1 /*
2 * General purpose implementation of a simple periodic countdown timer.
3 *
4 * Copyright (c) 2007 CodeSourcery.
5 *
6 * This code is licensed under the GNU LGPL.
7 */
8
9 #include "qemu/osdep.h"
10 #include "hw/ptimer.h"
11 #include "migration/vmstate.h"
12 #include "qemu/host-utils.h"
13 #include "exec/replay-core.h"
14 #include "sysemu/cpu-timers.h"
15 #include "sysemu/qtest.h"
16 #include "block/aio.h"
17 #include "hw/clock.h"
18
19 #define DELTA_ADJUST 1
20 #define DELTA_NO_ADJUST -1
21
22 struct ptimer_state
23 {
24 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
25 uint64_t limit;
26 uint64_t delta;
27 uint32_t period_frac;
28 int64_t period;
29 int64_t last_event;
30 int64_t next_event;
31 uint8_t policy_mask;
32 QEMUTimer *timer;
33 ptimer_cb callback;
34 void *callback_opaque;
35 /*
36 * These track whether we're in a transaction block, and if we
37 * need to do a timer reload when the block finishes. They don't
38 * need to be migrated because migration can never happen in the
39 * middle of a transaction block.
40 */
41 bool in_transaction;
42 bool need_reload;
43 };
44
45 /* Use a bottom-half routine to avoid reentrancy issues. */
ptimer_trigger(ptimer_state * s)46 static void ptimer_trigger(ptimer_state *s)
47 {
48 s->callback(s->callback_opaque);
49 }
50
ptimer_reload(ptimer_state * s,int delta_adjust)51 static void ptimer_reload(ptimer_state *s, int delta_adjust)
52 {
53 uint32_t period_frac;
54 uint64_t period;
55 uint64_t delta;
56 bool suppress_trigger = false;
57
58 /*
59 * Note that if delta_adjust is 0 then we must be here because of
60 * a count register write or timer start, not because of timer expiry.
61 * In that case the policy might require us to suppress the timer trigger
62 * that we would otherwise generate for a zero delta.
63 */
64 if (delta_adjust == 0 &&
65 (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
66 suppress_trigger = true;
67 }
68 if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
69 && !suppress_trigger) {
70 ptimer_trigger(s);
71 }
72
73 /*
74 * Note that ptimer_trigger() might call the device callback function,
75 * which can then modify timer state, so we must not cache any fields
76 * from ptimer_state until after we have called it.
77 */
78 delta = s->delta;
79 period = s->period;
80 period_frac = s->period_frac;
81
82 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
83 delta = s->delta = s->limit;
84 }
85
86 if (s->period == 0 && s->period_frac == 0) {
87 if (!qtest_enabled()) {
88 fprintf(stderr, "Timer with period zero, disabling\n");
89 }
90 timer_del(s->timer);
91 s->enabled = 0;
92 return;
93 }
94
95 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
96 if (delta_adjust != DELTA_NO_ADJUST) {
97 delta += delta_adjust;
98 }
99 }
100
101 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
102 if (s->enabled == 1 && s->limit == 0) {
103 delta = 1;
104 }
105 }
106
107 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
108 if (delta_adjust != DELTA_NO_ADJUST) {
109 delta = 1;
110 }
111 }
112
113 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
114 if (s->enabled == 1 && s->limit != 0) {
115 delta = 1;
116 }
117 }
118
119 if (delta == 0) {
120 if (s->enabled == 0) {
121 /* trigger callback disabled the timer already */
122 return;
123 }
124 if (!qtest_enabled()) {
125 fprintf(stderr, "Timer with delta zero, disabling\n");
126 }
127 timer_del(s->timer);
128 s->enabled = 0;
129 return;
130 }
131
132 /*
133 * Artificially limit timeout rate to something
134 * achievable under QEMU. Otherwise, QEMU spends all
135 * its time generating timer interrupts, and there
136 * is no forward progress.
137 * About ten microseconds is the fastest that really works
138 * on the current generation of host machines.
139 */
140
141 if (s->enabled == 1 && (delta * period < 10000) &&
142 !icount_enabled() && !qtest_enabled()) {
143 period = 10000 / delta;
144 period_frac = 0;
145 }
146
147 s->last_event = s->next_event;
148 s->next_event = s->last_event + delta * period;
149 if (period_frac) {
150 s->next_event += ((int64_t)period_frac * delta) >> 32;
151 }
152 timer_mod(s->timer, s->next_event);
153 }
154
ptimer_tick(void * opaque)155 static void ptimer_tick(void *opaque)
156 {
157 ptimer_state *s = (ptimer_state *)opaque;
158 bool trigger = true;
159
160 /*
161 * We perform all the tick actions within a begin/commit block
162 * because the callback function that ptimer_trigger() calls
163 * might make calls into the ptimer APIs that provoke another
164 * trigger, and we want that to cause the callback function
165 * to be called iteratively, not recursively.
