1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Page table handling routines for radix page table.
4 *
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20 #include <linux/kfence.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/mmu_context.h>
24 #include <asm/dma.h>
25 #include <asm/machdep.h>
26 #include <asm/mmu.h>
27 #include <asm/firmware.h>
28 #include <asm/powernv.h>
29 #include <asm/sections.h>
30 #include <asm/smp.h>
31 #include <asm/trace.h>
32 #include <asm/uaccess.h>
33 #include <asm/ultravisor.h>
34 #include <asm/set_memory.h>
35 #include <asm/kfence.h>
36
37 #include <trace/events/thp.h>
38
39 #include <mm/mmu_decl.h>
40
41 unsigned int mmu_base_pid;
42
early_alloc_pgtable(unsigned long size,int nid,unsigned long region_start,unsigned long region_end)43 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
44 unsigned long region_start, unsigned long region_end)
45 {
46 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
47 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
48 void *ptr;
49
50 if (region_start)
51 min_addr = region_start;
52 if (region_end)
53 max_addr = region_end;
54
55 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
56
57 if (!ptr)
58 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
59 __func__, size, size, nid, &min_addr, &max_addr);
60
61 return ptr;
62 }
63
64 /*
65 * When allocating pud or pmd pointers, we allocate a complete page
66 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
67 * is to ensure that the page obtained from the memblock allocator
68 * can be completely used as page table page and can be freed
69 * correctly when the page table entries are removed.
70 */
early_map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)71 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
72 pgprot_t flags,
73 unsigned int map_page_size,
74 int nid,
75 unsigned long region_start, unsigned long region_end)
76 {
77 unsigned long pfn = pa >> PAGE_SHIFT;
78 pgd_t *pgdp;
79 p4d_t *p4dp;
80 pud_t *pudp;
81 pmd_t *pmdp;
82 pte_t *ptep;
83
84 pgdp = pgd_offset_k(ea);
85 p4dp = p4d_offset(pgdp, ea);
86 if (p4d_none(*p4dp)) {
87 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
88 region_start, region_end);
89 p4d_populate(&init_mm, p4dp, pudp);
90 }
91 pudp = pud_offset(p4dp, ea);
92 if (map_page_size == PUD_SIZE) {
93 ptep = (pte_t *)pudp;
94 goto set_the_pte;
95 }
96 if (pud_none(*pudp)) {
97 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
98 region_end);
99 pud_populate(&init_mm, pudp, pmdp);
100 }
101 pmdp = pmd_offset(pudp, ea);
102 if (map_page_size == PMD_SIZE) {
103 ptep = pmdp_ptep(pmdp);
104 goto set_the_pte;
105 }
106 if (!pmd_present(*pmdp)) {
107 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
108 region_start, region_end);
109 pmd_populate_kernel(&init_mm, pmdp, ptep);
110 }
111 ptep = pte_offset_kernel(pmdp, ea);
112
113 set_the_pte:
114 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
115 asm volatile("ptesync": : :"memory");
116 return 0;
117 }
118
119 /*
120 * nid, region_start, and region_end are hints to try to place the page
121 * table memory in the same node or region.
122 */
__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)123 static int __map_kernel_page(unsigned long ea, unsigned long pa,
124 pgprot_t flags,
125 unsigned int map_page_size,
126 int nid,
127 unsigned long region_start, unsigned long region_end)
128 {
129 unsigned long pfn = pa >> PAGE_SHIFT;
130 pgd_t *pgdp;
131 p4d_t *p4dp;
132 pud_t *pudp;
133 pmd_t *pmdp;
134 pte_t *ptep;
135 /*
136 * Make sure task size is correct as per the max adddr
137 */
138 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
139
140 #ifdef CONFIG_PPC_64K_PAGES
141 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
142 #endif
143
144 if (unlikely(!slab_is_available()))
145 return early_map_kernel_page(ea, pa, flags, map_page_size,
146 nid, region_start, region_end);
147
148 /*
149 * Should make page table allocation functions be able to take a
150 * node, so we can place kernel page tables on the right nodes after
151 * boot.
152 */
153 pgdp = pgd_offset_k(ea);
154 p4dp = p4d_offset(pgdp, ea);
155 pudp = pud_alloc(&init_mm, p4dp, ea);
156 if (!pudp)
157 return -ENOMEM;
158 if (map_page_size == PUD_SIZE) {
159 ptep = (pte_t *)pudp;
160 goto set_the_pte;
161 }
162 pmdp = pmd_alloc(&init_mm, pudp, ea);
163 if (!pmdp)
164 return -ENOMEM;
165 if (map_page_size == PMD_SIZE) {
166 ptep = pmdp_ptep(pmdp);
167 goto set_the_pte;
168 }
169 ptep = pte_alloc_kernel(pmdp, ea);
170 if (!ptep)
171 return -ENOMEM;
172
173 set_the_pte:
174 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
175 asm volatile("ptesync": : :"memory");
176 return 0;
177 }
178
radix__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size)179 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
180 pgprot_t flags,
181 unsigned int map_page_size)
182 {
183 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
184 }
185
186 #ifdef CONFIG_STRICT_KERNEL_RWX
radix__change_memory_range(unsigned long start,unsigned long end,unsigned long clear)187 static void radix__change_memory_range(unsigned long start, unsigned long end,
188 unsigned long clear)
189 {
190 unsigned long idx;
191 pgd_t *pgdp;
192 p4d_t *p4dp;
193 pud_t *pudp;
194 pmd_t *pmdp;
195 pte_t *ptep;
196
197 start = ALIGN_DOWN(start, PAGE_SIZE);
198 end = PAGE_ALIGN(end); // aligns up
199
200 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
201 start, end, clear);
202
203 for (idx = start; idx < end; idx += PAGE_SIZE) {
204 pgdp = pgd_offset_k(idx);
205 p4dp = p4d_offset(pgdp, idx);
206 pudp = pud_alloc(&init_mm, p4dp, idx);
207 if (!pudp)
208 continue;
209 if (pud_leaf(*pudp)) {
210 ptep = (pte_t *)pudp;
211 goto update_the_pte;
212 }
213 pmdp = pmd_alloc(&init_mm, pudp, idx);
214 if (!pmdp)
215 continue;
216 if (pmd_leaf(*pmdp)) {
217 ptep = pmdp_ptep(pmdp);
218 goto update_the_pte;
219 }
220 ptep = pte_alloc_kernel(pmdp, idx);
221 if (!ptep)
222 continue;
223 update_the_pte:
224 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
225 }
226
227 radix__flush_tlb_kernel_range(start, end);
228 }
229
radix__mark_rodata_ro(void)230 void radix__mark_rodata_ro(void)
231 {
232 unsigned long start, end;
233
234 start = (unsigned long)_stext;
235 end = (unsigned long)__end_rodata;
