenRegBank::computeComposites() {
1393   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1394 
1395   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1396   // register to (sub)register associated with the action of the left-hand
1397   // side subregister.
1398   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1399   for (const CodeGenRegister &R : Registers) {
1400     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1401     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1402       SubRegAction[P.first].insert({&R, P.second});
1403   }
1404 
1405   // Calculate the composition of two subregisters as compositions of their
1406   // associated actions.
1407   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1408                                   const CodeGenSubRegIndex *Sub2) {
1409     RegMap C;
1410     const RegMap &Img1 = SubRegAction.at(Sub1);
1411     const RegMap &Img2 = SubRegAction.at(Sub2);
1412     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1413       auto F = Img2.find(P.second);
1414       if (F != Img2.end())
1415         C.insert({P.first, F->second});
1416     }
1417     return C;
1418   };
1419 
1420   // Check if the two maps agree on the intersection of their domains.
1421   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1422     // Technically speaking, an empty map agrees with any other map, but
1423     // this could flag false positives. We're interested in non-vacuous
1424     // agreements.
1425     if (Map1.empty() || Map2.empty())
1426       return false;
1427     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1428       auto F = Map2.find(P.first);
1429       if (F == Map2.end() || P.second != F->second)
1430         return false;
1431     }
1432     return true;
1433   };
1434 
1435   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1436                                   const CodeGenSubRegIndex*>;
1437   SmallSet<CompositePair,4> UserDefined;
1438   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1439     for (auto P : Idx.getComposites())
1440       UserDefined.insert(std::make_pair(&Idx, P.first));
1441 
1442   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1443   // and many registers will share TopoSigs on regular architectures.
1444   BitVector TopoSigs(getNumTopoSigs());
1445 
1446   for (const auto &Reg1 : Registers) {
1447     // Skip identical subreg structures already processed.
1448     if (TopoSigs.test(Reg1.getTopoSig()))
1449       continue;
1450     TopoSigs.set(Reg1.getTopoSig());
1451 
1452     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1453     for (auto I1 : SRM1) {
1454       CodeGenSubRegIndex *Idx1 = I1.first;
1455       CodeGenRegister *Reg2 = I1.second;
1456       // Ignore identity compositions.
1457       if (&Reg1 == Reg2)
1458         continue;
1459       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1460       // Try composing Idx1 with another SubRegIndex.
1461       for (auto I2 : SRM2) {
1462         CodeGenSubRegIndex *Idx2 = I2.first;
1463         CodeGenRegister *Reg3 = I2.second;
1464         // Ignore identity compositions.
1465         if (Reg2 == Reg3)
1466           continue;
1467         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1468         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1469         assert(Idx3 && "Sub-register doesn't have an index");
1470 
1471         // Conflicting composition? Emit a warning but allow it.
1472         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1473           // If the composition was not user-defined, always emit a warning.
1474           if (!UserDefined.count({Idx1, Idx2}) ||
1475               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1476             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1477                          " and " + Idx2->getQualifiedName() +
1478                          " compose ambiguously as " + Prev->getQualifiedName() +
1479                          " or " + Idx3->getQualifiedName());
1480         }
1481       }
1482     }
1483   }
1484 }
1485 
1486 // Compute lane masks. This is similar to register units, but at the
1487 // sub-register index level. Each bit in the lane mask is like a register unit
1488 // class, and two lane masks will have a bit in common if two sub-register
1489 // indices overlap in some register.
1490 //
1491 // Conservatively share a lane mask bit if two sub-register indices overlap in
1492 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1493 void CodeGenRegBank::computeSubRegLaneMasks() {
1494   // First assign individual bits to all the leaf indices.
1495   unsigned Bit = 0;
1496   // Determine mask of lanes that cover their registers.
1497   CoveringLanes = LaneBitmask::getAll();
1498   for (auto &Idx : SubRegIndices) {
1499     if (Idx.getComposites().empty()) {
1500       if (Bit > LaneBitmask::BitWidth) {
1501         PrintFatalError(
1502           Twine("Ran out of lanemask bits to represent subregister ")
1503           + Idx.getName());
1504       }
1505       Idx.LaneMask = LaneBitmask::getLane(Bit);
1506       ++Bit;
1507     } else {
1508       Idx.LaneMask = LaneBitmask::getNone();
1509     }
1510   }
1511 
1512   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1513   // here is that for each possible target subregister we look at the leafs
1514   // in the subregister graph that compose for this target and create
1515   // transformation sequences for the lanemasks. Each step in the sequence
1516   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1517   // are usually the same for many subregisters we can easily combine the steps
1518   // by combining the masks.
1519   for (const auto &Idx : SubRegIndices) {
1520     const auto &Composites = Idx.getComposites();
1521     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1522 
1523     if (Composites.empty()) {
1524       // Moving from a class with no subregisters we just had a single lane:
1525       // The subregister must be a leaf subregister and only occupies 1 bit.
1526       // Move the bit from the class without subregisters into that position.
