xref: /openbsd/gnu/gcc/gcc/tree-ssa-copy.c (revision 404b540a)
1 /* Copy propagation and SSA_NAME replacement support routines.
2    Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 
42 /* This file implements the copy propagation pass and provides a
43    handful of interfaces for performing const/copy propagation and
44    simple expression replacement which keep variable annotations
45    up-to-date.
46 
47    We require that for any copy operation where the RHS and LHS have
48    a non-null memory tag the memory tag be the same.   It is OK
49    for one or both of the memory tags to be NULL.
50 
51    We also require tracking if a variable is dereferenced in a load or
52    store operation.
53 
54    We enforce these requirements by having all copy propagation and
55    replacements of one SSA_NAME with a different SSA_NAME to use the
56    APIs defined in this file.  */
57 
58 /* Return true if we may propagate ORIG into DEST, false otherwise.  */
59 
60 bool
may_propagate_copy(tree dest,tree orig)61 may_propagate_copy (tree dest, tree orig)
62 {
63   tree type_d = TREE_TYPE (dest);
64   tree type_o = TREE_TYPE (orig);
65 
66   /* Do not copy between types for which we *do* need a conversion.  */
67   if (!tree_ssa_useless_type_conversion_1 (type_d, type_o))
68     return false;
69 
70   /* FIXME.  GIMPLE is allowing pointer assignments and comparisons of
71      pointers that have different alias sets.  This means that these
72      pointers will have different memory tags associated to them.
73 
74      If we allow copy propagation in these cases, statements de-referencing
75      the new pointer will now have a reference to a different memory tag
76      with potentially incorrect SSA information.
77 
78      This was showing up in libjava/java/util/zip/ZipFile.java with code
79      like:
80 
81      	struct java.io.BufferedInputStream *T.660;
82 	struct java.io.BufferedInputStream *T.647;
83 	struct java.io.InputStream *is;
84 	struct java.io.InputStream *is.662;
85 	[ ... ]
86 	T.660 = T.647;
87 	is = T.660;	<-- This ought to be type-casted
88 	is.662 = is;
89 
90      Also, f/name.c exposed a similar problem with a COND_EXPR predicate
91      that was causing DOM to generate and equivalence with two pointers of
92      alias-incompatible types:
93 
94      	struct _ffename_space *n;
95 	struct _ffename *ns;
96 	[ ... ]
97 	if (n == ns)
98 	  goto lab;
99 	...
100 	lab:
101 	return n;
102 
103      I think that GIMPLE should emit the appropriate type-casts.  For the
104      time being, blocking copy-propagation in these cases is the safe thing
105      to do.  */
106   if (TREE_CODE (dest) == SSA_NAME
107       && TREE_CODE (orig) == SSA_NAME
108       && POINTER_TYPE_P (type_d)
109       && POINTER_TYPE_P (type_o))
110     {
111       tree mt_dest = var_ann (SSA_NAME_VAR (dest))->symbol_mem_tag;
112       tree mt_orig = var_ann (SSA_NAME_VAR (orig))->symbol_mem_tag;
113       if (mt_dest && mt_orig && mt_dest != mt_orig)
114 	return false;
115       else if (!lang_hooks.types_compatible_p (type_d, type_o))
116 	return false;
117       else if (get_alias_set (TREE_TYPE (type_d)) !=
118 	       get_alias_set (TREE_TYPE (type_o)))
119 	return false;
120 
121       /* Also verify flow-sensitive information is compatible.  */
122       if (SSA_NAME_PTR_INFO (orig) && SSA_NAME_PTR_INFO (dest))
123 	{
124 	  struct ptr_info_def *orig_ptr_info = SSA_NAME_PTR_INFO (orig);
125 	  struct ptr_info_def *dest_ptr_info = SSA_NAME_PTR_INFO (dest);
126 
127 	  if (orig_ptr_info->name_mem_tag
128 	      && dest_ptr_info->name_mem_tag
129 	      && orig_ptr_info->pt_vars
130 	      && dest_ptr_info->pt_vars
131 	      && !bitmap_intersect_p (dest_ptr_info->pt_vars,
132 				      orig_ptr_info->pt_vars))
133 	    return false;
134 	}
135     }
136 
137   /* If the destination is a SSA_NAME for a virtual operand, then we have
138      some special cases to handle.  */
139   if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest))
140     {
141       /* If both operands are SSA_NAMEs referring to virtual operands, then
142 	 we can always propagate.  */
143       if (TREE_CODE (orig) == SSA_NAME
144 	  && !is_gimple_reg (orig))
145 	return true;
146 
147       /* We have a "copy" from something like a constant into a virtual
148 	 operand.  Reject these.  */
149       return false;
150     }
151 
152   /* If ORIG flows in from an abnormal edge, it cannot be propagated.  */
153   if (TREE_CODE (orig) == SSA_NAME
154       && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
155     return false;
156 
157   /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
158      cannot be replaced.  */
159   if (TREE_CODE (dest) == SSA_NAME
160       && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
161     return false;
162 
163   /* Anything else is OK.  */
164   return true;
165 }
166 
167 /* Similarly, but we know that we're propagating into an ASM_EXPR.  */
168 
169 bool
may_propagate_copy_into_asm(tree dest)170 may_propagate_copy_into_asm (tree dest)
171 {
172   /* Hard register operands of asms are special.  Do not bypass.  */
173   return !(TREE_CODE (dest) == SSA_NAME