236
237 radix__change_memory_range(start, end, _PAGE_WRITE);
238
239 for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
240 end = start + PAGE_SIZE;
241 if (overlaps_interrupt_vector_text(start, end))
242 radix__change_memory_range(start, end, _PAGE_WRITE);
243 else
244 break;
245 }
246 }
247
radix__mark_initmem_nx(void)248 void radix__mark_initmem_nx(void)
249 {
250 unsigned long start = (unsigned long)__init_begin;
251 unsigned long end = (unsigned long)__init_end;
252
253 radix__change_memory_range(start, end, _PAGE_EXEC);
254 }
255 #endif /* CONFIG_STRICT_KERNEL_RWX */
256
257 static inline void __meminit
print_mapping(unsigned long start,unsigned long end,unsigned long size,bool exec)258 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
259 {
260 char buf[10];
261
262 if (end <= start)
263 return;
264
265 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
266
267 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
268 exec ? " (exec)" : "");
269 }
270
next_boundary(unsigned long addr,unsigned long end)271 static unsigned long next_boundary(unsigned long addr, unsigned long end)
272 {
273 #ifdef CONFIG_STRICT_KERNEL_RWX
274 unsigned long stext_phys;
275
276 stext_phys = __pa_symbol(_stext);
277
278 // Relocatable kernel running at non-zero real address
279 if (stext_phys != 0) {
280 // The end of interrupts code at zero is a rodata boundary
281 unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
282 if (addr < end_intr)
283 return end_intr;
284
285 // Start of relocated kernel text is a rodata boundary
286 if (addr < stext_phys)
287 return stext_phys;
288 }
289
290 if (addr < __pa_symbol(__srwx_boundary))
291 return __pa_symbol(__srwx_boundary);
292 #endif
293 return end;
294 }
295
create_physical_mapping(unsigned long start,unsigned long end,int nid,pgprot_t _prot,unsigned long mapping_sz_limit)296 static int __meminit create_physical_mapping(unsigned long start,
297 unsigned long end,
298 int nid, pgprot_t _prot,
299 unsigned long mapping_sz_limit)
300 {
301 unsigned long vaddr, addr, mapping_size = 0;
302 bool prev_exec, exec = false;
303 pgprot_t prot;
304 int psize;
305 unsigned long max_mapping_size = memory_block_size;
306
307 if (mapping_sz_limit < max_mapping_size)
308 max_mapping_size = mapping_sz_limit;
309
310 if (debug_pagealloc_enabled())
311 max_mapping_size = PAGE_SIZE;
312
313 start = ALIGN(start, PAGE_SIZE);
314 end = ALIGN_DOWN(end, PAGE_SIZE);
315 for (addr = start; addr < end; addr += mapping_size) {
316 unsigned long gap, previous_size;
317 int rc;
318
319 gap = next_boundary(addr, end) - addr;
320 if (gap > max_mapping_size)
321 gap = max_mapping_size;
322 previous_size = mapping_size;
323 prev_exec = exec;
324
325 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
326 mmu_psize_defs[MMU_PAGE_1G].shift) {
327 mapping_size = PUD_SIZE;
328 psize = MMU_PAGE_1G;
329 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
330 mmu_psize_defs[MMU_PAGE_2M].shift) {
331 mapping_size = PMD_SIZE;
332 psize = MMU_PAGE_2M;
333 } else {
334 mapping_size = PAGE_SIZE;
335 psize = mmu_virtual_psize;
336 }
337
338 vaddr = (unsigned long)__va(addr);
339
340 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
341 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
342 prot = PAGE_KERNEL_X;
343 exec = true;
344 } else {
345 prot = _prot;
346 exec = false;
347 }
348
349 if (mapping_size != previous_size || exec != prev_exec) {
350 print_mapping(start, addr, previous_size, prev_exec);
351 start = addr;
352 }
353
354 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
355 if (rc)
356 return rc;
357
358 update_page_count(psize, 1);
359 }
360
361 print_mapping(start, addr, mapping_size, exec);
362 return 0;
363 }
364
365 #ifdef CONFIG_KFENCE
366 static bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
367
parse_kfence_early_init(char * arg)368 static int __init parse_kfence_early_init(char *arg)
369 {
370 int val;
371
372 if (get_option(&arg, &val))
373 kfence_early_init = !!val;
374 return 0;
375 }
376 early_param("kfence.sample_interval", parse_kfence_early_init);
377
alloc_kfence_pool(void)378 static inline phys_addr_t alloc_kfence_pool(void)
379 {
380 phys_addr_t kfence_pool;
381
382 /*
383 * TODO: Support to enable KFENCE after bootup depends on the ability to
384 * split page table mappings. As such support is not currently
385 * implemented for radix pagetables, support enabling KFENCE
386 * only at system startup for now.
387 *
388 * After support for splitting mappings is available on radix,
389 * alloc_kfence_pool() & map_kfence_pool() can be dropped and
390 * mapping for __kfence_pool memory can be
391 * split during arch_kfence_init_pool().
392 */
393 if (!kfence_early_init)
394 goto no_kfence;
395
396 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
397 if (!kfence_pool)
398 goto no_kfence;
399
400 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
401 return kfence_pool;
402
403 no_kfence:
404 disable_kfence();
405 return 0;
406 }
407
map_kfence_pool(phys_addr_t kfence_pool)408 static inline void map_kfence_pool(phys_addr_t kfence_pool)
409 {
410 if (!kfence_pool)
411 return;
412
413 if (create_physical_mapping(kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
414 -1, PAGE_KERNEL, PAGE_SIZE))
415 goto err;
416
417 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
418 __kfence_pool = __va(kfence_pool);
419 return;
420
421 err:
422 memblock_phys_free(kfence_pool, KFENCE_POOL_SIZE);
423 disable_kfence();
424 }
425 #else
alloc_kfence_pool(void)426 static inline phys_addr_t alloc_kfence_pool(void) { return 0; }
map_kfence_pool(phys_addr_t kfence_pool)427 static inline void map_kfence_pool(phys_addr_t kfence_pool) { }
428 #endif
429
radix_init_pgtable(void)430 static void __init radix_init_pgtable(void)
431 {
432 phys_addr_t kfence_pool;
433 unsigned long rts_field;
434 phys_addr_t start, end;
435 u64 i;
436
437 /* We don't support slb for radix */
438 slb_set_size(0);
439
440 kfence_pool = alloc_kfence_pool();
441
442 /*
443 * Create the linear mapping
444 */
445 for_each_mem_range(i, &start, &end) {
446 /*
447 * The memblock allocator is up at this point, so the
448 * page tables will be allocated within the range. No
449 * need or a node (which we don't have yet).