1527       unsigned DstBit = Idx.LaneMask.getHighestLane();
1528       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1529              "Must be a leaf subregister");
1530       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1531       LaneTransforms.push_back(MaskRol);
1532     } else {
1533       // Go through all leaf subregisters and find the ones that compose with
1534       // Idx. These make out all possible valid bits in the lane mask we want to
1535       // transform. Looking only at the leafs ensure that only a single bit in
1536       // the mask is set.
1537       unsigned NextBit = 0;
1538       for (auto &Idx2 : SubRegIndices) {
1539         // Skip non-leaf subregisters.
1540         if (!Idx2.getComposites().empty())
1541           continue;
1542         // Replicate the behaviour from the lane mask generation loop above.
1543         unsigned SrcBit = NextBit;
1544         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1545         if (NextBit < LaneBitmask::BitWidth-1)
1546           ++NextBit;
1547         assert(Idx2.LaneMask == SrcMask);
1548 
1549         // Get the composed subregister if there is any.
1550         auto C = Composites.find(&Idx2);
1551         if (C == Composites.end())
1552           continue;
1553         const CodeGenSubRegIndex *Composite = C->second;
1554         // The Composed subreg should be a leaf subreg too
1555         assert(Composite->getComposites().empty());
1556 
1557         // Create Mask+Rotate operation and merge with existing ops if possible.
1558         unsigned DstBit = Composite->LaneMask.getHighestLane();
1559         int Shift = DstBit - SrcBit;
1560         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1561                                         : LaneBitmask::BitWidth + Shift;
1562         for (auto &I : LaneTransforms) {
1563           if (I.RotateLeft == RotateLeft) {
1564             I.Mask |= SrcMask;
1565             SrcMask = LaneBitmask::getNone();
1566           }
1567         }
1568         if (SrcMask.any()) {
1569           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1570           LaneTransforms.push_back(MaskRol);
1571         }
1572       }
1573     }
1574 
1575     // Optimize if the transformation consists of one step only: Set mask to
1576     // 0xffffffff (including some irrelevant invalid bits) so that it should
1577     // merge with more entries later while compressing the table.
1578     if (LaneTransforms.size() == 1)
1579       LaneTransforms[0].Mask = LaneBitmask::getAll();
1580 
1581     // Further compression optimization: For invalid compositions resulting
1582     // in a sequence with 0 entries we can just pick any other. Choose
1583     // Mask 0xffffffff with Rotation 0.
1584     if (LaneTransforms.size() == 0) {
1585       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1586       LaneTransforms.push_back(P);
1587     }
1588   }
1589 
1590   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1591   // by the sub-register graph? This doesn't occur in any known targets.
1592 
1593   // Inherit lanes from composites.
1594   for (const auto &Idx : SubRegIndices) {
1595     LaneBitmask Mask = Idx.computeLaneMask();
1596     // If some super-registers without CoveredBySubRegs use this index, we can
1597     // no longer assume that the lanes are covering their registers.
1598     if (!Idx.AllSuperRegsCovered)
1599       CoveringLanes &= ~Mask;
1600   }
1601 
1602   // Compute lane mask combinations for register classes.
1603   for (auto &RegClass : RegClasses) {
1604     LaneBitmask LaneMask;
1605     for (const auto &SubRegIndex : SubRegIndices) {
1606       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1607         continue;
1608       LaneMask |= SubRegIndex.LaneMask;
1609     }
1610 
1611     // For classes without any subregisters set LaneMask to 1 instead of 0.
1612     // This makes it easier for client code to handle classes uniformly.
1613     if (LaneMask.none())
1614       LaneMask = LaneBitmask::getLane(0);
1615 
1616     RegClass.LaneMask = LaneMask;
1617   }
1618 }
1619 
1620 namespace {
1621 
1622 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1623 // the transitive closure of the union of overlapping register
1624 // classes. Together, the UberRegSets form a partition of the registers. If we
1625 // consider overlapping register classes to be connected, then each UberRegSet
1626 // is a set of connected components.
1627 //
1628 // An UberRegSet will likely be a horizontal slice of register names of
1629 // the same width. Nontrivial subregisters should then be in a separate
1630 // UberRegSet. But this property isn't required for valid computation of
1631 // register unit weights.
1632 //
1633 // A Weight field caches the max per-register unit weight in each UberRegSet.
1634 //
1635 // A set of SingularDeterminants flags single units of some register in this set
1636 // for which the unit weight equals the set weight. These units should not have
1637 // their weight increased.
1638 struct UberRegSet {
1639   CodeGenRegister::Vec Regs;
1640   unsigned Weight = 0;
1641   CodeGenRegister::RegUnitList SingularDeterminants;
1642 
1643   UberRegSet() = default;
1644 };
1645 
1646 } // end anonymous namespace
1647 
1648 // Partition registers into UberRegSets, where each set is the transitive
1649 // closure of the union of overlapping register classes.
