1 /* fflas/fflas_memory.h
2  * Copyright (C) 2014 fflas-ffpack group
3  *
4  * Written by Clement Pernet <Clement.Pernet@imag.fr>
5  *
6  * The cache size detection has been copied from the Eigen library,
7  * a lightweight C++ template library for linear algebra, licensed under
8  * the Mozilla
9  * Public License v. 2.0. If a copy of the MPL was not distributed
10  * with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11  * Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
12  * Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
13  * Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
14  * Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
15  * Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
16  *
17  *
18  * ========LICENCE========
19  * This file is part of the library FFLAS-FFPACK.
20  *
21  * FFLAS-FFPACK is free software: you can redistribute it and/or modify
22  * it under the terms of the  GNU Lesser General Public
23  * License as published by the Free Software Foundation; either
24  * version 2.1 of the License, or (at your option) any later version.
25  *
26  * This library is distributed in the hope that it will be useful,
27  * but WITHOUT ANY WARRANTY; without even the implied warranty of
28  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
29  * Lesser General Public License for more details.
30  *
31  * You should have received a copy of the GNU Lesser General Public
32  * License along with this library; if not, write to the Free Software
33  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
34  * ========LICENCE========
35  *.
36  */
37 
38 #ifndef __FFLASFFPACK_memory_H
39 #define __FFLASFFPACK_memory_H
40 
41 #include "fflas-ffpack/utils/align-allocator.h"
42 #include <givaro/givinteger.h>
43 
44 namespace FFLAS{
45 
46     template<class Element>
alignable()47     inline bool alignable() {
48         return true ;
49     }
50 
51     // BB : segfault in Givaro::Integer::logcpy otherwise
52     template<>
53     inline bool alignable<Givaro::Integer*>() {
54         return false;
55     }
56 
57     template<class Field>
58     inline typename Field::Element_ptr fflas_new (const Field& F, const size_t m, const Alignment align = Alignment::DEFAULT)
59     {
60         if (alignable<typename Field::Element_ptr>() ) {
61             return malloc_align<typename Field::Element>(m, align);
62         }
63         else {
64             return new typename Field::Element[m];
65         }
66     }
67 
68     template<class Field>
69     inline typename Field::Element_ptr fflas_new (const Field& F, const size_t m, const size_t n, const Alignment align = Alignment::DEFAULT)
70     {
71         return fflas_new(F, m*n, align);
72     }
73 
74     template<class Element >
75     inline Element* fflas_new (const size_t m, const Alignment align = Alignment::DEFAULT)
76     {
77         if (alignable<Element*>() ) {
78             return malloc_align<Element>(m, align);
79         }
80         else {
81             return new Element[m];
82         }
83 
84     }
85 
86     template<class Element_ptr>
fflas_delete(Element_ptr A)87     inline void fflas_delete(Element_ptr A)
88     {
89         if (alignable<Element_ptr>() )
90             free(A);
91         else
92             delete[] A;
93     }
94 
95     template<class Ptr, class ...Args>
fflas_delete(Ptr p,Args...args)96     inline void fflas_delete(Ptr p, Args ... args){
97         fflas_delete(p);
98         fflas_delete(std::forward<Args>(args)...);
99     }
100 
101 #ifdef __FFLASFFPACK_HAVE_SSE4_1_INSTRUCTIONS
prefetch(const int64_t * addr)102     inline void prefetch(const int64_t* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
103 #else
prefetch(const int64_t *)104     inline void prefetch(const int64_t*) {}
105 #endif
106 
107 #if ( defined(__i386__) || defined(__x86_64__) )
108 #define __CPUID(abcd,func,id) \
109     __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
110 
getCacheSize(int & l1,int & l2,int & l3)111     inline void getCacheSize(int& l1, int& l2, int& l3)
112     {
113         int abcd[4];
114         l1 = l2 = l3 = 0;
115         int cache_id = 0;
116         int cache_type = 0;
117         do {
118             abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
119             __CPUID(abcd,0x4,cache_id);
120             cache_type  = (abcd[0] & 0x0F) >> 0;
121             if(cache_type==1||cache_type==3) // data or unified cache
122             {
123                 int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
124                 int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
125                 int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
126                 int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
127                 int sets        = (abcd[2]);                    // C[31:0]
128                 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
129                 switch(cache_level)
130                 {
131                 case 1: l1 = cache_size; break;
132                 case 2: l2 = cache_size; break;
133                 case 3: l3 = cache_size; break;
134                 default: break;
135                 }
136             }
137             cache_id++;
138         } while(cache_type>0 && cache_id<16);
139     }
140 
getTLBSize(int & tlb)141     inline void getTLBSize(int& tlb)
142     {
143         int abcd[4]={};
144         int sTLB=0;
145         int lTLB;
146         __CPUID(abcd,0x2,0);
147         unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
148         for(int i=0; i<14; ++i)
149             switch(bytes[i]){
150             case 0x03: sTLB=64; break;
151             case 0x04: lTLB=8;  break;