450 */
451
452 if (end >= RADIX_VMALLOC_START) {
453 pr_warn("Outside the supported range\n");
454 continue;
455 }
456
457 WARN_ON(create_physical_mapping(start, end,
458 -1, PAGE_KERNEL, ~0UL));
459 }
460
461 map_kfence_pool(kfence_pool);
462
463 if (!cpu_has_feature(CPU_FTR_HVMODE) &&
464 cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
465 /*
466 * Older versions of KVM on these machines prefer if the
467 * guest only uses the low 19 PID bits.
468 */
469 mmu_pid_bits = 19;
470 }
471 mmu_base_pid = 1;
472
473 /*
474 * Allocate Partition table and process table for the
475 * host.
476 */
477 BUG_ON(PRTB_SIZE_SHIFT > 36);
478 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
479 /*
480 * Fill in the process table.
481 */
482 rts_field = radix__get_tree_size();
483 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
484
485 /*
486 * The init_mm context is given the first available (non-zero) PID,
487 * which is the "guard PID" and contains no page table. PIDR should
488 * never be set to zero because that duplicates the kernel address
489 * space at the 0x0... offset (quadrant 0)!
490 *
491 * An arbitrary PID that may later be allocated by the PID allocator
492 * for userspace processes must not be used either, because that
493 * would cause stale user mappings for that PID on CPUs outside of
494 * the TLB invalidation scheme (because it won't be in mm_cpumask).
495 *
496 * So permanently carve out one PID for the purpose of a guard PID.
497 */
498 init_mm.context.id = mmu_base_pid;
499 mmu_base_pid++;
500 }
501
radix_init_partition_table(void)502 static void __init radix_init_partition_table(void)
503 {
504 unsigned long rts_field, dw0, dw1;
505
506 mmu_partition_table_init();
507 rts_field = radix__get_tree_size();
508 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
509 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
510 mmu_partition_table_set_entry(0, dw0, dw1, false);
511
512 pr_info("Initializing Radix MMU\n");
513 }
514
get_idx_from_shift(unsigned int shift)515 static int __init get_idx_from_shift(unsigned int shift)
516 {
517 int idx = -1;
518
519 switch (shift) {
520 case 0xc:
521 idx = MMU_PAGE_4K;
522 break;
523 case 0x10:
524 idx = MMU_PAGE_64K;
525 break;
526 case 0x15:
527 idx = MMU_PAGE_2M;
528 break;
529 case 0x1e:
530 idx = MMU_PAGE_1G;
531 break;
532 }
533 return idx;
534 }
535
radix_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)536 static int __init radix_dt_scan_page_sizes(unsigned long node,
537 const char *uname, int depth,
538 void *data)
539 {
540 int size = 0;
541 int shift, idx;
542 unsigned int ap;
543 const __be32 *prop;
544 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
545
546 /* We are scanning "cpu" nodes only */
547 if (type == NULL || strcmp(type, "cpu") != 0)
548 return 0;
549
550 /* Grab page size encodings */
551 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
552 if (!prop)
553 return 0;
554
555 pr_info("Page sizes from device-tree:\n");
556 for (; size >= 4; size -= 4, ++prop) {
557
558 struct mmu_psize_def *def;
559
560 /* top 3 bit is AP encoding */
561 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
562 ap = be32_to_cpu(prop[0]) >> 29;
563 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
564
565 idx = get_idx_from_shift(shift);
566 if (idx < 0)
567 continue;
568
569 def = &mmu_psize_defs[idx];
570 def->shift = shift;
571 def->ap = ap;
572 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
573 }
574
575 /* needed ? */
576 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
577 return 1;
578 }
579
radix__early_init_devtree(void)580 void __init radix__early_init_devtree(void)
581 {
582 int rc;
583
584 /*
585 * Try to find the available page sizes in the device-tree
586 */
587 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
588 if (!rc) {
589 /*
590 * No page size details found in device tree.