1650 //
1651 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1652 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1653                             std::vector<UberRegSet*> &RegSets,
1654                             CodeGenRegBank &RegBank) {
1655   const auto &Registers = RegBank.getRegisters();
1656 
1657   // The Register EnumValue is one greater than its index into Registers.
1658   assert(Registers.size() == Registers.back().EnumValue &&
1659          "register enum value mismatch");
1660 
1661   // For simplicitly make the SetID the same as EnumValue.
1662   IntEqClasses UberSetIDs(Registers.size()+1);
1663   std::set<unsigned> AllocatableRegs;
1664   for (auto &RegClass : RegBank.getRegClasses()) {
1665     if (!RegClass.Allocatable)
1666       continue;
1667 
1668     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1669     if (Regs.empty())
1670       continue;
1671 
1672     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1673     assert(USetID && "register number 0 is invalid");
1674 
1675     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1676     for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1677       AllocatableRegs.insert(CGR->EnumValue);
1678       UberSetIDs.join(USetID, CGR->EnumValue);
1679     }
1680   }
1681   // Combine non-allocatable regs.
1682   for (const auto &Reg : Registers) {
1683     unsigned RegNum = Reg.EnumValue;
1684     if (AllocatableRegs.count(RegNum))
1685       continue;
1686 
1687     UberSetIDs.join(0, RegNum);
1688   }
1689   UberSetIDs.compress();
1690 
1691   // Make the first UberSet a special unallocatable set.
1692   unsigned ZeroID = UberSetIDs[0];
1693 
1694   // Insert Registers into the UberSets formed by union-find.
1695   // Do not resize after this.
1696   UberSets.resize(UberSetIDs.getNumClasses());
1697   unsigned i = 0;
1698   for (const CodeGenRegister &Reg : Registers) {
1699     unsigned USetID = UberSetIDs[Reg.EnumValue];
1700     if (!USetID)
1701       USetID = ZeroID;
1702     else if (USetID == ZeroID)
1703       USetID = 0;
1704 
1705     UberRegSet *USet = &UberSets[USetID];
1706     USet->Regs.push_back(&Reg);
1707     sortAndUniqueRegisters(USet->Regs);
1708     RegSets[i++] = USet;
1709   }
1710 }
1711 
1712 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1713 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1714                                CodeGenRegBank &RegBank) {
1715   // Skip the first unallocatable set.
1716   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1717          E = UberSets.end(); I != E; ++I) {
1718 
1719     // Initialize all unit weights in this set, and remember the max units/reg.
1720     const CodeGenRegister *Reg = nullptr;
1721     unsigned MaxWeight = 0, Weight = 0;
1722     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1723       if (Reg != UnitI.getReg()) {
1724         if (Weight > MaxWeight)
1725           MaxWeight = Weight;
1726         Reg = UnitI.getReg();
1727         Weight = 0;
1728       }
1729       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1730         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1731         if (!UWeight) {
1732           UWeight = 1;
1733           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1734         }
1735         Weight += UWeight;
1736       }
1737     }
1738     if (Weight > MaxWeight)
1739       MaxWeight = Weight;
1740     if (I->Weight != MaxWeight) {
1741       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1742                         << MaxWeight;
1743                  for (auto &Unit
1744                       : I->Regs) dbgs()
1745                  << " " << Unit->getName();
1746                  dbgs() << "\n");
1747       // Update the set weight.
1748       I->Weight = MaxWeight;
1749     }
1750 
1751     // Find singular determinants.
1752     for (const auto R : I->Regs) {
1753       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1754         I->SingularDeterminants |= R->getRegUnits();
1755       }
1756     }
1757   }
1758 }
1759 
1760 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1761 // a register and its subregisters so that they have the same weight as their
1762 // UberSet. Self-recursion processes the subregister tree in postorder so
1763 // subregisters are normalized first.
1764 //
1765 // Side effects:
1766 // - creates new adopted register units
1767 // - causes superregisters to inherit adopted units
1768 // - increases the weight of "singular" units
1769 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1770 static bool normalizeWeight(CodeGenRegister *Reg,
1771                             std::vector<UberRegSet> &UberSets,
1772                             std::vector<UberRegSet*> &RegSets,
1773                             BitVector &NormalRegs,
1774                             CodeGenRegister::RegUnitList &NormalUnits,
1775                             CodeGenRegBank &RegBank) {
1776   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1777   if (NormalRegs.test(Reg->EnumValue))
1778     return false;
1779   NormalRegs.set(Reg->EnumValue);
1780 
1781   bool Changed = false;
1782   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1783   for (auto SRI : SRM) {
1784     if (SRI.second == Reg)
1785       continue; // self-cycles happen
1786 
1787     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1788                                NormalUnits, RegBank);
1789   }
1790   // Postorder register normalization.
1791 
1792   // Inherit register units newly adopted by subregisters.
1793   if (Reg->inheritRegUnits(RegBank))
1794     computeUberWeights(UberSets, RegBank);
1795 
1796   // Check if this register is too skinny for its UberRegSet.
