1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004	Initial version
12  */
13 
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <limits.h>
17 
18 #include "../compiler/compiler.h"
19 #include "prio_tree.h"
20 
21 /*
22  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
23  * which is useful for storing intervals, e.g, we can consider a vma as a closed
24  * interval of file pages [offset_begin, offset_end], and store all vmas that
25  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
26  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
27  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
28  * time where 'log n' is the height of the PST, and 'm' is the number of stored
29  * intervals (vmas) that overlap (map) with the input interval X (the set of
30  * consecutive file pages).
31  *
32  * In our implementation, we store closed intervals of the form [radix_index,
33  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
34  * is designed for storing intervals with unique radix indices, i.e., each
35  * interval have different radix_index. However, this limitation can be easily
36  * overcome by using the size, i.e., heap_index - radix_index, as part of the
37  * index, so we index the tree using [(radix_index,size), heap_index].
38  *
39  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
40  * machine, the maximum height of a PST can be 64. We can use a balanced version
41  * of the priority search tree to optimize the tree height, but the balanced
42  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
43  */
44 
get_index(const struct prio_tree_node * node,unsigned long * radix,unsigned long * heap)45 static void get_index(const struct prio_tree_node *node,
46 		      unsigned long *radix, unsigned long *heap)
47 {
48 	*radix = node->start;
49 	*heap = node->last;
50 }
51 
52 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
53 
prio_tree_init(void)54 static void fio_init prio_tree_init(void)
55 {
56 	unsigned int i;
57 
58 	for (i = 0; i < FIO_ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
59 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
60 	index_bits_to_maxindex[FIO_ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
61 }
62 
63 /*
64  * Maximum heap_index that can be stored in a PST with index_bits bits
65  */
prio_tree_maxindex(unsigned int bits)66 static inline unsigned long prio_tree_maxindex(unsigned int bits)
67 {
68 	return index_bits_to_maxindex[bits - 1];
69 }
70 
71 /*
72  * Extend a priority search tree so that it can store a node with heap_index
73  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
74  * However, this function is used rarely and the common case performance is
75  * not bad.
76  */
prio_tree_expand(struct prio_tree_root * root,struct prio_tree_node * node,unsigned long max_heap_index)77 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
78 		struct prio_tree_node *node, unsigned long max_heap_index)
79 {
80 	struct prio_tree_node *first = NULL, *prev, *last = NULL;
81 
82 	if (max_heap_index > prio_tree_maxindex(root->index_bits))
83 		root->index_bits++;
84 
85 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
86 		root->index_bits++;
87 
88 		if (prio_tree_empty(root))
89 			continue;
90 
91 		if (first == NULL) {
92 			first = root->prio_tree_node;
93 			prio_tree_remove(root, root->prio_tree_node);
94 			INIT_PRIO_TREE_NODE(first);
95 			last = first;
96 		} else {
97 			prev = last;
98 			last = root->prio_tree_node;
99 			prio_tree_remove(root, root->prio_tree_node);
100 			INIT_PRIO_TREE_NODE(last);
101 			prev->left = last;
102 			last->parent = prev;
103 		}
104 	}
105 
106 	INIT_PRIO_TREE_NODE(node);
107 
108 	if (first) {
109 		node->left = first;
110 		first->parent = node;
111 	} else
112 		last = node;
113 
114 	if (!prio_tree_empty(root)) {
115 		last->left = root->prio_tree_node;
116 		last->left->parent = last;
117 	}
118 
119 	root->prio_tree_node = node;
120 	return node;
121 }
122 
123 /*
124  * Replace a prio_tree_node with a new node and return the old node
125  */
prio_tree_replace(struct prio_tree_root * root,struct prio_tree_node * old,struct prio_tree_node * node)126 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
127 		struct prio_tree_node *old, struct prio_tree_node *node)
128 {
129 	INIT_PRIO_TREE_NODE(node);
130 
131 	if (prio_tree_root(old)) {
132 		assert(root->prio_tree_node == old);
133 		/*
134 		 * We can reduce root->index_bits here. However, it is complex
135 		 * and does not help much to improve performance (IMO).
136 		 */
137 		node->parent = node;
138 		root->prio_tree_node = node;
139 	} else {
140 		node->parent = old->parent;
141 		if (old->parent->left == old)
142 			old->parent->left = node;
143 		else
144 			old->parent->right = node;
145 	}
146 
147 	if (!prio_tree_left_empty(old)) {
148 		node->left = old->left;
149 		old->left->parent = node;
150 	}
151 
152 	if (!prio_tree_right_empty(old)) {
153 		node->right = old->right;
154 		old->right->parent = node;
155 	}
156 
157 	return old;
158 }
159 
160 /*
161  * Insert a prio_tree_node @node into a radix priority search tree @root. The
162  * algorithm typically takes O(log n) time where 'log n' is the number of bits
163  * required to represent the maximum heap_index. In the worst case, the algo
164  * can take O((log n)^2) - check prio_tree_expand.