174 	   && TREE_CODE (SSA_NAME_VAR (dest)) == VAR_DECL
175 	   && DECL_HARD_REGISTER (SSA_NAME_VAR (dest)));
176 }
177 
178 
179 /* Given two SSA_NAMEs pointers ORIG and NEW such that we are copy
180    propagating NEW into ORIG, consolidate aliasing information so that
181    they both share the same memory tags.  */
182 
183 void
merge_alias_info(tree orig,tree new)184 merge_alias_info (tree orig, tree new)
185 {
186   tree new_sym = SSA_NAME_VAR (new);
187   tree orig_sym = SSA_NAME_VAR (orig);
188   var_ann_t new_ann = var_ann (new_sym);
189   var_ann_t orig_ann = var_ann (orig_sym);
190 
191   gcc_assert (POINTER_TYPE_P (TREE_TYPE (orig)));
192   gcc_assert (POINTER_TYPE_P (TREE_TYPE (new)));
193 
194 #if defined ENABLE_CHECKING
195   gcc_assert (lang_hooks.types_compatible_p (TREE_TYPE (orig),
196 					     TREE_TYPE (new)));
197 
198   /* If the pointed-to alias sets are different, these two pointers
199      would never have the same memory tag.  In this case, NEW should
200      not have been propagated into ORIG.  */
201   gcc_assert (get_alias_set (TREE_TYPE (TREE_TYPE (new_sym)))
202 	      == get_alias_set (TREE_TYPE (TREE_TYPE (orig_sym))));
203 #endif
204 
205   /* Synchronize the symbol tags.  If both pointers had a tag and they
206      are different, then something has gone wrong.  Symbol tags can
207      always be merged because they are flow insensitive, all the SSA
208      names of the same base DECL share the same symbol tag.  */
209   if (new_ann->symbol_mem_tag == NULL_TREE)
210     new_ann->symbol_mem_tag = orig_ann->symbol_mem_tag;
211   else if (orig_ann->symbol_mem_tag == NULL_TREE)
212     orig_ann->symbol_mem_tag = new_ann->symbol_mem_tag;
213   else
214     gcc_assert (new_ann->symbol_mem_tag == orig_ann->symbol_mem_tag);
215 
216   /* Check that flow-sensitive information is compatible.  Notice that
217      we may not merge flow-sensitive information here.  This function
218      is called when propagating equivalences dictated by the IL, like
219      a copy operation P_i = Q_j, and from equivalences dictated by
220      control-flow, like if (P_i == Q_j).
221 
222      In the former case, P_i and Q_j are equivalent in every block
223      dominated by the assignment, so their flow-sensitive information
224      is always the same.  However, in the latter case, the pointers
225      P_i and Q_j are only equivalent in one of the sub-graphs out of
226      the predicate, so their flow-sensitive information is not the
227      same in every block dominated by the predicate.
228 
229      Since we cannot distinguish one case from another in this
230      function, we can only make sure that if P_i and Q_j have
231      flow-sensitive information, they should be compatible.  */
232   if (SSA_NAME_PTR_INFO (orig) && SSA_NAME_PTR_INFO (new))
233     {
234       struct ptr_info_def *orig_ptr_info = SSA_NAME_PTR_INFO (orig);
235       struct ptr_info_def *new_ptr_info = SSA_NAME_PTR_INFO (new);
236 
237       /* Note that pointer NEW and ORIG may actually have different
238 	 pointed-to variables (e.g., PR 18291 represented in
239 	 testsuite/gcc.c-torture/compile/pr18291.c).  However, since
240 	 NEW is being copy-propagated into ORIG, it must always be
241 	 true that the pointed-to set for pointer NEW is the same, or
242 	 a subset, of the pointed-to set for pointer ORIG.  If this
243 	 isn't the case, we shouldn't have been able to do the
244 	 propagation of NEW into ORIG.  */
245       if (orig_ptr_info->name_mem_tag
246 	  && new_ptr_info->name_mem_tag
247 	  && orig_ptr_info->pt_vars
248 	  && new_ptr_info->pt_vars)
249 	gcc_assert (bitmap_intersect_p (new_ptr_info->pt_vars,
250 					orig_ptr_info->pt_vars));
251     }
252 }
253 
254 
255 /* Common code for propagate_value and replace_exp.
256 
257    Replace use operand OP_P with VAL.  FOR_PROPAGATION indicates if the
258    replacement is done to propagate a value or not.  */
259 
260 static void
replace_exp_1(use_operand_p op_p,tree val,bool for_propagation ATTRIBUTE_UNUSED)261 replace_exp_1 (use_operand_p op_p, tree val,
262 	       bool for_propagation ATTRIBUTE_UNUSED)
263 {
264   tree op = USE_FROM_PTR (op_p);
265 
266 #if defined ENABLE_CHECKING
267   gcc_assert (!(for_propagation
268 		&& TREE_CODE (op) == SSA_NAME
269 		&& TREE_CODE (val) == SSA_NAME
270 		&& !may_propagate_copy (op, val)));
271 #endif
272 
273   if (TREE_CODE (val) == SSA_NAME)
274     {
275       if (TREE_CODE (op) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (op)))
276 	merge_alias_info (op, val);
277       SET_USE (op_p, val);
278     }
279   else
280     SET_USE (op_p, unsave_expr_now (val));
281 }
282 
283 
284 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
285    into the operand pointed to by OP_P.
286 
287    Use this version for const/copy propagation as it will perform additional
288    checks to ensure validity of the const/copy propagation.  */
289 
290 void
propagate_value(use_operand_p op_p,tree val)291 propagate_value (use_operand_p op_p, tree val)
292 {
293   replace_exp_1 (op_p, val, true);
294 }
295 
296 
297 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
298    into the tree pointed to by OP_P.