1797   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1798 
1799   unsigned RegWeight = Reg->getWeight(RegBank);
1800   if (UberSet->Weight > RegWeight) {
1801     // A register unit's weight can be adjusted only if it is the singular unit
1802     // for this register, has not been used to normalize a subregister's set,
1803     // and has not already been used to singularly determine this UberRegSet.
1804     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1805     if (Reg->getRegUnits().count() != 1
1806         || hasRegUnit(NormalUnits, AdjustUnit)
1807         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1808       // We don't have an adjustable unit, so adopt a new one.
1809       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1810       Reg->adoptRegUnit(AdjustUnit);
1811       // Adopting a unit does not immediately require recomputing set weights.
1812     }
1813     else {
1814       // Adjust the existing single unit.
1815       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1816         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1817       // The unit may be shared among sets and registers within this set.
1818       computeUberWeights(UberSets, RegBank);
1819     }
1820     Changed = true;
1821   }
1822 
1823   // Mark these units normalized so superregisters can't change their weights.
1824   NormalUnits |= Reg->getRegUnits();
1825 
1826   return Changed;
1827 }
1828 
1829 // Compute a weight for each register unit created during getSubRegs.
1830 //
1831 // The goal is that two registers in the same class will have the same weight,
1832 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1833 void CodeGenRegBank::computeRegUnitWeights() {
1834   std::vector<UberRegSet> UberSets;
1835   std::vector<UberRegSet*> RegSets(Registers.size());
1836   computeUberSets(UberSets, RegSets, *this);
1837   // UberSets and RegSets are now immutable.
1838 
1839   computeUberWeights(UberSets, *this);
1840 
1841   // Iterate over each Register, normalizing the unit weights until reaching
1842   // a fix point.
1843   unsigned NumIters = 0;
1844   for (bool Changed = true; Changed; ++NumIters) {
1845     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1846     (void) NumIters;
1847     Changed = false;
1848     for (auto &Reg : Registers) {
1849       CodeGenRegister::RegUnitList NormalUnits;
1850       BitVector NormalRegs;
1851       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1852                                  NormalUnits, *this);
1853     }
1854   }
1855 }
1856 
1857 // Find a set in UniqueSets with the same elements as Set.
1858 // Return an iterator into UniqueSets.
1859 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1860 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1861                const RegUnitSet &Set) {
1862   std::vector<RegUnitSet>::const_iterator
1863     I = UniqueSets.begin(), E = UniqueSets.end();
1864   for(;I != E; ++I) {
1865     if (I->Units == Set.Units)
1866       break;
1867   }
1868   return I;
1869 }
1870 
1871 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1872 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1873                             const std::vector<unsigned> &RUSuperSet) {
1874   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1875                        RUSubSet.begin(), RUSubSet.end());
1876 }
1877 
1878 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1879 /// but with one or two registers removed. We occasionally have registers like
1880 /// APSR and PC thrown in with the general registers. We also see many
1881 /// special-purpose register subsets, such as tail-call and Thumb
1882 /// encodings. Generating all possible overlapping sets is combinatorial and
1883 /// overkill for modeling pressure. Ideally we could fix this statically in
1884 /// tablegen by (1) having the target define register classes that only include
1885 /// the allocatable registers and marking other classes as non-allocatable and
1886 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1887 /// the purpose of pressure.  However, we make an attempt to handle targets that
1888 /// are not nicely defined by merging nearly identical register unit sets
1889 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1890 /// set limit by filtering the reserved registers.
1891 ///
1892 /// Merge sets only if the units have the same weight. For example, on ARM,
1893 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1894 /// should not expand the S set to include D regs.
pruneUnitSets()1895 void CodeGenRegBank::pruneUnitSets() {
1896   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1897 
1898   // Form an equivalence class of UnitSets with no significant difference.
1899   std::vector<unsigned> SuperSetIDs;
1900   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1901        SubIdx != EndIdx; ++SubIdx) {
1902     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1903     unsigned SuperIdx = 0;
1904     for (; SuperIdx != EndIdx; ++SuperIdx) {
1905       if (SuperIdx == SubIdx)
1906         continue;
1907 
1908       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1909       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1910       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1911           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1912           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1913           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1914         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1915                           << "\n");
1916         // We can pick any of the set names for the merged set. Go for the
1917         // shortest one to avoid picking the name of one of the classes that are
1918         // artificially created by tablegen. So "FPR128_lo" instead of
1919         // "QQQQ_with_qsub3_in_FPR128_lo".
1920         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1921           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1922         break;
1923       }
1924     }
1925     if (SuperIdx == EndIdx)
1926       SuperSetIDs.push_back(SubIdx);
1927   }
1928   // Populate PrunedUnitSets with each equivalence class's superset.
1929   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1930   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1931     unsigned SuperIdx = SuperSetIDs[i];
1932     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1933     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1934   }
1935   RegUnitSets.swap(PrunedUnitSets);
1936 }
1937 
1938 // Create a RegUnitSet for each RegClass that contains all units in the class
1939 // including adopted units that are necessary to model register pressure. Then
1940 // iteratively compute RegUnitSets such that the union of any two overlapping
1941 // RegUnitSets is repreresented.