591 * Let's assume we have page 4k and 64k support
592 */
593 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
594 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
595 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
596 psize_to_rpti_pgsize(MMU_PAGE_4K);
597
598 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
599 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
600 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
601 psize_to_rpti_pgsize(MMU_PAGE_64K);
602 }
603 return;
604 }
605
radix__early_init_mmu(void)606 void __init radix__early_init_mmu(void)
607 {
608 unsigned long lpcr;
609
610 #ifdef CONFIG_PPC_64S_HASH_MMU
611 #ifdef CONFIG_PPC_64K_PAGES
612 /* PAGE_SIZE mappings */
613 mmu_virtual_psize = MMU_PAGE_64K;
614 #else
615 mmu_virtual_psize = MMU_PAGE_4K;
616 #endif
617 #endif
618 /*
619 * initialize page table size
620 */
621 __pte_index_size = RADIX_PTE_INDEX_SIZE;
622 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
623 __pud_index_size = RADIX_PUD_INDEX_SIZE;
624 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
625 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
626 __pte_table_size = RADIX_PTE_TABLE_SIZE;
627 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
628 __pud_table_size = RADIX_PUD_TABLE_SIZE;
629 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
630
631 __pmd_val_bits = RADIX_PMD_VAL_BITS;
632 __pud_val_bits = RADIX_PUD_VAL_BITS;
633 __pgd_val_bits = RADIX_PGD_VAL_BITS;
634
635 __kernel_virt_start = RADIX_KERN_VIRT_START;
636 __vmalloc_start = RADIX_VMALLOC_START;
637 __vmalloc_end = RADIX_VMALLOC_END;
638 __kernel_io_start = RADIX_KERN_IO_START;
639 __kernel_io_end = RADIX_KERN_IO_END;
640 vmemmap = (struct page *)RADIX_VMEMMAP_START;
641 ioremap_bot = IOREMAP_BASE;
642
643 #ifdef CONFIG_PCI
644 pci_io_base = ISA_IO_BASE;
645 #endif
646 __pte_frag_nr = RADIX_PTE_FRAG_NR;
647 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
648 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
649 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
650
651 radix_init_pgtable();
652
653 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
654 lpcr = mfspr(SPRN_LPCR);
655 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
656 radix_init_partition_table();
657 } else {
658 radix_init_pseries();
659 }
660
661 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
662
663 /* Switch to the guard PID before turning on MMU */
664 radix__switch_mmu_context(NULL, &init_mm);
665 tlbiel_all();
666 }
667
radix__early_init_mmu_secondary(void)668 void radix__early_init_mmu_secondary(void)
669 {
670 unsigned long lpcr;
671 /*
672 * update partition table control register and UPRT
673 */
674 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
675 lpcr = mfspr(SPRN_LPCR);
676 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
677
678 set_ptcr_when_no_uv(__pa(partition_tb) |
679 (PATB_SIZE_SHIFT - 12));
680 }
681
682 radix__switch_mmu_context(NULL, &init_mm);
683 tlbiel_all();
684
685 /* Make sure userspace can't change the AMR */
686 mtspr(SPRN_UAMOR, 0);
687 }
688
689 /* Called during kexec sequence with MMU off */
radix__mmu_cleanup_all(void)690 notrace void radix__mmu_cleanup_all(void)
691 {
692 unsigned long lpcr;
693
694 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
695 lpcr = mfspr(SPRN_LPCR);
696 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
697 set_ptcr_when_no_uv(0);
698 powernv_set_nmmu_ptcr(0);
699 radix__flush_tlb_all();
700 }
701 }
702
703 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)704 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
705 {
706 pte_t *pte;
707 int i;
708
709 for (i = 0; i < PTRS_PER_PTE; i++) {
710 pte = pte_start + i;
711 if (!pte_none(*pte))
712 return;
713 }
714
715 pte_free_kernel(&init_mm, pte_start);
716 pmd_clear(pmd);
717 }
718
free_pmd_table(pmd_t * pmd_start,pud_t * pud)719 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
720 {
721 pmd_t *pmd;
722 int i;
723
724 for (i = 0; i < PTRS_PER_PMD; i++) {
725 pmd = pmd_start + i;
726 if (!pmd_none(*pmd))
727 return;
728 }
729
730 pmd_free(&init_mm, pmd_start);
731 pud_clear(pud);
732 }
733
free_pud_table(pud_t * pud_start,p4d_t * p4d)734 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
735 {
736 pud_t *pud;
737 int i;
738
739 for (i = 0; i < PTRS_PER_PUD; i++) {
740 pud = pud_start + i;
741 if (!pud_none(*pud))
742 return;
743 }
744
745 pud_free(&init_mm, pud_start);
746 p4d_clear(p4d);
747 }
748
749 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_pmd_is_unused(unsigned long addr,unsigned long end)750 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
751 {
752 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
753
754 return !vmemmap_populated(start, PMD_SIZE);
755 }
756
vmemmap_page_is_unused(unsigned long addr,unsigned long end)757 static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end)
758 {
759 unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE);
760
761 return !vmemmap_populated(start, PAGE_SIZE);
762
763 }
764 #endif
765
free_vmemmap_pages(struct page * page,struct vmem_altmap * altmap,int order)766 static void __meminit free_vmemmap_pages(struct page *page,
767 struct vmem_altmap *altmap,
768 int order)
769 {
770 unsigned int nr_pages = 1 << order;
771
772 if (altmap) {
773 unsigned long alt_start, alt_end;
774 unsigned long base_pfn = page_to_pfn(page);
775
776 /*
777 * with 2M vmemmap mmaping we can have things setup
778 * such that even though atlmap is specified we never
779 * used altmap.
780 */
781 alt_start = altmap->base_pfn;
782 alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
783
784 if (base_pfn >= alt_start && base_pfn < alt_end) {
785 vmem_altmap_free(altmap, nr_pages);
786 return;
787 }
788 }
789
790 if (PageReserved(page)) {
791 /* allocated from memblock */
792 while (nr_pages--)
793 free_reserved_page(page++);
794 } else
795 free_pages((unsigned long)page_address(page), order);
796 }
797
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)798 static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr,
799 unsigned long end, bool direct,
800 struct vmem_altmap *altmap)
801 {
802 unsigned long next, pages = 0;
803 pte_t *pte;
804
805 pte = pte_start + pte_index(addr);
806 for (; addr < end; addr = next, pte++) {
807 next = (addr + PAGE_SIZE) & PAGE_MASK;
808 if (next > end)
809 next = end;
810
811 if (!pte_present(*pte))
812 continue;
813
814 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
815 if (!direct)
816 free_vmemmap_pages(pte_page(*pte), altmap, 0);
817 pte_clear(&init_mm, addr, pte);
818 pages++;
819 }
820 #ifdef CONFIG_SPARSEMEM_VMEMMAP
821 else if (!direct && vmemmap_page_is_unused(addr, next)) {
822 free_vmemmap_pages(pte_page(*pte), altmap, 0);
823 pte_clear(&init_mm, addr, pte);
824 }
825 #endif
826 }
827 if (direct)