299 
300    Use this version for const/copy propagation when SSA operands are not
301    available.  It will perform the additional checks to ensure validity of
302    the const/copy propagation, but will not update any operand information.
303    Be sure to mark the stmt as modified.  */
304 
305 void
propagate_tree_value(tree * op_p,tree val)306 propagate_tree_value (tree *op_p, tree val)
307 {
308 #if defined ENABLE_CHECKING
309   gcc_assert (!(TREE_CODE (val) == SSA_NAME
310 		&& TREE_CODE (*op_p) == SSA_NAME
311 		&& !may_propagate_copy (*op_p, val)));
312 #endif
313 
314   if (TREE_CODE (val) == SSA_NAME)
315     {
316       if (TREE_CODE (*op_p) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*op_p)))
317 	merge_alias_info (*op_p, val);
318       *op_p = val;
319     }
320   else
321     *op_p = unsave_expr_now (val);
322 }
323 
324 
325 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
326 
327    Use this version when not const/copy propagating values.  For example,
328    PRE uses this version when building expressions as they would appear
329    in specific blocks taking into account actions of PHI nodes.  */
330 
331 void
replace_exp(use_operand_p op_p,tree val)332 replace_exp (use_operand_p op_p, tree val)
333 {
334   replace_exp_1 (op_p, val, false);
335 }
336 
337 
338 /*---------------------------------------------------------------------------
339 				Copy propagation
340 ---------------------------------------------------------------------------*/
341 /* During propagation, we keep chains of variables that are copies of
342    one another.  If variable X_i is a copy of X_j and X_j is a copy of
343    X_k, COPY_OF will contain:
344 
345    	COPY_OF[i].VALUE = X_j
346 	COPY_OF[j].VALUE = X_k
347 	COPY_OF[k].VALUE = X_k
348 
349    After propagation, the copy-of value for each variable X_i is
350    converted into the final value by walking the copy-of chains and
351    updating COPY_OF[i].VALUE to be the last element of the chain.  */
352 static prop_value_t *copy_of;
353 
354 /* Used in set_copy_of_val to determine if the last link of a copy-of
355    chain has changed.  */
356 static tree *cached_last_copy_of;
357 
358 /* True if we are doing copy propagation on loads and stores.  */
359 static bool do_store_copy_prop;
360 
361 
362 /* Return true if this statement may generate a useful copy.  */
363 
364 static bool
stmt_may_generate_copy(tree stmt)365 stmt_may_generate_copy (tree stmt)
366 {
367   tree lhs, rhs;
368   stmt_ann_t ann;
369 
370   if (TREE_CODE (stmt) == PHI_NODE)
371     return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (stmt));
372 
373   if (TREE_CODE (stmt) != MODIFY_EXPR)
374     return false;
375 
376   lhs = TREE_OPERAND (stmt, 0);
377   rhs = TREE_OPERAND (stmt, 1);
378   ann = stmt_ann (stmt);
379 
380   /* If the statement has volatile operands, it won't generate a
381      useful copy.  */
382   if (ann->has_volatile_ops)
383     return false;
384 
385   /* If we are not doing store copy-prop, statements with loads and/or
386      stores will never generate a useful copy.  */
387   if (!do_store_copy_prop
388       && !ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
389     return false;
390 
391   /* Otherwise, the only statements that generate useful copies are
392      assignments whose RHS is just an SSA name that doesn't flow
393      through abnormal edges.  */
394   return (do_store_copy_prop
395 	  && TREE_CODE (lhs) == SSA_NAME)
396 	 || (TREE_CODE (rhs) == SSA_NAME
397 	     && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs));
398 }
399 
400 
401 /* Return the copy-of value for VAR.  */
402 
403 static inline prop_value_t *
get_copy_of_val(tree var)404 get_copy_of_val (tree var)
405 {
406   prop_value_t *val = &copy_of[SSA_NAME_VERSION (var)];
407 
408   if (val->value == NULL_TREE
409       && !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var)))
410     {
411       /* If the variable will never generate a useful copy relation,
412 	 make it its own copy.  */
413       val->value = var;
414       val->mem_ref = NULL_TREE;
415     }
416 
417   return val;
418 }
419 
420 
421 /* Return last link in the copy-of chain for VAR.  */
422 
423 static tree
get_last_copy_of(tree var)424 get_last_copy_of (tree var)
425 {
426   tree last;
427   int i;
428 
429   /* Traverse COPY_OF starting at VAR until we get to the last
430      link in the chain.  Since it is possible to have cycles in PHI
431      nodes, the copy-of chain may also contain cycles.
432 
433      To avoid infinite loops and to avoid traversing lengthy copy-of
434      chains, we artificially limit the maximum number of chains we are
435      willing to traverse.
436 
437      The value 5 was taken from a compiler and runtime library
438      bootstrap and a mixture of C and C++ code from various sources.
439      More than 82% of all copy-of chains were shorter than 5 links.  */
440 #define LIMIT	5
441 
442   last = var;
443   for (i = 0; i < LIMIT; i++)
444     {
445       tree copy = copy_of[SSA_NAME_VERSION (last)].value;
446       if (copy == NULL_TREE || copy == last)
447 	break;
448       last = copy;
449     }
450 
451   /* If we have reached the limit, then we are either in a copy-of
452      cycle or the copy-of chain is too long.  In this case, just
453      return VAR so that it is not considered a copy of anything.  */
454   return (i < LIMIT ? last : var);
455 }
456 
457 
458 /* Set FIRST to be the first variable in the copy-of chain for DEST.
459    If DEST's copy-of value or its copy-of chain has changed, return
460    true.