1942 //
1943 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1944 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1945 void CodeGenRegBank::computeRegUnitSets() {
1946   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1947 
1948   // Compute a unique RegUnitSet for each RegClass.
1949   auto &RegClasses = getRegClasses();
1950   for (auto &RC : RegClasses) {
1951     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1952       continue;
1953 
1954     // Speculatively grow the RegUnitSets to hold the new set.
1955     RegUnitSets.resize(RegUnitSets.size() + 1);
1956     RegUnitSets.back().Name = RC.getName();
1957 
1958     // Compute a sorted list of units in this class.
1959     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1960 
1961     // Find an existing RegUnitSet.
1962     std::vector<RegUnitSet>::const_iterator SetI =
1963       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1964     if (SetI != std::prev(RegUnitSets.end()))
1965       RegUnitSets.pop_back();
1966   }
1967 
1968   if (RegUnitSets.empty())
1969     PrintFatalError("RegUnitSets cannot be empty!");
1970 
1971   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1972                                                    USEnd = RegUnitSets.size();
1973                                                    USIdx < USEnd; ++USIdx) {
1974     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1975     for (auto &U : RegUnitSets[USIdx].Units)
1976       printRegUnitName(U);
1977     dbgs() << "\n";
1978   });
1979 
1980   // Iteratively prune unit sets.
1981   pruneUnitSets();
1982 
1983   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1984                                                  USEnd = RegUnitSets.size();
1985                                                  USIdx < USEnd; ++USIdx) {
1986     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1987     for (auto &U : RegUnitSets[USIdx].Units)
1988       printRegUnitName(U);
1989     dbgs() << "\n";
1990   } dbgs() << "\nUnion sets:\n");
1991 
1992   // Iterate over all unit sets, including new ones added by this loop.
1993   unsigned NumRegUnitSubSets = RegUnitSets.size();
1994   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1995     // In theory, this is combinatorial. In practice, it needs to be bounded
1996     // by a small number of sets for regpressure to be efficient.
1997     // If the assert is hit, we need to implement pruning.
1998     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1999 
2000     // Compare new sets with all original classes.
2001     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
2002          SearchIdx != EndIdx; ++SearchIdx) {
2003       std::set<unsigned> Intersection;
2004       std::set_intersection(RegUnitSets[Idx].Units.begin(),
2005                             RegUnitSets[Idx].Units.end(),
2006                             RegUnitSets[SearchIdx].Units.begin(),
2007                             RegUnitSets[SearchIdx].Units.end(),
2008                             std::inserter(Intersection, Intersection.begin()));
2009       if (Intersection.empty())
2010         continue;
2011 
2012       // Speculatively grow the RegUnitSets to hold the new set.
2013       RegUnitSets.resize(RegUnitSets.size() + 1);
2014       RegUnitSets.back().Name =
2015         RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
2016 
2017       std::set_union(RegUnitSets[Idx].Units.begin(),
2018                      RegUnitSets[Idx].Units.end(),
2019                      RegUnitSets[SearchIdx].Units.begin(),
2020                      RegUnitSets[SearchIdx].Units.end(),
2021                      std::inserter(RegUnitSets.back().Units,
2022                                    RegUnitSets.back().Units.begin()));
2023 
2024       // Find an existing RegUnitSet, or add the union to the unique sets.
2025       std::vector<RegUnitSet>::const_iterator SetI =
2026         findRegUnitSet(RegUnitSets, RegUnitSets.back());
2027       if (SetI != std::prev(RegUnitSets.end()))
2028         RegUnitSets.pop_back();
2029       else {
2030         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
2031                           << RegUnitSets.back().Name << ":";
2032                    for (auto &U
2033                         : RegUnitSets.back().Units) printRegUnitName(U);
2034                    dbgs() << "\n";);
2035       }
2036     }
2037   }
2038 
2039   // Iteratively prune unit sets after inferring supersets.
2040   pruneUnitSets();
2041 
2042   LLVM_DEBUG(
2043       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2044                            USIdx < USEnd; ++USIdx) {
2045         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2046         for (auto &U : RegUnitSets[USIdx].Units)
2047           printRegUnitName(U);
2048         dbgs() << "\n";
2049       });
2050 
2051   // For each register class, list the UnitSets that are supersets.
2052   RegClassUnitSets.resize(RegClasses.size());
2053   int RCIdx = -1;
2054   for (auto &RC : RegClasses) {
2055     ++RCIdx;
2056     if (!RC.Allocatable)
2057       continue;
2058 
2059     // Recompute the sorted list of units in this class.
2060     std::vector<unsigned> RCRegUnits;
2061     RC.buildRegUnitSet(*this, RCRegUnits);
2062 
2063     // Don't increase pressure for unallocatable regclasses.