828 update_page_count(mmu_virtual_psize, -pages);
829 }
830
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)831 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
832 unsigned long end, bool direct,
833 struct vmem_altmap *altmap)
834 {
835 unsigned long next, pages = 0;
836 pte_t *pte_base;
837 pmd_t *pmd;
838
839 pmd = pmd_start + pmd_index(addr);
840 for (; addr < end; addr = next, pmd++) {
841 next = pmd_addr_end(addr, end);
842
843 if (!pmd_present(*pmd))
844 continue;
845
846 if (pmd_leaf(*pmd)) {
847 if (IS_ALIGNED(addr, PMD_SIZE) &&
848 IS_ALIGNED(next, PMD_SIZE)) {
849 if (!direct)
850 free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
851 pte_clear(&init_mm, addr, (pte_t *)pmd);
852 pages++;
853 }
854 #ifdef CONFIG_SPARSEMEM_VMEMMAP
855 else if (!direct && vmemmap_pmd_is_unused(addr, next)) {
856 free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
857 pte_clear(&init_mm, addr, (pte_t *)pmd);
858 }
859 #endif
860 continue;
861 }
862
863 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
864 remove_pte_table(pte_base, addr, next, direct, altmap);
865 free_pte_table(pte_base, pmd);
866 }
867 if (direct)
868 update_page_count(MMU_PAGE_2M, -pages);
869 }
870
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)871 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
872 unsigned long end, bool direct,
873 struct vmem_altmap *altmap)
874 {
875 unsigned long next, pages = 0;
876 pmd_t *pmd_base;
877 pud_t *pud;
878
879 pud = pud_start + pud_index(addr);
880 for (; addr < end; addr = next, pud++) {
881 next = pud_addr_end(addr, end);
882
883 if (!pud_present(*pud))
884 continue;
885
886 if (pud_leaf(*pud)) {
887 if (!IS_ALIGNED(addr, PUD_SIZE) ||
888 !IS_ALIGNED(next, PUD_SIZE)) {
889 WARN_ONCE(1, "%s: unaligned range\n", __func__);
890 continue;
891 }
892 pte_clear(&init_mm, addr, (pte_t *)pud);
893 pages++;
894 continue;
895 }
896
897 pmd_base = pud_pgtable(*pud);
898 remove_pmd_table(pmd_base, addr, next, direct, altmap);
899 free_pmd_table(pmd_base, pud);
900 }
901 if (direct)
902 update_page_count(MMU_PAGE_1G, -pages);
903 }
904
905 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)906 remove_pagetable(unsigned long start, unsigned long end, bool direct,
907 struct vmem_altmap *altmap)
908 {
909 unsigned long addr, next;
910 pud_t *pud_base;
911 pgd_t *pgd;
912 p4d_t *p4d;
913
914 spin_lock(&init_mm.page_table_lock);
915
916 for (addr = start; addr < end; addr = next) {
917 next = pgd_addr_end(addr, end);
918
919 pgd = pgd_offset_k(addr);
920 p4d = p4d_offset(pgd, addr);
921 if (!p4d_present(*p4d))
922 continue;
923
924 if (p4d_leaf(*p4d)) {
925 if (!IS_ALIGNED(addr, P4D_SIZE) ||
926 !IS_ALIGNED(next, P4D_SIZE)) {
927 WARN_ONCE(1, "%s: unaligned range\n", __func__);
928 continue;
929 }
930
931 pte_clear(&init_mm, addr, (pte_t *)pgd);
932 continue;
933 }
934
935 pud_base = p4d_pgtable(*p4d);
936 remove_pud_table(pud_base, addr, next, direct, altmap);
937 free_pud_table(pud_base, p4d);
938 }
939
940 spin_unlock(&init_mm.page_table_lock);
941 radix__flush_tlb_kernel_range(start, end);
942 }
943
radix__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)944 int __meminit radix__create_section_mapping(unsigned long start,
945 unsigned long end, int nid,
946 pgprot_t prot)
947 {
948 if (end >= RADIX_VMALLOC_START) {
949 pr_warn("Outside the supported range\n");
950 return -1;
951 }
952
953 return create_physical_mapping(__pa(start), __pa(end),
954 nid, prot, ~0UL);
955 }
956
radix__remove_section_mapping(unsigned long start,unsigned long end)957 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
958 {
959 remove_pagetable(start, end, true, NULL);
960 return 0;
961 }
962 #endif /* CONFIG_MEMORY_HOTPLUG */
963
964 #ifdef CONFIG_SPARSEMEM_VMEMMAP
__map_kernel_page_nid(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid)965 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
966 pgprot_t flags, unsigned int map_page_size,
967 int nid)
968 {
969 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
970 }
971
radix__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)972 int __meminit radix__vmemmap_create_mapping(unsigned long start,
973 unsigned long page_size,
974 unsigned long phys)
975 {
976 /* Create a PTE encoding */
977 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
978 int ret;
979
980 if ((start + page_size) >= RADIX_VMEMMAP_END) {
981 pr_warn("Outside the supported range\n");
982 return -1;
983 }
984
985 ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid);
986 BUG_ON(ret);
987
988 return 0;
989 }
990
991
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)992 bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap)
993 {
994 if (radix_enabled())
995 return __vmemmap_can_optimize(altmap, pgmap);
996
997 return false;
998 }
999
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1000 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1001 unsigned long addr, unsigned long next)
1002 {
1003 int large = pmd_leaf(*pmdp);
1004
1005 if (large)
1006 vmemmap_verify(pmdp_ptep(pmdp), node, addr, next);
1007
1008 return large;
1009 }
1010
vmemmap_set_pmd(pmd_t * pmdp,void * p,int node,unsigned long addr,unsigned long next)1011 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1012 unsigned long addr, unsigned long next)
1013 {
1014 pte_t entry;
1015 pte_t *ptep = pmdp_ptep(pmdp);
1016
1017 VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE));
1018 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
1019 set_pte_at(&init_mm, addr, ptep, entry);
1020 asm volatile("ptesync": : :"memory");
1021
1022 vmemmap_verify(ptep, node, addr, next);
1023 }
1024
radix__vmemmap_pte_populate(pmd_t * pmdp,unsigned long addr,int node,struct vmem_altmap * altmap,struct page * reuse)1025 static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr,
1026 int node,
1027 struct vmem_altmap *altmap,
1028 struct page *reuse)
1029 {
1030 pte_t *pte = pte_offset_kernel(pmdp, addr);
1031
1032 if (pte_none(*pte)) {
1033 pte_t entry;
1034 void *p;
1035
1036 if (!reuse) {
1037 /*
1038 * make sure we don't create altmap mappings
1039 * covering things outside the device.
1040 */
1041 if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE))
1042 altmap = NULL;
1043
1044 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
1045 if (!p && altmap)
1046 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL);
1047 if (!p)
1048 return NULL;
1049 pr_debug("PAGE_SIZE vmemmap mapping\n");
1050 } else {
1051 /*
1052 * When a PTE/PMD entry is freed from the init_mm
1053 * there's a free_pages() call to this page allocated
1054 * above. Thus this get_page() is paired with the
1055 * put_page_testzero() on the freeing path.
1056 * This can only called by certain ZONE_DEVICE path,
1057 * and through vmemmap_populate_compound_pages() when
1058 * slab is available.