461 
462    MEM_REF is the memory reference where FIRST is stored.  This is
463    used when DEST is a non-register and we are copy propagating loads
464    and stores.  */
465 
466 static inline bool
set_copy_of_val(tree dest,tree first,tree mem_ref)467 set_copy_of_val (tree dest, tree first, tree mem_ref)
468 {
469   unsigned int dest_ver = SSA_NAME_VERSION (dest);
470   tree old_first, old_last, new_last;
471 
472   /* Set FIRST to be the first link in COPY_OF[DEST].  If that
473      changed, return true.  */
474   old_first = copy_of[dest_ver].value;
475   copy_of[dest_ver].value = first;
476   copy_of[dest_ver].mem_ref = mem_ref;
477 
478   if (old_first != first)
479     return true;
480 
481   /* If FIRST and OLD_FIRST are the same, we need to check whether the
482      copy-of chain starting at FIRST ends in a different variable.  If
483      the copy-of chain starting at FIRST ends up in a different
484      variable than the last cached value we had for DEST, then return
485      true because DEST is now a copy of a different variable.
486 
487      This test is necessary because even though the first link in the
488      copy-of chain may not have changed, if any of the variables in
489      the copy-of chain changed its final value, DEST will now be the
490      copy of a different variable, so we have to do another round of
491      propagation for everything that depends on DEST.  */
492   old_last = cached_last_copy_of[dest_ver];
493   new_last = get_last_copy_of (dest);
494   cached_last_copy_of[dest_ver] = new_last;
495 
496   return (old_last != new_last);
497 }
498 
499 
500 /* Dump the copy-of value for variable VAR to FILE.  */
501 
502 static void
dump_copy_of(FILE * file,tree var)503 dump_copy_of (FILE *file, tree var)
504 {
505   tree val;
506   sbitmap visited;
507 
508   print_generic_expr (file, var, dump_flags);
509 
510   if (TREE_CODE (var) != SSA_NAME)
511     return;
512 
513   visited = sbitmap_alloc (num_ssa_names);
514   sbitmap_zero (visited);
515   SET_BIT (visited, SSA_NAME_VERSION (var));
516 
517   fprintf (file, " copy-of chain: ");
518 
519   val = var;
520   print_generic_expr (file, val, 0);
521   fprintf (file, " ");
522   while (copy_of[SSA_NAME_VERSION (val)].value)
523     {
524       fprintf (file, "-> ");
525       val = copy_of[SSA_NAME_VERSION (val)].value;
526       print_generic_expr (file, val, 0);
527       fprintf (file, " ");
528       if (TEST_BIT (visited, SSA_NAME_VERSION (val)))
529         break;
530       SET_BIT (visited, SSA_NAME_VERSION (val));
531     }
532 
533   val = get_copy_of_val (var)->value;
534   if (val == NULL_TREE)
535     fprintf (file, "[UNDEFINED]");
536   else if (val != var)
537     fprintf (file, "[COPY]");
538   else
539     fprintf (file, "[NOT A COPY]");
540 
541   sbitmap_free (visited);
542 }
543 
544 
545 /* Evaluate the RHS of STMT.  If it produces a valid copy, set the LHS
546    value and store the LHS into *RESULT_P.  If STMT generates more
547    than one name (i.e., STMT is an aliased store), it is enough to
548    store the first name in the V_MAY_DEF list into *RESULT_P.  After
549    all, the names generated will be VUSEd in the same statements.  */
550 
551 static enum ssa_prop_result
copy_prop_visit_assignment(tree stmt,tree * result_p)552 copy_prop_visit_assignment (tree stmt, tree *result_p)
553 {
554   tree lhs, rhs;
555   prop_value_t *rhs_val;
556 
557   lhs = TREE_OPERAND (stmt, 0);
558   rhs = TREE_OPERAND (stmt, 1);
559 
560   gcc_assert (TREE_CODE (rhs) == SSA_NAME);
561 
562   rhs_val = get_copy_of_val (rhs);
563 
564   if (TREE_CODE (lhs) == SSA_NAME)
565     {
566       /* Straight copy between two SSA names.  First, make sure that
567 	 we can propagate the RHS into uses of LHS.  */
568       if (!may_propagate_copy (lhs, rhs))
569 	return SSA_PROP_VARYING;
570 
571       /* Notice that in the case of assignments, we make the LHS be a
572 	 copy of RHS's value, not of RHS itself.  This avoids keeping
573 	 unnecessary copy-of chains (assignments cannot be in a cycle
574 	 like PHI nodes), speeding up the propagation process.