2064     if (RCRegUnits.empty())
2065       continue;
2066 
2067     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2068                for (auto U
2069                     : RCRegUnits) printRegUnitName(U);
2070                dbgs() << "\n  UnitSetIDs:");
2071 
2072     // Find all supersets.
2073     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2074          USIdx != USEnd; ++USIdx) {
2075       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2076         LLVM_DEBUG(dbgs() << " " << USIdx);
2077         RegClassUnitSets[RCIdx].push_back(USIdx);
2078       }
2079     }
2080     LLVM_DEBUG(dbgs() << "\n");
2081     assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2082            "missing unit set for regclass");
2083   }
2084 
2085   // For each register unit, ensure that we have the list of UnitSets that
2086   // contain the unit. Normally, this matches an existing list of UnitSets for a
2087   // register class. If not, we create a new entry in RegClassUnitSets as a
2088   // "fake" register class.
2089   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2090        UnitIdx < UnitEnd; ++UnitIdx) {
2091     std::vector<unsigned> RUSets;
2092     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2093       RegUnitSet &RUSet = RegUnitSets[i];
2094       if (!is_contained(RUSet.Units, UnitIdx))
2095         continue;
2096       RUSets.push_back(i);
2097     }
2098     unsigned RCUnitSetsIdx = 0;
2099     for (unsigned e = RegClassUnitSets.size();
2100          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2101       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2102         break;
2103       }
2104     }
2105     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2106     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2107       // Create a new list of UnitSets as a "fake" register class.
2108       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2109       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2110     }
2111   }
2112 }
2113 
computeRegUnitLaneMasks()2114 void CodeGenRegBank::computeRegUnitLaneMasks() {
2115   for (auto &Register : Registers) {
2116     // Create an initial lane mask for all register units.
2117     const auto &RegUnits = Register.getRegUnits();
2118     CodeGenRegister::RegUnitLaneMaskList
2119         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2120     // Iterate through SubRegisters.
2121     typedef CodeGenRegister::SubRegMap SubRegMap;
2122     const SubRegMap &SubRegs = Register.getSubRegs();
2123     for (auto S : SubRegs) {
2124       CodeGenRegister *SubReg = S.second;
2125       // Ignore non-leaf subregisters, their lane masks are fully covered by
2126       // the leaf subregisters anyway.
2127       if (!SubReg->getSubRegs().empty())
2128         continue;
2129       CodeGenSubRegIndex *SubRegIndex = S.first;
2130       const CodeGenRegister *SubRegister = S.second;
2131       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2132       // Distribute LaneMask to Register Units touched.
2133       for (unsigned SUI : SubRegister->getRegUnits()) {
2134         bool Found = false;
2135         unsigned u = 0;
2136         for (unsigned RU : RegUnits) {
2137           if (SUI == RU) {
2138             RegUnitLaneMasks[u] |= LaneMask;
2139             assert(!Found);
2140             Found = true;
2141           }
2142           ++u;
2143         }
2144         (void)Found;
2145         assert(Found);
2146       }
2147     }
2148     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2149   }
2150 }
2151 
computeDerivedInfo()2152 void CodeGenRegBank::computeDerivedInfo() {
2153   computeComposites();
2154   computeSubRegLaneMasks();
2155 
2156   // Compute a weight for each register unit created during getSubRegs.
2157   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2158   computeRegUnitWeights();
2159 
2160   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2161   // supersets for the union of overlapping sets.
2162   computeRegUnitSets();
2163 
2164   computeRegUnitLaneMasks();
2165 
2166   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2167   for (CodeGenRegisterClass &RC : RegClasses) {
2168     RC.HasDisjunctSubRegs = false;
2169     RC.CoveredBySubRegs = true;
2170     for (const CodeGenRegister *Reg : RC.getMembers()) {
2171       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2172       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2173     }
2174   }
2175 
2176   // Get the weight of each set.
2177   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2178     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2179 
2180   // Find the order of each set.
2181   RegUnitSetOrder.reserve(RegUnitSets.size());
2182   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2183     RegUnitSetOrder.push_back(Idx);
2184 
2185   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2186     return getRegPressureSet(ID1).Units.size() <
2187            getRegPressureSet(ID2).Units.size();
2188   });
2189   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2190     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2191   }
2192 }
2193 
2194 //
2195 // Synthesize missing register class intersections.
2196 //
2197 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2198 // returns a maximal register class for all X.
2199 //
inferCommonSubClass(CodeGenRegisterClass * RC)2200 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2201   assert(!RegClasses.empty());
2202   // Stash the iterator to the last element so that this loop doesn't visit
2203   // elements added by the getOrCreateSubClass call within it.
2204   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2205        I != std::next(E); ++I) {
2206     CodeGenRegisterClass *RC1 = RC;
2207     CodeGenRegisterClass *RC2 = &*I;
2208     if (RC1 == RC2)
2209       continue;
2210 
2211     // Compute the set intersection of RC1 and RC2.