152             case 0x05: lTLB=32; break;
153             case 0x56: lTLB=16; break;
154             case 0x57: sTLB=16; break;
155             case 0x59: sTLB=16; break;
156             case 0x5A: lTLB=32; break;
157             case 0x5B: sTLB=lTLB=64;  break;
158             case 0x5C: sTLB=lTLB=128; break;
159             case 0x5D: sTLB=lTLB=256; break;
160             case 0xB3: sTLB=128; break;
161             case 0xB4: sTLB=256; break;
162             case 0xBA: sTLB=64;  break;
163             case 0xC0: sTLB=lTLB=8; break;
164             case 0xCA: sTLB=512; break;
165             default: break;
166             }
167         //cout<<"small TLB: "<<sTLB<<endl;
168         //cout<<"large TLB: "<<lTLB<<endl;
169         tlb=sTLB*4096;
170     }
171 #else
getTLBSize(int & tlb)172     inline void getTLBSize(int& tlb){tlb = 0;} // not implemented in non x86 archs
173 #endif
174     //---------- Cache sizes ----------
175 
176 #if !defined(EIGEN_NO_CPUID)
177 #  if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
178 #    if defined(__PIC__) && defined(__i386__)
179     // Case for x86 with PIC
180 #      define EIGEN_CPUID(abcd,func,id) \
181     __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
182 #    else
183     // Case for x86_64 or x86 w/o PIC
184 #      define EIGEN_CPUID(abcd,func,id) \
185     __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
186 #    endif
187 #  elif defined(_MSC_VER)
188 #    if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
189 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
190 #    endif
191 #  endif
192 #endif
193 
194 
195 #ifdef EIGEN_CPUID
196 
cpuid_is_vendor(int abcd[4],const char * vendor)197     inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
198     {
199         return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
200     }
201 
queryCacheSizes_intel_direct(int & l1,int & l2,int & l3)202     inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
203     {
204         int abcd[4];
205         l1 = l2 = l3 = 0;
206         int cache_id = 0;
207         int cache_type = 0;
208         do {
209             abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
210             EIGEN_CPUID(abcd,0x4,cache_id);
211             cache_type  = (abcd[0] & 0x0F) >> 0;
212             if(cache_type==1||cache_type==3) // data or unified cache
213             {
214                 int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
215                 int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
216                 int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
217                 int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
218                 int sets        = (abcd[2]);                    // C[31:0]
219 
220                 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
221 
222                 switch(cache_level)
223                 {
224                 case 1: l1 = cache_size; break;
225                 case 2: l2 = cache_size; break;
226                 case 3: l3 = cache_size; break;
227                 default: break;
228                 }
229             }
230             cache_id++;
231         } while(cache_type>0 && cache_id<16);
232     }
233 
queryCacheSizes_intel_codes(int & l1,int & l2,int & l3)234     inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
235     {
236         int abcd[4];
237         abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
238         l1 = l2 = l3 = 0;
239         EIGEN_CPUID(abcd,0x00000002,0);
240         unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
241         bool check_for_p2_core2 = false;
242         for(int i=0; i<14; ++i)
243         {
244             switch(bytes[i])
245             {
246             case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
247             case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
248             case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
249             case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
250             case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
251             case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
252             case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
253             case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
254             case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
255             case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
256             case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
257             case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
258             case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
259             case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
260             case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
261             case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
262             case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
263             case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
264             case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
265             case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
266             case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
267             case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
268             case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
269             case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
270             case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
271             case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
272             case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