575 	 This is different from what we do in copy_prop_visit_phi_node.
576 	 In those cases, we are interested in the copy-of chains.  */
577       *result_p = lhs;
578       if (set_copy_of_val (*result_p, rhs_val->value, rhs_val->mem_ref))
579 	return SSA_PROP_INTERESTING;
580       else
581 	return SSA_PROP_NOT_INTERESTING;
582     }
583   else if (stmt_makes_single_store (stmt))
584     {
585       /* Otherwise, set the names in V_MAY_DEF/V_MUST_DEF operands
586 	 to be a copy of RHS.  */
587       ssa_op_iter i;
588       tree vdef;
589       bool changed;
590 
591       /* This should only be executed when doing store copy-prop.  */
592       gcc_assert (do_store_copy_prop);
593 
594       /* Set the value of every VDEF to RHS_VAL.  */
595       changed = false;
596       FOR_EACH_SSA_TREE_OPERAND (vdef, stmt, i, SSA_OP_VIRTUAL_DEFS)
597 	changed |= set_copy_of_val (vdef, rhs_val->value, lhs);
598 
599       /* Note that for propagation purposes, we are only interested in
600 	 visiting statements that load the exact same memory reference
601 	 stored here.  Those statements will have the exact same list
602 	 of virtual uses, so it is enough to set the output of this
603 	 statement to be its first virtual definition.  */
604       *result_p = first_vdef (stmt);
605 
606       if (changed)
607 	return SSA_PROP_INTERESTING;
608       else
609 	return SSA_PROP_NOT_INTERESTING;
610     }
611 
612 
613   return SSA_PROP_VARYING;
614 }
615 
616 
617 /* Visit the COND_EXPR STMT.  Return SSA_PROP_INTERESTING
618    if it can determine which edge will be taken.  Otherwise, return
619    SSA_PROP_VARYING.  */
620 
621 static enum ssa_prop_result
copy_prop_visit_cond_stmt(tree stmt,edge * taken_edge_p)622 copy_prop_visit_cond_stmt (tree stmt, edge *taken_edge_p)
623 {
624   enum ssa_prop_result retval;
625   tree cond;
626 
627   cond = COND_EXPR_COND (stmt);
628   retval = SSA_PROP_VARYING;
629 
630   /* The only conditionals that we may be able to compute statically
631      are predicates involving two SSA_NAMEs.  */
632   if (COMPARISON_CLASS_P (cond)
633       && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
634       && TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
635     {
636       tree op0 = get_last_copy_of (TREE_OPERAND (cond, 0));
637       tree op1 = get_last_copy_of (TREE_OPERAND (cond, 1));
638 
639       /* See if we can determine the predicate's value.  */
640       if (dump_file && (dump_flags & TDF_DETAILS))
641 	{
642 	  fprintf (dump_file, "Trying to determine truth value of ");
643 	  fprintf (dump_file, "predicate ");
644 	  print_generic_stmt (dump_file, cond, 0);
645 	}
646 
647       /* We can fold COND and get a useful result only when we have
648 	 the same SSA_NAME on both sides of a comparison operator.  */
649       if (op0 == op1)
650 	{
651 	  tree folded_cond = fold_binary (TREE_CODE (cond), boolean_type_node,
652 					  op0, op1);
653 	  if (folded_cond)
654 	    {
655 	      basic_block bb = bb_for_stmt (stmt);
656 	      *taken_edge_p = find_taken_edge (bb, folded_cond);
657 	      if (*taken_edge_p)
658 		retval = SSA_PROP_INTERESTING;
659 	    }
660 	}
661     }
662 
663   if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p)
664     fprintf (dump_file, "\nConditional will always take edge %d->%d\n",
665 	     (*taken_edge_p)->src->index, (*taken_edge_p)->dest->index);
666 
667   return retval;
668 }
669 
670 
671 /* Evaluate statement STMT.  If the statement produces a new output
672    value, return SSA_PROP_INTERESTING and store the SSA_NAME holding
673    the new value in *RESULT_P.
674 
675    If STMT is a conditional branch and we can determine its truth
676    value, set *TAKEN_EDGE_P accordingly.
677 
678    If the new value produced by STMT is varying, return
679    SSA_PROP_VARYING.  */
680 
681 static enum ssa_prop_result
copy_prop_visit_stmt(tree stmt,edge * taken_edge_p,tree * result_p)682 copy_prop_visit_stmt (tree stmt, edge *taken_edge_p, tree *result_p)
683 {
684   enum ssa_prop_result retval;
685 
686   if (dump_file && (dump_flags & TDF_DETAILS))
687     {
688       fprintf (dump_file, "\nVisiting statement:\n");
689       print_generic_stmt (dump_file, stmt, dump_flags);
690       fprintf (dump_file, "\n");
691     }
692 
693   if (TREE_CODE (stmt) == MODIFY_EXPR
694       && TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
695       && (do_store_copy_prop
696 	  || TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME))
697     {
698       /* If the statement is a copy assignment, evaluate its RHS to
699 	 see if the lattice value of its output has changed.  */
700       retval = copy_prop_visit_assignment (stmt, result_p);
701     }
702   else if (TREE_CODE (stmt) == MODIFY_EXPR
703 	   && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
704 	   && do_store_copy_prop
705 	   && stmt_makes_single_load (stmt))
706     {
707       /* If the statement is a copy assignment with a memory load
708 	 on the RHS, see if we know the value of this load and
709 	 update the lattice accordingly.  */
710       prop_value_t *val = get_value_loaded_by (stmt, copy_of);
711       if (val
712 	  && val->mem_ref
713 	  && is_gimple_reg (val->value)
714 	  && operand_equal_p (val->mem_ref, TREE_OPERAND (stmt, 1), 0))
715         {
716 	  bool changed;
717 	  changed = set_copy_of_val (TREE_OPERAND (stmt, 0),
718 				     val->value, val->mem_ref);
719 	  if (changed)
720 	    {
721 	      *result_p = TREE_OPERAND (stmt, 0);
722 	      retval = SSA_PROP_INTERESTING;
723 	    }
724 	  else
725 	    retval = SSA_PROP_NOT_INTERESTING;
726 	}
727       else
728         retval = SSA_PROP_VARYING;
729     }
730   else if (TREE_CODE (stmt) == COND_EXPR)
731     {
732       /* See if we can determine which edge goes out of a conditional
733 	 jump.  */
734       retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p);
735     }
736   else
737     retval = SSA_PROP_VARYING;
738 
739   if (retval == SSA_PROP_VARYING)
740     {
741       tree def;
742       ssa_op_iter i;
743 
744       /* Any other kind of statement is not interesting for constant
745 	 propagation and, therefore, not worth simulating.  */
746       if (dump_file && (dump_flags & TDF_DETAILS))
747 	fprintf (dump_file, "No interesting values produced.\n");
748 
749       /* The assignment is not a copy operation.  Don't visit this
750 	 statement again and mark all the definitions in the statement
751 	 to be copies of nothing.  */
752       FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS)
753 	set_copy_of_val (def, def, NULL_TREE);
754     }
755 
756   return retval;
757 }
758 
759 
760 /* Visit PHI node PHI.  If all the arguments produce the same value,
761    set it to be the value of the LHS of PHI.  */
762 
763 static enum ssa_prop_result
copy_prop_visit_phi_node(tree phi)764 copy_prop_visit_phi_node (tree phi)
765 {
766   enum ssa_prop_result retval;
767   int i;
768   tree lhs;
769   prop_value_t phi_val = { 0, NULL_TREE, NULL_TREE };
770 
771   lhs = PHI_RESULT (phi);
772 
773   if (dump_file && (dump_flags & TDF_DETAILS))
774     {
775       fprintf (dump_file, "\nVisiting PHI node: ");
776       print_generic_expr (dump_file, phi, dump_flags);
777       fprintf (dump_file, "\n\n");
778     }
779 
780   for (i = 0; i < PHI_NUM_ARGS (phi); i++)
781     {
782       prop_value_t *arg_val;
783       tree arg = PHI_ARG_DEF (phi, i);
784       edge e = PHI_ARG_EDGE (phi, i);
785 
786       /* We don't care about values flowing through non-executable
787 	 edges.  */
788       if (!(e->flags & EDGE_EXECUTABLE))
789 	continue;
790 
791       /* Constants in the argument list never generate a useful copy.