166 */
167 ptimer_transaction_begin(s);
168
169 if (s->enabled == 2) {
170 s->delta = 0;
171 s->enabled = 0;
172 } else {
173 int delta_adjust = DELTA_ADJUST;
174
175 if (s->delta == 0 || s->limit == 0) {
176 /* If a "continuous trigger" policy is not used and limit == 0,
177 we should error out. delta == 0 means that this tick is
178 caused by a "no immediate reload" policy, so it shouldn't
179 be adjusted. */
180 delta_adjust = DELTA_NO_ADJUST;
181 }
182
183 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
184 /* Avoid re-trigger on deferred reload if "no immediate trigger"
185 policy isn't used. */
186 trigger = (delta_adjust == DELTA_ADJUST);
187 }
188
189 s->delta = s->limit;
190
191 ptimer_reload(s, delta_adjust);
192 }
193
194 if (trigger) {
195 ptimer_trigger(s);
196 }
197
198 ptimer_transaction_commit(s);
199 }
200
ptimer_get_count(ptimer_state * s)201 uint64_t ptimer_get_count(ptimer_state *s)
202 {
203 uint64_t counter;
204
205 if (s->enabled && s->delta != 0) {
206 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
207 int64_t next = s->next_event;
208 int64_t last = s->last_event;
209 bool expired = (now - next >= 0);
210 bool oneshot = (s->enabled == 2);
211
212 /* Figure out the current counter value. */
213 if (expired) {
214 /* Prevent timer underflowing if it should already have
215 triggered. */
216 counter = 0;
217 } else {
218 uint64_t rem;
219 uint64_t div;
220 int clz1, clz2;
221 int shift;
222 uint32_t period_frac = s->period_frac;
223 uint64_t period = s->period;
224
225 if (!oneshot && (s->delta * period < 10000) &&
226 !icount_enabled() && !qtest_enabled()) {
227 period = 10000 / s->delta;
228 period_frac = 0;
229 }
230
231 /* We need to divide time by period, where time is stored in
232 rem (64-bit integer) and period is stored in period/period_frac
233 (64.32 fixed point).
234
235 Doing full precision division is hard, so scale values and
236 do a 64-bit division. The result should be rounded down,
237 so that the rounding error never causes the timer to go
238 backwards.
239 */
240
241 rem = next - now;
242 div = period;
243
244 clz1 = clz64(rem);
245 clz2 = clz64(div);
246 shift = clz1 < clz2 ? clz1 : clz2;
247
248 rem <<= shift;
249 div <<= shift;
250 if (shift >= 32) {
251 div |= ((uint64_t)period_frac << (shift - 32));
252 } else {
253 if (shift != 0)
254 div |= (period_frac >> (32 - shift));
255 /* Look at remaining bits of period_frac and round div up if
256 necessary. */
257 if ((uint32_t)(period_frac << shift))
258 div += 1;
259 }
260 counter = rem / div;
261
262 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
263 /* Before wrapping around, timer should stay with counter = 0
264 for a one period. */
265 if (!oneshot && s->delta == s->limit) {
266 if (now == last) {
267 /* Counter == delta here, check whether it was
268 adjusted and if it was, then right now it is
269 that "one period". */
270 if (counter == s->limit + DELTA_ADJUST) {
271 return 0;
272 }
273 } else if (counter == s->limit) {
274 /* Since the counter is rounded down and now != last,
275 the counter == limit means that delta was adjusted
276 by +1 and right now it is that adjusted period. */
277 return 0;
278 }
279 }
280 }
281 }
282
283 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
284 /* If now == last then delta == limit, i.e. the counter already
285 represents the correct value. It would be rounded down a 1ns
286 later. */
287 if (now != last) {
288 counter += 1;
289 }
290 }
291 } else {
292 counter = s->delta;
293 }
294 return counter;
295 }
296
ptimer_set_count(ptimer_state * s,uint64_t count)297 void ptimer_set_count(ptimer_state *s, uint64_t count)
298 {
299 assert(s->in_transaction);
300 s->delta = count;
301 if (s->enabled) {
302 s->need_reload = true;
303 }
304 }
305
ptimer_run(ptimer_state * s,int oneshot)306 void ptimer_run(ptimer_state *s, int oneshot)
307 {
308 bool was_disabled = !s->enabled;
309
310 assert(s->in_transaction);
311
312 if (was_disabled && s->period == 0 && s->period_frac == 0) {
313 if (!qtest_enabled()) {
314 fprintf(stderr, "Timer with period zero, disabling\n");
315 }
316 return;
317 }
318 s->enabled = oneshot ? 2 : 1;
319 if (was_disabled) {
320 s->need_reload = true;
321 }
322 }
323
324 /* Pause a timer. Note that this may cause it to "lose" time, even if it
325 is immediately restarted. */
ptimer_stop(ptimer_state * s)326 void ptimer_stop(ptimer_state *s)
327 {
328 assert(s->in_transaction);
329
330 if (!s->enabled)
331 return;
332
333 s->delta = ptimer_get_count(s);
334 timer_del(s->timer);
335 s->enabled = 0;
336 s->need_reload = false;
337 }
338
339 /* Set counter increment interval in nanoseconds. */
ptimer_set_period(ptimer_state * s,int64_t period)340 void ptimer_set_period(ptimer_state *s, int64_t period)
341 {
342 assert(s->in_transaction);
343 s->delta = ptimer_get_count(s);
344 s->period = period;
345 s->period_frac = 0;
346 if (s->enabled) {
347 s->need_reload = true;
348 }
349 }
350
351 /* Set counter increment interval from a Clock */
ptimer_set_period_from_clock(ptimer_state * s,const Clock * clk,unsigned int divisor)352 void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk,
353 unsigned int divisor)
354 {
355 /*
356 * The raw clock period is a 64-bit value in units of 2^-32 ns;
357 * put another way it's a 32.32 fixed-point ns value. Our internal
358 * representation of the period is 64.32 fixed point ns, so
359 * the conversion is simple.