2212     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2213     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2214     CodeGenRegister::Vec Intersection;
2215     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2216                           Memb2.end(),
2217                           std::inserter(Intersection, Intersection.begin()),
2218                           deref<std::less<>>());
2219 
2220     // Skip disjoint class pairs.
2221     if (Intersection.empty())
2222       continue;
2223 
2224     // If RC1 and RC2 have different spill sizes or alignments, use the
2225     // stricter one for sub-classing.  If they are equal, prefer RC1.
2226     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2227       std::swap(RC1, RC2);
2228 
2229     getOrCreateSubClass(RC1, &Intersection,
2230                         RC1->getName() + "_and_" + RC2->getName());
2231   }
2232 }
2233 
2234 //
2235 // Synthesize missing sub-classes for getSubClassWithSubReg().
2236 //
2237 // Make sure that the set of registers in RC with a given SubIdx sub-register
2238 // form a register class.  Update RC->SubClassWithSubReg.
2239 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2240 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2241   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2242   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2243                    deref<std::less<>>>
2244       SubReg2SetMap;
2245 
2246   // Compute the set of registers supporting each SubRegIndex.
2247   SubReg2SetMap SRSets;
2248   for (const auto R : RC->getMembers()) {
2249     if (R->Artificial)
2250       continue;
2251     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2252     for (auto I : SRM) {
2253       if (!I.first->Artificial)
2254         SRSets[I.first].push_back(R);
2255     }
2256   }
2257 
2258   for (auto I : SRSets)
2259     sortAndUniqueRegisters(I.second);
2260 
2261   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2262   // numerical order to visit synthetic indices last.
2263   for (const auto &SubIdx : SubRegIndices) {
2264     if (SubIdx.Artificial)
2265       continue;
2266     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2267     // Unsupported SubRegIndex. Skip it.
2268     if (I == SRSets.end())
2269       continue;
2270     // In most cases, all RC registers support the SubRegIndex.
2271     if (I->second.size() == RC->getMembers().size()) {
2272       RC->setSubClassWithSubReg(&SubIdx, RC);
2273       continue;
2274     }
2275     // This is a real subset.  See if we have a matching class.
2276     CodeGenRegisterClass *SubRC =
2277       getOrCreateSubClass(RC, &I->second,
2278                           RC->getName() + "_with_" + I->first->getName());
2279     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2280   }
2281 }
2282 
2283 //
2284 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2285 //
2286 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2287 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2288 //
2289 
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2290 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2291                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2292   SmallVector<std::pair<const CodeGenRegister*,
2293                         const CodeGenRegister*>, 16> SSPairs;
2294   BitVector TopoSigs(getNumTopoSigs());
2295 
2296   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2297   for (auto &SubIdx : SubRegIndices) {
2298     // Skip indexes that aren't fully supported by RC's registers. This was
2299     // computed by inferSubClassWithSubReg() above which should have been
2300     // called first.
2301     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2302       continue;
2303 
2304     // Build list of (Super, Sub) pairs for this SubIdx.
2305     SSPairs.clear();
2306     TopoSigs.reset();
2307     for (const auto Super : RC->getMembers()) {
2308       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2309       assert(Sub && "Missing sub-register");
2310       SSPairs.push_back(std::make_pair(Super, Sub));
2311       TopoSigs.set(Sub->getTopoSig());
2312     }
2313 
2314     // Iterate over sub-register class candidates.  Ignore classes created by
2315     // this loop. They will never be useful.
2316     // Store an iterator to the last element (not end) so that this loop doesn't
2317     // visit newly inserted elements.
2318     assert(!RegClasses.empty());
2319     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2320          I != std::next(E); ++I) {
2321       CodeGenRegisterClass &SubRC = *I;
2322       if (SubRC.Artificial)
2323         continue;
2324       // Topological shortcut: SubRC members have the wrong shape.
2325       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2326         continue;
2327       // Compute the subset of RC that maps into SubRC.
2328       CodeGenRegister::Vec SubSetVec;
2329       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2330         if (SubRC.contains(SSPairs[i].second))
2331           SubSetVec.push_back(SSPairs[i].first);
2332 
2333       if (SubSetVec.empty())
2334         continue;
2335 
2336       // RC injects completely into SubRC.
2337       sortAndUniqueRegisters(SubSetVec);
2338       if (SubSetVec.size() == SSPairs.size()) {
2339         SubRC.addSuperRegClass(&SubIdx, RC);
2340         continue;
2341       }
2342 
2343       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2344       // class.
2345       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2346                                           SubIdx.getName() + "_in_" +
2347                                           SubRC.getName());
2348     }
2349   }
2350 }
2351 
2352 //
2353 // Infer missing register classes.
2354 //
computeInferredRegisterClasses()2355 void CodeGenRegBank::computeInferredRegisterClasses() {
2356   assert(!RegClasses.empty());
2357   // When this function is called, the register classes have not been sorted
2358   // and assigned EnumValues yet.  That means getSubClasses(),
2359   // getSuperClasses(), and hasSubClass() functions are defunct.
2360 
2361   // Use one-before-the-end so it doesn't move forward when new elements are
2362   // added.