1059 */
1060 get_page(reuse);
1061 p = page_to_virt(reuse);
1062 pr_debug("Tail page reuse vmemmap mapping\n");
1063 }
1064
1065 VM_BUG_ON(!PAGE_ALIGNED(addr));
1066 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
1067 set_pte_at(&init_mm, addr, pte, entry);
1068 asm volatile("ptesync": : :"memory");
1069 }
1070 return pte;
1071 }
1072
vmemmap_pud_alloc(p4d_t * p4dp,int node,unsigned long address)1073 static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node,
1074 unsigned long address)
1075 {
1076 pud_t *pud;
1077
1078 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1079 if (unlikely(p4d_none(*p4dp))) {
1080 if (unlikely(!slab_is_available())) {
1081 pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1082 p4d_populate(&init_mm, p4dp, pud);
1083 /* go to the pud_offset */
1084 } else
1085 return pud_alloc(&init_mm, p4dp, address);
1086 }
1087 return pud_offset(p4dp, address);
1088 }
1089
vmemmap_pmd_alloc(pud_t * pudp,int node,unsigned long address)1090 static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node,
1091 unsigned long address)
1092 {
1093 pmd_t *pmd;
1094
1095 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1096 if (unlikely(pud_none(*pudp))) {
1097 if (unlikely(!slab_is_available())) {
1098 pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1099 pud_populate(&init_mm, pudp, pmd);
1100 } else
1101 return pmd_alloc(&init_mm, pudp, address);
1102 }
1103 return pmd_offset(pudp, address);
1104 }
1105
vmemmap_pte_alloc(pmd_t * pmdp,int node,unsigned long address)1106 static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node,
1107 unsigned long address)
1108 {
1109 pte_t *pte;
1110
1111 /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1112 if (unlikely(pmd_none(*pmdp))) {
1113 if (unlikely(!slab_is_available())) {
1114 pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1115 pmd_populate(&init_mm, pmdp, pte);
1116 } else
1117 return pte_alloc_kernel(pmdp, address);
1118 }
1119 return pte_offset_kernel(pmdp, address);
1120 }
1121
1122
1123
radix__vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1124 int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node,
1125 struct vmem_altmap *altmap)
1126 {
1127 unsigned long addr;
1128 unsigned long next;
1129 pgd_t *pgd;
1130 p4d_t *p4d;
1131 pud_t *pud;
1132 pmd_t *pmd;
1133 pte_t *pte;
1134
1135 for (addr = start; addr < end; addr = next) {
1136 next = pmd_addr_end(addr, end);
1137
1138 pgd = pgd_offset_k(addr);
1139 p4d = p4d_offset(pgd, addr);
1140 pud = vmemmap_pud_alloc(p4d, node, addr);
1141 if (!pud)
1142 return -ENOMEM;
1143 pmd = vmemmap_pmd_alloc(pud, node, addr);
1144 if (!pmd)
1145 return -ENOMEM;
1146
1147 if (pmd_none(READ_ONCE(*pmd))) {
1148 void *p;
1149
1150 /*
1151 * keep it simple by checking addr PMD_SIZE alignment
1152 * and verifying the device boundary condition.
1153 * For us to use a pmd mapping, both addr and pfn should
1154 * be aligned. We skip if addr is not aligned and for
1155 * pfn we hope we have extra area in the altmap that
1156 * can help to find an aligned block. This can result
1157 * in altmap block allocation failures, in which case
1158 * we fallback to RAM for vmemmap allocation.
1159 */
1160 if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) ||
1161 altmap_cross_boundary(altmap, addr, PMD_SIZE))) {
1162 /*
1163 * make sure we don't create altmap mappings
1164 * covering things outside the device.
1165 */
1166 goto base_mapping;
1167 }
1168
1169 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1170 if (p) {
1171 vmemmap_set_pmd(pmd, p, node, addr, next);
1172 pr_debug("PMD_SIZE vmemmap mapping\n");
1173 continue;
1174 } else if (altmap) {
1175 /*
1176 * A vmemmap block allocation can fail due to
1177 * alignment requirements and we trying to align
1178 * things aggressively there by running out of
1179 * space. Try base mapping on failure.
1180 */
1181 goto base_mapping;
1182 }
1183 } else if (vmemmap_check_pmd(pmd, node, addr, next)) {
1184 /*
1185 * If a huge mapping exist due to early call to
1186 * vmemmap_populate, let's try to use that.
1187 */
1188 continue;
1189 }
1190 base_mapping:
1191 /*
1192 * Not able allocate higher order memory to back memmap
1193 * or we found a pointer to pte page. Allocate base page
1194 * size vmemmap
1195 */
1196 pte = vmemmap_pte_alloc(pmd, node, addr);
1197 if (!pte)
1198 return -ENOMEM;
1199
1200 pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL);
1201 if (!pte)
1202 return -ENOMEM;
1203
1204 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1205 next = addr + PAGE_SIZE;
1206 }
1207 return 0;
1208 }
1209
radix__vmemmap_populate_address(unsigned long addr,int node,struct vmem_altmap * altmap,struct page * reuse)1210 static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node,
1211 struct vmem_altmap *altmap,
1212 struct page *reuse)
1213 {
1214 pgd_t *pgd;
1215 p4d_t *p4d;
1216 pud_t *pud;
1217 pmd_t *pmd;
1218 pte_t *pte;
1219
1220 pgd = pgd_offset_k(addr);
1221 p4d = p4d_offset(pgd, addr);
1222 pud = vmemmap_pud_alloc(p4d, node, addr);
1223 if (!pud)
1224 return NULL;
1225 pmd = vmemmap_pmd_alloc(pud, node, addr);
1226 if (!pmd)
1227 return NULL;
1228 if (pmd_leaf(*pmd))
1229 /*
1230 * The second page is mapped as a hugepage due to a nearby request.
1231 * Force our mapping to page size without deduplication
1232 */
1233 return NULL;
1234 pte = vmemmap_pte_alloc(pmd, node, addr);
1235 if (!pte)
1236 return NULL;
1237 radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1238 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1239
1240 return pte;
1241 }
1242
vmemmap_compound_tail_page(unsigned long addr,unsigned long pfn_offset,int node)1243 static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr,
1244 unsigned long pfn_offset, int node)
1245 {
1246 pgd_t *pgd;
1247 p4d_t *p4d;
1248 pud_t *pud;
1249 pmd_t *pmd;
1250 pte_t *pte;
1251 unsigned long map_addr;
1252
1253 /* the second vmemmap page which we use for duplication */
1254 map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE;
1255 pgd = pgd_offset_k(map_addr);
1256 p4d = p4d_offset(pgd, map_addr);
1257 pud = vmemmap_pud_alloc(p4d, node, map_addr);
1258 if (!pud)
1259 return NULL;
1260 pmd = vmemmap_pmd_alloc(pud, node, map_addr);
1261 if (!pmd)
1262 return NULL;
1263 if (pmd_leaf(*pmd))
1264 /*
1265 * The second page is mapped as a hugepage due to a nearby request.