792 	 Similarly, names that flow through abnormal edges cannot be
793 	 used to derive copies.  */
794       if (TREE_CODE (arg) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg))
795 	{
796 	  phi_val.value = lhs;
797 	  break;
798 	}
799 
800       /* Avoid copy propagation from an inner into an outer loop.
801 	 Otherwise, this may move loop variant variables outside of
802 	 their loops and prevent coalescing opportunities.  If the
803 	 value was loop invariant, it will be hoisted by LICM and
804 	 exposed for copy propagation.  */
805       if (loop_depth_of_name (arg) > loop_depth_of_name (lhs))
806 	{
807 	  phi_val.value = lhs;
808 	  break;
809 	}
810 
811       /* If the LHS appears in the argument list, ignore it.  It is
812 	 irrelevant as a copy.  */
813       if (arg == lhs || get_last_copy_of (arg) == lhs)
814 	continue;
815 
816       if (dump_file && (dump_flags & TDF_DETAILS))
817 	{
818 	  fprintf (dump_file, "\tArgument #%d: ", i);
819 	  dump_copy_of (dump_file, arg);
820 	  fprintf (dump_file, "\n");
821 	}
822 
823       arg_val = get_copy_of_val (arg);
824 
825       /* If the LHS didn't have a value yet, make it a copy of the
826 	 first argument we find.  Notice that while we make the LHS be
827 	 a copy of the argument itself, we take the memory reference
828 	 from the argument's value so that we can compare it to the
829 	 memory reference of all the other arguments.  */
830       if (phi_val.value == NULL_TREE)
831 	{
832 	  phi_val.value = arg;
833 	  phi_val.mem_ref = arg_val->mem_ref;
834 	  continue;
835 	}
836 
837       /* If PHI_VAL and ARG don't have a common copy-of chain, then
838 	 this PHI node cannot be a copy operation.  Also, if we are
839 	 copy propagating stores and these two arguments came from
840 	 different memory references, they cannot be considered
841 	 copies.  */
842       if (get_last_copy_of (phi_val.value) != get_last_copy_of (arg)
843 	  || (do_store_copy_prop
844 	      && phi_val.mem_ref
845 	      && arg_val->mem_ref
846 	      && simple_cst_equal (phi_val.mem_ref, arg_val->mem_ref) != 1))
847 	{
848 	  phi_val.value = lhs;
849 	  break;
850 	}
851     }
852 
853   if (phi_val.value && set_copy_of_val (lhs, phi_val.value, phi_val.mem_ref))
854     retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
855   else
856     retval = SSA_PROP_NOT_INTERESTING;
857 
858   if (dump_file && (dump_flags & TDF_DETAILS))
859     {
860       fprintf (dump_file, "\nPHI node ");
861       dump_copy_of (dump_file, lhs);
862       fprintf (dump_file, "\nTelling the propagator to ");
863       if (retval == SSA_PROP_INTERESTING)
864 	fprintf (dump_file, "add SSA edges out of this PHI and continue.");
865       else if (retval == SSA_PROP_VARYING)
866 	fprintf (dump_file, "add SSA edges out of this PHI and never visit again.");
867       else
868 	fprintf (dump_file, "do nothing with SSA edges and keep iterating.");
869       fprintf (dump_file, "\n\n");
870     }
871 
872   return retval;
873 }
874 
875 
876 /* Initialize structures used for copy propagation.   PHIS_ONLY is true
877    if we should only consider PHI nodes as generating copy propagation
878    opportunities.  */
879 
880 static void
init_copy_prop(void)881 init_copy_prop (void)
882 {
883   basic_block bb;
884 
885   copy_of = XNEWVEC (prop_value_t, num_ssa_names);
886   memset (copy_of, 0, num_ssa_names * sizeof (*copy_of));
887 
888   cached_last_copy_of = XNEWVEC (tree, num_ssa_names);
889   memset (cached_last_copy_of, 0, num_ssa_names * sizeof (*cached_last_copy_of));
890 
891   FOR_EACH_BB (bb)
892     {
893       block_stmt_iterator si;
894       tree phi, def;
895       int depth = bb->loop_depth;
896 
897       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
898 	{
899 	  tree stmt = bsi_stmt (si);
900 	  ssa_op_iter iter;
901 
902 	  /* The only statements that we care about are those that may
903 	     generate useful copies.  We also need to mark conditional
904 	     jumps so that their outgoing edges are added to the work
905 	     lists of the propagator.