273             case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
274             case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
275             case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
276             case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
277             case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
278             case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
279             case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
280             case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
281             case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
282             case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
283             case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
284             case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
285             case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
286             case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
287             case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
288             case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
289             case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
290             case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
291             case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
292             case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
293             case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
294             case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
295             case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
296             case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
297             case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
298             case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
299             case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
300             case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
301             case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
302             case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
303 
304             default: break;
305             }
306         }
307         if(check_for_p2_core2 && l2 == l3)
308             l3 = 0;
309         l1 *= 1024;
310         l2 *= 1024;
311         l3 *= 1024;
312     }
313 
queryCacheSizes_intel(int & l1,int & l2,int & l3,int max_std_funcs)314     inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
315     {
316         if(max_std_funcs>=4)
317             queryCacheSizes_intel_direct(l1,l2,l3);
318         else
319             queryCacheSizes_intel_codes(l1,l2,l3);
320     }
321 
queryCacheSizes_amd(int & l1,int & l2,int & l3)322     inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
323     {
324         int abcd[4];
325         abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
326         EIGEN_CPUID(abcd,0x80000005,0);
327         l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
328         abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
329         EIGEN_CPUID(abcd,0x80000006,0);
330         l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
331         l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
332     }
333 #endif
334 
335     /** \internal
336      * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
queryCacheSizes(int & l1,int & l2,int & l3)337     inline void queryCacheSizes(int& l1, int& l2, int& l3)
338     {
339 #ifdef EIGEN_CPUID
340         int abcd[4];
341 
342         // identify the CPU vendor
343         EIGEN_CPUID(abcd,0x0,0);
344         int max_std_funcs = abcd[1];
345         if(cpuid_is_vendor(abcd,"GenuineIntel"))
346             queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
347         else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!")
348           || cpuid_is_vendor(abcd, "HygonGenuine"))
349             queryCacheSizes_amd(l1,l2,l3);
350         else
351             // by default let's use Intel's API
352             queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
353 
354         // here is the list of other vendors:
355         //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
356         //   ||cpuid_is_vendor(abcd,"CyrixInstead")
357         //   ||cpuid_is_vendor(abcd,"CentaurHauls")
358         //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
359         //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
360         //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
361         //   ||cpuid_is_vendor(abcd,"Geode by NSC")
362         //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
363         //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
364         //   ||cpuid_is_vendor(abcd,"NexGenDriven")
365 #else
366         l1 = l2 = l3 = -1;
367 #endif
368     }
369 
370     /** \internal
371      * \returns the size in Bytes of the L1 data cache */
queryL1CacheSize()372     inline int queryL1CacheSize()
373     {
374         int l1(-1), l2, l3;
375         queryCacheSizes(l1,l2,l3);
376         return l1;
377     }
378 
379     /** \internal
380      * \returns the size in Bytes of the L2 or L3 cache if this later is present */
queryTopLevelCacheSize()381     inline int queryTopLevelCacheSize()
382     {
383         int l1, l2(-1), l3(-1);
384         queryCacheSizes(l1,l2,l3);
385         return (std::max)(l2,l3);
386     }
387 
388 } // namespace FFLAS
389 #endif // __FFLASFFPACK_memory_H
390 /* -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
391 // vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
392