165  *
166  * If a prior node with same radix_index and heap_index is already found in
167  * the tree, then returns the address of the prior node. Otherwise, inserts
168  * @node into the tree and returns @node.
169  */
prio_tree_insert(struct prio_tree_root * root,struct prio_tree_node * node)170 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
171 		struct prio_tree_node *node)
172 {
173 	struct prio_tree_node *cur, *res = node;
174 	unsigned long radix_index, heap_index;
175 	unsigned long r_index, h_index, index, mask;
176 	int size_flag = 0;
177 
178 	get_index(node, &radix_index, &heap_index);
179 
180 	if (prio_tree_empty(root) ||
181 			heap_index > prio_tree_maxindex(root->index_bits))
182 		return prio_tree_expand(root, node, heap_index);
183 
184 	cur = root->prio_tree_node;
185 	mask = 1UL << (root->index_bits - 1);
186 
187 	while (mask) {
188 		get_index(cur, &r_index, &h_index);
189 
190 		if (r_index == radix_index && h_index == heap_index)
191 			return cur;
192 
193                 if (h_index < heap_index ||
194 		    (h_index == heap_index && r_index > radix_index)) {
195 			struct prio_tree_node *tmp = node;
196 			node = prio_tree_replace(root, cur, node);
197 			cur = tmp;
198 			/* swap indices */
199 			index = r_index;
200 			r_index = radix_index;
201 			radix_index = index;
202 			index = h_index;
203 			h_index = heap_index;
204 			heap_index = index;
205 		}
206 
207 		if (size_flag)
208 			index = heap_index - radix_index;
209 		else
210 			index = radix_index;
211 
212 		if (index & mask) {
213 			if (prio_tree_right_empty(cur)) {
214 				INIT_PRIO_TREE_NODE(node);
215 				cur->right = node;
216 				node->parent = cur;
217 				return res;
218 			} else
219 				cur = cur->right;
220 		} else {
221 			if (prio_tree_left_empty(cur)) {
222 				INIT_PRIO_TREE_NODE(node);
223 				cur->left = node;
224 				node->parent = cur;
225 				return res;
226 			} else
227 				cur = cur->left;
228 		}
229 
230 		mask >>= 1;
231 
232 		if (!mask) {
233 			mask = 1UL << (BITS_PER_LONG - 1);
234 			size_flag = 1;
235 		}
236 	}
237 	/* Should not reach here */
238 	assert(0);
239 	return NULL;
240 }
241 
242 /*
243  * Remove a prio_tree_node @node from a radix priority search tree @root. The
244  * algorithm takes O(log n) time where 'log n' is the number of bits required
245  * to represent the maximum heap_index.
246  */
prio_tree_remove(struct prio_tree_root * root,struct prio_tree_node * node)247 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
248 {
249 	struct prio_tree_node *cur;
250 	unsigned long r_index, h_index_right, h_index_left;
251 
252 	cur = node;
253 
254 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
255 		if (!prio_tree_left_empty(cur))
256 			get_index(cur->left, &r_index, &h_index_left);
257 		else {
258 			cur = cur->right;
259 			continue;
260 		}
261 
262 		if (!prio_tree_right_empty(cur))
263 			get_index(cur->right, &r_index, &h_index_right);
264 		else {
265 			cur = cur->left;
266 			continue;
267 		}
268 
269 		/* both h_index_left and h_index_right cannot be 0 */
270 		if (h_index_left >= h_index_right)
271 			cur = cur->left;
272 		else
273 			cur = cur->right;
274 	}
275 
276 	if (prio_tree_root(cur)) {
277 		assert(root->prio_tree_node == cur);
278 		INIT_PRIO_TREE_ROOT(root);
279 		return;
280 	}
281 
282 	if (cur->parent->right == cur)
283 		cur->parent->right = cur->parent;
284 	else
285 		cur->parent->left = cur->parent;
286 
287 	while (cur != node)
288 		cur = prio_tree_replace(root, cur->parent, cur);
289 }
290 
291 /*
292  * Following functions help to enumerate all prio_tree_nodes in the tree that
293  * overlap with the input interval X [radix_index, heap_index]. The enumeration
294  * takes O(log n + m) time where 'log n' is the height of the tree (which is
295  * proportional to # of bits required to represent the maximum heap_index) and
296  * 'm' is the number of prio_tree_nodes that overlap the interval X.