906 
907 	     Avoid copy propagation from an inner into an outer loop.
908 	     Otherwise, this may move loop variant variables outside of
909 	     their loops and prevent coalescing opportunities.  If the
910 	     value was loop invariant, it will be hoisted by LICM and
911 	     exposed for copy propagation.  */
912 	  if (stmt_ends_bb_p (stmt))
913 	    DONT_SIMULATE_AGAIN (stmt) = false;
914 	  else if (stmt_may_generate_copy (stmt)
915 		   && loop_depth_of_name (TREE_OPERAND (stmt, 1)) <= depth)
916 	    DONT_SIMULATE_AGAIN (stmt) = false;
917 	  else
918 	    DONT_SIMULATE_AGAIN (stmt) = true;
919 
920 	  /* Mark all the outputs of this statement as not being
921 	     the copy of anything.  */
922 	  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
923 	    if (DONT_SIMULATE_AGAIN (stmt))
924 	      set_copy_of_val (def, def, NULL_TREE);
925 	    else
926 	      cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
927 	}
928 
929       for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
930 	{
931 	  def = PHI_RESULT (phi);
932 	  if (!do_store_copy_prop && !is_gimple_reg (def))
933 	    DONT_SIMULATE_AGAIN (phi) = true;
934 	  else
935 	    DONT_SIMULATE_AGAIN (phi) = false;
936 
937 	  if (DONT_SIMULATE_AGAIN (phi))
938 	    set_copy_of_val (def, def, NULL_TREE);
939 	  else
940 	    cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
941 	}
942     }
943 }
944 
945 
946 /* Deallocate memory used in copy propagation and do final
947    substitution.  */
948 
949 static void
fini_copy_prop(void)950 fini_copy_prop (void)
951 {
952   size_t i;
953   prop_value_t *tmp;
954 
955   /* Set the final copy-of value for each variable by traversing the
956      copy-of chains.  */
957   tmp = XNEWVEC (prop_value_t, num_ssa_names);
958   memset (tmp, 0, num_ssa_names * sizeof (*tmp));
959   for (i = 1; i < num_ssa_names; i++)
960     {
961       tree var = ssa_name (i);
962       if (var && copy_of[i].value && copy_of[i].value != var)
963 	tmp[i].value = get_last_copy_of (var);
964     }
965 
966   substitute_and_fold (tmp, false);
967 
968   free (cached_last_copy_of);
969   free (copy_of);
970   free (tmp);
971 }
972 
973 
974 /* Main entry point to the copy propagator.
975 
976    PHIS_ONLY is true if we should only consider PHI nodes as generating
977    copy propagation opportunities.
978 
979    The algorithm propagates the value COPY-OF using ssa_propagate.  For
980    every variable X_i, COPY-OF(X_i) indicates which variable is X_i created
981    from.  The following example shows how the algorithm proceeds at a
982    high level:
983 
984 	    1	a_24 = x_1
985 	    2	a_2 = PHI <a_24, x_1>
986 	    3	a_5 = PHI <a_2>
987 	    4	x_1 = PHI <x_298, a_5, a_2>
988 
989    The end result should be that a_2, a_5, a_24 and x_1 are a copy of
990    x_298.  Propagation proceeds as follows.
991 
992    Visit #1: a_24 is copy-of x_1.  Value changed.
993    Visit #2: a_2 is copy-of x_1.  Value changed.
994    Visit #3: a_5 is copy-of x_1.  Value changed.
995    Visit #4: x_1 is copy-of x_298.  Value changed.
996    Visit #1: a_24 is copy-of x_298.  Value changed.
997    Visit #2: a_2 is copy-of x_298.  Value changed.
998    Visit #3: a_5 is copy-of x_298.  Value changed.
999    Visit #4: x_1 is copy-of x_298.  Stable state reached.
1000 
1001    When visiting PHI nodes, we only consider arguments that flow
1002    through edges marked executable by the propagation engine.  So,
1003    when visiting statement #2 for the first time, we will only look at
1004    the first argument (a_24) and optimistically assume that its value
1005    is the copy of a_24 (x_1).
1006 
1007    The problem with this approach is that it may fail to discover copy
1008    relations in PHI cycles.  Instead of propagating copy-of
1009    values, we actually propagate copy-of chains.  For instance:
1010 
1011    		A_3 = B_1;
1012 		C_9 = A_3;
1013 		D_4 = C_9;
1014 		X_i = D_4;
1015 
1016    In this code fragment, COPY-OF (X_i) = { D_4, C_9, A_3, B_1 }.
1017    Obviously, we are only really interested in the last value of the
1018    chain, however the propagator needs to access the copy-of chain
1019    when visiting PHI nodes.
1020 
1021    To represent the copy-of chain, we use the array COPY_CHAINS, which
1022    holds the first link in the copy-of chain for every variable.