1266 * Force our mapping to page size without deduplication
1267 */
1268 return NULL;
1269 pte = vmemmap_pte_alloc(pmd, node, map_addr);
1270 if (!pte)
1271 return NULL;
1272 /*
1273 * Check if there exist a mapping to the left
1274 */
1275 if (pte_none(*pte)) {
1276 /*
1277 * Populate the head page vmemmap page.
1278 * It can fall in different pmd, hence
1279 * vmemmap_populate_address()
1280 */
1281 pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL);
1282 if (!pte)
1283 return NULL;
1284 /*
1285 * Populate the tail pages vmemmap page
1286 */
1287 pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL);
1288 if (!pte)
1289 return NULL;
1290 vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE);
1291 return pte;
1292 }
1293 return pte;
1294 }
1295
vmemmap_populate_compound_pages(unsigned long start_pfn,unsigned long start,unsigned long end,int node,struct dev_pagemap * pgmap)1296 int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
1297 unsigned long start,
1298 unsigned long end, int node,
1299 struct dev_pagemap *pgmap)
1300 {
1301 /*
1302 * we want to map things as base page size mapping so that
1303 * we can save space in vmemmap. We could have huge mapping
1304 * covering out both edges.
1305 */
1306 unsigned long addr;
1307 unsigned long addr_pfn = start_pfn;
1308 unsigned long next;
1309 pgd_t *pgd;
1310 p4d_t *p4d;
1311 pud_t *pud;
1312 pmd_t *pmd;
1313 pte_t *pte;
1314
1315 for (addr = start; addr < end; addr = next) {
1316
1317 pgd = pgd_offset_k(addr);
1318 p4d = p4d_offset(pgd, addr);
1319 pud = vmemmap_pud_alloc(p4d, node, addr);
1320 if (!pud)
1321 return -ENOMEM;
1322 pmd = vmemmap_pmd_alloc(pud, node, addr);
1323 if (!pmd)
1324 return -ENOMEM;
1325
1326 if (pmd_leaf(READ_ONCE(*pmd))) {
1327 /* existing huge mapping. Skip the range */
1328 addr_pfn += (PMD_SIZE >> PAGE_SHIFT);
1329 next = pmd_addr_end(addr, end);
1330 continue;
1331 }
1332 pte = vmemmap_pte_alloc(pmd, node, addr);
1333 if (!pte)
1334 return -ENOMEM;
1335 if (!pte_none(*pte)) {
1336 /*
1337 * This could be because we already have a compound
1338 * page whose VMEMMAP_RESERVE_NR pages were mapped and
1339 * this request fall in those pages.
1340 */
1341 addr_pfn += 1;
1342 next = addr + PAGE_SIZE;
1343 continue;
1344 } else {
1345 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
1346 unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages);
1347 pte_t *tail_page_pte;
1348
1349 /*
1350 * if the address is aligned to huge page size it is the
1351 * head mapping.
1352 */
1353 if (pfn_offset == 0) {
1354 /* Populate the head page vmemmap page */
1355 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1356 if (!pte)
1357 return -ENOMEM;
1358 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1359
1360 /*
1361 * Populate the tail pages vmemmap page
1362 * It can fall in different pmd, hence
1363 * vmemmap_populate_address()
1364 */
1365 pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL);
1366 if (!pte)
1367 return -ENOMEM;
1368
1369 addr_pfn += 2;
1370 next = addr + 2 * PAGE_SIZE;
1371 continue;
1372 }
1373 /*
1374 * get the 2nd mapping details
1375 * Also create it if that doesn't exist
1376 */
1377 tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node);
1378 if (!tail_page_pte) {
1379
1380 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1381 if (!pte)
1382 return -ENOMEM;
1383 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1384
1385 addr_pfn += 1;
1386 next = addr + PAGE_SIZE;
1387 continue;
1388 }
1389
1390 pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte));
1391 if (!pte)
1392 return -ENOMEM;
1393 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1394
1395 addr_pfn += 1;
1396 next = addr + PAGE_SIZE;
1397 continue;
1398 }
1399 }
1400 return 0;
1401 }
1402
1403
1404 #ifdef CONFIG_MEMORY_HOTPLUG
radix__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1405 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
1406 {
1407 remove_pagetable(start, start + page_size, true, NULL);
1408 }
1409
radix__vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1410 void __ref radix__vmemmap_free(unsigned long start, unsigned long end,
1411 struct vmem_altmap *altmap)
1412 {
1413 remove_pagetable(start, end, false, altmap);
1414 }
1415 #endif
1416 #endif
1417
1418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1419
radix__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1420 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
1421 pmd_t *pmdp, unsigned long clr,
1422 unsigned long set)
1423 {
1424 unsigned long old;
1425
1426 #ifdef CONFIG_DEBUG_VM
1427 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
1428 assert_spin_locked(pmd_lockptr(mm, pmdp));
1429 #endif
1430
1431 old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1);
1432 trace_hugepage_update_pmd(addr, old, clr, set);
1433
1434 return old;
1435 }
1436
radix__pud_hugepage_update(struct mm_struct * mm,unsigned long addr,pud_t * pudp,unsigned long clr,unsigned long set)1437 unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr,
1438 pud_t *pudp, unsigned long clr,
1439 unsigned long set)
1440 {
1441 unsigned long old;
1442
1443 #ifdef CONFIG_DEBUG_VM
1444 WARN_ON(!pud_devmap(*pudp));
1445 assert_spin_locked(pud_lockptr(mm, pudp));
1446 #endif
1447
1448 old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1);
1449 trace_hugepage_update_pud(addr, old, clr, set);
1450
1451 return old;
1452 }
1453
radix__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1454 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
1455 pmd_t *pmdp)
1456
1457 {
1458 pmd_t pmd;
1459
1460 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1461 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
1462 VM_BUG_ON(pmd_devmap(*pmdp));
1463 /*
1464 * khugepaged calls this for normal pmd
1465 */
1466 pmd = *pmdp;
1467 pmd_clear(pmdp);
1468
1469 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
1470
1471 return pmd;
1472 }
1473
1474 /*
1475 * For us pgtable_t is pte_t *. Inorder to save the deposisted
1476 * page table, we consider the allocated page table as a list
1477 * head. On withdraw we need to make sure we zero out the used
1478 * list_head memory area.