297  */
298 
prio_tree_left(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)299 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
300 		unsigned long *r_index, unsigned long *h_index)
301 {
302 	if (prio_tree_left_empty(iter->cur))
303 		return NULL;
304 
305 	get_index(iter->cur->left, r_index, h_index);
306 
307 	if (iter->r_index <= *h_index) {
308 		iter->cur = iter->cur->left;
309 		iter->mask >>= 1;
310 		if (iter->mask) {
311 			if (iter->size_level)
312 				iter->size_level++;
313 		} else {
314 			if (iter->size_level) {
315 				assert(prio_tree_left_empty(iter->cur));
316 				assert(prio_tree_right_empty(iter->cur));
317 				iter->size_level++;
318 				iter->mask = ULONG_MAX;
319 			} else {
320 				iter->size_level = 1;
321 				iter->mask = 1UL << (BITS_PER_LONG - 1);
322 			}
323 		}
324 		return iter->cur;
325 	}
326 
327 	return NULL;
328 }
329 
prio_tree_right(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)330 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
331 		unsigned long *r_index, unsigned long *h_index)
332 {
333 	unsigned long value;
334 
335 	if (prio_tree_right_empty(iter->cur))
336 		return NULL;
337 
338 	if (iter->size_level)
339 		value = iter->value;
340 	else
341 		value = iter->value | iter->mask;
342 
343 	if (iter->h_index < value)
344 		return NULL;
345 
346 	get_index(iter->cur->right, r_index, h_index);
347 
348 	if (iter->r_index <= *h_index) {
349 		iter->cur = iter->cur->right;
350 		iter->mask >>= 1;
351 		iter->value = value;
352 		if (iter->mask) {
353 			if (iter->size_level)
354 				iter->size_level++;
355 		} else {
356 			if (iter->size_level) {
357 				assert(prio_tree_left_empty(iter->cur));
358 				assert(prio_tree_right_empty(iter->cur));
359 				iter->size_level++;
360 				iter->mask = ULONG_MAX;
361 			} else {
362 				iter->size_level = 1;
363 				iter->mask = 1UL << (BITS_PER_LONG - 1);
364 			}
365 		}
366 		return iter->cur;
367 	}
368 
369 	return NULL;
370 }
371 
prio_tree_parent(struct prio_tree_iter * iter)372 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
373 {
374 	iter->cur = iter->cur->parent;
375 	if (iter->mask == ULONG_MAX)
376 		iter->mask = 1UL;
377 	else if (iter->size_level == 1)
378 		iter->mask = 1UL;
379 	else
380 		iter->mask <<= 1;
381 	if (iter->size_level)
382 		iter->size_level--;
383 	if (!iter->size_level && (iter->value & iter->mask))
384 		iter->value ^= iter->mask;
385 	return iter->cur;
386 }
387 
overlap(struct prio_tree_iter * iter,unsigned long r_index,unsigned long h_index)388 static inline int overlap(struct prio_tree_iter *iter,
389 		unsigned long r_index, unsigned long h_index)
390 {
391 	return iter->h_index >= r_index && iter->r_index <= h_index;
392 }
393 
394 /*
395  * prio_tree_first:
396  *
397  * Get the first prio_tree_node that overlaps with the interval [radix_index,
398  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
399  * traversal of the tree.
400  */
prio_tree_first(struct prio_tree_iter * iter)401 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
402 {
403 	struct prio_tree_root *root;
404 	unsigned long r_index, h_index;
405 
406 	INIT_PRIO_TREE_ITER(iter);
407 
408 	root = iter->root;
409 	if (prio_tree_empty(root))
410 		return NULL;
411 
412 	get_index(root->prio_tree_node, &r_index, &h_index);
413 
414 	if (iter->r_index > h_index)
415 		return NULL;
416 
417 	iter->mask = 1UL << (root->index_bits - 1);
418 	iter->cur = root->prio_tree_node;
419 
420 	while (1) {
421 		if (overlap(iter, r_index, h_index))
422 			return iter->cur;
423 
424 		if (prio_tree_left(iter, &r_index, &h_index))
425 			continue;
426 
427 		if (prio_tree_right(iter, &r_index, &h_index))
428 			continue;
429 
430 		break;
431 	}
432 	return NULL;
433 }
434 
435 /*
436  * prio_tree_next:
437  *
438  * Get the next prio_tree_node that overlaps with the input interval in iter
439  */
prio_tree_next(struct prio_tree_iter * iter)440 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
441 {
442 	unsigned long r_index, h_index;
443 
444 	if (iter->cur == NULL)
445 		return prio_tree_first(iter);
446 
447 repeat:
448 	while (prio_tree_left(iter, &r_index, &h_index))
449 		if (overlap(iter, r_index, h_index))
450 			return iter->cur;
451 
452 	while (!prio_tree_right(iter, &r_index, &h_index)) {
453 	    	while (!prio_tree_root(iter->cur) &&
454 				iter->cur->parent->right == iter->cur)
455 			prio_tree_parent(iter);
456 
457 		if (prio_tree_root(iter->cur))
458 			return NULL;
459 
460 		prio_tree_parent(iter);
461 	}
462 
463 	if (overlap(iter, r_index, h_index))
464 		return iter->cur;
465 
466 	goto repeat;
467 }
468