1023    If variable X_i is a copy of X_j, which in turn is a copy of X_k,
1024    the array will contain:
1025 
1026 		COPY_CHAINS[i] = X_j
1027 		COPY_CHAINS[j] = X_k
1028 		COPY_CHAINS[k] = X_k
1029 
1030    Keeping copy-of chains instead of copy-of values directly becomes
1031    important when visiting PHI nodes.  Suppose that we had the
1032    following PHI cycle, such that x_52 is already considered a copy of
1033    x_53:
1034 
1035 	    1	x_54 = PHI <x_53, x_52>
1036 	    2	x_53 = PHI <x_898, x_54>
1037 
1038    Visit #1: x_54 is copy-of x_53 (because x_52 is copy-of x_53)
1039    Visit #2: x_53 is copy-of x_898 (because x_54 is a copy of x_53,
1040 				    so it is considered irrelevant
1041 				    as a copy).
1042    Visit #1: x_54 is copy-of nothing (x_53 is a copy-of x_898 and
1043 				      x_52 is a copy of x_53, so
1044 				      they don't match)
1045    Visit #2: x_53 is copy-of nothing
1046 
1047    This problem is avoided by keeping a chain of copies, instead of
1048    the final copy-of value.  Propagation will now only keep the first
1049    element of a variable's copy-of chain.  When visiting PHI nodes,
1050    arguments are considered equal if their copy-of chains end in the
1051    same variable.  So, as long as their copy-of chains overlap, we
1052    know that they will be a copy of the same variable, regardless of
1053    which variable that may be).
1054 
1055    Propagation would then proceed as follows (the notation a -> b
1056    means that a is a copy-of b):
1057 
1058    Visit #1: x_54 = PHI <x_53, x_52>
1059 		x_53 -> x_53
1060 		x_52 -> x_53
1061 		Result: x_54 -> x_53.  Value changed.  Add SSA edges.
1062 
1063    Visit #1: x_53 = PHI <x_898, x_54>
1064    		x_898 -> x_898
1065 		x_54 -> x_53
1066 		Result: x_53 -> x_898.  Value changed.  Add SSA edges.
1067 
1068    Visit #2: x_54 = PHI <x_53, x_52>
1069    		x_53 -> x_898
1070 		x_52 -> x_53 -> x_898
1071 		Result: x_54 -> x_898.  Value changed.  Add SSA edges.
1072 
1073    Visit #2: x_53 = PHI <x_898, x_54>
1074    		x_898 -> x_898
1075 		x_54 -> x_898
1076 		Result: x_53 -> x_898.  Value didn't change.  Stable state
1077 
1078    Once the propagator stabilizes, we end up with the desired result
1079    x_53 and x_54 are both copies of x_898.  */
1080 
1081 static void
execute_copy_prop(bool store_copy_prop)1082 execute_copy_prop (bool store_copy_prop)
1083 {
1084   do_store_copy_prop = store_copy_prop;
1085   init_copy_prop ();
1086   ssa_propagate (copy_prop_visit_stmt, copy_prop_visit_phi_node);
1087   fini_copy_prop ();
1088 }
1089 
1090 
1091 static bool
gate_copy_prop(void)1092 gate_copy_prop (void)
1093 {
1094   return flag_tree_copy_prop != 0;
1095 }
1096 
1097 static unsigned int
do_copy_prop(void)1098 do_copy_prop (void)
1099 {
1100   execute_copy_prop (false);
1101   return 0;
1102 }
1103 
1104 struct tree_opt_pass pass_copy_prop =
1105 {
1106   "copyprop",				/* name */
1107   gate_copy_prop,			/* gate */
1108   do_copy_prop,				/* execute */
1109   NULL,					/* sub */
1110   NULL,					/* next */
1111   0,					/* static_pass_number */
1112   TV_TREE_COPY_PROP,			/* tv_id */
1113   PROP_ssa | PROP_alias | PROP_cfg,	/* properties_required */
1114   0,					/* properties_provided */
1115   0,					/* properties_destroyed */
1116   0,					/* todo_flags_start */
1117   TODO_cleanup_cfg
1118     | TODO_dump_func
1119     | TODO_ggc_collect
1120     | TODO_verify_ssa
1121     | TODO_update_ssa,			/* todo_flags_finish */
1122   0					/* letter */
1123 };
1124 
1125 static bool
gate_store_copy_prop(void)1126 gate_store_copy_prop (void)
1127 {
1128   /* STORE-COPY-PROP is enabled only with -ftree-store-copy-prop, but
1129      when -fno-tree-store-copy-prop is specified, we should run
1130      regular COPY-PROP. That's why the pass is enabled with either
1131      flag.  */
1132   return flag_tree_store_copy_prop != 0 || flag_tree_copy_prop != 0;
1133 }
1134 
1135 static unsigned int
store_copy_prop(void)1136 store_copy_prop (void)
1137 {
1138   /* If STORE-COPY-PROP is not enabled, we just run regular COPY-PROP.  */
1139   execute_copy_prop (flag_tree_store_copy_prop != 0);
1140   return 0;
1141 }
1142 
1143 struct tree_opt_pass pass_store_copy_prop =
1144 {
1145   "store_copyprop",			/* name */
1146   gate_store_copy_prop,			/* gate */
1147   store_copy_prop,			/* execute */
1148   NULL,					/* sub */
1149   NULL,					/* next */
1150   0,					/* static_pass_number */
1151   TV_TREE_STORE_COPY_PROP,		/* tv_id */
1152   PROP_ssa | PROP_alias | PROP_cfg,	/* properties_required */
1153   0,					/* properties_provided */
1154   0,					/* properties_destroyed */
1155   0,					/* todo_flags_start */
1156   TODO_dump_func
1157     | TODO_cleanup_cfg
1158     | TODO_ggc_collect
1159     | TODO_verify_ssa
1160     | TODO_update_ssa,			/* todo_flags_finish */
1161   0					/* letter */
1162 };
1163