360 */
361 uint64_t raw_period = clock_get(clk);
362 uint64_t period_frac;
363
364 assert(s->in_transaction);
365 s->delta = ptimer_get_count(s);
366 s->period = extract64(raw_period, 32, 32);
367 period_frac = extract64(raw_period, 0, 32);
368 /*
369 * divisor specifies a possible frequency divisor between the
370 * clock and the timer, so it is a multiplier on the period.
371 * We do the multiply after splitting the raw period out into
372 * period and frac to avoid having to do a 32*64->96 multiply.
373 */
374 s->period *= divisor;
375 period_frac *= divisor;
376 s->period += extract64(period_frac, 32, 32);
377 s->period_frac = (uint32_t)period_frac;
378
379 if (s->enabled) {
380 s->need_reload = true;
381 }
382 }
383
384 /* Set counter frequency in Hz. */
ptimer_set_freq(ptimer_state * s,uint32_t freq)385 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
386 {
387 assert(s->in_transaction);
388 s->delta = ptimer_get_count(s);
389 s->period = 1000000000ll / freq;
390 s->period_frac = (1000000000ll << 32) / freq;
391 if (s->enabled) {
392 s->need_reload = true;
393 }
394 }
395
396 /* Set the initial countdown value. If reload is nonzero then also set
397 count = limit. */
ptimer_set_limit(ptimer_state * s,uint64_t limit,int reload)398 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
399 {
400 assert(s->in_transaction);
401 s->limit = limit;
402 if (reload)
403 s->delta = limit;
404 if (s->enabled && reload) {
405 s->need_reload = true;
406 }
407 }
408
ptimer_get_limit(ptimer_state * s)409 uint64_t ptimer_get_limit(ptimer_state *s)
410 {
411 return s->limit;
412 }
413
ptimer_transaction_begin(ptimer_state * s)414 void ptimer_transaction_begin(ptimer_state *s)
415 {
416 assert(!s->in_transaction);
417 s->in_transaction = true;
418 s->need_reload = false;
419 }
420
ptimer_transaction_commit(ptimer_state * s)421 void ptimer_transaction_commit(ptimer_state *s)
422 {
423 assert(s->in_transaction);
424 /*
425 * We must loop here because ptimer_reload() can call the callback
426 * function, which might then update ptimer state in a way that
427 * means we need to do another reload and possibly another callback.
428 * A disabled timer never needs reloading (and if we don't check
429 * this then we loop forever if ptimer_reload() disables the timer).
430 */
431 while (s->need_reload && s->enabled) {
432 s->need_reload = false;
433 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
434 ptimer_reload(s, 0);
435 }
436 /* Now we've finished reload we can leave the transaction block. */
437 s->in_transaction = false;
438 }
439
440 const VMStateDescription vmstate_ptimer = {
441 .name = "ptimer",
442 .version_id = 1,
443 .minimum_version_id = 1,
444 .fields = (const VMStateField[]) {
445 VMSTATE_UINT8(enabled, ptimer_state),
446 VMSTATE_UINT64(limit, ptimer_state),
447 VMSTATE_UINT64(delta, ptimer_state),
448 VMSTATE_UINT32(period_frac, ptimer_state),
449 VMSTATE_INT64(period, ptimer_state),
450 VMSTATE_INT64(last_event, ptimer_state),
451 VMSTATE_INT64(next_event, ptimer_state),
452 VMSTATE_TIMER_PTR(timer, ptimer_state),
453 VMSTATE_END_OF_LIST()
454 }
455 };
456
ptimer_init(ptimer_cb callback,void * callback_opaque,uint8_t policy_mask)457 ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
458 uint8_t policy_mask)
459 {
460 ptimer_state *s;
461
462 /* The callback function is mandatory. */
463 assert(callback);
464
465 s = g_new0(ptimer_state, 1);
466 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
467 s->policy_mask = policy_mask;
468 s->callback = callback;
469 s->callback_opaque = callback_opaque;
470
471 /*
472 * These two policies are incompatible -- trigger-on-decrement implies
473 * a timer trigger when the count becomes 0, but no-immediate-trigger
474 * implies a trigger when the count stops being 0.
475 */
476 assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
477 (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
478 return s;
479 }
480
ptimer_free(ptimer_state * s)481 void ptimer_free(ptimer_state *s)
482 {
483 timer_free(s->timer);
484 g_free(s);
485 }
486