2363   auto FirstNewRC = std::prev(RegClasses.end());
2364 
2365   // Visit all register classes, including the ones being added by the loop.
2366   // Watch out for iterator invalidation here.
2367   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2368     CodeGenRegisterClass *RC = &*I;
2369     if (RC->Artificial)
2370       continue;
2371 
2372     // Synthesize answers for getSubClassWithSubReg().
2373     inferSubClassWithSubReg(RC);
2374 
2375     // Synthesize answers for getCommonSubClass().
2376     inferCommonSubClass(RC);
2377 
2378     // Synthesize answers for getMatchingSuperRegClass().
2379     inferMatchingSuperRegClass(RC);
2380 
2381     // New register classes are created while this loop is running, and we need
2382     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2383     // to match old super-register classes with sub-register classes created
2384     // after inferMatchingSuperRegClass was called.  At this point,
2385     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2386     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2387     if (I == FirstNewRC) {
2388       auto NextNewRC = std::prev(RegClasses.end());
2389       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2390            ++I2)
2391         inferMatchingSuperRegClass(&*I2, E2);
2392       FirstNewRC = NextNewRC;
2393     }
2394   }
2395 }
2396 
2397 /// getRegisterClassForRegister - Find the register class that contains the
2398 /// specified physical register.  If the register is not in a register class,
2399 /// return null. If the register is in multiple classes, and the classes have a
2400 /// superset-subset relationship and the same set of types, return the
2401 /// superclass.  Otherwise return null.
2402 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)2403 CodeGenRegBank::getRegClassForRegister(Record *R) {
2404   const CodeGenRegister *Reg = getReg(R);
2405   const CodeGenRegisterClass *FoundRC = nullptr;
2406   for (const auto &RC : getRegClasses()) {
2407     if (!RC.contains(Reg))
2408       continue;
2409 
2410     // If this is the first class that contains the register,
2411     // make a note of it and go on to the next class.
2412     if (!FoundRC) {
2413       FoundRC = &RC;
2414       continue;
2415     }
2416 
2417     // If a register's classes have different types, return null.
2418     if (RC.getValueTypes() != FoundRC->getValueTypes())
2419       return nullptr;
2420 
2421     // Check to see if the previously found class that contains
2422     // the register is a subclass of the current class. If so,
2423     // prefer the superclass.
2424     if (RC.hasSubClass(FoundRC)) {
2425       FoundRC = &RC;
2426       continue;
2427     }
2428 
2429     // Check to see if the previously found class that contains
2430     // the register is a superclass of the current class. If so,
2431     // prefer the superclass.
2432     if (FoundRC->hasSubClass(&RC))
2433       continue;
2434 
2435     // Multiple classes, and neither is a superclass of the other.
2436     // Return null.
2437     return nullptr;
2438   }
2439   return FoundRC;
2440 }
2441 
2442 const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2443 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2444                                        ValueTypeByHwMode *VT) {
2445   const CodeGenRegister *Reg = getReg(RegRecord);
2446   const CodeGenRegisterClass *BestRC = nullptr;
2447   for (const auto &RC : getRegClasses()) {
2448     if ((!VT || RC.hasType(*VT)) &&
2449         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2450       BestRC = &RC;
2451   }
2452 
2453   assert(BestRC && "Couldn't find the register class");
2454   return BestRC;
2455 }
2456 
computeCoveredRegisters(ArrayRef<Record * > Regs)2457 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2458   SetVector<const CodeGenRegister*> Set;
2459 
2460   // First add Regs with all sub-registers.
2461   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2462     CodeGenRegister *Reg = getReg(Regs[i]);
2463     if (Set.insert(Reg))
2464       // Reg is new, add all sub-registers.
2465       // The pre-ordering is not important here.
2466       Reg->addSubRegsPreOrder(Set, *this);
2467   }
2468 
2469   // Second, find all super-registers that are completely covered by the set.
2470   for (unsigned i = 0; i != Set.size(); ++i) {
2471     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2472     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2473       const CodeGenRegister *Super = SR[j];
2474       if (!Super->CoveredBySubRegs || Set.count(Super))
2475         continue;
2476       // This new super-register is covered by its sub-registers.
2477       bool AllSubsInSet = true;
2478       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2479       for (auto I : SRM)
2480         if (!Set.count(I.second)) {
2481           AllSubsInSet = false;
2482           break;
2483         }
2484       // All sub-registers in Set, add Super as well.
2485       // We will visit Super later to recheck its super-registers.
2486       if (AllSubsInSet)
2487         Set.insert(Super);
2488     }
2489   }
2490 
2491   // Convert to BitVector.
2492   BitVector BV(Registers.size() + 1);
2493   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2494     BV.set(Set[i]->EnumValue);
2495   return BV;
2496 }
2497 
printRegUnitName(unsigned Unit) const2498 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2499   if (Unit < NumNativeRegUnits)
2500     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2501   else
2502     dbgs() << " #" << Unit;
2503 }
2504