1479 */
radix__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1480 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1481 pgtable_t pgtable)
1482 {
1483 struct list_head *lh = (struct list_head *) pgtable;
1484
1485 assert_spin_locked(pmd_lockptr(mm, pmdp));
1486
1487 /* FIFO */
1488 if (!pmd_huge_pte(mm, pmdp))
1489 INIT_LIST_HEAD(lh);
1490 else
1491 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1492 pmd_huge_pte(mm, pmdp) = pgtable;
1493 }
1494
radix__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1495 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1496 {
1497 pte_t *ptep;
1498 pgtable_t pgtable;
1499 struct list_head *lh;
1500
1501 assert_spin_locked(pmd_lockptr(mm, pmdp));
1502
1503 /* FIFO */
1504 pgtable = pmd_huge_pte(mm, pmdp);
1505 lh = (struct list_head *) pgtable;
1506 if (list_empty(lh))
1507 pmd_huge_pte(mm, pmdp) = NULL;
1508 else {
1509 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1510 list_del(lh);
1511 }
1512 ptep = (pte_t *) pgtable;
1513 *ptep = __pte(0);
1514 ptep++;
1515 *ptep = __pte(0);
1516 return pgtable;
1517 }
1518
radix__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1519 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1520 unsigned long addr, pmd_t *pmdp)
1521 {
1522 pmd_t old_pmd;
1523 unsigned long old;
1524
1525 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1526 old_pmd = __pmd(old);
1527 return old_pmd;
1528 }
1529
radix__pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1530 pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm,
1531 unsigned long addr, pud_t *pudp)
1532 {
1533 pud_t old_pud;
1534 unsigned long old;
1535
1536 old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0);
1537 old_pud = __pud(old);
1538 return old_pud;
1539 }
1540
1541 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1542
radix__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)1543 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1544 pte_t entry, unsigned long address, int psize)
1545 {
1546 struct mm_struct *mm = vma->vm_mm;
1547 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
1548 _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
1549
1550 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1551 /*
1552 * On POWER9, the NMMU is not able to relax PTE access permissions
1553 * for a translation with a TLB. The PTE must be invalidated, TLB
1554 * flushed before the new PTE is installed.
1555 *
1556 * This only needs to be done for radix, because hash translation does
1557 * flush when updating the linux pte (and we don't support NMMU
1558 * accelerators on HPT on POWER9 anyway XXX: do we?).
1559 *
1560 * POWER10 (and P9P) NMMU does behave as per ISA.
1561 */
1562 if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1563 atomic_read(&mm->context.copros) > 0) {
1564 unsigned long old_pte, new_pte;
1565
1566 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1567 new_pte = old_pte | set;
1568 radix__flush_tlb_page_psize(mm, address, psize);
1569 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1570 } else {
1571 __radix_pte_update(ptep, 0, set);
1572 /*
1573 * Book3S does not require a TLB flush when relaxing access
1574 * restrictions when the address space (modulo the POWER9 nest
1575 * MMU issue above) because the MMU will reload the PTE after
1576 * taking an access fault, as defined by the architecture. See
1577 * "Setting a Reference or Change Bit or Upgrading Access
1578 * Authority (PTE Subject to Atomic Hardware Updates)" in
1579 * Power ISA Version 3.1B.
1580 */
1581 }
1582 /* See ptesync comment in radix__set_pte_at */
1583 }
1584
radix__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1585 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1586 unsigned long addr, pte_t *ptep,
1587 pte_t old_pte, pte_t pte)
1588 {
1589 struct mm_struct *mm = vma->vm_mm;
1590
1591 /*
1592 * POWER9 NMMU must flush the TLB after clearing the PTE before
1593 * installing a PTE with more relaxed access permissions, see
1594 * radix__ptep_set_access_flags.
1595 */
1596 if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1597 is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1598 (atomic_read(&mm->context.copros) > 0))
1599 radix__flush_tlb_page(vma, addr);
1600
1601 set_pte_at(mm, addr, ptep, pte);
1602 }
1603
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1604 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1605 {
1606 pte_t *ptep = (pte_t *)pud;
1607 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1608
1609 if (!radix_enabled())
1610 return 0;
1611
1612 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1613
1614 return 1;
1615 }
1616
pud_clear_huge(pud_t * pud)1617 int pud_clear_huge(pud_t *pud)
1618 {
1619 if (pud_leaf(*pud)) {
1620 pud_clear(pud);
1621 return 1;
1622 }
1623
1624 return 0;
1625 }
1626
pud_free_pmd_page(pud_t * pud,unsigned long addr)1627 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1628 {
1629 pmd_t *pmd;
1630 int i;
1631
1632 pmd = pud_pgtable(*pud);
1633 pud_clear(pud);
1634
1635 flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1636
1637 for (i = 0; i < PTRS_PER_PMD; i++) {
1638 if (!pmd_none(pmd[i])) {
1639 pte_t *pte;
1640 pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1641
1642 pte_free_kernel(&init_mm, pte);
1643 }
1644 }
1645
1646 pmd_free(&init_mm, pmd);
1647
1648 return 1;
1649 }
1650
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1651 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1652 {
1653 pte_t *ptep = (pte_t *)pmd;
1654 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1655
1656 if (!radix_enabled())
1657 return 0;
1658
1659 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1660
1661 return 1;
1662 }
1663
pmd_clear_huge(pmd_t * pmd)1664 int pmd_clear_huge(pmd_t *pmd)
1665 {
1666 if (pmd_leaf(*pmd)) {
1667 pmd_clear(pmd);
1668 return 1;
1669 }
1670
1671 return 0;
1672 }
1673
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1674 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1675 {
1676 pte_t *pte;
1677
1678 pte = (pte_t *)pmd_page_vaddr(*pmd);
1679 pmd_clear(pmd);
1680
1681 flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1682
1683 pte_free_kernel(&init_mm, pte);
1684
1685 return 1;
1686 }
1687